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Abstract. We survey several results on the enumeration of planar graphs and on prop-
erties of random planar graphs. This includes basic parameters, such as the number of
edges and the number of connected components, and extremal parameters such as the
size of the largest component, the diameter and the maximum degree. We discuss ex-
tensions to graphs on surfaces and to classes of graphs closed under minors. Analytic
methods provide very precise results for random planar graphs. The results for general
minor-closed classes are less precise but hold with wider generality.
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1. Introduction

The theory of random graphs, initiated by Erdős and Rényi [34] in the early 1960s,
has become one of the main areas of research in combinatorics [13, 46]. The model
studied originally was the class G(n,M) of graphs with n labelled vertices and
M edges, equipped with the uniform distribution. Closely related is the binomial
model G(n, p), in which every possible edge between two vertices is selected inde-
pendently with probability p. The two models are very similar if p

(
n
2

)
is close to M .

The advantage of the G(n, p) model is the key property of independence, which
allows to compute probabilities of basic events exactly, and to determine precise
thresholds for basic properties such as being acyclic, connected or Hamiltonian.
For instance, the probability that three given vertices span a triangle is exactly p3,
and the probability that a given vertex is isolated is (1− p)n−1.

Things become more difficult if we want to analyze random graphs subject
to a global condition, such as being regular, planar or triangle-free. Consider the
property of being triangle-free: we cannot select edges independently of each other,
since once some edges are selected, other edges are forbidden because they would
create triangles. How does one proceed in these cases? Simplifying we can say that
there are two ways for analyzing random graphs from a constrained class of graphs:
either finding a simpler model that is close enough to the class, or counting graphs
in the class, or a combination of both. The first method is well exemplified by
the class of regular graphs. In the pairing model for d-regular graphs there are n
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vertices, each of them equipped with d half-edges. A random pairing of the dn half-
edges produces a random d-regular multigraph. Probabilities of elementary events
can be computed reasonably well, including the probability that the resulting graph
is simple. This allows to obtain precise estimates on the number of regular graphs
and has led to a rich theory of random regular graphs [74].

Another example is the class of triangle-free graphs. It was proved in [33]
that, as the number of vertices goes to infinity, almost all triangle-free graph are
bipartite. Random bipartite graphs can be analyzed in a model very similar to
the G(n, p) model, where again we have independence, and this provides a suitable
model for triangle-free graphs. More generally, almost all graphs not containing the
complete graph Kt as a subgraph are (t−1)-partite [49], and again we have a model
similar toG(n, p). Even more generally, if H is a graph with the property that there
exists an edge e such that χ(H−e) < χ(H) (here χ denotes the chromatic number)
and t = χ(H) ≥ 3, then almost every graph not containing H as a subgraph is
(t − 1)-partite [67]. These are important examples of monotone classes. A class
of graphs is monotone if it is closed under taking subgraphs, and it is hereditary
if it is closed under taking induced subgraphs. Much work has been done on
estimating the growth rate of monotone and hereditary classes and on analyzing
random graphs from these classes. This is an active area of research closely related
to extremal graph theory [14].

The foremost example of the second method for analyzing random graphs,
based on counting, is the class of trees. We know how to count trees very precisely
(whether labelled or unlabeled, rooted or unrooted) and we also know how to
count trees, for instance, with given degrees or with given height. Thus we can
analyze random variables like the number of leaves or the height in random trees.
Trees are fundamental objects in computer science and powerful methods have
been developed for analyzing them. The main tools in this area are generating
functions and analytic methods for deriving asymptotic estimates. We enter here
the realm of analytic combinatorics, as developed by Flajolet and Sedgewick [35];
see also [24] for many aspects of random trees.

The key property that allows us to count trees is that they admit a simple
combinatorial decomposition. A rooted tree can be decomposed uniquely into the
root and a collection (ordered or not) of subtrees attached to the root. This de-
composition translates into equations for the corresponding generating functions,
and we are in a situation to apply the methods of analytic combinatorics. Many
other combinatorial objects can be decomposed according to simple schemes. This
includes the class of planar maps. A map is a connected planar multigraph (loops
and multiple edges allowed) with a fixed embedding in the plane. In the 1960s
Tutte, motivated by the Four Colour Problem, created the theory of map enumer-
ation. He realized that maps admit recursive decompositions, implying algebraic
equations for the associated generating functions. He found exact formulas for the
number of various classes of rooted maps (to be defined later) with given number
of edges. For instance, Tutte showed [73] that the number of rooted maps with n
edges equals

2 · 3n(2n)!

n!(n+ 2)!
. (1)
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This formula and similar ones were later explained more combinatorially, using
bijections with certain classes of enriched trees [70]. As we discuss later, these
bijections have powerful implications on the structure of random maps.

It took time to realize that the theory of map enumeration could be used to
count planar graphs without an embedding. This was done first for 2-connected pla-
nar graphs by Bender, Gao and Wormald [9], using the enumeration of 3-connected
planar maps and Whitney’s theorem, namely that a 3-connected planar graph has
a unique embedding in the sphere up to homeomorphism. Soon after that the
analysis was extended to arbitrary planar graphs by Giménez and Noy [42]. They
provided a precise estimate for the number Gn of planar graphs with n labelled
vertices of the form

Gn ∼ c n−7/2γnn!, (2)

where γ ≈ 27.2269 is a well-defined constant, known as the growth constant of
planar graphs. This opened the way to the fine analysis of random planar graphs.
In the same work [42] it was proved that the number of connected components in a
random planar graph follows asymptotically a Poisson distribution plus 1 and that
the number of edges is asymptotically Gaussian with linear mean and variance.
This is developed in Section 3 for the more basic parameters, and in Section 4 for
more advanced extremal parameters, such as the diameter, the maximum vertex
degree or the size of the largest block.

The next step was to enumerate graphs that can be embedded in a fixed sur-
face S, orientable or not. McDiarmid [55] showed first that the growth constant for
graphs embeddable in a surface does not depend on the surface (a result already
known for maps) and is equal to γ. Soon after that the enumeration of graphs
on surfaces was completed independently in [7] and [18]. It was shown that the
number of labelled graphs with n vertices that can be embedded in the orientable
surface of genus g is asymptotically

cg n
5(g−1)/2−1γnn!. (3)

We see that only the subexponential term depend on the genus. It is worth re-
marking that, unlike the planar case, the counting series of graphs in a surface
is not computed exactly but rather sandwiched coefficient-wise between two com-
putable series with the same leading asymptotic terms (more details in Section 5).
In addition, it was shown [18] that basic parameters, such as the number of com-
ponents, the number of edges, or the sizes of the largest component and the largest
block, have the same asymptotic distribution as for planar graphs. All these results
hold as well for graphs on the non-orientable surface of genus h, in which case the
subexponential term in the asymptotics is n5(h−2)/4−1.

