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1. Introduction

The purpose of this article is to show that electrons and protons, interacting
by Coulomb forces and governed by quantum statistical mechanics at suitable
temperature and density, form a gas of Hydrogen atoms or molecules. Let us
first recall elementary quantum statistical mechanics. (See [6].) We start with
a box @ C R?® and two parameters, 8 > 0 and p real, related to temperature
and density. The Hamiltonian for electrons x; . . . xx and protons y; ... ya in
Qis

HR N = —x18x — 128y + ) |5 — x| =1 +
Jj<k

DR D N BT R 7 AR ¢ 19 §)
i<k J.k

Here Hf n+ acts on wave functions y(x; . ..Xn, J1. .. yn"), antisymmetric in
the x; and yx separately, and satisfying Dirichlet boundary conditions on
QxQx...xQ. (The coefficients i, x> are related to the electron and pro-
ton mass, and one has x> ~ (1/2000). We pick units in which »; + x2 = 1.)

Now Hf - has eigenfunctions ¥n a1, ¥n.~"2,... With eigenvalues
Ewnn1, Ennv2, . .. . The basic idea of quantum statistical mechanics is to pick
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an (N, N', k) according to the probability law

exp[(N + N — BENNk]
Z

Prob. (N, N', k) = (1.2)
where Z is a normalizing constant (the partition function) which makes
Prob(N, N', k) sum to 1.

Once we have picked a ¥ = yw, ", x by (1.2), the probability density for find-
ing the particles at given positions is

dProb = llﬁ(xl v o XNy Y1 .. .yN')IZdX1 e dedy1 ‘e dny. (1.3)

In principle (1.2) and (1.3) give a complete probabilistic description of the par-
ticles in the box Q under given 8, u. The natural mathematical problem is to
describe how the particles behave for fixed 3, u as the box @ grows large. Up
to now, no rigorous results were known for this difficult problem. (See,
however, important ideas in Lebowitz-Lieb [7] on the asymptotic behavior of
the partition function Z, which is fundamental in thermodynamics.)

In this paper we introduce a new technique to understand the behavior of
(1.2) and (1.3). For suitable 3, p we can show that quantum statistical
mechanics leads to a dilute gas of isolated electrons and protons. Under an
assumption to be explained in a moment, we prove that a different range of
B, p leads to a gas of isolated Hydrogen atoms, while a third range of 3, u
gives a gas of diatomic Hydrogen molecules.

An estimate crucial for quantum statistical mechanics is stability of matter
(Dyson-Lenard [1], Lieb-Thirring; see [8]), which we state in the form

Hﬁ,Nr =2 —Ey-(N+ N —1) with E, independent of N, N’, Q. (1.4)

The best value of the constant E, in (1.4) profoundly influences the outcome
of (1.2), (1.3). To get Hydrogen atoms, we need to assume:

We can take Ex<j; for N+ N >2. (1.5)

Estimate (1.5) is well established by experimental observation of Hydrogen
crystals, but a rigorous mathematical proof will be hard to find. See Lieb [8]
for the best results known so far. To get Hydrogen molecules requires an
assumption even sharper than (1.5). For the rest of the paper, we discuss only
the monatomic Hydrogen gas. The discussion for diatomic molecules is essen-
tially the same, while the case of isolated particles is much easier.

In a later article [4], we generalize from Hydrogen to nucleii with higher
charges.
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2. Statement of the Theorem

Let us give a precise meaning to the idea of a gas of Hydrogen atoms. First
of all, the particles must arrange themselves in electron-proton pairs. So for
small € > 0 and large R > 1 we demand

All but at most e percent of the particles come in pairs {xx, yx} with xx an
electron, yx a proton, and

|xe = zl, |y — z| > Rl|xe — @.1)

for any particle z # x, Vk.

Call such a pair {x,, y«} an atom, and define its displacement vector to be
& = xr — yx. We want the displacement vectors & to be distributed by the
probability law dProb = ce !¥ld¢, as in the ground state of a single
Hydrogen atom. Hence, for E C R® we demand

Number of atoms with & € E
Total number of atoms

c[ge dg' <e 2.2)

Finally, we want the positions and displacement vectors of the different
atoms to be nearly independent. To formulate this, let p = (Expected number
of particles)/|2| be the density of the system, and subdivide Q into a grid of
congruent subcubes {Q,} of volume comparable to 1/p. Then subdivide each
Q. into two halves, Q, and Q. For E C R?, we study the events

eo: Q4 contains a single atom and nothing else; and the displacement vector
for that atom lies in E.

ea: Qb contains a single atom and nothing else; and the displacement vector
for that atom lies in E.

Let

Number of « for which e, occurs
- Total number of o
_ Number of a for which en occurs
B Total number of o
. Number of « for which e, ey both occur
pm= Total number of «

’

n

Then the idea of independence of distinct atoms is expressed by
|p* - p'p"| <e (2.3)

If 2.1), (2.2), (2.3) hold, then we have the right to say that our system is
a gas of Hydrogen atoms. Under our assumption Ey < %, we shall prove the
following.
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Theorem. Givene > 0andR > 1, there exist u, 3 50 that on a large enough
box Q, we have (2.1) with probability at least (1 — €). Moreover, for any
E C R?, (2.2) and (2.3) hold with probability at least (1 — ¢).

To prove the theorem, we shall study the range of u, 8 given by —1/4 +
+8<u/B< —Ey—8, 8~ o, u— —oo. This corresponds to a temperature
small compared to that required to ionize Hydrogen atoms (~10° degrees K)
and density small compared to that of a solid. These conditions are certainly
reasonable for the study of a gas. In particular, we expect that if the density
increases from zero and the temperature stays fixed and low, then we shall see
first a gas of isolated electrons and protons, then a gas of Hydrogen atoms,
next a gas of diatomic Hydrogen molecules, and ultimately, we leave the low-
density regime. We make no attempt to derive practical values for 8, u.

Before passing to the proof of our theorem, we point out some respects in
which it ought to be sharpened. For a fixed € > 0 and suitable 3, p, the pro-
bability that (2.1), (2.2) or (2.3) is violated should tend to zero as |Q| tends
to infinity. Our theorem states that these probabilities are at most e. However,
B, n depend on ¢, so that e does not tend to zero for fixed 3, u as Q grows.
Thus, we know how the particles will look for suitable 3, u with probability
99 %, but we still have a 1 % chance of being utterly wrong, no matter how
large the box may grow. I hope this defect may be soon remedied. In the same
spirit, it would be interesting to show that no phase transitions occur in the
range of B, p under study. (In particular, the transition from atoms to
diatomic molecules with increasing density occurs smoothly.)

Another point worth mentioning is that we have been speaking of scalar
wave-functions v, i.e., spinless electrons. It is trivial to change our proofs to
the case of spin-1/2 electrons and protons, but I hesitate to complicate matters
further. Of course, the analogue of our theorem for H>-molecules is stated in
terms of spinning electrons. We could also have defined the events €, e using
two different measurable sets E, F instead of a single E. There are also
variants of (3) involving events €y, e, €, . . . , €2 in place of €4, €4

There is a small literature on thermodynamics, i.e., the behavior of
lim|g|~«1n Z/|Q|, for very low density. The reader should be warned that this
literature is not entirely correct. See Hughes [5] for a correct discussion.

Here is a very crude summary of the way our proof works. Suppose first
we look at statistical mechanics on a fixed large ball B of radius R. If B is held
fixed while the temperature and density are taken very small depending on R,
then it is easy to understand what will happen. In particular, for a suitable
balance between density and temperature, B will most likely contain no par-
ticles at all; but if it contains something, then most likely it contains exactly
one atom. This is where we use our assumption Ey < }.

Now take a huge box Q, and cut Q as in [7] into a huge number of balis
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{Bro} of various sizes Ry, and a negligible residual part. We shall compare
the real system with a much simpler fictitious system in which all forces bet-
ween particles in different Bk, are turned off. If the temperature and density
are low enough, depending on the Ry, then each Bx, can be analyzed by the
methods of the preceding paragraph. Since distinct Bk, do not interact in the
fictitious system, the statistical mechanics of that system will be easy to
understand. The point is to make the comparison with the real system. We
succeed in doing this by showing that each observable (i.e., self-adjoint
operator) A on the fictitious system induces an observable @ on the real
system, whose expected value (@) can be estimated in terms of 4. In par-
ticular, if A is «negative» in the sense that

Tr CXP{A + II-(N + N/) - BHfictitious} < Tr CXD{IL(N + N,) - ﬁHfictitious} ’

then in the real system, (@) will be negative modulo small error terms. The
proof of this uses ideas from [2], [3], [7]. Once we can estimate (@), the game
is to pick A so that @ expresses detailed information about the real system.

The reader should be warned that our brief summary is inaccurate and over-
simplified.

Finally a fascinating problem about which almost nothing is known is to
understand why matter at high density and low temperature forms a crystal,
i.e., a configuration with long-range order. The frontier in our knowledge of
this question involves placing points x1, X2, . . . , X~¥ € R" to minimize a poten-
tial ¥V = 2=« W(xj — xx). For certain special W, both positive and negative
results are available in two dimensions. Nothing is known about the three-
dimensional case. See, e.g., Radin and Schulman [9]. If these matters could
be settled and our present results sharpened, then maybe one could give a
rigorous proof that matter undergoes phase transitions. It will take a long
time to reach such deep understanding.

We now present our proof.

3. Notation

For Q C R3, define L%, ~"(Q) as the space of all square-integrable functions
Y(x1...xn, 1. .. yn7) on @V N antisymmetric in the x's and y’s separately.
Define

HY S = -1 20y — 2 ;Ayk acting on L, ~(Q)
J

with Dirichlet boundary conditions, and

Hy n=HY R+ 2 16—l ™"+ 25 =yl 71 = 20— vl 71
i<k i<k J.k
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Define

Li@ = Y, ® LA~ (Q)
N,N'

leleutra.l(ﬂ) = Iz\f] @ LIZV, N (9)
Hi= 3 @H¥~
N,N’

Hitutral = HY | Lreutrar()

Zo(p, B, Q, N, N") = e*™*+N) Tr exp[ —fHy %]
Z(n,B,Q,N,N") = e*™*N) Tr exp[ - BHRN, n']
Zo(p, B, Q) = NZ]}W Zo(p, 8,2, N,N")

Z(p, 8, = NZN, Z(p, 8,92, N,N)

Zneutra](ﬂ, B, 9) = %: Z([L, B, Q,N, N)

If x1...x~n,¥1...Yn are electrons and protons, then we sometimes write
Z1...2nv+n for a list of all the particles, with charges e(j) = e(z;)) = 1 if z; is
one of the yx, —1 if zj is one of the xj., If K(-) is a kernel on R?, and
X1...XN,V1...YN are electrons and protons, then define

1 .
VIK] = 2 2 ())e(R)K(zj — z4).
ik
In particular, the Coulomb potential is V[|x| ~'].
If A is an observable, i.e., a self-adjoint operator on L4(Q) then the ex-
pected value of A is

AetWN+N)-BH]
(45 _TrAe )

Tr(e*®+N) - BHY) )

In all that follows, p will be large negative and 3 will be large positive.

4. The Partition Function for a Single Ball

Fix a ball B of radius R, satisfying e?® < R < e, 0 < ¢ < ¢1 < 1. We shall
estimate Tr exp[ —BH¥, »-]. From (1.1), (1.4) and rescaling, we get

—x1(1 — 8)Ax — x2(1 = 8)Ay + V[|x| 71> —Ex(1 + C8) - (N+ N' = 1)
for N+ N'>2 and 0 < 6 < 1. Hence

HE N 2 —x18Ax — %208y — Ex(1 + CO(N + N' — 1).
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Taking 6 = 87!, we find that

Trexp[—BHR, n] < eBF+* ON+TN' =D Trexp(—Hy: %)
e(BE,‘= +C)-(N+N'-1) (Tr exp( —H{),’()B))N(TI' exp( —H(?,’IB))N’
e

(ﬁE*+C) . (N+N’—1)_(CIB')N+N'

N INININ

C'exp[{(Ex + 3c1)B + C'} - (N + N' — 1)]
when N+N'>2. (4.1)

Next we look more carefully at Tr exp[—BHE 1]. First we use the textbook
separation of variables

Hf 1= —x1Ay — 128y — |x —y| 71 = —(const)A; + (—Aw — |w| ™ 1) (4.2)

where

xi X + ws 1y
A A

z = center of mass = T w=x-—y.

ai V4w
For the Hilbert space Li,1(B) we have inclusions

L},1(B) C L*{(z,w)|z€ B, we B1) (4.3)
if B; is the ball about zero of radius 2R and By = B;

L},1(B) D L*{(z, w) | z€ Bo, we B1} (4.4)

if B; is a ball about zero and By + B; C B. Hence we can derive upper and
lower bounds for Trexp[—BHE ] by computing I = Trexp[(const)BA; —
— B(=Aw — |w| "] on L*(B, x By). The latter breaks up as [77exp((const)BAz)
on L*(Bo)] - [Trexp(—B(—Aw — |w|™1) on L*By)]. The first factor here
has the form (c|Bo|/8*?)(1 + 0(8™")), in"view of the eigenvalue asympto-
tics of the Laplacian on By (|Bo| > €***%). It remains to understand IT =
= Trexp(—B(—Aw — |w| ™)) on L*(B;). Write L*(B;) = Cyo @ X where o is
the ground-state eigenvector of — A, — |w| ™! with Dirichlet boundary condi-
tions on By, and X is the orthocomplement of yo. Now —A,, — |w| 1> ey
“Aw—[1/4(1=c3)], 0<c3<1 and —Ay— |W| "' >(cs—H on X, with
¢4 > 0. These estimates come from the elementary theory of the Hydrogen
atom. Taking c3 ~ ¢4/100 and averaging, we obtain ((— A, — |w| ™)y, ¥) >
= ((—c3hw + ¢s — DY, ¥) for Y€ X and c3, ¢s > 0. Hence by minimax,

Trexp(—B(—Aw — |W|~ Nlx) € Trexp(—B(—c3Aw + €5 — D|12@8y) <
! < el -calB

for large B, since |Bi| < e*! with ¢; < 1. So II = e~ FE0 4+ O(e!@/® ~celfy,
E, = lowest eigenvalue of —A,, — |w| ™! with Dirichlet boundary conditions
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on B;. On the other hand, one sees easily that Ep = —% + 0. In
fact, comparison of —A, — [w| ™! on B; and on R® shows Ep > —%; while
the trial wave function y(x) = 6(x)e ~ XI"2, §(x) = 1 for x e Middle half of B,
0(x) =0 on dB; gives Eo < —1+ O(e™const-2dusBD)  Therefore IT = e®* -
(1 + O(e™“?), and so

I= c;ﬁgl e”4(1 + 0B~ "), 4.5)

provided By and B; have radii bounded between e°?® and e*?, ¢; < 1.

From (4.2), (4.3), (4.5) we get Trexp(—BHT 1) < (c|B|/B¥*)(**(1 + CB™Y),
while (4.2) (4.4), (4.5) with By = B dilated by (1 — 87 1), B; = B dilated by a
factor 8! yields Trexp(—BHE 1) > (c|B|/B**)(e?*(1 — CB~ ")) with the same
c. That is

Trexp(—BH? 1) = B|3/2| e?41 + 0B~ ). (4.6)
Finally when (NV,N") = (1,0) or (0,1) we have HF n»= H%%., so that

Tr exp(—BHR¥, ) < (c|B|/B8*%). Analogous estimates hold for (N, N’) =(2,0)
or (0,2). Hence we can make a table

Zu,B,B,N,N)=1 if N=N'=0 @
2u+B8/4
=1 +0@B™Y) "eﬁm IB| if N=N=1 ®)
C 13
636;2 |B| if (N,N)=(1,0) or (0,1) (0
_ce*
<GlEl it NN)=@0 o 0.2 ©)
< Cexp(uN + N') + [(Ex + 3e)B + C'1- (N + N’ — 1)}
@)

if (N, N') is not one of the above. If Ex < }, then the quantity in braces in (d)
will be less than

1
’2p.+§—c’(N+N’—2) for @ large and %<—Z+c”.

Here ¢’, ¢” are positive constants. Therefore, since e*® < radius B < e
with ¢; < 1, we have

c1B

1
Z Z(#’B,B,N$NI)<_Z(/'L5183B,1’ 1)
N+N'>2 B

for 8 large, g < —% +c”.
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Bringing in (N, N’) =(0,0), (1,0), (0,1), (2,0), (0,2) also, we can find a
nonempty interval / of the form (-} + ¢", —1 + ¢”) so that if 8 is large
enough, ¢; is small enough, and p/8 €I, then

1
Z(.U"ﬁyB)N9N’)<_

Z(p,B3,B,1,1) 4.7)
N+N'={0,0)0r(1,1) B

Z(p,B,B,1,1) < %Z(M,B,B, 0,0). 4.8

So the grand canonical ensemble on B consists most probably of a vacuum; but
if it contains anything, the contents will most likely be a single Hydrogen atom.
From (a), (b), (4.7), (4.8) we get the important equation

Z(p, B, B) = exp(p|B| - (1 + OB~ 1)), “4.9)
where
const e+ B/
=g <1. (4.10)

Evidently, we may replace Z by Z,eutral in (4.9).

We shall need also the following generalization of the partition function.
Suppose we have balls B; . . . Bz, with e“?® < radius (Bx) < e°'# as before. Fix
a subset £ C R? and a number ¢.

Define a Hilbert space L, 1(B1-. . . Br,) to consist of all square integrable
Y(X1, Y1, X2, V25 « « « s XLos VLo) SUpported in {xx, yk€Bi(k =1,...,Lo)}.

On this Hilbert space, define a Hamiltonian

Lo
A= 27 (=x1Ax, — %28y, — |Xk — yk| ~"), Dirichlet boundary conditions.
K=1

Thus, each Bx contains an electron and a proton which attract each other but
do not interact with the particles in the other Bk.
Next define an observable

G—[l if xx —yxeE for k=1,...,50 but not for k=so+1,...,Lo

0 otherwise

Then for ¢; and |¢] less than some small constant ¢(L) we have

Lemma 4.1. The trace of exp(iG — BISI ) on L} (B ...Bu,) is given by

Lo <const e?’*| By|

,83/2

with Go = ((const) [z e~ ¥l dx)*o((const) fepe” L

>e’G°(1 + 08~ Y + 0r?)

k=1
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Here OB~ ") means less than C(Lo) - B! in absolute value, and similarly for
o).

We sketch the proof of Lemma 3.1. Again we can separate variables using
Zk = center of mass of xk, yx and wx = xx — yx. Then

tG - BH = + (const) 8 D] Az —
k
- B[Z(_Awk— |Wkl_l) - £G(W1 .. ~WL0):|
k B

with

1 if wi...ws,€E but wso+1...wLo¢E]

Glwr... . wro) = [O otherwise

As in the proof of (6), one can estimate Tr exp(tG — BI?I ) above and below by

Lo
kljl (%Ilzi—t IBk|> P (o (: ) (4.11)

where F is the lowest eigenvalue of
Lo ¢
> (= Awg = (Wil 1) = 5 GOwr . .. wro)
k=1 B

on a suitable product of large balls Bf x ... X Bi, about the origin.

If £=0 then the wi decouple and £ = —1Lo(1 + O(e™#)). Perturbation
theory yields

- Lo t t\? t

E=-—"1+0e % -—Go+ — f; —-l< .

2 (e™) BGO 0[(6)] or ‘5 c(Lo)

Substituting this into (4.11), we obtain the conclusion of Lemma 4.1, even
with a better error term than stated there.

5. Estimates for Coulomb Systems

Take an even approximate identity ¢x(x) of total integral one, supported in
|x| <1R, and set K(x,R) = |x| ™' * ¢g * ¢g. Then define

VirR(R) = 5 2 €( J)e(k)K(z; — zx, R) = “‘Long-Range Part of the
ok Coulomb Potential”.  (5.1)

N =
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Our goal in this section is to show that if X(-) is a kernel on R*® which behaves
roughly like |x| ~!, then V[K] < C(H# n + CN + CN'). Also if K(x) is sup-
ported in |x| > R, then V[K] is dominated by Vrr(R) + (small constant) -
. (H;‘\’r, ~*+ CN + CN'). The precise statements are given by Lemmas 3 and 4
below.

