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AN EXTENSION TO FIELDS
OF POSITIVE CHARACTERISTIC OF MATHER^S CONSTRUCTION

OF THE THOM-BOARDMAN SEQUENCE 0
BY ORLANDO E. VILLAMAYOR (h)

0. Introduction

In [3] J. Mather gives the relation between the numbers introduced by Thorn in [7]
and certain numbers that he obtains for an ideal in the power series ring on n indeter-
minates over a field k of characteristic zero.

The main tool in this direction is the concept of Jacobian extension of ideals.
Also Mount and Villamayor have introduced this concept in [6] making use of the

Fitting invariant theory ([2], [4]).
The object of this work is to extend the numbers associated by Mather for a given

ideal I <= k [[.x'i, . . . » ^n]] where k is now a field of positive characteristic.
So the first concept to extend was the one of Jacobian extension of ideals and this was

possible making use of the Fitting ideals [6] corresponding to the "higher order differen-
tials 5), and certain operators introduced by Dieudonne in [1].

1. Modules of differentials [8]

In this work ring or A:-algebra will mean unitary and commutative.
1.1. Given a fc-algebra A we define 0 : A x A — > A O ( ^ , A ) = a.b which is ^-bilinear

so there is a well defined linear morphism 0 such that the diagram

commutes.

(1) This work was partially supported by a fellowship of the Consejo Nacional de Investigaciones
Cientificas Tecnicas (Argentina).
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2 0. E. VILLAMAYOR

Let I (A/A;) be the kernel of 0. If we give to A ® A the natural structure of a left
k

A-module the ideal I (A/A;) is generated (as a submodule) by { 1 ® a-a ® 1 / a e A }.
In fact given x e I (A/fe) :

n n

x= E ^ ® bi and 0(x) = ^ ^ &; = 0,
*=i »=i

x = x-o = S(o, ® &.)-(E^) ® i
i »

= Ea, ® bi-dibi ® 1 = S^iCI ® ̂ -^ ® 1)-
i i

Q.E.D.

We define now T^ : A -^ I (A/A;) by T^ (a) = 1 ® a-a ® 1 which has the following
properties:

(i)T,(l)=0;
(ii) Tfc is fc-linear;
(iii) T,(a.&)=aT,(&)+6T,(a)+Tfc(a)T,(A).
The application T^ will be called the universal Taylor fc-map. If B is an A-algebra

a map L: A — > B which has properties (i), (ii) and (iii) will be called a Taylor ^-map.

PROPERTY 1.1. ~ Given A, B fc-algebras and L: A-^B a Taylor fc-map, then there
is one and only one A-algebra morphism F: I (A/A;) —> B such that F o T\ == L ([5]).

LEMMA 1.2. — T/'O: A —> M is a k-linear morphism from a k-algebra A to an A-module
M such that <E> (1) = 0, then there is one and only one A-morphism 9: I (A/A:) —> M such
that 9 o Tfc = <^.

Proof. - First of all let us show that A ® A = A (1 ® 1) © I (A/A;) direct sum of
k A

left A-modules.
The map T^: A —> I (A/A;) can be extended to an A-linear map 1̂  0 T^: A ® A —> I (A/A;)

where (IA ® T^) (flr ® b) = ^ T^ (A). And 1̂  ® T^ is a natural projection of A-modules,
in fact I (A/A;) is generated as an A-module by the set { 1 ® a—a ® I / a e A } and

(lA®Tfe)( l®fc-fc®l)=lTfc(&)-&Tfe( l )=Tfc(fc) .

On the other hand whenever y e A ® A:

n

^= E ^®&i=S^( i®^-fc (®i)4-E^^®i
i=l i i

=E^T^,)+(E^,)(i®i)i »•
as it was to be shown.
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THOM-BOARDMAN SEQUENCE 3

Given 0: A —> M fe-linear we extend to 1^ ® 0: A ® A —> M

(IA ® 0) (a ® &) = a. 0 (&).

The condition 0 (1) = 0 assures that (1 (g) 0) (1 ® 1) == 0 then 1 ® <D is A-linear and
factorizes through I (A/k).

Q.E.D.

Let R be a ring, { a^ ..., a^ } a set of elements of R we will denote

fli . . . a,,... ̂  . . . ^ = ]~[ Ok.
fc^l...lr

DEFINITION 1 . 3 . — Given R and k rings, R a fe-algebra and M an R-module. An
^-derivation or derivation of order n, ^-linear from R to M will be a fe-linear L^ which
verifies:

(i) for any set { (Xo, ..., a,, } c R:

L^(ao.. .^)= EC-l)^ E a,,...a,,L^(ao...a,,.,.a,,...^)); ,
1=1 j i< ...<ji

(ii) 4(1)=0.
Given the map T^: R —> I (R/fc) defined in 1.1 we will denote

D» (R/k) = I (R/A;)/I (R/A;)^1

and by T^ or simply T" the map p o T^, /? the natural projection from I (R/fe) to D"(R/fe).

THEOREM 1.4. — Let jR, fe 6^ rings, M a? ^-module R fl? k-algebra and L: R-^M fl?
k-linear derivation of order n. The k-linear map T":R —> D" (R/fe) (def. 1.3) is a k-linear
derivation of order n and there is a unique ^-linear morphism h: D" (R/A:) —> M such that
h o T" = L.

Conversely, if h: D" (R/k) —> M is an R-linear morphism then h o T": R —> M is a k-linear
derivation of order n.

Proof. — First of all let us show by induction on n that given a set { XQ, ..., x^ } in R
and { Tjfe 0:o), ..., T^ (x^) } in I (R/k) we have

n

Tfe(xo) . . . Tfc(x^) = E (-1)1 E x,,... x,^(xo ... x,,... x,,... x^)
i=0 J i<. . .<7(

if n = 1; Tfc (xo Xi)-Xo Tfc Oq)-Xi T^ (xo) = T^ (xi). T^ (^o) by definition.

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



4 0. E< VILLAMAYOR

If the formula is valid for n:

Tfc(xo)...T^).T,(x^)
n

= S(~1)1 £ î • • • ^<T(xo, ..., x^ ... x,,... ̂ )T(x^i)»=o ji< ... <j(
n

= £ (-^ £ x,,... x,,[Tk(xo ... x,, ... x,,... x^+i)
i=0 Ji<i... <ji

-(xo ... x,, ... x,,... ̂ )T(x^i)-x,+i Tfc(xo ... X,,... x/,... xjj
n+l

= £ (-1V £ ^ ... ̂ T^xo ... x,, ... x,,... x^i)
»=o ji< ... <j'i

n

-£(-!)' £ ^o...^Tk(x^i)
»=o ji<...<j<

n+l

= £ (-1)1 £ ^ . . . ̂ T(Xo . . . X,^ . . X,, . . , X^+i)
»=0 j\< ... <j,

since:

K-iy Z i =i (-!){")= d-D" =o
»=0 J t < ^ . < j i i=0 \ ^ /

and T (xo) ... T (x^) = 0 in D" (R/Jk) so

T^o..,^^--!)^1 S ^...x,,T^(xo...x,,...x,,...x^
»=i ji<...<ji

Let L: R —> M be a fc-linear derivation of order n. By Lemma 1.2 there is one and only
one morphism /z*: I(R//Q-^M of R-modules such that A* o T^ = L. To complete
the proof we note that h* is zero on I (R/A:)"^:

A*(T(xo)...T(x^))

== ̂ ( £ (-1)1 £ x,,... x,,T,(xo ... x,, ... x,,... x,)}
\i=0 Ji<...<ji /

n= £ (~iy £ ^j i . . . ̂ L(xo... x^... x,,... x,,) = o,
»=0 Ji< ...<./<

because L is a fe-linear derivation of order n (Def. 1.3).