Graphs on surfaces are strongly related to graph minors. A graph H is a minor
of G if H can be obtained from a subgraph of G by contracting edges. A class of
graphs is minor-closed if it is closed under taking minors. A basic example is the
class of planar graphs and, more generally, the class of graphs embeddable in a
fixed surface. Other interesting minor-closed classes are series-parallel graphs, ∆Y -
reducible graphs and graphs with bounded tree-width. Only in a few cases we have
access to the counting generating functions, allowing for a precise analysis as in the
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case of planar graphs or graphs on surfaces. However one can use combinatorial
arguments to prove relevant results on random graphs from a minor-closed class.
This program has been carried out mostly by McDiarmid and his coauthors. The
results are less precise than those obtained using generating functions and analytic
methods, but apply to more general situations. One example can illustrate this:
the class K of graphs not containing K5 as a minor is an interesting class (studied
by Wagner, motivated by the Four Colour Problem) containing the class of planar
graphs. We do not know how to compute the counting generating function for
the class K, but from the results in [56] it follows that the number of components
converges to a Poisson law plus 1 and that the expected number of vertices in the
largest component is n− c for some constant c. These remarkable results apply to
any minor-closed class subject to mild hypothesis, as discussed in Section 6.

There is one general situation where analytic methods still apply, namely when
the class of graphs is subcritical. This is a technical condition defined in terms of the
singularities of the generating functions, but combinatorially it can be interpreted
as the fact that the class contains ‘relatively few’ 3-connected graphs. This category
includes forests, outerplanar graphs, series-parallel graphs and related classes of
graphs. Graphs in these classes have typically a tree-like structure and in fact
share several properties with trees. The analysis of subcritical classes uses general
tools from analytic combinatorics [25, 44] and will be reviewed in Section 7.

We conclude the paper with some remarks and open problems. In the rest of
the paper, unless mentioned otherwise, all graphs are labelled and n denotes the
number of vertices. For the generating functions that will appear, variable x is
associated to vertices and variable y to edges. For maps, n denotes the number of
edges and z is the variable associated to edges.

2. Planar maps and graphs

Let us go back to Tutte and the enumeration of planar maps. Rooted trees are
easier to enumerate than unrooted ones, since the root vertex gives a starting
point for the combinatorial decomposition. In the same way Tutte decided to root
maps: an edge (not a vertex) is selected and given an orientation. Let M be a
planar map and let e be its root edge. Tutte’s analysis distinguished two cases,
depending on whether M − e is connected or not. In order to keep control of
the decomposition, he had to consider the number Mn,k of maps with n edges in
which the root face (the one to the right of the oriented root edge) has degree k.
Analyzing the combinatorial decomposition of maps resulting by removing the root
edge, he showed that the generating function M(z, u) =

∑
n,kMn,ku

kzn satisfies
the equation

M(z, u) = 1 + zu2M(z, u)2 + uz
uM(z, u)−M(z, 1)

u− 1
. (4)

This is a quadratic equation in M(z, u), but we cannot solve it directly since it
contains the series M(z, 1), which is not independent of the unknown. In order
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to solve it, Tutte devised what is now known as the quadratic method. This is
similar to the well-known kernel method, but applied to quadratic instead of linear
equations. He proved that

M(z, 1) =
18z − 1 + (1− 12z)3/2

54z2
,

and from here the expression in (1) follows easily.
Additional techniques allowed Tutte to enumerate various classes of maps. For

instance, in order to count bipartite maps it is enough to restrict the degrees of the
faces to be even. Eulerian maps are then enumerated by duality. In his seminal
paper [73], Tutte also counted maps according to their connectivity. The unique
decomposition of connected graphs into 2-connected and 3-connected components
allows us to link the generating functions of maps with given connectivity. If
B(z) =

∑
Bnz

n and T (z) =
∑
Tnz

n are, respectively, the generating functions
of 2-connected and 3-connected maps (counted according to the number of edges)
then the recursive decomposition of a map into its blocks gives

M(z) = 1 +B(zM(z)2). (5)

If now h(z) is the functional inverse of (B(z)− 2z)/z then the decomposition of a
2-connected map into its 3-connected components gives

T (z) = z2 − 2z3

1 + z
− zh(z). (6)

These equations provide all the information needed. For instance, together with (1),
it is easy to derive the asymptotic estimates

Mn ∼ cMn−5/212n, Bn ∼ cBn−5/2
(

27

4

)n
, Tn ∼ cTn−5/24n,

for suitable constants cM , cB , cT .
The enumeration of 3-connected maps is particularly interesting since, by the

classical theorem of Steinitz (1922), they correspond precisely to the graphs of con-
vex polytopes in R3. Another reason of interest is that 3-connected planar graphs
have a unique embedding in the sphere, a classical result due to Whitney (1933).
It follows that there is a one-to-one correspondence between 3-connected planar
maps and 3-connected planar graphs. This leads directly to the enumeration of
3-connected labelled planar graphs in which an edge is distinguished and given
a direction, corresponding to the root of the associated map. A key feature is
that rooted maps have no non-trivial automorphisms, so that all vertices, edges
and faces are distinguishable. We can then give them labels and turn a rooted
map into a labelled graph. This was first made explicit in [9]. Now, using again
Tutte’s decomposition of 2-connected graphs into 3-connected components, but in
the reverse direction, it is possible to enumerate 2-connected planar graphs. Let
us explain how.
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In what follows generating functions for graphs are of the exponential type
(whereas for maps are ordinary), and variable x marks vertices and y marks edges.
Let T (x, y) be the generating function of 3-connected maps, and B(x, y) that of
2-connected planar graphs. Closely related to B(x, y) is the generating function
D(x, y) of ‘networks’, which are 2-connected graphs rooted at a directed edge
(which may be deleted or not) and whose endpoints are not labelled. Then D(x, y)
is related to B(x, y) through (see [43] for details)

2(1 + y)
∂B

∂y
(x, y) = x2(1 +D(x, y)), (7)

and D(x, y) satisfies the equation

D(x, y) = (1 + y) exp

(
xD(x, y)2

1 + xD(x, y)
+

2

x2
∂T

∂y
(x,D(x, y))

)
− 1. (8)

The former two equations are essentially the equivalent of (6) for graphs. They
are more involved because there are two variables and several derivatives, but it
is just Tutte’s decomposition applied in the reverse direction: from the knowledge
of T we have access to D, hence to B. From here it was shown [9] that the number
of 2-connected planar graphs grows like

cBn
−7/2(γB)nn!,

where γB ≈ 26.18. Observe that the polynomial growth is n−7/2 instead of n−5/2,
the reason being that maps are rooted and introduce an extra linear factor. This
was a major step since little was known on counting planar graphs, as opposed
to the rich theory of counting planar maps created by Tutte and greatly extended
later on.

