
LECTURES ON THE REPRESENTATION TYPE
OF A PROJECTIVE VARIETY

R.M. MIRÓ-ROIG∗

Abstract. In these notes, we construct families of non-isomorphic Arithmetically Co-
hen Macaulay (ACM for short) sheaves (i.e., sheaves without intermediate cohomology)
on a projective variety X. The study of such sheaves has a long and interesting history
behind. Since the seminal result by Horrocks characterizing ACM sheaves on Pn as those
that split into a sum of line bundles, an important amount of research has been devoted
to the study of ACM sheaves on a given variety.

ACM sheaves also provide a criterium to determine the complexity of the underlying
variety. This complexity is studied in terms of the dimension and number of families of
undecomposable ACM sheaves that it supports, namely, its representation type. Varieties
that admit only a finite number of undecomposable ACM sheaves (up to twist and
isomorphism) are called of finite representation type. These varieties are completely
classified: They are either three or less reduced points in P2, Pn

k , a smooth hyperquadric
X ⊂ Pn, a cubic scroll in P4

k, the Veronese surface in P5
k or a rational normal curve.

On the other extreme of complexity we find the varieties of wild representation type,
namely, varieties for which there exist r-dimensional families of non-isomorphic unde-
composable ACM sheaves for arbitrary large r. In the case of dimension one, it is known
that curves of wild representation type are exactly those of genus larger or equal than
two. In dimension greater or equal than two few examples are know and in these notes,
we give a brief account of the known results.
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1. Introduction

These notes grew out of a series of lectures given by the author at the Vietnam Institute
for Advanced Study in Mathematics (VIASM), Hanoi, during the period February 8 -
March 7, 2014. In no case do I claim it is a survey on the representation type of a
projective variety. Many people have made important contributions without even being
mentioned here and I apologize to those whose work I made have failed to cite properly.
The author gave 3 lectures of length 120 minutes each. She attempted to cover the basic
facts on the representation type of a projective variety. Given the extensiveness of the
subject, it was not possible to go into great detail in every proof. Still, it was hoped that
the material that she chose will be beneficial and illuminating for the participants, and
for the reader.

The projective space Pn holds a very remarkable property: the only undecomposable
vector bundle E without intermediate cohomology (i.e., Hi(Pn, E(t)) = 0 for t ∈ Z and
1 < i < n), up to twist, is the structural line bundle OPn . This is the famous Horrocks’
Theorem, proved in [Hor]. Ever since this result was stated, the study of the category of
undecomposable arithmetically Cohen-Macaulay bundles (i.e., bundles without intermedi-
ate cohomology) supported on a given projective variety X has raised a lot of interest since
it is a natural way to understand the complexity of the underlying variety X. Mimicking
an analogous trichotomy in Representation Theory, in [DG] it was proposed a classifica-
tion of ACM projective varieties as finite, tame or wild (see Definition 2.11) according
to the complexity of their associated category of ACM vector bundles and it was proved
that this trichotomy is exhaustive for the case of ACM curves: rational curves are finite,
elliptic curves are tame and curves of higher genus are wild. Unfortunately very little is
known for varieties of higher dimension and in this series of lectures I will give a brief
account of known results.

The result due to Horrocks (cf. [Hor]) which asserts that, up to twist, OPn is the only
one undecomposable ACM bundle on Pn and the result due to Knörrer (cf. [Kn]) which
states that on a smooth hyperquadric X the only undecomposable ACM bundles up to
twist are OX and the spinor bundles S match with the general philosophy that a ”simple”
variety should have associated a ”simple” category of ACM bundles. Following these
lines, a cornerstone result was the classification of ACM varieties of finite representation
type, i.e., varieties that support (up to twist and isomorphism) only a finite number of
undecomposable ACM bundles. It turned out that they fall into a very short list: Pn, a
smooth hyperquadric Q ⊂ Pn, a cubic scroll in P4, the Veronese surface in P5, a rational
normal curve and three or less reduced points in P2 (cf. [BGS, Theorem C] and [EH, p.
348]).

For the rest of ACM varieties, it became an interesting problem to give a criterium
to split them into a finer classification, i.e. it is a challenging problem to find out the
representation type of the remaining ones. So far only few examples of varieties of wild
representation type are known: curves of genus g ≥ 2 (cf. [DG]), del Pezzo surfaces and
Fano blow-ups of points in Pn (cf. [MP], the cases of the cubic surface and the cubic
threefold have also been handled in [CH]), ACM rational surfaces on P4 (cf. [MPLb]),
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any Segre variety unless the quadric surface in P3 (cf. [CMP, Theorem 4.6]) and non-

singular rational normal scrolls S(a0, · · · , ak) ⊆ PN , N =
∑k

i=0(ai) + k, (unless Pk+1 =
S(0, · · · , 0, 1), the rational normal curve S(a) in Pa, the quadric surface S(1, 1) in P3 and
the cubic scroll S(1, 2) in P4) (cf. [MR13, Theorem 3.8 ]).

Among ACM vector bundles E on a given variety X, it is interesting to spot a very im-
portant subclass for which its associated module ⊕t H0(X, E(t)) has the maximal number
of generators, which turns out to be deg(X) rk(E). This property was isolated by Ulrich in
[Ulr], and ever since modules with this property have been called Ulrich modules and cor-
respondingly Ulrich bundles in the geometric case (see [EFW] for more details on Ulrich
bundles). The search of Ulrich sheaves on a particular variety is a challenging problem. In
fact, few examples of varieties supporting Ulrich sheaves are known, although in [EFW]
it has been conjectured that any variety supports an Ulrich sheaf. Moreover, the recent
interest in the existence of Ulrich sheaves relies among other things on the fact that a
d-dimensional variety X ⊂ Pn supports an Ulrich sheaf (bundle) if and only if the cone
of cohomology tables of coherent sheaves (resp. vector bundles) on X coincides with the
cone of cohomology tables of coherent sheaves (resp. vector bundles) on Pd ([ES]; The-
orem 4.2). It is therefore a meaningful question to find out if a given projective variety
X is of wild representation type with respect to the much more restrictive category of its
undecomposable Ulrich vector bundles. We will prove that all smooth del Pezzo surfaces
as well as all Segre varieties unless P1 × P1 are of wild representation type and wildness
is witnessed by Ulrich bundles.

Next we outline the structure of these notes. In section 2 we introduce the definitions
and main properties that are going to be used throughout the paper; in particular, a brief
account of ACM varieties, ACM vector bundles and Ulrich bundles on projective varieties
is provided.

In section 3, we determine the representation type of any smooth del Pezzo surface S.
To this end, we have to construct families of undecomposable ACM bundles of arbitrary
high rank and dimension. Our construction will rely on the existence of level set of points
on S and the existence of level set of points on S is related to Mustaţǎ’s conjecture for
a general set of points on a projective variety. Roughly speaking, Mustaţǎ’s conjecture
predicts the graded Betti number of a set Z of general points on a fixed projective variety
X. In subsection 3.1, we will address this latter conjecture and we will prove that it holds
for a general set of points Z on a smooth del Pezzo surface provided the cardinality of Z
falls in certain strips explicitly described. In subsection 3.2, we perform the construction
of large families of simple Ulrich vector bundles on del Pezzo surfaces obtained blowing
up s ≤ 8 points in P2. These families are constructed as the pullback of the kernel of
certain surjective morphisms

OP2(1)b −→ OP2(2)a

with chosen properties. It is worthwhile to point out that in the case of del Pezzo surfaces
with very ample anticanonical divisor, we can show that these families of vector bundles
could also be obtained through Serre’s correspondence from a suitable general set of level
points on the del Pezzo surface.
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In section 4, we are going to focus our attention on the case of Segre varieties Σn1,...,ns ⊆
PN , N =

∏s
i=1(ni + 1) − 1 for 1 ≤ n1, . . . , ns. It is a classical result that the quadric

surface P1×P1 ⊆ P3 only supports three undecomposable ACM vector bundles, up to shift:
OP1×P1 , OP1×P1(1, 0) and OP1×P1(0, 1). For the rest of Segre varieties we construct large
families of simple (and, hence, undecomposable) Ulrich vector bundles on them and this
will allow us to conclude that they are of wild representation type. Up to our knowledge,
they will be the first family of examples of varieties of arbitrary dimension for which wild
representation type is witnessed by means of Ulrich vector bundles. In this section, we
first introduce the definition and main properties of Segre varieties needed later. Then,
we pay attention to the case of Segre varieties Σn,m ⊆ PN , N := nm+n+m, for 2 ≤ n,m
and to the case of Segre varieties of the form Σn1,n2...,ns ⊆ PN , N =

∏s
i=1(n1 + 1) − 1,

for 2 ≤ n1, · · · , ns. We construct families of arbitrarily large dimension of simple Ulrich
vector bundles on them by pulling-back certain vector bundles on each factor. This will
allow us to conclude that they are of wild representation type. Finally, we move forward
to the case of Segre varieties of the form Σn1,n2...,ns ⊆ PN , N =

∏s
i=1(n1 +1)−1, for either

n1 = 1 and s ≥ 3 or n1 = 1, s = 2 and n2 ≥ 2. In this case the families of undecomposable
Ulrich vector bundles of arbitrarily high rank will be obtained as iterated extensions of
lower rank vector bundles.

In section 5, we could not resist to discuss some details that perhaps only the experts
will care about, but hopefully will also introduce the non-expert reader to a subtle subject.
We analyze how the representation type of a projective variety change when we change
the polarization. Our main goal will be to prove that for any smooth ACM projective
variety X ⊂ Pn there always exists a very ample line bundle L on X which naturally
embeds X in Ph0(X,L)−1 as a variety of wild representation type.

Throughout the lectures I mentioned various open problems. Some of them and further
related problems are collected in the last section of these notes.

Acknowledgement. The author is grateful to Professor Le tuan Hoa and to Professor
Ngo Viet Trung for giving her the opportunity to speak about one of her favorite sub-
jects: Arithmetically Cohen-Macaulay bundles on projective varieties and their algebraic
counterpart Maximal Cohen-Macaulay modules. She is also grateful to the participants
for their kind hospitality and mathematical discussions that made for a very interesting
and productive month in the lovely city of Hanoi.

Last but not least, I am greatly indebted to L. Costa and J. Pons-Llopis for a long time
and enjoyable collaboration which led to part of the material described in these notes.

Notation. Throughout these notes K will be an algebraically closed field of characteristic
zero, R = K[x0, x1, · · · , xn], m = (x0, . . . , xn) and Pn = Proj(R). Given a non-singular
variety X equipped with an ample line bundle OX(1), the line bundle OX(1)⊗l will be
denoted by OX(l). For any coherent sheaf E on X we are going to denote the twisted sheaf
E⊗OX(l) by E(l). As usual, Hi(X, E) stands for the cohomology groups, hi(X, E) for their
dimension, exti(E ,F) for the dimension of Exti(E ,F) and Hi

∗(X, E) = ⊕l∈Z Hi(X, E(l))
(or simply Hi

∗ E).
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Given closed subschemes X ⊆ Pn, we denote by RX the homogeneous coordinate ring of
X defined as K[x0, . . . , xn]/I(X). As usual, the Hilbert function of X (resp. the Hilbert
polynomial of X) will be denoted by HX(t) (resp. PX(t) ∈ Q[t]) and the regularity of X is
defined to be the regularity of I(X), i.e., reg(X) ≤ m if and only if Hi(Pn, IX(m− i)) = 0
for i ≥ 1. Moreover, we know that PX(t) = HX(t) for any t ≥ regX − 1 + δ − n where δ
is the projective dimension of RX . Finally, ∆HX(t) denotes the difference function, i.e.,
∆HX(t) = HX8t)−HX(t− 1).

2. Preliminaries

In this section, we set up some preliminary notions mainly concerning the definitions
and basic results on ACM schemes X ⊂ Pn as well as on ACM sheaves and Ulrich sheaves
E on X needed in the sequel.

Definition 2.1. A subscheme X ⊆ Pn is said to be arithmetically Cohen-Macaulay
(briefly, ACM) if its homogeneous coordinate ring RX = R/I(X) is a Cohen-Macaulay
ring, i.e. depth(RX) = dim(RX).

Thanks to the graded version of the Auslander-Buchsbaum formula (for any finitely
generated R-module M):

pd(M) = n+ 1− depth(M),

we deduce that a subscheme X ⊆ Pn is ACM if and only if pd(RX) = codimX. Hence, if
X ⊆ Pn is a codimension c ACM subscheme, a graded minimal free R-resolution of I(X)
is of the form:

(2.1) 0 −→ Fc
ϕc−→ Fc−1

ϕc−1−→ · · · ϕ2−→ F1
ϕ1−→ F0 −→ RX −→ 0

with F0 = R and Fi = ⊕jR(−i − j)bij(X), 1 ≤ i ≤ c. The integers bij(X) are called the
graded Betti numbers of X and they are defined as

bij(X) = dimkTor
i(R/I(X), K)i+j.

We construct the Betti diagram of X writing in the (i, j)− th position the Betti number
bij(X). In this setting, minimal means that imϕi ⊂ mFi−1. Therefore, the free resolution
(2.1) is minimal if, after choosing basis of Fi, the matrices representing ϕi do not have
any non-zero scalar.

Remark 2.2. For non ACM schemes X ⊆ Pn of codimension c the graded minimal free
R-resolution of RX is of the form:

0 −→ Fp
ϕp−→ Fp−1

ϕp−1−→ · · · ϕ2−→ F1
ϕ1−→ F0 −→ RX −→ 0

with F0 = R, Fi = ⊕βi

j=1R(−nij), 1 ≤ i ≤ p, and c < p ≤ n.

Notice that any zero-dimensional variety is ACM. For varieties of higher dimension we
have the following characterization that will be used in this paper:

Lemma 2.3. (cf. [MR], pg. 23) If dim X ≥ 1, then X ⊆ Pnk is ACM if and only if
Hi
∗(IX) := ⊕t∈ZH

i(Pn, IX(t)) = 0 for 1 ≤ i ≤ dimX.

Example 2.4. (i) Any complete intersection variety X ⊂ Pn is ACM.
(ii) The twisted cubic X ⊂ P3 is an ACM curve.
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(iii) The rational quartic C ⊂ P3 is not ACM since H1(P3, IC(1)) 6= 0.
(iv) Segre Varieties are ACM varieties.
(v) Any standard determinantal variety X ⊂ Pn defined by the maximal minors of a

homogeneous matrix is ACM.

Definition 2.5. If X ⊆ Pn is an ACM subscheme then, the rank of the last free R-module
in a minimal free R-resolution of I(X) is called the Cohen-Macaulay type of X.

Definition 2.6. A codimension c subscheme X of Pn is arithmetically Gorenstein (briefly
AG) if its homogeneous coordinate ring RX is a Gorenstein ring or, equivalently, its sat-
urated homogeneous ideal, I(X), has a minimal free graded R-resolution of the following
type:

0 −→ R(−t) −→ ⊕αc−1

i=1 R(−nc−1,i) −→ ...... −→ ⊕α1
i=1R(−n1,i) −→ I(X) −→ 0.

In other words, an AG scheme is an ACM scheme with Cohen-Macaulay type 1.

Definition 2.7. Let (X,OX(1)) be a polarized variety. A coherent sheaf E on X is
Arithmetically Cohen Macaulay (ACM for short) if it is locally Cohen-Macaulay (i.e.,
depth Ex = dimOX,x for every point x ∈ X) and has no intermediate cohomology:

Hi
∗(X, E) = 0 for all i = 1, . . . , dimX − 1.

