
On free integral extensions generated by
one element

IRENA SWANSON, Department of Mathematical sciences, New Mexico
State University, Las Cruces, USA. E-mail: iswanson@nmsu.edu

ORLANDO VILLAMAYOR, Departamento de Matemáticas, Facultad de
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Let R be a commutative integral domain with unity, and θ an element
of an extension domain satisfying the relation

θd = a1θ
d−1 + a2θ

d−2 + · · · + ad−1θ + ad,

with ai ∈ R. We assume throughout that R[θ] ∼= R[X]/(Xd −
∑d

i=1 aiX
d−i),

where X is an indeterminate over R.
Suppose that R is a normal domain with quotient field K, and K ⊂ L

an algebraic extension. Let R be the integral closure of R in L, and fix
θ ∈ R. There is information on the element θ encoded in the coefficients
ai. The first example arises when characterizing if θ belongs to the integral
closure of the extended ideal IR, for some ideal I in R. The objective of
this paper is to study more precisely what information about θ is encoded
in the coefficients ai.

In a first approach, in Section 2, we show that for an ideal I in R, ai ∈ Ii

for all i implies that θnR[θ] ∩ R ∈ In for all n, but that the converse fails.
Thus contractions of powers of θnR[θ] to R contain some information, but
not enough.

We turn to a different approach in Sections 3 and 4, where we replace
contractions by the trace functions (the image of θnR[θ] in R by the trace
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function), and it turns out that if θ is separable over K, then the Trace codes
more information.

The main results in this paper are:
a) Propositions 3.6 and 3.8 with conditions that assert that θ belongs to

the integral closure of an extended ideal, and
b) Propositions 3.12 and 3.14 with conditions that assert that θ belongs

to the tight closure of an extended ideal.
In all these Propositions we fix an ideal I ⊂ R and consider the extended

ideal I.R[θ]. It should be pointed out that normally the condition for θ to
belong to the integral closure of I.R[θ], is expressed in terms of a polynomial
with coefficients in the ring R[θ]; whereas we will express the same fact but
in terms of a polynomial with coefficients in R; furthermore, in terms of the
minimal polynomial of θ over R in case R is normal.

We also point out that we start with an ideal I in R, and an element θ
in R, and we study if θ belongs to integral or tight closure of the extended
ideal, but only for the extension R ⊂ R[θ]. This situation is however quite
general, at least if I is a parameter ideal. In fact, given a complete local
reduced ring (B,M) of dimension d containing a field, and with residue field
k, and given a system of parameters {x1, . . . , xd}, then B is finite over the
subring R = k[[x1, . . . , xd]]. Furthermore an element θ ∈ B is in the integral
closure (in the tight closure) of the parameter ideal < x1, . . . , xd > B, if and
only if it is so in < x1, . . . , xd > R[θ].

Throughout the previous argumentation there is a difference between
characteristic zero and positive characteristic. The point is that our argu-
ments will rely on properties of the subring of symmetric polynomials in a
polynomial ring.

The relation of symmetric polynomials with our problem will arise and
be discussed in the paper. We will show that the properties of θ that we are
considering can be expressed in terms of symmetric functions on the roots
of the minimal polynomial of θ, and hence as functions on the coefficients ai

of the minimal polynomial.
If k is a field of characteristic zero and S is a polynomial ring over k,

the subring of symmetric polynomials of S can be generated in terms of the
trace; however this is not so if k is of positive characteristic. In Section 4
we address the pathological behaviour in positive characteristic, and we give
an example in which R is a k-algebra, k a field of positive characteristic,
and the k-subalgebra generated by all the Tr(θn), as n varies, is not finitely
generated.

We try to develop our results in maximal generality, in order to distin-
guish properties that hold under particular conditions (e.g. on the charac-
teristic of R, separability of θ over K, etc.).

Our arguments rely on a precise expression of the powers θn of θ in
terms of the natural basis {1, θ, θ2, . . . , θd−1} of R[θ] over R. This is done in
Section 1 by using compositions, that is, ordered tuples of positive integers.



Similarly, we also develop a product formula for elements of R[θ] in terms of
the natural basis.

1 Power and product formula

Every element of R[θ] can be written uniquely as an R-linear combination
of 1, θ, θ2, . . ., θd−1. In this section we develop formulas for the R-linear
combinations for all powers of θ, and for linear combinations of products.

Definition 1.1 Let e be a positive integer. A composition of e is an
ordered tuple (e1, . . . , ek) of positive integers such that

∑

ei = e. Let Ee

denote the set of all compositions of e.

For example, E1 = {(1)}, E2 = {(2), (1, 1)}, E3 = {(3), (2, 1), (1, 2), (1, 1, 1)}.
We will express θn in terms of these compositions. Without loss of gen-

erality we may use the following notation:

Notation 1.2 For i > d, set ai = 0.