Now fix nucleii y;...y~»€R3, and let ¥(x;...xn) be antisymmetric of
norm 1. Let Q° be an enormous cube containing the system, take K> 1 to
be picked later, and make a Calderén-Zygmund decomposition {Q,} of Q°
~ as follows. (See [2]). We bisect Q° repeatedly, stopping at the cube Q, when
its triple Q¥ contains at most K nucleii. Thus, Q° = U, Q,, and

(a) QO contains at most K nucleii.
(b) Q¥* contains more than K nucleii, or else the cutting process would not
have reached Q..
(©) 0.NQ, # ¢ implies that the side lengths §,, 8, are comparable. Other-
wise, (b) for the smaller cube contradicts (@) for the larger.
(d) Call Q, active if Q, contains at least ¢ - K nucleii. Then
> 6z ene
vactive v
To prove (d), say that Q, has good geometry if 6, ~ 6, for any Q, intersecting
Q¥*. We first check that

>y &tz > &L (5.2)
vactive vgood geom.
In fact, take Q, with good geometry and note that only a bounded number
of Q, can intersect Q;**. The pigeon-hole principle therefore shows that one
of these Qu must be active, by virtue of (b). Hence,
>, &'sc D st D) 6.7, which proves (5.2).
vgood geom. pactive pactive

vgood geom.

0.NQF*=¢
Next we show

& l=cd8 (5.3)
vgood geom. v
which together with (5.2) completes the proof of (d).
Observe that if Q, doesn’t have good geometry, then some Q intersecting
s must be much bigger or much smaller than Q,. If Q,- were much bigger,
then Q* C Q3, contradicting (a) and (b). Hence 8, < 10 35,, and 10°Q, C
C 10°Q,, where CQ = Q dilated about its center by a factor C. Now either
Oy has good geometry, or else we can repeat the process to find a Q,~ with
8,7 < 10735,, 10°Q, C 10°Q,. Continue in this way until we reach a cube
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with good geometry. This must happen eventually, since there are only finitely
many cubes {Q,}. Hence for each cube Q, there is a Q, with good geometry
with 10°Q, C 10°Q,. So

DI D Y Y ( 2 side(Q)‘1><
v pgood geom.

w,v all dyadic Q
p good geom. 103Q, C 103Q

1030, C 103Q,
<C > &Y

# good geom.

which proves (5.3). Since (5.2) and (5.3) hold, we know (d).
We shall need the following estimate for functions on R>.

Lemma 5.1. If Q is a cube of side 6, and € LX(Q), then
1 K
J {‘* IVYE)1* = 25 [x — y 'llvlf(X)IZ} dx >
Q 40 k=1

CK
> — (T + C(K)> 1¥172c0)- 5.9

Proor. Look first at the case 6 < 80(K) with 8o(K) to be picked in a
moment. Set

K
V)= 3 [x-xl™" and yYo=10|7" [ v
k=1

Then
Jo VOOlv@P dx <2 [, Vlol*dx + 2 [, V¥ (x) — ol*dx <

CK CK
< 5 ¥172) + 2 JQ V()| ¥(x) — Yo|*dx, since |Q|! JQ V() dx < =

The last term on the right is at most

2|V | 32y - 1¥() — Yol o < CK3| VY| 220

by Holder and Sobolev. If 6o(K) is small enough, then CKé < (1/40), and
Lemma 5.1 follows for 6 < 60(K). For a cube Q of side 6 > 6o(K), we just cut
Q into subcubes {Q*} of side ~60(K). We already know (5.4) for each of the
Q¢; summing over « completes the proof of Lemma 5.1.

Antisymmetry of the wave function enters via the following observation.

Lemma 5.2. Let L, denote the number of electrons x; in Q,. Then

LT o T L5 wv)

y=
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ProoF. Suppose first that ¢ is antisymmetric on QF for a cube Q C R? of
side . Then

||V¢||L2(QL) > L ZH‘P"LZ(QL) for L>2.

This follows by expanding ¢ in eigenfunctions of the Neumann Laplacian on
Q*. Consequently, on I = Q,, X Q», X ... X Q,,, We have

1VY| i) = C<LZZ L%, 2 ) V122>

v

with L, = (number of »x equal to ») = (number of electrons in Q,) for
(x1...x~n) €l. This may be rewritten as

V15 > o (3 L7872 )40
\L,=2 L (1)

Summing over all possible choices of »;...»n, we obtain Lemma 5.2.

Next we compare the potential energy of point charges x1...Xn, Y1...YN
with that of a continuous charge density p(x) = 2ire(k)or(x — zx). Here ox = 0
is a spherically symmetric smooth charge density of total charge +1, sup-
ported in a ball of radius (1/10)6(k), where 8(k) = 8, for the Q, containing z.
Observe that

p(xX)o(»)
=yl

How do V[|x|~'] and W(p) differ?

V) =~ | P22 ey = Jlél %169 dE >

(a) V(p) contains ‘‘self-energy terms’’ of the form

1 - -
: J k(X — zK)er(y — k) dxdy

lx — ¥l

with no analogues in V[|x| ~']. The self-energy terms total at most
C2L(K+ L)/,.
The mean-value properties of the Coulomb potential yield

® lzi—z| " '> j¢j(x — Z)er(y — zx)
J ~ lx =

dxdy +
-1
+ ¢|zj — zkl X|zj— zk| < 10 = 28(k)

which we use when e(j) = e(k), j # k; and
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ej(x — z)er(y — zk)
lx - y|

() —|Zj—zk|_1>"j dxdy —

— 12 = 2l T X2y - 2l < 500
which we use when e(j) # e(k).
From (a), (8), (y) we obtain

K+ L,
o
+e2l 2 2 e — x| 71+

v x;€Q, 0<[xj—xk| <1025,

25V D R PR

v yj€Qy 0<|yr—yj| <10~ 25,

-2 2 2 =t

v Xj€Qy YKEQF (5'5)

Viix| == V) - C2 +

If v is active (see (d)), then by the pigeon-hole principle, some subcube of Q,
of diameter < 1023, will contain at least ¢’K nucleii. Hence

1 . 1 cIIK2

5 lyi—y| ™" 2 .

2,vjer 0< |y -yl <10~ 25, 6,
Similarly, if L, > K, then

1 "L}

ZXjeQ,, 0< |xx —xj| <1025,

Consequently, (5.5) implies

wwrﬂz[wm+c2 > > I — x| Tt

v xj€0, 0< |xx—xj| <8,"10—2

veX 33wl

v Yj€Qy 0<|yr—y;l<10~25,

> 2

vactive 6» L,=K 6v

//KZ ”Lx%
+{ 2. ¢ -CY;

-2 2 2 le—wl

v Xj€Qy YkEQS (5.6)

K+L)]
5

v

Lemma (5.1) and (@) imply

1 CK
—%AxZZZ Z Z |x_,~—yk]”]—z< +C(K)>Lu.

v Xj€Qy YkEQF v 5,,
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Adding this and the conclusion of Lemma 5.2 to (5.6), we obtain

1

— g+ VIX T2 [ V(o) +

+e2l 2 2 1 — x| =

v Xj€Q, 0< |xx—xj| <10~ 25,

+c 2 2 lyi =yl =1

v ¥j€Qy 0<|yx -yl <10-25,

+L 3% l-nd

v X;j€Q, ykEQ.T

~12 nr2
N [ch . "L} CKL
v 61' L,=K 11
CK + CL,
- L0, - 2———+
3]
L.,222 5.7

Here we used (d) in the term with constant é. Now if K is-large enough, then
we have the elementary inequality

nr2 ~
<CL5/36-2XL L+ "LiXy, = x + cK2> _CKL, CK+CL,
v v » = 6,, 6,,

5, o,
I, K
~ CK)L,> —~EKK)L, + ca— + Ca . (5.8

To check (5.8), we note that ¢"L}x, -, + éK> — CKL, — CK — CL, > cL, +
+ ¢K unless L, ~ K. So (5.8) is obvious unless L, ~ K. If L, ~ K, then

CKL

,_(CK+CL)_cL,+cK
5

0 -8

14

573 -2
CLv XLyzzau -

14 v

as long as 6, < 6o(K). So (5.8) is obvious unless L, ~ K and 6, > 6o(K). In this
last case, (5.8) is again obvious if we just take E(K) large enough. So (5.8)
holds in all cases.

Substituting (5.8) into (5.7) and recalling that >}, L, = N, we find that

1 L, cK
g+ VX T+ BK) N > V(p)+zc Z—+c2
i—xel T+ 20 2 2 |yi—ye] ™1
X€0y 0< |xe—x;[ <1025, v Yi€Q 0<|yk~yjl <10~ 25,

+2 2 2 h-xlTh (5.9

v X;€EQ, yyEQF
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The terms on the right are all positive, so (5.9) implies stability of matter. Now
let 6+ (z) = ming |z — z¢| = distance from z; to its nearest neighbor. One
checks easily that

c

-1
S |Xj - Xk| +
zj electrons 6 + (zj) X€Q, 0< |xk —xj] <1025,

in Qy
_ CK +L,)
+ § E: !Xj—ykl 1+—'

Xj€Qy ykeQF Oy

So (5.9) yields

1 -
c 2 (G+@)7'S —=A+ Vx| "1+ EX) - N.
zj electrons 10
The analogous estimate for protons follows similarly (there are slight changes

because of the asymmetry between electrons and protons in the last term on
the right in (5.9)). Hence

2.63'@) < C<—-IIT)AX + Vx|~ + C-N). (5.10).
zj

From here on, we simply fix K large enough to make sure (5.9) holds, and we
denote K, E(K) simply by C.
Set 6(zj) = min(1, 6 +(z;)). Obviously, then,

ZB_I(Zj)<C<—%Ax+ Vilx| ™'+ CN + CN’>. (5.11)
J

So far, we have regarded the nucleii y; ...y~ as fixed. However (5.11) for
fixed nucleii implies the corresponding estimate for quantized nucleii, namely

>167Yz) < CHY ~ + CN+ CN’), any QCR>. (5.12)
J

We did not even need the kinetic energy of the nucleii in (5.12). Estimate
(5.12) shows that in a quantum state ¢ of moderate energy, the particles are
not too closely packed.

Now we are aready to estimate V[K] in terms of Hi¥ n- for Coulomb-like
potentials K(-). Our assumptions on K are the following rather technical
estimates.

|0*K(¥)| < Clx| "'~ 1* for |a| <3 (5.13)
and all x outside the annuli @« = {||x| — R«| < Ro}, k=1,2,3,...

|0°K(x)] < CRo|x|"171®l for |a|<2 and all x. (5.14)
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Here 100 < Ro < R; < ... are fixed radii with R+ > 100Rx and R; > R{°.

Lemma 5.3. For K satisfying (5.13), (5.14), we have
VIK] < C(H¥N n+ CN + CN'). (5.15)

Proor. We first check that |[K(£)| < CJ£| ™% In fact, write K = Ko + Ki
with both terms satisfying (5.13), (5.14), Ko(x) supported in |x| < 2|¢| ™', and
Ki(x) supported in |x| > |£| ~1. From (5.13), (5.14) we get |Ko|z: < C|§| ™2,
|AK(x) — AK (X = )| 11y < C for |y| <(1/20) |¢] 7. Hence |Ko(®)| <
< ClE| 72, |[e”f - 11Ku(H)|£]?] < C. Taking y = (1/20)¢]£] =2, we get |Ko($)],
|K1(®)| < C|£| ™2, so that |K(£)| < C|£| ™2 as claimed.

Next set K*(x)=|x| ' —cK(x). For c<1 wehave K#*{p}=
=3[ K*(x — y)o(x)o(y)dxdy > 0 for any charge density p. We shall prove

VIK*] > —C(HR n + CN + CN'). (5.16)

This means cV[K]< VI|x| '] + C(HN »+ CN + CN'). Since evidently
Vx|~ < H]{ZI,N’, (5.16) implies (5.15) and so proves Lemma 5.3.

To establish (5.16), we construct a suitable charge density o and compare
VIK#] with K#{p} > 0. To make p, first take an even, smooth function
¢(x), supported in |x| < } and satisfying [e)dx =1, [ x"p(x)dx = 0 for 0 <
< |yl < 20. Then set ¢;(x) = [6(z)] ~¢(x/5(z})), and define p(x) = 3 e(z)eox —
— zj). Comparing V[K*] with K* {p}, we first discover self-energy terms in
K* {p} with no analogues in V[K*]. These amount to C- >};6~ (z;). Next,
for distinct particles zj, zx we compare K *(z; — zx) with the analogous term
K#* *x ¢; * op(zj — zk) in K* {p}. These differ by at most

|K*(z; — z1) — K™ * ¢ * oilz; — zi)| <

; 3
< 2(61(?) +zi(|§k)) -+ C(8(z) + 8(z)*H(zj — z&),  (5.17)
=

where

H(x) = Ro|x| *- kZI Xi1x| - Re| <2Ro*

(To check (5.17), just Taylor-expand K* about z; — zx to order 1 or 2, and
invoke (5.13), (5.14), and the moment properties of ¢.)
Consequently,
8(z) + 8(zw))?
VIK*] > K* (p) - C3671(z) — ¢ 3} S 2@
J

= lzi—z?

-C Z]k (6(z) + 6z H(z; — ze).  (5.18)
JE
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To handle the last two terms on the right, set
Fx) = ; 5_3(ZI)X|x—z,-| <3y O = ;5— "@)Xjx - o) < armpep”
Thus
[F“” = jc“ < CY67(z).
Jj
On the other hand,

8°(z))
6@ + |z — z)*

8(z) }
<C G(x — = F(»)dy|dx <
; Ix - i < (1/3)6(z)) [ 6@z + |x - y)* 0)dy

<CY j G(x)F*(x) dx
J JIx-zil<1/3)8@)

(with F* = maximal function of F; see Stein [10]) = C [g3 GF*dx < (| G*)'"*
(fF**)** (by the maximal theorem) < C ;6 (z)). So

3
2 —_Z‘F\C'Zé '(z)-

Switching the roles of j and k, we conclude that

6z + 8(zx))’
ik lz— zel?

<C"- 2167 @). (5.19)
J

Similarly,

2 @HEG - ) <2 (em ot <crapoey OO s H & = WF() dy] dx

with H™ (x) = maxw| <2H(x + w). So

28 @HE = 26) < [ [ GOH™ (v = )FU) dydx <
Js
< H ||| |Gl|2s]|F a3 < €267 (@)
J

Again switching the roles of zj, zx, we get

20 (8(z) + 8(zi))*H(zj — z) < C' 2587 '(z)).

Jrk
Put this and (5.19) into (5.18), and recall that K*{p} > 0. The result is

VIK*#] > —C>;6 '(zj), which implies (5.16) by virtue of (5.12).
Lemma 5.3 is proved.
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We conclude this section by relating V[K] to Vir(R) defined by (5.1), when
K(x) is a Coulomb-like potential supported in |x| > R. Note that

1
Vir(Ro) = 3 756)_‘0(;')

dxdy >0,

where o(x) = 2 e(J)ero(x — zj). As before, assume 100 < Ro < R1 < Ry <
< ... with Rk+1> 100 Ry and R; > R{°. Now, however, let K(-) be a kernel
on R? satisfying

|0°K(x)| < Clx| "'~ l¢l for |a| <2 andall x. (5.20)
|0°K(x)| < Clx| "'~ !¢l for |a| <4 andall x (5.21)

outside the annuli Gx = {||x| — Re| < Ro}, k=1,2,3,...

K(x) is supported in |x| = R;. (5.22)

Lemma 5.4. If K satisfies (5.20), (5.21) and (5.22), then

C
VIK] < CVir(Ro) + E—(H]{)’, N+ CN + CN). (5.23)
0

ProOOF. Write K = K + K’ with K = K* ¢r, * ¢ry.
Then

_ 1 _ ) _
VIK] = 5 > R(zj — z)e(f)e(k) = 5 2 K(zj — ze)e(f)e(k) — lZK(O) =
21#’6 21,k 2 J

1 1.
= Ej K(x — y)o(x)o(y)dxdy — EK(O) -(N+N)

with p(x) = Xje(J)oro(x — zj). Now K satisfies (5.20), (5.21), which are
stronger than (5.13), (5.14). In the proof of Lemma 5.3, we saw that |[K(£)| <
< C|¢|~2. Also, K(0) = 0 by (5.22). Hence,

~ 1{ 5
VIR] = Ej R®I6®I*dt < C [ |¢7*15®) dt =

_c J’ p()p(y) dx dy

= C"Vir(Ro).  (5.24)
lx — ¥

On the other hand, K* = RoK' satisfies (5.13) and (5.14). In fact, (5.14)
is immediate from (5.20), while (5.13) follows by writing 0*K*(x) =
= Ro [[3°K(x) — 3°K(x — »)lere* oro(¥)dy and [3°K(x) — 3°K(x — y)| <
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r|y| - supo<r<1|Vd*K(x — £y)|. Here we recall that R, > R{°. Applying Lemma
5.3 to K*, we find that

Cc
VKT <& (Hf# n + CN + CN).
0

Combining this with (5.24) and recalling that K = K + K’, we obtain (5.23).

6. A Swiss Cheese

Fixradii 100 < R; < Ry < ... < Ry with Rg .1 > 100 Ry, and take a cube Q°
of diameter ~M'°Rys. For M between M/2 and M, we describe how to cut
Q% into balls of radii R, Rz, ..., R and a small left-over part.

First cut Q% into a grid {Q,} of cubes of side ~10R4z, and place a ball B,
of radius Rz in the center of each Q,. Next, cut Q* into a grid {Q;} of cubes
of side ~10R7-1, and place a ball B, of radius Riz- 1 in the center of each
O, which does not meet any of the balls already introduced. Continue in this
way until we have a family {Bx.} of balls of radius RxQR < k< M) in Q*.
Finally, cut Q% into a grid of cubes {Q,} of side ~R;, and retain those Q.
which are not contained in any of the balls Bx,. In this way, we cover Q* by
balls Br, and cubes Q.. Note the following properties.

Distinct balls By, Bk'or have distance > 50 from each other. 6.1)
> |Bra| <€ M-P|0*| for 2< k<M. (6.2)
2 10a| <M. (6.3)

Next suppose R? is cut into a grid of cubes {Q," }, all congruent to Q*. We
can translate our covering of Q% to cover each of the Q,", thus obtaining a
covering of all R? by balls Bx. of radius Ry, and cubes Q, of side ~R;.
We introduce a partition of unity 1 = Yxq 0%« + 2o 62 with the following
properties.
Each 0ko(X) = 0k(x — Xko), Where Xk is the center of Bie; and 6i(x) is
spherically symmetric, supported in |x| < Rk, and satisfies |3"6«(x)| < C,

uniformly in k. (6.4)
Each 6,(x) is supported in {dist(x, Q.) <1} = Q. and satisfies |076.| <
< Cy. (6.5)

It is easy to construct such a partition. One picks the 6 first so that
0k(x) = 1in |x| < R — 1, and (1 — 6%)*’* € C™. Then the 0, are defined, and
Sk 02(¥) + ©*(x) = 1 for some smooth function . Finally, one defines 6 so
that X, 0% = ¢*. Recall that Bk, Qu, Ok, 0. all depend on M((M/2) < M <
< M). In all that follows, we will take radii R; < R, < ... < Ry so that
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e < Ryand Ry < e with 0 < ¢, < ¢; < 1to be picked later. Thus, M ~ (3,
and the results of Section 3 apply to all the Bk.

7. Comparison with an Exploded System

Fix M and Q% as in the preceding section. Thus, R? is covered by balls Biy
and cubes Q,. Recall 0, = {dist(x, Q) < 1}. Define

Q?:Q:{D=Bka or Qu|D+ 7 meets Q for some 7eQ*}
Q”"=Q"={DeQ|D+7CQ forevery 7eQ"}.

