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PATCHING LOCAL UNIFORMIZATIONS

BY 0. E. VILLAMAYOR U.
Dedicated to Professor Heisuke Hironaka on his sixtieth birthday

ABSTRACT. - In [Vi] we introduced a canonical algorithm for resolution of singularities in characteristic
zero (see section 8 of this paper for explicit examples). This proved the construct! veness of the theorem of
resolution.

The novelty in this paper is a synthetic definition of groves and a notion of funtions on groves. Indeed we
are able to give an almost selfcontained account of main aspects of resolution of singularities, a detailed
presentation of the results in [Vi] and also to include a proof of the lifting of group actions on a scheme to its
constructive resolution.

At the same time this paper is strongly focused on the algorithm itself as to motivate explicit computations.
An embedded resolution of singularities of a reduced subscheme of a regular scheme consists of a resolution

of singularities of the subscheme together with a condition of normal crossings of the final outcome with the
exceptional hypersurfaces introduced by this procedure. This process, in terms, can be expressed as a
concatenation of intermediate "resolutions" called resolutions of groves.

In section 8 we exemplify both, resolutions and lifting of group actions and discuss a natural outcome of
our algorithmic (or constructive) resolution of singularities: the patching of local uniformizations.

Introduction

The theorem of resolution of singularities, as we know it, is an inductive theorem. So
the first point is to clarify what we mean by this induction.

To fix ideas we think of a hypersurface H in a smooth scheme W and a point x e H. If
one adds to this data a system of coordinates at x, then one can somehow attach to H
(in a non-unique way) an equation. Now among the many ways of choosing coordinates
we will select some, through a notion of convenient system of coordinates.

Once H is locally expressed by an equation in convenient coordinates and, as in the
case of the Weierstrasse presentation lemma, here we will also have a notion of coefficients
(free from a preassigned variable).

Induction means that some form of improvement of the original singularity (of H
at x) can be formulated as a new problem now involving only these coefficients.

The first difficulty can be stated as follows:
DI. Induction is done in terms of convenient coordinates, but these are not unique.
This immediately confronts us with the need of a unified treatment for all the different

inductive formulations arising from the different choises of coordinates.
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630 0. E. VILLAMAYOR U.

Suppose that we can give a very settled notion of induction (locally at x) so that D^
is overcomed, but now we replace x by an equally bad neighboring point y (e H) and we
are confronted with a global problem:

D^. Do these local inductive formulations patch?
Briefly speaking, we will distinguish within the problem of resolution, both local and

global aspects. On the local side is the Tschirnhausen presentation which consists on
attaching to a singularity of a hypersurface:

(i) a (local) system of coordinates.
(ii) a nice expression of the equation in terms of these coordinates.
The strength of a Tschirnhausen presentation will rely on:
(A) after applying a permissible monoidal transformation one can the outcome by

finitely many local (affme) charts so that at each such chart there is a notion of transform
of the system of coordinates (i) to a new system, say (i'). And there is a nice expression
[say (ii')] of the equation of the strict transform on the coordinates (i') (stability of the
convenient coordinates).

(B) The problem of improving the singularity by permissible monoidal transformations
translates to a problem involving coefficients that arise from the expression (ii), and the
problem on the coefficients requires a similar treatment but now in a smooth scheme of
lower dimension (inductive approach to resolution).

In any case, from (A) and (B) we see that the need to consider both permissible
transformations and (open) restrictions is justified by our "attachment to coordinates"
and our will to understand the resolution itself as an "algorithm" on the equation (on
the coordinates).

A basic ingredient for the development of these ideas are the notions of trees and
groves. Roughly speaking a tree on a singularity is a concatenation of both operations
(permissible monoidal transformations and restrictions). And a grove over a singularity
consists of all possible trees on it.

Permissible transformations and restrictions also show up in ZariskFs line of thinking
which is: proceed by applying convenient monoidal transformations followed by affme
open restrictions locally at an exceptional point. Where convenient means that regularity
is achieved by this procedure locally at the last point. He formalized this idea by what
the called a reduction of singularities along a valuation ring or "local uniformizations".

We took Zariski's proposal in the following setup (see [Vi], 2.2). A constructive
resolution of singularities is defined by an upper-semicontinuous function on the singular
locus so that the maximal value is achieved along a convenient permissible center. Indeed,
there is an improvement of these functions after each such permissible monoidal
transformation. Moreover, repeating this procedure again and again one will solve the
singularity.

The important feature in the construction of our upper-semicontinuous function was
the fact that the value of the function at a point is defined by an "algorithm" at the
local ring of the point so it has a good restriction property, that is, the function will also
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PATCHING LOCAL UNIFORMIZATIONS 631

provide the convenient center through any given point. Therefore a constructive resolu-
tion defines on the one hand an "algorithm" of resolution along any valuation ring
(local uniformization) and at the same time all these local uniformizations patch to a
global resolution.

This is the difference between the theorem of constructive (or "algorithmic") resolution
of singularities proved in [Vi] and the existencial proof of resolution as given in [HI]. The
bridge between existential and constructive resolution was the notion of birth which stated
exactly where and when the inductive approach given by a Tschirnhausen presentation is
to be done [Vi].

In the way of the new presentation, we remark the fact that the theory of local
idealistic presentation [H2] shows that the problem of resolution of singularities reduces
to a good understating of the problem on hypersurfaces. And that this important
reduction can be done "locally" at any singular point. But for schemes of finite type
over a field, local is to be understood in the sense of the etale topology.

Both etale maps and open restriction are in particular smooth maps. Other smooth
maps arise in Hironaka's notion of groves. All this leads naturally to consider a
common notion of restriction relative to general smooth maps.

It was suggested by Giraud to let "restriction" mean the pullback by a smooth maps,
to define trees as concatenations of monoidal transformations and "restrictions", and
that constructive resolution should "restricts well" in this sense.

With this as starting point we define here functions on groves as function on the
singular locus with a good "restriction property" (4.1) and we show that the function
defining the constructive resolution in our previous work is indeed a function on a grove.

As an outcome from this fact question as:
1. lifting the action of a group on a scheme to the constructive resolution (7.6.3), or
2. formally isomorphic points undergo the "same" resolution (7.6.1)

have a simple proof with our approach. Actually 1 and 2 are consequence both of [H2]
together with [Vi], but in this selfcontained account we want to present these results
after a conveniently developed "language of resolution" or "language of groves" with
rudiments already in [H2]. Indeed, the core of this presentation is to develop this
language and show that is suitable for a synthetic approach to resolution, it clarifies
why constructive resolution simplifies the web of induction in Hironaka's theorem, and
it leads naturally to the concept of gluing or patching local uniformizations.

The development of this language allows a set theoretical approach to resolutions from
which the answer to both D^ and D^ will grow out.

Briefly speaking to the problem of reduction of singularities we will associate a grove
which now means a sheaf of sets, say G, where the elements of the sets are trees. The
answer to D^ will rely on the fact that these sheaves naturally glue. D^ finds an suitable
answer with the concept of immersion of groves.

The simplicity of this language of groves is based on the strong geometric meaning of
the trees of the grove, so if x and y are two points of the hypersupersurface H and suppose
that there is a local isomorphism between (H, x) and (H, y), then this isomorphism defines
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632 0. E. VILLAMAYOR U.

a natural one to one correspondence between the corresponding stalks of germs G^ and
Gy

Recall that the value of the function defining the constructive resolution at a point x
of H, is the outcome of an algorithm at the local ring 0^ ^. An important result is
(5.5.1) which states that the outcome of this algorithm is expressible in terms of
G^. Moreover, if (H, x) and (H, y ) are linked by a local isomorphism, the expressions
of these outcomes in G^ and Gy (respectively) are linked by the correspondence between
these stalks mentioned before. Now both 1 and 2 will follow from this fact.

As opposed to the constructive resolution of locally embedded schemes given in [Vi],
we present here the algorithm of a scheme embedded in a fixed regular scheme.

As starting in section 2.7 of [Vi], the construction is also given here in terms of the
functions n(x) and w-ord(x). Enough ideas are developed as to give a selfcontained
account of the algorithm as of the notions of trees, groves, birth etc.

Example 1 is the constructive resolution of the Whitney umbrella and Example 2
illustrates the lifting of group actions by these resolutions.

I profited of earlier conversations with J. Giraud who gave me this perspective on the
problem and with whom these topics were discussed. I also acknowledge suggestion
from my colleagues A. Campillo and Z. Hajto.

0. Notation and conventions

The theorem of constructive resolution of singularities in the algebraic context grows
from applications of analytic methods in algebraic geometry. From a technical point
of view there is little difference between constructive resolutions in the R or C-analytic
case or the algebraic case as one can check in our development, this is an important
advantage over the original theorem of resolution.

As in [Vi], in this presentation we also work in the algebraic case, k will denote a field
of characteristic zero, schemes will be noetherian, of finite type over k and all morphisms
compatible with this ^-structure.

If W is a smooth scheme (over k) we say that a collection of strictly proper subschemes
{ F ^ }^gj have normal crossings if, at any point xeW:

1. only finitely many subschemes F^ contain x, say {F^(^ , . . ., F^}, ̂ 0,
2. U F)L=F\(I) U • • • U F^) at some neighborhood ofx,

3 l6 j

3. there is a regular system of parameters { x ^ , . . ., x^} and s non empty subset
J (;)(<= { 1 , . . ., n}) ;==1, . . ., s, so that (locally at x) F^) is defined by the ideal
<x,//-eJOo)>(c=^w,.).

We say that /: X -> W is a closed immersion if it identifies X with a closed subscheme
of W.
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PATCHING LOCAL UNIFORMIZATIONS 633

1. Trees, operations on trees

1.1. DEFINITION. — (W, E) is said to be a pair with index set A if:
(a) W is smooth of finite type over a field k.
{b) E = { H ^ } A- e A , where each H^ is either empty or a closed and smooth hypersurface

of W, and E is a collection with normal crossings (i. e. U H^ is a divisor with normal
crossings [Ha]. V. 3.8.1).

1.2. All the constructions in this work are based on two elementary transformations.
If C is a smooth proper and closed subscheme of W, set n: W^ -» W the monoidal

transformation with center C.

1.2.1. DEFINITION. - (A) Let (W, E) and A be as before, the map n: W^ -> W is said
to be permissible/or the pair (W, E) if C has normal crossings with E (i. e. { C } U E has
normal crossings).

In such case we define a pair (W^, E^) with index set A i = A l j { 8 } and
Ki^HIke A i so that H[ is the strict transform of H^ if Ke A and Hg is II "^(C) (the
exceptional locus of the monoidal transformation). (W\, E^) is called the transform of
(W, E) by the permissible transformation.

(B) Given a pair (W, E) and A as before and now a smooth map /: W^ -^ W, then
Wi is smooth over the field k, and we set E i = = { / ~ 1 (H^)}^ ^ indexed by the same set
A .

(Wi, Ei) is clearly a pair indexed by A called the transform of the pair (W, E) by the
permissible map/.

1.3. Now that our two basic permissible transformations [of type (A) and (B)] have
been defined together with a notion of transformation of pairs, we define compositions
of permissible transformations and iterate transformations of pairs.

Consider a transformation of type (A) over (W, E) and suppose furthermore that there
are global coordinates on W, then Wi must be covered by open charts in order to define
coordinates at each open set. So blowing ups followed by open restriction is a very
natural thing to do if one is interested in coordinates, which is the case here. Note that
the restriction to an open set is in particular a transformation of type (B). And after
such restriction is done, then the setup is that of the beginning and one can start again
(blow up and then restrict). A tree will be a concatenation of such procedures, the
reason why we take smooth maps instead of (simply) open restrictions will be justified
with the further development.

1.3.1. NOTATION. - If (Wi, Ei) is the transform of (W, E) by a permissible transform-
ation g: Wi -> W we simply denote this by

(W,E)^(Wi,Ei)

in general we will not write down the corresponding index sets.
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634 0. E. VILLAMAYOR U.

1.3.2. DEFINITION. — Given two permissible transformations say:

(Wi, E,) I- (W,, E,) and (W3, E^ i (W^, EJ

then a concatenation of g with h is possible if (W^, E;2)=(W3, E3) and there is natural
identification of the index sets of E^ and E3 (if X e A then H^ (e E^) and H[ (e E3) coincide
as subsets ofW^W^).

1.3.3. REMARK. — If the concatenation ofg with h is possible and both are permissible
transformations of type B (1.2.1), then:

(i) h.g: W4 -> Wi is smooth of finite type.
(ii) the transform of (W^, E^) by h. g is (W4, E4).
For (i) see [Ha], III, 10.1. c). (ii) is clear from the definition.

1.4 DEFINITION. — A tree is a concatenation of blowing ups and "restrictions" (smooth
maps), we define a notion of length on trees to count how many blowing ups are
involved.

A tree of length zero on (W, E) is a permissible transformation of type B say

(W, E) t- (Wi, Ei) and (Wi, EQ is called the transform of (W, E) by g.
A tree of length one on (W, E) is a concatenation of a transformation of type (A) say

(W, E, C) <- (Wi, Ei) with a transformation of type (B) over (\V\, E^), say:
(Wi, Ei) <- (W1, E1) (1.2.1.). We denote this concatenation by (W, E, C) <- (W1, E1)
or symply (W, E) ^- (W1, E1). (WS E1) is called the transform of (W, E).

A concatenation of two trees (as defined above), say (W\, E^) <- (W^, E^) and
(W3, E3)<-(W4, E4) is possible if (W^, E^)=(W3, E3) and there is an identification of
the index sets (as in 1.3.2.).

1.4.1. REMARK. — 1. A concatenation of two trees of length zero is a tree of length
zero in the sence of Remark 1.3.3.

2. A concatenation of a tree of length one and a tree of length zero (in that order) is
naturally a tree of length one since there is concatenation of two trees of length zero
involved.

In particular any concatenation of trees of length zero or one can be naturally
reformulated as tree of length zero followed by a concatenation of trees of length one,
unless all trees are of length zero in which case the concatenation itself is a tree of length
zero (as in 1).

1.5. DEFINITION. — For s>0 we define a tree of length s to be a concatenation of s
trees of length one: T\, i= 1, . . ., s usually denoted by:

1 . 5 . 1 . T : (Wi, Ei, Ci)<-(W,, E,, Cy- . . . -(W, E, Q-(W^i, E^i)

where T;: (W^, E^, Q)<- (W^.+i, E^.+i). T is said to be a tree on (W^, E^) and
(W,+i, E,+i) is called the transform of (Wi, E^) by the tree T, sometimes denoted by
(WT, E-r). A T denotes the index set of the pair (W-r, E^).
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PATCHING LOCAL UNIFORMIZATIONS 635

1.6. Now we define some operations on trees which turn out being the key for a good
definition of groves. We first state two lemmas.

1.6.1. LEMMA. - Let (W,,E,)^(W,E) ;=1,2 be two transformations of type
B (1.2.1.) and consider the fiber product of these two smooth maps if finite type together
will the natural projections say p^: U -> W, i= 1, 2. Then:

1. p^ andp^ are smooth maps of finite type,
2. the transform o/(Wi, E^) by p^ coincides with that of(W^ E^) by p^.

Proof'. 1. is [Ha], III, 10.1 (d), and 2. follows from the definition of fiber products.

1.6.2. LEMMA. - Let (W,E,C)<^(Wi,Ei) be a transform of type (A), and
(W, E) ̂  (W, E) of type (B) notation as in 1.3 A) with fiber product:

W,____W,
"i ^2

w^-—w

77 .̂- (a) ^2 is permissible of type (A) or of type (B) /or (W, E) according to f~1 (C)
to^ non-empty or empty,

(b) p, is of type (B)for (W^, E,),
(c) r/?6? transform o/(W, E) Z^^ ^ ̂  same as that of(W^ E^) by p^.

Proof. - Smooth maps are Hat so p^ is the blowing up at the sheaf of ideals defining
/"'(C). Since (W, E) is the_transform of (W, E), if/'^C) is not empty then p^ is
permissible of type (A) over (W, E). If/-1 (C) is empty then p^ is the identity map, in
particular of type (B).

(b) is the stability of smoothness by a base changes ([Ha], III, 10.1. b), and (c) follows
from the definition of transformations of pairs.