It remained to count connected planar graphs using the decomposition of con-
nected graphs into 2-connected components, and then to count planar graphs in
general. Let C(x, y) and G(x, y) be the generating functions of connected and
arbitrary planar graphs, and let C•(x, y) = x∂C∂x (x, y) be that of rooted connected
graphs, where a vertex is distinguished as the root. The recursive decomposition
of a graph into its blocks implies the equation

C•(x, y) = exp

(
∂B

∂x
(xC•(x, y), y)

)
. (9)

The former equation is the analog for graphs of (5). And the decomposition of a
connected graph into its connected components implies

G(x, y) = eC(x,y), (10)

and equation that has no analog for maps since maps are connected by definition.
Solving (7), (8) and (9) explicitly is a non-trivial problem. It was done in [42] by
finding an explicit expression for B(x, y) in terms of D(x, y); it is worth remarking
that the same solution can be recovered in a more combinatorial way [19]. From
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this expression one can determine C(x, y) as the solution of (9) and then G(x, y)
from (10), thus solving completely the problem of enumerating planar graphs. In
particular, the estimate in (2) is obtained. We will not go into the details, which
are quite technical, but rather will explain how the solution from [42] opened the
way to the fine analysis of random planar graphs.

3. Random planar graphs

In addition to the enumerative theory of planar maps, a number of relevant re-
sults on random maps where established by Bender, Gao, Richmond and Wormald,
among others. A central result in [6] is that a random map almost surely contains
linearly many copies of any given planar submap M . This was later refined by
showing that the number of copies of M is asymptotically normal [40]. These
results extend to several classes of maps, such as triangulations and quadrangu-
lations. Another result is that the distribution of vertex degrees follows asymp-
totically a discrete law with exponential tail; this already follows from Tutte’s
equations, and later it was shown that the limiting distribution is independent of
the surface [37]. A very precise result was obtained for the distribution of the
maximum vertex degree [39], proving that it is of order log6/5 n for maps with
n edges. In another direction, it was shown [38] that a random map contains a
unique 2-connected component of linear size, more precisely of size n/3, a result
that extends to more general kind of ‘components’ in different classes of maps.
The limiting distribution of the size of the largest component was obtained in [3],
showing that it is non-Gaussian. With respect to metric properties of maps, it was
first established in [21] that the typical distance between two vertices in a random
quadrangulation is of order n1/4. As we discuss later this has led to a rich theory
of scaling limits of random maps. We will review several of these results when
discussing random planar graphs.

The first attempt to analyze random planar graphs (without and embedding)
was made by in [23]. The probabilistic model is given by the set Gn of (labelled)
planar graphs with n vertices equipped with the uniform distribution. The goal
declared there was to understand ‘what does a random planar graph look like’
under this distribution. The authors proved a few preliminary results but it was
not until the work of McDiarmid, Steger and Welsh [59] that more significant
results were obtained. Among other results, they proved that a random planar
graph has with high probability linearly many disjoint pendant copies of each
fixed connected planar graph H with a distinguished vertex v: a pendant copy
of H is a subgraph isomorphic to H joined to the rest of the graph through a
single edge uv, and such that the isomorphism respects the order of the labels (so
that automorphisms are not considered). This implies in particular that there are
linearly many vertices of degree k, for each fixed k ≥ 1. It also implies that a
random planar graph has exponentially many automorphisms (consider pendant
copies of K1,2 rooted at the vertex of degree two), in sharp contrast with arbitrary
random graphs. Another property proved in [59] is that the limiting probability p
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that a random planar graph is connected is bounded away from 0 and from 1. In
particular, it was proved that p ≥ e−1. At about the same time several authors
studied the number of edges in random planar graphs. Using various combinatorial
arguments it was proved that almost surely the number of edges is between 1.85n
and 2.44n, but no concentration result or limiting distribution was obtained.

The results in [42] allow for a much more precise description. Let Gn,m,k be
the number of planar graphs with n vertices, m edges, and k components. The key
fact is that it is possible to find an exact expression for the exponential generating
function

G(x, y, u) =
∑

n,m,k≥0

Gn,m,k y
muk

xn

n!
.

As we have seen before, exact does not mean simple. However the series G(x, y, u)
can be expressed in terms of the solution of the system of equations (7–10) involv-
ing only elementary functions and the generation function T (x, y) of 3-connected
rooted maps counted according to vertices and edges, which is algebraic of de-
gree four. Everything is explicit and computable with the help a computer algebra
system; see [43] for a detailed survey.

Let Xn be the random variable equal to the number of edges in planar graphs
with n vertices. The distribution of Xn is completely encoded in the generating
function A(x, y) = G(x, y, 1), since the probability generating function of Xn is
simply

pn(y) =
[xn]A(x, y)

[xn]A(x, 1)
,

where [xn] denotes the coefficient of xn. From the system of equations satisfied
by G it is possible to extract, using analytic methods, information on the rate of
growth of its coefficients. In this case one proves that, for fixed y > 0, we have the
estimate

[xn]A(x, y) ∼ c(y)n−7/2γ(y)nn!.

This already gives the estimate (2) with c = c(1) and γ = γ(1), but it gives more,
namely

pn(y) =
c(y)

c(1)

(
γ(y)

γ(1)

)n
+O

(
1

n

)
, (11)

where the error term comes from the method of singularity analysis used in deriving
the estimates. The probability generating function is close to being an exact power
and extensions of the Central Limit Theorem imply a Gaussian limit law for Xn

(see Section IX.5 in [35]). Moreover, from (11) it follows that the expected value
EXn = p′n(1) is asymptotically µn, were µ = (γ′(y)/γ(1)). The function γ(y) is
analytic and computable and one obtains µ ≈ 2.21. A similar computation gives
Var(Xn) ≈ 0.43n. It is also possible to prove a Local Limit Theorem and to show
that P (|Xn − EXn| > εn) is exponentially small [42]. This gives a very precise
picture of the distribution of the number of edges, highly concentrated around µn.

The analysis of the number of components is easier. We have

G(x, 1, u) = euC(x), (12)
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where C(x) is the generating function of connected planar graphs, and the gen-
erating function of graphs with exactly k components is C(x)k/k!. One shows
that

[xn]
1

k!
C(x)k

[xn]G(x)
∼ λk−1

(k − 1)!
e−λ,

where λ = C(γ−1) ≈ 0.037. It follows that the random variable equal to the
number of components in planar graphs with n vertices converges to 1 + Po(λ),
a Poisson distribution of parameter λ. In particular, the limiting probability of
connectedness is p = e−λ ≈ 0.96. As will be seen in the next section, the largest
component contains almost all vertices: its expected size is n−c, where c is a small
constant. The small number of vertices not in the largest component accounts for
the fact that p < 1.