COROLLARY 1.4. - The pair (T^, D" (R/k)) is well defined (up to isomorphisms) with
the properties of Theorem 1.4.

1.5. If R is a local ring with radical M then the R-module

D^R/fe)/ Q NTD^R/fe) = D"(R/fe)
n e N

is separated in the M-adic topology.

4° S^RIE — TOME 11 — 1978 — N° 1



THOM-BOARDMAN SEQUENCE 5

Let 9: D» (R/fc) -> D" (R/fc) be the natural projection 6 T^ = f^ is obviously a fc-linear
derivation of order n and a pair (f^, D" (R/^)) is universal with the properties of
Theorem 1.4 if we restrict ourselves to the subcategory of separated modules in the M-adic
topology [8].

NOTE 1 . 6 . — Let A, B be fe-algebras, a ^-algebra morphism \\ A —> B gives B a struc-
ture of A-algebra and D" (B/k) becomes an A-module.

Since T^ is a fe-linear derivation of order n there is a unique A-module morphism d ( K )
such that the diagram

A————.B
TSJ |TS

d Ck)
D^A^—^D^B/fe)

commutes.
An analogous proof will show that given A, B local fe-algebras and 'k: A —> B a local

morphism of fc-algebras there will be a morphism rf(X): D» (A/k) -> D" (Bfk) such that
the diagram

A-———.B
td ITS

^ d f3l) ^
D^A^—^D^B/fe)

commutes.

PROPOSITION 1.7. — /w ^/z^ conditions of Note 1.6, given the diagram

A—————.B
Tg | TS

4' 4'

B ® D"(A/fe) -^ D^B^-^C -> 0
A

wfr/z a commutative square and a lower exact row, then (p o T^, C) ^ (T^, D^'CB/A)) f/z
^A^ ^72^ o/ Corollary 1.4.

Proof. — Let A: B —-> M an A-linear derivation of order n in a B-module M, since X
is a ^-algebra morphism A becomes ^-linear because it is A-linear, so there is one and
only one morphism of B-modules y such that the diagram

B——A——>M

TS

D"(B/fe)
commutes.

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERffiURE 2



6 0. E. VILLAMAYOR

By hypothesis

A(^))=0, V^eA, Y^^)T;(a))=Y(TZ(X(a)))=A(^(a))=0, VaeA,

so Image rf(X) c: kernel y and y factorizes by C.
The unicity becomes because p is an epimorphism, in fact if y and y' are B-module

morphisms form C to M and:
Y °^ ° T^ = Y °p °T^ = A an^ ^y ^e imiversal property of D" (B/k);
y o p == Y o p so y = Y because p is an epimorphism.

PROPOSITION 1.8. — Given a multiplicative system S of a k-algebra R, then:

D"(R,/fe)^R,®D"(R/fe).
R

2. Modules of higher order differentials for the ring
of power series in ^-variables over a field k

2.1. Dieudonne has pointed out in [1] that given the ring k [[^c]] of series on one inde-
terminate over a field k and/(;c) ek [[x]] then:/(x+Y) = T/Qc) where Tf(x) is the
Taylor expansion on the variable Y. Let us say that if we develop/ (^+Y) we obtain

/(x+Y)= EAK/^Y1.
i^O

If the characteristic of k is zero then it is well known that

A ^ / , ^ 1 ^/WA.(/(x))= i\ yx
But whenever the characteristic of k = p ^ 0 then f ! = = 0 for any i ^ p and the operator

3731 x is also trivial.
However these operators A'; are always well defined and if we take Ag = A^ for

t = pe e ̂  0, given n e N:

n =ao+alp+.. .+a^ r , 0 ̂  a, < p,
for some r, we have

A^A^^.A^A?,

the product denoting the composition of operators [1].
The operator A^ has the following properties (e ^ O):
(i) In the restriction to the subring k [[F6 (x)]] of formal series it acts as S/S^ (x);
(ii) If/G k [[F- (x)]] and g e k [|>]] :

A.(/.g)=/A,(g)+gA,(/).

4° SERIE - TOME 11 - 1978 - N° 1



THOM-BOARDMAN SEQUENCE 7

F denotes here the Frobenious morphism F(x) = xp and F6 means the composition
of the operator ^-times.

Given a local regular fe-algebra R with maximal ideal M we will denote R* the comple-
tion of R in the M-adic topology.

Suppose A: R — > N is a fc-linear derivation of order n (1.3) on a complete separated
R-module N.

PROPOSITION 2.2. — Under the above conditions the derivation A of order n can be
extended to a k-linear derivation of order n A: R* —> N.

Proof. — The fe-linear derivation A of order n is continuous in the M-adic topology, in
fact given { WQ, . . . , m^ } <= M:

n
A(mo ... m») = ̂  (-I)14'1 E m^ ... m^A(mo ... m^ ... m,,... m )̂

»=1 J l< ... <J'i

so A (wo ... w^) <= MN and A (M"4"1) c: MN.
Let r* be an element of R* and { /•„ } c: R, /-„ —>- r*, we will define

A(r)=limA(^),
n e N

which is well defined because A is continuous and N is a complete separated R-module.
Given a set { r$, . . . , r^ ] <= R* and { r\\k ^ 0 } c: R, i = 0, ..., n such that

r[—> rf then:

A(r?...r;)=A(limr,°...rD
ft

n

^limSC-l)"-1 E ^...^A(r,°...^...^...^)
t (=1 J l < ... <Jt

=£(-l) l + l E ^.. .^A(ro*...r^.. .r; , . . .^),
» = i j i< . . .< j<

so A: R* —> N becomes obviously a ^-linear derivation of order n.

PROPOSITION 2.3. — The natural inclusion i: R — > R * gives the following commutative
diagram (Note 1.6):

R————'———.R*
T" TS

4' 4'
^ l<8dfi) ^

R* ® D"(Rlk) ——-» D^R*^).

y\

IfD" (R/fc) is a finitely generated R-module then 1 g) d(i) splits.

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



8 0. E. VILLAMAYOR

/\. ^
Proof. - Since D" (R/k) is a finitely generated R-module then R* ® D" (R/k) will be

R

a completely separated R-module so there is D: R* -> R* ® D" (R/A:) such that
n

D o ; = T". Now by the universal property of D" (R*/k) there is a R*-linear morphism

y : D"(R*/fe)^R*®Dn(R/fe),
such that D = Y T^.

We will show that y (1 ® rfQ')) = identity of R* ® D (R/A:).
R

Y and 1 ®d(i) are R*-linear and R* <9Dn(R/k) is generated over R* by the set
{ 1 ® T" (r) e R }. We can show that [y (1 ® d(i))'] (1 ® T» (r)) = 1 ® T» (r) in fact:

(1 ®d(0).r = T;i y(l ®^(0)(1 ̂ T^) = YT;(f(r)) = D0(r)) = 1 ®r(r).