1.6.3. COROLLARY. - Let T be as in 1.5.1. and (W^, E,) ̂  W^, EQ a tree of length
zero(i. e.a transformation of type (B) (1.2.1). Then there is a natural lifting of T to a tree
T: (Wi, EI, Ci) < - . . . < - (W,+1, E,+? of length at most s, and smooth maps r^. W^ -> W^
k=i^. .^+1. Moreover each (W^ E^) ^ ^ transform of (W^, E^) ^ ^ i.e.
r^: (W^ E^^(Wfc, E^ are trees of length zero (1.4). And all square diagrams are
commutative.

Proof'. Recall that a tree of length one is a concatenation of a transformation of type
(A) with one of type (B) (1.4). To prove the assertion in the case of length one apply
first 1.6.2 and then 1.6.1. So the general case follows inductively.

1.7. DEFINITION. - (a) If T is a tree of length s on (W^, E,) as in 1.5.1., for any
ke {1, . . ., ^+ 1} set the k-truncation of T to be

[T],: (W,, E,, C,)- . . . -(W,_,, E,.,, C,_,)-(W,, E,)

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



636 0. E. VILLAMAYOR U.

(b) Fix T, s and k be as in (a), and let/: (W^, E^) -^ (W^, E^) be a tree of length zero.
According to 1.6.3 there is a lifting of the tree

S: (W,, E,, C,) ^- . . . - (W, C, E,) ̂  (W^ „ E^,)
to

S: (W,, E,, r-\(C,))^ . . . ^(W,^, E^)

and trees of length zero r,\ (W,, E^) ̂  (W,, E^) ;==fc, . . ., s-\-1 so that all squares com-
mute.

In particular there is a tree

T: (Wi, Ei, C^ . . . ̂ (W,_i, E,_,, C,_,)
^ (W,, E,, r,-1 (C,)) ̂  . . . <- (W,^, E^O

called a restriction of T.
If ^> 1 T is a tree wz (W^, EQ, if k= 1 T is a tree on (W^, EQ (in the sence of 1.5).
When/: (Wfe, E^) ̂  (W^, E^) is an open immersion, then (W^+i, E^+i) -> (W^+i, ^s+i)

arises from an open immersion W^+i c> W^+i and in this case T is said to be an open
restriction of T.

_ ry _ _

In any case, for a restriction T of T there is a tree of length zero (Wy, Ey) <- (Wy, E^)
linking the final transforms (1.6.3).

1.8. If T is a tree on (W, E) and (W^, ET) is the transform of (W, E) by T (1.5), then
(WT, E-r) is also a pair and one can define trees on (W-r, E-r). To end this section we
complete 1.4 defining concatenations of trees of any length.

1.8.1. DEFINITION. - If TI is a tree on (W, E) and T^ is a tree on (W1, E1), then a
concatenation ofT\ and T^ (in that order) is possible if(W^, E^^W^, E1) and there
is a good identification of the index sets as in 1.3.2.

2. Groves

2.1. We start now with a fix pair (W, E) and for any tree of length zero
(Wi, Ei) -> (W, E) (1.4) we will select some trees on (Wi, E^).

2 .1 .1. DEFINITION. — A groves G over (W, E) consists of:
1. (i) a closed subset F c W.
(ii) all trees/: (W^, E^) -> (W, E) of length zero, and for any such/the closed subset

/^(DcrWi.
2. For any/: (Wi, EQ -^ (W, E) as in 1, a class G(Wi, E^) of trees on (W^, EQ and

for any TeG(Wi, Ei) a closed set F-r(c= (Wy) (1.5) subject to the following conditions:
2. (i) if T belongs to the class, any truncation of T belongs to the class (1.7. a)
2. (ii) i fT belongs the class, any restriction T (ofT) belongs to the class and:

rr 1 (FT) = Ff [notation as in 1.7 (b)]
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PATCHING LOCAL UNIFORMIZATIONS 637

2. (iii) if T belongs to the class G(Wi, Ei) and T\ is any tree of length one over
((Wi>r, (£1)7), say TI: ((Wi>r, (Ei>r, C) <- (W1, E1). Then the concatenation of T with
TI belongs to the class if and only if C c= Fy.

If T belongs to a class G(Wi, Ei) as before, we say that T belongs to G or simply
TeG.

2.2. The Hilbert Samuel grove (general references [O], [H-I-0]):
2.2.1. To fix ideas we start with a pair (W, E) and a fixed hypersurface H (c= W), set

F (5-, H) = { x e H/multicity of H at x = mult (H, x) is ^ s ]

For any seZ the set F(^, H) is a closed. Now let b be the highest possible multiplicity
at points of H (F (&, H) ̂  0 and F (b + 1, H) = 0).

Let (Wi, E^) -^ (W, E) be a transformation of type (A) (1.2.1) with center C included
in F(&, H), let Hi denote the strict transform ofH and b^ the highest possible multiplicity
at points of Hi. As we shall see latter in 3.3.1: b^^b, and in particular F(A, Hi) is
either empty (if the inequality holds) or a non-empty closed subset of Wi.

Now let (Wi, Ei) -> (W, E) be a transformation of type (B) (1.2.1) defined by the
smooth map /: Wi -^W, and let Hi now denote the pullback of H by / and Z?i, as
before, the highest multiplicity at points of Hi. Note that in this case, for any xeHi,
mult (Hi, x)=mult(H,/(x)). In particular b^b and again F(Z?, Hi) is either empty (if
inequality holds) or a non empty closed subset ofWi. In any case:

/-^F^H^F^Hi)

So if we fix b as before we have a natural criterion to define a grove over (W, E) which
is of course linked to H and b. These are, par excellence, the groves to be considered.

In general we will deal with a subscheme of W which is not a hypersurface in such
case the notion of multiplicity will be replaced by a sequence of numbers obtained in
terms, from the Hilbert-Samuel function. Now we define things properly.

2.2.2. Set ^ o = = ^ U { 0 } , for a map p\ N o - ^ Z set ^(1): H^-^~L where p(l)(k)=I.p(j)
O^/^, and in general for reM setp^^^"1^^.

Now we will consider datas of the form (W, X, p) where W is a smooth scheme of
finite type over k, X(c: W) is a subscheme and p: MQ -> ~S, is a function.

If W -> W is a transformation either of type (A) or (B) (1.2.1) we define the transform
of the data (W, X, p) to a data (W, X', p ' ) as follows:

(a) if TT: W —> W is the birational map corresponding to a transformation of type (A)
(1.2.1) then set:

(i) (formally) the transform of p as p itself.
(ii) the transform of X: X7, as the strict transform of X at W\
(b) iff: W -> W is a smooth map corresponding to a transformation of type (B) then

define:
(i) the transform of p as p^ where r is the relative dimension of the smooth map/

([Ha] III, 10) (assume that the relative dimension is constant along W).
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638 0. E. VILLAMAYOR U.

(ii) the transform o f X t o be/-1 (X)(c= W).
Now we fix a subscheme X of W. At any point xeX there is a function

Hx^ ^o -^ and ultimately a map H^: X -. Z^o defined by Hx^C^Hx14^, where
d(x) denotes the transcendance degree of the residue field of Ox ̂  over k.

One of Bennett's results asserts that H^ is upper semicontinuous along X (given on
Z^° the lexicographic order).

At any closed point x, Hx ^ expresses the rank at x of the coherent sheaves of principal
parts ofX over k ([O], Th. 2.6. (Bennett-Giraud)). In particular, since X is noetherian,
there is a closed point yo^X such that Hx,yy ls maximal. Set (and fix) p as Hx ^ and

F^xeX/Hx1,^^ for J(x)=tran[^(x): Yc]}.

F is a closed set and a closed point x belong to F if and only if H(^)^=p.
In this way, for X(<= W) we have a well defined data (W, X, p) and a closed subset

Fc=W.
Another result of Bennett (the stability theorem) ([0] Th 3.1) states that for any

transformation of type (A) say (W\, E^) -> (W, E, C), if C c= F then at any closed point
xeX' (the transform ofX): H^^H^).

In particular if we set at X'; ^ ' ^ [ x e X ' / H ^ ^ ^ ^ p ] then F' is closed (and may be
empty). In fact if F' is not empty, the setup for (W, X', p) and F' is that of (W, X, p)
and F.

On the other hand if h: W —> W is a smooth map of relative dimension r then
Hx^,. = HX,^.) tor any x e W. So

F7 = { x e XVHx1,^(x)) -p^} == h -1 (F)

and (W7, X', ^(r)) (the transform of (W, X, p)) is again in the same setup as (W, X, p).
Now for any h, (W, X\ p^) as before, set (W^X^, p ^ = ( W ' , X ' , p^) and define

G(Wi, Ei) to be the set of all trees T: (W^, E^, C^) ̂  . . . ^- (W,, E,), (W;, X,, /?,) is the
transform of (W^_i, X,_i , /^-i) and Q c F^={xeX^/Hx^^=^J .

In this way, for X and its maximal function p, we define a grove called the Hilbert-
Samuel grove ([H2] 3).

2.3 DEFINITION. — If G is a grove over a pair (W, E), the closed subset F c: W of
2 .1 .1 .1 is called the singular locus of G at W and denoted as
SingG. (F=SingG c= W). Moreover for any tree T of the grove, the closed set
FT (<= W-r) 2 .1 .1 .2 is called the singular locus of the grove G at (Wy, Ey), and we denote
FTbySingGT(c:WT).

2.3.1. REMARK. — Let G be a grove over (W, E) and T a tree of the grove. If T is
a restriction of T then:

(a) T is also a tree of G. And if r^: Wf -> Wy is the smooth map as in 1.7 (Z?), then
(b) r^1 (Sing G^) = Sin Gf (c: W^).

2.4. Main example of groves: idealistic situations.
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Now we fix a smooth scheme W as before and define some special groves over pairs
(W, E) which turn out being basic in the sence that all groves to be considered are
constructed in terms of these.

2.4.1. DEFINITION. - A couple (J^f, b) on W consists of a coherent sheaf of ideals
^ c= (9^ so that J^f^O at any point xeW, and a positive integer b. Now set

Sing (J^f, b) = { x e W/D^ (J^) ̂  b }

[i^(J^) stands for the order of the ideal J^ at the local regular ring ^w,J-

2.4.2. REMARK. - Since W is assumed to be a scheme over k, there is a coherent
sheaf of 6^-modules: Q^ called the sheaf of ^-differentials. For any xeW, 0^ x ls ^e
module of ^-differentials of the local regular ring (9^ ^.

If now x is a closed point and /2 is the dimension of the local ring ̂  ^ then 0^ ^ is
a free module over (9^ ^ and for any choise of a regular system of parameters
[y\. ' - • . Yn}. the differentials {^, . . ., dy^} form a base for Q^, x-

The theory of Fitting ideals will state the existence of a coherent sheaf of ideals
A (J^f) (c (9^) such that at any closed point x € W and for any selection of a regular
system of parameters [y^, . . ., y ^ ] at (^w^

A(^=//;^//e^,7=l, ...^
\ ^/ /

We can think of A as an operator acting on the coherent sheaves of ideals. Clearly
^ c= A(J^)(c: (9^) and Sing(^f, fe)(c= W) is the closed subscheme v (A^-1 (^)) defined
by the sheaf of ideals A^'^j^f) (here A'' stands for the composition of the operator A
with itself r-times). In particular Sing (J^f, b) = 0 if and only if A^ ~1 (J^) = (9^.

2.4.3. DEFINITION. - 1. Let 7i: Wi -> W be the monoidal transformation on a smooth
and closed center C c= Sing(^f, b). The sheaf of ideals J^wi admits an expression of
the form

J^\vi=^- ̂ /

where ^ and ^/ are coherent ideals and ^ is the sheaf of ideals defining 71-1 (C). We
say n permissible for (J^f, b) and define the transform of the couple (^f, b) to be the
coupler, & ) a t W i .

2. If/: Wi -)-W is any smooth map we say that/is permissible for (^f, Z?) and define
the transform of (^f, Z?) at Wi to be the couple (J^, b) where ^'=^(9^^.

A local analysis at a closed point xeW^ shows that D^(J^)=I).^) and
(A^-W)^-1^).^.

3. Given a pair (W, E), a tree of length one on (W, E), say

(W, E, C) <-(U, E') (1.4)
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is said to be permissible for (if, b) if C <= Sing (if, ft). In such case the transform of
(if, b) at (U, E') is defined as a combination of 1 and 2.

A tree of length zero on (W, E) is always permissible for (if, b) and the transform is
defined as in 2.

4. A tree of length r on

(Wi, EQT: (Wi, Ei, C,)^-(W2, E^, C^)^ . . . <-(W,^, E^)

is permissible for (if, &) if Q c= Sing(J^, b) where (if,, ZQ denotes the transform of
(iff-i, y>. In such case (if,+i, ^) is called the transform of (if, A) by T sometimes
denoted by (if 7, ^)-

2.4.4. PROPOSITION. - A tree T on (W, E) LS- permissible for the couple (if, &) ;/ and
only if it is permissible for (if", bn) (for any n >0).

P/w/. - (Q) Let Tii: Wi -^ W be as in 2 .4 .3 .1 one can check that:
(i) Sing (if, ZO=Sing(J^, nb) (at W).
(ii) if (if7, ft) is the transform of (if, &) and ((if"/, ̂ ) that of (^n, nb), then

(^T=(^T(^w').
(&)if/: Wi-^Wis as in 2 .4 .3 .2 then
(i) /-1 (Sing (^,&))= Sing (^, b)
(ii)(^T=(^wr
The proof of the proposition is a combination of parts (a) and (&).

2.4.5. PROPOSITION. - Fix a couple (if, &) on W and a pair (W, E). The set of all
trees on (Wi. E^) permissible for (ifi. Z?), where /: (W^, E^) -^ (W, E) is any tree of
length zero and (^^ b) the transform of (if, Z?) via/, defines a grove G over (W, E) by
setting,

FT-Sing (if T^)

for any such tree T.

Proof: If T is a restriction of T, then there is a smooth map r^. Wf -> WT and a tree
of length zero (WT, E^) <- (WT, Ef). We want to know that

^ 1 (Sing ̂  ft)) = Sing (iff, &)

in order to fulfill the conditions of 2.1.1. But this is 2 .4.4 (&) (i).

2.4.6. DEFINITION. — A grove G over a pair (W, E) is an idealistic situation if there
exists a couple (if, b) (if c: (9^) such that G is the grove of permissible trees over (if, b)
(2.4.5.).

2.4.6.1. Main Example. - Let the setup be that of 2 .2.1 where we started with a
pair (W, E) and a fixed hypersurface H (c= W), and b denoted the highest possible order
of H at a point. Recall that F (6, H) = { x e H/multipicity of H at x = mult (H, x) ̂  b}.
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Now let if (H) denote the locally principal sheaf of ideals defining H, and check that
F(^, H) = Sing (if (H), b). Moreover, one can also check that the the Hilbert-Samuel
grove attached to H and s in 2 .2 .1 is the grove defined by the couple (if (H), b) over
the pair (W, E). So this Hilbert-Samuel grove is an idealistic situation.

One of the strongest results of resolution of singularities, which we shall mention latter
in 7.5, is that of "local idealistic presentations" which states that for X((= W) of any
codimension and for p as in 2 .2 .2 (the heighest possible Hilbert-Samuel function at
points of X) then the Hilbert-Samuel grove defined by (W, X, p\ is locally an idealistic
situation.

2.4.7. REMARK. - (if, b) is not uniquely determined by this condition as shown in
2.4.4. Now consider all possible couples (if,,, b^) on a pair (W, E). One can check
that the relation: (if^, Z\) - (ifp, &p) if they define the same grove over (W, E), is an
equivalence relation. An equivalence class in this sence is caled an idealistic exponent
(H2], l.Def.3).

2.4.8. DEFINITION. - If G, ;=1,2 are groves over (W, E), set G^C\G^ (formally) as
the trees that belong to both groves.

2.4.9. PROPOSITION. - Given G, i= 1,2 and (W, E) as before, if each G, is an idealistic
situation defined by a couple (if,, &,), then G^ U GI is naturally the idealistic situation
defined by the couple

«if^if^i>,^.^)

Proof. - Applying 2.4.4. we know that the grove defined by (if^, b^) is the same as
that defmd by (if^, ̂  . b^) and the same holds for (if^, b^) and (i^i, b^ . b^). The
statement follows easily from these remarks.