Another parameter of interest is the distribution of the vertex degrees. For
fixed k ≥ 1, let Xk,n be the number of vertices of degree k in planar graphs with
n vertices. As mentioned before, Xk,n is linear in n with high probability. It is
natural then to except that EXk,n ∼ pkn as n → ∞. However, much technical
work is needed in order to prove this result. It requires a very fine analysis of
the generating function G•(x,w) of graphs with a distinguished vertex (the root),
where w marks the degree of the root. It is proved in [27] that the pk indeed exist
and that

∑
k≥1 pk = 1. This is equivalent to saying that the probability that a

random vertex in a planar graph has degree k tends to pk as n → ∞, and that
the degree distribution converges to a discrete law. The explicit expression for the
probability generating function is extremely involved but it is computable and one
obtains the first values

p1 ≈ 0.037, p2 ≈ 0.16, p3 ≈ 0.24, p4 ≈ 0.19, p5 ≈ 0.13, p6 ≈ 0.09.

The distribution decays exponentially like pk ∼ qkk−1/2, where q ≈ 0.67 is an
explicit constant, suggesting that the maximum degree is asymptotically logq−1(n).
This is indeed the case as discussed in the next section.

It was proved using different methods [66] that the number of vertices of de-
gree k is concentrated around its expected value. It is thus natural to expect that
Xk,n is asymptotically normal as n → ∞, but this is still an open problem. On
the other hand, asymptotic normality of the Xk,n has been established for simpler
classes of graphs [26] as well as for planar maps [30].

4. Extremal parameters

In this section we focus on several extremal parameters that have been successfully
analyzed for random planar graphs. Other extremal parameters will be discussed
in the last section.

Largest component. Let us start with an easy parameter, the size Ln of the
largest connected component. It has already been mentioned that Ln is almost
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equal to n, but we can be more precise. Let Gn be the number of planar graphs
and Cn the number of connected planar graphs. The probability that Ln = n− k,
for fixed k and n > 2k, is

(
n
k

)
Cn−kGk/Gn, since there are

(
n
k

)
ways of choosing

the labels of the vertices not in the largest component, Cn−k ways of choosing the
largest component, and Gk ways of choosing the complement. Using the known
estimates for Gn and Cn we arrive at

P(Ln = n− k) ∼ p ·Gk
γ−k

k!
, (13)

where p is the limiting probability of connectivity. Because of (2), this quantity is
of order k−7/2 for large k. It follows that n−Ln has a limiting discrete distribution
with constant expectation and variance. The expected value is computable and
E(n−Ln) ≈ 0.038. Readers familiar with the giant component phenomenon in the
G(n,M) model may wonder about analogs for planar graphs; this will be discussed
in the last section.

We can also find the limiting distribution of the fragment, the complement of
the largest component. The probability that the fragment is isomorphic to a given
unlabelled graph H with h vertices is, for n > h,(

n

h

)
h!

aut(H)

Cn−h
Gn

,

where aut(H) is the number of automorphisms of H and h!/aut(H) is the number
of different labellings of H. It follows as before that

P(fragment ∼= H) ∼ p γ−k

aut(H)
. (14)

We will see in Section 6 that this result holds in a more general context.

Largest block. Because of the previous result, from now on we focus on con-
nected planar graphs. A connected graph decomposes into blocks, which are either
single edges (isthmuses) or maximal 2-connected subgraphs. It is natural to con-
sider the size of the largest block. This is a very interesting parameter that has a
non-Gaussian continuous limit law. It was first studied for random maps in [38],
where it was proved that the largest block in a random map with n edges has
expected size ∼ n/3 and, moreover, the second largest block is of order O(n2/3).
This result is somehow comparable to the classical giant component phenomenon,
a random map has a unique block of linear size and the other blocks are small.
The limiting distribution for the size Xn of the largest block in random maps was
determined very precisely in [3], and it involves the density function g(x) of a stable
law of parameter 3/2. The precise result is the following:

P(Xn = bn/3 + xn2/3c) ∼ g(x)n−2/3, (15)

uniformly for x in any bounded interval. That is, the largest block has expected size
n/3 and fluctuations of order O(n2/3). It is worth remarking that the distribution
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has no second moment and is asymmetric: the left tail (as x → −∞) decays
polynomially while the right tail (as x → +∞) decays exponentially. The proof
is based on analyzing the size of the root-block, that is, the block containing the
root edge. Equation (5) is the basis of the analysis: the composition scheme
B(zM(z)2) is critical, in the sense that the evaluation of zM(z)2 at its singularity
1/12 is precisely 4/27, which is the singularity of B(z). Everything boils down
then to estimating the coefficients of large powers of generating functions, which
is achieved by a delicate application of the saddle-point method.

Using the tools developed in [3], an analogous result was proved for random
planar graphs [44]. In this case the expected size of the largest block (now n is
the number of vertices) is ∼ αn, where α ≈ 0.96 (this value of α was obtained
independently in [65] using alternative methods). The limiting distribution is of
the same kind as (15), but with a different scaling of g(x). The results in [44] also
give the limiting distribution for the size of the largest 3-connected component in
random connected planar graphs, which again is of the same kind as (15), both
in the number of vertices and in the number of edges. The expected number of
vertices in the largest 3-connected component is ∼ 0.73n, and the expected number
of edges is ∼ 1.79n.

A parameter related to the largest block is the following. The 2-core of a graph
G is the maximum subgraph C with minimum degree at least two. The 2-core C is
obtained from G by repeatedly removing vertices of degree one and, conversely, G
is obtained by attaching rooted trees at the vertices of C. It is proved in [64] that
the size of the 2-core of a random planar graph is asymptotically Gaussian with
expectation ∼ 0.962n (the value of the constant was previously found in [57]). The
constant is a bit larger than the value 0.96 for the largest block; this is consistent
since the 2-core clearly contains the largest block. It is also proved in [64] that the
size of the largest tree attached to the 2-core is of order c log n where c ≈ 0.43.