Definition 1.3 Set C0 = 1, and for all positive integers e set

Ce =
∑

(e1,...,ek)∈E e

ae1
ae2

· · · aek
.

Remark 1.4 It is easy to see that for all e > 0, Ce = C0ae + C1ae−1 + · · · +
Ce−1a1.

Proposition 1.5 For all e ≥ 0,

θd+e =

d−1
∑

i=0

(C0ad+e−i + C1ad+e−i−1 + C2ad+e−i−2 + · · · + Cead−i) θi.

Proof: The proof follows by induction on e. When e = 0, the coefficient of
θi in the expression on the left above is C0ad−i = ad−i, so the proposition
holds for the base case by definition.

Now let e > 0. Then

θd+e = θd+e−1θ

=
d−1
∑

i=0

(C0ad+e−i−1 + C1ad+e−i−2 + C2ad+e−i−3 + · · · + Ce−1ad−i) θi+1



=

d−2
∑

i=0

(C0ad+e−i−1 + C1ad+e−i−2 + C2ad+e−i−3 + · · · + Ce−1ad−i) θi+1

+ (C0ae + C1ae−1 + C2ae−2 + · · · + Ce−1a1) θd

=

d−1
∑

i=1

(C0ad+e−i + C1ad+e−i−1 + C2ad+e−i−2 + · · · + Ce−1ad−i+1) θi

+ Ce

d−1
∑

i=0

ad−iθ
i =

d−1
∑

i=0

e
∑

j=0

Cjad+e−i−jθ
i.

Recall that ai = 0 if i > d. Thus in the expression for θd+e in the
proposition above, many of the terms Cjad+e−i−j are trivially zero.

We similarly determine the product formula:
Let f =

∑d−1
i=0 fiθ

i, g =
∑d−1

i=0 giθ
i be two elements in R[θ]. Write fg

as an R-linear combination of 1, θ, . . . , θd−1. (Here, fi = gi = 0 if i < 0 or
i ≥ d.)

fg =

2d−2
∑

i=0

d−1
∑

k=0

fkgi−kθ
i

=
d−1
∑

i=0

d−1
∑

k=0

fkgi−kθ
i +

2d−2
∑

i=d

d−1
∑

k=0

fkgi−kθ
i

=

d−1
∑

i=0

d−1
∑

k=0

fkgi−kθ
i +

d−2
∑

e=0

d−1
∑

k=0

fkgd+e−kθ
d+e

=
d−1
∑

i=0

d−1
∑

k=0

fkgi−kθ
i +

d−2
∑

e=0

d−1
∑

k=0

fkgd+e−k

d−1
∑

i=0

e
∑

j=0

Cjad+e−i−jθ
i

=

d−1
∑

i=0

d−1
∑

k=0



fkgi−k +

d−2
∑

e=0

fkgd+e−k

e
∑

j=0

Cjad+e−i−j



 θi

=
d−1
∑

i=0

d−1
∑

k=0

fk



gi−k +
d−2
∑

e=0

gd+e−k

e
∑

j=0

Cjad+e−i−j



 θi.

We will use this expression mainly for the cases when fg ∈ R. Then the
coefficients of θi in the expression above, for i > 0, are 0, and the constant



coefficient is

d−1
∑

k=0

fk

(

g−k +

k−1
∑

e=0

gd+e−k(C0ad+e + C1ad+e−1 + · · · + Cead)

)

= f0g0 +
d−1
∑

k=0

fk

k−1
∑

e=0

gd+e−kCead.

2 Contractions

In this section we examine implications between ai ∈ Ii for all i, and θnR[θ]∩
R ∈ In for all n, where I is an ideal of R. In case R is an N-graded ring
with R = R0[R1] and I = R1R, then ai ∈ Ii is equivalent to saying that
deg(ai) ≥ i. (The two statements are not equivalent in general.)

We examine how under some N-gradings on R, the degrees of the ai affect
and are affected by the degrees of the elements of θnR[θ] ∩ R.

Proposition 2.1 With set-up on R, a1, . . . , ad and θ as in the introduction,
if I is any ideal of R and ai ∈ Ii for all i, then θnR[θ] ∩ R ∈ In for all n.

Similarly, if R is an N-graded regular ring with ai an element of R of
degree at least i, then for all n ≥ 0, θnR[θ] ∩ R is an ideal all of whose
elements lie in degrees at least n.

Proof: First let n < d. Let g =
∑d−1

i=0 giθ
i be such that θng ∈ R. By the

product formula from the previous section, the constant coefficient of θng is

δn0g0 +
d−1
∑

k=0

δkn

k−1
∑

e=0

gd+e−kCead,

where δij is the Kronecker delta function. If n = 0, the proposition follows
trivially, and if n > 0, θng is a multiple of ad, so it is in Id ⊆ In.