2.4.10. REMARK. - Let Z c» W be a closed immersion of smooth schemes and let
^ c= (9^ be the sheaf of ideals defining Z. Clearly Sing (^, 1)==Z and one can check
that:

(i) for any map n: Wi -^ W as in 2 .4 .3 .1 (with center C c= Z), if Z^ (c Wi) denotes
the strict transform of Z and (ja^, 1) is the transform of (^, 1), then Z^ =Sing(ja^, 1)

(ii) for any smooth map/: W^ ->W if (^/, 1) is the transform of (e^, 1) (2.4.3.2),
then Sing (^/, l^y-^Z).

2.4.11. DEFINITION. - Let Z and ^ be as in 2.4.10, Z is said to have maximal
contact with a grove G over a pair (W, E) if the idealistic situation G^ defined by the
couple (j^, 1) is such that G^ U G (2.4,8) is all G. Or equivalently if any tree of G is
permissible for (j^, 1) (2.4.3.4).

2.4.12. REMARK. - With the setup as in 2.4.11: Sing G c= Z= Sing (^, 1), and for
any tree TeG: SingG^ c= Z^Sing^ 1) (2.4.10).

In fact any closed point jceSingG is a centre for a permissible transformation, so
xeZ=Sing(j^, 1). The same argument proves that SingG-r c= Z^.
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2.5. TRANSFORMATIONS AND RESTRICTIONS OF GROVES. — Let G be a grove over a pair
(W, E) and fix a tree T of G of length k-\.

T: (W, E,, C,) . . . ̂  (W,_i, E,_,, Q_0 ^- (W,, E,).

2.5.1. DEFINITION. — Given TeG as above and a tree of length zero
To: (Wfc, Efc) <- (Wfc, E^) the concatenation of T with To is a particular case of a restriction
of T (1.7 (b)) which we call a terminal restriction of T.

2.5.2. PROPOSITION. — Fix T ^zfif the notation as above, then the set of trees T' of the
grove G with the property that the fe-truncation of T': [T],, (1.7(^)) is either T or a
terminal restriction of T, define naturally trees on the pair (W^, E^) or on a pair (U, E)
where (U, E) -> (Wj-, E-r) is a tree of length zero. This defines a grove G^ over the pair
(WT, E-r), where Fy c= W-p (2.1.1) is given as before by SingG-r' (2.3), in other words:

Sing (G^T'= Sing (G)^

where T7 is seen as a tree of Gy in the left term and as a tree of G in the right term.

Proof. — Follows straightforwards from the definition of groves (2.1.1).

2.5.3. DEFINITION. — (a) Given a grove G over (W, E) and a tree T of G, denote by
GT the grove on (W-r, E-r) constructed in 2 .5 .2 and call if the transform of the grove G
by the tree T.

(b) if T is a tree of length zero T: (W, E) ^- (W^, EQ the transform of G by T is called
the restriction of G to (W^, E^).

2.5.4. EXAMPLE. — Let G be an idealistic situation defined by a comple (J^, b) over
a pair (W, E), and T a tree of G (2.4.6).

One can check that Gj as a grove over (Wy, Ey) is the idealistic situation defined by
the couple (J^ b) (2.4.3.4).

2.6. IMMERSION OF GROVES. — Let Z be a closed and smooth subscheme of a regular
scheme W, and let (W, E) be a pair indexed by A .

If the elements of E together with Z have normal crossings, then the hypersurfaces of
Z^ (any irreducible component of Z) of the form H^ C\ Z^, also have normal crossings at
Z^. So if we assume in addition that H^ ^ Z^ for any ^e A and any Z^ as before, then
the conditions of 1.1 are fulfilled by (Z, E^) where:

E z = { H , n Z / ? i e A }

is also indexed by A .

2.6.1. DEFINITION. — If W, Z, E and A are as before we say that (Z, Ez) c> (W, E)
is an immersion of pairs.

2.6.1.1. Remark. — Given now a subset A / c A , one can naturally define E' (c: E)
and Ez(cEz) by choosing X , G A \ In the conditions of 2.6 the immersion
(Z, Ez) c; (W, E) induces for any subset A ' an immersion of pairs (Z, E^) <^ (W, E').
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2.6.2. LEMMA. — Let (Z, E^) <^ (W, E) be an immersion of pairs indexed by A , and
f : W7 -> W a smooth map. Then the fiber product over W:

T——^Wr\ v
z<=——>w

is such that:
(a) i ' is a closed immersion
(b) f is a smooth map
(c) i ' defines a closed immersion between the transform of(Z, E^) by f and the transform

of(W,E)byf.

Proof. - Both (a) and (b) are well known, as for (c) recall that we do not change the
index set when transforming pairs by smooth maps (1.2.1. B).

2.6.3. LEMMA. — Let (Z, E^) ̂  (W, E) be an immersion of pairs and C a smooth closed
and proper subscheme of'Z (and therefore o/W). Then:

(a) C has normal crossings with E^ (at Z) ;/ and only if it has normal crossings with E
(at W).

(b) Consider the commutative diagram

Zi——^W,

^ r
z<——^w

where the vertical maps are the monoidal transformations on C. And i ' is the inclusion of
Z^ in W\ as the strict transform o/Z.

Then the transform (Z^, E^) of (Z, E^) (via n) and the transform (W\, E^) (z;^ 71) of
(W, E) a?^ linked by a closed immersion of pairs

i1'. (Z,, E^) c^ (W,, E,).

Proof. — In the conditions of this Lemma, (a) follows from the definition of normal
crossings. As for (&), the index set of E^, is given by A U { P } (1.2.1. A) and
HpeE^isTi-^C).

The same holds for E^, where HpeE^ is TI'^C). But now Hp=Zi OHp, and the
other intersection conditions of normal crossings are preserved after the monoidal
transformations.

2.6.4. THEOREM. - Let (Z, Ez) -^ (W, E) be an immersion of pairs (2.6.1) and G a
grove over (Z, Ez). Then there is a natural definition of a grove i(G) over (W, E).
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Proof. - Set Sing(G) c: Z (2.3) and identify Sing(G) with the closed set ; (Sing(G))
in W. 2 .6 .2 asserts that any tree T of length zero on (W, E) restricts to a tree of
length zero on (Z, E^), and 2 .6 .3 that if T: (W, E, C)^(Wi, E^) is a tree of length
one on (W, E), then is restricts to a tree of length one on (Z, E^) with the only condition
that Cc=/(Sing (G)).

In both cases the setup for Gy, (Z^, (Ez)-r) and (W-r, Ey) is that of the beginning. The
statement follows then by induction on the length of the trees T.

2.6.5. REMARK: If (Z, Ez) c; (W, E) and G are as before. Any tree Tef(G) restricts
to a tree T on G, defines a closed immersion of pairs i^. (Zy, E-r) c> (Wy, E-r) (2.6.1)
and ^(GT) =; (G)T (2.5.3). In particular ^ (Sing G^)) = (Sing (;• (G))^) (2.3).

2.6.6. THEOREM (idealistic Tchirnhausen). — Let G be an idealistic situation over a
pair (W, E) and s^ (c-(9^) a sheaf of ideals defining a smooth subscheme Z (of
W). Assume that:

(a) Z(=Sing(j^, 1)) has maximal contact with G (2.4.11)
(b) x is a closed point o/Sing(c: W) at which the inclusion (SingG)^ c Z^ (2.4.12) is

strict (at an open neighborhood of x), and x^H^for any H^ o/E.
Then, there is an open neighborhood W of x, so that Ei ̂  = 0 (the restriction of

hypersur faces of E at W is empty), and an idealistic situation G at Z,' = Z C\ W so that
i(G)=G via the immersion i\ (Z', 0) —>W, 0).

Proof: See [H2], (8. Th.5, p 111). The assumption (b) of strict inclusion will force the
idealistic exponent of G on Z to be defined by a (if, b) (on Z) where J^fy^OV^eZ, a
condition required for couples (2.4.1).

2.7. THE INDEX SET OF A GROVE. — We have defined at I . I . I the notion of an index
set A to indicate subschemes H^ c: W(^e A ) for a given pair (W, E).

We do not exclude the existence of ^,e A so that H^==0. On the other hand
definition 1.2.1 (B) forces us to consider this case.

With the notation as in 1.5.1 we fix a tree T permissible for (W^, E^) (with index
set A); A y was defined as the union of A with the set {(3(1), . . ., P(^)} corresponding
to the trees of length one in the concatenation.

Define A { T } = { P (1), . . ., P (s)}, so A { T } (c: Ay) consist of the indices introduced
by T. And now define at any point xeW^:

A T ( x ) = { ^ e A^/xeH^}; A {T}( ; c )={^e A {T}/xeH^

and

E^(x)={H,Ae AT(X)}(=H,GE^GH,})

If T is a restriction of T then A f (x) = A ^ (/r (x)) anc! A { T } (x) = A { T } (r^ (x)) for
r^: Wf-^W^ as 1.7(fr) and any xeWy. Indeed, this follows from the existence of the
trees r{. (W^, E .̂) -> (W;, E^) given also as in 1.7 together with the invariance of the index
set for transformation of type (B) (1.2.1 (B)).
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Another nice property is that the set A { T } and its subsets A {T}(x) for xeW-r are
naturally ordered ("PO')^?^)" if i^j) and this order is preserved by the equality
A { T } (x) = A { T } (r-r (x)) mentioned before.

Finally for any tree T and any hypersurface H^ e E^, ^ e A y (x), there is valuation ring
^WT,H^ (localization of (9^ J. Now if/: (W^, E^) ->• (W\, E^) is a tree of length zero,
for any x e W^: A 2 (x) = A^ (/(x)); and any H^ £ E^ (/(x)) induces a unique arrow reversing
injection of the quotient fields of ^wi,/(jc) m ^at of ^w2,x ^d an inclusion
^wi, H, ^ ^W2, / -1 (H,) (of valuation rings).

These observation suggest the existence of a universal set of indices for a pair (W, E),
say: A y so that for any T and xeWy: A^C^") <= Ay . In fact such A y can be taken as
the set of valuation rings of a universal extension field (in this sence) of fc(W) (the
quotient field of W if it is irreducible) (see [H2] 9, 7.1).

3. The inductive theorems

In what follows ^ denotes a coherent sheaf of ideals at 0^ so that JE^^O at any
x e W. We fix the notation as that in 2.4.2.

3.1. LEMMA. — Let x be a closed point at W. If o^ is a proper ideal at ^, x ana

b e Z > 0, then the following conditions are equivalent
(a) D^(J2^)=Z? (i)^ denotes the order of an ideal at the local regular ring ^w,x)-
(b) o,(A^)=^-l.

Proof. - ([H.2] 8. Lemma 5.4).

3.2. COROLLARY. — The following are equivalent
(a) the maximal order achieved by ^£ at points ofW is b,
(b) A^"1 W is a proper sheaf of ideals and ^b (^f) = (9^
(c) the maximal order achieved by t ^ " 1 (J^f) at points o/W is one.
Now we can formulate a major theorem for inductive resolutions. The hypothesis on

the caracteristic (zero) of the field k was necessary both 3.1 and 3.2.

3.3.THEOREM(Giraud-Hironaka). Let (W, E) and J^fc:^ be as before. Assume that

3.3.0. ^=Max{^(J^)/xeW}

Let ^{ci(9^f) be a sheaf of ideals which is regular of height one (i.e. locally principal
and defines a smooth hypersurface), and ja^cA^"1 (^). Then:

1. Sing(^, l)=)Sing(J^Z?),
2. ifT is a tree on (W, E) permissible for (J^f, b) (2.4.3) then T is also permissible for

« 1),
3. (stability of 1) let T be as in 2, set (J^p b) and (^^ 1) the transforms of(^, b) and

(^, 1) by T (2.4.3), then ^^A^"1 (J^)-
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Proof. - It is clear from 3.1 that (set theoretically) Sing(^, b)=\ (^b-1 (^)) [the
zeros of A^"1 (^f)], now 1 is clear since Sing(^, 1)=V(0 and ^cA^"1 (J^).

As for 2 and 3 both results are a major simplification in the theory, introduced by
Giraud, with an approach to maximal contact via analytic methods. For a proof see
[H.2] (theorem 5, p. 114).

3.3.1. COROLLARY. - Either Sing (if^ b)^0 or ̂  is a sheaf of ideals of maximal
order equal to b.

Proof. - In fact if Sing(J^ b) is not empty, then 3.3, 1 asserts that j^^A^"1 C^r).
now one can check that j^y a sheaf of ideals defining a smooth hypersurface of Wy (j^y
is a sheaf of regular ideals of height one as shown in 2.4.10).

Now we come to our main inductive theorem. Recall 2.4.11 for the notion of
maximal contact of a smooth subscheme with a grove.

3.4. THEOREM (of maximal contact). - Let ^fc^ and b be as in 3.3.0. At each
closed point xe Sing (if b) there is a neighborhood W of x so that the restriction
(^/, b)^'=^/W) satisfies:

(a) at W there is a sheaf of ideals j^cA^"1 (^/) as in 3.3.
Z=Sing(ja/, l)(c:W) is a smooth hypersurface. Now

(b) If the inclusion Sing( '̂, b)czZ ( 3 .3 .1 ) is strict locally at x, then there exists a
couple (^//, b'), ^" c= (̂ , defining an idealistic situation G over the pair (Z, 0) such that
the grove i(G) induced by the immersion of pairs (Z, 0) ̂  (W, 0) (2.6.4) is the grove
defined by (J ,̂ b) over (W\ 0) (2.4.6).

Proof: Is a combination of 3.3 and 2.6.6.

3.4.1. EXAMPLE (analytic case). - ^Y^+^Y^"^ • • .+^eC {Y, Xi, . . . , X ^ }
w i t h ^ e C { X } of order ^i. ^=</>, ^ = < Y > (both in C { Y , X } ) ; J^^Z^'/1)
(sum of ideals in C {X}) and b" = b!.

3.5. REMARK. — Z=Sing(j^, 1) has maximal contact with the idealistic situation
defined by (J^, b) on (W\ 0) (2.4.11).

3.6. COROLLARY. — In the conditions 0/3.3.0 the following are equivalent:
(i) dim^ (Sing (J^f, &)) = dim^ (W)-1 (dim^ = dimension locally at x).

(ii) Sing (^, l)=Sing(J^, Z?) locally at x
(iii) A^-^J^ja^^,.

Proof. - Recall from 2.4.2 that Sing (^f, &)== v(A&- l (J^))c=W. We assume here
that ja^cA6"1 (J^f) and ^ is a regular ideal.

3.7. DEFINITION. - With the setup as before define R(l)(^f, b) or simply:

R(l)={xeSing(J2f , &)/dim, (Sing (^f, A))=dim,(W)- 1}.

3.8. REMARK. — R(l) is a smooth scheme and a union of connected components of
Sing (J^, b) as follows from 1) of 3.3 and 3.6.
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3.9. PROPOSITION. - With the setup as in 3.3, so that 3 .3.0 holds:
(a) Let f: W'-^W be a smooth map, (W\ E')-> (W, E) the induced tree of length zero

and (J^, b) the transform of (J^f, b) (2.4.3.2). 77^ R (1) (J^, b) ==/ -1 (R (1) (J^, A))
(ft) T/'TT : W^W is a monoidal transformation as in 2 .4.3.1) [permissible for (=^, Z?)],

W ;/(J^i, A) ^ ̂  transform of(^, b) at W^. 77^ R(1)(J^\, A) ^ ̂  strict transform
ofR(\U^b).

Proof. — (a) is the stability of the codimension by pullbacks of smooth maps and (b) is
3 .6( i i i )and3.3, 3.

4. Functions on groves

4.1. DEFINITION. — Let G be a grove over a pair (W, E) (2.1.1) and (I, ^) a totally
ordered set. ^.function fon the grove G mth values at I will mean a function

f(G^orf^.SmgG^^W^-.l

for any tree T of the grove (2.3), subject to the following conditions (a) and (b):
(a) /T is locally finite (that locally it takes only finite different values).