For D € Q, define a vector £D) so that the translates D = D + &(D) are pair-
wise disjoint for distinct D € Q. Then define the exploded set Q3 = Upeg D.
Often, we shall omit the superscript and just speak of Qer. On Qe we define
a two-particle potential

|z—2z'|7! if z,z7€eD with D =one of the Bia
0 otherwise.

K(z,z") = [

Thus, K = 0if z, z’ belong to different components of Q.y, or if both particles
belong to the same D with D = (,. For particles z;...zn+n" in Qey, with
charges €(1), ..., (N + N'), define the potential V., = %Z =k €(J)e(F)K(zj, zk)-
Then define the Hamiltonian

HEM = — 5 Ax — 1008y + Vex, acting on L3, y(Q2

with Dirichlet boundary conditions. B

For fixed M and 7€ Q7 there is a natural injection 2/ = +: L3(Q) = L3(Qey),
which we use to relate observables on Qe to those on Q. Preparing to define
¢, we set 0(x, D) = Oxa(X) if D = Bia, 0(x, D) = 04(x) if D = Q. Thus, 0(x, D)
is supported in xe D, and Ypeq8*(x — 7,D) =1 for xeQ, re Q. Now we
define «. This means that for Y € L ~(Q) and £;...%nP1. .. 8 € Qex, We
have to define (1})(%: . . . £~ . . . #a7). Each %; belongs to a unique Dj, so we
can write % = x; + £(D;) for xje D; and Dje Q. Similarly, we can express
Pr = Yk + E(D%) for yx € Di and D € Q. We define

WEr... 2N P1. . IN) =

N N’
= H 0(x; — 7, D)) kH 0k — 7, Dk) - Y(X1. .. XN, V1 .. . YN).
=1

Here, the right-hand side is interpreted as zero if any of the x; ... xn~p1... Y~
fail to belong to Q. This is an isometry from L% Q) into L%, n'(Qex).
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It is important to compare the Hamiltonian H#, »» with
b = Aol (P HRN., @)

Here, Av,, iz means an average over all e Q" and all M between M/2 and
M. A computation analogous to that in [3] shows that

b= —xu1Ax — 228y + VK] + G- 01N + x2N')

where

2 . 02
K(o) = |x] ! )\kw
2<k=m §1rR;§

Me=dAvg| 3 |Bral/IQ" ]

adBraco+

G = —AvﬁAv,[ 3 Oalialr) + 3 oaAea(T)}
ka o

Here, 6 is as in (5.4). Note that unlike [3], we are able to treat electrons and
protons in the same way. Therefore, our potential energy term has exactly the
form V[K] without the extra error terms arising in [3].

Next we use the above formulas to compare 4 with H¥, »~. Recall that the
radii for our Swiss cheese satisfy

e <R <Ry<...<Ry<e® with c;<1and M~ .
We have |G| < e~ °® by the geometric properties (6.1), (6.2), (6.3). Also with
6% * 6%(0)

My =
4
g‘ll'R[%
we have mx = 1 + O(Ri Y) so that 1 > e hemy = 1 — e~ P, again by (6.1),
(6.2), (6.3).
Now write
& = HR v + GGaN + 2N') + VIK; + Kz — K3) 7.1
with
_ * Or(x _ _
Ki@) = Z el TR 1 ek e, # g,
§7l'Rk

M
Ka() = (2 Merme = Dl !

M
Ki(x) = Z; Nemmelx| ™1 * op, * op, -
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Here ¢g, is as in the definition (5.1) of Vrr(Rk). As in [3], we find that MK,
and e“°K; satisfy (5.13), (5.14) with Ro = 10°. Therefore, Lemma 5.3 yields
c Q 7 -1 Q r
VIKi] SM(HN,N' + CN+ CN') ~ CB~ '(Hnx,n+ CN + CN")
VIK2] < Ce™ ®(HE n + CN + CN').

From (6.1) we get 4 < H — V[K3] + C8~'(H + CN + CN"), so that

InTrexp(u(N + N) - B(H - VIK3] + %(H L ON+CNY) <
InTrexp{w(N + N') — R} < AvizrIn Trexp (w(N + N') — BH* M),

The last inequality holds because Trexp{:*4:.} < Trexp A for injections ¢ of
Hilbert spaces, and because A — In Tr exp 4 is convex; again, see [3]. We are
now regarding all operators as acting on L. Our estimate may be rewritten as

InTrexp{(x — C)N + N') = (8 + C)H" + BV[K3]} <
< Avazln Trexp {p(N + N') — BH*M)

= AUA_Jln H _ Z(#’ 6) Bktx) ° 2 I(;[‘M ZO(”': 61 Q~01)’ (7'2)

Bka€QM

since the system is made of the non-interacting subsystems D, D € Q,’V’ . Now
(3.9) and its analogue for Zpeutrar Show that

Z(Il" 69 BkOt) < Zneun'al(”" 6 + Cly Bkﬂl) ° r(l“: Bs k) for some r(/"y B’ k) < 1,
while Zo(u, 8, Q) < exp(Ce*8~3?|04|). Hence (7.2) implies for some M
Trexp{(u — CYN + N') — (8 + C)H® + BVIK3]} <

< H _ (Zneutral(ﬂs B + CI; Bkm) * r(#’ B, k)) * exp(Ce“B' 3/2 _ Z — |Q~w|)
Bra€@M QC (7.3)

By the method of Lebowitz-Lieb [7],
T _ Zuewtral(n, B + C1, Bka) < Trexp{u(N + N') — (8 + C1)H®}.

Brq€ QOM
Moreover, the product

H Zneutral(M, 6 + C], Bkcx)

BiocQM\QOM
is absorbed by
H — r(”’x Ba k)’

BroeQM
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provided  is big enough. (To be precise, we require that Vol{dist(x, 0Q2) <
< €%} /Vol Q be less than a small constant depending on g, 8.) Therefore
(7.3) implies
Trexp{(p — C)(N + N) = (8 + C)H" + BVI[K;]} <
< Trexp{u(N + N') — (8 + C)H"} - exp(Ce*B~** 3] |Qal). (7.4)

QaeQM

The last factor on the right is at most exp(Ce ™ #"“p|Q|) by (4.10). Consequently,
applying (7.4) to B = 8 — C1, we have

Trexp(u(N + N') - BH® + (8 — C)VIK:] - C'(N + N)} <
< Trexp{p(N + N') — BH®) - exp(Ce™ **p|2)),

which implies
(B — CVIKs] — C'N — C'N'y < Ce™#4p|Q]. (7.5)
Recalling the definition of K3, we see that
VIKs] = zk‘] MNemi Vir(Ri) + ORI ' - (N + N),

the error arising from self-energy terms in Vzgr(Rx). Since Ri < e “2f,
estimate (7.5) yields

M
<k2_]l N VLR(Rk)> < g (N + Ny + Ce™*p|Q|. (7.6)

Next, fix radii Ri< R;<...< Ry <R;<R»<...<Rp, so that R{>
> e“?® Rk +1> 100Rk, Ry > (Ri)*°, Rk +1 > 100Rk, Ryr < e'®, M ~ B, for
0 < 30c2 < c¢; < 1. Since the R give rise to an ensemble of Swiss cheeses, we
have the analogue of (7.6), namely

M
<k§_]1 Nemic VLR(R,;)> < % (N + Ny + Ce™¥4p|Q| (7.7)

for Q large enough. We use (7.7) to study the Swiss cheeses defined by R; . . . Rar.
Our starting point is (7.1). As before, we know that V[K>] + G(1N + x2N') <
< e ®(H" + CN + CN"). Since Vir(Ri) =0, (7.1) implies

A< HY + VIKi] + e ®(H® + CN + CN'). (7.8)
Now take Rop = any of the Rf, and define a cutoff function

1 for |x|>2-R{?
()= |0 for |x| <R{?
smooth in between |
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Then Lemma 5.4 applies to Mn(x)Ki1(x) if we use R§2, Ry, Rz, . . . in place of
Ri,R,, ... in (5.21). Moreover, Lemma 5.3 applies to e®(1 — n(x))K1(x).
Those Lemmas yield

C C
VInKi]l < — Vir(Ro) + —— (H" '
[n. 1]<MVLR( o)+MR0(H + CN + CN")

C
< 8 Vir(Ro) + e~ *(H® + CN + CN')

and V[(1 — n)K1] < e"®(H® + CN + CN"). Putting these estimates into (7.8)
gives

Cc
A< H+ 3 Vir(Ro) + e *(H® + CN + CN").

Recall that Ry here can be any of the Rk, and that the coefficients Nxmk
sum approximately to 1. Therefore by taking a weighted sum of the last in-
equality over all the Rf, we conclude that

C M
A< H+ E( > Nemnk VLR(R,;)> + e FH? + CN + CN). (7.9)
k=1

8. The Expected Value of Certain Observables

In this section, we explain how to estimate the expected value of certain obser-
vables @ on L%(Q) in terms of information on the exploded system. Suppose
for each 7, M we specify an observable A..(r, M) on the exploded system
L2(9%%), and suppose

Tr exp{Aex(, M) + u(N+ N') — EH"M} <

< eSTrexp{u(N + N') — BH*M} for each 7, M 8.1)

Here S is a real number independent of 7, M; and 8 very near ( is to be deter-

" mined. There is an induced observable

@ = Av,, ml(M* Aorlr, M)

defined on LZ(Q).

Our goal here is to estimate (®@). Later on, we shall pick Ae.(7, M) so that
our estimate on (@) gives a strong hold on what most of the particles are do-
ing.
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M
Start with estimate (7.9). Setting Vir = >, MNemik Vir(Rk), we have from (7.9)
k=1

InTrexp{@® + u(N + N') — BH® — CVir — e~ ®(H® + CN + CN")} <
<InTrexp{@ + p(N + N') — B&} < B
AvazIn Trexp{Aex(r, M) + p(N + N') — BH®M}.  (8.2)

The last estimate holds because Trexp(1*4:) < Trexp A for injections ¢ of
Hilbert spaces, and because 4 — In Trexp A is convex.
From (8.1) and (8.2) we obtain for at least one (7, M) that

Trexp{@ + u(N + N') — BH® — CVir — e"*(H® + CN + CN')} <
< eSTrexp{u(N + N') — BH*M) =
=e’ TI_ Z(uwB Br)- _I1_ Zo(p,B,0x). (8.3)
0.€QM

Bro€QM

As in the discussion of (7.3), (7.4), (7.5), we know from (4.9), (4.10) that

’

Z(ﬂs Bs Bkcz) S Zneutral<ll's B + %7 Bka> ° r(I'L, 6! k)

with C' a fixed large constant and r < 1.
Also

1L Zo(w, B, 0a) < exp(Ce™ #4p|Q)),

0aeQ

as in Section 7. Hence, as before, an application of the Lebowitz-Lieb tech-
nique [7] shows that

Trexp{@ + p(N + N') — BH" — CVir — C'B~'(H" + CN + CN")} <
< eSTrexp(u(N + N') — (B + C'B~HH®} - exp(Ce™ #*p|Q]).

In other words,

Trexp{uN + N') — (B + C'B~HH® + [@ - CVir — C'B~(CN + CN)]} <
< [Trexp{u(N + N') — (B + C'B~HH"}] - exp(S + Ce™ #*p|Q]). (8.4)

Now pick 8 near 8 so that 8 + C'83~! = 8. Then (8.4) implies

"

(@) < C{Vir) + Cﬁ; (N+ N'y + Ce™F|Q| + S.
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Recalling
_ M
Vir = kZ Nemk Vir(Rk)
=1

and (7.7), we get from the last inequality
C
B

In the sections to follow, we pick Aex(7, M) so that (8.1) can be verified and
(8.5) gives useful information.

(RY S+ —(N+N"Y+ Ce *%|Q|. (8.5)

9. The Density of the System

For fixed M the partition function of the exploded system is

Tr etV +N) = BH _ 11 Z(x,B, Bro) - 11 Zo(p, B, Ou) =
Q QaeQ

Bia €

{ (const)
= exp

63/2

e+ MBIl (1 + O(B”l))}’

by the results of Section 3. Hence for 0 < ¢ < 1, we know that

Trexp{ (N + N' — 25|Q|) + u(N + N') — BH*} <
< eSTrexp{u(N + N') — BH®*}, 9.1)

where
_ (const)e*+ (/4B s
p=(_—%72—-, S = ClQ|B~" + . 9.2)
Writing
L3(Qer) =[ > @L%;,Nr(nex)] @[ > @L%«,N'(Qex)]
N+ N'=zp5|0] N+N'<p|Q]|

and applying (9.1) with the two signs + for the two spaces in square brackets,
we conclude that

Trexp{t|N + N' — 2p|Q|| + u(N + N') — BH®*} <
< eSTrexp{uN + N') — BH®}.
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This holds for each M. Moreover, the number operators N, N’ commute with
the injections M: L%(Q) = Li(Qex). So if we define

Aex(T’M) = t|N+NI - 25|Q||,

then @ = AU,—,M(Ly)*Aex(T, M)(Ly)] =t|N+ N' —2p|Q|| also. Therefore,
estimate (7.5) yields

KN+ N' - 2p|Q[]> <%<N+ N> + CplQ|(B™' + ) <
s%dN+N“ﬂﬂmD+CﬂM@”+ﬁ)

Picking ¢ = 8~ /2, we can absorb the first term on the right into the left-hand
side, leaving us with

(N +N'—2p|0||> < CB~'?5|Q].
Recalling (4.10), (9.2) and 8 + C’8~ ! = B8, we can rewrite the last estimate as
(N + N = 2|0[[> < CB~p|Q. 9.3)

Hence the total number of particles clusters around the obvious guess 2p|2|.
In view of (9.3), we can rewrite estimate (8.5) in the simpler form

(®R) SS+%pIQ|. 9.4)

Estimate (9.4) holds when @ = Av,, i(17")*Aex(r, M)(i) for Aex(r, M)
satisfying (8.1), with 8 + C'8~! = 8 and (8 near 8.

In addition to (9.3), we shall need to know later that if F C Q with Fy =
= {dist(x, F) < e°'*} having volume |Fy| < 87 !|Q|, then

{Number of particles in F) < C8™ 'p|Q|. 9.5)

To see this, let Aex(7, M) = [Number of particles in those D with (D + 7)N
NF # ¢, D e Q]. Since Aex(r, M) = 2 x5, (z)) with

Fer =\ U(D| (D + DNF # ¢, D e Q™},
one computes easily that ( M )*Aex(T, M )(L’,V’ ) = 2.j V(zj) with

V)= 2 64 x—1,D) = X).

D+ 7)NE#
© 525k

Hence @ = AU-,—M[( L’,V’ )*Aex(r, M )( L{Vi )] 2 (Number of particles in F).
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On the other hand, for fixed 7, M we have

Trexp{Aex + p(N + N') — A%} =
= H Z(V” B’ Bk) : QH ZO(I“: B: Qa) .

Bra€Q - o« €
Brka+DNF=¢ Qa+DNF=¢
H Z(I"'+1’B:Bk)' ,_H ZO(["'+1’E,Q~&)<
Bro€Q _ 0a€Q
(Brka + DNF# ¢ Qa+DNF#=g

<e’Trexp(uw(N + N') — BH®*) with S = Cp|Fx|,

by the results of Section 4. So (9.4) gives
. . C
(Number of particles in F) < {(Q) SEpIQ| + Cp|Fx«l,

which proves (9.5).

10. Particles Form Atoms

The next application of the technique of Section 8 is to show that the vast ma-
jority of the electrons and protons pair up into ‘‘atoms’’. Our definition of
‘‘atom”’ is at first quite weak. For 0 < ¢’ < ¢” < 1, we define an atom of type
(c’,c") as an electron-proton pair {Xj,, Yko] With |Xjo — yko| < €“® and
X0 — zil, |Yko — 21| > €°"® for any particle z; other than Xjo, Yio.

To show that most of the particles belong to atoms, we use the observables

Ae(r,M) = >, _(Number of particles in Bia)XBeonot of ep-types

BkaEQM
= Z ,Aex(T, M’ Bka)
BkaeQM
where By, is of ep-type if it contains exactly one electron and one proton. For
a fixed 7, M we have
Tr CXp{Aex(T, M) + ,U'(N+ N,) - BHeXM} = _ HIVIZO(IL’ B’ Q~cx) :

Qo

11 _ Trexp{Aedr, M, Bro) + p(N + N') — BHP*},

Bro€Q
and

Tr exp{ Aex(, M, Bro) + p(N + N') — BHE*,} =

Z(“yE’Bka, 19 1)+ Z Z(I'L'*' 19BaBkot1NsN,)'
(N,N)=(1,1)
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Hence the results of Section 4 show that
Trexp{Aex(r, M) + p(N + N') — BH*M} <
< eSTrexp{(u(N + N) — BH*M} with S = CB |2

Estimate (9.4) therefore shows that
C _ R
(@ <ol @ = Avr, ()  Aex(r, M)()]. (10.0)

Now we compute Q. It is convenient to work temporarily with operators
which do not necessarily preserve antisymmetry of wave functions.

First let us fix 7, M, Bka€Q™ and JC {1...N + N'}. Then define an
operator A; on Li(Qex) by

A aven) = 11 xg,, @) - 11 (1 = X3, @)) - ¥ - .. En+ ).
jedJ J&J
We have
Wi ...2ven) = ] 0z — 7, D)Y(R1 - . . 2N+ )
J

for y € L3(Q), 2; = zj + &(D)) with z;e D;, Dje Q’W. Hence

<AJL¢’ “P) = Z J- H 02(Zj ) Bka)XDJ':Bka )

Dy...DN+ N’ JjeJ

I1 0%z — 7, D)xp o | W21 - - 2N e N) [P d2r . . dans N =

jéeJ
- H T1 Ofalz - r)}[ I (1 - 63 — r)] :
jeJ JjéJ
Wz caven)|Pdzr . dan e (10.1)

Next fix 7, M, Bra € @™, and integers n, n'. We define A™ on Li((l‘g’) by

Number of electrons in Bie = 1

Ann,‘l/(zl [N 2N+N’) = X< > . ¢(21 . -2N+N’)-

Number of protons in Bky = n’
Thus A™ = Y, ;A over those J containing 7 electrons and n’ protons. So
(10.1) implies

A = 3 TT 6RaCg— - T (1 - 6al — )

Il =n jeJ jéJ

T kG- LA -Ghy-). (102
J

jelJ’

Hence, for
Aex(t,M, Bio)) = > (n+n")-A™

(n,n)y#=(1,1)
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we can prove that

Number of particles in the middle half of
*Aex(T, M, Bko)t > | Bko + 7, assuming at least two of those (10.3)
articles have the same charge

and

1*Aex(7, M, Bro)L = x<There is exactly one particle in (Bko + 7),

and it lies in the middle half of (Bka + T)>' (10.4)

To check (10.3) and (10.4) we write down as a consequence of (10.2)

L*AEX(T: My Bkol)" = Z (IJ' + |Jll) * H elzfa(xj - T) :
J,J jeJ
L IIh=a,n

- IT (= kO — 1)+ T 6ka(yi— D+ II (1 = 6Fayj— 7). (10.5)
jeJ JjeJ’ JjeJ'

If Jo = {j| xj e middle half of Bxo + 7}, J6 = {j|yj € middle half of Bk + 7},

then in the last equation, we restrict the sum to J D Jo and J' D Jj, and replace

|J| + |J'| by the smaller |Jo| + |J§|. If |Jo| or |J§| = 2, then we never have

(71, 1)) = (1,1). Consequently,

Ao, M) 2 (ol + o)) 2 T kb —m) TI (1= bkeiy = 1)

c<Jo jeG JE€Jo\G
G’'ccJy
- Il Gkeyi—D - I (1 =6kl — 7).
JjeG’ Jj€J0\G’

Here we use G = J\Jy, G' = J'\J§. Now the big sum on the right is simply
1, so (10.3) follows. To prove (10.4), suppose say xj, belongs to the middle
half of Bk, and no other particles lie in Bko. Then we take J = {jo}, J' = ¢
in (10.5), and we find at once that (*A.«(7, M). > 1. The same argument
works if yj, is the only particle in Bxe. So (10.3) and (10.4) are proved.