Q.E.D.

2.4. Let us take A = ^ [^,..., ̂ ], a polynomial ring with n indeterminates over a
ring k and go back to the definition of I (A/A:) and Tj,: A -> I (A/A:) of 1.1 :

A®A^fe |>i , . . . ,x^^, ...,^],

where x, ® 1 corresponds to x, and 1 ® ̂  to ^^ so T^ ( ,̂) = x,-^,.

PROPOSITION 2.5. - (i) If x belongs to A, a k-algebra and T^: A-^ I (A/A:) ^ ̂
universal Taylor map (1.1) rt^.' Tfc(^) = (x^ (x^-x" in A ®A (M^^ x w^^
^ ® 1).

Proof. - In fact a —> a+T (a) = 1 ® ^ is a ring homomorphism, so

a^+T^") = (a+T(a))" and T(a") == (a+T^))"-^

(ii) On the conditions of the last proposition if { x^ ..., ̂  } are r elements of A then
for nonnegative integers ai, ..., a,.:

TO^ ... x^) = (x.+Tx^1... (x.+Tx^-x?1... x^.

Proo/. - Again, since a->a+T(a) is a ring homomorphism

TW ... x^+xy ... x^= (xi+Txi)21... (x.+Tx^

as was to be shown.

COROLLARY 2.6. - 7M^ A = /: [xi, ..., xj the ring of polynomials in n-indeter-
minates over a field k then the universal Taylor map:

T\: A-^fe[xi, . . . ,x^^, ...,^]

4° SERIE — TOME 11 — 1978 — N° 1



THOM-BOARDMAN SEQUENCE 9

satisfies
Tk(/(xi, . . . ,^))=/(xi+Txi, . . . ,x^+Tx^)~/(xi, . . . ,x^)

w
A®A^fe[x i , ...,^,^i, ...,^n].

fc

2.7. Since T(;c») = x,-^,f = 1, ..., n is an algebraically independent set over the
subring k \x^ ..., ;cJ of /; [^i, ..., x^ y^ ..., y^\ then by the last corollary and 1.1
we can assure that the module I ( A / k ) is freely generated by the monomials in
{T^, . . . ,T^} and if N* = N u { 0 } .

Tk(/(xi, ...,x^))

S A (a (1), ..., a (n)). (/). (T x,)"(1)... (T x^ 00,
(a (1).....0(^)6(1^)"

where A (a (1), ..., a (n)) (/) is obviously zero for almost all (a (1), ..., a (n)) e (N*)".
(This was introduced in 2.1 [1].)

COROLLARY 2.7. - Gnwz A w the above conditions then Dr (A/k) = I (A/k)/I (A/fe)1"1'1

is the A-module freely generated by the image of the set

with dual base

and

{Tx^ ... Tx^n)/a(l)+ ... +a(n) ̂  r]

{Y(a(l) ... a(n))/a(l)+ ... +a(n) ̂  r}

y(a(l), ..., a(n))TZ = A(a(l), ..., a(n)).

J/*^ take R = fe [^i, ..., jcj ̂  M = (^i, . . . , x^ the localization of the ring of polyno-
mials in n variables over k on the complement of M, the completion of R in the M-adic
topology mil be

R*=fe[[^, ...,xJ]

the formal power series in n variables over k.

PROPOSITION 2.8 ([9] Lemma 4.7). — Under the above conditions

D" (R*/fe) ^ R* ®R D" (R/fe).

Proof. - D" (R/fe) is finitely generated by Corollary 2.7 and Proposition 1.8 so
D" (R/k) = D" (R/Jk).

Applying now Proposition 2.3: D^R*/^ ^ R* g^D^R/^QN for some R*-sub-
module N.

If Y : D" (R*/fc) -^ P is a R*-linear morphism of separated modules and if
R* ^p^CR/fc) c: ker y then y corresponds to a ^-linear derivation of orders. A:
R* -> p for A = y o T^ so A (i (r)) = 0 if r e R, f : R —> R* the natural inclusion.

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



10 0. E. VILLAMAYOR

Since A is continuous then A is the zero operator and so is y. Let d(i)\

R* ® D" (R/k) -. D" (R*/A:)
be the natural inclusion and

p : D^R^^N,
the natural projection.

We showed above that given any separated R*-module P and a R*-linear map

y: D"(R*/fe)->P

such that y o d (i) = 0, then y = 0.
Since p o d (i) = 0, then p = 0, so N = 0 as was to be shown.

3. Jacobian extensions

3.1. Let us consider a finitely generated A-module M and the following exact sequence
O — ^ R — ^ A ' ^ — ^ M — ^ O where R is the set of ^-tuples such that their image by (p is zero.
We can form a matrix whose rows are vectors that generate R as A-module, and for any
natural number s; 1 ̂  s ^ n we define fs (M) = < det (MJ > ideal generated by deter-
minants of M^, where M^ runs over all (n—s+l)x(n—s^-l) sub-matrices we can obtain
from that matrix. And /^ (M) = A if t > n.

Fitting [2] shows that these ideals are independent of the solution given before.

3.1.1. Let { 1:1, ..., ̂  } c: A" such that ^ Av< == A" and { v^ ..., v,} c: R.
1=1

If
nm . .

p: A"^ ^ Au^A""' :
i=r+l

is the natural projection then 0—>p (R)—^""'1'—^ M — > 0 is also an exact sequence.
Given a prime ideal P <= A the rank of Mp is s if and only if /, (M) <= P and

fs+i (M) 4= P» it can be immediately proved that

/,(M)c:/^(M) whenever s ^ t .

The ideals /, (M) will be called Fitting ideals.
If A is a local ring we will denote by/(M) the biggest proper Fitting, ideal.

3.1.2. If A is a local ring I = rad (A) and R c: IA" then/(M) is the ideal generated
by the coefficients of the n-tuples that belong to R, i. e. /(M) ==/„ (M).

In what follows A = k [[^i, ..., x^\~\ will be the formal power series in n independent
variables over a perfect field k of characteristic p > 0, F as before will be the Frobenious
morphism, F (a) = aP,

M == rad (A) and R.S.P. will mean a regular system of parameters.

46 SfaUE - TOME 11 - 1978 - N° 1



THOM-BOARDMAN SEQUENCE 11

An ideal will always mean a proper ideal and rank of an ideal I will mean
dimfcCl+M^/M2.

LEMMA 3.2. — Given an ideal I c: k [[^i, ..., ^n]] = A generated by a set

[y^ ...,^}uB, O ^ s ^ n , B c: k[[y,]]^(k[[y^,, ...,^]]),
^/z:

i^^EMJ^^BfeEb,]]^,
P/w/. — If we consider the isomorphism a = 6 i

^[ML>^A^fe[[.v,, ..., ̂ ]]/<^, .. , ^>.

Since < ̂ i, ..., y, > c I we can identify I n k [b,]],>, with 9 (I) = B.k [b,]],>,
as was to be shown.