Let T be a restriction of T, (W^, E-p) -> (Wf, Ef) the tree of length zero at the final
transforms as defined in 1.7 (A) and r^ 1 (Sing GT) = Sing Gf as in 2 .3 .1 (b)

(b) f^^=f^(x)\ VxeSing Gf.

4.2. EXAMPLE. - Let G be a grove over a pair (W, E). For any TeG set:
codim : Sing(GT) -> ̂ , codim (x) = coding (Sing Gy) (coding : codimension locally at x).

To check that this is function apply 2 .3 .1 (A) and the stability of codimension by
pullbacks of smooth maps.

4.3. DEFINITION. — With the notation as in 4.1, for any TeG set:
(i) Max/T (or Max / (G-r)) = maximal value achieved by/y alongs points of Sing Gj.
(ii) Max/T (or Max/G^)) = { x e Sing GT//T (x) = Max /^} c= Sing (G^).

4.4. DEFINITION. — A function / from G to I is said to be upper semicontinuous if in
addition it satifies:

(c) for any tree T of G the function /y : Sing G^ -> I is uppersemicontinuous (f. e. for
any a el the set { x e Sing GT//T (x) ̂  a} is closed).

4.5. PROPOSITION. — Let G be a grove over (W, E), T a tree of G and f a function
from G to I (4.1), / defines naturally a function f from the grove Gj over (W^, Ey)
(2.5.2) tol.

Proof. - Recall from 2 .5 .2 that G^ as a grove over (W-r, E-r) was defined in such a
way that for a tree T' on G^ : Sing (GT>T= Sing (G>p. In particular/defines for any
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such T a function

/T.: Sing(GT)T/-L

Setting/T-=/T' one can check that (a) (b) and eventually (c) of (4.1) and (4.4) are
fulfilled.

4.6. PROPOSITION. - Let (Z, Ez)-^(W, E) be a closed immersion of pairs with index
set A (2.6.1). Let G be a grove over (Z, Ez) and i(G) the induced grove (W, E)
(2.6.4). If f is a function from G to I then f defines naturally a function from z(G) to I.

Proo/' Any tree Te/(G) induces a closed immersion Z^ ^ W^ so that
;T (Sing Gr) = Sing (i (G))r) (2.6.5). The proof runs nows as in 4. 5.

4.7. DEFINITION. - A function/from a grove G over a pair (W, E) to an ordered
set (I, ^) (4.1) is said to be a strong function if both (A) and (B) hold.

(A) /is upper semicontinuous (4.4).
Let TeG and TI==(WT, ET, C)^(Wi, E^) a tree of length one over (WT, E^), with

the condition that Cc Max /y(<= Sing Gr). Then the concatenation T of T with T^
belongs to G (2.1.1.2) (iii). Now we state the next condition:

(B) Given T, T^ and T' as before:

/T (n (x)) ̂ /T/ (x) (at I) for any x e Sing GT .

4.8. REMARK. — Let/be a function from a grove G to I (do not assume that/is
upper semicontinuous or strong). If T' is the concatenation of T(eG) with a tree T^ of
length one, say:

TI : (WT,ET,C)<"- (WI ,EO

so that C c= Sing G^. Then T' e G and for any x e Sing GT -n^ (C):
(i) 7i (x) e Sing G^ (in particular TT (Sing GT/) c: Sing G^, and (ii) /^ (x) =/^ (TT (x)).
In fact in this case n(x)^C and there are open restrictions of T and T^ (1.7 (Z?)) say

T, T\, so that 7i (x) e Sing GT and T\ becomes a tree of length zero. It suffices to take
the open and terminal restriction (W^, E^) <- (U, Ey) where U = W-r - C (1.7 (b\ 2 .5.1) .

4.9. Let/be a strong function from a grove G over (W, E) to an ordered set (I, ^)
(4.7). Recall that / is upper semicontinuous so that for any tree TeG the set
Max/T((= Sing Gr) is closed (4.3 (ii)).

4.9.1. DEFINITION. - Let/be a strong function as before let G^ denotes all those
trees T of G such that if T is the concatenation of trees T, : (W,, E,, C,) <- (W,.+i, E,+i)
of length one ^=1 ,2 , . . . , ^ ( 1 . 4 . 1 ) , then:

CfcC Max /[T],(C= Sing G^],) For ^=1, . . ., s.
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4.10 PROPOSITION. — Let G be a grove over (W, E) and f an upper semicontinuous
function (4.4) [a strong function (4.7)]. Then for any tree TeG, the induced function f
from GT to I (see 4.5) is an upper semicontinuous functions (is a strong function).

Proof. — Follows from two facts:
1. any tree TeGy has an interpretation as a tree TeG and moreover

Sing (GT)T' = Sing GT' (2.5.2) and
2. /T' : Sing(GT)T' -^ I is defined as/^/ : SingC^ -^ I (4.5).

4.11. PROPOSITION. — Let (Z, E^) —> (W, E) be a closed immersion of pairs and G and
i(G)asin2.6.4.

Iff is an upper semicontinuous function (a strong function) from G to I then f induces
an upper semicontinuous function {a strong function) from i(G) to I.

Moreover if f is a strong function and f is the induced strong function on i(G) then any
tree Te;(G)y restricts to a tree TeG^.

Proof. — Follows as that of 4.10 replacing results of 2. 5.2 by 2 .6 . 5 and 4.5 by
4.6.
4.12. Remark. — Let G be a grove over (W, E) and / a strong function from G to
(I, ^). If TeG^ (4.9.1) is a tree of length s^\, say

T : (W,,Ei,CO^-. . .^(Ws^Es^)

then Max /^ ̂  Max /^ ̂ ,.
In fact TeGf if and only if QcrMax/^ (4.3) so the assertion follows from 4.7 (B).

4.13 DEFINITION. — With the conditions and notation as in 4.12 let the birth or f-
birth of T be the smallest index k, such that Max /^ = Max /^

4.14. PROPOSITION. — If f is a strong function on a grove G over (W, E) and the
maximal value achieved by f at Sing G (c: W) is: Max /^= a? set (J/, a as tne trees T of
Gf such that Max /^ = a for k=l, . . ., s (notation as in 4.12). Then Gy ^ is a grove
over (W, E) setting for any T e G^ „ : Sing (G^ Jr == { x e ̂ g CT/TT (x)= a } •

/M particular, if Max /T < oc ^^z Sing (Gy ̂  = 0.

Proof. — Since / is a function on the grove, one can check that all conditions of
2 .1 .1 are fulfilled for trees T e Gj ^ setting Fy =Max /y with the additional condition
that Max /y == a.

5. Function on idealistic situations

5.1. This section is devoted to the functions introduced in [VI] and their behavior on
the idealistic situations. We emphasize here two facts: (i) that all the functions derive
from the function ord( ) introduced in [H2] and (ii) the value of these functions at a
point are expressible in terms of the grove. The strength of both condition will show up
in 6.
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In this section A1 denotes the affme line over A: (A1 =Spec(A:[T])).

5.1.1. PROPOSITION. - Let G be the idealistic situation defined by (if, b) on (W, E)
(2.4), and x e Sing G a closed point

(a) the rational number \)^(^^)/b is expressible in terms of the grove (so if
(^, 6)~(^, b') (2.4.7) then D,(^)/&=D,(^)/y).

(b) the trees of G involved in this expression are defined as a sequence of monoidal
transformations over the smooth scheme U x A ^ , the sequence being independent of the
neighborhood U ofx and permissible for the restricted idealistic situation.

Proof. - We sketch the main ideals and leave [H2] 2. Prop 8 (p. 68) for details.
First set W o = W x A ^ and/: Wo-^W the projection. Define: LQ=f~l(x)^^ and

.XQ=O€LO.
Suppose that for some index k : x^ L^ and W^ have been defined, then set:

^k '• ^k+1'^^k ^e quadratic transformation at x^ L^+i the strict transform of L^,
H^+1 the exceptional locus of n^ an(^ ^k+1= ̂ k+1 H H^+1.

/induces a tree of length zero:/: (Wo, Eo) -> (W, E) with transforms (if, b) to (J^o. b)
(2.4.3.2). Now set: S^ : (Wo, Eo, x^) ̂  . . . (W^-1, E^- „ x^- 0 ̂ - (W^, E^).

SN is a tree of the grove for any N. Moreover if D^ (ifj =m (^b since x e Sing G)
and (iffc, A) (^ couple on (Wj^, Ej^)) is the transform of (i^-i, ^), one can check that:

^(^k)=m^k(m-b)

In particular D^_^( i fN- l ) = w + (N— l)(w—6) and therefore the order of if^ at the
generic point of H^ is m + (N — 1) (m — b) — b (2.4.3.1) i. e.:

^(^N)=(^-^)+(N-l)(m-&)=N(m-^)

Denote by Si (N, P) the concatenation of SN with P monoidal transformations with
center (always) at the hypersurface Hpq. The monoidal transformation of W^ with center
HN is the identity map but still the transform of the pair (J^N, b) undergoes a change.

Now check that S^ (N, P) is a tree of the grove if and only if

Mp l̂L b J

([ ] denotes integral part). The equation in brackets is a linear equation on N with
rational coefficients. Since the integral part of this linear equation is determined by the
grove for any N, the equation itself is determined by the grove, in particular the slope
which is:

(m-b)lb=(^^^lb)-\.

5.2. DEFINITION. — With the setup as before we denote:

ord (G) (x) = i^ (^^Ib (e Q ̂  1) V x e Sing (G)
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5.3. COROLLARY. — Let (Z^, E,) -> (W, E);=l, 2 be two immersion of pairs. And let
Gi be an idealistic situation over (Z^, E^) such that j\ (G) =72 (G^) = G (they induce the
same grove over (W, E)) (2.6.4).

If dim^ (Zi) = dim^ (Z^) at a closed point x e Sing G (=j\ (Sing G() (2.6.4)), then

ord(G,)(x)=ord(G2)(x) (€Q)

n^r^ ord (G^) ^ defined at x as ord (G^) (771 (x)) (4.6).

Proof. — The value ord(G^)(x) was given in terms of trees S(N, |3) which were
trees over Z^ x A1. The immersions^ extend to immersions (Z^ x A1, E^) ->• (W x A1, E1)
(2.6.2).

One can check that a tree S (N, P) is a tree of G^ if and only if it is a tree of G. In
particular S(N, |3)eGi if an only if S(N, P)eG^. In fact the equality of the dimensions
at x asserts that a hyper surf ace of the transform of Z^ x A1 by S^ corresponds via the
other immersion to hyper surf ace at the transform of Z^ x A1, and of course the converse
also holds. Therefore ord (GQ (CA) -1 (x)) = ord (G^) ((72) ~' W).

5.4. Let (W, E) be a pair, (J^f, b) a couple on W (2.4.1), C a smooth center included
in Sing(^f b) and n^ : W^—^W monoidal transformation with center C. With notation
as in 2.4.3.1:

J^wi^6-^

Now let Ci be an irreducible component of C with generic point x^eW.
Ci c= C c: Sing (J^f, b) so b1 = D^ (J^) ̂  &.

At any closed point ^eSing(J^f', Z?)c=Wi such that K^(y)eC^ there is an expression
of the form

^=^-\2, (at^).

Let A be the index set of E [of the pair (W, E)] and A i that of (W^, Ei), A i = A U { 8 }
and Hg == n~1 (C) e E^ (1.2.1 (A)). Now we express formaly (at (9^^)

J^=(^)P(8) ̂ '

where P(8) is constantly equal to b^—b along Tc'^Ci) with is a connected component
of H§. In this way P(8) is defined as a locally constant function on N5=71"1 (C).

Let T be a tree of length k permissible for (^f, b) (2.4.3.4). Say

T : (W,, E,, CO^-(W2, E^, C^. . .(W,, E,, €,)<"-(W,^, E,^)

we have defined a pair (J^\., b) at W, [the transform of (^f^, &)] and suppose induct! vely
that at W^ a formal expression

j^nc^)^.^
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is given, such that P(^) is a locally constant functions along H^eE^. Then we set at
^Wk+i an expression for ^\+i of the form

^^(^W^-^^^^i
where (i) ye A ^ + i is the index corresponding to n~1 (C^).

(ii) ̂  the sheaf of ideals defining H[ (the strict transform of H^) for Ke A^C: A^+^
(1.2.1 (A)).

(iii) J^ the sheaf of ideals defining n~1 (C^).
Finally if yeH^=n~1 (C^) and 7c(^)eC an irreducible component of C^ with generic

point x^ e Sing(o^, b), set:

P(y)(^)= E P(y)(^00)+^(^i)-^
C^H,,

and P(y)(J ;)=0 if^^H^. It is clear that (3(y) is a locally constant function.

5.5. DEFINITION. — Let T be a tree of length k of the idealistic situation defined by
the couple (J^f, b) at (W, E) (2.4). Consider for the transform (J^+i, b) of (J^i, b) at
Wfe+i , the expression

^I-WA)^).^!
as in 5.4. And now define at Sing(o^fe+i, b):

1. for each X-e A ^ + i

ocW : Sing(J ,̂ ̂ )-.Q, a^)^13^^ (xGSing(^^, 6))
6>

2. w-ord : Sing(^+i, b) -> Q,

w-ord (x) = ̂ ^^'^ (e Q ̂  0)
Z?

3. ord: Sing(^+i, b) -> Q,

ord (x) == ̂ ^^'^ (e Q ̂  1).
Z?

5.6. REMARK. — ord(jc)==£a(^)(.x)+o)-ord(;c).

5.7. THEOREM. — Let G be the idealistic situation over (W, E) defined by the couple
(^f, b) (2.4), and A y a universal set of indices for (W, E) (2.7). Then:

(i) (o-ord a^ ord are functions on the grove G in the sence of 4.1, and so is
oc(?i)V^e Ay .

(ii) These functions depend on the grove G and not at the particular pair (J^f, b) defining
G.
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Proof. - We begin with the proof of (ii). Let (J^, b') be another couple at W
defining the same grove as (J^, b) over (W, E). Any tree T of length k permissible for
one couple is permissible for the other, and Sing (Jzf^ b) == Sing (J^ b') = Sing G^ (at W^)
(2.5.4 and 2.4.5). Applying 5.1.1 (a) both for (J^ b) and (^ b'):

^(^rJ.^Ax)

for any x € Sing Gy.
The value of the functions a(^) at xeSinG^cW^Wfc.n) depends on the functions

defined at Sing Gj^ c= W^, and on

^,w
b

where x^ is a generic point of an irreducible component of C^ (5.4). Applying again
5.1.1^):

D^(J^)_^(^)

z? y

So an inductive argument together with 5.6 proves (ii).
As for the proof of part (i) let T be a restriction of T. There is a tree of length zero

r-r
(WT, ET-) <- Wf, Ef) linking the final transforms (1.7 (b)). We want to show that condi-
tions 4.1 (a) and (b) hold for these functions. In the case of ord ( ) 4.1 (a) is clear
and 4.1 (Z?) is proved in 2.4.3,2. But then the conditions also hold for the other
functions since they are constructed induct! vely in terms of the function ord ( ) (5.4).

5.8. REMARK (On the good condition: Maxord(G)= 1). — 1. Now that we know that
ord is a function on groves we express condition 3.3.0 on acouple (^f, b) (at (W, E)) as
Max ord(G)== 1 (4.3(i)) where G denotes the idealistic situation defined by (if, b) over
(W, E).

2. Let (J .̂, bi) and 0,1== 1, 2 be as in 2.4.9. If condition 3 .3 .0 holds at (J^\, ^),
then it also holds at «(^2, ̂  \ b^.b^). So Max ord(Gi)== 1 implies that
Maxord(GinG2)==l.

5.9. PROPOSITION. - Let G be an idealistic situation over (W, E) (2.4.6), then:
(i) w-ord is a strong function on G with values at Q (4.7).
(ii) For a tree TeG^,.^ (4.9.1) set ^o ̂  Max (w - ord (G^)) (4.3(i)). The grove

(GT)^_^d,wo (4( I4) is an idealistic situation over (W^, E-r). And

Sing ((GT^- ord, ^"M^ ^ord(GT)=={^6SmgGT//T(A:)=^o}.