For a fixed M we now sum (10.3), (10.4) over all Bxo € Q™, and then
average in 7. Recalling that the By, have radii between e and e“'?, we con-
clude that

Av,[( L’TV’ )*Aex(T, MM ] =>c. (Number of particles z; for which at
least two particles zx, z; of the same
charge lie within distance

e1/De2B of 7, (10.6)
and

AUT[(L{,W )*Aex(T, MM ] >c. (Number of particles which have
distance at least e*'® from all other
particles). (10.7)
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Average these estimates over M, and apply (0). The conclusion is
(Number of z; for which B(zj, ¢2°"®?) contains at least two particles of

C
the same charge) < Eplm (10.8)

(Number of z; which have distance at least e/ from all

C
other particles) < Ep]Ql (10.9)

provided ¢’, ¢” are small. To derive (10.8), we take a Swiss cheese with
3¢2 =2c¢", while (10.9) requires a Swiss cheese with 3¢’ = 2¢c;. Now when
c'<c"”, (10.8) and (10.9) show that

Cc
{Number of particles not in atoms of type (c¢’,¢")) < Ep[QI. (10.10)

Comparing this with (9.3), we see that with probability nearly 1, the great ma-
jority of particles belong to atoms of type (c’, c").

Finally, if {xj,, Yx,} form an atom of type (c’, ¢”), then define the displace-
ment vector of the atom simply as 7 = Xj, — Vo

11. A Special Observable

In this section we compute @ = Av, i7[(t,;)*Aex(r, M )LTM] for a special
Aex(7, M) which is picked so that @ will yield strong information on the posi-
tions of the particles. Then in the next section we shall compute (@) by the
method of Section 8.

To construct A..(7, M), we begin with a few simple definitions. Recall that
for fixed M, a ball Bk& is of ep-type if it contains exactly one electron and one
proton. Given 8 C ", we call § monatomic if exactly one of the D, De §
contains some particles, and if that D is of the form By, rather than J,, and
if finally By, is of ep-type. If By, is of ep-type and contains the electron X,
and the proton y», then define the displacement vector F(Bia) = X, — Y»-
Similarly, if § C @ is monatomic with Bxe of ep-type, Bi« € S, then define
the displacement vector 7(8) = F(Bks).

Next, imagine Q is partitioned into disjoint cubes Qf, Q3, ..., Qi of vo-
lume

A
|QF| =-> A a constant to be determined. (11.1)

o
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Here L is a fixed large number to be determined, and the number of distinct
sis ~(|2])/((\/p)L), which of course grows large with Q. A negligible part of
Q near dQ may fall to be covered by the boxes Qj.

Now for fixed E C R? and fixed 7, M, s, and for fixed sets Ji, J2, J3 parti-
tioning {1,...,L}, we define an event & = &4+, M, E, J1, J», J3) as follows.

L
LetQj={DeQ|(D+7nCQj}, and Q= Q-
=1

Then & means that:

Qj is monatomic with displacement vector #(Q)e £ for jeJi
Qj is monatomic with displacement vector 7(Q5) ¢ E for jeJ/,
Qj is not monatomic for jeJs.

Finally, we set Aé(r, M) = xg, and Aex(r, M) = 35 Aéx(1, M). For fixed
7,M,s, we compute 1*A5:. To do so, look first at an arbitrary potential
V(Z1...%n+N) defined on (Qe)¥* ™. By definition of « = ¥ we have

(V, ) =V, ¥y for YeLk n(Q), (11.2)
with
N+ N
Vz1...2v+N) = >, 11 6%z — 7, D)) -

Di..DN+N'EQI=1
P+ ED), ..., 2ve N + EDN+n?).  (11.3)

Assume now ¥ has the special form

V.. anen) = T xys@) - T1 Xy pyf@) - Wenied — (114)
jeg P* jeg
for a collection 8§ C Qand § C {1,2,.., N+ N'}. Then in (11.3) we can carry
out the sum over the D; for / ¢ J, obtaining

V... zn) = [ > 1 6% — 7, DYW(z; + EDy);j € 9)] :

Dje8 for jed jed

- I1 ( 2 0@ — T,D))- (11.5)

I ¢9 \D ¢9

LetF = F(r,M, ) = [@QS(Q" + T)] U { U (x| dist(x, dBka + 1) < e’-'/*}]

Bro€S

for ¢ smaller than the constants ¢, ¢; for our Swiss cheese. Later we will use
the observation

AV Xp 77.5,*) S e~ ¢ for any x. (11.6)
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For now, we continue to fix 7. Assume that none of the particles z; lies in F.
Then one checks easily that for z ¢ F,
2 2@ —1,D)=1-Xgs @ with G8)= U (D+1).
Des Des

Moreover, if z ¢ F then we have z — 7€ D, for a unique D, € Q, and we have
0z — 7,D) =1 if D = D,, 0 otherwise.

Setting v(z) = z + &D;) for z ¢ F, and putting the above remarks into (11.5),
we obtain

V(zi...anven) = ,££ Xoesy @) - II}g (1 = Xg @) - Wyz)jed)  (11.7)

when z1...2v+n €F.
Now specialize to the case

L
$=Q'=U Qj
Jj=1

W(2);j € 9) = characteristic function of the following event: After deleting all
the particles Z; with / ¢ 9, we find that

() Q5 is monatomic with displacement vector in E for je J;
() Qj is monatomic with displacement vector not in E for je J»
() Q5 is not monatomic for j € Js.

Thus V defined by (11.4) is the characteristic function of the event
&sN {2 e (Upes D) precisely for those jed}, while for z; *..2vsn €F =
= F(1, M, Q°), equation (11.7) shows that V is the characteristic function of
the following event:

(a) zje G(Q’) exactly for jed.

(b) For jeJi, in Qj there is a unique D with D + 7 containing some par-
ticles; that D is a ball Bk, D + 7 contains a single electron x, and a
single proton y,; and x, — y, € E.

(¢) For jeJ,, in Q] there is a unique D with D + 7 containing some par-
ticles; that D is a ball Bk, D + 7 contains a single electron x, and a
single proton y,; and x, — y, ¢ E.

(d) For j e Js, it is not true that in Qj there is a unique D with D + 7 con-
«taining some particles, that D being a ball Bk, with D + 7 containing
a single electron and a single proton.

Sum this information over all subsets 9 C {1,2,...,N + N'}. Thus for fixed
7, M, s we see that

For Z1...2v+N € F(1,M, Q") (11.8)
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we have (*A45,(r, M), = V = characteristic function of the event defined by
(b), (¢), (d) above.

To clarify the meaning of this event, pick two small constants 0 < ¢’ < ¢”,
and assume all the particles in U%- ; O belong to atoms of type (c’, ¢”) in the
sense of Section 9. We can pick ¢’,c” sothat 0<c¢'<é<c<c1<c’ <1,
where € is the constant in the definition of F above, and ¢, ¢, are the constants
related to the radii of the balls in the Swiss cheese (e°® < radius (Bka) < e'?).

Assume also that there are no particles within distance e*"? of 3Q; for
J=1,...,L. Under our assumptions, (b), (¢), (d) above are equivalent to

(b) For jeJi, Qjcontains exactly one atom, and its displacement vector
lies in E.

(c)’ For jeJ,, Qjcontains exactly one atom, and its displacement vector
does not lie in E.

(d) For jeJs, Qj fails to contain a unique atom.

Call this event &;. Here, ‘‘atom’ means ‘‘atom of type (¢’, ¢”’)’’; and (b),
(¢), (d) are equivalent to (b)’, (c¢)’, (d) provided:

() No particles lie in F(r, M, Q°).

(-) All particles in |J Qj belong to atoms of type (c’, ¢”).
Jj=1

L
() No particles lie in E; = |J {dist(x, Q}) < e*"?}.
j=1

So for a fixed 7, M, s, we know that ()*As(r, M) = V, where V = Xe,
under the three assumptions just given.

Even without any assumptions, (11.2) and (11.3) show that 0 < V<1
always, since A5,(r, M) has the form V = characteristic function of an event.
Consequently, we know that |(2)*As(7, M)(H) — Xei| < >k_ (Number of
particles in Qf not belonging to atoms of type (c’, ¢”')) + (Number of particles
belonging to F(r, M, Q%)) + (Number of particles in Ej).

Average this over translates 7, and use estimate (11.6) with § = Q°. The
result is [Av[(:)*As(r, M)(i7)] — Xg,| < 227=1 (Number of particles in Qf
not belonging to atoms of type (c’, c")) + e~ 8, (Number of particles in U= ; Q)
+ (Number of particles in Ej). (Here we used X, 47 q5(*) =0 for x ¢ Uk-1 Q).

Summing this over s and averaging in M, we have for

@ = Avs, () * Aex(r, M)(H]

the estimate |®@ — Xisxe;] < (Number of particles not in atoms of type
(¢’, ")) + (Number of particles in Us Es) + e~ *(N + N').
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Since |Us Es| < e™“?|Q|, estimates (9.3), (9.5), (10.10) imply
C — _ —
K@Y — (Xxeyd| < E"‘“' for @ = Avml(W)*Aex(r, M)H].  (11.9)

Recalling that &; is the event described by (b)’, (¢)’, (d)’ above, we see that
(2isXg,> carries a lot of information.

12. The Expected Value of the Special Observable

In this section we fix 7, M and compute Trexp{tAedr, M) + p(N + N') —
— BH®™} for |t| <1 and Aex(7, M) as in Section 11.
Recall the definitions of Qf and Q°, and define

Q,ex[ra = Q\LJ[Q;;= {DEQ|D+ T
meets some dQ; or lies within diam(Qj) of dQ}.

Let

05, = O( U D) EIL:JI Q1.

1=1\DeqQj

We first note that H®* and Aex(7, M) both break up as sums H** = X Hox +
+ Hee;fﬂl

Aex(T, M) = ZAZX’
s

with AS,, HS acting on L3(Q5,) and HE™ acting on

Li( U D).

DeQextra
. Consequently,

Trexp{tAex(r, M) + p(N + N') — BH®*} =
= TI Trexp{tAs: + u(N + N*) — BHS: | LA(Q5)} -

II ZwB. B I Zo(wB, Qo) (12.1)

Bra€Qextra Qa €Qextra

From Section 3, we know that the terms from Qe contribute a factor

R

for large 3, Q.
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Fix s. We shall introduce some definitions to help us compute the right-
hand side of (12.1). ‘

N(D), N'(D) denote arbitrary assignments of a non-negative integer to each
DeQ’.

Ni(D), Ni(D) denote arbitrary assignments of a non-negative integer to
each De Q}.

Evidently, each N(D), N'(D) induces N(D), Ni(D) for each /. We say that
N(D), N'(D) is monatomic for Qj, or equivalently that Nyi(D), Ni(D) is
monatomic, if Ny(D) = Ni(D) = 0 for all D e Qj except for a single ball Bky
(called the active ball in Qj) with N;(Bke) = Ni(Bke) = 1.

® denotes an arbitrary assignment of a ball B € Qjto each / € J1{|JJ>. Define
a set E(N(D), N'(D)) = {(z1...z2v+n~) | Each zje Qi and each D contains
N(D) electrons and N'(D) protons, DeQ’}. Given a ® and given
(Ni(D), Ni(D)) for [ € Js, there is an induced

Ni(D), Ni(D) if De Qj with [e J5] 1,1 if
ND),N'(D)= | DeQj} with le J;UJ, and D is the (12.2)
ball assigned to / by ®; 0, 0 otherwise.

We give the resulting set (N(D), N'(D)) the name &(®, (Ni(D), Ni(D Nies).

Note that (12.2) is the most general N(D), N'(D) which is monatomic for
all le J1UJs.

Now define subspaces of L(Q5,): X(N(D), N'(D)) = space of ¢ € L3(Q5y)
supported in &(N(D), N'(D)) X(®, (Ni(D), Ni(D))es;) = X(N(D), N'(D))
with N, N’ defined by (12.2).

We have

!

Li@%) = 2, @ XMND),ND),
N(D), N'(D)

and therefore

® = Trexp{tAsx + p(N + N') — BHe: | L3(2)} — Trexp{u(N + N') —
— BH&| LA(Q%) =

>, [Trexp{tAsx + u(N + N') — BHS: | X(N(D), N'(D))} —
N(D), N'(D)

— Trexp{u(N + N') — BHex | X(N(D), N'(D))}] =

2. $(N(D), N'(D)).

N(D), N'(D)

Let us recall how Ag; behaves. For (z:...znv+n) € E(NV(D), N'(D)), we
note that Qi is monatomic if and only if N(D), Ni(D) is monatomic.
Therefore, Aix=0 and so ®(NVD),N'(D))=0 unless Ni(D), Ni(D) is
monatomic precisely fo / € J;UJ2. Such M(D), N'(D) are given by (12.2), with
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(Ni(D), Ni(D)) not monatomic for any /e Js. If N(D), N'(D) are given by
(12.2), we write ®(®, (Ni(D), Ni(D))ies;) for ®(N(D),N'(D)).

Now fix & and (Ni(D), Ni(D))ies;, with none of the (Ni(D), Ni(D))
monatomic. Let Bj...Br, be the balls assigned to /e J;UJ, by &, with
B ... By, coming from J; and By + 1 - - - Br, coming from J>. We can compute
P(®, (Ni(D), Ni(D))ies;) using Lemma 4.1. For, A%, and H;, restricted to
X(®, (Ni(D), Ni(D))Less) are observables on a system composed of two non-
interacting parts, namely Bj ... B, and

2=(U U D).
leJ3 DeQj
The Hamiltonian breaks up as a sum of the Hamiltonian of Lemma 4.1 acting
on B, . ..Br,, and an exploded Hamiltonian on Q7. The observable A3, refers
entirely to B, ... Bi, and in fact agrees with G in Lemma 4.1. Therefore, we
can write

Trexp{tAs; + p(N + N') — BH: | X(B, (Ni(D), Ni(D))iess)} =
= Trexp{tG + 2Lop — BH | L},1(B1 . . . BLo)} -

II Z(@m, B, Bkas Ni(Bka), Ni(Bks)) -
leds BkaEQf

II Zo(g, B, Qas Ni(Qa), Ni(Qa))

. ] (12.4)
QaGQf

and the first term on the right can be evaluated using Lemma 4.1. In fact, we
have from Lemma 4.1 that

Trexp{tG + 2Lop — BIOII 51,1(31 ...Bry)} =
= Trexp{2Lop — BH | L1,1(B1 . . . BLy)}"°°(1 + O(* + B~ 1)),

with
= =15l gy)%0 = Ixl gy yLo - so = — gy —
Go = (c fEe dx)*(c L_Ee dx) s So = IJll, Lo — s0= ‘J2|

Substituting this into (12.4), then taking ¢ = 0 in (12.4) and subtracting, we
obtain

B(N(D), N'(D)) = (tGo + O(t* + B71) - Tr{u(N + N') —
— BHi| X(IND), N'(D)}  (12.5)

if (Ni(D), Ni(D)) is monatomic precisely for /e J1UJz; ®(N(D), N'(D)) =0
otherwise;

Go = (const [Ee‘ ¥ gx)V1l (const LEe‘ X1 dx) 2!, (12.6)

In (12.5) we wrote /Go + O(¢%) for (e’® — 1).
Now set
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ZHom(u, B, Q1) = 2 II Z(g,B, Bkas Ni(Bka) Ni(Bka)) -
Ni(D), Ny(D) monatomic Bra€Q3

- II Zo(s, B, Qas Ni(Q), Ni(Qo))  (12.7)
QaEQj

Znon— atomir:(“’ B, Qj) = Z (same pI'OdllCt). (12.8)

Ni(D), Nj(D)not monatomic

Since the trace on the right in (12.5) breaks up as a product of terms cor-
responding to the different Qj, we find that when (12.5) is substituted into
(12.3), we get

®=(tGo+ O +87Y) JI Z"™(n,B,Q0-

leJ1UJ>
. 1];[ Znon—atomiC(ﬂ’ B’ Q,SI . (12‘9)
€J3

It is easy to compute Z*°™¢ and Z"°"~@omic_In fact

ZatomiC(”', B, Q3 = Z Z(p, B, Bka, 1,1) = Z o(1 + 0B~ 1))|Bkal
Bikae QS Bro€Qy

(by Section 4)

=p|Qf| - (1 + OB~
=M1 +0@B™Y)

(see equation (11.1)).
On the other hand,

ZatomiC('u, B’ Q,Sl) + Znon —atomic(#, B’ Qj) —
= H Z(/'Ls B; Bka) v H ZO(PL’ ﬁs Q~a)
BracQj 0a€Qf
(by (12.7), (12.8))
= exp{p|Qf| - (1 + OB~ 1)} = expA(1 + OB~ 1)),
by (11.1) and Section 4 again. It follows that

zron-atomic(y, 8, Q) = (e* = N + OB~ 12y,
aslongas B~ W2 <\ <100. (12.10)

Substituting our formulas for Z#°mic znon-atomic intg (12.9), we get

® = (tGo + O@* + B~ 1/2)) - A\1U2l(er — \)M3l, (12.11)
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We have also
Trexp{u(N + N') — BHS, | L3(Q%5))) = . II Z(g,B, Bko) -
kae_s
T H ZO(I"’ B, Q~oz) =

Qa€Q°

L
= eXD{P 2 |Bre|- (1 + 0(6_1))} 'CXP{0<3_IP Z|Q1Ll>}
Qs =1

Bra€

(by Section 4)

L
= eXp{p 121 |071(1 + OB~ 1))K =M1+ 0@B" 1/2))},

provided (12.10) holds and S is large enough, depending on L. Combining this
and (12.11) with (12.13), we get

Trexp{tAx + p(N + N') — BHS, | L3(Q5)} =

N [JJ1UT2| / N A |J3]
= <1 + tGo<?> ¢ o +0(*+B7 1Y) -

- Trexp(w(N + N') — BHex | Li(@)}, (12.12)

where O(t? + 87 '/?) means less than Const(L)- (1> + 8~ '/?) in absolute
value. Substituting (12.12) into (12.1) now gives

Trexp{tAedr, M) + p(N + N') — BH®} < e5Trexp{u(N + N') — BH**}
(12.13)

with
S = (Number of different s)[tGo(re ~N)M1972I(1 — e " MV3! + O@F? + B~ V?)].

Here, the number of different s is

Q Q

i + error tending to zero as Q gets big = M(1 + 0B 1Y), say.
<>\ AL

-L

o

Applying (8.1) and (9.4) with A..(7, M) replaced by tA.x(r, M), we see that
(12.13) yields

(@) < #(Number of different 5)Go(re ~MM1972l(1 — Ne =MWl 4
, slal

2 -1/2 -1
O + 6717 + OB ol
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Taking ¢t = +6~/?°, and comparing with (11.9), we obtain
(X5 Xe,> = (Number of different s)[Gohe ~M)M1972l(1 — \e ™Ml + OB~ 129
(12.14)

with Gy given by (12.6), and &; defined by (), (c)’, (d) in Section 11.

13. Proof of the Theorem

The idea is to use (12.14), together with a simple quantitative form of the law
of large numbers, which we now set down. Suppose we have independent ran-
dom variables Xj...Xz, with Xj =1 with probability p, X; = 0 with pro-
bability 1 — p. Then E(e®’) = e'p + (1 — p) = exp(pt + O(t?)), uniformly in
p €0, 1]. Consequently, E(e'®'* - *X0) = exp(Lpt + O(Lt?)), so that

Xi+ ...+ X
Prob {—‘Ti >p+ 5} < exp(Lpt + O(Lt?) — tL(p + §)).

Picking ¢ = (small const)d, we obtain

X1+ ...
Prob {%% >p+ 6} < exp(—cézL).

Applying this also to Xj=1 - X}, p’ =1 — p we obtain

Xi+...+X
pof |-

FA— 26}<exp(—c62L). (13.1)

We apply this to a probability space defined as follows.

The points of the space are functions f:{1...L} — {1, 2,3}. Thus, each f
givesrise to subsets J1 = {/| f() = 1}, L. = {{| f() =2}, J5s = {I| f() = 3}.
We fix E C R, and define the probability of f as Prob(f) = (s Xe,) /(Num-
ber of s), where &; is the event defined by (), (¢)’, (d) in Section 10.