Notice that when X is a non-singular variety, which is going to be mainly our case,
any coherent ACM sheaf on X is locally free. For this reason we are going to speak
often of ACM bundles (since we identify locally free sheaves with their associated vector
bundle). ACM sheaves are closely related to their algebraic counterpart, the maximal
Cohen-Macaulay modules:

Definition 2.8. A graded RX-module E is a Maximal Cohen-Macaulay module (MCM
for short) if depthE = dimE = dimRX .

Indeed, it holds:

Proposition 2.9. Let X ⊆ Pn be an ACM scheme. There exists a bijection between ACM

sheaves E on X and MCM RX-modules E given by the functors E → Ẽ and E → H0
∗(X, E).

The study of ACM bundles has a long and interesting history behind and it is well known
that ACM sheaves provide a criterium to determine the complexity of the underlying
variety. Indeed, this complexity can be studied in terms of the dimension and number of
families of undecomposable ACM sheaves that it supports. Let us illustrate this general
philosophy with a couple of examples (the simplest examples of varieties we can deal with
have associated a simple category of undecomposable vector bundles).

Example 2.10. (1) Horrocks Theorem asserts that on Pn a vector bundle E is ACM
if and only if it splits into a sum of line bundles. So, up to twist, there is only one
undecomposable ACM bundle on Pn: OPn (cf. [Hor]).

(2) Knörrer’s theorem states that on a smooth hyperquadric Qn ⊂ Pn+1 any ACM
vector bundle E splits into a sum of line bundles and spinor bundles. So, up to twist and
dualizing, there are only two undecomposable ACM bundles on Q2n+1 (OQ2n+1 and the
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spinor bundle Σ); and three undecomposable ACM bundles on Q2n (OQ2n and the spinor
bundles Σ− and Σ+)(cf. [Kn]).

Recently, inspired by an analogous classification for quivers and for K-algebras of finite
type, it has been proposed the classification of any ACM variety as being of finite, tame
or wild representation type (cf. [DG] for the case of curves and [CH11] for the higher
dimensional case). Let us recall the definitions:

Definition 2.11. Let X ⊆ PN be an ACM scheme of dimension n.
(i) We say that X is of finite representation type if it has, up to twist and isomorphism,

only a finite number of undecomposable ACM sheaves.
(ii) X is of tame representation type if either it has, up to twist and isomorphism, an

infinite discrete set of undecomposable ACM sheaves or, for each rank r, the undecom-
posable ACM sheaves of rank r form a finite number of families of dimension at most
n.

(iii)X is of wild representation type if there exist l-dimensional families of non-isomorphic
undecomposable ACM sheaves for arbitrary large l.

One of the main achievements in this field has been the classification of varieties of
finite representation type (cf. [BGS], Theorem C, and [EH], pg. 348)); it turns out that
they fall into a very short list: three or less reduced points on P2, a projective space, a
non-singular quadric hypersurface X ⊆ Pn, a cubic scroll in P4, the Veronese surface in P5

or a rational normal curve. As examples of a variety of tame representation type we have
the elliptic curves, the Segre product of a line and a smooth conic naturally embedded in
P5: ϕ|O(2,2)| : P1×P1 ↪→ P8 (cf. [FM]) and the quadric cone in P3 (cf. [CH04], Proposition
6.1). Finally, on the other extreme of complexity lie those varieties that have very large
families of ACM sheaves. So far only few examples of varieties of wild representation
type are known: curves of genus g ≥ 2 (cf. [DG]), smooth del Pezzo surfaces (see §3 of
these notes) and Fano blow-ups of points in Pn (cf.[MP], the cases of the cubic surface
and the cubic threefold have also been handled in [CH]), ACM rational surfaces on P4 (cf.
[MPLb]), Segre varieties other than the quadric in P3 (see §4 of these notes or [CMP],
Theorem 4.6), rational normal scrolls other than Pn, the rational normal curve in Pn, the
quadric in P3 and the cubic scroll in P4 ([MR13], Theorem 3.8) and hypersurfaces X ⊂ Pn
of degree ≥ 4 ([To], Corollary 1).

The problem of classifying ACM varieties according to the complexity of the category
of ACM sheaves that they support has recently attired much attention and, in particular,
the following problem is still open (for ACM varieties of dimension ≥ 2):

Problem 2.12. Is the trichotomy finite representation type, tame representation type
and wild representation type exhaustive?

Very often the ACM bundles that we will construct will share another stronger property,
namely they have the maximal possible number of global sections; they will be the so-
called Ulrich bundles. Let us end this section recalling the definition of Ulrich sheaves
and summarizing the properties that they share and that will be needed in the sequel.
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Definition 2.13. Given a polarized variety (X,OX(1)), a coherent sheaf E on X is said
to be initialized if

H0(X, E(−1)) = 0 but H0(X, E) 6= 0.

Notice that when E is a locally Cohen-Macaulay sheaf, there always exists an integer k
such that Einit := E(k) is initialized.

Definition 2.14. Given a projective scheme X ⊆ Pn and a coherent sheaf E on X, we
say that E is an Ulrich sheaf if E is an ACM sheaf and h0(Einit) = deg(X) rk(E).

The following result justifies the above definition:

Theorem 2.15. Let X ⊆ Pn be an integral ACM subscheme and let E be an ACM sheaf
on X. Then the minimal number of generators m(E) of the associated MCM RX-module
H0
∗(E) is bounded by

m(E) ≤ deg(X) rk(E).

Therefore, since it is obvious that for an initialized sheaf E , h0(E) ≤ m(E), the minimal
number of generators of Ulrich sheaves is as large as possible. MCM Modules attaining
this upper bound were studied by Ulrich in [Ulr]. A complete account is provided in
[EFW]. In particular we have:

Theorem 2.16. Let X ⊆ PN be an n-dimensional ACM variety and let E be an initialized
ACM coherent sheaf on X. The following conditions are equivalent:

(i) E is Ulrich.
(ii) E admits a linear OPN -resolution of the form:

0→ OPN (−N + n)aN−n → · · · → OPN (−1)a1 → Oa0

PN → E → 0.

(iii) Hi(E(−i)) = 0 for i > 0 and Hi(E(−i− 1)) = 0 for i < n.
(iv) For some (resp. all) finite linear projections π : X → Pn, the sheaf π∗E is the

trivial sheaf OtPn for some t.

In particular, initialized Ulrich sheaves are 0-regular and therefore they are globally gen-
erated.

Proof. See [EFW], Proposition 2.1. �

The search of Ulrich sheaves on a particular variety is a challenging problem. In fact, few
examples of varieties supporting Ulrich sheaves are known, although in [EFW] has been
conjectured that any variety has an Ulrich sheaf. Indeed, in [EFW], pg. 543, Eisenbud,
Schreyer and Weyman leave open the following problem

Problem 2.17. (a) Is every variety (or even scheme) X ⊂ Pn the support of an Ulrich
sheaf?

(b) If so, what is the smallest possible rank for such a sheaf?

Recently, after the Boij-Söderberg theory has been developed, the interest on these
questions have grown up due to the fact that it has been proved ([ES2], Theorem 4.2)
that the existence of an Ulrich sheaf on a smooth projective variety X of dimension n
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implies that the cone of cohomology tables of vector bundles on X coincide with the cone
of cohomology tables of vector bundles on Pn.

In these series of lectures we are going to focus our attention on the existence of Ulrich
bundles on smooth del Pezzo surfaces and on Segre varieties, providing the first example of
wild varieties of arbitrary dimension whose wildness is witnessed by means of the existence
of families of simple Ulrich vector bundles of arbitrary high rank and dimension.

3. The representation type of a del Pezzo surface

In this section, we are going to construct ACM bundles and Ulrich bundles on smooth
del Pezzo surfaces, and to determine their representation type. So, let us start recalling
the definition and main properties of del Pezzo surfaces.

Definition 3.1. A del Pezzo surface is defined to be a smooth surface X whose anti-
canonical divisor −KX is ample. Its degree is defined as K2

X . If −KX is very ample, X
will be called a strong del Pezzo surface.

Example 3.2. AS examples of del Pezzo surfaces we have:

(1) A smooth cubic surface X ⊆ P3.
(2) A smooth quartic surface X ⊂ P4 complete intersection of two quadrics.
(3) Let Y be the blow up of P2 at 0 ≤ s ≤ 6 general points. Consider its embedding

in P9−s through the very ample divisor −KY and call X ⊂ P9−s its image. X is a
del Pezzo surface.

The classification of del Pezzo surfaces is known and we recall it for seek of completeness.

Definition 3.3. A set of s different points {p1, . . . , ps} on P2
k with s ≤ 8 is in general

position if no three of them lie on a line, no six of them lie on a conic and no eight of
them lie on a cubic with a singularity at one of these points.

Theorem 3.4. Let X be a del Pezzo surface of degree d. Then 1 ≤ d ≤ 9 and

(i) If d = 9, then X is isomorphic to P2 (and −KP2 = 3HP2 gives the usual Veronese
embedding in P9).

(ii) If d = 8, then X is isomorphic to either P1×P1 or to a blow-up of P2 at one point.
(iii) If 7 ≥ d ≥ 1, then X is isomorphic to a blow-up of P2 at 9 − d closed points in

general position.

Conversely, any surface described under (i), (ii), (iii) is a del Pezzo surface of the corre-
sponding degree.

Proof. See, for instance, [Man], Chapter IV, Theorems 24.3 and 24.4, and [Dol], Proposi-
tion 8.1.9. �

Lemma 3.5. Let X be the blow-up of P2 on 0 ≤ s ≤ 8 points in general position. Let
e0 ∈ Pic(X) be the pull-back of a line in P2, ei the exceptional divisors, i = 1, . . . , s and
KX be the canonical divisor. Then:

(i) If s ≤ 6, −KX = 3e0 −
∑s

i=1 ei is very ample and its global sections yield a closed
embedding of X in a projective space of dimension

dim H0(X,OX(−KX))− 1 = K2
X = 9− s.



10 R. M. MIRÓ-ROIG

(ii) If s = 7, −KX is ample and generated by its global sections.
(iii) if s = 8, −KX is ample and −2KX is generated by its global sections.

Proof. See, for instance, [Kol], Proposition 3.4. �

The construction of ACM bundles and Ulrich bundles on smooth del Pezzo surfaces is
closely related (via Serre’s correspondence) to the existence of level set of points.

Definition 3.6. A 0-dimensional scheme Z on a surface X ⊂ Pn is said to be level of
type ρ if the last graded free module in its minimal graded free resolution has rank ρ and
is concentrated in only one degree. Dualizing, this is equivalent to say that all minimal
generators of the canonical module KZ of Z have the same degree.

Example 3.7. Let Z be a set of 29 general points on a smooth quadric surface Q ⊂ P3.
The ideal I(Z) of Z has a minimal graded free resolution of the following type:

0 −→ R(−8)4 −→ R(−7)3 ⊕R(−6)8 −→ R(−5)7 ⊕R(−2) −→ I(Z) −→ 0.

Therefore, Z is level of type 4.

The existence of level set of points on a smooth del Pezzo surface is related to Mustaţă’s
conjecture which we will discuss in next subsection and its proof will strongly rely on the
fact that we know the minimal resolution of the coordinate ring of a del Pezzo surface X ⊂
Pd. Indeed, according to [H], Theorem 1, the minimal free resolution of the coordinate
ring of a del Pezzo surface X ⊆ Pd has the form:

0 −→ R(−d) −→ R(−d+ 2)αd−3 −→ . . . −→ R(−2)α1 −→ R −→ RX −→ 0(3.1)

where

αi = i

(
d− 1

i+ 1

)
−
(
d− 2

i− 1

)
for 1 ≤ i ≤ d− 3.

Notice that X turns out to be AG and, in particular, αi = αd−2−i for all i = 1, . . . , d−2.
The Hilbert polynomial and the regularity of a del Pezzo surface X can be easily computed
using the exact sequence (3.1) and we have

PX(r) =
d

2
(r2 + r) + 1 and reg(X) = 3.

3.1. Mustaţă’s conjecture for a set of general points on a del Pezzo surface.

In [Mus], Mustaţă predicted the minimal free resolution of a general set of points Z in
an arbitrary projective variety X; he proved that the first rows of the Betti diagram of Z
coincide with the Betti diagram of X and that there are two extra nontrivial rows at the
bottom. Let us recall it.

Theorem 3.8. Let X ⊆ Pn be a projective variety with d = dim(X) ≥ 1, reg(X) = m
and with Hilbert polynomial PX . Let s be an integer with PX(r−1) ≤ s < PX(r) for some
r ≥ m+ 1 and let Z be a set of s general points on X. Let

0→ Fn → Fn−1 → · · · → F2 → F1 → R→ RX → 0

be a minimal graded free R-resolution of RX . Then RZ has a minimal free R-resolution
of the following type
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0→ Fn⊕R(−r−n+1)bn,r−1⊕R(−r−n)bn,r → · · · → F2⊕R(−r−1)b2,r−1⊕R(−r−2)b2,r

→ F1 ⊕R(−r)b1,r−1 ⊕R(−r − 1)b1,r → R→ RZ → 0.

Moreover, if we set Qi,r(s) = bi+1,r−1(Z)− bi,r(Z),

Qi,r(s) =
d−1∑
l=0

(−1)l
(
n− l − 1

i− l

)
∆l+1PX(r + l)−

(
n

i

)
(s− PX(r − 1)).

Conjecture 3.9. The minimal resolution conjecture (MRC for short) says that

bi+1,r−1 · bi,r = 0 for i = 1, · · · , n− 1.

Example 3.10. Let S ⊂ P4 be a smooth del Pezzo surface of degree 4. S is the complete
intersection of 2 hyperquadrics in P4, reg(S) = 3 and PS(x) = 2x2 + 2x + 1. Let Z ⊂ S
be a set of 45 general points on S. We have PS(4) = 41 ≤ 45 ≤ PS(5) = 61.

The Betti diagram of Z looks like:

0 1 2 3 4
0 1 - - - -
1 - 2 - - -
2 - - 1 - -
3 - - - - -
4 - 16 40 28 -
5 - - - - 4

The first 3 rows of the Betti diagram of Z coincide with the Betti diagram of S and
there are two extra nontrivial rows without ghost terms.

Related to it there exist two weaker conjectures that deal only with a part of the
minimal resolution of a general set of points:

• The Ideal Generation Conjecture (IGC for short) which says that the minimal
number of generators of the ideal of a general set of points will be as small as
possible; this conjecture can be translated in terms of the Betti numbers saying
that

b1,rb2,r−1 = 0.

• On the other extreme of the resolution the Cohen-Macaulay type Conjecture (CMC
for short) controls the ending terms of the MFR and says that the canonical module
ExtnR(R/I(Z), R(−n− 1)) has as few generators as possible, i.e,

bn−1,rbn,r−1 = 0.

Remark 3.11. (1) When X = Pn the above conjecture coincides with the MRC for points
in Pn stated in [Lor] which says that this resolution has no ghost terms, i.e, bi+1,r−1bi,r = 0
for all i. The MRC for points in Pn is known to hold for n ≤ 4 (see [Gae], [BaG] and
[Wal]) and for large values of s for any n (see [HiS]) but it is false in general. Eisenbud,
Popescu, Schreyer and Walter showed that it fails for any n ≥ 6, n 6= 9 (see [EPS]).
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(2) Regarding Mustaţă conjecture, in [GMR] Giuffrida, Maggioni and Ragusa proved
that it holds for any general set of points when X is a smooth quadric surface in P3. In
[MP2], Proposition 3.10, the authors showed that it holds for any general set of s ≥ 19
points on a smooth cubic surface in P3 and, in [MiP], Migliore and Patnott have been
able to prove it for sets of general distinct points of any cardinality on a cubic surface
X ⊆ P3 given that X is smooth or it has at most isolated double points.