(iii) if^o>0, then: Max ord((G^-^ ^)=1 (5.8).
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Proof. - The proof is given in [Vi] (1.17.6 and 1.17.7). There a couple w (J, b) is
constructed so it defines G^_ord,wo as m idealistic situation (if (J, b) defines G). A
tree T is said to be w-permissible in [Vi] (1.17.4) if TeG^_o,.d- The construction and
behavior of w(J, b) grow from [HI] Remark 3, p. 325.

With our setup if G is defined over (W, E) by (J^f, b) and TeG, then
J^^nG^J^.J9? Condition (A) of 4.7 is clear since it reduces to the study of the
function ord (Sj). Condition (B) of 4.7 was proved in 3.3 and 3.3.1.

Let WQ = max {i^ {2^)\b, x e Sing Gy = Sing (J^ b)}, and define:

w(^^)=(^T^.Wo) if wo^l ,

and

w(^b)=^b.w^n(nW^^\b-b.WQ) if O ^ W Q < I

in both cases w(^fy, b) is a couple (see 2.4.9) defining (G^^-ord.wo as an idealistic
situation over (W-r, E-r). The second part of (ii) is in 4.14.

If WQ > 0 then one can check that condition 3.3.0 holds for (5^, b. Wo) so (iii) follows
from 5.8.

The condition H\)=O is equivalent to ^^=11^^^ (to S^=(9^). This is a very
simple case as we shall see latter, so our goal we be to "force WQ to drop" to the case
WQ=O.

6. Functions on idealistic spaces

6.1. In this section we define groves by glueing other groves and we also want to glue
functions.

In the last section we introduced and discussed some functions on groves insisting on
the fact that the values of these function at each point were expressible in terms of the
grove.

The moral of this will be that function on groves will glue when the groves themselves
glue.

1. (Etale topology and sheaves) Recall from 1.6.1. that the fiber product of smooth
maps /: Wi -> W is smooth and defines a smooth map on W, express formally the fiber
product of /i and /^ as W^QW^. Then (W^ UW^) UW3=Wi U(W2 UV^).
Formally, one can define a topology on W generated by these "sets".

Smooth maps of relative dimension zero over W form a subclass closed by intersections
([Ha], III, 10). And in our context these are the etale maps (since we assume all maps
to be of finite type over a field k of characteristic zero).

This subclass defines the etale topology on W ([Ha], III, 10.1 d) and [G4]).
If G is a grove over (W, E) and/: W^ -> W is etale, we attach to/a tree of length zero

(Wi, Ei) -> (W, E) (1.4) and to (W^, E^) a set G(Wi, EQ (^2.1.1). Furthermore our
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definition of restriction of trees (1.7 (&)) is suitable enough so that ultimately the grove
G on (W, E) defines a presheaf (of sets) on W with etale topology.

If G is an idealistic situation defined by a couple (J^f, b) on (W, E), then b) 5 .1 .1 can
also be phrased by saying that the value D^ (^^)/b (= w - ord (G) (x)) is expressable in
terms of the stalk of the presheaf at x.

2. (Patching functions). An etale neighborhood of a point xeW is a pair (W\, y),
^eW^ and an etale map /: W i - > W such that f(y)=x. The intersection of two
neighborhoods of x, say/^ : (W,, x,) -> (W, x)i= 1, 2 is an etale neighborhood of (W, x)
and also of (W,, x,) for i= 1, 2. Call it (W, x).

Now let G be a grove on (W, E) (W as before) and let (W,, E,) -^ (W, E) be the
transform of the pair by the smooth maps/^= 1, 2 (trees of length zero 1.4), and let G^
denote the "restriction" of G to (W,, E,) (2.5.3 (b)). Since the diagram of the fiber
product

Wi^———W
i i

W^—————W^

commutes the restriction G (of G to (W, E)) is also a restriction of the groves G,.
We shall say that two functions g^ on G^= 1, 2 with values on the same ordered set

(I, ^) will glue or patch if they induce the same function at any common restriction, in
particular at G.

Let T be a tree on G, there is a notion of restriction of T to trees T^ e G^ and T^ e G
(1.7 (A)), together with smooth maps (etale in case both/;, are etale)

(W,)Ti^— Wfi r2
WT ————(W,)^

an in these conditions SingGf=^~1 (Sing(G^) (2.3.1). Now set xeSing(G>r,
Xi e Sing (G^. and xe Sing Gf as before. Each g, is defined at x,, if we assume that
both g[s glue we want a natural definition of "^(x)".

Since they define the same map at Sing Gf (c= Wf), (g^(x)=(g^{x). On the other
hand both are function of groves so (g^^ (x^ = (^)f (x), ;=1,2, therefore
C^TiO"^ (^2^2(^2)- Define now g(x)=g^^ (for i= 1 or 2).

For a "covering" /;. : W,-»W(UImg/;=W) and a grove G on (W, E), set G .̂ the
restriction of G via f, (as before) and assume the existence of functions g, from G, to a
common set I so that all the g\ s glue. The associativity of the formal intersections
W .̂ Pi \Vy allow a consistent (and unique) definition of a function g from G to I so that
the g\s are "restrictions" of g, or equivalently that g is obtained by glueing or patching
the^.
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6.2. DEFINITION. - A grove G over a pair (W, E) is said to be an d-dimensional
idealistic space if there is:

(i) a system of "charts" {(Up,/p)}p^j; where/? : Up-^W are etale maps defining a
covering of W (in the sense of the etale topology).

(ii) for each (3eJ a closed immersion of pairs (2.6.1) (Zp, Ep) 4 (Up, Ep) where
(Up, E?) is the transform of (W, E) via/p (1.2.1 .B)). And any irreducible component
of the smooth scheme Zp is of dimension d.

(iii) for each (ieJ an idealistic situation Gp on (Zp, Ep) (2.4.6) such that

f(Gp)=Gup(2.6 .4)

where Gy is the restriction of G defined by the tree of length zero (Up, Ep) -> (W, E)
(2.5.3(^)).

6.2.1. REMARK. - With the setup be as in 6.2, let A denote the index set of (W, E)
and fix a subset A ' (c: A). If (W, E') is defined as in 2 .6 .1 .1 , then G induces naturally
a ^-dimensional idealistic space over the pair (W, E7).

6.3. LEMMA. — With notation as before, the immersion of pairs (Zp, Ep) in (Up, Eg)
defines (for each (3eJ) functions codim, oc(X), w-ord and ord at the grove Gy over
(Up, Ep) (4.2 and 5. 5). p

Proof. — Follows from 5.7, 4.6 and 4.2.

6.4. THEOREM. — The functions codim, a(^), w-ord and ord defined at each grove Gy
(over (Up, Ep)), glue to functions (called codim, a(^), w-ord and ord) at the grove G over
(W, E).

Proof. - Set formally UpnU§(p,8eJ) as in 6.1. There is an etale map
/: Up 0 U§ -> Up and by 2 .6 .2 a commutative diagram.

Zp,——u,,nup,
^ [fi

^—— Up,
Ji

where the vertical maps are etale and j\, j\ are closed immersions. Now 5.3 states
exactly that both immersions j[i= 1, 2 define the same function ord at the restriction of
the grove to Up^ n Up^. So they glue to a function on G.

As pointed out in 5.7, the functions a (k) and w-ord grow from the function ord so
thay will glue as well.

A similar argument can be used to glue the functions codim, however at each Ug.
codim reflects the codimension of the singular locus at Z, (not at Up^.).
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6.5. PROPOSITION. - Let G be an d-dimensional idealistic space over (W, E), then:
(i) w-ord is a strong function on G with values at Q (4.7).
(ii) Z^ T belong to G^_^ (4.9.1) W set Wo=Max w-ord G^. 77^n (G^-c^wo ^

^ d-dimensional idealistic grove over (W-r, E^) (4.14), and

Sing ((GT^ - o,d, wn == Max w - ord (G^)= { x e Sing GT//T (x) == Wp}.

(iii) ;/wo>0, ̂ ; Max ord ((G^-o^ wo)^ (5^).

Proo/. - Is consecuence of 5.9 and 4.11. We only need to check that a function
which is obtained by glueing strong functions is again a strong function, which is
immediate from the definition (4.7). The second part of (ii) follows from (i) and 4.14.

6.6. REMARK. — Since w-ord is a strong function we can apply 4.12. So let T be a
tree of G^_^ of length s. Then for any 1 ̂ k^s+ 1

Max w-ord G^ ̂  Max w-ord G^ ^

and the weighted-order birth of T is now the smallest index k such that
Max (w-ord) (G(^) = Max (w-ord) (G-r) (4.13).

6.7. Idealistic spaces of maximal order one. With the notation as in 6.2, assume that
for each index ReJ, the idealistic situation Gp over (Zp, Ep) satisfies the good condition
Maxord(Gp)==l(5.8).

6.7.1. OBSERVATION. - With the assumptions and notation as above, then Max
ordG=l.(4.3(i)). In fact the function ord(G) is obtained by glueing the functions
ord(Gp). Moreover in this case for any peJ the function ord( ) is constantly equal
to one along Sing(Gp) since in general ord(x)eQ^ 1 (5.5, 3).

6.7.2. DEFINITION. - If G is an rf-dimensional idealistic space on (W, E) and
Max ord (G) = 1 then set.

R (1) (or R (1) (G))== { x e Sing G/codim {x) == 1}

(see 3.7 and 6.4). Recall that if^eSingGp then codim(x)=l means that codim (Sing
Gp)^=l at Zp (4.2 and 6.4).

6.7.3. REMARK. - R(1)(G) is closed since codim ( ) is upper-semicontinuos, more-
over the subscheme R(l)(G)(c:SingG) is a smooth scheme of dimension d-\ and a
union of connected components of Sing G (see 3.8).

6.7.4. THEOREM. - With the setup and conditions of6.7 .2:
(i) Iff: W^->W is a monoidal transformation permissible for (W, E) (1 .2 .1 (a))

defining a tree of length one T : (W, E)^-(Wi, E^) of the grove G then R(l)(G.r) is the
strict transform of R (1) (G).

(ii) Iff: Wi -^W is a smooth map and T : (W^, E^) -> (W, E) the corresponding tree
of length zero. Then R (1) (G^) ==/ ~1 (R (1) (G)).
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(iii) 7/'R(1)(G)=0 and E=0 then G has a structure of a d— 1 dimensional idealistic
space.

Proof. — This result is essential for the inductive arguments. Let us go back to the
definition of idealistic spaces (6.2) and in order to simplify assume that there is only
one chart, so assume that Z is a smooth subscheme of W, that every irreducible
component of Z is of dimension d, that ; : (Z, E) -> (W, E) is an immersion of pairs and
that G is the idealistic situation defined by the couple (^f, b) over (Z, E).

To prove (i) apply first 2 .6 .3 and then (at Z) 3.9 (b). Analogously for the proof of
(ii) apply first 2 .6 .2 and then (at Z) 3.9 (a).

Similarly for (iii), the condition Max ord(G)=l is equivalent to condition 3.3.0 on
(J^f, b) (5.8.1) and now all conditions for 3.4 (b) are fulfilled since R (1) (G) = 0!!. So
we can choose a smooth hypersurface Zci-i at ^ ^d a couple at Z^-i as m ^ - 4 (b)
(locally at any singular point). The proof of (iii) is now clear.

6.8. The obstruction function n(x) ([Vi] 2.3.2). — In 2.7 we associated to a tree T
over a pair (W, E) (with index set A ), a subset A { T } c= A ^ (the index set of the
transform by T). Recall from 2.7 also the definitions of Ay(x), A {T}(.x) and Ey(x)
for xeWy.

6.8.1. DEFINITION. — Let G be a ^-dimensional idealistic space over (W, E) and T a
tree of length s at G^_^. Set A { T } = { ? ( ! ) , . . . , (P(^)}(c A ̂  and let
kQ e { 1 , . . ., s ] denote the weighted order birth of T (6.6).

(i) At the pair (Wy, E-r) (1.5) we define an expression of Ey as a disjoint union of
subset

E^E^ET

where E ^ = { H p ^ / P ( Q e A { T } and i^ko] and of course Ey is the complement of E^
in E-r.

(ii) Now set WQ = Max w-ord Gy == Max w-ord G^ (6.6). At any x e Sing (G)y define

n (x) == # [ H^ e E ^ / x e H^ ] (# number of elements of the set)

if x e Max w-ord (Gj) (4.3) (i. e. if w-ord (Gj) (x) = Wg), and

n (x) = # { H^ e ET/X e H^ if w-ord (GT) (x) < WQ.

(iii) Now define

^: Sing ((G)T) -^ Q x Z, t, (x) = (w-ord (x), n (x)).

Where d stands for the dimension of the idealistic space.

6.8.2. REMARK. — Along_Max w-ord (Gj) the first coordinate of ^ is constant, in
fact for x Sit Max w-ord (Gy): w-ord (x) = Max (w-ord (G-r)) (4.3 (ii)).
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6.8.3. LEMMA. — If T is a tree ofG^_^ and Wo=Max w-ord(G^) then:

(i) t^(x) and n(x) are locally finite and upper semicontinuous along Smg(G^)^_^ ^ .

(ii) Suppose that T is the concatenation of trees T^:;= 1, . . ., s (trees of length one)
so that T,:(W,, E,, C,)<"-(W,+i, E,+i). Then for any xeSmg{G^_^^\ w-ord
(n (x)) ̂  w-ord (x), and moreover if the equality holds then n (n (x)) ̂  n (x).

Proof. - Along the points of Sing(GT)^_ord,wo (Max w-ord (Gy) (4.14)) n(x) is
counting the hypersurface of Ey passing through x. The first coordinate of ^ is constant
so(i) is now clear.

This first part of (ii) follows from the fact that w-ord is a strong function on the
^-dimensional grove G over (W, E) (4.7, 6.5). If the equality holds then Max w-
ord(G-p)=Max w-ord(G[-r^) and in this case ICQ (the weighted order birth ofT) is also
the weighted order birth of [T] .̂

According to 6.8.1 in such case E-r consists of the strict transforms of elements of
E^, the second statement of (ii) follows easily from this fact.

6.8.4. PROPOSITION. — Let G be a d-dimensional idealistic space over (W, E), T a tree
o/G^_ord an^ Wo=Max w-ord(G-r).

Then the mapt^ defines a function (in the sence 0/4.1) on the grove (G-r)^-ord,wo (over

the pair (Wy, E-p)) with values at Q x J_. Moreover this function is a strong function (4.7).

Proof. — The first coordinate of ^ is w-ord(G^), which is constant (=^0) along
Sing (G^yy-prd. wn= Max (w-ord(GT)) (4.14). We study the behavior of the second
coordinate: n(x).

Let S be a tree of (G^^-ord.wo' ̂  concatenation T.S (of T with S) is also a tree of
Gw-ord- Moreover, either S is such that Max w-ord (Gys)<Wo in which case
Sing((GT)w-o^d,wo)s=0 or Max w-ord (G-r.s)= ^o an(! m ^is case the setup for T.S is
the exactly that of T, so for simplification set S.T=T.

If T is the concatenation of T^: (Wp E^, Q) <- (W^+i, E^+i) and T is a restriction of
T, then T is a concatenation of trees T^: (Wp E^, C^) <- (W^+i, E^+i) and there are trees
of length zero ^: (W^, E^) -> (Wp E .̂) so that all square diagrams commute (1.6.3). Since
w-ord is a function on G (6.5) for any xGSing(Gf)^_ord,wo [^"ACSn^GT^-ord,^
w-ord (Gj-) (r, +1 (x))= w-ord (Gf)(x)=Wo and the link defined by the tree of length zero
^^ (W,+i, E,+i) -> (W,+i, E^+i) also links the partitions as E,+i (=Ey) and £5+1
(= Ef) defined at 6.8.1. So n (x) = n (r,+1 (x)) and the proof follows now from 6.8.3.