LEMMA 3.3. — Ifan ideal1 c: A admits a set of generators B c: A:[[F(jCi), ..., F(^)]]
then:

Infc[[F(xi), ...,F^)]]=B.fe[[F(xi), ...,F(x^)]].
r • •

Proo/. - Suppose ^ A f / f e A ; [[F(^i), ...,F(^)]], A f 6 B , ./}eA. Since A is a
1=1

free finitely generated k [[F (^i), ..., F (^)]]-module with basis:

[x9 = ̂ l... x^, a = (ai, ..., a^)/0 ̂  a, < p}
let

/i=E^<^efe[[F(x,), .... F(x^)]], EV^ECE:^)^
a i a i

SO

E^=0 if a^(0, ...,0)=0 and E^/»=E^4.

Q.E.D.

COROLLARY 3.4. - Let A = k [[>i, ..., ̂ J] ^wrf an ideal

I=<^,.. . ,^(0)>+<F(^ . . . ,F(^(l)>+•. .+<F< ?(^) , ...F^^^))

+<B>,5(0)^5( l )^ . . . ^ s (e ) and B c: fe[[F^)]],>^
^ew:

I n feOF ]̂]̂ ,,̂  B.feriF6^)]]^^.

Proof. — By induction on ^.
For e = 0 it was proved in Lemma 3.2. k => k+1.
Let

I = < Vi, • • •, Ys (0) > + • • • + < F* (yi), ..., F* (y, ̂ )) >
+<Ft+l(^), ...,Ft+l(^(^^))>+<B>,

s(0) ̂  s(l) ̂  ... ̂  s(fe) ̂  s(fc+l) and B c feUF^1^,)]]^,^).

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUEPRIEURE



12 0. E. VILLAMAYOR

By hypothesis

InfeHF^)]],^)

== { { F^1 (3\ w+1), ..., F"1 (^ ̂ 1)) } u B } k [[F )̂]],̂  („

by Lemma 3.3:

(I nfellF^,)]],^) nfe^F"1^)]]^,^

= {{F^O^i), . . . , F^1^,^^))} uB}^^^1^,)]],,,^.

Now by Lemma 3.2

[{{Ft+l(^(»)^),...,Ft+l(^^l))}uB}fe[[Ft+l(^)]]^„]

nfeElF"1^,)]]^^ = B.fenF^O;,)]],̂ ^

as it was to be shown.

LEMMA 3.5. — I f l c z A i s a n ideal in the conditions of Corollary 3.4 then

I nfeUF^), ..., F^)]] = <r(^), ..., F^^^^B)

(the ideals generated in the subring k [[F6 (ji), ..., F" (>„)]]).
Proof. - Clearly

<Fe(^), ..., F^y^y c= I nfc^F8^), ..., F6^)]]
if

/eVn^^^),...,^-^)]]
then
/ = /'+/", /'^F^), ..., F6^^)), f^^k^y^^m^y^^
by Corollary 3.4.

We will say that an ideal I <= A = k [[^i, ..., ̂ ]] is closed by the action of the deri-
vations if it has the following property: 8f/8xi e I V/e I, ; = 1, ..., n.

LEMMA 3.6. — An ideal I c A is closed by the action of the derivations if and only if
it admits a family of generators in the subring k [[F (x^), ..., F (>•„)]].

Proof. - Since the sufficient condition is trivial we will show the necessity.
Let P c: Z", P = { a = (ai, ..., a»)/0 ^ a, < p, i = 1, ..., n} we have already

pointed out that A is a free k [[F 0:i), ..., F (^)]]-module with basis

{^==^1 .^2 . . .^", a=(ai , . . . ,a^)eP}

if/el,/= ^ a, x\ a^ek [[F (^i), ..., F (^)]], there is ao e F such that
a eF

(i) | a | = 2 a; ̂  | ao | if a, ?& 0;
(ii) a., ^ 0,

4" SfelIE — TOME 11 — 1978 — N° 1



THOM-BOARDMAN SEQUENCE 13

ifoco = (Pi, ..., ?„) it can be shown that

r Q "|Pi r 8 1̂[^-[^-••'•••••'-• ""-el-
and since F is finite we can assure that a^ e I V a e F,

PROPOSITION 3.7. — Given any ideal I <= A there is a regular system of parameters
(R.S.P.) { y^ ..., Yn } such that

I=0i, . . . ,^(O)>+<F(^), . . . ,F(^( I ) )>+. . .

+<Fe(^), ..., Fe(^^)>+<B>s(0) ̂  s(l) ̂  . . . ^s(e),

BcradCfc^^,)]]^,^)2.

proof. — It is enough to show that for any ideal the proposition is true taking e = 0.
Let [ y ^ , . . . ,^(o)} <= I such that [y^ . . . ,^(o) } is a base of the ^-vector space

(l+M^/M2, M = rad (A). { y^ . . . , y^ (Q) } can now be extended to a set of generators
of I taking a set B c: (k [[jj]]j>s (Q))- Since rank I = SQ, we can take

Be rad (A: [[>,]], >,(o))2.

Given an ideal I in the conditions of Proposition 3.7 we will denote

Y = { { ^ . . . , ^ } ; { ^ ( 0 ) , . . . ^ ( ^ ) } ; B } .

DEFINITION. — Given an ideal I and Y in the above conditions8y-(I)=('I?—^)geB)J>s(')y\ aF^) /
PROPOSITION 3.8. — In the above conditions if I =8^(1) then B can be chosen in

rad^EF^1^]],,,^).

Proof. - If I = 8^ (I) then: for any g e B, r > s (e):

——-el ̂ k[[FW]]^ = Bfe^^]]^,^ (Cor. 3.4)

but B.^l^r^O^)]]^ (e) closed by the derivations means that B' can be taken in
rad (k [[F64-1 C^)]]^ (e)) such that

B'.feEEF8^,)]]^,^ = BfeEEF-^)]]^,^ = I n feEEF6^,)]]^,^.

(Lemma 3.6).

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE 31
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COROLLARY 3.9. - If 1=5^(1) then there is a .new set Y' = { {y ' i , . . . , y'n];
{s' (0), ..., s' (c+1) }; B' }, [y\, ...,y',} an R.S.P.;

s ' (0) ̂  ... ^ s ' (e+l), B' <= rad (k [[F^ (y,)]]),>, ̂ i))2

such that
I=</i, •••^(O)>+<F(/I),...,FO^)>+...

+<r(/i), , ,., FeO^))>+<Fe+l(/^), ..., Fe+10^))>+<B'>.

-Proo/. - In fact since B can be chosen in rad (k [[F'"1"1 (y/)]]y>,(<,)) (Prop. 3.8)
then there is a number s (e +1) ̂  s (e) such that

B^IF^O^)]]^^) = {F^O^i), ..., ̂ ^(y^^k^^y,)]]^

+B'.fe[[r+l(^)]]^,(,^)

and B' <= rad (,k [[F^1 ( .̂)]] ,̂ (,+i))2. (Prop, 3.7 applied to

Bfe^r^^Jj^^^feEEF^1^)]],^^.