The goal of this subsection is to prove MRC for a set Z of general points on a smooth del
Pezzo surface X, when the cardinality |Z| of Z falls in certain interval explicitly described
later. As corollary we prove IGC and CMC for a set Z of general points on a del Pezzo
surface X provided |Z| ≥ PX(3).

As a main tool we use the theory of liaison. Roughly speaking, Liaison Theory is an
equivalence relation among schemes of the same dimension and it involves the study of
the properties shared by two schemes X1 and X2 whose union X1 ∪ X2 = X is either
a complete intersection (CI-liaison) or an arithmetically Gorenstein scheme (G-liaison).
Knowing that two sets of points are G-linked, this technique will allow us to pass from the
minimal resolution of the ideal of one of them to the resolution of the other one (mapping
cone process) and vice versa.

Definition 3.12. Two subschemesX1 andX2 of Pn are directly Gorenstein linked (directly
G-linked for short) by an AG scheme G ⊆ Pn if I(G) ⊆ I(X1) ∩ I(X2), [I(G) : I(X1)] =
I(X2) and [I(G) : I(X2)] = I(X1). We say that X2 is residual to X1 in G. When G is a
complete intersection we talk about a CI-link.

When X1 and X2 do not share any component, being directly G-linked by an AG
scheme G is equivalent to G = X1 ∪X2.

Definition 3.13. two subschemes X1, X2 ⊂ Pn are in the same CI-liaison class (resp.
G-liaison class) if there exists X1 = Z0, Z1, ..., Zt = X2 closed subschemes in Pn such that
Zi and Zi+1 are directly linked by a complete intersection (arithmetically Gorenstein)
Xi ⊂ Pn.

See [KMMNP] for more details on G-liaison.

Usually it is not easy to find out AG schemes to work with. The following theorem
gives a useful way to construct them.

Theorem 3.14. Let S ⊆ Pn be an ACM scheme satisfying condition G1. Denote by KS

the canonical divisor and by HS a general hyperplane section of S. Then any effective
divisor in the linear system |mHS −KS| is AG.

Proof. See [KMMNP], Lemma 5.4. �

The main feature of G-liaison that is going to be exploited in this paper is that through
the mapping cone process it is possible to pass from the free resolution of a scheme X1 to
the free resolution of its residual X2 on an AG scheme. We have

Lemma 3.15. Let V1, V2 ⊆ Pn be two ACM schemes of codimension c directly G-linked
by an AG scheme W . Let the minimal free resolutions of I(V1) and I(W ) be
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0 −→ Fc
dc−→ Fc−1

dc−1−→ . . . F1
d1−→ I(V1) −→ 0

and
0 −→ R(−t) ec−→ Gc−1

ec−1−→ . . . G1
e1−→ I(W ) −→ 0,

respectively. Then the functor Hom(−, R(−t)) applied to a free resolution of I(V1)/I(W )
gives a (non necessarily minimal) resolution of I(V2):

0 −→ F∨1 (−t) −→ F∨2 (−t)⊕G∨1 (−t) −→ . . . −→ F∨c (−t)⊕G∨c−1(−t) −→ I(V2) −→ 0.

In order to achieve the main result of this subsection, we define the critical values:

m(r) :=
d

2
r2 + r

2− d
2

, n(r) :=
d

2
r2 + r

d− 2

2
.

Notice that
PX(r − 1) < m(r) < n(r) < PX(r).

Our first aim is to find out the minimal graded free resolution and to prove MRC
conjecture for these two specific cardinalities m(r) and n(r) of general set of points on a
del Pezzo surface X. Since the structure of our proof requires that X contains at least a
line L and moreover that the elements of the linear system |L+ rH| satisfy condition G1

in order to apply the theory of generalized divisors, we need to exclude the following two
particular cases: X ∼= P2 and X ∼= P1 × P1 proved in [P], Chapter II. Therefore, in this
subsection X ⊆ Pd will stand for any del Pezzo surface except the two aforementioned
sporadic cases. We also set the following notation.

(i) L is any line on X.
(ii) H denotes a general hyperplane section of X.

(iii) If C is a curve on X, HC will be a general hyperplane section of C and KC the
canonical divisor on C.

The strategy of the proof is as follows: firstly, we will establish the result form(2) = d+2
points which gives the starting point for our induction process. Secondly, using G-liaison,
we prove that if m(r) general points on any del Pezzo surface satisfy MRC then so do
n(r) general points. Next we observe that if n(r) general points on X have the expected
minimal free resolution then n(r)+1 general points do as well. And, finally, we show that
if n(r) + 1 general points on a del Pezzo surface satisfy MRC then so do m(r + 1).

Since the shape of the minimal free resolution of the homogeneous ideal I(X) of a del
Pezzo surface of degree 3 (i.e, a cubic surface) is slightly different from that of a del Pezzo
surface of degree d ≥ 4 we need to consider apart the two cases. We only sketch the
proofs in the case of degree d ≥ 4 and we leave as exercise the case of degree 3.

Lemma 3.16. (a) Let X ⊆ Pd be any del Pezzo surface of degree d ≥ 4 and take C ∈
|(r + ε)H|, r ≥ 2, ε ∈ {0, 1}. Then, any effective divisor G in the linear system |rHC | is
AG and it has a minimal free resolution of the following form:

0 −→ R(−2r−d−ε) −→ R(−2r−d+2−ε)αd−3⊕R(−r−d)2−ε⊕R(−r−d−1)ε −→ . . . −→Mi −→

−→ R(−2r−ε)⊕R(−r−2)(2−ε)α1⊕R(−r−3)εα1 −→M1 := R(−r)2−ε⊕R(−r−1)ε −→ I(G|X) −→ 0
where Mi := R(−2r− i+ 1− ε)αi−2 ⊕R(−r− i)(2−ε)αi−1 ⊕R(−r− i−1)εαi−1 for i = 3, . . . , d−2

and αi = i
(
d−1
i+1

)
−
(
d−2
i−1

)
for 1 ≤ i ≤ d− 3.
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(b) Let X ⊆ P3 be a del Pezzo surface of degree 3 and take C ∈ |(r + ε)H|, r ≥ 2, ε ∈ {0, 1}.
Then, any effective divisor G in the linear system |rHC | is AG and it has a minimal free
resolution of the following form:

0 −→ R(−2r − 3− ε) −→ R(−2r − ε)⊕R(−r − 3)2−ε ⊕R(−r − 4)ε

−→ R(−r)2−ε ⊕R(−r − 1)ε −→ I(G|X) −→ 0.

Proof. A curve C ∈ |(r + ε)H| has saturated ideal I(C|X) = H0
∗(OX(−r − ε)). From the

exact sequence (3.1) we have:

(3.2) 0→ OPd(−d)→ OPd(−d+ 2)αd−3 → · · · → OPd(−2)α1 → OPd → OX → 0

with αi = i
(
d−1
i+1

)
−
(
d−2
i−1

)
for 1 ≤ i ≤ d − 3. Twisting (3.2) with OPd(−r − ε) and taking

global sections we get the minimal graded free resolution of I(C|X):

0 −→ R(−r − d− ε) −→ . . . −→ R(−r − (i+ ε))αi−1 −→

. . . −→ R(−r − 2− ε)α1 −→ R(−r − ε) −→ I(C|X) −→ 0.

Now we apply the horseshoe lemma to the exact sequence

0 −→ I(X) −→ I(C|Pd) −→ I(C|X) −→ 0

to obtain the minimal free resolution of I(C|Pd):

0 −→ R(−r − d− ε) −→ R(−r − d+ 2− ε)αd−3 ⊕R(−d) −→ . . . −→

Ti := R(−r−i−ε)αi−1⊕R(−(i+1))αi −→ . . . −→ R(−r−ε)⊕R(−2)α1 −→ I(C|Pd) −→ 0.

This sequence shows that C ⊆ Pd is an AG variety with canonical module

KC = RC(r − 1 + ε).

Therefore I(G|C) = H0
∗ (OC(−r)) = KC(−2r + 1− ε). We apply Hom(−, R(−d− 1)) to

the previous sequence and we get a minimal free resolution of KC :

0 −→ R(−d− 1) −→ R(r − d− 1 + ε)⊕R(−d+ 1)αd−3 −→ . . .

−→ T ′i −→ . . . −→ R(−1)⊕R(r − 3 + ε)α1 −→ R(r − 1 + ε) −→ KC −→ 0

where T ′i := T∨d−i(−d− 1) = R(r − i− ε)αi−1 ⊕R(−i)αi−2 for i = 3, . . . , d− 2. If we twist
the previous sequence by −2r + 1− ε we get the minimal resolution of I(G|C):

0 −→ R(−2r−d−ε) −→ R(−r−d)⊕R(−2r−d+2−ε)αd−3 −→ . . . −→ T ′i (−2r+1−ε) −→ . . .

−→ R(−2r − ε)⊕R(−r − 2)α1 −→ R(−r) −→ I(G|C) −→ 0.

Finally, we apply the horseshoe lemma to the short exact sequence

0 −→ I(C|X) −→ I(G|X) −→ I(G|C) −→ 0

to recover the resolution of I(G|X) and we finish the proof. �
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Lemma 3.17. (a) Let X ⊆ Pd be a del Pezzo surface and let L ⊆ X be a line on it. Take
C ∈ |L+ rH|, r ≥ 2, and let G be any effective divisor in the linear system |2rHC −KC |.
Then, G is AG and the minimal free resolution of I(G|C) has the following form:

0 −→ R(−2r − d− 1) −→ R(−2r − d+ 1)α1 ⊕R(−r − d)d−1 −→ . . . −→

R(−2r − i)αd−i ⊕R(−r − i− 1)(
d−1
d−i)+αd−i−1 −→ . . .

−→ R(−2r − 1)⊕R(−r − 3)(
d−1
d−2)+αd−3 −→ R(−r − 1)⊕R(−r − 2) −→ I(G|C) −→ 0

with αi = i
(
d−1
i+1

)
−
(
d−2
i−1

)
for 1 ≤ i ≤ d− 3.

(b) Let X ⊆ P3 be an integral cubic surface and let L ⊆ X be a line on it. Take
C ∈ |L+ rH|, r ≥ 2, and let G be any effective divisor in |2rHC −KC |. Then, G is AG
and the minimal free resolution of I(G|C) has the following form:

0 −→ R(−2r−4) −→ R(−2r−1)⊕R(−r−3)2 −→ R(−r−1)⊕R(−r−2) −→ I(G|C) −→ 0

Proof. Let L ⊆ X be any line. Its ideal as a subvariety of Pd has a resolution:

0 −→ R(−d+ 1) −→ . . . −→ R(−i)(
d−1

i ) −→ . . . −→ R(−1)d−1 −→ I(L) −→ 0.

Applying the mapping cone process to 0→ I(X)→ I(L)→ I(L|X)→ 0 we get

0 −→ R(−d)⊕R(−d+ 1) −→ . . . −→ R(−i)(
d−1

i )+αi−1 −→ . . . −→ R(−1)d−1 −→ I(L|X) −→ 0

with αi = i
(
d−1
i+1

)
−
(
d−2
i−1

)
for 1 ≤ i ≤ d− 3. Therefore, C ∈ |L+ rH| has the following minimal

graded free resolution

(3.3) 0→ R(−r − d)⊕R(−r − d+ 1)→ · · · → R(−r − i)(
d−1

i )+αi−1 →

· · · → R(−r − 1)d−1 → I(C|X)→ 0.

Now the horseshoe lemma applied to 0→ I(X|Pd)→ I(C)→ I(C|X)→ 0 gives us

0 −→ R(−r − d)⊕R(−r − d+ 1) −→ R(−r − d+ 2)(
d−1
d−2)+αd−3 ⊕R(−d) −→ . . . −→

R(−r − i)(
d−1

i )+αi−1 ⊕R(−(i+ 1))αi −→ . . . −→ R(−r − 1)d−1 ⊕R(−2)α1 −→ I(C) −→ 0.
Since C is ACM we can apply Hom(−, R(−d− 1)) to get a resolution of KC :

0 −→ R(−d−1) −→ R(−d+1)α1⊕R(r−d)d−1 −→ . . . −→ R(r− i−1)(
d−1
d−i)+αd−i−1⊕R(−i)αd−i

−→ . . . −→ R(r − 3)(
d−1
d−2)+αd−3 ⊕R(−1) −→ R(r − 1)⊕R(r − 2) −→ KC −→ 0.

Finally, since G ∈ |2rHC −KC | we have:

0 −→ R(−2r − d− 1) −→ R(−2r − d+ 1)α1 ⊕R(−r − d)d−1 −→

. . . −→ R(−2r − i)αd−i ⊕R(−r − i− 1)(
d−1
d−i)+αd−i−1 −→ . . . −→

R(−2r − 1)⊕R(−r − 3)(
d−1
d−2)+αd−3 −→ R(−r − 1)⊕R(−r − 2) −→ I(G|C) −→ 0.

�

Now we fix the starting point of the induction.
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Lemma 3.18. A general set Z of m(2) = d+ 2 points on any del Pezzo surface X ⊆ Pd
has a minimal free resolution of the following type:

0 −→ R(−d− 2) −→ R(−d)γd−1 −→ . . . −→ R(−3)γ2 −→ R(−2)2d−1 −→ I(Z|X) −→ 0

with

γi =
1∑
l=0

(−1)l
(
d− l − 1

i− l

)
∆l+1HX(2 + l)−

(
d

i

)
(m(2)−HX(1)).

Proof. It follows from the fact that a general set Z of d + 2 points on X is in linearly
general position (i.e., any subset of Z of d+ 1 points spans Pd). �

Fix an integer r ≥ 2 and let Zm(r) and Zn(r) be general sets of points on X of cardinality
m(r) and n(r), respectively. We will see that they are directly G-linked by an effective
divisor G in |rHC | with C a curve in the linear system |rHX |. Recall that we have:

PX(r − 1) < m(r) < n(r) < PX(r).

Let us start with a general set Zm(r) of m(r) points. Since h0(OX(r)) > m(r) there exists
a curve C in the linear system |rHX | such that Zm(r) lies on C. On the other hand, the
inequality n(r) > pa(C) allows us to apply Riemann-Roch Theorem for curves and assure
that there exists an effective divisor Zn(r) of degree n(r) such that Zm(r) +Zn(r) is linearly
equivalent to a divisor rHC .

Since this construction can also be performed starting from a general set Zn(r) of n(r)
points we see that a general set of m(r) points is G-linked to a general set of n(r) points
and vice versa. Therefore as a direct application of the mapping cone process we get

Proposition 3.19. Fix r ≥ 2 and assume that the ideal I(Zm(r)|X) of m(r) general points
on a del Pezzo surface X ⊆ Pd has the minimal free resolution

0 −→ R(−r − d)r−1 −→ R(−r − d+ 2)γd−1,r−1 −→ . . .

−→ R(−r − 1)γ2,r−1 −→ R(−r)(d−1)r+1 −→ I(Zm(r)|X) −→ 0

with γi,r−1 =
∑1

l=0(−1)l
(
d−l−1
i−l

)
∆l+1PX(r + l) −

(
d
i

)
(m(r) − PX(r − 1)). Then the ideal

I(Zn(r)|X) of n(r) general points has the minimal free resolution

0 −→ R(−r − d)(d−1)r−1 −→ R(−r − d+ 1)βd−1,r −→ . . .

−→ R(−r − 2)β2,r −→ R(−r)r+1 −→ I(Zn(r)|X) −→ 0

with βi,r =
∑1

l=0(−1)l+1
(
d−l−1
i−l

)
∆l+1PX(r + l) +

(
d
i

)
(n(r)− PX(r − 1)).

Vice versa, if n(r) general points on a del Pezzo surface X ⊆ Pd have the expected
resolution then m(r) general points do as well.