6.8.5. REMARK. - The function n(x)\ SmgG^->Z was defined at 6 .8 .1 only for
trees T of G^_^. It is not hard to extend the formulation for any tree T of G as a
function on the grove G with values at Z. For simplification denote G^ as G^.
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Suppose that T is a concatenation of trees T,:(W,, E,, Q)^(W^i, C^) of length
one, we begin by defining subsets Ef (x) (c:E^.(x)) for any xeSingG,, i= 1, . . ., s+ 1:

1. Ef (x) = EI (x) (2.7) for any x e Sing G. Assume for k - 1 > 0 a definition of:
^-1. E^_i(x) (cE^i(x) (2.7)) for any xeSingG^.
k. If w-ord(x)==w-ord (^(x)) let E^ (x) (c:E^(x)) be defined as:

E^ (x) == {H,' e Efc (x)/H^ is the strict transform of H, e E .̂ i (7^ (x)) }

and if w-ord (x) + w-ord (TI^ (x)): E "̂ (x) == E^ (x).
Now we define: (a) ^ (x) = - 1 if n (^ (x)) == - 1 or if the function w-ord is not constant

along Q locally at n^ (x)-
(b) n (x) == # E^ (x) (^ 0) in any other case.
By construction /z (x) is locally finite and the same proof given in 6 .8.4 shows that

for a restriction T of T, the link defined by the tree of length zero r^^\ (W^+i,
Es+O-^O^+i, E,+i) also links E;-̂  (x)) (cE^x)) and E;^ (x) (cE^x)) for any
xeSingGf. So n(x) is a function on the grove G (4.1).

6.9. Two properties of the function ^([Vi] 2.7.3) Now we fix a tree TeG^.^a where
G is a ^-dimensional idealistic space over (W, E) (6.2).

Since /, is strong function from (G^-^.o to Q xZ (6.8.4), define ((G^^wo)^
as in 4.14 where a==(^o, ^o) (eQx2) is Max^ at Sing(GT\,-ord,wo- For simplicity
^(G^^((G^^^^

Property 1. - (i) The grove (G^a over (W-r, E-r) is an idealistic space of dimension
^=dimWT.

(ii) If Max w-ord(GT)>0, then Max ord ((G^^) = 1.

Proof. - Let the notation be as in 6.2 so that G is defined by "local charts"
(Zp,Ep)^(Up,Ep).

In order to simplify the notation we fix (3 and just consider (Z, E) -> (U, E). Gy was
i(G') where G7 is an idealistic situation over (Z, E) defined (say) by the couple (^f, b).

Since TeG^.^d? then TeG and there is an immersion (Z^, E^-^UT, E^) and a
transform (^, b) defining the idealistic situation at (Z^, E^) (2.6.4; 2.6.5).

Set (J, &)=(^T» b). Recall from the proof of 5.9 that in these conditions a couple
w(J, b) was defined (at Z^) so that (G^-or^o is the realistic space locally defined by
this couple and the immersion of Z^ in W^ (5.9 (ii)).

Again, since T(=G,,_^ there is a partition ET=E^ U E^ (6.8.1) so that the function
n: Sing^G^-o^v.o^1 is defmed ̂  ̂ O^ # {H^ET/^GH,}.

Now fix yeMaxt^. At the local regular ring 0^ y there is an element of order 1,
say x^ e 0 ,̂ y such that H^ === Sing « x,, >, 1) (locally at y). Set formally.

6 . 9 . 1 . 1 . ^(J^)-w(J,A)n 0 (^,1) ([Vi]2.7.1).
H ^ 6 E ~ (y)
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Here w(J, b) is a couple at ZT and each (x^ 1) a couple on WT. So we first want to
express 6 .9 .1 .1 as a couple at Z-p Applying 2.4 .9 and 2.4.10 one can express
(x^ 1)0 ZT as a couple on WT. Now 2.4.11 states that Zy has maximal contact with
this couple.

If we assume that (x^ 1) 0 ZT is strictly included in ZT (locally at y) then we apply
2.6.6, if not disregard that intersection so ultimately ^ (J, b) can be regarded as a couple
at ZT (and 6 .9 .1 .1 as an intersection of couples at Zr) at some neighborhood of
y. Moreover one can check that this couple at ZT is defining (G^ „ over (WT, Er) via
the immersion in WT (locally at y).

If Wo(=Max w-ordGT))>0 then 5.9 (iii) says that Max ord (G^-c^wo is L But

this means that the condition of Remark 1 of 5.8 hold for the couple w (J, b) (at Zr),
now the formula 6 .9 .1 .1 and 5.8,2 assert that Max ord ((G^\ oc)= 1 •

Property 2 ([Vi] cond. 1), 2), 3) and 4), p. 24). - Any tree of the grove (Gr)^ over
(WT, E^) is also a tree of GT over (WT, Er).

Proof. - Of course a tree of (Gr)^ a over (w^ KT) is also a tree of GT over
(WT, Er). The fact that we can disregard the subset E-f (<=Er) is because: 1. locally at
y e Sing (^ (J, b)) any center for a permissible transformation of this pair is contained in
all H^ET (see formula 6.9.1.1), and 2. n(y)= #ET (y) is upper semicontinuous along
SingG^_ord,wo an^ maximal along Sing(^(J, b)) (==Max ^).

From 1 and 2 one can check that for any closed irreducible subscheme C c= Sing (^ (J, b))
and for any H^ e ET , either C c= H), or C 0 H^ = <)).

6.10. Let T denote again a tree of length s of G^_^d where G is a ^-dimensional
idealistic space over (W, E) (6.2), ko denotes the w-ord-birth of T, WQ = Max ^-ord GT
(as in 6.8.1) and a== (w^, n^) is Max ̂ .

6.10.1. THEOREM. — IfwQ>0 and suppose that T ^ a concatenation of (only) monidal
transformations (so dim WT = dim W), then:

(a) R(I)((GT)^) ^ a smooth and permissible center for (a tree of) GT,(WT, Er).
(b) After blowing up R(I)((GT)^) we may assume that R(I)((GT)^(,) is empty.
(c) IfR(l) ((GT\^) is empty, then the grove induced by (G^\^ over (WT, E^) (6.2.1)

has a natural structure of a d— X-dimensional idealistic space.

Proof. - (a) Recall from 6.8 .1 that at ET there is a decomposition ET = ET U E^
where E^ is defined in terms of ko and consist of the hypersurfaces introduced by
blowing up Q, i=k^ ko+ 1, . . ., s- 1. Recall also that the grove (G^,^ was cons-
tructed from (GT^-ord.wo a^ the set ET as a ^-dimensional idealistic space satisfying
the nice condition of having maximal order 1 (6.9 Property 1).

Since Sing (G^^c Sing (G^- ord, wo (^^^r) a^d both are singular locus of idealistic
spaces of the same dimension d, then

R(I)(GT)^O^R(I)(GT),-^O
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and moreover any connected component of the first is a connected component of the
second as follows from 6.7.2 and 6 .7 .3 and since both are of the same dimension d— 1.

We may also assume from 6.7.3 that after a convenient open restriction at a neighbor-
hood of R (1) (G^,, „ (1.7.4):

6 . 1 0 . 1 . 1 . R(l)(GTL-ord,.o=R( l)(GT)^^

and

6.10.1.2. Sing(G^-^wo=RO)(GT)w-ord,wo

But R(l)(GT)w-ord,wo ls ̂  strlct transform (via the intermediate maps) of the smooth
scheme R(l) (G^)^_ord,wo (6.7.4(1)), so one can assume that the formula 6 .10 .1 .2
holds not only for T but for any truncation of T with index between ko and s. Therefore
ifH^eE^, H^O R(l)(GT)^-ord,wo ls ^her empty or transversal at each point, in fact in
this last case H^ arises by blowing up centers included in the intermediate strict transforms
of R (1) (G^_ord, wo (6 • 10.1.2). This shows that R (1) ((G^, „) is a permissible center
for (GT^ „ over (W^, E^). Now 2 of 6.9 settles (a).

(b) Follows now from 6.7 .4 (i).
(c) This is a local problem. For any x e Sing (Gy^oco ^et xk' denote the image of x at

Wfc/ (via the intermediate maps) where k' (= k' (x)) is the smallest index j such that

6.10.1.3. w-ord (Xj) == w-ord(x) == WQ.

Claim. — In general k' -^k^ but we may always identify the point x^ with a point of
Sing(GJ(c=WJ.

The proof of the claim follows from the facts that w-ord is a strong function (6.5),
that T is a tree of G^_ord Bnd finally from the definition of strong function (4.7). In
fact w-ord (x^) ̂  w-ord (x) (4.7B) and Max w-ord(G^)=Wo, therefore w-ord(x^)==^o-
So kQ^k\ but the intermediate centers of blowing ups (for kQ>j^k') are chosen in
Max w-ord and Max w-ord(G^)>Wo for any such j. The claim is now clear.

So actually we could have defined k' as k^ but the interest of the definition of k1 given
in 6 .10.1.3 will show up in the punctual description of the algorithm.

So as it stands x e Sing (Gj)^ ^ and x^eSing(G^)^_o,.d,wo- Since this grove is an
idealistic space of dimension d and of maximal order 1, we will argue as in 6.7.4(iii)
locally at x^ to find a smooth scheme of dimension d— 1: Z^-i (^^m^) so trlat xkfE^Jd-l
and Zd-i has maximal contact with the grove induced by the restriction of (G^)^_ord,wo
over the couple (W^, 0) in the sence of 6.2.1. In fact the selection of Z^-i wltrl

maximal contact with w (^\o, b) was given by an ideal s^ c: (9^ (as in 3.3) so that

Z^_i=Sing(j< 1) (locally at x^). Since (G^-ord^o is the transform of (G^_^d,wo
by the intermediate maps, Theorem 3.3 asserts that the transform of (^, 1), say ( s / ' , 1),
is in the same setup for (G^-ord, wo (^or w(^rT^ ^) a^ ^r)'

Set Z^_i=Sing(^, 1), Z;_i is the strict transform of Z^_i (2.4.10). Now the
formula 6 .9 .1 .1 shows that Z^_i will also have maximal contact with (Gj)^^ (locally
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at x). Moreover the hypothesis (R(l)=0) is such that condition of 2.6.6 will hold
for ^(J, b) sit (9^ and for Z^_^ so as to define a structure of d— 1 dimensional grove
for (G-r)yo, ao over ̂  PB13" O^r? 0)» locally at x. We claim however that this structure
can be defined over the pair (W^, E^). In fact after convenient restrictions we see that
Z^_i has transversal intersection with elements of E^ since all these hypersurfaces arise
by monoidal transformation with centers strictly included in Z^_i and it's strict
transforms by condition A. This proves (c).

7. Constructive resolutions

7.1 .DEFINITION ([Vi] 2.2). - A function defining a constructive resolutions on a grove
G with values at I is a function ^F from G to a totally ordered set (I, ^) in the sense of
4.1, such that ^F defines a tree of the grove

T: (Wi, E,, CO ^- (W^, E^, C,) ̂  . . . ̂  (W,, E,)

where: (i) the maps ^F^], : SingG^ -> I are upper semicontinuous,
(ii) each T^W^-n-^W^ is the monoidal transformation with center C^ where

C-Max^ir
(iii) (^) ^(^^^[TL.-I (^-iM), VxeSing G^, with equality iff x j C, = Max ̂ ip

in particular:
(6) Max^T],<Max^T],-i for any />! (4.3),
(iv) SingGT=0(atWT).
In general a tree T is said to be a resolution of the grove if T is a concatenation of

monoidal transformations (no smooth maps involved) and Sing Gj=0.

7.2. (the monomial case). Let G be a rf-dimensional idealistic space over (W, E)
(6.2). Recall that if T is a tree of G^-^ the functions w-ord (Gp^): Sing G^ -> Q are
such that Max w-ord (G^+ ̂  ̂  Max ^-ord(G^) fe= 1, . . ., r- 1 (6.6).

Assume now that Max w-ord Gy = 0. Since the grove G over (W, E) is a ^-dimensional
idealistic space, it is defined locally at W by a closed immersion of groves (6.2).

In order to simplify the notation assume that it is defined by one closed immersion
say (Z, E) <^ (W, E), that G is an idealistic situation induced by the couple (J^f, b) at
(Z, E) and that G=;(G) (notation as in 6.2).

Since T is a tree of G it induces a tree on (Z, E) and a couple (J^ ^) at (?T? ^-r)
defining GT (2.6.5).

The assumption that Max vv-ord (G-r) = 0 means exactly that:

7.2.1. J^T = n ̂  ̂ 'CZT (as a sheaf of ideals at ̂ 0 (5 •5)-

So J^-r ls locally monomial at Z-p In these conditions let us exhibit a constructive
resolution of the grove Gy over (W-r, Ey).
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Following Hironaka (see [HI], Lemma Dl p. 312) we first look at the irreducible
components of Sing (c^r, b) of maximal dimension, then choose among them those where
the order of the monomial is maximal (see a(x) and c(x) below).

The point is to follow Hironaka's procedure but with a function satisfying the condition
of 7.1. So we want to choose one of the irreducible components suggested by Hironaka
in a unique way (see P below).

Any index \ in 7 .2 .1 is an index of A { T } and this is a totally ordered finite set
(c Z). The same holds for the subsets A { T } (x) (2.7), so A { T } (x) c= A { T } c Z.

To any ordered set (I, ^) we "attach" a formal element: oo (00^72, V^el) .
Now set: a (x) = — b (x) (e T) where

b(x)==mm[k^i^<. . . < ̂ /S a (i,) (x) ̂  1} (e^J)

IfZ?(x)=&set

c(x)=max{aO\)W+ • • • + a (^) (x)A\ < . . . <^} (eQ)

Set [A { T j ^ C c t A {T^cZ^ "included in" Z^ via the inclusion

(a^ . . ., ^)->(^i, . . ., a^ oo, oo, oo, oo, . . .)).

And define:

P=(P,, . ... P,)=max{(P,, . . ., P,)/Pi> . . . >P,

and

a(P,)(x)+...+a(P,)(x)=c(x)

Where the order involved in the definition of P is the lexicographic order.
This is how we arrange these functions in [VJ 2 .3 .1 so that the maximal value is

reached at one of the irreducible components suggested before and clearly in the condi-
tions of 7.1, by a function, say ^(0), with values at the totally ordered set, say
1̂  (0) = Z x Q x Z^ ordered lexicografically.

7.3. THEOREM. — For each dimension d there is an ordered set 1̂  so that any d-
dimensional idealistic space G over a pair (W, E) (6.2) admits a constructive resolution
defined by a function ̂  with values at 1^(7.1).

Proof. — For d=0 we may choose Io==0 since any zero dimensional idealistic space
is non singular (i.e. SingG=0). In fact if dim Zp==0 (notation as in 6.2) then 0^ is
a direct sum of fields, our assumption J^f^O on 2 .4 .1 states that SingG=0.

Assume that the theorem holds for d~~ 1. We will first construct a tree of G say:

T: (W, E, CQ ̂  (W,, E^, Cy ^- ... <- (W,, E,)

which will ultimately satisfy (i), (ii), (iii) and (iv) of 7.1, in fact, we will first construct
T as a sequence of monoidal transformations, and then point out how it arises (as in 7.1)
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from a function on the grove. The construction and characterization of this particular
tree T is based on the conditions (A), (B), (C) and (D) given below.

In order to simplify the notation denote the transform of G by a ^-truncation (G^)
asGfe(2 .5 .3 , 1.7(^)).

(A) T is a tree ofG^_^. So

Max \v — ord G( ̂  Max w-ord G^ +1 (6.6)

(i) Now fix r ( e { 1, . . . , / ? } ) and let k' denote the weighted order birth of Gy. and
WQ = Max w-ord (G^) as in 6.6. Recall that the intermediate tree

S: (W^E^C^)-. . . -(W,E,)

is permissible for (Gk')w-ord,wo an(^ ^^i^ tnat (^r^w-ord^o ls tne transform of the first
by the tree S (6.5(ii)).

(B) If WQ=O, then Max w-ord (Gp^,)=0. Assume in this case that the procedure
defined by S (between k' and r) consit of the r — k ' steps of the procedure described at 7.2
making use of the upper semicontinuous function mentioned there.