NOTATION. - Let £1 (e) be D" (A/A:) if n = p " (e ^ 0) (1.5),

THEOREM 3.10. — Given I <= A an ideal and a system of parameters [ y ^ , ..., y, }
such that

1=0^.. .,^(.)>+<F(^),. . .,F(^))>+. . .+<FeO'l),.. .,Fe^))>

+<B>, s(Q) ̂ s(l) ̂  ... ̂  s(e)B c= rad^^F6^)]]^,^)2

then:

(3.1) (i) /(A/I®ft(e)/AI)=/I,—^,/€l.j>s(e)\;

(ii) / (A/I ® ft (e)/AI) = /1, -J8—, g e B, 7 > s (e)\.
\ 6V (.yj) I

Where AI is the submodule generated by the elements { 1 ®T///eI} and T:
A —> D" (A/A;) is the natural derivation.

Proof, — By induction on e e Z, e = 0,
Given an ideal a <= A and a regular system of parameters {ji, ...,j 'n} such that

a=<>' i , . . . ,^(o)>+<B>B<=rad(fc[[ .» / , ] ] )^ , (o) then

{ T^i, .... T^, (o) } = Aa c= D1 (A/fe) = D (0)

the hypothesis assures that (8f/8yj) (0, . . . , 0) = 0 for any fe a, j > s (0), So we know
that

/(A/a®ft(0)/Afl)=/a, 8j-,feaj>s(0)\ (3.1.1,3.1.2).
\ 8yj I
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On the other hand, given gea,feA, T (fog) =/T^+^T/ where T:A--^D(0)
is the natural derivation, so given any family G of generators for a then

G = { 1 ®T^eG}

is a family of generators for the submodule Aa in A/a 00 Q (0) and using Fitting theory (3.1):

/(A/a ®Q(0)/Aa) =/a,-^geBj > 5(0)\ .
\ By, I

k=>fe+ l .
/\

Since the natural derivation T: A.—> D" (A/fe) satisfies

T(/ .g)=/T^T/+T/.Tgif^2,
/\

then given an ideal I c: A the A-submodule of A/I ® D" (A/A:) generated by the family
{ 1 0 Th/A e I} is also an ideal in the ^-truncated algebra D" (A/A:). In fact given g e l
and/eA,TQr).T(/) =-^T/. -/.Tg+T(/.^) so

( l®Tg) . ( l®T/)=- /®Tg+l®T(/ .g) in A/I^D^A/fe),

where both g and ^./belong to I,
Now let I c: A be an ideal such that

I = <Yi, ..., };s(0)>+<F(^), . . . , F(^(I))>+ ... +<F f c+ l(yO, ..., F^O^^)))

+<B>, s(0) ̂  5(1) ̂  . . . ^ 5(fe) ̂  s(fe+l), B c rad^^F^1^,)]]^^^^)2.

For every t, 0 ^ f < k+1 we have

I = < ^ . . . , ^ ( 0 ) > + < F ^ l ) , . . . , F ^ ( l ) ) > + . . . + < F t ^ ) , .•.^O^n+XB,)

where B^ c: rad (k [[F^1 (^y)]]y>s (f)) so combining (i) and (ii) of the inductive hypothesis
we have

(A) ^_el, V/el, j>5,, f = 0 , . . . , k .aF*^.
On the other hand we have an ideal, E of the ^'''V+l-truncated algebra Q (fe +1),

E == <T^, . . . , T^o)>+<TF(^), . . . , TF(^^)>

+ . . . +<TFk+l(^), . . . , TF^^))) c= AI.

We will consider as a base of Q (^) the monomials on { T y^ ..., T y^ } of degree at most
pey since

TFl(^)=Fl(T^

ANNALES SCIENTIF1QUES DE L'ECOLE NORMALE SUPERIEURE
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for the Fitting theory we will restrict our attention to the coordinates of the elements of AI
which do not belong to the ideal E, let us say to the coordinates on the monomials of the
form

(T^o. i).T^o.2) • . . T^(O.,(O))).(TF^,(I. i)... TF}^.^)))X ...

x(TFk+l^,(^l.l)...TF fc+l^,(,+l. ,(,+i))); j(s,h)^j(s,i),

if h ^ i, s = 0, ..., k +l,y (m, 1) > s (m) m = 0, ..., k+1 and where none of the
TF^ (yj ^ i)) is reepeated ^-times (3.1.1),

By the result (A) we know that the coordinates of an element T/when/el on this
coordinates are again elements of I [zero on the module A/I ® 0 (e)~\ except, may be,
the coordinates on the elements TF^1 y^j > s(k+l).

If we can show then that (Sf/SP^1 yj) (0, ..., 0) = 0 whenever /el j > s(k+l)
then by Fitting theory (3.1.2):

/(A/I®Q(fe+l)/AI)=/I,^—//eI,7>5(^4-l)\.

In fact suppose /el such that ( ( ) f / 8 F k + l y j ) ( 0 , . . . , 0 ) ^ 0 for some fixed
j > s (k+1), it n < ̂ k+l, n = a (0)4-a (1) + . . . +a (k)?1' 0 < a (Q < p, using once
again the result (A):

5"]a(o) r 8 l^, , ., —/el, if /el,r^<o) r^r
L^J L^J

then /' (0, ..., 0) = 0. Since this can be done for any n < pk+l, the order of the series
/(O, ..., 0, ̂ ,0, I.., 0) e k [[̂ ]] is p^\

By Weierstrass preparation theorem there is u e A and

[g^t=0, ...,pk+l-l}c:fe[[^, ...,^-i,^4-n •••^J]
such that

. : uf^^y^^g^
<==o

and since I is closed by the action of (S/SF^y), t =0, ..., k(A) we have

{ g i / t = 0 , ...^-l^I

so F*'1'1 yj el which can not be since:

Infe^^^^.^^^Bfe^^^]^,^^

(Cor. 3.4) and B c= rad (̂  [[F^1 ̂ ]],̂  (^^)2.
..If... ;.:: , .—• . •- • ^ , " . . , . ;:. ,-. . - ' . • • • '.. . 1 . - ,

k+lsd) n
/eI,/=E ^^yy.+^^^^uWciA^h^czB.

<=0 j=l i^l
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Hence only the last summand will affect the coordinates of T/ on the monomials
rrFk+ly,,j>s(k+l).

Now, T (£ b, hi) = £ b, T A, +£ /^ T (6;) +£ T A, T A, since :

^eBcrfe^F^1^, ..^F^^^T^e^Cfe+l))^1 then Th,T(b,)=0
i •- - • ' • : ... ' ; 1 . 1 • • • • • , ! . • - • • 1 .: .
n the T^ +1 truncated algebra 0 (A:+l) so in A/I ® Q (fe+1) we have

1 ®T(£^A,) = £ ^ ® T A ,

and using once again Fitting theory (3.1):

/(A/I)®n(fe+l)/AI) = /I, , 8h heB, j > s(k+l)\
\ 5F' 1^. /

COROLLARY 3.11. — Given an ideal I c: A as in Proposition 3.7 the ideal 8^(1) does
not depend on the system of parameters but only on e. And! =5^ (I) if and only if there
is a family B' c rad (k [[F^1 ̂ -]],>, (e)) such that

I ufc^^L^^^Bfe^F^,]]^^

=B'fe[[F^,]],>,^

anrf w f/!i5 caw we can find a number i (e, 1) ̂  s (e) and a family

ycrad^aF^1^]])^,^!)
such that

I=<3^ . . • , ^ (o )>+ . . .+<F e (^ ) , ...^G^)))

+<Fe+l(^l); ..., F^1^^,!)))^^).

proof. — This is a consequence of Theorem 3.10 (ii) and Lemma 3.6.