Now let n ≥ d. Write n = d+e. Let g ∈ R[θ] such that θd+eg ∈ R. Write

θd+e =
∑d−1

i=0 fiθ
i. By assumption each ai is in I i, so that each ae1

ae2
· · · aek

lies in I raised to the power
∑

ei. Thus each Ce is in Ie. It follows that the
coefficient fi of θi in the expression of θd+e above is in Id+e−i. Then by the
product formula the constant part of θd+eg is in I raised to the power

min{deg f0,deg(fkCead)|k = 0, . . . , d − 1; e = 0, . . . , k − 1}

≥ min{d + e, d + e − k + e + d|k = 0, . . . , d − 1; e = 0, . . . , k − 1} = d + e,



which equals n. This proves the proposition.

However, the converse does not hold in general:

Proposition 2.2 Let R be a regular local ring with maximal ideal m, and
let a1, . . . , ad be a regular sequence. Then for all n ≥ 0, θnR[θ] ∩ R ⊆ mn

(yet the ai need not be in progressively higher powers of m).

Proof: Let n ≥ 0 and f a non-zero element of θnR[θ] ∩ R. Write f =
θn(s0+s1θ+· · ·+sd−1θ

d−1) for some si ∈ R. Let s = s0+s1θ+· · ·+sd−1θ
d−1.

For each non-negative integer n, repeatedly rewrite each occurrence of θd

in θn · s as
∑d

i=1 aiθ
d−i until θns is in the form

∑d−1
i=0

∑d−1
j=0 bijsjθ

i for some

bij ∈ R. In other words,
∑d−1

i=0

∑d−1
j=0 bijsjθ

i is the reduction of θn · s with

respect to the polynomial θd −
∑d

i=1 aiθ
d−i. Set Bn to be the d × d matrix

(bij).

Note that if θns reduces to
∑d−1

i=0

∑d−1
j=0 bijsjθ

i, then θn+1s reduces to the

same polynomial as
∑d−1

i=0

∑d−1
j=0 bijsjθ

i+1. But this is

d−2
∑

i=0

d−1
∑

j=0

bijsjθ
i+1 +

d−1
∑

j=0

bd−1,jsj

d
∑

i=1

aiθ
d−i.

Thus the first row of Bn+1 is ad times the last row of Bn, and row i of Bn+1,
with i > 1, equals row i − 1 of Bn plus ad−i+1 times row d of Bn.

Note that B0 is the identity matrix. Then by induction on n one can
easily prove that for all n ≥ 0, detBn = ±an

d .
Now let Cn be the submatrix of Bn obtained from Bn by removing the

first row and the first column. We claim that for all n ≥ 1, detCn =
±an−1

d−1 + pn for some pn ∈ (a1, . . . , ad−2, ad).
As B0 is the identity matrix, then C1 is the identity matrix, and the

claim holds for n = 1. Suppose that the claim holds for n ≥ 1. Let Ri be
the ith row of Bn after deleting the first column. Then

Cn+1 =















R1 + ad−1Rd

R2 + ad−2Rd
...

Rd−2 + a2Rd

Rd−1 + a1Rd















.

Then modulo (a1, . . . , ad−2, ad), as R1 is a multiple of ad,

det(Cn+1) ≡ det















ad−1Rd

R2
...

Rd−2

Rd−1















= ±ad−1 det















R2

R3
...

Rd−1

Rd















= ±ad−1 det Cn,



so that the claim holds by induction.
We have proved that det(Bn) = ±an

0 6= 0. As Bn(s0, s1, . . . , sd−1)
T =

(f, 0, . . . , 0)T , by Cramer’s rule s0 = ±f det(Cn)/an
d . But det(Cn) and ad

are relatively prime, so that as s0 ∈ R, necessarily f is a multiple of an
d .

Thus f ∈ mn.

3 Trace

In the previous section we showed that ai ∈ Ii for all i implies that θnR[θ]∩
R ∈ In for all n, but that the converse fails. In this section we analyze the
situation when the contraction is replaced with the trace function. Namely,
we prove that the condition ai ∈ Ii for all i implies that Tr(θn) ∈ In for all
n, that the converse fails in general, but holds in several cases, for example
in characteristic 0, see Proposition 3.6. Other special cases of the converse
assume that θ is separable over R.

We start by proving the positive results. We first introduce some more
notation. Throughout this section let k be a ring; in our applications it will
be either the ring of integers, or a field, and R will be a k-algebra. (This
imposes no condition on R if k is the ring of integers.) Let Yi, i = 1, . . . , d
and Z be variables over k. Consider the polynomial

(Z − Y1) · · · (Z − Yd) = Zd − s1 · Z
d−1 + · · · + (−1)dsd

in k[Y1, . . . , Yd, Z], where si = si(Y1, . . . , Yd) denotes the elementary sym-
metric polynomials. It is well known that k[s1, . . . , sd] ⊂ k[Y1, . . . , Yd] is the
subring of invariants by permutations, that the extension is finite, and hence
that k[s1, . . . , sd] is also polynomial ring over k.