(C) Ifwo>0, we will assume that the tree S is a tree of((Gk')^-^d,^o)td (6.8.4, 4.9.1).
Now set: (ii) oco = (Wo, n^) = Max (^)^ (e Q x T), and
(iii) ^==the ^-birth of [T],. (the smallest index ;' such that Max(^)^=oco==(wo, ^o))-

We denote the grove ((G,),_^. ̂  ,o (6.8.4, 4.14) by (G,),,, „.
Clearly k ' ^ k ^ r and by assumption the grove (Gfe)^_ord,wo (over (^fe' Efc)) ls tne

transform of (G^_ ord, wo (over (W^', E^.)) [both ^-dimensional idealistic spaces of
maximal weighted order one (6.5)].

Recall from 6.8 .1 that at E^ there is a decomposition E^ = E^~ U E^ where E^ is
defined now in terms of k' and consist of the hypersurfaces introduced by blowing up
Ci, i=k', fc '+l , . . ., k- 1. Recall also that the grove (G^^ was constructed from
(Gfc)^_ord,wo an(^ tne set ^k as a ^-dimensional idealistic space satisfying the nice
condition of having maximal order 1 (6.9 Property 1).

Now define ̂  :Sing(G^J^I,_i U {oo }; ^*-iW=cx) if xeR(l)(Sing(G,)^
[if codim (x) = 1 where codim is now a function on the grove (G^ ^ (6.4)] and
^J-iC^'^d-lOO6^--! ^ •^R(l), where ^.i is defined by inductive assumption
according to Remark 2.

So if R( 1)^0 the maximal value is reached there, Theorem 6.10.1 states that
R(1)(G^ ̂  is permissible as a center over the full pair (W^, E^) and moreover after
blowing up such center we may assume that R(l) (G^^=0.

We state now the last condition on the tree T as follows.
(D) If WQ>O, assume that the intermediate steps

(W,,E,,C,)-...-(W,E,)

were constructed by first blowing up R(l) ((G^^) and then in accordance to the resolution
of the d—\ dimensional space (G^^ao over CWfe? ^)-
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Remark 3. — Through this construction ofT, if W Q > O we can force HQ to drop. Since
HQ is always a natural number, at some point we force WQ to drop. So ultimately (and
uniquely) we come to the case WQ = 0 and therefore the construction of T comes to an
end by the procedure of 7.2.

Remark 4. — Now we come to the definition of a function ̂  and of the set 1 .̂ Recall
that in this theorem we expect v?^ to be a function on the grove G over a pair (W, E),
with values on a fixed ordered set 1^(4.1) depending only on the dimension (d). We
assumed inductively the theorem for d— 1 dimensional idealistic spaces and therefore the
existence of^.i and I^_ i .

In 6.8.4 ^ was defined as a function only on the groves of the form (GT)^_^d,wo
(where T a tree of G^_^ and ^o=Max w-ord(GT)) with values at Q x Z,

^ (x)= (n^-ord (x), n (x)); w-ord (x) e Q, and n (x) e Z.

Now 6.4 states that w-ord ( ) is a function on the full grove G and 6.8.4 states the
same for n ( ).

On the other hand in 7.2 we define a function of groves ̂  (0), for ^-dimensional
idealistic groves, say G' over (W, E'), with values at 1^(0) =Z x Q x Z^, but with the
additional hypothesis that Max w-ord (G')==0. Now if T' is any tree of G and xeSing
(GT') is such that w-ord (x) = 0, there is an open restriction of T7 locally at x at which
the condition Max w-ord (Gy.) = 0 is fulfilled by the upper semi continuity of w-ord (6.5
and 4.7). Now define:

I ,=(QxZ)xI , (0)xI ,_ ,

And for any tree T' of G and any xeSing(GT'):
(a) if w-ord (x) = 0, ̂  (x) =(0, oo, 4^ (0) (x), oo) (e (Q x Z) x I, (0) x I,_,)
(b) if w-ord (x) > 0 and n (x) = - 1 (see 6.8.5), set

^d (x)= (n^-ord (x), n (x) = — 1, oo, oo)

(c) if w-ord (x) > 0 and n (x) ̂  0 (^ 6.8.5), then

^ (x) = (w-ord (x), 72 (x), oo, ̂  i (x))

where ̂  i : Sing (G^ ao) -> 1̂  -1 U { oo } is defined as follows. If n (x) ̂  0 then (Z?) of
6 .8 .5 holds, and this case (b) has been so carefully selected that after a convenient open
restriction of T' we may assume:

(cl) TeG^-ord (anc! xeMax w-ord (G^/) since w-ord is upper semicontinuous 6.5
(0;4.7)

(c2) x e Max ^ (Gy) (6.8.4 and 4.7), so that ^ (x) = Max (^).
Therefore 6.9 applies for T and xeSing (G^)^,^), where oco = ̂  (x) = Max (^), and

(GT')(^ ao is a grove over (Wy, E^') as in Property 2) of 6.9. Now define:
^J_i (x)=^_i (x) if this last grove is the transform of a d- 1 dimensional grove (locally
at x) and
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^?-1 OO = °° m ^y other case.

Remark 5. — Now we come to an end by showing that the tree T constructed in 7.3
arises from the function ̂  (of remark 4) in the sence of 7.1. So T will denote that
tree and [T]^ denote the truncations.

Because of the way T was constructed one can check that for any ; and any xe
Sing(G^) only (a) and (c) of Remark 4 are possible when defining ^(x). Now one
can check both (ii) and (iii) of 7.1 from this and from the inductive assumption on
^PJ-i. Of course 7.1 (iv) holds by construction.

So now that we do know that T was constructed by chooseing inductively
Cj = Max ^TL> we w^ finally show why (i) of 7.1 also holds. Recall that ̂  can take
only finite different values along Sing(G[T],) tor any index i. Let {a ( l ) , . . ., a(^)}c=I^
be the subset of all those possible values for the different truncations.

It suffices to show that for any (3 e 1̂  and for any fixed index ;:

Fp={^eSing(G^.)/VF^TL•M^P}

is a closed subset of Sing(G^.).
For anyy^/ let n{:Wj->Wi be the composition of the intermediate blowing downs,

and finally set P (?) = {fc/Max ̂  00 ̂  P }•
Now applying 7.1 (iii) (a) one can check that

Fp=U ^(Max^J

where the union is taken over keP(P). Fp is closed since all n^ are proper maps and
the sets Q = Max ^F^it are closed.

7.4. Local idealistic presentation. — If X is a hypersurface embedded in a smooth
scheme W set ^ = I (X) c: (9^ the sheaf of ideals of the subscheme X and b the maximal
possible order of ^ at points of W.

The pair (^f, b) defines an idealistic situation and a constructive resolution of this
grove (7.1) is a sequence of monoidal transformation over W so that the final strict
transform of X (say X" included in W^), has maximal order smaller then b.

So if X is a reduced subscheme and b>\, this strict transform is not empty and
"closer" to a desingularization of X since the maximal order (b) has dropped.

And now we can start again with a new couple (o^f7, b') where V is the new maximal
order, and a pair (W^, R^) so that ^ ' <= (9^ and E^ consist of the hypersurfaces introduced
so far.

Now recall from 2.2 the notion of Hilbert-Samuel grove. The resolution of (J^f, b)
mentioned above is nothing but a resolution of a Hilbert-Samuel grove for the particular
case of a hypersurface. The following theorem of local idealistic presentation states
however that this situation is quite general. This perhaps the major simplification of
the theorem of resolution, proved in [Gl] for the analytic case and by J. M. Aroca in
the algebraic case. It is in this last case when etale topology comes in.
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7.5. Let W be a smooth scheme of dimension m at each irreducible component, and
X a subscheme of W with maximal Hilbert-Samuel function p . Therefore (W, X, p) is
in the setup of 2.2. Finally set E in any way so that (W, E) is a pair (1.1).

7.5.1.THEOREM (of local idealistic presentation). — With the setup and notations as
above, the Hilbert-Samuel grove of the data (W, X, p) (2.2) as a grove over (W, E) is
an m-dimensional idealistic space over (W, E) (6.2).

Let us point out the fact that since m is already the dimension of W the maps i^ of
6.2(ii) can be taken as the identity maps. Now we can apply our canonical resolution
of idealistic spaces.

7.6. APPLICATION TO RESOLUTION OF SINGULARITIES. — A result of Hironaka states that
resolution of singularities of embedded schemes X c: W is achieved by the resolution of
the Hilbert-Samuel groves ([H2], 3, Remark 2), on the other hand the theorem of local
idealistic presentation says that the Hilbert-Samuel grove is an idealistic spaces over the
pair (W, E) no matter what set E as in 1.1 is considered.

7.6.1. THEOREM. — Let X^cWi, X^cW^ be two immersions of schemes of finite type
over a field k, both W; smooth over k. Set x, a point of X^(i= 1, 2) and assume that
there is an isomorphism of k-algebras 9: ^xi,^i -> (9^^ ana tnat

dim^ Wi=dim^W2=w. Then there are etale neighborhoods U of x^eX,) which
undergo the same constructive resolution of singularities.

Proof. — First of all a corollary of Artin's approximation theory asserts that there is
a common etale neighborhood (X', x ) for both (X^, x ^ ) and (X^, x^) ([Ar], 2,
Corollary 2.6).

Set A^^w x- an^ ^i^^x , x - So ^x',^ ls ^e localization at x of an etale extension
of both AI and A^.

A simple application of the jacobian criterion for etale homomorphisms ([R] V, § 2,
Th. 5) is that the surjections A; -> A^ -> 0 can lift to two surjections S; -> ^x', x ' "̂  ^ m

such a way that homomorphisms A^ -> S; exist and are etale.
In particular each S, is a regular ring (f== 1,2) and we obtain two embeddings of X'

locally at x ' .

X'cW;; W;=Spec(S,)

and moreover dim^W^dim^W^.
Now the proof of the theorem is a consequence of the following proposition.

7.6.2. PROPOSITION. — Let X^'==l, 2 be two schemes which are isomorphic via a k-
morphism 9:Xi -^X^. Assume that X^c=W, (/=1,2) are immersions in smooth schemes
and that dim^(Wi)=dimQ^(W2) for any xeX^. Then the constructive resolution of
singularities over X^ (<=W^) coincides with that ofX^(czW^) via the isomorphism 9.

Proof. — Let x^ be a closed point in X^ and x^==Q(x^)GX^. Of course the functions
H1 and H1 - are the same and after convenient restrictions we may assume that-A.I, .x.1 -"-I' •''•2
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these are the biggest Hilbert-Samuel functions. Indeed the map Hx defined in 2.2 was
upper semicontinuous.

All functions that show up in the constructive resolution of idealistic spaces grow from
the functions ord ( ) (5.2).

In 5 .1 .1 the value ord (x) (e Q) was expressed in terms of the grove, moreover in
terms of the stalk of the grove at x(6.1.1). In fact in that proof some trees S(N. P)
were defined, where S (N, P) consisted of a sequence of monoidal transformations over
W x A 1 .

Now the embedding X^cW; lifts to an embedding X, x A1 c=W, x A1 and 9 lifts to an
isomorphism:

O x i d i X ^ x A ^ X ^ x A 1

From these remarks one can check that a tree S (N, P) belongs to the Hilbert-Samuel
grove at x if and only if it belongs to the Hilbert-Samuel grove at Q(x). So the value
ord(x) for one grove and ord(9(x)) for the other are the same. In other words: 9
defines an isomorphism between the Hilbert-Samuel groves (locally at x and 9 (x)), and
the correspondence between the stalks preserve the "expressions" of the values of ord(x)
and ord(9(x)).

Now as stated in the proof of 5.7, the functions a(T) and w-ord grow from the
functions ord( ) and one can check that the isomorphism that 9 defines between the
Hilbert-Samuel stratas of X^ locally at x^ commutes with the functions \|/^ defining the
constructive resolutions of both idealistic spaces. Then 9 maps isomorphically the sets
Max (4.3) of both functions and therefore lifts to an isomorphism at the strict transform
so that the set up after blowing-up is that of the very beginning, where now there is also
a natural identification of the exceptional hypersurfaces introduced.

The proof of the proposition follows from these remarks.

7.6.3. COROLLARY. — Given X^cWi as in 7 .6 A with X^ reduced, and G a subgroup
of Aut^(Wi) inducing an action on X^. Then G lifts uniquely to an action on the
constructive resolution o/X^ (c:W^).

8. The algorithm of resolution, examples

8.1. We follow the notation of 1 .5 .1 for a tree T of length s, over a pair (W\, E^),
let d denote the dimension of W\.

To begin with and to motivate ideas, assume that G^ is an idealistic situation (2.4.6)
defined by a couple (J^\, b) over (W^, E^). We assume that TeG^ [i. e. T is permissible
for (J^, b)] and will denote by (J^, b) the transform of (J^i, b) at (W^, E^) (2.4.3,4)
for l^A^+L

As in 5.4 we attach at each W^ an expression

8.1 .1 . J^HHi)13^. ..HH^i)^-1^.
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Recall that for any

x e Sing (J^, b): ord (G,) (x) = D, W/b

and
w-ord (Gfe) (x) = D^ (5\)/Z? (e Q ̂  5.5),

where G^ is the idealistic situation defined by (J^, ft) over (W^, E^).
Now we come to the main point: to exhibit the tree T of the constructive resolution

of GI over (W^, E^) as constructed in 7.3.
Condition (A) of 7.3 states that Max w-ovd (G^) ̂  Max w-ord (G^_ ^) (Max/= maximal

possible value of the function /, where / is a function with values at an ordered set
(4.3)). A condition which is fulfilled if the centers of the blowing ups involved in the
construction of the tree, say C^ (c=W^-), verify:

C, c= Max w-ord (G,) (c: W,) (where Max /= { x / f (x) = Max (/)})

A tree in this condition is said to be a tree of G^_ord (6.5, 4.9.1).
To characterize the tree T we first fix an index r and let now k' denote the w-ord-birth

of the truncation [T],. (4.13, 6.6) which means: k' is the smallest index j such that

Max w-ord (Gj) = Max w-ord (Gy)

1. If Max w-ord (G,)=0, then Max w-ord (G^)=0 or equivalently 2^(9^^ The
assumption in this case (Condition B of 7.3) is that the procedure over (W^, E^) defined
by T is that described at 7.2 (the monomial case).

2. If Max w-ord (G,.) = WQ > 0, then Max w-ord (G^) = ̂ o. For any r ' such that k' ^ r ' ̂  r
define on E^ a decomposition as a disjoint union E^ = E^ U E^~ where E^t consists of
the hypersurfaces of E^ that arised by blowing up C^ for i=k ' , k' -\-1, . . ., r ' — 1. And
for any such r ' define also ^: Sing (G^) - > Q x Z as in 6.8.1. We assume inductively
that

Max t, (G^ ̂  Max t, (G^ +0 ̂  . . . ^ Max t, (G,) (= ao = (wo, ^o))

Now let k denote the ^-birth of r (see (iii) of 7.3):

k= min [ j / k 1 ̂ .j^r and Max ̂  (G^) = (\VQ, no)}

Then Max^(G^) is a closed in W^, algebraic in our context, and if R(l) denotes the
subset of points of Max (^ (G^)) where this set has codimension 1 in W^, then R(l) is a
union of connected components of Max (^ (G^)). Therefore the expression

8.1.2. Max^(Gfc)=R(l)UF(cWfc)

is a disjoint union of closed sets.
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Canonical resolution boils down to the following (see 6.9 and 6.10):
(2 A) R (1) is smooth and a permissible center for G^ (W^, E^).
(2B) After blowing up R (1) we may assume that the new R(l) (that defined

analogously for the transform of G^ (W^, E^)) is empty. In particular if F^0, this is
already a resolution of the grove.

(2C) If R (1) is empty, there is a naturally defined d- 1 dimensional idealistic space
(G,)^; (W,, E^) such that:

(2C (i)) Sing ((G^ J = Max t, (G^) == F (ofcodim > 1 in W,, at any point).
(2C(ii)) The concatenation (say T) of [T]^ with any tree of (G^^, (W^, E^) is also

a tree of G^_^ (in particular of G^, (W\, E^)).
(2C (hi)) For any T as before Max^ (G^^oco and the equality holds iff the singular

locus of the transform: ((G^ ̂ , is not empty, in which case

Sing ((G,^ JT' = Max (^ (G^)) (= { x e Sing (G^)/^ (x) == oco})

MORAL: In case 2) R (1) is the center par excellence, and after blowing up R (1), the
lowering of Max(^)=oio is equivalent to the resolution of a d— 1 dimensional idealistic
space: (G,)^,(W,,E^).