Maximum degree. Let ∆n be the maximum degree in random planar graphs.
A simple and elegant argument by McDiarmid and Reed [58] based on double
counting and elementary properties of random planar graphs shows that with high
probability

c1 log n ≤ ∆n ≤ c2 log n,

for some positive constants c1 and c2. This already gives the right order of magni-
tude. Analytic methods are needed in order to obtain a more precise result. From
the previous section we know that there is a limiting degree distribution {pk}k≥1
with tail of order qkk−1/2. Using the first moment method and analytic properties
of the generating function G•(x,w) mentioned in the previous section, one can
show that ∆n ≤ (1 + o(1))c log n, where c = 1/ log(q−1) ≈ 2.53. In principle a
matching lower bound could be proved using the second moment method, by root-
ing at a secondary vertex in addition to the root vertex. This is done in [28] for
simpler classes of graphs, which is already very demanding. However, the technical
difficulties with this approach for planar graphs appear insurmountable, since the
equations defining the associated generating functions are just too complicated.
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In order to obtain a lower bound one can use Boltzmann samplers, introduced
in [31] for the random generation of combinatorial objects. If A is a class of
combinatorial objects with generating function A(x), and x0 is such that A(x0)
is convergent, then an object α ∈ A of size n is assigned probability xn0/A(x0).
The objects generated fluctuate in size, but all the objects of size n have the same
probability.

This framework has been applied successfully since then, in particular to the ef-
ficient generation of random planar graphs [36]. One can use Boltzmann samplers
not only for random generation but also for the analysis of random combinato-
rial objects. This approach has proved useful in particular for random planar
graphs [65, 66]. This is also the case here, using the fact that there is a unique
block of linear size: a typical random planar graph G can be thought of as a large
block B together with small planar graphs attached to its vertices. If we later
condition on the total size of G being n, we may start with the graphs attached
to B being drawn independently from the set of all connected planar graphs. In
this way one recovers the power of independent samples allowing to use techniques
closer to the classical theory of random graphs. This program has been carried out
in [29], showing that with high probability

|∆n − c log n| = O(log log n),

and
E(∆n) = (1 + o(1)) c log n.

Diameter. Let Dn denote the diameter of a random connected planar graph.
This is a difficult parameter to analyze, even for relatively simple classes of graphs,
such as trees. The starting point is the analysis of metric properties of random
planar maps, by now a rich and deep theory with connections to physics and other
areas. Let Qn be a random embedded quadrangulation (all faces of degree four)
with n faces and let rn be the radius (maximum graph distance) in Qn with respect
to a fixed base point. In the pioneering work [21] it was shown that rn is of order
n1/4, in fact, much more was proved: rn/n

1/4 converges in law to a continuous
distribution related to Brownian motion. Notice that the diameter of Qn is between
rn and 2rn. The proof in [21] is based on a bijection between quadrangulations and
plane trees enriched with labels that keep track of the distances in Qn. The typical
height of a tree is of order

√
n, and the labels behave like a random walk along the

branches of the tree. This implies that the maximum distance is of order (
√
n)1/2,

explaining the exponent 1/4. These results were later extended to other classes
of random maps and, more recently, even deeper results have been established. If
one consider Qn as a metric space with the graph distance dn, then (Qn, dnn

−1/4)
converges in a precise technical sense to a certain random compact metric space,
known as the Brownian map [52, 61].

One can use the former results to analyze the diameter Dn in random planar
graphs. This is done in [17] starting from the result on quadrangulations and then
moving to maps with increasing connectivity. Once a result is established for 3-
connected maps, it can be transferred to 3-connected planar graphs and then to
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connected planar graphs. One uses in an essential way the existence of a giant
block and 3-connected component, both in maps and graphs. The price to pay in
this scheme for transferring the results from maps to graphs is a loss in precision.
The result proved in [17] is that for ε > 0 small enough and n large enough,

P(Dn ∈ (n1/4−ε, n1/4+ε)) ≥ 1− exp(−ncε).

It is natural to conjecture that the radius rn of connected planar graphs scaled by
n−1/4 converges to the same law as for quadrangulations and other classes of maps,
but much more precise results are needed in order to prove such a statement.

Summary of results. From this and the previous section we can conclude that
we have now a rather complete picture of ‘what a random planar graph looks like’.
We summarize the main properties in the following list. All the results are under-
stood to hold asymptotically almost surely when n → ∞. All the constants are
explicit and computable to any desired precision. The values given are approxi-
mations.

1. The number of edges is Gaussian with expectation 2.21n and linear variance.

2. The number of connected components is 1 + Po(0.037). The probability of
being connected is 0.96.

3. If Ln denotes the size of the largest component, then n−Ln follows a discrete
law. The expected value of n− Ln is 0.38.

4. For each fixed connected planar graph H rooted at a distinguished vertex,
the number of pendant copies of H is Gaussian with expectation (γ−h/h!)n
and linear variance.

5. The chromatic number is four. This follows from the Four Colour Theorem
and the fact that it contains K4 as a subgraph.

6. The number of automorphisms is exponential in n.

7. The number of blocks is Gaussian with expectation 0.039n. The number of
cut vertices is Gaussian with expectation 0.038n. In both cases the variance
is linear.

8. For each fixed 2-connected planar graph L, the number of blocks isomorphic
to L is Gaussian with linear expectation and variance.

9. For each k ≥ 1, the expected number of vertices of degree k is pkn, where
the pk are computable and

∑
pk = 1.

10. The maximum degree satisfies |∆n − c log n| = O(log log n), where c = 2.53,
and E∆n ∼ c log n.

11. The size of the largest block has expected value 0.96n and follows a stable law
of parameter 3/2. The remaining blocks are of size O(n2/3). The same holds
for the size of the largest 3-connected component, with expectation 0.73n.
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12. The size of the 2-core is Gaussian with expectation 0.962n and linear vari-
ance.

13. The diameter Dn is in (n1/4−ε, n1/4+ε) with high probability.

5. Graphs on surfaces

The theory of map enumeration extends to maps on surfaces. A map on a surface S
is a 2-cell embedding (all faces must be homeomorphic to disks) of a connected
graph in S. It is worth remarking that a map on an orientable surface can be
encoded in a purely combinatorial way by means of a rotation system, which
consists of giving a cyclic ordering of the edges around each vertex. By giving
appropriate signs to the edges the encoding also works for non-orientable surfaces,
but for conciseness we only discuss the orientable case [62]. Let Mg

n be the number
of maps with n edges on the orientable surface of genus g. As opposed to the planar
case, there is no closed formula for Mg

n, but one can use Tutte’s methodology of
removing the root edge to find the associated generating function Mg(z). Using
induction on the genus, it was proved by Bender and Canfield [4] that Mg(z) is a
rational function in

√
1− 12z. The explicit expression is quite involved but it can

be used to prove the estimate

Mg
n ∼ cgn5(g−1)/212n. (16)

Notice that the genus only affects the subexponential term and not the exponential
growth. The surprising exponent 5(g − 1)/2 was later explained more combinato-
rially in [20].