Formula (12.14) shows that Prob(f) differs by at most C(L)/8Y*° from
Prob’(f), defined by picking each f(/) independently with probabilities

Prob’(f(/) = 1) = (const jEe' Fax) e = p;
Prob’(f(!) = 2) = (const LEe' K ax)e ™) = p2
Prob'(f(/)=3)=(1 — Ne ™ = ps.

Since the probability space contains only 3* points, it follows that

|Prob(8) — Prob/(8)| < % (13.2)
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for any event & in the probability space. We apply this to the event

. ﬂ <Number of / foz which f(/) = 1> ol > a}-

From (13.2), and (13.1) applied to Prob’, we conclude that

Prob(€) < exp(—cé’L) + %

Now Prob(&) has a simple interpretation.
We define

1 if Qf contains an atom of type (c’, ¢”’) and no other par-
X = ticles, and that atom has displacement vector in E
0 otherwise

Then

(Number of s with |>f_; Xf — p1L| > 8L)

Prob(€) = (Number of s)

Hence,

> 6L> < <exp(—c§f) + BC%> .

- (Number of s)

L
<Number of s with | >, X/ — p1L
=1

Since

<

> X7 — p1L(Number of s)‘> < (SL)(Number of s) +
s,/

+ L<Number of s with ‘ZXIS —-pL|> 6L>,
l

it follows that

<

>, X7 — piL(Number of s)|> <
s

< (Number of s)<6L + Lexp(—c8L) + 5—1(,1;%)

or, since L(Number of s) = (Number of boxes QF) = Ny,

<

Now take 6 small first, -then pick L so large that exp(—c§°L) < 8, then pick

> < No(6 + exp(—c6*L) + C(L)B~29). (13.3)

IZXIS — p1lNo
.S
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B so large that C(L)8~?° < 6, and finally pick Q@ so large that all our
estimates are valid for the 8 we picked. In that case, (13.3) becomes

< ZI,SXIS

(Number of /, s)
B large enough and © large depending on (.

Taking E = R? in (13.4), we find that the number of boxes Qf containing
exactly an atom of type (c’, ¢”) is (p1 + O(8'?) - Np with probability > 1 —
— 62, For E=R? and \ <1, our defining formula for p; becomes
P; =\ + O(\?), while Ny = Number of s, = (|Q|/(\/p)) + (error tending to
zero with large Q) = (o|Q|/N) - (1 + OQ\'%) certainly. So (13.4) in this special
case gives (|(Number of QF containing exactly an atom of type
(', ") - pl@I(L + OO2))) < (38/NplQ].

So if we take \ < €!® and & < \?, then we find with probability at least
(1 — ¢) that the number of Q; containing exactly an atom of type (c¢/, ¢”) is
p]|Q|(1 + O(¢)). However, we already know that with probability > 1 — ¢, all
but at most ep|Q| of the particles belong to atoms of type (c’, ¢”') and the total
number of particles is 2p|?|(1 + O(¢)). So with probability > 1 — O(e), we
know that all but O(e) fraction of the particles come from atoms of type
(c’, ¢") which form the sole contents of one of the Q;. Returning to the general
case of E C R3, we look at (13.4) and realize that with probability > 1 — O(e),
2, s XI = (Number of atoms with displacement vectors in E) + O(e - Number
of atoms), while

-1 > < 36, (13.4)

Dp1 - (Number of s,/) = (const jEe' ¥ d@x)(Number of atoms) +
+ O(e - Number of atoms).

Therefore, (13.4) implies that with probability > 1 — O(e), the fraction of
atoms having displacement vectors in E is within O(e) or (const Lze‘ ¥l dx).
So we know (2.1) and (2.2).

The same technique also proves (2.3). We simply pair up the boxes Q; into,
say Q3;j-1, O3, and define random variables

1 if both Q3;_1, Q3; contain exactly a (c¢’, ¢”)-atom, and the
Yi= displacement vectors of both atoms lie in E,
0 otherwise.

Using Y7 in place of the X7, we obtain in the notation of (2.3) that
p* = [(const jEe' ¥ dx)he "% + O(e)

p',p" = [(const | _e™ " dx)re ™ + O(e),
E
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all with probability > 1 — e. This time, we need not take A small. These last
equations imply (2.3). The proof of our theorem is complete.
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REVISTA MATEMATICA IBEROAMERICANA
Vor. 1, N.° 1, 1985

The Ternary Goldbach
Problem

D. R. Heath-Brown

1. Introduction

The object of this paper is to present new proofs of the classical ‘‘ternary’’
theorems of additive prime number theory. Of these the best known is
Vinogradov’s result on the representation of odd numbers as the sums of three
primes; other results will be discussed later. Earlier treatments of these pro-
blems used the Hardy-Littlewood circle method, and are highly ‘‘analytical’’.
In contrast, the method we use here is a (technically) elementary deduction
from the Siegel-Walfisz Prime Number Theorem. It uses ideas from Linnik’s
dispersion method, together with Vaughan’s identity.

It is convenient to quote the Siegel-Walfisz Theorem here. (See Walfisz [17;
Hilfssatz 3] or Davenport [6; Chapter 22] for example.)

For any constant A > 0 there exists C(A) > 0 such that

> A() = —— + O(xexp(— C(A)(log x)?), (1.1)
n=I(mod k) d’(k)
uniformly for (I, k) = 1 and k < (log x)*.
We now state our results.

Theorem 1. For x > 2 define

Nom)= 2, (logp)logp"),
=x
pfp’=m

45
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where p,p' run over primes. Set

_ - p-1
&om =2 11 <1 - 1)2> 11 <p—2>

plm
p=3
for even m, and &(m) = 0 for odd m. Then for any C > 0 we have

> |Na(m) — x&(m)| < x*(logx)~ €.

2x<m=<3x

Corollary 1. For any C > 0 there are at most O(x(log x) ~ €) even integers
m < x which are not the sum of two primes.

Corollary 2. Every sufficiently large odd number is the sum of three
primes.

Corollary 3. There are infinitely many sets of three distinct primes in
arithmetic progression.

Corollary 2 is the famous result of Vinogradov [15] and [16]. Proofs of
Corollary 1 (via forms of Theorem 1) were given independently by van der
Corput [3], Eudakov [4], [5], and Estermann [8], all using Vinogradov’s
method. Heilbronn [9] also discovered the result independently. It is not clear
who was the first to state Corollary 3 explicitly.

Sharper versions of Corollary 1 have been obtained more recently by
Vaughan [13], and by Montgomery and Vaughan [12]. In particular, the latter
work proves that the exceptional set in Corollary 1 has cardinality O(x* ~?) for
some fixed positive 8. Our results are all ineffective, since the Siegel-Walfisz
Theorem (1.1) is itself ineffective. However, the estimate of Montgomery and
Vaughan [12] gives an effective version of Corollary 1, and hence also of Corol-
laries 2 and 3.

As a by-product of our argument we shall obtain the following version of
the ‘“‘Barban-Davenport-Halberstam’’ Theorem.

Theorem 2. For any C > 0 we have

k 2

X
A(n) — ——| <x*(logx)®~ 3,
k<x(ogx)—C I=1 nzs:x Q"(k)
(¢ k)=1 | n=Imodk)

Results of this type were first obtained by Barban [1], [2], and rediscovered
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by Davenport and Halberstam [7]. In [2] Barban obtained the asymptotic for-
mula

k

2

Li(x)
#(k)

= QLi(x) + O(x*(log x) ~*) + O(Qx(log x) ~*log(x/Q))

2

7I'(X; k1 l) -

for exp(c(log x)'’%) < Q < x (where A may be any positive constant, and c is
an absolute constant). Moreover, when Q = x, he showed that the right-hand
side may be replaced by

xLi(x) + E(Li(x))*> + O(x*(logx)~4)

for a suitable constant E. This work anticipated some of the results of Mont-
gomery [11; Chapter 17]. It should be noted that our proof of Theorem 2 does
not use the large sieve.

The techniques used in this paper draw on ideas from Linnik’s dispersion
method, and from Barban [2] and Hooley [10]. Vaughan’s identity [14] also
plays a crucial part. In addition we shall use the function

w(g)? wq)
A = —_— d = _ ,
o) qgg o(q) dl(‘n?,'q) wd) qgQ o(q) o)

where c4(n) is the Ramanujan sum. The function Ag(n) is so constructed as
to copy A(n) in its distribution over arithmetic progressions.
We shall use the notation L = log x throughout the proof. The implied con-

stants in the O(.) and < notations may depend on A, B and C. In general they
are ineffective.

2. The distribution of Ag(n) in arithmetic progressions

In this section we investigate the properties of the function Ag(n), and show
that it mimics A(z). As a by-product we will establish Theorem 2.

We first note some well-known bounds that will be required from time to
time. We have

o(q) > q(logq)™',  o(q) < q(logq) 2.1)
and

kZ dk)) <KdogK)* ™!, (t=1,2,3). _ (2.2)
=K



48 D.R. HEATH-BROWN

Since d(ab) < d(a)d(b), we also have
2. (n,nd(n) = Za Z dn)< 2 a 2, d(ab) (2.3)

nsN alr nsN alr ab<N
(n,n=a

Slead(a) 2, d®)

b<N/a

< > ad(a)(Na~'(log N))

alr

< N(log N) >, d(a)

ajr

< d(r)*N(logN),

by (2.2) with t = 1.

Before starting the main part of the argument we shall put (1.1) into a more
convenient form, by weakening the error term to O(xL!~*). The condition
k < L* may then be dropped, since the sum on the left of (1.1) is automatical-
ly O + xk~Y)L). Moreover if (/, k) > 1 then p® = I(mod k) requires p|k.
There are then O(log k) available primes p and O(L) possible exponents e.
Hence

> Am<L? (k) >1,k<x),
n=I(mod k)
nsx
and clearly this is true also when k > x. After replacing A by A + 1 we can
now put (1.1) into the more useful form

-4 4
,.Ez(,zn;odk)A(") Ek1¢(k)+0(xL ) (2.4)

nsx

uniformly for all &, /; here we have defined

(1, &Dn=1,
E""‘{o, k,1)> 1.

We now turn to Ag(n), and start by looking at its size. Using (2.1) we have
w(g)?

d

Z L o) q) Z w(d)
<2d Y _1_
an q=09(q)

dlq

< aogQ)2d< > q‘l>
din dds|Q
q

< (log Q) ’; d(d~'(log Q)).

|Ag(n)| =
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Thus
Ag(n) < d(n)(log Q)*. 2.5)

Next we show that in any given arithmetic progression the functions Ag(n)
and A(n) behave very similarly. It is convenient to write Ag(n) = Ag(n) — A(n).

Lemma 1. We have

S Aom) = -2 + O(QL?) + O(L(kQ) ™~ 'd(K), 2.6)
n=imodky o(k)

for (k,1) =1, and

>, Ao(n) <4 QL* + xL(kQ) ™ '(k, I)d(k) + xL =4, 2.7)
n=Il(mod k)

Sfor any I, uniformly for 1 < Q,k < x.

By definition we have

2
2 Aogm) = 3 ”—@—Zdu(d) # (n<x;dln,n=Imodk)}. (2.8)
n=1{mod k) a=0 ¢(q) alg
n=sx
The conditions d|n and n = I(mod k) are compatible only when (d, k)|/, in
which case they define a unique residue class to modulus kd/(d, k). Hence
(2.8) is

2
ZQ% ; du(d){(kd) ™ (d, k)x + O(1)}
as r

2
N -G o< @>,
* 2 4(g) s HD@ B+ 0 2 S0

where r is the product of those primes p|g for which (p, k)|/. The error term
of (2.9) is O(QL?) by (2.1).
Since u(d)(d, k) is a multiplicative function of d we have, for u(q) # 0,

_ N _ (g, D)oW(g, 1), qlk,
thu(d)(d, k) = }'I a - (p, k))_i 0. otk

We write f(q) = u(q)’u((q, D)$((q, 1))/d(q), so that f(g) is multiplicative.
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Then
:ﬁ;‘c flg)= q%f(q) + 0( qZ“]c If(q)l) = (2.10
asQ a>0
= ;]f(q) +0(Q7 ' 2 qf(@))
qlk qlk
= [T +f(p)+0Q" H (1 + p|f(D)).
plk plk
However

_ (p - 1)-1a Plk,P‘“,
f(p) - { —1! plk!pll'

" Hence (2.10) is

a(k)>

+0QLY + 0<x(kQ) 1k, (k) "(k))

k
Ek,l;‘(}’)‘ <Q

and (2.8) becomes

n) =E,
nﬂl(;n:odk) Ao(r) = B I¢(k)
nsx
The estimates (2.6) and (2.7) now follow, using (2.1) and (2.4).
Our next lemma is an analogue of Theorem 2 for Ag(n). For convenience

we define

k

61(x’ kr Q) = Z

=1

2 AQ(n) (t=1,2).
n=l(mod k)
nsx

We then have:
Lemma 2. Let Q= L% and K< xQ~'. Then
kgxk' '81(x, k, Q) <3xQ 2L’ (2.11)
Sfor any fixed B > 0.

The proof falls into two parts. First we bound the sum on the left of (2.11)
in terms of

S= 2 &(xkQ)),

K<ks2K
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and then we use Lemma 1 to estimate S. The second stage follows the idea

used by Barban [2]. Naturally it suffices to consider the case K = xQ~ 1.
For any j > 1 we have

J

<

=<
m=1

n=/(mod k) m=1 n=l+ mk(mod jk) n=1!+ mk(mod jk)

By summing over /(mod k) we deduce that
51(x, k, Q) < 61(x)jka Q)'

We proceed to average this over those j for which jk € (K, 2K]. Since the
number of such j is of exact order Kk~ ! we obtain

Kk™'8:1(x,k, Q)< 2, 81(x, h, Q).
K<h=s2K

k|h
On summing for k < K this yields
KX k%100, k,Q < > dhix, h Q).
k<K K<h=s2K
To obtain an estimate in terms of S we apply Cauchy’s inequality, in conjunc-
tion with the case # = 2 of (2.2). This leads to
K 3 k™'81(x, k, Q) < (K(log K))2( >0 dulx, A, Q)2>1/2. (2.12)
k=K K K

<hs2.
However, by Cauchy’s inequality again, we have
d1(x, h, Q)* < hda(x, h, Q) < K&(x, h, Q),
and so (2.12) yields
> k™ 8u(x, k, Q) < L328V2, (2.13)
ksK

We proceed to bound S. We have
&206,k, Q) = 3 Ag(m)Ag(n)

?l,nsx
= 2 Aoy +2 3 Ag(m)Ag(n). (2.14)
n<x m<nsx

klm—n

From (2.5) we have Ag(n) < Ld(n), whence Ag(n) < Ld(n). The diagonal
terms in (2.14) therefore total O(xL>), by the case ¢ = 2 of (2.2). It follows that

S=2 D, Ag(m)Ao(n) # {k,t;n — m = kt,K < k < 2K} + O(xKL?)

m<nsx

S=2 3 D Agm) 3 Agn) + OGKLY).

1st<xK-1msx n=m(mod?)
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In the innermost sum 7 runs over a subinterval of (0, x], so that (2.7) of Lem-
ma 1 can be applied. This yields

S < xKL® + zt) > |Ao(m)| {xL(tQ) ~ (¢, m)d(D)}. (2.15)

Note here that
xL(tQ)~'(t, m)d(®) > x(tQ) "' > x(xK " 'Q) !> xL B> QL* + xL 4,

on taking A = 2B, as indeed we may. Thus the second term on the right of
(2.7) is the dominant one.
We rearrange the double sum in (2.15) as
xLQ71 Y > |Ao(m) |t 1(¢, m)d(t) < XLQ ™' D) |Ag(m)| ,Z t~1(t, m)d(d).
t m m=x =x
The inner sum is O(d(m)*L?), by (2.3). Thus, since Ag(m) < Ld(m) as before,
(2.15) becomes

S <xKL’ + xL3Q' 3 |Ag(m)|d(m)*
m=x

<xKL® + xL*Q~! ] d(m)?

m=sx
<xKL® + x*L"'Q7 !,

by (2.2) with ¢ = 3. Lemma 2 now follows from (2.13), given our condition
on K.
We can now derive Theorem 2. It follows from Lemma 2 that

k
x
k1 An) ———| <
k;K lgl nEI(%l:odk) (n) (k)
k=1 n=sx
k x
< > kTt 3 > Aon) — —~| +xQ 2L,
K=k =1 |n=i{modk) (k)
k=1 n<x

By (2.6) of Lemma 1 the right hand side is
<xQ V2L + 3 {QL* + xL(kQ) " 'd(k))
K=K

<xQ V2" + KQL?* + xQ 'L
<xQ V2L + KQL?,

on using (2.2) with # = 1. However

x
An) — ——| < xk™ 'L,
nsl(godk) ™) (k)

nsx
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so that
k 2
x
A(n) — ——
K=k I=1 nsz(%:odk) ) (k)
k=1 nsx
k x
<xL > k7' 3] 2 A -
K=k =1 | n=i{modk) (k)
(k=1 n<x

<xL(xQ~Y*L" + KQL?)
< sza -C/3

on choosing K = xL~C, Q = LB, B =2C/3. This proves Theorem 2.

3. Application of Vaughan’s identity

In this section we use Vaughan’s identity to estimate the sum

g= 3 (3 ApmAm - n)).

2x<m=3x \n=<x

Here we shall take Q = L® with a large constant value for B. The identity
states that for any u, v > 1 we have

> f(MA(m)=S1— S, - Ss,

v<ns<N
with
S = ; CN SZA]W (log Nf(cr),
S 2,0, 2 SN, ce= 21 20 WM,
cn=k
Ss = g) g d: Am)f(rn),  dr= Xl] (). 3.1
m=<N csu

We shall take N=3x, u=Q, v=xQ % and

Ag(m — n), m-x<n<m,
Jm) = { 0, otherwise.
We proceed to estimate
Ei = Z lsll s
m

fori=1,2,3.
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To bound S; we use partial summation in conjunction with (2.7) of Lemma
1. This yields

2, (Qognf(re) = 2 (log )Ag(m — rc)
r<N/c (n—x)/csr<m/c
<LMax| 3 Agls)
y=<x |s=m(modc)
s<y

< L(xL(cQ) ™ (c, m)d(c)).

Note that, as before, the second term on the right of (2.7) dominates the other
two, since A can be taken arbitrarily large. It now follows that

Li<€ Y, > xL¥cQ) (e, m)d(c).

2x<ms3x csu
However (2.3) yields
>, ¢~ Y, m)d(c) < d(m)*(log u)* < d(m)>L.

csu
Moreover

>, d(m)* <xL?

2x<m=3x
by (2.2) with ¢ = 2. Combining these estimates yields
I <x’L°Q~ . (3.2)
We turn next to X,. Since

lek] < D A(m) =logk < L,
nlk

we have

S <L Y,

ksuv

=L 3]

k suv

Ag(m — kr)‘

(m-x)/ksr<m/k

2 Ao
n=m(modk)
nsx

As m runs over the interval (2x, 3x], each congruence class (mod k) is covered
O(xk ™) times. It follows that

T2<Lx 2 k™'81(x, k, Q).

k=uv
We may now apply Lemma 2 to obtain

EZ < XZQ_I/ZLS.
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Lastly we examine X3. We split the ranges for r and » into intervals
re(U,2U], ne(V,2V], where U= u2', V = v2/. Since the corresponding
subsum is empty unless

x<4UV, UV < 3x, 3.4
there can be only O(L) pairs of values U, V to be considered. It follows that

Ly<L D, >, An) Ud,f(rn)

2x<ms=3xV<n=s2V U<r=2
for some U, V. Since A(n) < L we can use Cauchy’s inequality to obtain

< LVL? Y, | >, dfnm)|? (3.5)

m,n | U<r=s2U

=xVL* >, dnd, >, ZZVf(rln)f(rzn)-

U<ri=2U 2x<m=3x V<n=<

The innermost sum here is

S(r1, r2, m) = >, Ag(m — rin)Ag(m — r2n),
nel

where [ is the interval

I= (V,zV]n[T—__x,ﬂ>n[’” - xﬁ).
r r r r

Let us first suppose that r; = r». Then, by (2.5), we have

S(ri,ri,my<L >, ds).

s=m(modri)
s<x

As before, if we sum over m, the residue classes (modr;) are each covered
O@xri ') = O(xU™ ") times. Thus (2.2) with ¢ = 2 yields

> 8(r1i,ri,m) < xU'L 3] d(s)*> < x*U™'L°. (3.6)

s=x

We now examine S(r1, 2, m) when r; < rz, the case r; > r, being essentially
identical. We write r = r — r; and j = m — ran. Then

218(r1, r2, m) = > Ag(m — rin)Ag(m — ra2n) 3.7
= 2180()j) 21 Ag(j + rn),
J n

where the conditions 2x < m < 3x, n e[ translate as 0 < j < x and

ne(V,2VIN(=j/r, (x = j)/rIN(@2x — j)/r2, (3x = j)/r2].