Since each si is homogeneous of degree i in the graded ring k[Y1, . . . , Yd],
a natural weighted homogeneous structure is defined in the polynomial ring
k[s1, . . . , sd] by setting deg(si) = i, which makes the inclusion an homoge-
neous morphism of graded rings.

Remark 3.1 Set vi = Y i
1 + Y i

2 + · · · + Y i
d , for i ≥ 0. Then k[v1, v2, . . .] ⊂

k[s1, . . . , sd], and since each vi is homogeneous of degree i in k[Y1, . . . , Yd],
the inclusion is homogeneous by setting deg(vi) = i. In other words, vi =
vi(s1, . . . , sd) is weighted homogeneous of degree i in k[s1, . . . , sd]. Let us
finally recall that when k is a field of characteristic zero, then k[v1, . . . , vd] =
k[s1, . . . , sd].

Remark 3.2 The ring k[s1, . . . , sd][Θ] = k[s1, . . . , sd][Z]/ < Zd−s1 ·Z
d−1 +

· · · + (−1)d.sd > is a free module of rank d over k[s1, . . . , sd]. The trace of
the endomorphism, on this finite module, defined by multiplication by Θi, is
the weighted homogeneous polynomial vi ∈ k[s1, . . . , sd] mentioned above.



In fact there are d different embeddings σi : k[s1, . . . , sd][Θ] → k[Y1, . . . , Yd]
of k[s1, . . . , sd]-algebras, each defined by σi(Θ) = Yi, and the trace (of the
endomorphism) of any element Γ ∈ k[s1, . . . , sd][Θ] is

∑

σi(Γ).

Remark 3.3 Any primitive extension over a ring R, say

R[θ] = R[Z]/ < Zd − a1 · Z
d−1 + · · · + (−1)d.ad >

is

k[s1, . . . , sd][Z]/ < Zd − s1 · Z
d−1 + · · · + (−1)d.sd > ⊗k[s1,...,sd]R,

where k denotes here the ring of integers, and φ : k[s1, . . . , sd] → R defined
by φ(si) = ai. By change of base rings it follows that the trace of the
endomorphism of R modules defined by θi : R[θ] → R[θ] is φ(vi(s)). When
R is a normal domain with quotient field K, and θ is an algebraic element
over K with minimal polynomial Zd−a1 ·Z

d−1 + · · ·+(−1)d.ad ∈ R[Z], then
the trace of the endomorphism θi : R[θ] → R[θ] is Tr(θi), where Tr denotes
the trace of the field extension K ⊂ K[θ]. In what follows, for an arbitrary
ring R, we abuse notation and set Tr(θi) = φ(vi(s)).

Remark 3.4 Fix an ideal I in a k-algebra R. Suppose that a weighted
homogeneous structure on the polynomial ring k[T1, . . . , Td] is defined by
setting deg(Ti) = mi, and let G(T1, . . . , Td) be weighted homogeneous ele-
ment of degree m. If φ : k[T1, . . . , Td] → R is a morphism of k-algebras and
φ(Ti) ∈ Imi , then φ(G) ∈ Im.

Now we can finally prove that the analog of Proposition 2.1 holds also
for the Trace function:

Proposition 3.5 Let I be an ideal of R. Assume that for each i = 1, . . . , d,
ai ∈ Ii. Then Tr(θn) ∈ In for all positive integers n.

Proof: The polynomial Zd−
∑d−1

i=0 aiZ
i is the image of Zd−

∑d−1
i=0 (−1)i+1siZ

i

by the morphism φ : k[s1, . . . , sd] → R, φ(si) = (−1)iai ∈ Ii, so we may ap-
ply Remark 3.4.

The converse holds easily when k is a field of characteristic zero:

Proposition 3.6 If the ring R contains a field, say k, of characteristic zero
then ai ∈ Ii for i = 1, . . . , d if and only if Tr(θn) ∈ In for 1 ≤ n ≤ d.

Proof: The proof follows from the proof of previous Proposition and the
second assertion in Remark 3.1.



Furthermore, the converse holds in a much greater generality, see Propo-
sition 3.8 below. We first introduce some conditions, and show some impli-
cations among them, culminating in Proposition 3.8.