NOTATION. — Given an ideal I as is Proposition 3.7 let 8g (I) = 8^(1).

COROLLARY 3.12. - The numbers s ( t ) Q ^ t ^ e of Proposition 3.7 are well defined
as: s, = rank (In/: [[F^ (^), . . . , F (^)]]) as an ideal of k [1̂  (^, . . . , F1 (^)]].

Proof. — See Lemma 3.5.

COROLLARY 3.13. — Given I c: F ideals of A such that

rank (I n ̂ (y,), . . . , F^)]]) = rank(I' n k[[F5^, ... , F^]]),

s = 0 , . . . , e and I = 8,(I), I'= 8,(F) for O^s^e-1,
then:

(i) there is a system of parameters [ y^ . . . , y ^ } s (0) ^ ... ^ s(e) and a set
B c= rad (fc [[F ,̂]])^ (,) such that

I=<^. . .^s (0)>+• . .+<F e ^ , . . . ,F e ^( ,^

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE
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and there is a set B'c rad (k [[F6^]]^ ̂ )2 ^cA ̂

(ii) I' = < ^ , . . . , ^ (o ) > + . . . + < F^, . .^F 6 ^ ^ > + < B ' > W B e B',
Proo/. - (i) by successive applications of Theorem 3.10 (ii). Corollary 3.4 and

Lemma 3.6. •

(ii) This is a consequence of Corollary 3.12 and Corollary 3.4, in fact B' must be such that

^'W\y^>^
=1' nfeEEF6^,)]]^,^^! nfeEEF-^J^^.^BfeCEF^,)]],^^.

so we can take B' => B.

4. Thom-Boardman singularities

4.1, Let us make some remarks on Mather's construction of the Thom-Boardman
sequence [3],

Given an ideal I c: C [[>i, ,.., xj] a set { y^ ..., y,} c I can be found such that
{ ^ i > ..., Js} is a base of

I-^2. M=rad(C[[xi,..,<]]).

Extending the set { y^ ..., y ^ } to a regular system of parameters { y^ . . . , y^ } he shows
that the Jacobian extension of I is

5o(I)=/I ,^- /eI j>5\ .
\ SYj I

What we do in Proposition 3.7 and the definition that follows is to extend the concept
in such a way to obtain a good definition in series over fields of positive characteristic of
the operator P also introduced in [3]

p(I) = ̂ (So®)^ ... +(8fco(I))k+l + ...

For which there is a R.S.P. [y^ . . . ,^} and a sequence of non-negative numbers
0 ^ s (0) ^ s (1) ^ . . . ^ s (k) ̂  . . . ^ n such that

P(i) = £ 0^ .. . , y^Y^^y^ " - Vsu)} c ̂ (i),j^o

5 (7) = dim^-80^^ i. e. 5 (j) = rank of Ŝ o (I).
M

This is not true in general when the field k is of positive characteristic p > 0, take
I = < x\, ..., ̂  >, §o (I) = I and there will be no R.S.P. such that P (I) = I has the
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form described above. If we take a principal ideal I = < F > F e M 2 , F = F^F11

such that F11 e (x^, . . . , x^): .

80 (I) =/1,^=1, ...^\
\ 3x, , /

since (x?, . . . , x^) is closed by the action of the partial derivations (it is also the biggest
ideal with this property as shown in Lemma 3.6), then F" and his partial derivations will
always be in (x^, . . . , x^) <= M2 so will never affect the numbers s ( k ) obtained in [3].

Another important difference of the operator 5o in positive characteristic is the following,
If characteristic of k is zero, let s (k) = rank (§o (I)) if m is such that

s (m) = s (7)Vy ^ m then 8'S (I) = §o (I).

It is enough to prove that §o (8^ (I)) = 8? (I) in fact

So (I) = < Yi, . . . , Vs (m) > + < B >. B c: rad (k [b,]],>s (m))2

(Prop. 3.7 for charac k = 0) s (m) = s (m+r) V r ^ 0 means that

IB, ——as——g, geB,j(i) > s(m), 5 ̂  rl c rad(k[[̂ ,]],>,(,))2,
I ^(i)^(s>, J

V r ^ O fixed.

If charac k = 0 this assures that B = 0. Again this is not true in general if characteristic
is p > 0. Take the ideal

I = <xF1 > c <^?, . . . , ^> ^ M2, 5̂ 1) c= (x?, . . . , xD c M2, Vfe ̂  0,

so s (k) = 0, V k ^ 1 but 5o (I) = < x? > ^ I.
We have to define the operators 8, P and the Thom-Boardman numbers in order to solve

these problems when characteristic of k is not zero.

NOTE 4.1. - Given an ideal D <= A such that D = 5o (D) = . . . = 5^-i (D) there
will be a R.S.P. {>i, . . . , y^} and nonnegative numbers S (0) ^ s (1) ^ . . . ^ s (e-\)
such that

D= ef<F r^, ...,F r^^>+<B>Bc=rad(fe[[Fe3;,]],>,(,-,))
r=0

(applying Prop. 3.8 several times). Now modifying the set { yj }j>s{e-1) if necessary
we can take

B=={r^-^, ...,F^(,)}UB', B'crad^ICF6^]]^^)2

5,(D)=D+/^-,geB',j>s(e)\.
VF".̂  /
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Q»
6-efe[[F^,]],>,^ if geB\v>s(e)3F^

then:
8e(D)=8(8,(D))=...=8,_,(8,(D)).

Even if we have to modify the subset [y^ }y>, ̂ ^ since the chains

S^EOcrS^^Oc: ...

are stationary we can define D, = 8^ (D) for k big enough, now D, == 8^ (D,) so we are
in the conditions of Corollary 3.11 and we can define 8^1 (D^) and obtain an increasing
chain:

D.CD^C:...,

a R.S.P. can be taken so we can define:

DEFINITION 4.1. - If8^ = 8.8k~ l let:
(i) I-i === I and given e eN e ^ 0:

Ig = 8^(Ig_i) for k big enough.

(ii) s (I, 6?): Z ^ 0 -^ Z ^ 0 non decreasing applications 5- (I, 6?) (fc) = p (e) ^ n for k
big enough and

8;(Ie-i)= £<F t ;^, ...,Fy^(.)>+<F^, . . . ,F^ ,>+<B>,i;=o

BcradCfe^F6^^)2, w=s(I,e)(().

For some R.S.P. { j^, . . . , ̂  } (Note 4.1). So ^ (I, e) ( /) is the rank of

5t,(I,_l)nA:[[Fe^,...,F^„]]

as an ideal of k [[F" y^ ..., F^J] (Lemma 3.5). If the ideal I is fixed we will write:
i(e,k) =s(I,e)(k).

NOTE 4.2. - By successive application of result (i) of Theorem 3.10 we have

K'n \ /T r 8 9 ~\ r 8 8 1 \%(Ie-i) = < I, ———— ... ————— ... ————— ... — — — / / / e l }
\ L 3^(0.0) ^(0,»(0))J L^y.^.o) 8yyj(e.n(e))\ I

J ( s , h ) ^ j ( s , i ) if h^i,s=0, ...,e and j (u, v) > s (I, «)((?).

