Real Sociedad Matem�tica Espa�ola

Cultivad la ciencia de los números porque nuestros crímenes no son más que errores de cálculo. Pitágoras.
 
Logo RSME
En portada
La Sociedad
Publicaciones
Actividades científicas
IEMath
Redes y Grupos Temáticos
Premios y Becas
Olimpiadas
Divulgamat
El Árbol de las Matemáticas
RSME-IMAGINARY
Mujeres y Matemáticas
Oportunidades profesionales
Educación
Enlaces
La RSME es miembro de...

Acceso tienda






¿Recuperar clave?
Regístrese aquí

Tienda virtual

Facsímiles Libros Otras publicaciones Hazte socio Donaciones
Mostrar pedido Su Pedido está actualmente vacío.
domingo, 26 de marzo de 2017
noticiasaccesibilidadcontacta

Número 19-3 de La Gaceta PDF Imprimir E-Mail
Ya está disponible la versión electrónica del número 19-3 (2016) de La Gaceta de la Real Sociedad Matemática Española. Se puede consultar en la dirección gaceta.rsme.es. Este año, La Gaceta dedica sus portadas a Gottfried Wilhelm Leibniz (1646–1716) con ocasión del tricentenario de su fallecimiento, que se celebra en Alemania como Año Leibniz.
La imagen de la portada es la primera página del primer artículo que Leibniz publicó con sus descubrimientos sobre cálculo diferencial.
Concluimos la conmemoración del tricentenario del fallecimiento de Gottfried Wilhelm Leibniz hablando de la que sin duda es la mayor aportación de Leibniz a las Matemáticas: el descubrimiento —otros dirían la invención— del cálculo diferencial e integral. No entraremos en el debate sobre si la prioridad es suya o de Newton, pero sí recordaremos que los símbolos ∫ y d  que utilizamos hoy en día, e incluso el mismo nombre cálculo diferencial, se deben a Leibniz, y aparecen publicados por primera vez en los artículos de los que hablaremos a continuación.
Según la biografía de Leibniz en MacTutor, comenzó a trabajar en su versión del cálculo en 1673, cuando estaba en París. Usó por primera vez la notación ∫ f(x) dx el 21 de noviembre de 1675, en un manuscrito que incluía también la fórmula para la derivada de un producto. Para el otoño de 1676 ya conocía la fórmula d(xr) = rxr−1 dx, tanto para exponentes enteros como fraccionarios. Leibniz publicó el primer artículo con sus descubrimientos en octubre de 1684, en el número X de Acta Eruditorum (pp. 467–473). En él presentaba el cálculo diferencial, y el propio nombre «cálculo» procede de su título completo, Nova methodus pro maximis et minimis, itemque tangentibus, quae nec fractas, nec irrationales quantitates moratur, et singulare pro illis calculi genus (Nuevo método para máximos y mínimos, y para las tangentes, que no se ve obstaculizado por cantidades fraccionarias o irracionales, y una singular especie de cálculo para lo antes mencionado). Es más, en la página 469 del artículo, Leibniz dice: «calculi hujus, quem voco differentialem», es decir, «este cálculo, que yo llamo diferencial».
La imagen de la portada es la primera página de ese artículo. Está tomada de la digitalización de Acta Eruditorum amablemente puesta a disposición del público por la Biblioteca Histórica de la Universidad Complutense (https://catalog.hathitrust.org/Record/009334721). En el segundo párrafo se encuentran —sin demostración— las fórmulas para la derivada de un producto y de un cociente.
En 1686, Leibniz publicó en la misma revista (fundada por él y Otto Mencke en 1682) el segundo artículo sobre el cálculo infinitesimal. Titulado De geometria recondita et analysi indivisibilium atque infinitorum, presentaba en él el cálculo integral y afirmaba que ambos cálculos, el diferencial y el integral, son inversos. Esto es lo que hoy conocemos como Teorema Fundamental del Cálculo; o, tal y como Leibniz lo expuso: «Pues como las potencias y las raíces en los cálculos comunes, las sumas y las diferencias, o ∫ y d, son recíprocas».
El lector puede encontrar más detalles sobre el trabajo matemático de Leibniz en el artículo de Mary Sol de Mora en este número de La Gaceta.
 
Twittear
< Anterior   Siguiente >
[Volver]
Advertisement
Logo del Centenario de la RSME

Declaración de Clausura
Audiencia de la Casa Real
Plan Estratégico RSME
Resumen Plan Estratégico
Código Ético de la EMS
Logo Mathematics of Planet EarthMPE
RSME-MPE

Últimas noticias

Próximos eventos

Miniescuela de EDP
Marzo 22 - 29, 2017

IMUVA
Marzo 27 - 30, 2017

IMUVA
Marzo 27 - 30, 2017

TopHPC2017
Abril 24 - 26, 2017

Barcelona Mathematical Days 2017
Abril 27 - 28, 2017

Eventos recientes

ICEAMS 2017
Marzo 23 - 24, 2017

ICMAT
Marzo 23 - 24, 2017

Sindicación