Let R be an excellent normal domain, and K the quotient field of R.
Normality asserts that if θ is a root of a polynomial Zn+b1 ·Z

n−1+ · · ·+bn ∈
R[Z], then the minimal polynomial of θ over K is also in R[Z]. For an ideal
I in R we study the following conditions:

Condition 1): The minimal polynomial of θ, Zd + a1 · Z
d−1 + · · · + ad,

is such that ai ∈ Ii.
Condition 2): The minimal polynomial of θ, Zd + a1 · Z

d−1 + · · · + ad,

is such that ai ∈ Ii, the integral closure of I i.
Condition 3): The element θ satisfies a polynomial equation Zn + b1 ·

Zn−1 + · · · + bn, for some n, all bi ∈ Ii.
Condition 4): θ is separable over K and TrK[θ]/K(θi) ∈ I i.
It is clear that 1) implies both 2) and 3).

Proposition 3.7 Condition 3) implies Condition 2).

Proof: : (Case I principal) If I =< t > is a principal ideal and Condition
3) holds, it follows that θt−1 is an integral element over the ring R. If
Zm + c1Z

m−1 + · · · + cm ∈ R[Z] denotes the minimal polynomial of θt−1; it
is easy to check that Zm + tc1Z

m−1 + t2c2Z
m−2 + · · ·+ tmcm is the minimal

polynomial of θ over R. Hence, even Condition 1) holds in this case.
(The general case) Assume that, for some n, the element θ satisfies a poly-

nomial equation Zn+b1Z
n−1+ · · ·+bn, all bi ∈ Ii. Let Zd+a1Z

d−1+ · · ·+ad

denote the minimal polynomial of θ. We claim that ai ∈ Ii. Let S be the
integral closure of the Rees algebra R[It, t−1] of I. Here t is a variable
over R. As R is excellent, S is still Noetherian, excellent, normal. Its quo-
tient field is K(t). The minimal polynomial of θ over K(t) is the same
as the minimal polynomial of θ over K. Also, θ satisfies the polynomial
equation Zn + b1Z

n−1 + · · · + bn, all bi ∈ IiS = (It)it−iS, so that θ is in-
tegral over the principal ideal t−1S. By the principal ideal case then all
ai ∈ t−iS ∩ R = In.

Proposition 3.8 If θ is separable over K, and Tr(θr) ∈ Ir for all r big
enough, then Condition 3) holds. In particular, Condition 2) holds.

Proof: Let R be a normal ring with quotient field K, and set L = K[θ],
where θ has minimal polynomial f = Zd +a1Z

d−1 + · · ·+ad with coefficients
in R. So {1, θ, . . . , θd−1} is a basis of R[θ] over R.

For each index j = 0, 1, . . . , d− 1 we define Tr(θj .V ) as a K-linear func-
tion on the variable V , say Tr(θj.V ) : L → K. In addition {Tr(θj.V ) | j =
0, 1, . . . , d−1} ⊂ HomR(R[θ], R) is a subset of the R- dual of the free module
R[θ].



We will assume that the extension K ⊂ L is separable, namely, that
the discriminant ∆f of the minimal polynomial f is non-zero in K (actually
∆f ∈ R), and we now argue as in [3] (Prop 11, page 40). Recall that setting
N = (ni,j) the d × d matrix where ni,j = Tr(θi.θj), then ∆f = det(N) .
Since ∆f 6= 0 and {1, θ, . . . , θd−1} is a basis of L = K[θ] over K, it follows
that {Tr(θj.V ), j = 0, 1, . . . , d − 1} is a basis of L∗ = HomK(L,K).

Let T denote the free R-submodule in L∗ generated by {Tr(θj.V ) | j =
0, 1, . . . , d − 1}. So T ⊂ HomR(R[θ], R) is an inclusion of two free R sub-
modules in L∗. Since the functor HomR(−, R) reverses inclusions

R[θ] = HomR(HomR(R[θ], R), R) ⊂ HomR(T,R) ⊂ L.

Let {ωi, i = 0, 1, . . . , d−1} be the dual basis of {Tr(θj.V ), j = 0, 1, . . . , d−1}
over the field K; it is also a basis of the R-module HomR(T,R). Further-
more, for any element β ∈ L :

β =
∑

i

Tr(θi.β)ωi

is the expression of β as K-linear combination in the basis {ωi, i = 0, 1, . . . , d−
1}. Note also that if β ∈ R[θ], all Tr(θi.β) are elements in R.

Set R[θ] = Rd by choosing basis {1, θ, . . . , θd−1}, and HomR(T,R) = Rd

with basis {ωi, i = 0, 1, . . . , d − 1}, so the inclusion R[θ] ⊂ HomR(T,R)
defines a short exact sequence

0 → Rd → Rd → C → 0

where C denotes the cokernel of the morphism given by the square ma-
trix N = (ni,j) mentioned above. Since ∆f = det(N) it follows that
∆f .HomR(T,R) ⊂ R[θ]; in fact ∆f ∈ Ann(C).

Assume that for some ideal I ⊂ R, Tr(θr) ∈ Ir and all r big enough. In
order to prove that Condition 3) holds we first note that

θr =
∑

i

Tr((θ)i+r).ωi ∈ Ir.HomR(T,R).