Suppose one wishes, as for planar graphs, to use the enumeration of maps on S
for counting graphs (without an embedding) on S. There are two main obstacles
for this program: 1) no degree of connectivity guarantees a unique embedding,
and 2) the class of graphs embeddable in S is not close under taking connected
components or blocks, so that the basic equations among generating functions,
such as (12) no longer hold. The road to the solution, found independently in [18]
and [7], is the following. The face-width of a map M in S is the minimum number
of intersections of M with a simple non-contractible curve C on S. It is easy to
see that this minimum is achieved when C meets M only at vertices. Face-width
is in some sense a measure of local planarity, if the face-width is large then the
embedding is locally planar in large balls. The face-width of a graph G is the
maximum face-width among all the embeddings of G.

The key result is that a 3-connected graph with large enough face-width has a
unique embedding [62]. It turns out that the generating series of 3-connected maps
of any fixed face-width has a negligible contribution in the asymptotic analysis [8].
Therefore, the enumeration of 3-connected graphs in a surface S can be reduced,
up to negligible terms, to the enumeration of 3-connected maps in S. There is one
technical difficulty, which is to enumerate maps according to edges and a suitable
weight on the vertices. This is achieved starting with the enumeration of all maps
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in S and then, using Tutte’s approach based on substitution, going to 2-connected
and then to 3-connected maps in S. It is important to remark that, since maps with
small face-width are discarded, one does not work with the exact counting series.
Instead, if f(x) is the series of interest, one finds computable series f1(x) and f2(x)
such that f1(x) � f(x) � f2(x) (where � means coefficient-wise inequality) and
f1(x) and f2(x) have the same leading asymptotic estimates.

For the second obstacle one can use a result from [69]: if a connected graph G
of genus g has face-width at least two, then G has a unique block of genus g and
the remaining blocks are planar. A similar result holds for 2-connected graphs and
3-connected components. Since for planar graphs we have exact expressions for
all the generating functions involved, starting from the (asymptotic) enumeration
of 3-connected graphs of genus g we can achieve the enumeration of all graphs of
genus g. Let us make more precise one of the steps in the analysis. Let Gg(x)
and Cg(x) be the generating functions of graphs and connected graphs of genus at
most g, respectively. The usual relation Gg(x) = exp(Cg(x)) does not hold, since
the union of graphs of genus g will have larger genus if g > 0. Instead, we have

Gg(x) ∼ Cg(x)eC
0(x),

where the symbol ∼ must be understood as the fact that the two functions have the
same dominant terms in their singular expansions. Similarly, the relation between
Cg(x) and the generating function Bg(x) of 2-connected graphs of genus g is not
an exact equation as in the planar case, since genus is also additive in blocks, but
rather an approximate version. The technical details are involved but the essence
is to discard maps and graphs with small face-width.

In addition, the former approach allows one to analyze parameters of a random
graph embeddable in the surface Sg of genus g. All the main parameters behave as
in the planar case: number of edges is Gaussian with the same moments, number of
components is 1 plus a Poisson law with the same parameter, the size of the largest
component follows the same law as in (13), and the size of the largest 2-connected
and 3-connected components obey stable laws with the same expectations. In
addition, a random graph embeddable in Sg almost surely does not embed in a
simpler surface. Thus we have a clear picture of what a random graph embeddable
in Sg looks like. It has a unique largest component C of genus g and the remaining
components are planar. Within C there is a unique block B of linear size that has
genus g and the remaining blocks are planar. Finally, B has a unique linear 3-
connected component T of genus g, and the remaining 3-connected components
are planar. Moreover, the graph T has a unique embedding in Sg. Extremal
parameters like the diameter or the maximum degree behave likely as in the planar
case, but the analysis is yet to be done.

We conclude this section with a short comment. Given a connected planar
graph H, a random graph in Sg contains linearly many pendant copies of H, the
proof being the same as for planar graphs. But if H is non-planar then a random
graph in Sg does not contain H as a subgraph almost surely, because all the balls
of radius R are planar for each fixed R. Taking R larger than the diameter of H
we would reach a contradiction.
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6. Minor-closed classes of graphs

We recall that a class of graphs G is minor-closed if whenever G is in G and H
is a minor of G, then H is also in G. The theory of graph minors is one of the
main achievements in modern combinatorics, culminating with the great theorem
of Robertson and Seymour: every minor-closed class of graphs is defined in terms
of a finite number of excluded minors; see [53] for a quick overview. The basic
example is Kuratowski’s theorem, which identifies K5 and K3,3 as the excluded
minors for planar graphs. There are several important properties that have been
established for proper (excluding at least one graph) minor-closed classes of graphs.
To begin with they are sparse: the number of edges is at most αn for some constant
α depending only on the class. This is easy to prove with α = 2t, where t is the size
of an excluded minor, although the correct order of magnitude of α is t

√
log t [72].

Secondly, they are small : the number Gn of graphs in the class with n vertices is
bounded as

Gn ≤ cnn!,

for some constant c > 0. This implies in particular that the generating function
G(x) =

∑
Gnx

n/n! has positive radius of convergence and defines an analytic
function near 0. This was first proved in [63] and then in [32] in a more general
context. Additional properties are, for example, the existence of separators of
size O(

√
n) and the fact that the tree-width is O(

√
n) [2].

The systematic study of random graphs from a minor-closed class is more
recent. Let G be a proper minor-closed class which is addable. This means that
1) a graph G is in G if and only the connected components of G are in G; 2) for
each graph G in G, if u and v are vertices in different components of G, the graph
obtained by adding an edge joining u and v is also in G. This is equivalent to the
condition that all the excluded minors of G are 2-connected. Planar graphs form
an addable class, but graphs embeddable in a surface other than the sphere do
not, since genus is additive on disjoint unions. Addable minor-closed classes are
analyzed by McDiarmid in [56]. The first property, already proved in [60], is the
existence of a growth constant γ, which is the limit

γ = lim
n→∞

(
Gn
n!

)1/n

. (17)

In fact, more is true. The class G is called smooth if

lim
n→∞

Gn
nGn−1

= γ. (18)

Of course, if the former limit exists it must equal γ, but condition (18) is stronger
than (17). It is shown in [56] that addable minor-closed classes are smooth. This
is proved using the 2-core discussed before and applying a technique from [5].

From now on G is an addable minor-closed class and Rn is a random graph
from G with n vertices under the uniform distribution. Several basic properties
have been established for Rn. If was already proved in [60] that Rn contains a
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linear number of pendant copies of every fixed connected graph H in G. Using the
smoothness condition this is strengthened in [56], as follows. If Xn is the number
of pendant copies of H in Rn, then

Xn

n
→ γ−h

h!
in probability, (19)

where h is the number of vertices inH. In the case of planar graphs a stronger result
is shown in [42] using analytic methods, namely that Xn is asymptotically Gaussian
with expectation (γ−h/h!)n. The great interest of the less precise result (19) is that
it holds for every addable minor-closed class, where generating functions are seldom
available. In particular, we deduce that for each k ≥ 1 there is a linear number of
vertices of degree k, and that the number of automorphisms is exponential.