56 D.R. HEATH-BROWN

By (2.7) of Lemma 1 we have

21 80(j + rn) < xL(rQ) ™ \(r, j)d(r),

since, as before, the middle term on the right of (2.7) dominates. Now, by
(2.5) and (2.3), equation (3.7) yields

23 8(r1, 2, m) < xL(rQ) ™ 'd(r) 2 |A0())|(7,)) (3.8)
m Jjsx

< xL*(rQ)~'d(r) 2 d()(r,j)

jsx
<x’L*(rQ)~ 'd(r)’
=x’L*r - r|7'Q 7 d(n - r|?,  (n#r).

It is clear from the definition (3.1) that |d,| < d(r). Moreover, since (3.4)
requires that

U<xv™'=Q*=1L1%,
we have

drn<r¥®® <L, (r<U).
Hence, using (3.5), (3.6) and (3.8) we find

I3’ < xVL4< > la AUt Lt +
U<r=s2U

+ Z ldrldr2|x2L3lr1 - r2|—lQ_1d(|r1 - rzl)3>
U<ri=2U
rL#Er
< XVLAOALS + x2L8Q ™ 'Tir — | ™ Y)
< xVLA(X*LS + x*L°UQ™Y)
<x4L10U_1 + x4L13Q—1
<x*LBQ~ .
This last estimate may be combined with (3.2) and (3.3) to give

LI+ I+ T3 <x’Q 1218, (3.9

4. Completion of the proof of Theorem 1 and its Corollaries

To complete the proof of Theorem 1 we need to know about

2. Ao(m)A(m — n) @.1)

n=sx
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for 2x < m < 3x. By the definition of Ag(n) in conjunction with (2.4) this is

u(g)*
du(d A(m — =
2o 6(q) 52 M@ 21 Am =)

IISX

_ Ma) < du(d) < 4 M@ >
=¥ 20500 a4 i@y Bt O\ 2 S 2

Since du(d)¢(d) ™ 'Ea, m is a multiplicative function of d, the innermost sum
in the main term is

I <1 P ) M@u(g. m)((g, m)
:‘l!‘rln p-1 &(q)

if g is square-free. Moreover the error term is

<xL™4 3, U(q)<xL2 0<xQ!
q<Q¢( q)

by (2.1), since we may take A = 2B + 2. It follows that (4.1) is

w@u((g, m)o((g, m)) L

* 2 o) T o0 )=
_ DM@, m)sgm) | @ L
=x2 #(a)’ < 2, o )2> + 0607

The main term here is

1 1
l1—— 1 =
"J&( (p—1>2>ﬂ< +(p—1>> x&(m)

and first error term is O(xQ ~ *Ld(m)?) by (2.3), since

@m) _(q,mq)
#(g)* q’

Now, using (3.9) together with the case ¢ = 2 of (2.2), we see that
2 2 AmA(m — n) — xS(m)

2x<m=3x|n=sx

< XZQ—I/ZLS + XZQ_ 1L4 < xZQ— 1/2L8.
Since the number of prime powers p® < 3x with e > 2 is O(x'’?) we have

SIAmAm -n)= Y, (logp’)logp”) + Ox"*L?).
n<x p'=x
.
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Thus
> |Na(m) — x&(m)| < x*QV2LE,

2x<m=3x

and, as Q = L® with B arbitrary, Theorem 1 follows.
The corollaries require little comment. Since

1

p>2

whenever m is even, there can be only O(xL ~€) even numbers m counted in
Theorem 1 for which N,(m) = 0. This gives Corollary 1. Next let » be odd,
and take x = n/3. Then the numbers #» — p, for odd primes p < x, are all even,
and there are asymptotically xL ~! of them. Since only O(xL ~ €) such numbers
can have N>(n — p) = 0 there must be at least one solution of n — p = p’ + p”,
if n is large enough. This proves Corollary 2. Similarly, since the number of
integers m = 2p in the range 2x < m < 3x is asymptotically %xL ~1 and only
O(xL ™) such integers can have Na(m) =0, there must be solutions of
2p =p’' + p"” with p’ < x. Since this entails p’ # p(# p"), Corollary 3 is
proved.
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Regularity of the
Boundary of
a Capillary Drop on an
Inhomogeneous Plane
and Related Variational
Problems

Luis A. Caffarelli Avner Friedman

1. Introduction

Consider the functional
JE) = [o, |Doe| + & [ Xns10Edx — [,0 Nx)o£dx’ (1.1)

where Qo = {x = (X', Xn+1), Xn+1> 0}, X' = (x1,...,Xn) varies in R”, gis a
positive constant, A(x’) is a given function, |[N(x’)| < 1, ¢ is the characteristic
function of a set E, and E varies in the class

@ = {E C Qo; E has finite perimeter [|Dogl|}. 1.2)
For a given positive number V set

Gy = (EeQ®,H""Y(E) = V]. 1.3)

61
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Problem (Ry): Find E in Qv such that
J(E) = min J(F).

FeQyp

For n =2 this is precisely the sessile drop problem, i.e., the problem of a
capillary drop occupying the set E and sitting on in inhomogeneous plane
{Xn+1=0]}. The first term in J(E) is the energy due to surface tension, the
second term is the gravitational energy, and the last term is the wetting energy
with contact angle 6(x’) given by

cos f(x") = \(x"), 0<0(x") <.

In (the homogeneous) case \ = const., a minimizer E can be found having
the form

E={x|x'| <p(Xn+1}

(see [11] [12]). In case A # const., existence of a minimizer £ was recently

established by Caffarelli and Spruck [4] under some mild assumptions on

A(x"). For a strictly curved bottom dQo, existence was proved by Giusti [10].
We shall restrict \ to satisfy

0<A<1; (1.4)
then one can show that E is an X, . ;-subgraph that is
E={x;0>2xy+1<u(x),x €S} (1.5)

for some function u with support S. In this paper we are interested in studying
the boundary aS of S; S may be conceived as the free boundary for the sessile
drop problem. We prove that, for the case n = 2, dS is regular; more precisely,

if N\eC™** then dSeC™*!*e (1.6)
if N is analytic then dS is analytic;

the same holds for 3 < n < 6 under some «flatness condition.»
Our method is based on extensions of the results of [1] and [2] to the
minimal surface operator. To explain this connection, consider the functional

JO) = (s o /06 v V0) dx 1.7

where © is, say, a bounded domain in R” and v varies in the class of H*(Q)
functions satisfying a boundary condition v = #° on a portion 9,2 of 9Q;
u° > 0. If u is a minimizer, then (see [1]) formally

V- folx, u, Vu) — folx,u, Vu) =0 in QN {u > 0} (1.8)
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where z=u, p=Vu, and u =0,
Jo(x, u, Vu) - Vu — f(x, u, Vi) = 0 on the free boundary 2Nd{u > 0}. (1.9)

Taking in particular

SO, u,Vu) = 1+]Vu[2+§u2—p.u—)\(x) (u = 0), (1.10)
we get
. Vu .
dlvm—gu=—u in QN{u>0}, (1.11)
1
u=0, mz:xz on QNafu>0]}. 1.12)

(This incidentally shows that for a regular free boundary to exist one must
assume that |\| < 1.)

Observe now that the functional (1.1) for E a subgraph (as in (1.5)) reduces
to the functional of the form (1.7) with f given by (1.10) and x = 0. The sessile
drop problem, however, includes a volume constraint H"*!(E) = V, which
can actually be replaced by adding a ‘‘penalty” term f.,(VE) into the func-
tional, where Vg = H"*!(E) for any E € G. More precisely, Caffarelli and
Spruck [4] introduce the functional

JF) = JF) + foVD)  (Fe@®)

where f.,(1) = (V — 0)/e0 if t <V, foo(t) = 0 if £ > V and prove that if € is
positive and small enough then a minimizer E exists, Ve = V and E is a solu-
tion of problem (Qy). _

The methods of the present paper apply also to the modified functional J.
For the sake of clarity we shall first establish the regularity result (1.6) of the
free boundary for the variational problem involving (1.7), (1.10) and then
consider the sessile drop problem, indicating the minor changes in the proof.

The regularity of the free boundary for the variational problem for (1.7)
was established by Alt and Caffarelli [1] in case f(x,z,p) = | p}z (corres-
ponding to the Laplace operator), and by Alt, Caffarelli and Friedman [2] in
the case of general f(p) = F(|p|®) corresponding to quasi-linear uniformly
elliptic operator; the case f= |p|*> — Q(x)z with Q >0 was considered by
Friedman [5]. The main novelty of the present paper stems from the fact that
the quasi-linear elliptic operator corresponding to (1.10) is not uniformly
elliptic. Thus the crucial step is the proof that any minimizer u is Lipschitz
continuous.
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In §§2-4 we study the variational problem corresponding to (1.7), (1.10) and
establish regularity of the minimizer and of the free boundary. In §5 we shall
apply the results to the sessile drop problem as well as to other related
capillary problems.

We always assume in this paper that n < 6; this ensures the regularity of the
boundary of any perimeter minimizing set.

ADDED IN PROOF. Jean Taylor («Boundary regularity for solutions to
various capillarity and free boundary problems,» Comm. P.D.E., 2 (1977),
323-257) proved regularity of the free boundary surface in R3, using
Almgren’s approach.

2. The variational problem

A Borel function v(x) defined in an open set A C R™ is said to be of bounded
variation (BV) if ‘

L |Dv| = supUA vdivG; G = (G, . . ., Gm) € C(A),
GO = 3 GFw) <1}
i=1
is a finite number. A Borel set E C R™ is said to have a finite perimeter in an
open set & C R” if
jﬂ |D¢>E| <

where ¢ is the characteristic function of E.

We denote by E* the one-sided Steiner symmetrization of a set E in R™
with respect to the plane IT = {x,, = 0}; more precisely, E* lies in {x, > 0},
E*N {x' = x4} consists of a single interval 0 < X < x5, (for any x$ = (9, ...,
x%-1)), where x = (X', Xm), X' = (X1, . . . , Xm—1), and

HYE*N{x' = x4}) = HAEN {x' = xb}).
We recall [14] that if £ C {x,» = 0} then
J‘{xm>0} |D¢E*| S J{xm>0} |D¢E| (21)
Consider a set
E = {x;xm <u(x),x' €S}

where x = (X', Xxm) € R™, x' = (X1, ...,Xm-1), and S is an open set in R™ ™!,
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For any open set A C S one defines (see [14])
[N+ 1Dul? dx’ = sup( [, (udiv G + Gp) dx’;
G=(Gy,...,Gm-1), Gie Ci(A), f} G}(x) <1},
- 2.2)
and then there holds ([14; Prop. 1.9 and (1.5)])
[4xwDoel = [,N1+ |Duf ax. 2.3)

In particular, E has a finite perimeter if and only if » is a BV function.

Let @ be a bounded domain in R” whose boundary is locally a Lipschitz
graph and let #° be a nonnegative Lipschitz continuous function defined on
Q. Let

So = {(X,Xn+1); x€ 02,0 < Xn+1 < u°(x)}

and denote by Kj the class of sets in @ x [0, ) with finite perimeter in
Q2 X (0, ), which coincide with So on dQ X [0, ). For E € Ko, let

Jo(E) = Inx(o,w) |Dé| + Jﬂx(o,uo) (8%n+1 = WeE — Jﬂx{x”+1=0}>\¢E (2.4)
and consider the problem: Find E such that

E €Ky, Jo(E) = lim Jo(G). 2.5)
GeKo

We assume that
g>0, p=20 (g, n are constants) (2.6)
and
A(x) is Lipschitz continuous, 2.7

0<\Mx)<1 in Q.

Theorem 2.1. There exists a solution E of problem (2.5), and E is a
bounded set.

Proor. Since Jp is clearly bounded from below, to prove existence for
(2.5) it suffices to prove that J, is lower semicontinuous, or just that

jnx(o,m) |D¢e| — jnx{x,,H:o})‘qu

is lower semicontinuous; but this can be established as in [10; Th. 1.2]. The
proof that a minimizer E is a bounded set is the same as in [10; Th. 2.3].
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Notice that if E is in K then, by (2.1), its onesided Steiner symmetrization
E* decreases the perimeter and strictly decreases the remaining part of J,
unless £* = E a.e. Thus for a minimizer E we must have that

*=F. (2.8)
We shall henceforth normalize E (as in [8; §3.1]) so that
0 < |Bo(X)N(2 % (0, )| < |Bo(X)| vX edE.

If X°€dE, X°eQ x (0, «) then take a small ball B = B,(X°) contained in
Q X (0, ). Clearly E is then a minimizer of

JG) = [,1Ddal + [, (exns1 ~ woc

in the class of sets which coincide with E on dB. Hence, by Massari [13] (recall
that n < 6), 0E is in C*>** in B and, in fact, since p, g are constants,

OE is analytic in B. 2.9
In view of (2.8) we can write
E={(0Xn+1);0 < Xn+1 < u(x),xe} (2.10)

for some fuction u(x). In view of (2.3), u € BV(Q). Since E is a bounded set,
we also have that

ux)<C foral xeQ (C constant). 2.11)
Lemma 2.2. The function u(x) is continuous in .

Proor. Suppose u(x®) > 0. If u(x) is not continuous at x°, then from
(2.10) it follows that dF contains a vertical line segment. In view of the
analyticity of 0E, 0E must then contain the entire interval {x = x° x,+1> 0},
a contradiction to the boundedness of E. For the same reason, if u(x°) = 0,
then u(x) — 0 if x — x°.

Lemma 2.3. For any ve BV(Q)NC%Q), v=0, or ve H"*Q), v >0,
Jnx/l + | Do Iy > oy = jn 1+ Do -1) + jnl{»o} (2.12)
where 14 denotes the characteristic function of a set A.

ProoF. Suppose first that v e BV(Q)NC’(Q). We can approximate v by
mollifiers v, such that (see [8] [14])

[oV1+ |Dvm|21,,—+j9\/1 + |Dv|* Iy
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forA=Ax={v>}]) (k=1,2,...)and for 4 = Q (notice that A is open).
Since vy, is smooth,

[o V1 + 1DV >0y = [ WT+1Dvnl* = ) + [ fums0.  (2.13)
Since v is continuous,
Ly,>0 2 Iws>1/k
for any positive integer k, if m > mo(k). Hence
[o W1+ 1Dval” = Dlp>0 2 [ W1+ [Doal® = D> 19~
- j,, W1+ [Dvf? = DI> 1/
Since k is arbitrary,

' jn 1+ |Dv = DI>q < liminf [, 1+ [Doml* = Dl 0.
m — oo

Using this in (2.13) we obtain
jﬂx/l + |Dv|* Ips oy < jn W1+ Do -1+ jn Lo (2.14)

To prove the reverse inequality we approximate (v — 1/m)* by mollifiers
Umj(j — o) such that

[o V1 + Dol 14~ [ N1+ D = 1/m)* | L
for A = {v> 0} and for 4 = Q. Since Ij,,;>0 = Iw>o if j is large enough,

lim sup jﬂ (V1 + [Dtmyf? = Dy 03 < lim sup jﬂ W1 + [Dmj]? = DIy =
Jj—oo

J— o

= Jﬂ (\/l + |D(U_ l/m)+|2— 1)I{u>0}.

Noting that (2.13) holds for the smooth functions v,,; and taking a suitable
sequence j — co, we then obtain

[oVT+1D0 = 1/m)* Plios o) >
> [T+ D@~ 1/m) P =D+ [ fo>g. (215

If F={(xX,Xn+1);0 < Xn+1 < v(x),x€Q}, then, by (2.3),

- .
In\/I +|Dw—1/m)"|* = jﬂx(l/ln,w) |Doe| 7 jnx(o,m) | Do

as m — oco; the same holds with @ replaced by QN {v > 0}. Using these facts
in (2.15) we obtain the reverse of (2.14), which completes the proof of (2.12).




68 Lurs A. CAFFARELLI / AVNER FRIEDMAN

If ve H"*(Q) then Dv =0 a.e. on {v = 0}, so that
W1+ |Dv)® = DIp—gy = 0,

which immediately yields (2.12) if v > 0.
We introduce the functional

Jo(v) = I V1 + |Dv|* Ly opdx + I <§vz — ;w> dx — j ANX) >0y dx
Q Q Q

(2.16)
and the admissible class
K= {veBV(Q),v>0 in Q,uv=u’ on 4Q}. 2.17)
Consider the problem: Find u such that
ueK and Jo(u)= lglel;(l Jo(v). (2.18)

We shall find it convenient to work also with the functional

J) = J <1+ [Dv]? - 1)dx + J <§v2 - ;w) dx +
Q Q

+ J (1 = N> oy dx. (2.19)
Q
Theorem 2.4. Let u be defined by (2.10) where E is a solution of problem

(2.5). Then u is a solution of problem (2.18), u € C°(Q) and
Jw) <Jw) VYveKNCQ). (2.20)

ProoF. Since Jo(u) = Jo(E) and
Jo(v) = Jo(G)

ifG={(XXn+1);0 < Xn+1 < v(x),xeQ}, uis a solution of (2.18). The con-
tinuity of u was already established in Lemma 2.2, and (2.20) follows from
the relation ,

J) = Jo(v) if veKNCQ)

which is obtained using Lemma 2.3.
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3. Lipschitz continuity

In this section we establish the Lipschitz continuity of the Solution u asserted
in Theorem 2.4.
We introduce the minimal surface operator

Dy

Lv=div—m—m=-—
\1 + |Dv|?
and consider the Dirichlet problem

Lw—gw= —p in Bxo),
w=u on 9dB.(xo) 3.1

where B.(xo) = {x; |x — xo| < €} and xo € Q. Set, for brevity, B = Be(xo).

Lemma 3.1. If e is small enough then there exists a unique solution w in
C***(B)NCB) of (3.1).

By standard regularity results it follows that w(x) is analytic.

ProoF. Uniqueness follows from the maximum principle. Existence is
established in [7] in case g = 0; the proof in case g > 0 is similar and, for com-
pleteness, we briefly describe it. Denote the boundary values of # on 4B by
¢, and consider first the case where ¢ € C2**. By comparing w (if existing)
with £+ M (M constant) we find that

mg.x |lw <M if M>sup|o|.

Hence |gw| < gM. We can now use [7; p. 285, Cor 13.5] (see (13.35), (13.36))
to deduce that

|Dw| < Co on 92
if € is small enough. By [7; p. 303, Th. 14.1] we then also get

|Dw| < Co in Q.
Thus £w is uniformly elliptic and then, by [7; p. 276, Th. 12.7],

[DW]a, 0 < C.

Having thus established an a priori C'** estimate on w, we can apply [7;
p. 229, Th. 10.8] and deduce the existence of a C*>**(B) solution of (3.1) in
case g € C2*~,
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Consider next the case where ¢ is only assumed to be continuous, and
approximate it uniformly by functions ¢, € C>* . By the maximum principle,
the corresponding solutions wy, satisfy:

| Wi — Wi|L=(@) < |¢m — bk|r=@aay-

Hence wp = w uniformly in Q.
By [7; p. 346, Cor. 15.6] (or [3]), for any @' C C Q,

|DWm| < C in (C = C() constant)

provided g = 0; the proof extends with small changes to the case g > 0. But
then also

[DWmla, 00 < C

and consequently, for a subsequence, wn, — w in C** %(B)NC°(B) where w is
the desired solution.