In fact, for r big enough:

Jr =< Tr(θr), T r(θr+1), . . . , T r(θr+d−1) >⊂ Ir

in R. But then,

∆fθr ∈ Ir · ∆f · HomR(T,R) ⊂ IrR[θ]

for all r big enough. This already shows that θ is in the integral closure of
IR[θ] (integral closure in the ring R[θ]). That means that θ satisfies a poly-
nomial equation Zn + b1.Z

n−1 + · · · + bn ∈ R[θ][Z] with bi ∈ J i, J = IR[θ].



As in [4] (page 348), this is equivalent to the existence of a finitely generated
R[θ] submodule, say Q, in the field L, such that θ · Q ⊂ J · Q. In fact Q
can be chosen as the ideal (J + θ · R[θ])n−1 in R[θ]. Finally, since Q is a
finitely generated R[θ]-module, it is also a finitely generated R-module. On
the other hand note that J · Q = I · Q, and Condition 3) follows now from
the determinant trick applied to θ · Q ⊂ I · Q.

Corollary 3.9 If θ is separable over a local regular ring (R,m), then
Tr(θn) ∈ mn for all n big enough if and only if ai ∈ mi for all i = 1, . . . , d.

However, this equivalence fails in general for arbitrary rings and arbitrary
ideals. The converse fails, for example, if θ is not separable over R:

Example 3.10 Let k be a field of characteristic 2, d = 2, a1 = 0. Then
Tr(θn) = 0 for all n, but a2 need not be in I2.

Another failure of the converse is if the powers of I are not integrally
closed:

Example 3.11 Let R = k[X,Y ] be a polynomial ring in two variables X
and Y over a field k of characteristic 2. Let I be the ideal generated by
X8, X7Y,X6Y 2, X2Y 6, XY 7, Y 8, and the minimal equation for θ being

θ2 − X8θ − X11Y 5.

Note a1 = X8 ∈ I, a2 = X11Y 5 6∈ I2, but X11Y 5 · I ⊆ I3. Hence

Tr(θ) = X8 ∈ I,

T r(θ2) = X8 Tr(θ) + Tr(X11Y 5) = X16 ∈ I2,

and for n ≥ 3,

Tr(θn) = X8 Tr(θn−1) + X11Y 5 Tr(θn−2) ∈ In.

Set as before the ideals Jr =< Tr(θr), T r(θr+1), . . . , T r(θr+d−1) > in R.
Note that {θr, θr+1, · · · , θr+d−1} generate the ideal θrR[θ] as R module, so
that Jr is the image of this ideal by the trace map.

If R is of characteristic p > 0, and I =< f1, · · · , fl >, then I [pe] denotes
the ideal < f pe

1 , · · · , fpe

l >⊂ R.

Proposition 3.12 Let θ be separable over a local regular ring (R,m) of
characteristic p. If Jpr ⊂ m[pr] for all r big enough, then θ is in the tight
closure of the parameter ideal m.R[θ].



Proof: We apply the same argument as in the previous Proposition. Note
that in this case

θpr

=
∑

0≤i≤d−1

Tr((θ)i+pr

).ωi ∈ m[pr].HomR(T,R).

But then,
∆fθpr

∈ m[pr] · ∆f · HomR(T,R) ⊂ m[pr]R[θ]

for r big enough. This already shows that θ is in the tight closure of mR[θ]
(tight closure in the ring R[θ]).

Example 3.13 Consider R = k[y, z] where k is a field of odd characteristic,
and set R[θ], θ2 − a2 = 0, where a2 = y3 + zn, n ≥ 7, n some integer.
We will prove that Jr ⊆< ypr

, zpr

>. Here {1, θ} is a basis of R[θ] over R.
Tr(1) = 2 (invertible in k), and Tr(θ) = 0. Since the trace is compatible with
Frobenius, Tr(θpr

) = Tr(θ)pr

= 0, so it suffices to check that Tr(θpr+1) ∈<
ypr

, zpr

> . Set pr + 1 = 2k, so (θ)pr+1 = ak
2, and Tr(θpr+1) = 2ak

2 . We
finally refer to [1], page 14, Example 1.6.5, for a proof that ak

2 ∈< ypr

, zpr

>
if n ≥ 7 and r is sufficiently large.

Proposition 3.14 Assume that θ is separable over a local regular ring
(R,m) of characteristic p, and let ∆ denote the discriminant. If θ is in
the tight closure of the parameter ideal mR[θ] (in a ring containing R[θ]),
then ∆.Jpr ⊂ m[pr] (in R) for all r.