The more precise results from [56] are on the structure and number of connected
components. Let ρ = γ−1, which is the radius of convergence of the counting
generating function G(x). We have 0 < ρ ≤ 1/e. The first inequality because G
is small, and the second one because G contains the class of forests, which grows
exponentially like enn!. It also holds that G(ρ) is finite [56]. Let now C be the set
of connected graphs in G, and let C(x) be the associated generating function. From
general enumerative principles [35] we have the relation G(x) = expC(x), and it
follows that C(ρ) is finite too. Denote by Ln the size of the largest component.
We can now describe the main results from [56]. As before, all statements hold
asymptotically almost surely. For a given graph H, we denote the number of
vertices by |H|.

1. The number of components is distributed like 1 + Po(C(ρ)). In particular,
the probability of connectedness is e−C(ρ).

2. For distinct unlabelled connected graphs H1, . . . ,Hk in G, the numbers of
components Xi isomorphic to Hi are asymptotically independent with dis-
tribution Po(λi), with λi = ρ|Hi|/aut(Hi).

3. n− Ln follows a discrete law. For each fixed k,

P(n− Ln = k)→ 1

G(ρ)

Gkρ
k

k!
.

4. Given a fixed graph H, the probability that the fragment (the complement
of the largest component) is isomorphic to H tends to

ρ|H|

aut(H)G(ρ)
.

Notice that item 3 corresponds exactly to equation (13), since ρ = γ−1 and
1/G(ρ) = e−C(ρ) is the probability of being connected. The same applies to item 4
with respect to (14). Which values are possible for the limiting probability of con-
nectivity e−C(ρ)? It was conjectured in [60] that, among all addable classes, this
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probability is minimized for the class of forests, in which case it is e−1/2. This
conjecture has been proved independently in [1] and [48].

For other parameters of interest, like the number of edges, there are no general
results available. The number of edges is linear by the general bound on minor-
closed classes, but we do not know hot to prove, for instance, any concentration
result. The same goes for the number of vertices of given degree and other basic
parameters. Adapting the techniques from [58], it is proved in [41] that for addable
classes whose excluded minors are all 3-connected, the maximum degree ∆n is at
least c log n for some constant c > 0 (this does not apply, for instance, to the class
of forests, where ∆n ∼ log n/ log log n). For any addable minor-closed class it is
conjectured that ∆n ≤ c′ log n, but the proof of the upper bound for planar graphs
in [58] does not extend to the general case.

For non-addable classes there are few general results, but some very interesting
examples. Let Gk be the class of graphs containing at most k disjoint cycles. This
class is minor-closed but not addable. Let Fk be the class of graphs G such that
removing k vertices from G the graph becomes a forest. In other words, graphs
in Fk are obtained from a forest F by adding k new vertices and connecting them
in any way to F . Clearly Fk ⊂ Gk. It is proved in [50] that almost every graph
in Gk is in Fk, as n → ∞. This gives in particular the asymptotic growth of Gk,
since it can be shown that the number of graphs in Fk grows like

ck2knfn,

where fn is the number of forests and ck is an explicit constant. The simple
structure of graphs in Fk also gives access to properties of random graphs from Gk.
This approach has been generalized to other classes excluding disjoint copies of a
given family of graphs [51].

Another example of a non-addable class is the class A of graphs whose compo-
nents are caterpillars; a caterpillar is a tree obtained from a path by adding leaves.
This class and related classes can be analyzed using generating functions [16]. It is
proved, for instance, that the number of components in A follows a Gaussian law
with expectation of order

√
n, a very different behaviour from what we have seen

in addable classes.
To conclude this section, we mention a recent result on logical limit laws [45].

Consider a graph property expressible in first order (FO) logic, for example the
existence of a triangle or the existence of an isolated vertex. Given a class of
graphs G, we are interested in the limiting probability p(φ), as n → ∞, that a
FO formula φ is satisfied in G, provided this limit exists. This problem has been
much studied for the random graph G(n, p). One of the earliest results is that
for constant p (in particular p = 1/2, the uniform model on labelled graphs), for
every first order property φ we have either p(φ) = 0 or p(φ) = 1. This is called
a zero-one law (see [71] for much more in this area). Zero-one laws have been
studied for other combinatorial structures, such as permutations or partitions [22],
and also for maps on surfaces [6]. More recently, a zero-one law was proved for
random labelled trees [54]. Moreover, it holds for properties expressible in the
richer monadic second order (MSO) logic, in which we are allowed to quantify
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over sets of vertices, in addition to quantifying over vertices. Properties such as
connectivity or k-colorability can be expressed in MSO but not in FO. It is proved
in [45] that for every addable minor-closed class G and every MSO formula φ,
the limiting probability p(φ) exists. Moreover, if we restrict to connected graphs
in G, then a zero-one law holds. It is also proved that the closure of the set
{p(φ) |φ MSO formula} of limiting probabilities is a finite union of at least two
intervals in [0, 1]. For the class of planar graphs, the set of intervals is completely
determined.

7. Subcritical classes

For the next definition we need a bit more on generating functions. Let G be a
class of graphs which is block-stable, that is, a graph G is in G if and only if each
of the blocks of G is in G. This is the case, for instance, for addable minor-closed
classes defined in the previous section. In this situation, as we saw in Section 2,
the generating functions C(x) and B(x) of connected and 2-connected graphs in G
satisfy

C•(x) = xeB
′(C•(x)), (20)

where C•(x) = xC ′(x) is the generating function of connected graphs rooted at a
vertex. Let ρC and ρB be, respectively, the radius of convergence of C(x) and B(x).
We say that G is subcritical if

C•(ρ) < ρB .

This implies that the singular behaviour of C(x) is dictated by the existence of
a critical point when solving (20), and not by the singular behaviour of B(x) at
ρB . In fact, the critical point is the solution of xB′′(x) = 1. The class of planar
graphs is critical, since in this case C•(ρ) = ρB . It is clear that this is a delicate
condition, since it depends on whether a certain evaluation of an analytic function
is smaller than or equal than another value. Unless we have access to the generating
functions, it seems that we cannot prove whether a given class is subcritical or not.