Lemma 3.20. Let X ⊂ Pd be any del Pezzo surface. Fix r ≥ 2 and assume that the ideal
I(Zn(r)|X) of a set Zn(r) of n(r) general points on X ⊆ Pd has the expected minimal free
graded resolution. Then a set of n(r) + 1 general points do as well.
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Proof. Since I(Zn(r)|X) has the expected minimal free resolution, it is generated by r+ 1
forms of degree r without linear relations. Take a general point p ∈ X and set Z :=
Zn(r)∪{p}. Since I(Z|X) ⊂ I(Zn(r)|X), we can take the r generators of I(Z|X) in degree
r to be a subset of the generators of I(Zn(r)|X) in degree r; in particular, they do not
have linear syzygies. We must add d generators of degree r+ 1 in order to get a minimal
system of generators of I(Z|X). Hence the first module in the minimal free resolution of
I(Z|X) is R(−r)r ⊕R(−r − 1)d which forces the remaining part of the resolution. �

Proposition 3.21. Let X ⊆ Pd be a del Pezzo surface. Fix r ≥ 2 and assume that the
ideal I(Zp(r)|X) of p(r) := n(r) + 1 general points on X has the minimal free resolution

0 −→ R(−r − d)(d−1)r −→ R(−r − d+ 1)δd−1,r −→ . . .

−→ R(−r − 2)δ2,r −→ R(−r)r ⊕R(−r − 1)d −→ I(Zp(r)|X) −→ 0

with

δi,r =
1∑
l=0

(−1)l+1

(
d− l − 1

i− l

)
∆l+1HX(r + l) +

(
d

i

)
(p(r)−HX(r − 1)).

Then the ideal I(Zm(r+1)|X) of m(r + 1) general points has the minimal free resolution

0 −→ R(−r − d− 1)r −→ R(−r − d+ 1)γd−1,r −→ . . .

−→ R(−r − 2)γ2,r −→ R(−r − 1)(d−1)r+d −→ I(Zm(r+1)|X) −→ 0

with

γi,r =
1∑
l=0

(−1)l
(
d− l − 1

i− l

)
∆l+1HX(r + 1 + l)−

(
d

i

)
(m(r + 1)−HX(r)).

Proof. Let Zp(r) be a set of p(r) general points with resolution as in the statement. Let us
consider the linear system |L+ rH|. Since, dim |L+ rH| ≥ dim |rH| = PX(r)− 1 > p(r),
we can find a curve C ∈ |L+rH| passing through these p(r) points. Notice that deg(C) =
1 + rd and pa(C) = d

(
r
2

)
+ r. Since pa(C) < m(r + 1) we can find an effective divisor

Zm(r+1) of degree m(r+ 1) such that Zp(r) and Zm(r+1) are G-linked by a divisor of degree
p(r) +m(r + 1) = dr2 + dr + 2 = deg(2rHC −KC). This allows us to find the resolution
of I(Zm(r+1)|X). First we find the minimal free resolution of I(Zp(r)|C) using the exact
sequence 0→ I(C|X)→ I(Zp(r)|X)→ I(Zp(r)|C)→ 0, the resolution of I(C|X) given in
(3.3) and the mapping cone process. It turns out to be:

0 −→ R(−r − d)(d−1)r+1 −→ R(−r − d+ 1)cd−1,r −→ . . .

−→ R(−r − 2)c2,r −→ R(−r)r ⊕R(−r − 1) −→ I(Zp(r)|C) −→ 0.

Since we know the minimal free resolution of I(G|C) (see Lemma 3.17) we apply the
mapping cone process to the sequence 0→ I(G|C)→ IZ(p(r)|C)→ I(Zp(r)|G)→ 0 to get

0 −→ R(−2r − d− 1) −→ R(−r − d)(d−1)r+d ⊕R(−2r − d+ 1)α1 −→ . . . −→
R(−r−i)di,r⊕R(−2r−i+1)αd−i+1 −→ . . . −→ R(−r−2)d2,r −→ R(−r)r −→ I(Zp(r)|G) −→ 0.

(0 → R(−2r − 4) → R(−r − 3)2r+2 ⊕ R(−2r − 1) → R(−r − 2)d2,r → R(−r)r →
I(Zp(r)|G)→ 0 if d = 3).
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Finally we obtain the minimal free resolution of I(Zm(r+1)):

0 −→ R(−r − d− 1)r −→ R(−r − d+ 1)γd−1,r −→ R(−r − d+ 2)γd−2,r ⊕R(−d) −→
. . . −→ R(−r−i)γi,r⊕R(−i)αi −→ . . . −→ R(−r−1)(d−1)r+d⊕R(−2)α1 −→ I(Zm(r+1)) −→ 0

(0→ R(−r− 4)r → R(−r− 2)γ2,r → R(−r− 1)2r+3 ⊕R(−3)→ I(Zm(r+1))→ 0 if d = 3)
from which it is straightforward to recover the predicted resolution of I(Zm(r+1)|X). �

We are ready to prove the MRC for n(r) and m(r) general points on a del Pezzo surface:

Theorem 3.22. Let X ⊆ Pd be a del Pezzo surface. We have:

(1) Let Zn(r) ⊆ X be a general set of n(r) points, r ≥ 2. Then the minimal graded
free resolution of I(Zn(r)|X) has the following form:

0 −→ R(−r − d)(d−1)r−1 −→ R(−r − d+ 1)βd−1,r −→ R(−r − d+ 2)βd−2,r −→ . . .

−→ R(−r − 2)β2,r −→ R(−r)r+1 −→ I(Zn(r)|X) −→ 0.

where

βi,r =
1∑
l=0

(−1)l+1

(
n− l − 1

i− l

)
∆l+1HX(r + l) +

(
n

i

)
(n(r)−HX(r − 1)).

(2) Let Zm(r) ⊆ X be a general set of m(r) points, r ≥ 2. Then its minimal graded
free resolution has the following form:

0 −→ R(−r − d)r−1 −→ R(−r − d+ 2)γd−1,r−1 −→ . . .

−→ R(−r − 1)γ2,r−1 −→ R(−r)(d−1)r+1 −→ I(Zm(r)|X) −→ 0

with

γi,r−1 =
1∑
l=0

(−1)l
(
n− l − 1

i− l

)
∆l+1PX(r + l)−

(
n

i

)
(m(r)− PX(r − 1)).

In particular, Mustaţă’s conjecture works for n(r) and m(r), r ≥ 4, general points on
a del Pezzo surface X ⊆ Pd.

Proof. Lemma 3.18 establishes the result for a set of m(2) general points, the starting
point of our induction process. Therefore, the result about the resolution of I(Zn(r)|X) and
I(Zm(r)|X) follows using Lemma 3.20, Propositions 3.19 and 3.21 and applying induction.

�

Next lemma controls how the bottom lines of the Betti diagram of a set of general
points on a projective variety change when we add another general point.

Lemma 3.23. Let X ⊆ Pn be a projective variety with dim(X) ≥ 2, reg(X) = m and
with Hilbert polynomial PX . Let s be an integer with PX(r − 1) ≤ s < PX(r) for some
r ≥ m+ 1, let Z be a set of s general points on X and let P ∈ X \ Z be a general point.
We have

(i) bi,r−1(Z) ≥ bi,r−1(Z ∪ P ) for every i.
(ii) bi,r(Z) ≤ bi,r(Z ∪ P ) for every i.

Proof. See [Mus], Proposition 1.7.. �
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Now, we prove the main result of this subsection, namely, the MRC holds for a general
set of points Z on a smooth del Pezzo surface when the cardinality of Z falls in the strips
of the form [PX(r − 1),m(r)] or [n(r), PX(r)], r ≥ 4.

Theorem 3.24. Let X ⊆ Pd be a del Pezzo surface. Let r be such that r ≥ reg(X)+1 = 4.
Then for a general set of points Z on X such that PX(r − 1) ≤ |Z| ≤ m(r) or n(r) ≤
|Z| ≤ PX(r) the MRC is true.

Proof. See [P], Chapter II, for the cases of X ∼= P2 and X ∼= P1×P1. So let X be any other
smooth del Pezzo surface. Let Z ′ be a general set of points of cardinality |Z ′| = n(r) and
add general points to Z ′ in order to get a set of points Z of cardinality n(r) ≤ |Z| ≤ PX(r).
By Theorem 3.22 we have that bi,r−1(Z ′) = 0 for all i = 2, . . . , d. Therefore we can apply
Lemma 3.23 to deduce that bi,r−1(Z) = 0 for all i = 2, . . . , d. Thus, by semicontinuity,
MRC holds for a general set of |Z| points.

Now if |Z| ≤ m(r), we can add general points to Z in order to have a general set Z ′

including Z and such that |Z ′| = m(r). Again from the previous Theorem we have that
bi,r(Z

′) = 0 for all i = 1, . . . , d − 1. So we can use again Lemma 3.23 to deduce that
bi,r(Z) = 0 for all i = 1, . . . , d− 1 and therefore MRC holds for Z. �

As a consequence of Theorem 3.22 we prove that the number of generators of the ideal
of a general set of points on a del Pezzo surface is as small as possible and so it is the
number of generators of its canonical module as well. In fact, we have:

Theorem 3.25. Let X ⊆ Pd be a del Pezzo surface. Then for a general set of points Z on
X such that |Z| ≥ PX(3) the Cohen-Macaulay type Conjecture and the Ideal Generation
Conjecture are true.

Proof. Let Z be a general set of points on our del Pezzo surface X. If it is the case that
n(r) ≤ |Z| ≤ m(r + 1) the result has been proved on the previous theorem. So we can
assume that m(r) < |Z| < n(r) for some r. We know that the MRC holds for a general
set |Z ′| of n(r) points on X, Z ⊆ Z ′ and in particular b1,r(Z

′) = 0. Applying Lemma 3.23
inductively we see that b1,r(Z) = 0. Analogously, since MRC holds for a general set Z ′′

of m(r) points, bd,r−1(Z ′′) = 0 with Z ′′ ⊆ Z. Applying once again the same Lemma we
see that bd,r−1(Z) = 0. �

In the particular case of the cubic surface, since the minimal free resolution of its points
has length three, we recover one of the main results of [MP1] (see also [MP2]):

Theorem 3.26. Let X ⊆ P3 be a integral cubic surface (i.e., a del Pezzo surface of degree
three). Then the Minimal Resolution Conjecture holds for a general set of points on X of
cardinality ≥ PX(3) = 19.

3.2. Ulrich bundles on del Pezzo surfaces.

In this subsection, we will construct large families of ACM vector bundles on smooth del
Pezzo surfaces with the maximal allowed number of global sections (the so-called Ulrich
bundles) and conclude that all smooth del Pezzo surfaces are of wild representation type.
This result generalizes a previous result of Pons-Llopis and Tonini [PT] (see also [CH])
which states that the cubic surface S ⊂ P3 is of wild representation type.
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The proof for the degree 8 smooth del Pezzo surface X ⊂ P8 isomorphic to P1 × P1

(i.e. the Segre product of two conics naturally embedded in P8: ϕ|O(2,2)| : P1 × P1 ↪→ P8)
is slightly different and the reader can consult [P]. So, from now on when speaking of a
smooth del Pezzo surface we will understand the blow up of P2 at s ≤ 8 points in general
position.

Following notation from [EH], let us consider K-vector spaces A and B of respective
dimension a and b. Set V = H0(Pm,OPm(1)) and let M = Hom(B,A ⊗ V ) be the space
of (a × b)-matrices of linear forms. M is an affine space of dimension ab(m + 1). It is
well-known that there exists a bijection between the elements φ ∈M and the morphisms
φ : B ⊗ OPm → A ⊗ OPm(1). Taking the tensor with OPm(1) and considering global
sections, we have morphisms

H0(φ(1)) : H0(Pm,OPm(1)b) −→ H0(Pm,OPm(2)a).

The following result tells us under which conditions the aforementioned morphisms φ and
H0(φ(1)) are surjective:

Proposition 3.27. For a ≥ 1, b ≥ a+m and 2b ≥ (m+ 2)a, the set of elements φ ∈M
such that φ : B⊗OPm → A⊗OPm(1) and H0(φ(1)) : H0(Pm,OPm(1)b)→ H0(Pm,OPm(2)a)
are surjective forms a non-empty open dense subset of the affine variety M that we will
denote by Vm.

Proof. See [EH], Proposition 4.1. �

Fix m = 2 and for a given r ≥ 2, set a := r, b := 2r. Take an element φ of the
non-empty subset V2 ⊆M provided by Proposition 3.27 and consider the exact sequence

(3.4) 0 −→ F −→ OP2(1)2r φ(1)−→ OP2(2)r −→ 0.

It follows immediately that F is a vector bundle of rank r, being kernel of a surjective
morphism of vector bundles. Let X := BlZ(P2)

π−→ P2 be the low up of P2 at 0 ≤ s ≤ 8
points in general position. Pulling-back the exact sequence (3.4) we obtain the exact
sequence:

(3.5) 0 −→ π∗F −→ OX(e0)b
φ(1)−→ OX(2e0)a −→ 0.

We can prove:

Proposition 3.28. Let X
π−→ P2 be the low up of P2 at 0 ≤ s ≤ 8 points in general

position and let r ≥ 2. Let F be the vector bundle obtained as the kernel of a general
surjective morphism between OP2(1)2r and OP2(2)r:

(3.6) 0 −→ F −→ OPn(1)2r φ(1)−→ OPn(2)r −→ 0.

Then, the vector bundles E obtained pulling-back F , dualizing and twisting by H := 3e0−∑s
i=1 ei

(3.7) 0 −→ OX(−2e0 +H)r
f−→ OX(−e0 +H)2r g−→ E(H) := (π∗F)∗(H) −→ 0

are simple (hence, undecomposable) vector bundles of rank r on X.

Proof. See [MP], Corollary 4.5. �
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The Chern classes of E(H) can be easily computed and we get:

c1(E(H)) = rH and c2(E(H)) =
H2r2 + (2−H2)r

2
.

Let us check that E(H) is an initialized Ulrich bundle. For this, we need the following
computations.

Remark 3.29 (Riemann-Roch for vector bundles on a del Pezzo surface). Let X be a del
Pezzo surface. Since X is a rational connected surface we have χ(OX) = 1. In particular,
the Riemann-Roch formula for a vector bundle E on X of rank r has the form

χ(E) =
c1(E)(c1(E)−KX)

2
+ r − c2(E).

Remark 3.30. The Euler characteristic of the involved vector bundles can be computed
thanks to the Riemann-Roch formula:

(3.8) χ(OX(−2e0)(lH)) =
9− s

2
l2 − 3 + s

2
l,

(3.9) χ(OX(−e0)(lH)) =
9− s

2
l2 +

3− s
2

l,

(3.10) χ(E(lH)) = 2rχ(OX(−e0)(lH))− rχ(OX(−2e0)(lH)) =
9r − sr

2
l2 +

9r − sr
2

l.

Proposition 3.31. Let X be a del Pezzo surface. The bundles E(H) given by the exact
sequence (3.7) are initialized simple Ulrich bundles. Moreover, in the case of a blow-up
of ≤ 7 points, they are globally generated.

Proof. First of all, notice that H0(E∗) = H2(E(−H)) = 0. Therefore, H2(E(tH)) = 0,
for all t ≥ −1. On the other hand, since H2(OX(−2e0)) = H0(OX(2e0 − H)) = 0 and
h1(OX(−e0)) = −χ(OX(−e0)) = 0 we obtain from the long exact sequence of cohomology
associated to (3.7) that H1(E) = 0. Since χ(E) = 0, we also conclude that H0(E) = 0 and
therefore H0(E(tH)) = 0 for all t ≤ 0. Moreover, since we also have that χ(E(−H)) = 0,
we obtain that H1(E(−H)) = 0.