Proof: Let f(X) ∈ R[X] denote the minimal polynomial of θ. Recall that
the resultant ∆ ∈< f(X), f ′(X) > ∩R (in R[X]), and hence ∆ ∈< f ′(θ) >
in R[θ]. Since f ′(θ) is a test element, ∆ is a test element, and

∆.(θ)pr

∈ m[pr]R[θ]

for all r.
Note that R[θ] ⊂ HomR(T,R) (hence m[pr]R[θ] ⊂ m[pr]HomR(T,R)),

and that, choosing as before the basis {ω0, ω1, . . . , ωd−1} in HomR(T,R):

∆θpr

=
∑

0≤i≤d−1

∆. T r((θ)i+pr

).ωi ∈ m[pr].HomR(T,R),

which shows that ∆.Jpr ⊂ m[pr] in the ring R.

4 The subalgebra of R generated by Tr θn, n ≥ 0

Let R and θ be as before, so that R[θ] ∼= R[X]/(Xd +
∑d

i=1(−1)iaiX
d−i).

Assume now that R is an algebra over a field k. It follows from Remarks 3.1



and 3.3 that if k of characteristic zero, the k-subalgebra generated by the
traces Tr θn for all n, is k[a1, · · · , ad](⊂ R). In particular it is finitely gener-
ated. This subalgebra need not be finitely generated over a field of positive
characteristic, as we show below.

First we recall some notation. Let Bn be the matrix as in the proof of
Proposition 2.2. The trace of θn is exactly the trace of Bn.

Remark 4.1 In the proof of Proposition 2.2 we showed that the first row
of Bn+1 is ad times the last row of Bn, and row i of Bn+1, with i > 1, equals
row i − 1 of Bn plus ad−i+1 times row d of Bn.

We determine the entries of Bn more precisely:

Lemma 4.2 For n ≤ d,

(Bn)ij =

{

δi,j+n if j ≤ d − n,
∑j−1

k=d−n+1 aj−k(Bn)ik + an−i+j if j > d − n.

Furthermore, for all j > d − n,

(Bn)ij = (Bd)i,j−d+n.

Proof: We proceed by induction on n. The formulation is correct for n = 0.
Thus we assume that n > 0. By Remark 4.1 the formulations of the entries
of Bn in the first d − n + 1 columns are correct: in the first d − n columns,
the entries are δi,j+n, and (Bn)i,d−n+1 = ad−i.

Now let i = 1, j > d − n + 1. Then

(Bn)1j = ad(Bn−1)dj

= ad





j−1
∑

k=d−(n−1)+1

aj−k(Bn−1)dk + an−1−d+j





=

j−1
∑

k=d−n+2

aj−kad(Bn−1)dk + adan−1−d+j

=

j−1
∑

k=d−n+2

aj−k(Bn)1k + (Bn)1,d−n+1aj−(d−n+1)

=

j−1
∑

k=d−n+1

aj−k(Bn)1k

=

j−1
∑

k=d−n+1

aj−k(Bn)1k + an−1+j



as n − 1 + j > d so that an−1+j = 0. Now let i > 1, j > d − n + 1. Then

(Bn)ij = (Bn−1)i−1,j + ad−i+1(Bn−1)dj

=

j−1
∑

k=d−(n−1)+1

aj−k(Bn−1)i−1,k + a(n−1)−(i−1)+j

+ ad−i+1





j−1
∑

k=d−(n−1)+1

aj−k(Bn−1)dk + a(n−1)−d+j





=

j−1
∑

k=d−n+1

aj−k(Bn−1)i−1,k + an−i+j + ad−i+1

j−1
∑

k=d−n+1

aj−k(Bn−1)dk

(because for k = d − n + 1, (Bn−1)i−1,k = 0 and (Bn−1)dk = 1)

=

j−1
∑

k=d−n+1

aj−k(Bn)ik + an−i+j.

Observe that the last statement is true for j = d−n+1. Then by induction
on j > d − n + 1,

(Bn)ij =

j−1
∑

k=d−n+1

aj−k(Bn)ik + an−i+j

=

j−1
∑

k=d−n+1

aj−k(Bd)i,k−d+n + an−i+j

=

j−d+n−1
∑

l=1

aj−l−d+n(Bd)il + an−i+j

= (Bn)i,j−d+n.

It then follows

Corollary 4.3 Whenever 1 ≤ n ≤ d,

Tr(θn) =
n−1
∑

i=1

an−i Tr(θi) + nan,

and Tr(θn) is a polynomial in a1, . . . , an, homogeneous of degree n under the
weights deg(ai) = i.



Proof: By definition, Tr(θn) = Tr(Bn) =
∑d

i=1(Bn)ii, and by Lemma 4.2
this equals

Tr(θn) =

d
∑

i=d−n+1

(Bn)ii =

d
∑

i=d−n+1

(Bd)i,i−d+n =

n
∑

j=1

(Bd)d−n+j,j,

i.e., this is the sum of the elements of Bd on the nth diagonal, counting from
the bottom leftmost corner. Hence,

Tr(θn) =

n
∑

j=1

(

j−1
∑

k=1

aj−k(Bd)d−n+j,k + ad−(d−n+j)+j

)

=

n
∑

j=1

j−1
∑

k=1

aj−k(Bd)d−n+j,k + nan.