Lemma 3.2. The function u is an analytic solution of

Lu—gu=—p in {u>0}.

Proor. Suppose u(xp) > 0 and denote by w the solution of (3.1) where ¢
is sufficiently small so that B.(xo) C {u > 0}. It suffices to show that w = u.
Consider the family of functions war = w — M (M > 0). If M is large enough
then wa < uin B = B(xo). We decrease M until we arrive at the smallest value
M, such that wa, < u. We claim that

Mo, = 0.

Indeed, if My > 0 then there must exist a point ¥ € B such that wa, = u at X.
Also,

LWrMy — 8Wmo= —p+8Mo in B.

Recall that (x, u(x)) represents a smooth surface, by (2.9), and observe that
the surfaces (x, u(x)), (x, waro(x)) are tangent at (¥, #(x)) and thus have a com-
mon normal ». Using a coordinate system (X, X, + 1) in which 7 is in the direc-
tion of the X,.i-axis, these surfaces can be represented in the form
Xn+1 = U(X) and X, +1 = W(X) respectively, and

LU - gU = —p(X),
LW - gW = —uX) + gMo
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in a neighborhood N of (X, u(x)), where g, i are the same functions in both equa-
tions and & = const. > 0. Indeed, if X = (%, X, +1) = TX where X = (X, Xn+1), T
orthogonal matrix, e,+1 = (0,0,...,0,1)and é = Te,+1 = (b1, ..., bn+1), then

ngn+1¢o = ng' en+19G = Ig)?' éopc = jgbn+lfn+ 196 + fg sz bixipc

i=1
for any set G in Ky. Due to this change in the functional Jo (or J) we find that

g =bn+1g, 3.2)

iE) =p—g > bifi.

i=1

Notice that b, +1 > 0.

We now apply the maximum principle to U — W and deduce that My = 0
(and U = M in N), a contradiction. We have thus proved that M, = 0 and
w < u, and similarly w > u.

Later on we shall need to use radial solutions s = s(r) of

Ls—gs= —p inashell p<r<R, 3.3)
sS(R)=0 (3.4

where g, i are nonnegative constants and
g<p, <l 3.5)

Rewriting (3.3) in the form

rn—lsl ’
(i) = o
S

we find that

rn - IS/ or"
— =y — il (y constant)
V1 + 57 r

where i = (1 + o(1)) (o(1) = 0 if g/i — 0). Thus a solution is given by

rt ™" — fir/n

S T e T

S(R)=0

provided v is chosen so that

(yr' =" = pr/n)* < 1.
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Since f is small,

1-n
i for p<r<R, s(R)=0

s'(r) ~ —
provided (yp! ™ ")? < 1/2. (3.6)

We now state the main result of this section.
Theorem 3.3. ueC%(Q).

ProoF. Suppose the assertion is not true. Then we can find a sequence
X" =", y™ with y™ = u(x™) > 0,
pm = dist(X™, free boundary) — 0
(the free boundary is the set d{u >0} X {x,+1=0}), and free boundary
points X™ = (¥™, 0) such that
m

Yy
- X

|x

and dist(xm, 0Q) = const. > 0.

On the line segment x™x™ we can clearly find a point ¥ such that
(X", u(¥™) € By,,,,2(X™) and |Vu(x™)| =0
if m— .

The surface y = Un(x), where

1
Un(x) = —u(x™ + pmx),
P

m

will be denoted by S,.. By [13], SmNB; - are uniformly C>*“ surfaces, for
any ¢ > 0. Hence, for a subsequence,

SmNB1-¢—>SNB;
in C**“ sense, for any e > 0. Since
Lu—gu=—p in {u>0},
it is easily seen that
LUn — gnUn= —pm in Spn
where S,, is the projection of S,, on {x,+1 =0}, and

8m = gpfn, Um = UPm-
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It follows that
SNB; is a minimal surface, 3.7

and a graph x,+1 = U(x).
Denote by (Zm, Um(zm)) the point corresponding to (¥™, u(¥™)). Then

|2m| <%, |DUn(zm)| = 0 if m— oo,
Unm(zm) = U(20).

We may assume that z,, — zo. Then the tangent to S at Z° = (20, U(z0)) is ver-
tical. Since S in an analytic surface, it is then given in a neighborhood W of
Z° by

X1 =WX2,...,Xn, Xn+1) (3.8)

with dw/dxn+1 = 0 at Z° (here we have made a suitable rotation of the axes
X1, X2, ...,Xn). Denote by By a ball such that (xi, wixz,...,xn)e W if
(X2, .o ,x,,+1)eBo).

Since SNB; is xn+1-graph, it follows from the representation (3.8) that
OW/dxn+1 < 0 in By if, say, {U > 0} NW lies to the left of S.

Differentiating the minimal surface equation £Lw = 0 with respect to Xn+1
we find that dw/dx, + 1 satisfies a linear elliptic equation to which the strong
maximum principle can be applied. Since dw/dx,+1 <0 in By, whereas
OW/dxn+1 =0 at Z° it follows that

0
Y =0 in Bo.
axn +1
Consequently
X1 = Wxz, . .., Xn) (3.9

in By and, by analytic continuation, the same holds throughout SNB;. Thus
SNB; is a cylinder whose generators are parallel to the x, . i-axis. Further,
since S is X, +1-graph, given by x,+1 = U(x),

Ux)=0 in {x1<wix,...,xs)}. (3.10)

We shall now derive a contradiction to the fact that # is a minimizer. We
can do it either (i) by working with u, or (ii) by working with U. It will be
instructive to describe both methods.

Method (i). Since S»NB;_— SNB;_.in C*** (for any e > 0), it follows
from (3.9), (3.10) that after rotating the x, + ;-axis by a small angle é we have,
in the new coordinate system which we again denote by x1, ..., Xn, Xn+1,

u(x) > Md(x™) in Beaum(x™) O0<o<1) 3.11)
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where d(x™) = dist(x™, d{u > 0}), d(x™) =0 if m— oo; here 1 -6 can be
taken arbitrarily small and M can be taken arbitrary large provided 6 is small
enough and m sufficiently large.

We rescale by d(x™) so as to obtain a new function u such that

u(x)>M in Bg(yo) (3.12)

where yo corresponds to a particular point x™ with m large enough, |yj =1,
its nearest free boundary point is at the origin, and the corresponding g, u
(which are in fact gd*(x™), pd(x™)) satisfy (3.5), so that the radial solution s
of (3.3) can be constructed as above.

Take a point zo in the internal Oy, with |20 < (1 — 6)/2 and consider the
shell ¥ with center zo and radii

n=0-0/2, rn=1-|z/+e (¢>0). (3.13)
Introduce the function
w=maw{u,s} (3.14)

where s is constructed as in (3.6) with p =r;, R=r; and r = |x — 20,.
In view of (3.12) and the smallness of 1 — 6, 1/M, we can choose the con-
stant + in (3.6) such that

uzs on f{r=r}
and
s'(r) 2 o, (3.15)
with o large; in fact,
g=0M,0)> o if M- o, 0—1. (3.16)
Notice also that
uz0=s on f{r=nrj,

and consequently w is an admissible function. Denoting by Jx the part of J
taken over the shell £, the minimality of » implies that

Je(u) < Je(w); (3.17)

here we used Theorem 2.4 and, for simplicity, we work with the original J
rather than with its scaled form.

We shall derive a contradiction to (3.17). For clarity let us first proceed in
a formal way.
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We have

Je(u) — Je(w) = L W1+ |Dul* =1+ |Dw]?)

+ j [<§u2 _ ,u.u) - <§w2 - W)] - j 1 =Nlu=o.  (3.18)
= \2 2 >

For Vu = b, Vw = a we shall use the identity

T+ [P = VT + e -

(-

a) -a_

A+ 16HA + |a») - (1 +a-b)

N1+ @RI gVt B+ 1+a-b)

By convexity, the right hand side is always > 0; however on the set {u = 0}
(where, formally, Vu = 0), we have the stronger inequality

|a*

> .
N1+ |aPN1+]a? +1)

Thus we obtain from (3.18)

Je(u) — J=(w) 2

Since, formally,

V(iu — w)-Vw

= A1+ |Vw)?

[

o

[ V(u—w)-Vw

£ V1 + |vw|?

n SIZ

=n=0vV1 + 521 + 52 + 1)

Jo[ Gt o)~ (-]

rn

1 =Nl =0-
z

= j (u—wLs = j (u—w(-gs—n
z z

= j - w)(—gw—p
z

(3.19)

(3.20)
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and

8 2

g 2_&
2u

—gw =fw-we>o,

(u— w)(—gw) + >

we obtain
S/Z

J, - J; P
2 = W) Lﬂ{u=0} [\/1 + 5?1 +s%+1)
>0 by (3.15), (3.16)

—(I—X)]

(provided M is chosen large enough and 1 — 6 is chosen small enough, depend-
ing on A) which is a contradiction to (3.17).

In order to carry out the preceding argument rigorously, we approximate u
first by (u — €;)* and then by mollifiers v;,x = (4 — €)* * 7« in a neighborhood
of £. Note that

[oV1+1D@—e) P < [ N1+ |DuP?

and

L:\/l + |va,k|2“’I2\/1 + |Du — )" |?
if

[ V1+ D —-e)*P=0

(which we may assume to be the case, by slightly changing the radii of I).
Since also

Iy, > 03 < Itu>0)

if k is large enough (depending on ¢;), we may choose a sequence u; = vj, k()
such that

Iyi>0 < Iy >0} (3.21)
and
fzx/l + [Duj? < jgx/l + |Dul* +1u;,  n;—0. (3.22)

Setting w; = max(s, ;) and observing that wj = u; on dS, we can proceed as
before (but this time rigorously) to establish that

SIZ

J(u~)—J(w-)>j [
BT ) sn-0 VT + 521 457 + 1)
;cj Iu-oy, ©>0. (3.23)
z

-1-NM|2
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On the other hand, by (3.21), (3.22),

Jr(u) > lim sup Jx(w))

J o
and by the lower semicontinuity of the perimeter

J=(w) < lim inf Je(w)).

jmeo
Thus, taking j— oo in (3.23) we find that
Je(u) — Js(w) >0, (3.24)

a contradiction to (3.17). This completes the proof of the Lipschitz continuity
by method (i).

Method (ii). Here we work directly with the blow up limit U. First we
must establish that the subgraph Ey of U is a minimizer. The proof is similar
to the proof of [2; Lemma 3.3] which asserts that the blow up limit of u,, with
respect to B,,,(x™) is a minimizer. However, in that lemma it is given that
|Vum| < C, which is not the case here. In our case one can easily show that
the perimeter of the subgraphs of u, and of v + (1 — )(#m — uo) are uniformly
small outside the set {n =1} and then proceed as in [2], using the lower
semicontinuity of the perimeter.

Suppose now that Ey lies in {x1 < w(x2, ..., Xs)}. Since w is analytic, the
set SN{x,+1 >0} is regular and we can therefore repeat the proof of (3.24)
working directly with the set S and with the set 75, the subgraph of s (where
s is now a radial solution of the minimal surface equation). The calculations
are in fact simpler as well as rigorous (i.e., there is no need to justify the for-
mal calculations by approximation).

The blow up limit Ey may have, however, another portion E> in {x; > w}
(we denote the portion in {x; < w} by E). By what was said in the preceding
paragraph, we have, analogously to (3.24),

Je(E\UTs) < Je(EY). (3.25)

In order to derive a contradiction to the minimality of the set Ey it suffices
to show that

Je(E1UEUTy) < Jo(E1UER). -~
But this follows from the well known inequality

Per(E>UT;) < Per(E») + Per(Ty).
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4. Regularity of the free boundary

Let Q' be a subdomain of Q and let M be a positive number larger than the
Lipschitz coefficient of u in Q'. Define

S(1+e-1 if 0<t<M,
F) = — t— M)>?
() \/T+t-1+6%—([—-—3\4) if t>M,

if € is positive then the function f(p) = F(| p|?) satisfies, for some 8 > 0 and
all peR", £eR",

nf(p)
2 S < 1 2,
Bl i,jzzll——apiapj B &

BIpI> <folp)p, | fe0)| <B7 ' P,
Blp|* <f(p) < B~ pl% 4.1)

and these are precisely the conditions which are needed for the results in [2].
Consider the functional

J'(v) = J F(|Vv|®) dx + j <g v? — ;w> dx + j (1 = Nlp>edx
Q' Q' 2 Q'

and the admissible class
Ko = {veH"*@),v>0,v=u on 3Q}.
Noting that
N1+ [P F(Vu]?) if veKa,
N1+ |Vul? = F(Vu]?) in €,
it is clear that
J'(w) < J'(v) Vv e Kg. 4.2)

Set

P(x,v) =20v% — p. (4.3)

N |09

For any ball B = B;(xo) in &, let v be the solution of

—divfp(Dv) + Py(x,v) =0 in B, v=u on 0B,
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where f(p) = F(| p|?. Since P, = gv, we can apply the maximum principle to
conclude that v > 0. It follows that v (when extended by u into @'\ B) is in
Kg'.

Using the above remark we can now extend all the results of [2] to the pre-
sent problem (4.2). (Note that in [2] f satisfies the conditions in (4.1) and
P = 0; see also [5] where F(p) = |p| and P # 0). In particular, the following
theorems are valid:

Theorem 4.1. If n =2 then (i) if \e CX*“ then the free boundary is in
Ck+b2; (i) if N is analytic then the free boundary is analytic.

Theorem 4.2. Let 3 < n <6 and let D be a domain with D C Q. There
exist positive constants a, 3, go, 7, C such that for any free boundary point
x° in D the following is true:

If in some coordinate system

u@x) =0 in By(xo)N{xn — X7 > 0op} (4.4)
where x° = (x?, . .., x9), 6 < 00, v < 706”7, then 8{u > 0} N\B,/4(x0) has the
form xn = g(x') (x' = (X1, ...,Xa_1)) With ge C"* and

xl _ fl [+3

|Dg(x") — Dg(x")| < C‘

Further, ge CK* 27 if \e C*7 and g is analytic if \ is analytic.

The condition (4.4) is called the flatness condition. In general, not assuming
flatness, one can assert for the set S of singularities of the free boundary that
H""(S) = 0.

5. Applications

Consider a capillary drop on a horizontal inhomogeneous plane Qp = R”; the
contact angle 6(x) is non-constant in general. To study this problem we intro-
duce the functional

Jo(G) = [4, IDda] + [, 8%+ 166 = [,0 M6 + e V) (5.1)
where Qo = Qo X (0, ©), A = cosf, Vg = H"*}(G) and

1
full) = —-;(t—V) if t<V
€0 =
0 if t>V (e0>0)
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where Vis prescribed positive number (the volume of the drop). Caffarelli and
Spruck [4] proved that there exists a set E C Qp such that

Jo(E) = minJ(G), G C Qq; (5.2)
G

furthermore, E is a bounded set and
Ve=V

provided e is small enough. (Notice that since Qo is unbounded, Theorem 2.1
is not applicable to this situation.) As in §2, E is a subgraph of a function
Xn+1 = u(x) with support S, say.

We may consider E as a minimizer in a smaller class Kq:

GeKq if GCQx][0,o) and
G coincides with 92 x {0} on 9dQ X [0, «), (5.3)

where Q is any bounded domain which contains the set S; the integral faQo in
(5.1) is replaced by fong,, =0}

Because of the presence of the term f.,(Vc), we cannot apply the results of
§§2-4 directly to the present problem. However, going over the various
arguments we discover that all the results remain valid with some modifica-
tions, as we shall now explain.

The fact that oE = dEN {Xxn+1 > 0} is in C*>** can be established by the
method of Massari [13] (see also [12] for regularity of doE when the volume
constraint is imposed as a side condition); the analyticity of doE follows from
the existence of multipliers (see [6] [9]). We can now establish the continuity
of u(x) as before.

In any open set S C {u > 0} there exists a point xs such that the tangent to
JF at (xs, u(xs)) is not vertical; thus u(x) is analytic in some ball Bs with center
Xs.

Take a smooth nonnegative function us(x) with support in Bs such that
fus(x)dx = 1. For any { e Ci(Bs) and for any real €, |¢| small enough, the
function u + €{ — e(j{)us is an admissible function having the same volume
V as u. From the inequality

Jeo<u + el — E(Jf’)us) 2= Jeo(4)

we then obtain

Vu- V¢ >
Lt - dx=0 5.4
LS < s vl gu§ — ps§ | dx (5.4
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where

j < Vi Vus + guu >dx
us = —_— s .
Bs \W1 + |Vu|?

Taking u + eus — eus — eus as an admissible function with S’ another open
set with its corresponding us' and ugs’, and e any small real number, we find that
ps' = ps. Further from J,(u + eus) = Jeo(u) (e > 0) we find that us > 0. Thus

p = ps is independent of S, and p > 0. 5.5)
From (5.4), (5.5) we deduce that
Lu—gu= —p in Bs. (5.6)

By using local coordinates we can actually obtain a «parametric» form of
(5.6) valid throughout doE, whereby g, u are to be replaced by g, i (cf. (3.2));
this however will not be needed.

We shall now extend Lemma 3.2. Take any point X° = (x°, u(x%) with
u(x®) > 0 and let Bs(x°) be any ball such that u(x) > 0 if x € Bs(x°). We shall
prove that # is a smooth solution of

Lu—gu=—p in Bsx°. 5.7
Introducing the analytic solution w of

LCw—gw=—p in Bs(x%,
w=u on 0dBsx°, (5.8)

it suffices to show that w = u. Proceeding as in the proof of Lemma 3.2, we
perform, at the same point in the same argument as before an orthogonal
transformation (¥, X»+1) = 7(x, X»+1). The surfaces x,:+1=w(x) and
Xn+1 = U(x) become X, +1 = W(X) and X, +1 = U(¥) respectively, ((¥, Xn+1) =
= (0, 0) corresponds to point (x, X +1) = (X, #(X))) and it remains to show that
the analytic functions W, U in some ball B,(O) with center O = (0, 0) satisfy

LW - gW = —j(x), (5.9
LU-gU= —ji(® (5.10)

where f, £ are given by (3.2).

By the manner by which the transformation 7 changes the functional J (see
the paragraph containing (3.2)) it is clear how the corresponding Euler equa-
tion changes, namely, (5.8) changes into (5.9). Similarly by choosing S a small
ball about X, (5.6) yields

LU - gU = —i(x)
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in a small ball B5(%s) contained in B,(O); by analytic continuation it then
follows that (5.10) holds throughout B,(O).

Having proved (5.9), (5.10), we can now complete the proof of Lemma 3.2
as before.

We next proceed to establish the Lipschitz continuity of u, as in §2. If we
use Method (i) then the proof is the same since the terms f.,(¥V£) cancel out
when we compare J,(#) with J.,(w). On the other hand, if we use Method (ii),
then f.,(¥) must be replaced by

. t
ﬂo(t) = lim f50<;7[ + Ve — VEﬂBpm(Xm)>-

m— oo m

Having proved Lipschitz continuity in compact subsets of 2, we next
trucate V1 + ¢ as in §4 and consider the functional

Jéo(v)=j F(IVv|2)dx+j gvzdx+j (1 = Nlp>qdx + foo(Ve)  (5.11)
Q Q Q

where
Vo= H" "1 {(X,Xn41);0 < Xns1 < 0(), xeQ}.

and proceed as in [2].

The proof of non-degeneracy remains the same and so do all the results of
[2]. However, in checking the various details one must pay attention to the
term feo(V2). If Vi = Vi then fo(Vy) = feo(Vy) and these two terms cancel out.
If however V, < V, then

Jeo(Vo) = feo(Vi) + OV — V3). (5.12)

This causes some changes in the proofs, usually trivial ones. The only slightly
significant difference occurs in Theorem 4.3 of [2] where one takes v = u —
— min(u, €¢). The error in (5.12) must now be controlled by o(r?). We recall

that
j ¢= 0<p2/log 8)
Bp r

2
Vi—Vo| <C|-2—+72|e, and e=Cr;

so that
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taking p = r® with 6 < 1, 1 — 4 small, we get

1 - C
= co(Vi) — feo(V0)| < 3 for some g > 0.