We easily check that H0(E(H)) 6= 0 which together with the vanishing H0(E(tH)) = 0
for all t ≤ 0 implies that E(H) is initialized.

We tensor by E the exact sequence

0 −→ OX(−H) −→ OX −→ OH −→ 0

and we consider the cohomology sequence associated to it. We get

0 = H0(E) −→ H0(E|H) −→ H1(E(−H)) = 0.

This shows that H0(E|H(−tH)) = 0 for all t ≥ 0. Then we can use this last fact together
with the long exact sequence associated to

0 −→ E(−(t+ 1)H) −→ E(−tH) −→ E|H(−tH) −→ 0

to show inductively that H1(E(−tH)) = 0 for all t ≥ 0.
In order to complete the proof we need to consider two different cases:
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• X is the blow-up of s ≤ 7 points on P2 in general position. In this case, by Lemma
3.5, H is ample and generated by its global sections. Since we have just seen
that E(H) is 0-regular with respect to H we can conclude that E(H) is ACM and
globally generated. Moreover, h0(E(H)) = χ(E(H)) = (9− s)r = H2r, i.e., E(H)
is an Ulrich bundle.
• X is the blow-up of 8 points on P2 in general position. In this case, the argument

is slightly more involved, since H is ample but not very ample. Fortunately 2H is
ample and globally generated. First of all, since the points are in general position,
H0(OX(−e0 + H)) = 0 and from the exact sequence (3.7) we get the following
exact sequence:

0 −→ H0(E(H)) −→ H1(OX(−2e0 +H)r) −→ H1(OX(−e0 +H)2r) −→ H1(E(H)) −→ 0.

From this sequence and the fact that h1(OX(−2e0+H)) = −χ(OX(−2e0+H)) = 5
and h1(OX(−e0 + H)) = −χ(OX(−e0 + H)) = 2 we are forced to conclude that
h0(E(H)) = r and H1(E(H)) = 0. Now, from what we have gathered up to
now, we can affirm that E(H) is 1-regular with respect to the very ample line
bundle 2H and therefore, H1(E(H + 2tH)) = 0 for all t ≥ 0. In order to deal
with the cancelation of the remaining groups of cohomology, it will be enough to
show that E(2H) is 1-regular with respect to 2H, i.e., it remains to show that
H1(E(2H)) = 0. In order to do this consider the exact sequence (the cancelation
of H0(OX(−e0 + 2H)) is due to the fact that the points are in general position):

0 −→ H0(E(2H)) −→ H1(OX(−2e0+2H)r) −→ H1(OX(−e0+2H)2r) −→ H1(E(2H)) −→ 0.

Once again, we control the dimension of these vector spaces: h1(⊕rOX(−2e0 +
2H)) = −rχ(OX(−2e0+2H)) = 9r and h1(⊕2rOX(−e0+2H)) = −2rχ(OX(−e0+
2H)) = 6r Therefore we are forced to have h0(E(2H)) = 3r and H1(E(2H)) = 0.
Notice that in this case E(3H) is globally generated.

�

As an immediate consequence we get:

Theorem 3.32. Let X ⊂ Pd be a smooth del Pezzo surface of degree d. Then for any
r ≥ 2 there exists a family of dimension r2 + 1 of simple initialized Ulrich bundles of rank
r on X. In particular, del Pezzo surfaces are of wild representation type.

Proof. See [MP], Theorem 4.9. �

In the last part of this subsection we consider the case of strong del Pezzo surfaces X,
i.e. smooth del Pezzo surfaces with anticanonical divisor very ample. In this case, −KX

provides an embedding X ⊆ Pd, with d = K2
X . Let R := K[x0, . . . , xd] be the graded

polynomial ring associated to Pd. Using our results on Mustaţă’s conjecture explained
in the previous subsection, we are going to show that the (r2 + 1)-dimensional family of
rank r initialized Ulrich bundles given in Theorem 3.32 could also be obtained through a

version of Serre correspondence from a general set of dr2+(2−d)r
2

points on X.

More precisely, as a particular case of Theorem 3.24, we have the following result:
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Theorem 3.33. Let X ⊆ Pd be a strong del Pezzo surface of degree d embedded in Pd by
its very ample anticanonical divisor. Let Zm(r) ⊂ X be a general set of

m(r) =
1

2
(dr2 + (2− d)r)

points, r ≥ 2. Then the minimal graded free resolution (as a R-module) of the saturated
ideal of Zm(r) in X has the following form:

(3.11) 0 −→ R(−r − d)r−1 −→ R(−r − d+ 2)γd−1,r−1 −→ . . .

−→ R(−r − 1)γ2,r−1 −→ R(−r)(d−1)r+1 −→ I(Zm(r)|X) −→ 0

with

γi,r−1 =
1∑
l=0

(−1)l
(
d− l − 1

i− l

)
∆l+1PX(r + l)−

(
d

i

)
(m(r)− PX(r − 1)).

Theorem 3.34. Let X ⊆ Pd be a strong del Pezzo surface of degree d.

(i) If E(H) is an Ulrich bundle of rank r ≥ 2 given by the exact sequence (3.7), then
there is an exact sequence

0 −→ Or−1
X −→ E(H) −→ I(Z|X)(rH) −→ 0

where Z is a zero-dimensional scheme of degree m(r) = c2(E(H)) = 1
2
(dr2 + (2−

d)r) and h0(I(Z|X)(r − 1)H) = 0.
(ii) Conversely, for general sets Z of m(r) = 1/2(dr2 + (2− d)r) points on X, r ≥ 2,

we recover the initialized Ulrich bundles given by the exact sequence (3.7) as an
extension of I(Z|X)(rH) by Or−1

X .

Proof. (i) As E(H) is globally generated, r − 1 general global sections define an exact
sequence of the form

0 −→ Or−1
X −→ E(H) −→ I(Z|X)(D) −→ 0

where D = c1(E(H)) = rH is a divisor on X and Z is a zero-dimensional scheme of length

c2(E(H)) =
dr2 + (2− d)r

2
.

Moreover, since E(H) is initialized, h0(I(Z|X)(r − 1)H) = 0.
(ii) Let Z be a general set of points of cardinality m(r) with the minimal free resolution

of (3.11). Let us denote by RX and RZ the homogeneous coordinate ring of X and Z. It
is well-known that for ACM varieties, there exists a bijection between ACM bundles on
X and Maximal Cohen Macaulay (MCM from now on) graded RX-modules sending E to
H0
∗(E). From the exact sequence

0 −→ I(Z|X) −→ RX −→ RZ −→ 0

we get Ext1(I(Z|X), RX(−1)) ∼= Ext2(RZ , RX(−1)) ∼= KZ where KZ denotes the canon-
ical module of RZ (the last isomorphism is due to the fact that RX(−1) is the canonical
module of X and the codimension of Z in X is 2). Dualizing the exact sequence (3.11),
we obtain a minimal resolution of KZ :

. . . −→ R(r − 3)γd−1,r−1 −→ R(r − 1)r−1 −→ KZ −→ 0.
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This shows that KZ is generated in degree 1 − r by r − 1 elements. These generators
provide an extension

(3.12) 0 −→ Rr−1
X −→ F −→ I(Z|X)(r) −→ 0

via the isomorphism KZ
∼= Ext1(I(Z|X), RX(−1)). F turns out to be a MCM module

because Ext1(F,KX) = 0 (this last cancelation follows by applying HomRX
(−, KX) to

(3.12)). If we sheafiffy the exact sequence (3.12) we obtain the sequence

0 −→ Or−1
X −→ F̃ −→ I(Z|X)(r) −→ 0

where F̃ is an ACM vector bundle on X. Using the exact sequence (3.11) we can see that

H0(I(Z|X)(r−1)H) = 0 and h0(I(Z|X)(rH)) = (d−1)r+1. Therefore F̃ is an initialized

Ulrich bundle (i.e., h0(F̃ ) = dr). By Theorem 2.16, F̃ will be globally generated.
It only remains to show that for a generic choice of Zm(r) ⊂ X, the associated bundle

F := F̃ just constructed belongs to the family (3.7). Since F is an initialized Ulrich bundle
of rank r with the expected Chern classes, the problem boils down to a dimension counting.
We need to show that the dimension of the family of vector bundles obtained through this
construction from a general set Zm(r) is r2+1. Since this dimension is given by the formula

dimHilbm(r)(X)−dimGrass(h0(F), r−1), an easy computation taking into account that
dimHilbm(r)(X) = 2m(r) and that dimGrass(h0(F), r − 1) = (r − 1)(dr − r + 1) gives
the desired result. �

As a nice application we get:

Theorem 3.35. Let X be a smooth del Pezzo surface of degree d. Then for any r ≥ 2
there exists a family of dimension r2 + 1 of simple Ulrich bundles of rank r with Chern

classes c1 = rH and c2 = dr2+r(2−d)
2

.

So, we conclude:

Theorem 3.36. Smooth del Pezzo surfaces X ⊂ Pd are of wild representation type.

4. The representation type of a Segre variety

Fix integers 1 ≤ n1, · · · , ns and set N :=
∏s

i=1(ni + 1)− 1. The goal of this section is
to prove that all Segre varieties Σn1,...,ns ⊆ PN unless the quadric surface in P3 support
families of arbitrarily large dimension and rank of simple Ulrich (and hence ACM ) vector
bundles. Therefore, they are all unless P1 × P1 of wild representation type. To this
end, we will give an effective method to construct ACM sheaves (i.e. sheaves without
intermediate cohomology) with the maximal permitted number of global sections, the so-
called Ulrich sheaves, on all Segre varieties Σn1,··· ,ns other than P1×P1. To our knowledge,
they will be the first family of examples of varieties of arbitrary dimension for which wild
representation type is witnessed by means of Ulrich bundles.

Let us start this section recalling the definition of Segre variety and the basic properties
on Segre varieties needed later on. Given integers 1 ≤ n1, · · · , ns, we denote by

σn1,··· ,ns : Pn1 × · · · × Pns −→ PN , N =
s∏
i=1

(ni + 1)− 1
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the Segre embedding of Pn1 × · · · × Pns . The image of σn1,··· ,ns is the Segre variety
Σn1,··· ,ns := σn1,··· ,ns(Pn1 × · · · × Pns) ⊆ PN , N =

∏s
i=1(ni + 1) − 1. Notice that in terms

of very ample line bundles, this embedding is defined by means of OPn1×···×Pns (1, · · · , 1).

The equations of the Segre varieties are familiar to anyone who has studied algebraic
geometry. Indeed, if we let T be the (n1 + 1) × · · · × (ns + 1) tensor whose entries are
the homogeneous coordinates in PN , then it is well known that the ideal of Σn1,··· ,ns is
generated by the 2× 2 minors of T . Moreover, we have

Proposition 4.1. Fix integers 1 ≤ n1, · · · , ns and denote by Σn1,··· ,ns ⊆ PN , N =∏s
i=1(ni + 1)− 1, the Segre variety. It holds:

(i) dim(Σn1,··· ,ns) =
∑s

i=1 ni,

(ii) deg(Σn1,··· ,ns) =
(
∑s

i=1 ni)!∏s
i=1(ni)!

,

(iii) Σn1,··· ,ns is ACM, and

(iv) I(Σn1,··· ,ns) is generated by
(
N+2

2

)
−
∏s

i=1

(
ni+2

2

)
hyperquadrics.

Example 4.2. (1) We consider the Segre embedding

σ1,1 : P1 × P1 −→ P3

((a, b), (c, d)) 7→ (ac, ad, bc, bd).

Set Σ1,1 := σ1,1(P1×P1). If we fix coordinates x, y, z, t in P3, we have: I(Σ1,1) = (xt−yz),
dim(Σ1,1) = 2, deg(Σ1,1) = 2 and Pic(Σ1,1) = Z2.

(2) We consider the Segre embedding

σ2,3 : P2 × P3 −→ P11

((a, b, c), (d, e, f, g)) 7→ (ad, ae, af, ag, · · · , cg).

Set Σ2,3 := σ2,3(P2 × P3). If we fix coordinates x0,0, x0,1, · · · , x2,3 in P11, we have: Σ2,3 is
an ACM variety and its ideal I(Σ2,3) is generated by 18 hyperquadrics. In fact, Σ2,3 is a
determinantal variety defined by the 2× 2 minors of the matrix

M =

x0,0 x0,1 x0,2 x0,3

x1,0 x1,1 x1,2 x1,3

x2,0 x2,1 x2,2 x2,3

 .

Moreover, dim(Σ2,3) = 5, deg(Σ2,3) = 10 and Pic(Σ2,3) = Z2.

Let pi denote the i-th projection of Pn1 × · · · × Pns onto Pni . There is a canonical
isomorphism Zs −→ Pic(Σn1,··· ,ns), given by

(a1, · · · , as) 7→ OΣn1,··· ,ns
(a1, · · · , as) := p∗1(OPn1 (a1))⊗ · · · ⊗ p∗s(OPns (as)).

For any coherent sheaves Ei on Pni , we set E1 � · · ·� Es := p∗1(E1)⊗ · · · ⊗ p∗s(Es). We will

denote by πi : Pn1 × · · · ×Pns −→ Xi := Pn1 × · · · × P̂ni × · · · ×Pns the natural projection
and given sheaves E and F on Xi and Pni , respectively, E � F stands for π∗i (E)⊗ p∗i (F).
By the Künneth’s formula, we have

H`(Σn1,··· ,ns , E � F) =
⊕
p+q=`

Hp(Xi, E)⊗ Hq(Pni ,F).
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While given a coherent sheaf H on Σn1,··· ,ns , H(t) stands for H⊗OΣn1,··· ,ns
(t, · · · , t).

Let us start by determining the complete list of initialized Ulrich line bundles on Segre
varieties Σn1,··· ,ns ⊆ PN , N =

∏s
i=1(ni + 1) − 1. First of all, notice that it follows from

Horrocks’ Theorem ([Hor]) that

Lemma 4.3. The only initialized Ulrich bundle on Pn is the structural sheaf OPn.

The list of initialized Ulrich line bundles on Σn1,··· ,ns ⊆ PN , N =
∏s

i=1(ni + 1) − 1, is
given by

Proposition 4.4. Let Σn1,··· ,ns ⊆ PN , N =
∏s

i=1(ni + 1) − 1, be a Segre variety. Then
there exist s! initialized Ulrich line bundles on Σn1,··· ,ns. They are of the form

LXi
�OPni (

∑
k 6=i

nk),

where LXi
is a rank one initialized Ulrich bundle on the Segre variety Xi := Σn1,··· ,n̂i,··· ,ns ⊆

PN ′, N ′ =
∏

1≤j≤s
j 6=i

(nj + 1) − 1. More explicitly, the initialized Ulrich line bundles on

Σn1,··· ,ns are of the form OΣn1,··· ,ns
(a1, . . . , as) where, if we order the coefficients 0 = ai1 ≤

· · · ≤ aik ≤ · · · ≤ ais then aik =
∑

1≤j<k nij .

Proof. The existence of this set of initialized Ulrich line bundles is a straightforward
consequence of [EFW], Proposition 2.6. In order to see that this list is exhaustive, let us
consider an initialized Ulrich line bundle L := OΣn1,··· ,ns

(a1, . . . , as) with ai1 ≤ · · · ≤ aik ≤
· · · ≤ ais . Given that L is initialized, it holds that ai1 = 0. Since L is ACM, we have

H
∑k

j=1 nij (Σn1,··· ,ns ,L(−Σk
j=1nij − 1)) = 0

for k = 1, . . . , s− 1. In particular, using Künneth’s formula, it holds
k∏
l=1

hnil (Pnil ,OPnil (ail − Σk
j=1nij − 1)) ·

s∏
l=k+1

h0(Pnil ,OPnil (ail − Σk
j=1nij − 1)) = 0,

from where it follows that, by induction, aik+1
≤ bik+1

:= Σ1≤j≤knij for k = 1, . . . , s − 1
(and bi1 := 0). But, on the other hand, since an easy computation shows that

h0(Σn1,··· ,ns ,OΣn1,··· ,ns
(b1, . . . , bs)) =

(
∑s

i=1 ni)!∏s
i=1(ni)!