A basic example of a subcritical class is the class of series-parallel graphs; they
can be characterized in several ways, among them as the graphs not containing
K4 as a minor. This class is subcritical, as shown first in [11]. Other examples
are outerplanar graphs, acyclic graphs (forests), and cacti graphs (graphs whose
blocks are cycles). As shown in [44], the class of graphs not containing H as a
minor is subcritical in several other cases, including H = K5 − e (the complete
graph K5 minus an edge). A general framework was introduced in [44] for analyz-
ing block-stable classes of graphs whose 3-connected components are predefined.
A fundamental dichotomy was found (see also [65]) between critical and subcritical
classes. As we have seen, a random planar graph has a block of linear size. In
contrast to this, a random graph from a subcritical class has blocks of size O(log n)
and the block size follows a discrete distribution. In a sense, subcritical classes are
close to trees: a typical graph is made of a linear number of small blocks forming
a tree whose height is of order

√
n. We discuss further this dichotomy in the last

section.
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With respect to other parameters such as the number of edges or the number
of components, the behaviour is the same for critical and subcritical classes. It
is worth remarking that the only examples we know of critical classes are planar
graphs and classes very close to them, such as graphs not containing K3,3 as a
minor [44]. A systematic study of subcritical classes was done in [25]. It is shown
that the asymptotic growth is always of the form c · n−5/2γnn! for computable
constants c and γ. Remarkably, this is also proved for the corresponding unlabelled
classes, where symmetries have to taken into account and cycle-index sums are
needed; the estimate in this case is of the form cun

−5/2γnu . In addition, the num-
ber of edges and other linear parameters are asymptotically Gaussian with linear
expectation and variance.

8. Concluding remarks

In this section we discuss additional aspects of random planar graphs and related
classes, and several open problems. So far we have discussed random planar graphs
according to the number of vertices, but it is also interesting to consider the number
Gn,m of planar graphs with n vertices and m edges. There are two different
situations. First, when m = αn for α ∈ (1, 3). This was addressed in [42], and it
was shown that

Gn,bαnc ∼ c(α)n−4γ(α)nn!,

where c(α) and γ(α) are analytic functions of α. The function γ(α) has a strict
maximum at µ ≈ 2.21, where µn is the expected number of edges. This proves in
particular the large deviations result for the number of edges. It turns out that
the typical behaviour of random graphs with αn edges is qualitatively the same for
each α ∈ (1, 3), that is, there is no critical value of α. The matter changes if one
considers m ≤ n. As shown in [47], there are two critical periods in the ‘evolution’
of planar graphs with n vertices and m vertices. The first one is analogous to
the phase transition observed in the standard G(n,M) model and takes place for
M = n/2 + O(n2/3), when the largest complex component is formed. A second
critical period appears at n+O(n3/5), when the complex components cover nearly
all vertices.

So far we have worked with labelled graphs, but all our problems make sense for
unlabelled graphs as well. Let Un be the number of unlabelled planar graphs with
n vertices. We do not have yet a precise estimate for Un, we do not even know the
unlabelled growth constant γu = lim(Un)1/n. Since the number of automorphisms
of a random labelled planar graph is exponential, we must have γu > γ = 27.23. On
the other hand, the best upper bound available is γu < 30.06, proved in [15]. Using
Pólya’s theory of counting, unlabelled graphs can be enumerated for subcritical
classes [25]. In principle this could be doable for planar graphs starting at 3-
connected planar graphs, but the analysis of symmetries appears too involved. In
any case, one should expect an asymptotic estimate of the form Un ∼ cn−7/2(γu)n.
Also, random unlabelled planar graphs should share the same properties as their
labelled counterpart.
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Another open problem we address is the possible dichotomy discussed in the
previous section between critical and subcritical classes. Let Ex(H1, . . . ,Hk) be the
class of graphs not containing any of the Hi as a minor. For instance, Ex(K5,K3,3)
is the class of planar graphs and Ex(K4) is the class of series-parallel graphs. In all
cases where analytic methods are available, one observes that the class is subcritical
if and only if at least one of the excluded minors is planar. A central result in the
graph minors program [68], says that the tree-width of graphs in Ex(H1, . . . ,Hk) is
bounded if and only if at least one of the Hi is planar. The tree-width is a measure
of how close is a graph to being tree-like. If we recall that graphs from subcritical
classes are typically tree-like, the following conjecture seems reasonable, restricted
to addable classes, where the basic equation (20) holds.

Conjecture. The class Ex(H1, . . . ,Hk) is subcritical if and only if at least one of
the Hi is planar, which is equivalent to having bounded tree-width.

In particular, it would be very interesting to prove this conjecture for the class Gk
of graphs with tree-width at most k. G1 is the class of forests and G2 is the class of
series-parallel graphs, which are subcritical. But already for G3 we do not know.
We know which are the edge-maximal graphs in Gk, the so-called k-trees. They
certainly have a tree-like structure (almost by definition) but it is not clear how
to infer results for random graphs in Gk from the maximal ones.

Another topic for future research is to analyze additional extremal parameters.
The following questions refer to almost sure properties of random planar graphs.

• Cores. The k-core of a graph is the maximum subgraph with minimum
degree at leat k. We have already discussed the 2-core, which is of linear size
for random planar graphs. The 3-core is not necessarily connected, but it is
conjectured [64] that the 3-core contains a component of linear size, and that
the components of the 4-core are all sublinear.

• Tree-width. It is known that a planar graph with diameter D has tree-
width O(D). It follows that the tree-width is at most O(n1/4+ε). Is this the
right order of magnitude? We remark that there are planar graphs (grids)
with tree-width

√
n.

• Longest cycle. We conjecture the existence of cycle of length cn for some
c > 0. Because of the results on the largest 3-connected component, it would
be enough to prove it for random 3-connected planar graphs. In contrast, it
is easy to see that there is always a matching of linear size (consider pendant
copies of a single edge).

On the enumerative side, we mention the problem of counting 4-regular planar
graphs. Cubic planar graphs can be enumerated adapting Tutte’s decomposition
into 3-connected components [12], but this approach does not seem to work for
higher degree. In the same way, planar graphs with minimum degree three can be
enumerated [64], but the same obstacle appears for minimum degree four. Another
problem is to enumerate bipartite planar graphs. The real difficulty is to keep
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control of the bipartite character in the decomposition of 2-connected graphs into
3-connected components.

Concerning minor-closed classes of graphs, a main open problem is to show that
the growth constant always exists (as conjectured in [10]). More of a metaproblem
is to analyze additive parameters like the number of edges or extremal parameters
like the size of the largest block in general minor-closed classes. It is not at all
clear that there is a way of attacking them without precise enumerative results.
One case particularly appealing is the class Ex(K5). Wagner’s theorem tells us
how is the structure of graphs in Ex(K5), but so far we are not able to obtain
precise enumerative information from it.

Acknowledgements. The author wishes to thank Michael Drmota and Colin
McDiarmid for helpful comments.
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[27] M. Drmota, O. Giménez, M. Noy. Degree distribution in random planar graphs. J.
Combin. Theory Ser. A 118 (2011), 2102–2130.
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[42] O. Giménez, M. Noy. Asymptotic enumeration and limit laws of planar graphs.
J. Amer. Math. Soc. 22 (2009), 309–329.
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