NOTE 4.3. - I f I = I o = . . . =I,_i then 5(1,0 = ^(5,(I), Q f = 0, ...,c-l and
5 (5g (I), e) (A;) = s (I, e) (A;+1). In fact by hypothesis I = 8 (I) = . . . == 8^_i (I) and
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as we noted out before (Def. 4.1) there is a R.S.P. { ^ i , . . . , ^ n } of A and
0 ^ p (0) ^ . . . ^ ^ 0?--1) ^ .s- (6?) ^ ^ such that

I^S^F^, ...F^^^+^F^i, . . . ,F< ?^>+<B>,
r=0

Bc:rad(k[[F^,]],>,^)2 and 8,(I) == !+/ -|-geB, 7 > s{e)\
\ or Yj I

since

-?-6rad(fel:l:F ]̂L> )̂
SF6 .̂

then:
rankCInfcCEF^t,,..,?^]])

= rank(8,(I) nfe[[F^i, ..., F'̂ ]]), 0 ̂ ( = e-1.

I = 8, (I) and 8, (I) = 8, (8^ (I)) t = 0, ..., e-1 so 5 (I, t) (k) = .p (f), V fc and

5(8,(I),/)(A:)=/»(0,Vfe.
m=e:

s(8,(I), e)(k)
= rank (8^ (8, (I)) n fe [[F^i, ..., F6 ̂ ]])
= ran^^I) nfe[[F^i, ..., F ,̂]] = s(I, e)(fe+l).

PROPOSITION 4.4. — Suppose I t= F, I = Ig = ... = I^_^, I' = I'o = ... = Ig_^
5(1, /) = s ( l ' , t)0 ̂  t ^ e-\ and 5(1', e) (0) =5(1, e) (0) ^CT: 8,(I,-i) c= 8, (I^i).

Proof. — Since we are in the conditions of Corollary 3.13, then there is a R.S.P.
{ Yi, ..., Vn }, s (0) ^ ... ^ s (e) and B c= B' c rad (fc [[F6^]],^, (,))2 such that

1= i;<F^i, . . . ,F r ^„)>+<B>; I'= Kryi, ....F^.^^^B'),
r=0 r=0

^(r) =^(r) (Def. 4.1) r = 0, . . . , ^-1, ̂ ) = s (F, ^) (0) =.?(!, ^) (0)
and

8,(I) = l + y ^ g e B , j > 5(^)\ cr r+/,|I-g/eB'J > 5(.)\ == 8,(I)
\^ y j . I \8^ y j I

(Th. 3.10). If characteristic of k is zero only s (I, 0) will have sense. Mather in [3]
assigns to an ideal I a non increasing sequence of natural numbers M (I):

M(I)(r)=f,=n-5(l,0)(r-l)

then it is found that M (So (I)) (r) = ^+i? which we generalize in Note 4.3.
This concept together with Proposition 4.4 assures us that if I and I' are as in Propo-

sition 4.4 and s (I, e) = s (I', e) then:
1̂ 1;
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in fact Ie = 8^ (I) for k big enough and so is Ig. Applying otice more Proposition 4:4
we have:

COROLLARY 4.5, -- Suppose 1 <= F ideals of A such that

s(l, 0=5(1', QO ̂ t^e-1 and 5(1, e)(k) = 5(1', e)(k\ O^fe^feo-1 ,

^^2:
8^(Ie-l)<=8^(I:_0.

NOTE 4.6. - Let { j^, . . . , ̂  } be a R.S.P. of A,

s(0) ̂  s(I) ̂  . . . ^ 5(r) ̂  . . . ^ n and ^ - f <yi, ..., y,^y c A.
r=0

^ is an ideal generated by monomials then given /e k [[j^, . . . , y^\~\ = A,/^ j^:

/ = E feaM,, a = (ai, ..,, a,)a, ̂  0, M, = ̂ 1, ..., ̂ n.
a e Z"

There must be a e Z" such that k^ + 0 and M, ̂  ja^:

M, = ^(i)^(2). . . ^(r)j(l) ^J(2) ̂  . .. ^j(r)

by direct computation if M^ ^ ̂  => 7 (1) > ^ (1), j (2) > ^ (2), . . . , j (r) > s (r).

THEOREM 4.6. — Given an ideal I c: A and a regular system of parameters (R.S.P.)
{y i , • • • ? Yn } m ^he conditions of Definition 4.1 then:

(i) I c= ̂  = S ( E <F^i, . . . , ̂ y^^^1), i^ k) = 5(1, e)(k\
e^O h^O

(ii) For each e ̂  0 s (1, e) = s (<^, e).
(iii) j^ ^ maximal among the ideals B ^MC/Z that s (B, ^) = s (j^, e)\f e ^ 0.

Proo/. — (i) Every/e A may be written

/= £ fe^M^M^^, ...,^00; fe,ek
aeZ"

and
N

a(0 = £ a0*, 0^0 ̂  a(f, f ) < p
t=0

(/?-adic notation). Let/eland

f^lTAl0^1 '^ r^T^^ r 3 ^(I.N) r - g n a ( n . N n
LL^iJ "L^J "L^F^J '"LaF^J r
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THOM-BOARDMAN SEQUENCE 23

then: /' (0, 0, . . . , 0) = (]"[ a ( i , j ) \ ) k, and
i,/ .

M, = nM;, M^ = (F'.^,^^1^ . . . (F'^,,,))-"0-^,
?=o

l^ j ( t , i)<j(t, k ) ^ n if O ^ K f e ^ n - 1 .

Now
M^=>M^E <Ft^, ....F^^.^)^1; ? = 0 , 1 , . . . , N .

fc>0

So y^, A) > i(t, h) = s(l, t ) (h). for every h (Note 4.6). But then going back to
Note 4.2 we have

/'6l^c:rad(A), then/'(O, . . . ,0) = 0 so fe, = 0 and /ej^.

(ii) Mather shows in [3] that given

B = £ (3^1, . . . , y^r\ 5(0) ̂  5(1) ̂  ... ^ 5(0 ̂  . . . ^ n,
?=o

S'o (B)^^^,...,^^^1

r=fc

if we make use of this fact together with the definition of the operators 5^, since

^=0 if r>e,
S^Vi

we have

s'oW = E (.ci, • • . , yi(o.t^+l+ E (E <F^i,. •., F^^/^)
f^O e^l r^O

SO

.^^^...^(O^+E^F^ ...F^,^^/^).
e^l r^O

Applying now the operator §1 we have

S'lW^^ ...,^(O)>+E<F^, ..^F^.d,^)^1

(^0

+S ScF^i,...^^.^,)^1.
e^2 r^O

In general

<>-i=0i» • • • . } ; ^ ( 0 ) > + < F y l » • • • » F^d) )^ . . .+ . . .

+<Fe- l^, ...F-^.^-i^+E KF^i, ..^F^,^,)/41

/»^e r^O
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24 0. E. VILLAMAYOR

and

^«-l)=£ l<F l^, . . . ,F i^(o>+E<r^, ...F^,^/^
»=0 r^O

+ £ ^F^,...,^,,^,
h^e+l r^O

then rank (8^«,_i) n ̂ [[F^i, ...,F^J]) = i ( e , k ) in fact it will be given by:
<F^,...,F^,(,^>.