= deg(Σn1,··· ,ns)

we are forced to have aij = bij for j = 1, . . . , s. �

Corollary 4.5. OΣn,m(a, b) is an initialized Ulrich line bundle on Σn,m if and only if
(a, b) = (0, n) or (m, 0).

It is natural to ask if we could use these initialized Ulrich line bundles as a bricks to
construct initialized Ulrich bundles of higher rank. The answer strongly depends on the
values of ni. Assume for a while that i = 2, take n = n1, m = n2 and assume n ≤ m.
The main difference between the case n = 1 and 1 < n comes from:

Ext1
Σn,m

(O(m, 0),O(0, n)) 6= 0⇔ n = 1 and m ≥ 2.

So, if 1 = n < m, we can take a non-trivial extension 0 6= e ∈ Ext1
Σn,m

(O(m, 0),O(0, n))
to construct a rank 2 undecomposable Ulrich bundle E on Σn,m as an extension:
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0→ O(0, n)→ E → O(m, 0)→ 0.

Iterating the process we will be able to construct Ulrich bundles of higher rank. If 2 ≤
n ≤ m we will need an alternative construction. So, we will distinguish to cases:

1. Case 1: 2 ≤ n1, · · · , ns.
2. Case 2: 1 = n1 ≤ n2, · · · , ns.

4.1. Representation type of Σn1,··· ,ns, 2 ≤ n1, · · · , ns.
The goal of this subsection is the construction of families of arbitrarily large dimension of
simple (and, hence, undecomposable) Ulrich vector bundles on Segre varieties Σn1,··· ,ns ⊆
PN , N =

∏s
i=1(ni + 1)− 1, for 2 ≤ n1, · · · , ns.

For any 2 ≤ m and any 1 ≤ a, we denote by Em,a any vector bundle on Pm given by
the exact sequence

(4.1) 0→ Em,a → OPm(1)(m+2)a φ(1)→ OPm(2)2a → 0

where φ ∈ Vm and Vm is the non-empty open dense subset of the affine scheme M =

Hom(O(m+2)a
Pm ,OPm(1)2a) provided by Proposition 3.27.

Note that Em,a has rank ma and in the next Proposition we summarize the properties
of these vector bundles needed later:

Proposition 4.6. With the above notation we have:

(i)

h0(Pm, Em,a(t)) =

{
0 for t ≤ 0,

a((m+ 2)
(
m+t+1
m

)
− 2
(
m+t+2
m

)
) for t > 0.

(ii)

h1(Pm, Em,a(t)) =


0 for t < −2 or t ≥ 0,

am for t = −1

2a for t = −2.

(iii) hi(Pm, Em,a(t)) = 0 for all t ∈ Z and 2 ≤ i ≤ m− 1.
(iv) hm(Pm, Em,a(t)) = 0 for t ≥ −m− 1.
(v) Em,a is simple.

Proof. (i) - (iv) Since φ ∈ Vm, by Proposition 3.27, H0(φ(1)) is surjective. But, since the
K-vector spaces H0(Pm,OPm(1)(m+2)a) and H0(Pm,OPm(2)2a) have the same dimension,
H0(φ(1)) is an isomorphism and therefore H0(Em,a) = 0. A fortiori, H0(Em,a(t)) = 0 for
t ≤ 0. On the other hand, again by the surjectivity of H0(φ(1)), H1(Em,a) = 0. Since
it is obvious that Hi(Em,a(1 − i)) = 0 for i ≥ 2 it turns out that Em,a is 1-regular and
in particular, H1(Em,a(t)) = 0 for t ≥ 0. The rest of cohomology groups can be easily
deduced from the long exact cohomology sequence associated to the exact sequence (4.1).

(v) It follows from Kac’s theorem (see [Kac], Theorem 4) arguing as in [MP], Proposition
3.4 that Em,a is simple. �
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We are now ready to construct families of simple (hence undecomposable) Ulrich bun-
dles on the Segre variety Σn,m ⊆ Pnm+n+m, 2 ≤ n,m, of arbitrary high rank and dimension
and to conclude that Segre varieties Σn,m are of wild representation type. The main in-
gredient on the construction of simple Ulrich bundles on Σn,m ⊆ Pnm+n+m, 2 ≤ n ≤ m,
will be the family of simple vector bundles Em,a on Pm given by the exact sequence (4.1)
as well as the vector bundles of p-holomorphic forms of Pn, Ωp

Pn := ∧pΩ1
Pn , where Ω1

Pn is
the cotangent bundle. The values of hi(Ωp

Pn(t)) are given by the Bott’s formula (see, for
instance, [OSS], page 8).

Theorem 4.7. Fix integers 2 ≤ n ≤ m and let Σn,m ⊆ Pnm+n+m be the Segre variety.
For any integer a ≥ 1 there exists a family of dimension a2(m2 +2m−4)+1 of initialized
simple Ulrich vector bundles F := Ωn−2

Pn (n− 1) � Em,a(n− 1) of rank am
(
n
2

)
.

Proof. Let F be the vector bundle Ωn−2
Pn (n − 1) � Em,a(n − 1) for Em,a a general vector

bundle obtained on Pm from the exact sequence (4.1). The first goal is to prove that F is
ACM, namely, we should show that Hi(Σn,m,F ⊗OΣn,m(t, t)) = 0 for 1 ≤ i ≤ n + m− 1
and t ∈ Z. By Künneth’s formula

(4.2) Hi(Σn,m,F ⊗OΣn,m(t, t)) =
⊕
p+q=i

Hp(Pn,Ωn−2
Pn (n− 1 + t))⊗Hq(Pm, Em,a(n− 1 + t)).

According to Bott’s formula the only non-zero cohomology groups of Ωn−2
Pn (n− 1 + t) are:

H0(Pn,Ωn−2
Pn (n− 1 + t)) for t ≥ 0 and n ≥ 3 or t ≥ −1 and n = 2,

Hn−2(Pn,Ωn−2
Pn (n− 1 + t)) for t = −n+ 1,

Hn(Pn,Ωn−2
Pn (n− 1 + t)) for t ≤ −n− 2.

On the other hand, by Lemma 4.6, the only non-zero cohomology groups of Em,a(n−1+t)
are:

H0(Pm, Em,a(n− 1 + t)) for t ≥ −n+ 2,
H1(Pm, Em,a(n− 1 + t)) for −n− 1 ≤ t ≤ −n,
Hm(Pm, Em,a(n− 1 + t)) for t ≤ −n−m− 1.

Therefore, using (4.2), we get

Hi(Σn,m,F ⊗OΣn,m(t, t)) = 0 for 1 ≤ i ≤ n+m− 1 and t ∈ Z.

Since for n ≥ 3 H0(Pn,Ωn−2
Pn (n − 2)) = 0 and for n = 2 H0(Pm, Em,a) = 0 (Lemma 4.6),

F is an initialized ACM vector bundle on Σn,m. Let us compute the number of global
sections. Recall that, by Bott’s formula, h0(Pn,Ωn−2

Pn (n− 1)) =
(
n+1

2

)
. Hence:

h0(F) = h0(Σn,m,Ω
n−2
Pn (n− 1) � Em,a(n− 1)) = h0(Pn,Ωn−2

Pn (n− 1)) h0(Pm, Em,a(n− 1))
=

(
n+1

2

)
a((m+ 2)

(
m+n
m

)
− 2
(
m+n+1

m

)
)

= a( (m+2)(m+n)!(n+1)!
m!n!(n−1)!2!

− 2(m+n+1)!(n+1)!
m!(n+1)!(n−1)!2!

)

= a( n!(m+n)!
2!(n−2)!m!n!

· (n+1)(m+2)−2(m+n+1)
n−1

)

= a
(
n
2

)(
m+n
m

)m(n−1)
n−1

= a
(
n
2

)(
m+n
m

)
m

= rk(F) deg(Σn,m)
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where the last equality follows from the fact that deg(Σn,m) =
(
m+n
m

)
and rk(F) =

rk(Em,a) rk(Ωn−2
Pn ) = am

(
n
2

)
. Therefore, F is an initialized Ulrich vector bundle on Σn,m.

With respect to simplicity, we need only to observe that

Hom(F ,F) ∼= H0(Σn,m,F∨ ⊗F)
∼= H0(Pn,Ωn−2

Pn (n− 1)∨ ⊗ Ωn−2
Pn (n− 1)))⊗ H0(Pm, Em,a(n− 1)∨ ⊗ Em,a(n− 1))

and use the fact that Ωn−2
Pn and Em,a are both simple.

It only remains to compute the dimension of the family of simple Ulrich bundles F :=
Ωn−2

Pn (n − 1) � Em,a(n − 1) on Σn,m. Since they are completely determined by a general

morphism φ ∈M := HomPm(O(m+2)a
Pm ,OPm(1)2a), this dimension turns out to be:

dimM − dim Aut(O(m+2)a
Pm )− dim Aut(OPm(1)2a) + 1 =

= 2a2(m+ 2)(m+ 1)− a2(m+ 2)2 − 4a2 + 1 = a2(m2 + 2m− 4) + 1

which proves what we want. �

Corollary 4.8. For any integers 2 ≤ n,m, the Segre variety Σn,m ⊆ Pnm+n+m is of wild
representation type.

Notice that in Theorem 4.7 we were able to construct simple Ulrich vector bundles on
Σn,m ⊆ PN for some scattered ranks, namely for ranks of the form am

(
n
2

)
, a ≥ 1. The

next goal will be to construct simple Ulrich bundles on Σn,m ⊆ Pnm+n+m, 2 ≤ n ≤ m, of
the remaining ranks r ≥ m

(
n
2

)
.

Theorem 4.9. Fix integers 2 ≤ n ≤ m and let Σn,m ⊆ Pnm+n+m be the Segre variety.
For any integer r ≥ m

(
n
2

)
, set r = am

(
n
2

)
+ l with a ≥ 1 and 0 ≤ l ≤ m

(
n
2

)
− 1. Then,

there exists a family of dimension a2(m2 + 2m− 4) + 1 + l(am
(
n+1

2

)
− l) of simple (hence,

undecomposable) initialized Ulrich vector bundles G on Σn,m of rank r.

Proof. Note that for any r ≥ m
(
n
2

)
, there exists a ≥ 1 and m

(
n
2

)
− 1 ≥ l ≥ 0, such that

r = am
(
n
2

)
+ l. For such a, consider the family Pa of initialized Ulrich bundles of rank

am
(
n
2

)
given by Theorem 4.7. Notice that

dimPa = a2(m2 + 2m− 4) + 1.

Hence it is enough to consider the case l > 0. To this end, for any l > 0 we construct the
family Pa,l of vector bundles G given by a non-trivial extension

(4.3) e : 0→ F → G → OΣn,m(0, n)l → 0

where F ∈ Pa and e := (e1, . . . , el) ∈ Ext1(OΣn,m(0, n)l,F) ∼= Ext1(OΣn,m(0, n),F)l with
e1, . . . , el linearly independent.

Since
ext1(OΣn,m(0, n),F) = h1(Σn,m,Ω

n−2
Pn (n− 1) � E(−1))

= h0(Pn,Ωn−2
Pn (n− 1)) · h1(Pm, E(−1))

=
(
n+1

2

)
am

> m
(
n
2

)
such extension exists.
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It is obvious that G, being an extension of initialized Ulrich vector bundles, is also an
initialized Ulrich vector bundle. Let us see that G is simple, i.e., Hom(G,G) ∼= K. If we
apply the functor Hom(−,G) to the exact sequence (4.3) we obtain:

0→ Hom(OΣn,m(0, n)l,G)→ Hom(G,G)→ Hom(F ,G).

On the other hand, if we apply Hom(F ,−) to the same exact sequence we have

0→ K ∼= Hom(F ,F)→ Hom(F ,G)→ Hom(F ,OΣn,m(0, n)l).

But

(4.4)
Hom(F ,OΣn,m(0, n)) ∼= Extn+m(OΣn,m(0, n),F(−n− 1,−m− 1))

∼= Hn+m(Σn,m,F(−n− 1,−m− n− 1))
= Hn(Pn,Ωn−2

Pn (−2))⊗ Hm(Pm, E(−m− 2)) = 0

by Serre’s duality and Bott’s formula. This implies that Hom(F ,G) ∼= K.
Finally, using the fact that Hom(OΣn,m(0, n),F) ∼= H0(F(0,−n)) = 0 and applying the

functor Hom(OΣn,m(0, n), ·) to the short exact sequence (4.3), we obtain

0→ Hom(OΣn,m(0, n),G)→ Hom(OΣn,m(0, n),OΣn,m(0, n)l) ∼= K l φ→ Ext1(OΣn,m(0, n),F).

Since, by construction, the image of φ is the subvector space generated by e1, . . . , el it
turns out that φ is injective and in particular Hom(OΣn,m(0, n),G) = 0. Summing up,
Hom(G,G) ∼= K, i.e., G is simple.

It only remains to compute the dimension of Pa,l. Assume that there exist vector
bundles F ,F ′ ∈ Pa giving rise to isomorphic bundles, i.e.:

0 → F j1−→ G α−→ OΣn,m(0, n)l → 0
i‖o

0 → F ′ j2−→ G ′ β−→ OΣn,m(0, n)l → 0.

Since by (4.4), Hom( F,OΣn,m(0, n)) = 0, the isomorphism i between G and G ′ lifts to
an automorphism f of OΣn,m(0, n)l such that fα = βi which allows us to conclude that
the morphism ij1 : F −→ G ′ factorizes through F ′ showing up the required isomorphism
from F to F ′.

Therefore, since dim Hom(F ,G) = 1, we have

dimPa,l = dimPa + dimGrass(l,Ext1(OΣn,m(0, n),F))
= dimPa + l dim Ext1(OΣn,m(0, n),F)− l2
= a2(m2 + 2m− 4) + 1 + l(am

(
n+1

2

)
− l).

�

As a by-product of the previous results we can extend the construction of simple Ulrich
bundles on Σn,m, n ≥ 2, to the case of Segre embeddings of more than two factors and
get:

Theorem 4.10. Fix integers 2 ≤ n1 ≤ · · · ≤ ns and let Σn1,...,ns ⊆ PN , N =
∏s

i=1(ni +
1)−1 be a Segre variety. For any integer r ≥ n2

(
n1

2

)
, set r = an2

(
n1

2

)
+l with a ≥ 1 and 0 ≤

l ≤ n2

(
n1

2

)
−1. Then there exists a family of dimension a2(n2

2+2n2−4)+1+l(an2

(
n1+1

2

)
−l)
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of simple (hence, undecomposable) initialized Ulrich vector bundles on Σn1,...,ns ⊆ PN of
rank r.

Proof. By Theorem 4.7 we can suppose that s ≥ 3. Therefore, by [EFW], Proposition
2.6, the vector bundle of the form H := G � L(n1 + n2), for G belonging to the family
constructed in Theorem 4.9 and L an Ulrich line bundle on Pn3×· · ·×Pns as constructed
in Proposition 4.4, is an initialized simple Ulrich bundle. In order to show that in this
way we obtain a family of the aforementioned dimension it only remains to show that
whenever G � G ′ then H � H′, or equivalently G �OPn3×···×Pns � G ′ �OPn3×···×Pns . But
if there exists an isomorphism

φ : G �OPn3×···×Pns

∼=→ G ′ �OPn3×···×Pns

π∗φ would also be an isomorphism between

π∗(G �OPn3×···×Pns ) ∼= G and π∗(G ′ �OPn3×···×Pns ) ∼= G ′

in contradiction with the hypothesis. �

Corollary 4.11. For any integers 2 ≤ n1, · · · , ns, the Segre variety Σn1,...,ns ⊆ PN ,
N =

∏s
i=1(ni + 1)− 1 is of wild representation type.