Now we change the double summation: c sums over the differences j − k,
and k keeps the same role:

Tr(θn) =
n−1
∑

c=1

n−c
∑

k=1

ac(Bd)k+c+d−n,k + nan

=
n−1
∑

c=1

ac

n−c
∑

k=1

(Bd)k+d−(n−c),k + nan

=
n−1
∑

c=1

ac Tr(θn−c) + nan.

For n ≥ 0 let Cn be as in Definition 1.3. We adopt the notation that for
n < 0, Cn = 0. Then for n ≥ 0, let Pn be the row matrix [Cn, Cn−1, . . . , Cn−d+1],
and for each n = 1, . . . , d, let

Fn =

d−1
∑

i=0

ad+n−1−i Tr(θi).

Let ~F be the vector (F1, . . . , Fd). With this we can give another formulation
of the trace of powers of θ:

Lemma 4.4 For each e ≥ 0,

Tr(θd+e) = Pe · ~F .



Proof: By Proposition 1.5,

Tr(θd+e) =
d−1
∑

i=0

e
∑

j=0

Cjad+e−i−j Tr(θi) =
e
∑

j=0

Cj

d−1
∑

i=0

ad+e−i−j Tr(θi)

=

e
∑

j=e−d+1

Cj

d−1
∑

i=0

ad+e−i−j Tr(θi) =

e
∑

j=e−d+1

CjFe−j+1

= Pe · ~F .

Now we can give an example of a k algebra R, and θ as before, where k
is a field of positive characteristic, and the subalgebra of R generated over
k by Tr(θn) as n varies is not a finitely generated algebra (compare with
Remark 3.1):

Example 4.5 Let k be a field of positive prime characteristic p, d = p, and
a1, . . . , ad indeterminates over k, R = k[a1, . . . , ad]. Let A = k[Tr θ, T r θ2, . . .].
It follows from Remark 3.3 and Remark 3.1 that A ⊆ R. But this A is not
finitely generated over k, as we prove below.

For each n ≥ 1, let An = k[Tr θ, T r θ2, . . . , T r θn].
Claim: For each n ≥ 0 and l ∈ {0, . . . , d − 1}:

Adn+l = k[aia
j
d| either j < n or else j = n and i ≤ l].

We will prove this by induction on n. It holds for n = 0 by Corol-
lary 4.3. Thus by the definition of the Fi and by Corollary 4.3, all Fi are in
all A(n+1)d+l. Furthermore, each Fi is linear in ad.

By Lemma 4.4, Tr(θ(n+1)d+l) equals

Cnd+lF1 + · · · + Cnd+1Fl + CndFl+1 + Cnd−1Fl+1 + · · · + Cnd−(d−i−1)Fd.

By the structure of the Ci, ad appears in Ci with exponent at most i/d. Thus
the summand Cnd−1Fl+1 + · · · + Cnd−(d−i−1)Fd lies in A(n+1)d+l−1. Also, in
the expansion of the summand Cnd+lF1 + · · · + Cnd+1Fl, in each term ad

either appears with exponent n or smaller, or else it appears with exponent
exactly n + 1 and is multiplied by one of the variables a1, . . . , al−1. Thus
also this summand lies in A(n+1)d+l−1. Thus

A(n+1)d+l = A(n+1)d+l−1[CndFl+1].

Fl+1 is linear in ad with leading coefficient Tr(θl). Cnd equals an
d plus terms

of lower ad-degree, so that similarly, by Corollary 4.3,

A(n+1)d+l = A(n+1)d+l−1[a
n
dad Tr(θl)] = A(n+1)d+l−1[a

n+1
d lal].

This proves the claim. As a1, . . . , ad are variables over k, this means that A
is not finitely generated over k.



As an almost immediate corollary we can give another proof of Proposi-
tion 3.8 in a special case:

Proposition 4.6 Let d = p, i.e., the degree of the extension is the same as
the characteristic of the ring. Assume that Xd −

∑d
i=1 aiX

d−i is a separable
polynomial. Let v be any valuation v : R → N ∪ {∞} such that v(x) = ∞ if
and only if x = 0. Then v(Tr(θn)) ≥ n for all n if and only if v(ai) ≥ i for
all i.

Proof: With notation as above, one can prove by induction on nd + l that
v(an

dal) ≥ nd + l. In particular, for l = 1, . . . , d − 1, v(al) ≥ l. Also,

v(ad) =
1

n
(v(an

dal) − v(al)) ≥
1

n
(nd + l − v(al))

for all n and l. As at least one v(al) is finite (by the separability assump-
tion), it follows that v(ad) ≥ d.
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