(iii) Suppose an ideal B =» ^ such that s (^, e) = s (B, e) e ^ 0, then by Corollary 4.5:

8^(B.-i)^5^«^)
and by Corollary 3.13:

8^(B,_i)=<^, ...,^(o)>+...+<F- l(^),...,F- l(^^,)>

+<F^i, . . . ,F^^ , )>+<B / >

B' c radCfe^^]]^^,^))2; f(e, fe) = s(I, ^)(fe)

so { ^i, . . . , y^ } is also a R.S.P. in the conditions of Definition 4.1 for the ideal B. Then
using (i) of this theorem

B c: ̂
as it was to be shown.

PROPOSITION 4.7. - Let {y,, . . . , ̂  } be a R.S.P. of A, I, = < F^i, . . . , F6 y, >
0 ^ 6?ym?rf:

0^5(0)^5(1)^ ... ^s(k)^ . . , ^n,
^/z:

/V -ii+l-k\k+l Y' p+1
ll/^d) J ^LMO-
i^k r^O

7w ybc?

(Ei^-y^
i^fc

k+1

-»„.„£.„.« Î•'8'"!-> ,^I«?„!-t-(,^„w„-)ffl8y.)^„<-t)
Mnce I, (,) c I, (^ ;/1 ̂  7; a/ifify (/) S k:

j(D+i-k^i and n i^r^i^u^D),
l^l^k

SO
k+1nf = in T/(0+l -k p ( f c+ l )+ l

^(j^)) ^^O'^+l))

^^rf this proves the proposition.
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NOTE 4.7. - We will now extend what Mather defines in [3] as the ideal P(I), if
characteristic of k is zero P (I) = £ (8^ (I))^ and the ideal P (I) is what we called ^

k^O
in Theorem 4.6 (taking p = charac. k = 0).

We will show that the ideal s^ depends only on I and not on the R.S.P. { y^ . . . , y^ }
in the conditions of Definition 4.1.

PROPOSITION 4.8. - Given I and ^ ideals of A as in Theorem 4.6.

Ie.k=8^0nfe[[FeXl,...,FexJl,
then:

^= £ sa,^.
e^O k^O

Proof. - Since the R.S.P. [ y ^ , . . . , y^} was taken such that

{F6^, •.^F^^JcI^,
then obviously

^z Ea.^1.
c^O k^O

We proved in Theorem 4.6 that I <= ^ aild\y(i, e) = s ( ^ / , e) >/e ^ 0 then by
Corollary 4.5:

^(Ie-i)^C<_i), V ^ f e ^ O ,

so 1̂  fc c ̂  fc V e, k ^ 0 (^^ fc defined as 1̂  ^):

Z sa^1^ £ K^./^,
e^O k^O e^O k^O

it will be enough to prove that

£ E^k^c:^ §S(^-i)=
e^O k^O

= Z1 <F1^,..., F^(,)>+ S <F^i, . . . , ry,^,^/^
i=0 r^O

+ E £ <F^i, ..., F^^y-^, i(^ r) = s(^, h)(r) [Th. 4.6 (ii)],
h^e+l r^O -'

SO

^k=£<F^, . . . ,F< ^^^^> r + l

r^O

+ £ E<F^i, ..^F*^^,)/4-1 (Lemma 3.5).
h^e+l r^O

Let us show that < ^^ k^1 c: ^ since:

£ E<F A ^ . . . , F A ^^^> ^ + l c=^
h^e+1 r^O
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it is enough to verify:

(E<Fe^,...,Fe^^^>r+l)fc+lc=^
r^O

in fact

(Z <F^, ..^F^,^^/^)^1^ ^ <F^, ....F^^y^c^
r^O r^O

by Proposition 4.7.

DEFINITION 4.8. — Given I and ^ ideal of A as in Theorem 4.6 we will define:

P(I)=^.

DEFINITION 4.9. - For a given ideal I c= A we have defined the ideals {1^ } e ^ — 1
(Def. 4.1), let: h(e) be the smallest k such that 5^(1^ _i) = 8^4'1 (I^i). We will define
non-increasing applications.

TB(I,^): {0,1, . . . , f e O O } ^ N u { 0 } ,

TB(I,6?)(k) = n-s(I, e)(K)e ̂  0

that we will call the Thom-Boardman numbers associated to the ideal I. Since
^ c L+i c: . . • then for ^ big enough Ig = Ig+i = ... and

L = 8e+l (D? Ie+k = 8e+k+l (I<?+k)

so A (^) = 0 for ^ big enough.

Example 1. - Let A = ^ [[? ]], /; of characteristic p, the ideals Ii = < t p+l > and
< ^+2 > = l^ (p = charac /;) are such that s(e, 1^) = s(e, .I^) V e ^ 0 but there
Thom-Boardman numbers are different, in fact

^(I^W-SSO,), Vn^ l ,

8o(I2)=<f p + l>, 8^l2)=<f>=8S(l2), V n ^ 2 ,

also 5,«^>) = W for ^ ^ 1 so:

5 (Ii, 0) (fe) = s (12, 0) (fe) =0, V fe ̂  0,

s(Ii,^)(k)=5(l2,^)(fe)=l, V f e ^ O , e^l ,

butTB(Ii, 0) = (1, 1);TB(I,, 1) = (0);TB (Ii, e) = (0), ^ ̂  2 and TB (I,, 0) = (1, 1, 1);
TB (12,1) = (0); TB (I^, e) = (0) e ̂  2, so the monomialst^1 and ^+2 will have the
same sequences s(e, I), but different Thom-Boardman numbers.

P^-P^^O.
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Example2. — I == < x^+z^)^ fc [[^JV^] characteristic of k == p:

5 o ( I ) = < x , ^ z p > = § S ( I ) = I o > f e ^ 2 (Def.4.1)

8i(Io)=Io and 8,(Io)=Io, ^ 1,

s(I,0)(0)==0; s ( I ,0 ) ( f e )=2Vfe^ l ; s(I,^)(fe)=3, V f e ^ O , ^ 1,

TB(I, 0) = (3, 1); TB(I, 1) = (0) = TB(I, e\ e ̂ 2,

P^^^+^^z^.

Example 3. - k [[x, ^, z]] as before I = < ̂ , ^p, z^ >:

I=I ,V^O; s(I,0)(fc)=0, V k ^ O ; 5(I,^)(fc)=3, Vk, ^^1,

TB (I, 0) = (3); TB (I, 1) = (0) = TB (I, e\ e ̂  2,

P (!)=!.

Note. — The only information that we have of these 3 examples in characteristic
p ^ 0 using the same method that in characteristic zero is the one given by TB (I, 0)
with the last integer repeated infinite times.

In examples 2 and 3 if we define the ideal ? (I) as in characteristic zero:

p^Ecs^Dr1
<=0

there will be no R.S.P. { y^ y ^ . y ^ } ofk [[x, y, z]] such that

P(I )= E(^i, ...,^(0)^1
(=0

for any non decreasing sequence 0 ^ s (0) ^ s (1) ^ ... ^ 3 as in [3].
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