4.2. Representation type of Σn1,n2...,ns, 1 = n1 ≤ n2, · · · , ns.
In this subsection we are going to focus our attention on the construction of simple Ulrich
bundles on Segre varieties of the form Σn1,n2...,ns ⊆ PN for either n1 = 1 and s ≥ 3 or
n1 = 1 and n2 ≥ 2. We are going to show that they also are of wild representation type.
Opposite to the Segre varieties that we studied in the previous subsection, the Ulrich
bundles on Σ1,n2...,ns ⊆ PN , N = 2

∏s
i=2(ni + 1) − 1, will not be obtained as products of

vector bundles constructed on each factor, but they will be obtained directly as iterated
extensions.

Theorem 4.12. Let X := Σ1,n2...,ns ⊆ PN for either s ≥ 3 or n2 ≥ 2. Let r be an integer,
2 ≤ r ≤ (Σs

i=2ni − 1)
∏s

i=2(ni + 1). Then:

(i) There exists a family Λr of rank r initialized simple Ulrich vector bundles E on X
given by nontrivial extensions

(4.5) 0→ OX(0, 1, 1 + n2, . . . , 1 + Σs−1
i=2ni)→ E → OX(Σs

i=2ni, 0, n2, . . . ,Σ
s−1
i=2ni)

r−1 → 0

with first Chern class c1(E) = ((r − 1)Σs
i=2ni, 1, 1 + rn2, . . . , 1 + r(Σs−1

i=2ni)).
(ii) There exists a family Γr of rank r initialized simple Ulrich vector bundles F on X

given by nontrivial extensions
(4.6)
0→ OX(0, 1+n3, 1, 1+n2+n3, . . . , 1+Σs−1

i=2ni)→ F → OX(Σs
i=2ni, n3, 0, n2+n3, . . . ,Σs−1

i=2ni)
r−1 → 0

with first Chern class c1(F) = ((r − 1)Σs
i=2ni, 1 + rn3, 1, . . . , 1 + r(Σs−1

i=2ni)).

Proof. To simplify we set

A := OX(0, 1, 1 + n2, . . . , 1 + Σs−1
i=2ni),

B := OX(Σs
i=2ni, 0, n2, . . . ,Σ

s−1
i=2ni),

C := OX(0, 1 + n3, 1, 1 + n2 + n3, . . . , 1 + Σs−1
i=2ni), and

D := OX(Σs
i=2ni, n3, 0, n2 + n3, . . . ,Σ

s−1
i=2ni).
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We are going to give the details of the proof of statement (i) since statement (ii) is proved
analogously. Recall that by Proposition 4.4, A and B are initialized Ulrich line bundles
on X. On the other hand, the dimension of Ext1(B,A) can be computed as:

dim Ext1(B,A) = h1(X,OX(−Σs
i=2ni, 1, . . . , 1))

= h1(P1,OP1(−Σs
i=2ni))

∏s
i=2 h0(Pni ,OPni (1))

= (Σs
i=2ni − 1)

∏s
i=2(ni + 1).

So, exactly as in the proof of Theorem 4.9, if we take l (l = r − 1) linearly independent
elements e1, . . . , el in Ext1(B,A), 1 ≤ l ≤ (Σs

i=2ni−1)
∏s

i=2(ni+1)−1, these elements pro-
vide with an element e := (e1, . . . , el) of Ext1(Bl,A) ∼= Ext1(B,A)l. Then the associated
extension

(4.7) 0 −→ A −→ E −→ Bl −→ 0

gives a rank l + 1 initialized simple Ulrich vector bundle. �

Remark 4.13. (i) With the same technique, using other initialized Ulrich line bun-
dles, it is possible to construct initialized simple Ulrich bundles of ranks covered
by Theorem 4.12 with different first Chern class.

(ii) Notice that for s = 2, we have constructed rank r simple Ulrich vector bundles on
Σ1,m ⊆ P2m+1, r ≤ m2 as extensions of the form:

0 −→ OΣ1,m(0, 1) −→ E −→ OΣ1,m(m, 0)r−1 −→ 0.

Lemma 4.14. Consider the Segre variety Σ1,n2...,ns ⊆ PN for either s ≥ 3 or n2 ≥ 2 and
keep the notation introduced in Theorem 4.12. We have:

(i) For any two non-isomorphic rank 2 initialized Ulrich bundles E and E ′ from the
family Λ2 obtained from the exact sequence (4.5), it holds that Hom(E , E ′) = 0.
Moreover, the set of non-isomorphic classes of elements of Λ2 is parameterized by

P(Ext1(B,A)) ∼= P(H1(Σ1,n2...,ns ,OΣ1,n2...,ns
(−

s∑
i=2

ni, 1, · · · , 1)))

and, in particular, it has dimension (Σs
i=2ni − 1)

∏s
i=2(ni + 1)− 1.

(ii) For any pair of bundles E ∈ Λ2 and F ∈ Γ3 obtained from the exact sequences
(4.5) and (4.6), it holds that Hom(E ,F) = 0 and Hom(F , E) = 0.

Proof. The first statement is a direct consequence of Proposition [PT], Proposition 5.1.3.
Regarding the second statement, it is a straightforward computation applying the functors
Hom(F ,−) and Hom(E ,−) to the short exact sequences (4.5) and (4.6) respectively, and
taking into account that there are no nontrivial morphisms among the vector bundles
A,B, C,D. �

In the next Theorem we are going to construct families of increasing dimension of simple
Ulrich bundles for arbitrary large rank on the Segre variety Σ1,n2...,ns . In case s ≥ 3 we
can use the two distinct families of rank 2 and rank 3 Ulrich bundles obtained in Theorem
4.12 to cover all the possible ranks. However, when s = 2, since there exists just a unique
family, we will have to restraint ourselves to construct Ulrich bundles of arbitrary even
rank. In any case, it will be enough to conclude that these Segre varieties are of wild
representation type.
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Theorem 4.15. Consider the Segre variety Σ1,n2...,ns ⊆ PN for either s ≥ 3 or n2 ≥ 2.

(i) Then for any r = 2t, t ≥ 2, there exists a family of dimension

(2t− 1)(Σs
i=2ni − 1)

s∏
i=2

(ni + 1)− 3(t− 1)

of initialized simple Ulrich vector bundles of rank r.
(ii) Let us suppose that s ≥ 3 and n2 = 1. Then for any r = 2t + 1, t ≥ 2, there

exists a family of dimension ≥ (t− 1)((
∑s

i=2 ni − 1)(n3 + 2)
∏s

i=4(ni + 1)− 1) of
initialized simple Ulrich vector bundles of rank r.

(iii) Let us suppose that s ≥ 3 and n2 > 1. For any integer r = an3

(
n2

2

)
+ l ≥

n3

(
n2

2

)
with a ≥ 1 and 0 ≤ l ≤ n3

(
n2

2

)
− 1, there exists a family of dimension

a2(n2
3 +2n3−4)+1+ l(an3

(
n2+1

2

)
− l) of simple (hence, undecomposable) initialized

Ulrich vector bundles of rank r.

Proof. (i) Let r = 2t be an even integer and set

a := ext1(B,A) = (Σs
i=2ni − 1)

s∏
i=2

(ni + 1)

with A and B defined as in the proof of Theorem 4.12. Denote by U the open subset

of Pa×
t)
· · · ×Pa, Pa ∼= P(Ext1(B,A)) ∼= Λ2, parameterizing closed points [E1, · · · , Et] ∈

Pa×
t)
· · · ×Pa such that Ei � Ej for i 6= j (i.e. U is Pa×

t)
· · · ×Pa minus the small diagonals).

Given [E1, · · · , Et] ∈ U , by Lemma 4.14, the set of vector bundles E1, · · · , Et satisfy the
hypothesis of Proposition [PT], Proposition 5.1.3 and therefore, there exists a family of
rank r simple Ulrich vector bundles E parameterized by

P(Ext1(Et, E1))× · · · × P(Ext1(Et, Et−1))

and given as extensions of the form

0 −→ ⊕t−1
i=1Ei −→ E −→ Et −→ 0.

Next we observe that if we consider [E1, · · · , Et] 6= [E ′1, · · · , E ′t] ∈ U and the corresponding
extensions

0 −→ ⊕t−1
i=1Ei −→ E −→ Et −→ 0,

and
0 −→ ⊕t−1

i=1E ′i −→ E ′ −→ E ′t −→ 0

then Hom(E , E ′) = 0 and in particular E � E ′. Therefore, we have a family of non-
isomorphic rank r simple Ulrich vector bundles E on Σ1,n2...,ns parameterized by a projec-
tive bundle P over U of dimension

dimP = (t− 1) dim(P(Ext1(Et, E1))) + dimU.

Applying the functor Hom(−, E1) to the short exact sequence (4.5) we obtain:

0 −→ Hom(A, E1) ∼= K −→ Ext1(B, E1) −→ Ext1(Et, E1) −→ Ext1(A, E1) = 0.

On the other hand, applying Hom(B,−) to the same exact sequence we have

0 = Hom(B, E1) −→ Hom(B,B) ∼= K −→ Ext1(B,A) ∼= Ka −→ Ext1(B, E1) −→ Ext1(B,B) = 0.
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Summing up, we obtain ext1(Et, E1) = a− 2 and so

dimP = (t− 1)(a− 3) + ta = (2t− 1)a− 3(t− 1).

(ii) Now, let us suppose that s ≥ 3 and n2 = 1 and take r = 2t+1, t ≥ 2. Let E1, . . . , Et−1

be t − 1 non-isomorphic rank 2 Ulrich vector bundles from the exact sequence (4.5) and
let F be a rank 3 Ulrich bundle from the exact sequence (4.6). Again, by Lemma 4.14,
this set of vector bundles satisfies the hypothesis of [PT], Proposition 5.1.3 and therefore,
there exists a family G of rank r simple Ulrich vector bundles E parameterized by

P(Ext1(E1,F))× · · · × P(Ext1(Et−1,F))

and given as extensions of the form

0 −→ F −→ E −→ ⊕t−1
i=1Ei −→ 0.

It only remains to compute the dimension of the family

dimG = (t− 1) dim(P(Ext1(E1,F))).

Let us fix the notation

b := ext1(B, C) = h1(P1,OP1(−
∑s

i=2 ni)) h0(P1,OP1(1 + n3))
∏s

i=4 h0(Pni ,OPni (1))
= (

∑s
i=2 ni − 1)(n3 + 2)

∏s
i=4(ni + 1).

Applying the functor Hom(−,F) to the short exact sequence (4.5) we obtain:

0 = Hom(A,F) −→ Ext1(B,F) −→ Ext1(E1,F) −→ Ext1(A,F).

On the other hand, applying Hom(B,−) to the short exact sequence (4.6) we have

0 = Hom(B,D) −→ Ext1(B, C) ∼= Kb −→ Ext1(B,F) −→ Ext1(B,D) = 0.

Summing up, we obtain ext1(E1,F) ≥ b and therefore dimG ≥ (t− 1)(b− 1).
(iii) It follows from Theorem 4.9 and [EFW], Proposition 2.6. �

Corollary 4.16. The Segre variety Σ1,n2...,ns ⊆ PN , N = 2
∏s

i=2(ni + 1)− 1, for s ≥ 3 or
s = 2 and n2 ≥ 2 is of wild representation type.

Putting together Corollaries 4.8, 4.11 and 4.16, we get

Theorem 4.17. All Segre varieties Σn1,n2...,ns ⊆ PN , N =
∏s

i=1(ni + 1) − 1, are of wild
representation type unless the quadric surface in P3 (which is of finite representation type).

Slightly generalizing the arguments of this section we can extend the last Theorem and
determine the representation type of any non-singular rational normal scroll. Scrolls are
fascinating varieties which have been largely studied in Algebraic Geometry. Let us recall
one of their possible definitions. To this end, we fix E = ⊕ki=0OP1(ai) a rank k + 1 vector

bundle on P1, where 0 ≤ a0 ≤ . . . ≤ ak, and ak > 0. Let P(E) = P(Sym(E))
π−→ P1 be the

projectivized vector bundle and let OP(E)(1) be its tautological line bundle. Then OP(E)(1)

is generated by global sections and defines a birational map P(E) −→ PN , N =
∑k

i=0 ai+k.
We write S(E) or S(a0, . . . , ak) for the image of this map, which is a variety of dimension

k + 1 and degree c :=
∑k

i=0 ai.
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Definition 4.18. A rational normal scroll is one of these varieties S(E); i.e. it is the
image of the map

σ : P1 × Pk −→ PN

given by

σ(x, y; t0, t1 · · · , tk) := (xa0t0, x
a0−1yt0, · · · , ya0t0, , · · · , xaktk, x

ak−1ytk, · · · , yaktk)

where 0 ≤ a0 ≤ . . . ≤ ak, and ak > 0.

The most familiar examples of rational normal scrolls are Pd, which is S(0, . . . , 0, 1),
the rational normal curve S(a) of degree a in Pa, the quadric S(1, 1) ⊂ P3 and the cubic
scroll S(1, 2) ⊂ P4.

There is a beautiful geometric description of rational normal scrolls. In PN , take k + 1
complementary linear spaces Li ∼= Pai with 0 ≤ a0 ≤ . . . ≤ ak, and ak > 0. In each Li
choose a rational normal curve Cai

and an isomorphism φi : P1 −→ Cai
(φi is constant

when ai = 0). Then the variety

S(a0, . . . , ak) =
⋃
p∈P1

〈φ0(p), · · · , φk(p)〉 ⊂ PN

is a rational normal scroll of dimension k + 1 and degree c :=
∑k

i=0 ai in Pc+k. Notice
that rational normal scrolls are varieties of minimal degree.

This geometric description will allow us to describe the homogeneous ideal of S(a0, . . . , ak).

Indeed, if S(a0, . . . , ak) ⊂ PN , N =
∑k

i=0 ai+k is a rational normal scroll defined by ratio-
nal normal curves Cai

⊂ Li ∼= Pai , we choose coordinates X0
0 , · · · , X0

a0
, · · · , Xk

0 , · · · , Xk
ak

in PN such that X i
0, · · · , X i

ai
are homogeneous coordinates in Li. Then, we consider the

2× c matrix with two rows and k + 1 catalecticant blocks

Ma0,··· ,ak
:=

(
X0

0 · · · X0
a0−1 · · · Xk

0 · · · Xk
ak−1

X0
1 · · · X0

a0
· · · Xk

1 · · · Xk
ak

)
.

It is well known that the ideal of S(a0, . . . , ak) is generated by the maximal minors of
Ma0,··· ,ak

and we have:

Proposition 4.19. Let S(a0, . . . , ak) ⊂ PN with N =
∑k

i=0 ai + k, 0 ≤ a0 ≤ . . . ≤ ak,

and ak > 0 be a rational normal scroll. Set c :=
∑k

i=0 ai. It holds:

(i) dim(S(a0, . . . , ak)) = k + 1 and deg(S(a0, . . . , ak)) =
∑k

i=0 ai.
(ii) S(a0, . . . , ak) is ACM and I(S(a0, . . . , ak)) is generated by

(
c
2

)
hyperquadrics.