Condition (D) of 7.3 states that the tree between the levels k and r, defined by the T,
consists of the blowing up at R (1) in the first place (if not empty of course), and then
in accordance to the resolution of the d- 1 dimensional: (G^^, (W^, E^).

The Remark 3 of 7.3 states that the lowering of Max(^) implies resolution.

8.2. REMARK. - Although we started 8.1 considering an idealistic situation, in 2(C)
we are forced to deal with the more ample notion of idealistic spaces, the need of this
ample notion already shows up in the theorem of local idealistic presentation (7.5). So
of course the problem of patching is a central issue.

The notion of idealistic space of dimension d was introduced in 6.2, where G is a
grove over a pair (W, E) and there is a "covering" of W and closed immersions. So
the setup is not exactly that of 8.1, the datas (W^, E^) are to be replaced by closed
immersions (Z^, E^) -> (W^, E^). Now W^ belongs to the covering, Z^ is a smooth and
closed subscheme of dimension d, and the expression 8 .1 .1 is now a product of scheaves
of ideals at (9^.

We defined functions on groves in such a way to extend the role of the function codim,
w-ord, ^, etc. (4.1, 4.2) which allows an extension of 8.1 to the general case of d-
4imensional idealistic spaces. The smooth centers chosen either in case 1) or in case 2),
are now smooth centers at the (smooth) scheme Z^, therefore smooth at W^.

8.3 (On the punctual description and local uniformizations). Let G be a grove over a
pair (W, E) which is an idealistic space of dimension d. Let T denote the tree of the
constructive resolution of G, we express now the function defining the constructive
resolution at any singular point of G,, (W,, E,) (the transform by the r-truncation [T],)
;. e. for x e Sing G, we want to express ̂  (x) (e 1^). For any index j^r let Xj denote the
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image of x=x, (eW^) at W .̂, via the intermediate blowing downs. Since the tree T is
constructed from ^F as in 7.1, either X y + i is an exceptional point over Xj after blowing
up at (x^Max^T], if ^m/^-) = Max ̂ ^ or ^[T]/^-) ̂  Max ̂ T], and then x,=x^i.
Disregarding those indices where the second case occurs, and renumbering increasingly
those left, then the sequence of local blowing ups is defined again by the function T by
blowing up at the locally closed and smooth (x^Max^] •• T^is is how constructive
resolutions define "constructive resolutions along valuation rings" or local uniformiz-
ations. The point is that now these local algorithms patch.

With notation as in 8.1 and 8.2, fix x (= x,) e Sing (J^f,, y»c:Z,c=W,:
1. w-ord (G^) (x) = 0. This means that at (9^ the expression of 8 .1 .1 is such that

(<§Uc== ̂ z,, ^- ^is is within case (a) of Remark 4 of 7.3, and

^ (x) = (w-ord (G,) (x) = 0, 0), T, (0) (x), oo) (e (Q x Z) x I, (0) x I,.,)

so ¥^ (x) depends essentially on the values ̂  (0) (x) which is defined in 7.2 (the monomial
case) ([Vi], 2.8, p. 26).

2. w-ord(G,.)(x)=H^>0. This means that \)^S^=b.Wo>0 (i)^: the order in the
usual sence at the local regular ring ̂  ^). We are in case (c) of Remark 4 of 7.3, and

^ (x) = (w-ord (x), ^ (x), a), ̂ , (x)); ^_,: Sing (G,),, J ̂  I,., U { oo }

Since the first coordinate of the upper semi continuous map T^. is the map w-ord (Gj)
in general ^-ord(x^)^w-ord(x^+i) (7.3iii)). As in 6.10.1.3 let x^ denote the image
of x at Wfc/ (via the intermediate maps) where k\ == k' (x)) is the smallest index j such
that:

w-ovd (xj) = w-ord (x) = WQ.

So D^, (5'fe') = b. WQ and furthermore for any k'^j^r.
(i) u^.(^.)=Z?.Wo for any k ' ^ j ^ r , and
(ii) x^.eMaxT^(c:Max w-ord(G^)), or x^.=x^+i and then try with j =j + 1.
Now we make use the notation and conventions of 6.8.5 to study the values n(x)

for k' ̂ /^ r. It is clear that E^ (x^) = E^ ̂ ,) (since w-ord (x^ -1) > w-ord (x^)), and for
any/>^:

E7(x,)={H^E,(x,)/H; the s.t. ofH,eE;-_,(x,_,)}.

Sincew(x,)=#E7(x,):

tA^k1)^' • • ̂ d^j)^ • • • ^^(^r)(=ao=(^ ^o))-

Set A:=min [ j / k ' ^ j ^ r and ^(x,.)=ao}. In 6 .9 .1 .1 (in 5.9) a couple ^(J^, b) [a
couple w(J^,Z?)] at Z^cW^) is defined so that Sing ̂  (^, 6) = Max ̂
[so that Sing w (J^, Z?)= Max w-ord] locally at x^. Recall that 8 .3.1
^(J^, ̂ -^(^ &)n c= (x,, 1) where Sing (x,, l)=H,eE,- (x,).

(iii) Clearly Sing (/, (^f,, b)) c= Sing w (J^,, b).
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We know from 5.9 that in this case (wo>0)w(c^\/, b) fulfills the condition 3.3.0
locally at x^ at Z^ [see 5.9 (iii)]. So let ^(c^,) be in the conditions of 3 .3 and set
H^/ == Sing (e^, 1) which is a smooth hypersurface ofZ^ containing x^.

From (i) and (ii) we know that w(^^, b) is the transform of w(^\, &) by the
intermediate transformations. So let (j^\ 1) be the transform of (e^, 1) at Z^, now
Theorem 3.3 states that the setup for ^ ' and w (J^, b) is the same as that of ^ and
w(^/, A). And now from 8 .3 .1 we see that ^ ' is also in the setup of 3.3 for the
couple t^^b).

Now set Hfc=Sing(ja^, 1) which is a smooth hypersurface of Z^. Theorem 3.3
together with 2.4.10 (i) state that H^ is the strict transform of H^ and that the centers
of these blowing ups are included in the intermediate strict transforms of H^. On the
other hand E^ (x^) (c= E^ (^)) consists exactly of the hypersurfaces that arise by the local
blowing ups between Xy and x^ So (H^; E^) -> (Z^; E^) is a closed immersion locally
at^.

(2 A) if codim of Sing ^ (J^\, Z?) (= Max ̂ ) at x^ is 1 in Z^, then x^ ==x^ +1. . . == x,. (= x)
and T^ (^) (=^_,(^))= (X) ([Vi] 2-8-p. 26).

(2 B) if codim of Sing ^ (J?\, Z?) (=Max ^) at Xj, is < 1 in Z^, we first apply 3.4 for
the immersion (H^; 0) c; (Z^; 0), which, as pointed out before is extensive so the
immersion (H^; E^) c^ (Z^; E^) locally at x^. In this way we define a ^— 1 dimensional
idealistic space (G^ ̂ , ̂ ^ over (W^, E^). For any k^j^r.

(iv) x, e Max ̂ T], (^ Max ̂  (G,.) == Sing (G,.),̂  ̂ ^ ̂ ), or .̂ = x^ ^ and try with j =7 + 1.
(v) the grove (G,)̂ )̂ over (W,, E^) is the transform of (G^(^^ over

(W,, E^).
Now x, e Sing (G,)^ ̂ ^ ^^ and ̂  e Sing (G^),^ ̂ ^ ̂  so set ^?_ i (x,) as ̂ _ ^ (x,) where

we assume this last value known by inductive assumption ([Vi], 2.10, p. 30).

REMARK 8 . 4 . — The function w-ord is an extension of the function ord. Our strategy
consists in forcing the condition Max w-ord (G^) = 0, in this case

J^=I (HO P ( l ) . . . I (H ,_O P ( f e - l )

what we call the monomial case, which is already a very simple case. However if Max-
ord(G^) is 1, then one can check that all exponents P(0=0 and all functions w-ord(G^)
coincide ith the functions ord (G,) and furthermore for any index s, either Sing (GJ is
empty or again Max ord (G^) = 1. But of course our procedure of resolution of idealistic
spaces still applies here too.

Let X c^ W be a closed immersion where (W, E) is a pair (1.1) and we also assume
that X is an irreducible and smooth subscheme of W. As in 2.4.10 set s/ (c^^y) the
sheaf of ideals of X and consider the idealistic situation G defined by (^, 1) over
(W, E). This is a case in which Max ord G= 1 and of course X= Sing(j^, 1). So along
the tree T of the constructive resolution of G over (W, E) we will never come to the
case of weighted order zero. But still we will force the pairs Max ^(G[T].) to drop again
and again, for the different truncations [T]^, where the first coordinate (Max ordGrri.) is
always equal to 1.
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Suppose furthermore that X is not included in any hypersurface of E, then for some
truncation [T]̂  we reach the case

Max^(G^)=(l,0).

If Xfc denotes the strict transform of X at W^, then X^ (=Sing(^T]^ 1) 2.4.10 is
smooth and moreover one can check that Xj^ now has normal crossings with E^.

This is in general the role of the obstruction function n (x) (6.8) along a smooth
subscheme of the singular locus: it tells you how far it is from a sufficient condition for
being permissible (1.2.1 (a)).

REMARK 8.5. - Let GI be idealistic space over (W^, E^). If Max w-ord(Gi)=l and
EI is empty, then:

(a) Maxr,=(l,0).
(b) Max fa)= Sing (GQ.
(c) If T denotes the tree of the constructive resolution of G^, (W\, E^) and G^,

(Wfc, E^) the transform by the different truncations, then both (a) and (b) hold for G^,
(W,, E,).

So in this case the lowering of Max ̂  already implies resolution.
In fact in the case of Max ord G i = = l and E^=0, ^ is constant along SingG^ for

any k:

Sing Gfc = Max w-ord G^ == Max ^ (G^) = Sing (G^, „ for a = (1,0).

since clearly Gfe=(Gfe)^^ for all k. So after blowing up R(l) we are solving a d—\
dimensional idealistic space. This will be the case in our two examples where E^ = 0,
dim \V\=af=3 and Max ordGi=l so we will be concerned with a resolution of a 2-
dimensional idealistic space.

If d= 1 the resolution reduces of course to quadratic transformation.

8 . 6 . — Let X be a singular subscheme of a smooth scheme W of dimension m and p
the biggest Hilbert Samuel function along closed points at X.

The theorem of local idealistic presentation (7.5.1) together with the existence of
constructive resolutions of idealistic spaces (7.3) states that there is a sequence of
monoidal (permissible) transformation over X so that the biggest Hilbert-Samuel function
drops. In doing so a number of hypersurfaces with normal crossings appear, but we
can start again and force the new biggest Hilbert-Samuel function to drop according to
7.5.

Now if X is irreducible all these permissible transformation induce a sequence of
monoidal (birational) transformations over X and ultimately we come to a resolution of
singularities X^(crW^) on the one hand (see [H2], Remark 2, p. 72) and to a set E,. of
hypersurfaces with normal crossings at W,..

The theorem of embedded resolutions requires {Xy} [j E^ to have normal crossings.
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Now the setup for the immersion X,. q^ W,. and E^ is that of 8.1.2, and this is how
embedded resolution is achieved.

Example 1 (Constructive resolution of the Whitney umbrella):

W=Spec(fe[Xi, X2, X3]); E=0; ^=</>,

/=Xj-XiXj; 6=2; ^=<X3>

(X3= 1/2 3/73X36 A1 (JSf)); Z=Spec (A;[X,, X^]^)) (Z, 0) c; (W, 0) is an
immersion of pairs (2.6.4). And finally Gi is the idealistic situation defined by the
couple (Xi Xj, 2) over (Z, 0). First check that all the condition are given as in 3.3
and 3.4.

If F is a closed subscheme of W, then I(F) (<=<Pw) denotes the associated sheaf of
ideals. We also denote by F any strict transform of this set.

At each level k we will define:
(a) the transform (J^, 2) of(^, 2)=(XiXj, 2).
(b) the expression J^HH^^. . .I^.i)1^-1^^^).
(c) the center Cj^ (= Max ̂ F^ as in 7.2 (i))
k=l: Set F i = { X i = o V F 2 = { X 2 = 0 } (c=Z), (X^Xj, 2)=(I(FO I(F^2, 2)=(J^, 2)

and/?=FinF2.
Now Sing(J^, 2)=F^ ^(GQ (^)=(3/2,0) and ^(GQ (x)=(l,0) VxeF^^/?}.
SoCl=MaxxF=/?.
k= 2: ̂  = I (Fi) I (F2)21 (Hi) and 2\ = I (FQ I (F^)2. Now F^ U F2 = 0 and

Sing(^,2)={FinHi}UF2.

Set ^i == Pi 0 Hi, ^2 == F2 U Hi, then

H^-ord (€2) toi) = 1/2 (< w-ord (TT (q,) =p) = 3/2) w-ord (€2) (^2) = 1 (< 3/2),

and since the weighted order drops: n(q^)=n (q^)= 1 (look at the formulation of n(x) at
6.8.5). Therefore

^(G2)tei)=(l/2,l)

^(G2)(^)=(l,l)

so €2=^2-
fc=3: J^3=I(Fi) I(F2)2 I (Hi) I H2), ^3=I(Fi) I(F2)2.

Sing (€3) = F2 U { H i U H2} U { H i U Pi}.

Se t r i=HinH2, r2=HinF i (=^) .
w-ord (€3) (ri)=0 (monoidal case).

^(G3)0-2)=(^(G2)toi)=(l/2,l)
^(G3)M=(1,0) for any x e P ^ '
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So now €3=^2.
fe=4: ^-KFi) I (HO I (H,), ^4=I(Fi). Sing (GJ^H, 0 H, } U { H , U F^}.
S e t ^ = H i n H 2 ( = r i ) ^ = H i U F^ (=^=^). Now

^2 (G4) (^2)= (1/2, 1) and w-ord (€4) (^) = 0.

Therefore €4=^-
k=5: J2f5=I(Fi) I(Hi) I(H2), ^5=I(Fi). SingC^, 2 )=HiHH2 so Max w-ord

G^ == 0, and the singularity is solved setting €5 = H^ H H^.

Example 2 (lifting a group action to the resolution). — Let the setup be as in Example 1
replacing/by ^=Xj—X^Xj , now Z/2Z is acting by interchanging x^ and x^. And
(^,&)=(X?Xi2).

The point now is to check is that all center C^ are invariant by the inductive lifting of
the action at the level k.

^l^^HF^HF,)2.
Sing(^,2)=FiUF2. Set

^=FinF,.^(GO(^)=(2,0), ^(G,)(x)=(l,0)

V xe Sing Gi - [p}. So Ci =/?.
k=2: J^=I(F,)2 I(F^)2 I (HQ2; ^=I(Fl)2 I(F^2, Sing G,=¥, U F ^ U H , .
Set q, = Pi U Hi, q^ = F^ 0 Hi, then:

^(G^^^GO^-ai)

^ (G,) (x)= (1,0), VxeF,UF2-{^,^}; w-ord (G,) (^ == 0, V^eHi-{^,^}.

S o C 2 = { ^ , q^}
k=3: ^3 = I (F,)21 (F,)21 (HQ21 (H^2

^HF^HFO2, S ingG3=F,UF2UH,UH, ,

w-ord (G3)>0 only for xeP^ U F^. Now ^(Ga) (^)=(1,0) for any x along F^ U F^.
So C3=Fi UF^.
A:=4: J^4=I(H02 I(H02; 2'^ (9^ we are in the monoidal case (Max w-ord==0) and

condition (B) of 7.3 says that ̂  is now determined as in 7.2.
Now check that Max ̂  = H;, (= €4)
A:=5: J^5=I(H02. Now €5= Hi and the resolution is achieved.
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