(iii) S(a0, . . . , ak) is non-singular if and only if a0 > 0 (so, ai > 0 for all 0 ≤ i ≤ k)
or S(a0, . . . , ak) = S(0, · · · , 0, 1) ∼= Pk.

Since we are not interested in Pk (according to Horrocks Theorem there is, up to twist,
only one ACM bundle in Pk, namely, OPk) and we will only deal with non-singular rational
scrolls, we will assume 0 < ai, 0 ≤ i ≤ k. It holds

Theorem 4.20. All rational normal scrolls S(a0, · · · , ak) ⊆ PN , N =
∏s

i=1(ni + 1)− 1,
are of wild representation type unless Pk+1 = S(0, · · · , 0, 1), the rational normal curve
S(a) in Pa, the quadric surface S(1, 1) in P3 and the cubic scroll (S(1, 2) in P4 which are
of finite representation type.
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Proof. See [MR13], Theorem 3.8. �

5. Does the representation type of a projective variety depends on the
polarization?

The representation type of an ACM variety X ⊂ Pn strongly depends on the chosen
embedding and the goal of this section will be to prove that on an ACM projective variety
X ⊂ Pn there always exists a very ample line bundle L on X which naturally embeds X
in Ph0(X,L)−1 as a variety of wild representation type (cf. Theorem 5.4). As immediate
consequence we will have many new examples of ACM varieties of wild representation
type.

Let us start with a precise example to illustrate such phenomena.

Example 5.1. (1) The Segre product of two lines naturally embedded in P3 is an
example of ACM surface of finite representation type, i.e., ϕ|O(1,1)| : P1 × P1 ↪→
P3 is a variety of finite representation type. Indeed, according to Knörrer any
hyperquadric Qn ⊂ Pn+1 is of finite representation type ([Kn]) and, up to twist,
the only undecomposable ACM bundles on P1×P1 ⊂ P3 are: OP1×P1 , OP1×P1(1, 0)
and OP1×P1(0, 1).

(2) The Segre product of two smooth conics naturally embedded in P8 is an example
of variety of wild representation type, i.e., ϕ|O(2,2)| : P1×P1 ↪→ P8 is an example of
ACM surface of wild representation type. Indeed, any smooth del Pezzo surface
is of wild representation type (see Theorem 3.36).

(3) The Segre product of a line and a smooth conic naturally embedded in P5 is
an example of smooth ACM surface of tame representation type, i.e., ϕ|O(1,2)| :
P1 × P1 ↪→ P5 is a variety of tame representation type. Indeed, all continuous
families of undecomposable ACM bundles are one-dimensional. (see Theorem
[FM], Theorem 1)

This leads to the following problems

Problem 5.2. (1) Given an ACM variety X ⊂ Pn , is there an integer NX such that X
can be embedded in PNX as a variety of wild representation type?

(2) If so, what is the smallest possible integer NX?

We will answer affirmatively Problem 5.2 (1) and provide an upper bound for NX . In
other words, we will prove that for any smooth ACM projective variety X ⊂ Pn there is an
embedding of X into a projective space PNX such that the corresponding homogeneous
coordinate ring has arbitrary large families of non-isomorphic undecomposable graded
Maximal Cohen-Macaulay modules. Actually, it is proved that such an embedding can
be obtained as the composition of the ”original” embedding X ⊂ Pn and the Veronese

3-uple embedding ν3 : Pn −→ P(n+3
3 )−1. The idea will be to construct on any ACM variety

X ⊂ Pn of dimension d ≥ 2 irreducible families F of vector bundles E of arbitrarily high
rank and dimension with the extra feature that any E ∈ F satisfy Hi(X, E(t)) = 0 for all
t ∈ Z and 2 ≤ i ≤ d− 1 and H1(X, E(t)) = 0 for all t 6= −1,−2. Therefore, X embedded

in Ph0(OX(s))−1 through the very ample line bundle OX(s), s ≥ 3, is of wild representation
type.
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Let X will be a smooth ACM variety of dimension d ≥ 2 in Pn with a minimal free
R-resolution of the following type:

(5.1) 0 −→ Fc
ϕc−→ Fc−1

ϕc−1−→ · · · ϕ2−→ F1
ϕ1−→ F0 −→ RX −→ 0

with c = n− d, F0 = R and Fi = ⊕βi

j=1R(−nij), 1 ≤ i ≤ c.
For any 2 ≤ n and any 1 ≤ a, we denote by En,a any vector bundle on Pn given by the

exact sequence

(5.2) 0→ En,a → OPn(1)(n+2)a φ(1)→ OPn(2)2a → 0

where φ ∈ Vn being Vn the non-empty open dense subset of the affine scheme M =
Hom(OPn(1)(n+2)a,OPn(2)2a) provided by Proposition 3.27.

From now on, for any 2 ≤ n and any 1 ≤ a, we call FXn,a the non-empty irreducible
family of general rank na vector bundles E on X ⊂ Pn sitting in an exact sequence of the
following type:

(5.3) 0→ E → OX(1)(n+2)a f→ OX(2)2a → 0.

Proposition 5.3. Let X ⊂ Pn be a smooth ACM variety of dimension d ≥ 2. With the
above notation, we have:

(1) A general vector bundle E ∈ FXn,a satisfies

Hi
∗ E = 0 for 2 ≤ i ≤ d− 1,

H1(X, E(t)) = 0 for t 6= −1,−2.

(2) A general vector bundle E ∈ FXn,a is simple.

(3) FXn,a is a non-empty irreducible family of dimension a2(n2 + 2n− 4) + 1 of simple
(hence undecomposable) rank an vector bundles on X.

Proof. (1) Since Hi(X, E(t)) = 0 for all t ∈ Z and 2 ≤ i ≤ d− 1, and H1(X, E(t)) = 0 for
t 6= −1,−2 are open conditions, it is enough to exhibit a vector bundle E ∈ FXn,a verifying
these vanishing. Tensoring the exact sequence (5.2) with OX , we get

(5.4) 0→ E := En,a ⊗OX → OX(1)(n+2)a → OX(2)2a → 0.

Taking cohomology, we immediately obtain Hi(X, E(t)) = 0 for all t ∈ Z and 2 ≤ i ≤ d−1.
On the other hand, we tensor with En,a the exact sequence (5.1) sheafiffied

0 −→ ⊕βc

j=1OPn(−ncj)
ϕc−→ ⊕βc−1

j=1 OPn(−nc−1
j )

ϕc−1−→

· · · ϕ2−→ ⊕β1

j=1OPn(−n1
j)

ϕ1−→ OPn
ϕ0−→ OX −→ 0

and we get

(5.5) 0 −→ ⊕βc

j=1En,a(−ncj)
ϕc−→ ⊕βc−1

j=1 En,a(−nc−1
j )

ϕc−1−→ · · · ϕi+1−→ ⊕βi

j=1En,a(−nij)
ϕi−→

· · · ϕ2−→ ⊕β1

j=1En,a(−n1
j)

ϕ1−→ En,a
ϕ0−→ E = En,a ⊗OX −→ 0.

Set Hi := ker(ϕi), 0 ≤ i ≤ c − 2. Cutting the exact sequence (5.5) into short exact
sequences and taking cohomology, we obtain

· · · → H1(Pn, En,a(t))→ H1(X, E(t))→ H2(Pn,H0(t))→ · · · ,
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· · · → H2(Pn,⊕β1

j=1En,a(−n1
j + t))→ H2(Pn,H0(t))→ H3(Pn,H1(t))→ · · · ,

· · ·
· · · → Hc−1(Pn,⊕βc−2

j=1 En,a(−nc−2
j + t))→ Hc−1(Pn,Hc−3(t))→ Hc(Pn,Hc−2(t))→ · · · ,

· · · → Hc(Pn,⊕βc−1

j=1 En,a(−nc−1
j +t))→ Hc(Pn,Hc−2(t))→ Hc+1(Pn,⊕βc

j=1En,a(−ncj+t))→ · · · ,
Using Lemma 4.6, we conclude that H1(X, E(t)) = 0 for t 6= −1,−2.

(2) A general vector bundle E ∈ FXn,a sits in an exact sequence

0→ E g→ OX(1)(n+2)a f→ OX(2)2a → 0

and to check that E is simple is equivalent to check that E∨ is simple. Notice that the
morphism f∨ : OX(−2)2a −→ OX(−1)(n+2)a appearing in the exact sequence

(5.6) 0→ OX(−2)2a f∨→ OX(−1)(n+2)a g∨→ E∨ → 0

is a general element of the K-vector space

M := Hom(OX(−2)2a,OX(−1)(n+2)a) ∼= Kn+1 ⊗K2a ⊗K(n+2)a

because Hom(OX(−2),OX(−1)) ∼= H0(X,OX(1)) ∼= H0(Pn,OPn(1)) ∼= Kn+1. Therefore,
f∨ : OX(−2)2a −→ OX(−1)(n+2)a is represented by a (n+2)a×2a matrix A with entries in
H0(Pn,OPn(1)). Since Aut(OX(−1)(n+2)a) ∼= GL((n+2)a) and Aut(OX(−2)2a) ∼= GL(2a),
the group GL((n+ 2)a)×GL(2a) acts naturally on M by

GL((n+ 2)a)×GL(2a)×M −→ M
(g1, g2, A) 7→ g−1

1 Ag2.

For all A ∈M and λ ∈ K∗, (λId(n+2)a, λId2a) belongs to the stabilizer of A and, hence,
dimK Stab(A) ≥ 1. Since (2a)2 + (n+ 2)2a2−2a(n+ 1)(n+ 2)a < 0, it follows from [Kac],
Theorem 4 that dimK Stab(A) = 1. We will now check that E∨ is simple. Otherwise, there
exists a non-trivial morphism φ : E∨ → E∨ and composing with g∨ we get a morphism

φ = φ ◦ g∨ : OX(−1)(n+2)a → E∨.
Applying Hom(OX(−1)(n+2)a,−) to the exact sequence(5.6) and taking into account that

Hom(OX(−1)(n+2)a,OX(−2)2a) = Ext1(OX(−1)(n+2)a,OX(−2)2a) = 0

we obtain Hom(OX(−1)(n+2)a,OX(−1)(n+2)a) ∼= Hom(OX(−1)(n+2)a, E∨). Therefore, there

is a non-trivial morphism φ̃ ∈ Hom(OX(−1)(n+2)a,OX(−1)(n+2)a) induced by φ and rep-
resented by a matrix B 6= µId ∈ Mat(n+2)a×(n+2)a(K) such that the following diagram
commutes:

0 // OX(−2)2a

f∨
//

C
��

OX(−1)(n+2)a

B
��

φ

%%KKKKKKKKKKK g∨
// E //

φ

��

0

0 // OX(−2)2a

f∨
// OX(−1)(n+2)a

g∨
// E∨ // 0

where C ∈ Mat2a×2a(K) is the matrix associated to φ̃|OX(−2)2a . Then the pair (C,B) 6=
(µId, µId) verifies AC = BA. Let us consider an element α ∈ K that does not belong to
the set of eigenvalues of B and C. Then the pair (B − αId, C − αId) ∈ GL((n + 2)a)×
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GL(2a) belongs to Stab(f) and therefore dimK Stab(f) > 1 which is a contradiction.
Thus, E is simple.

(3) It only remains to compute the dimension of FXn,a. Since the isomorphism class of a

general vector bundle E ∈ FXn,a associated to a morphism φ ∈M := Hom(O(n+2)a
X ,OX(1)2a)

depends only on the orbit of φ under the action of GL((n+2)a)×GL(2a) on M , we have:

dimFXn,a = dimM − dim Aut(O(n+2)a
X )− dim Aut(OX(1)2a) + 1

= 2a2(n+ 2)(n+ 1)− a2(n+ 2)2 − 4a2 + 1 = a2(n2 + 2n− 4) + 1.

�

As an immediate consequence of the above result we can answer affirmatively Problem
5.2(1) and provide an upper bound for NX . Indeed, we have:

Theorem 5.4. Let X ⊂ Pn be a smooth ACM variety of dimension d ≥ 2. The very ample
line bundle OX(s), s ≥ 3, embeds X in Ph0(OX(s))−1 as a variety of wild representation
type.

Proof. See [MR14], Theorem 3.4. �

Corollary 5.5. The smallest possible integer NX such that X embeds as a variety of wild
representation type is bounded by NX ≤

(
n+3

3

)
− 1.

Proof. See [MR14], Corollary 3.5. �
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6. Open problems

In this section we collect the open problems that were mentioned in the lectures, and
add some more.

1. Does Mustaţă’s conjecture holds for a set of general points on a smooth surface S
of degree d in P3?

The answer is yes if d = 2 (see [GMR]) or d = 3 (see Theorem 3.26).

More general, does Mustaţă’s conjecture holds for a set of general points on a
smooth hypersurface X of degree d in Pn?

To my knowledge these two problems are open.

2. Fix a projective variety X ⊂ Pn. As we have seen in these notes ACM bundles on
X provide a criterium to determine the complexity of X. Indeed, the complexity is
studied in terms of the dimension and number of families of undecomposable ACM
bundles that it supports. Mimicking an analogous trichotomy in representation
theory, it was proposed a classification of ACM projective varieties as finite, tame
or wild representation type. We would like to know:

Is the trichotomy finite representation type, tame representation type and wild
representation type exhaustive?

The answer is yes for smooth ACM curves. In fact, an ACM curve is of finite
representation type if its genus g(C) = 0, of tame representation type if g(C) = 1,
and of wild representation type if g(C) ≥ 2. For ACM varieties of dimension ≥ 2
the answer is not known.

3. In section 5, we have seen that the representation type of an ACM projective
variety strongly depends on the embedding and we have proved that given an ACM
variety X ⊂ Pn , there is an integer NX such that X can be naturally embedded
in PNX as a variety of wild representation type. So, the following question arise in
a natural way:

Given an ACM projective variety X, what is the smallest possible NX such that
X embeds in PNX as a variety of wild representation type?

4. In section 4, we saw that all Segre varieties Σn1,··· ,ns ⊂ PN , N =
∏s

i=1(ni + 1)− 1
are of wild representation type unless P1 × P1; it follows from section 5 that the

Veronese embedding νd : Pn −→ P(n+d
d )−1, d ≥ 3, embeds Pn into P(n+d

d )−1 as a
variety of wild representation type. So we are led to pose the following question:

LetG(k, n) be the Grassmannian variety which parameterizes linear subspaces of

Pn = P(V ) of dimension k. Embed G(k, n) into P(n+1
k+1)−1 using Plücker embedding.

Is G(k, n) ⊂ P(n+1
k+1)−1 = P(∧k+1V ) a variety of wild representation type?
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5. In section 3, we have constructed Ulrich bundles on smooth del Pezzo surfaces and,
in section 4, on Segree varieties. Nevertheless few examples of varieties supporting
Ulrich sheaves are known. In [EFW], pg. 43, Eisenbud, Schreyer and Weyman
leave open the following interesting problems:

(a) Is every variety (or even scheme) X ⊂ Pn the support of an Ulrich sheaf?
(b) If so, what is the smallest possible rank for such a sheaf?

5. In subsection 3.1, we have addressed Mustaţǎ’s conjecture for a general set of
points on a del Pezzo surface. As a main tool we have used Liaison Theory and we
will end these notes with a couple of open problems/questions on this fascinating
Theory.

(a) Does any zero-dimensional scheme Z ⊂ Pn belong to the G-liaison class of a
complete intersection? In other words, is it glicci?

(b) More general, is any ACM scheme X ⊂ Pn glicci?
(c) Find new graded R-modules invariant under G-liaison.
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[MP1] R.M Miró-Roig and J. Pons-Llopis, The minimal resolution conjecture for points on a del

Pezzo surface, Algebra and Number Theory 6 (2012), 27-46.
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