We can now proceed as in [2] and obtain the extensions of Theorem 4.3,
namely,

1 1
_ZJ (V)2 — |Vu|)* < C/log=
B.N{u >0} r
where
1
) = 2L

The rest of the proof of theorems 4.1, 4.2 is the same as in [2]. We can
therefore state, for n = 2:

Theorem 5.1. The free boundary of the sessile drop problem is in C¥+1:¢
if N\e C*®, and it is analytic if \ is analytic.

Remark 5.1. Consider the minimization problem for the functional
Qo CR", Qo= Qo X (0, o))

Jo(G) = on |Doc| + onngw 196 —
B jﬂox{o} AbG — janox(o,w) XQSG + feolG) (5.13)

with G C Qo, N = cos 8, A = cos f. This functional is similar to (5.1); the addi-
tional term j \éc represents the wetting energy on the lateral boundary of the
tube Qo. The minimization problem models capillary fluid in the tube Qo with
a given volume V. If V is small enough then a portion of the bottom will
remain dry. Theorem 5.1 immediately extends to the present case (with n = 2)
showing that the boundary of the dry portion of the bottom is analytic.

The results of this paper also extend to functionals in which ; gv?is replaced
by more general functions P(x, v), provided P, > 0.
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Arithmetic Hilbert
Modular Functions 11

Walter L. Baily, Jr.

Introduction

The purpose of this paper, which is a continuation of [2, 3], is to prove further
results about arithmetic modular forms and functions. In particular we shall
demonstrate here a g-expansion principle which will be useful in proving a
reciprocity law for special values of arithmetic Hilbert modular functions, of
which the classical results on complex multiplication are a special case. The
main feature of our treatment is, perhaps, its independence of the theory of
abelian varieties. In that respect these developments may be considered as an
extension of Hecke’s thesis [13] and Habilitationsschrift [14]. We should also
mention a contribution of Sugawara [34]. More recently Karel has shown how
to apply such ideas to the classical case of elliptic modular functions in an
adelic setting [16].

To date the furthest reaching results in this area, beyond those in the
classical case, belong to a long list of distinguished contributors who have
freely used the known facts about elliptic functions, elliptic curves, and
abelian varieties, notably Hasse [11,12], Deuring [10], Shimura-Taniyama
[32], Shimura [28, 29, 30] (and many others), Taniyama [35], Shih [33],
Miyake [25], Milne-Shih [22, 23, 24], Deligne [8, 9], Borovoi [7], and Milne
[21]. The last mentioned work, which uses the preceding ones together with
results of Kazhdan [17, 18], contains very general results. It has recently been

85
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complemented by a work of Milne, still in unpublished form, written to put
the results of [18] on a firmer basis.

However, our purpose is to develop a theory independent of abelian
varieties based on the properties of the modular functions themselves and
thereby also, it is hoped, to learn more about these functions and their own
intrinsic arithmetic properties. The inspiration for this approach comes from
the paper Der Hilbertsche Klassenkérper eines imagindrquadratischen
Zahlkérpers, Math. Zeitschr. 64 (1956), by M. Eichler, and it is to Prof.
Eichler that we wish to dedicate this article. In it we have relied most heavily
on the work of Hecke, the second paper of Hasse, the papers [27, 28] of
Shimura (for facts about CM-fields and reduction of algebraic varieties
modulo a prime), Deligne [8] (especially for topological properties of the
adelic double coset space), and Karel [16] (as will be explained later). We hope
these efforts, to be continued in subsequent publications, may be of some in-
terest to mathematicians in this field.

1. The Adelic Space

In this paper we generally follow the notation and conventions of [3]. For con-
venience we give some of the most frequently used notation. Let k be a totally
real number field with ring of integers o and [k: Q] = n > 1, let A resp. A(k)
denote the adele rings of Q resp. of k, and let I(k) be the ideles or group of
units of A(k), each supplied with its usual topology. The subscripts « and f
will denote the projections of an adelic object to its archimedean and non-
archimedean components respectively and the subscript + will indicate adelic
objects with non-negative archimedean components. Z resp. 5 will be the max-
imal compact subrings of Ay and of A(k)s respectively. We denote by $ the
upper half complex plane Imz > 0, by $" its n-th Cartesian power, and by i.e.,
the point (i,...,) e d".

Moreover, G’ will denote the algebraic group GL, defined over £ and G will
be the group Ri,@G’ defined over Q. There is a canonical isomorphism ¢ of
G'(A(k)) onto G(A) and of G’(k) onto G(Q) such that if the integral structures
on G’ and on G are those associated to G'(3) = GL2(8) and to G(Z) (with
respect to suitable bases of the vector spaces on which G’ and G act), then
#(G'(3)) = G(2) (cf. [5]).

Z' is the center of G’ and Z = Rg,QZ’, that of G, and G (R)/Z(RR) acts effec-
tively on ". If K« is the isotropy group of i.e in G+ (R) and K& = Ko NG (R),
one has

G+(A) = G4 (R)G(Ay) = P, (A)KKG(2) (1
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(the corrected form of §1.2(2) of [3]), where P = Rx,@P’ and P’ is the group
of upper triangular matrices in G'.

Let K be an open compact subgroup of G(Z) and denote by I' or I'(K) the
arithmetic subgroup G(Q)N'G.(R)-K of G.(Q), whose projection into
G+ (R) we also denote by I' or I'(K).

The space of left cosets of KKw in G+ (A), Xk = G+ (A)/ KK, is the union
of countably many connected components, each one of the form

Xo = 0G4+ (R)K/KKe, w € G(Ay), )

X, being complex analytically isomorphic to $". The group G+ (Q) permutes
these components under left translation in G+ (A) and has finitely many orbits
among them, the stabilizer in G4+(Q) of X, being I', = T'(°K). If we let
Ck(w) = G+ (Q)wG+ (R)K, then V, = I',\X, may be identified with

G+ (Q)\Ck(w)/KKeos

and the collection of double cosets Ci(w) or components V,, is in natural one-
to-one correspondence with the set of elements of the group (cf. [8], Variante
2.5)

g+ [K] = I (k)/k * ko + det(K) = I(k)y/ ket (IK),

where ko = @ kv, kv being the completion of k at the archimedean place
v, and det(K) is the group of det(k), k € K.
Define the double coset space Vi = G+ (Q)\Xk; this is a union

Vle = Uweﬂ Vwa Vw = Pw\Xw = Pw\t@n’ (3)

where Q is a finite set of indexing representatives of the orbits of G (Q)
among the components X,,. (Cf. [3].)

In this paper we consider properties of Vi in connection with arithmetic
automorphic forms and functions on G (A) with respect to K and study the
arithmetic properties of such functions by means of arithmetically defined
Eisenstein series on the components X,,. We follow the ideas and program of
[3] and [16], to which must be added a certain g-expansion principle and other
ideas related to [13, 14] and [11, 12], as well as properties of CM-types to be
found in [32, 28].

We generally adhere to the notation @(K), @(K, w), etc., of §1 of [3] for
the graded algebra of modular forms with respect to K, the forms of weight
w, etc.
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2. Special Points and Idelic Action

We follow here the pattern of §§1.2-1.3 of [16], taking account of differences
needed to accomodate the more general situation discussed in [3]. Therefore our
discussion will be abbreviated by making suitable references to [3] and [16].

The group G% (k) acts on ©" in a manner analogous to that in which
GL>+(Q) acts on 9§ by linear fractional transformations. If £ = (a1, ..., 0n)
is the set of isomorphisms of k onto subfields of R, if S = (‘f §) € G (k), and
@ =@z,...,2,)€ ", then S(z) = (S°" - z1,...,8°" - 2,), where

8% - zj = (az; + B/ (y"zj + 8%).

We denote by K a purely imaginary quadratic extension of k. Then S =
= (5,” E) € G'(k) acts on K — k by linear fractional transformations, S- 7=
= (a7 + B)/(y7 + 6), e K. Consider an imbedding

q: K = M>(k):2 X 2 matrices over k,

of K as a k-algebra such that g(1) = (6 ). By the Skolem-Noether theorem,
the representation g of K as a k-algebra is equivalent to the regular representa-
tion of K on itself and det(g(x)) = xxX = Nk/k(x) > 0. As a subgroup of G (k),
q(K*) has precisely two fixed points 7, 7€ K — k, where 7is the complex con-
jugate of 7. Conversely, if 7€ K — k, then by taking 7, 1, as a k-basis of K
for the regular representation, we see that each 7€ K — k defines such an im-
bedding g = g, that its complex conjugate 7 defines the conjugate imbedding,
and that g(K ™) as a subgroup of G’(k) has precisely the two fixed points
7, 7. Thus we have a one-to-one correspondence between conjugate pairs of
imbeddings q of K in M>(k) and complex conjugate pairs 7, 7 of elements of
K — k.

By a lifting of X, or “‘type’’ for the given CM-field K/k, we mean a set
£ = & of extensions (51, . .., d,) of T to a set of n imbeddings of K into C
such that 6jlk =0j, j=1,...,n. If reK—k, there is a unique lifting

£ = £(7) defined by the requirement Im(6;()) > 0, j = 1, ..., n. Conversely,
given any lifting £, define the set Kz = {re K — k| Z(7) = £}.
If 2z=(71,...,7™)€P" is the fixed point of a non-central element of

G4 (k) = G+ (Q), then [3] there is a uniquely determined purely imaginary
quadratic extension K = K; of k and re K — k such that if £(7) = (61, 62,
... ), then 7= 7%, j=1,..., n. Moreover, from our previous discussion
it follows that there is an imbedding g = g, of K into M>(k) such that z = (7)
is the unique fixed point of g(K*) C G4 (k) in $". In fact, the isotropy
subgroup of (7) in G% (k) has to be a torus; since g(K) is a maximal com-
mutative subalgebra of M>(k), it follows that g(K *) is the full isotropy group
of () in G+ (k).
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In the future we view any point 7€ K — k as being imbedded into $" by
means of £(7), and write () for its image there. Having fixed the CM-
extension K, we refer to the set Kz of points (7) for 7€ K — k as the set of
special points of " relative to the extension K/k.

If v is a fractional ideal of k and 7€ K — k, then Sy, =7 + 0 is an o-
module in K of rank two. Let ® = ®Ry(7) be its order, ® = {xe K| x-S, C
C S, +}, 0 that $y, - is a proper R-ideal in K. Let Zo(R) = {re K — k| Ro(7) =
=®}, and Zy(R, L) = {71e E(R) | E(n) = ).

Returning to the double coset decomposition

G+(A) = UQ G+ (QuG+ (R)K @

associated to the decomposition of the double coset space

Vik = G+ (Q\G+(A)/KKe = UQ Ve )
into its component varieties as in the preceding section, we recall from [3] that
the double coset representatives w may be chosen in diagonal form
W= (3’/ ‘1’), o' €I(k)y, lety = id(w) ", and v, = v, X, = X». In particular
when K=G(2), let6 =Qand w=06€6, 6=(§ 9),0=id(#) ' and ©' =
= {#'|0€0O}. Then

G(A)r = 0L6Je G+(QHG2). ©6)

For a fixed order ® in K such that ® contains the ring of integers of k, and
for any 6 € O, we define the set of special points on X, to be the set

Eo(R) = (60 - (1) €0G+(R)G(2)/KG(Z) | T € Brp(R)}. )

In other words, identifying $" with X; = 6 - ©", Es(®R) is the set of special
points of $" coming from elements 7 € Ey,(®) C K — k. Then define Zg, o(R)
to be the subset of g e G.(R) such that g(i.e.) € Z¢(®R) and define the sets

Fa(®) = G+ (QE=(R)G(Z), where Eo(R)= eUe Ho,(®R) - 0.

We also let
Eo(®R, L) = (0-(DeEy(R)|E(D) =L}

and define Z4(®R, £) and E~(®R, £) analogously. If K is an open compact
subgroup of G(Z), let Zx(®) be the image, via the canonical projection to
double cosets, of E4(®R) in V. In particular, if n is an integral ideal in o and
if IK = KK(n) is the principal congruence subgroup of those k € G'(3) = G(Z) C
C M(3) such that k — I, e n - Mx(3) (where I, = (é ‘1))), denote Vi by Vi,
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and Zik(®R) by En(R). Let WU(®R) be the principal congruence subgroup mod
n of the group U(R) = R ™ of unit ideles, where ® is the closure of ® in
A(K)y, and let Cy(®R) be the group

Ca(®) = AKK) /K™ - AKK )+ Un(R) @®)

of ray classes modulo n of proper ®-ideals. If 6 € © and 7€ Z,,(®R), and if g,
is the imbedding associated to 7 of K into M>(k), then we have

2:(Un(R)NKD ™) C K(w). ®

Let Ca(®) be the group of classes of proper fractional ideals of ® in K. Sup-
pose v €I's = T'(°G(2)) and 7€ Ey,(®R), so that A, = v7 + o is a proper frac-
tional ®-ideal of K and so that if (as in [2]) we put Ry = (3 ‘.3_1), then
vy=(¢ §)eR. Then if 7' =v-7, a direct calculation shows that
A =v7' + 0= (cr + d)~ 'Y, therefore 7' also belongs to Ey,(R). Conse-
quently the ®R-ideal class of v + o is constant along the orbits of I'p, and
similarly if %, ~ .-, then 7/ € Ry* - 7 (linear fractional operation on the right-
hand side), so that I'y has only finitely many orbits in ZE,,(®).
Let g€ G+ (A) and 7 = g(i.e). Denote by j(g) the double coset

G+ (Q)gG+(RG2)

to which g belongs. Let U be a proper fractional ®R-ideal of K. Since ¥ is
proper and its order contains o, ¥ is at every finite place ‘§ of K locally prin-
cipal as an ®Rs-ideal; hence, there is a finite idele o e I(K)r such that
A = KNAK)wa®. If U is the p-ideal generated by A, as in [3], let
N = Ngx3l. Suppose g € Ea(®R) and that g = £0, £ € Ep,o(R), § €O, and let
(1) = &(i.e) and A, = v7 + o with v = id(det(d)) " '. Let v G+ (Q) and write
g’ = vg. Then AU, is in the same proper R-ideal class as UA,, = v171 + o with
v1 = pp, and 71 € Ey,(R) for some 6; € O, with p; in the same narrow ideal class
as v - N, and (71) = &1(i.e) for some &1 € Fo,, (R).

Lemma 1. With the notation just introduced, we may choose (11) = &1(i.€)
such that £(m1) = £(7), and then we have j(0:1£1) = j(yq-(c™1)0%).

Proor. Of course it suffices to prove that
J(61£1) = j(g-(c™")09).

Let g = g.. If p is a prime ideal of o, let Ry, = ® ®,0, and define an R,-
module B, by By = ap(vp7 + 0p). Clearly (A,), = By for every prime ideal p
of o, thus B = AV, is the proper fractional R-ideal with localization B, for
every p, and N, as defined above, is in the same narrow ideal class as v; and
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p- N. Then B is in the same proper R-ideal class as U, = v171 + 0, With
01 = e, and 71 € Ey,(R) for some §; € ©. Then by the calculations of §3.1 of
[3], we have

o1 = (A(r1, 1)/A(7, 1) - NY - v. (10)

Since A(7, 1) = 2Im(7), this says the principal fractional ideals (Im(7)) and
(Im(71)) of k are in the same narrow ideal class, and therefore there exists a
unit n € o such that

E@n) = £@),

or, if we replace 7; by 71, which does not change the ideal v;, we may assume
that £(71) = £(7). Thus we may write

B =1v1B + oB’,

with £(B/B’) = £(r1) = £(1). Therefore there exists P = (¢ §) e G (k) such

that
o1)-(2)

For each prime p of o, we have
By = v1pB + 0p B’
and also
By = VpapT + Opop;

therefore, there exists wy € 0, G'(0p)01p. say wp = Opypfip. such that

ol )= ()

pr<T> = (a;,-r) for each prime p.
1 Qyp

Then g(a), = w,P for each prime p. Therefore, g(oe™ ")y = P 2015y 65 !, or
since a € I(K)y,

i.e., such that

g H=Pilov8"', yeGQ),
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hence g(a™")0¢ = P7 '01v£ = P~ Potf1y. Now by (), Pwof(i.€) = £&1(i.€), so
that
J(g(a™1)08) = j(6161) = j(6:1£1).

This proves the lemma. (Cf. [16: §1.2.4]).

Now Zo(R) = Upeo Zo,«(R)§ = Us Zo(®R). Then, following Karel [16], we
may introduce an action of the group I(K)r on the set Za(R) as follows:
Define a map

F: I(K)r x G+(Q) X E«(®) X G(Z) > G+(A) (11)

by F(y, \, £0, w) = Ngei.e)(y ™ )E0w, where y € I(K )5, A € G+ (Q), £ € Eo,»(®R), and
w € G(Z). We first verify that F(y, \, £6, ) depends only on y and on the product
Abw € ZA(R). Suppose that Aéfw = N'E60'«w’ with analogous meanings for the
primed elements. By looking at the non-archimedean components, we see that

det(00' ~ ) € det(G'(8))det(G% (k)p),

so that 6 and @’ represent the same double coset in (6) and therefore 6 = ¢'.
Consequently

AN = £ Yoo "0 eT(CG2)),

the arithmetic group acting on Xj. Put v = N~ I\. Then & = vf so that
0&(i.e) = Oy-£'(i.e). The representation g,: K <= Ma(k) is defined by

qT(b)<;> - (l;’), reK—k,  beKk, (12)

and g, may be extended to a representation of A(K) into M>(A(k)), in par-
ticular to a representation of C=K@®@ R into M>(R). Therefore, if
S=(¢ %)eGL3 (k)and S- 7= (ar + b)(ct + d)~', re K — k, we have

gs-» = Sq.S” . (13)
Applying this with S = v we obtain
Ngra.o(r ™ DECW =Ny 'gra.o(y ™ Dyetbe’ = My 'grao(y ™ DEb’ =
= \a .00~ 7 1080 = Mgea.o(r ™ DEY 106’ = Ngra.o(y ™ Ebw,

since v/ ! = fww’ ~ 1071, This says, as claimed, that F(y, \, £, ) depends only
on y and on the product Nfw.

We can also see that F(y, \, £, w) belongs to Ea(®R). For this it suffices to
prove that

Gy~ DOE € Ea(®) (14)
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(noting that 6¢ = £6), and this is immediate from Lemma 1 since (in the nota-
tion of that lemma) 6,£; € Za(®R).
Thus one has, in analogy with §1.2.5 of [16], a map

1K)y X Ea(®) = Ea(®), (15)

written as (¥, £) = y«£ for y € I(K)y, £ € Ea(R). One extends this to an action
of I(K) by defining the action of /(K ) to be trivial (which is appropriate since
Gii.e)e). £(i.€) = &(i.e) for every a € I(K)«). In this way one obtains an action
of the group I(K)/I(K)« - K> of idele classes, modulo the connected compo-
nent of the identity, on G+ (Q)Za(®R)/K» and hence on the image of Za(®R)
in each of the double coset spaces Vi in (5). Now Vi = U,ea V, and it is easy
to verify that

det(gei.o(y 1)) = Nea(y ™Y,  yelK). (16)

Hence, £ — y* £ moves a special point of the component X, to one of X,
where o € Q is defined uniquely by

det(w’) € N(y ™ Ndet(w)(k )rdet(K). a7

Also, for x € Un(R), g-(x) belongs to the group of units of Ry, which are
= lmodn, i.e., g-(x) € “IK(n), where 7 belongs to " and ® is the order of
79 + 0, and v = id.(det(w) ~ ). Therefore if 7 = &(i.e) and ¢ = \éwn represents
a point of a component V,, of Vi, where K = K(n), A € G+ (Q), and € K(n),
then g.(x~') = “»’ for some '€ K(n) and therefore x* ¢ = Ag.(x ™ Déwny =
= Awn'y, which represents the same point of Vi. This means that, as a
subgroup of I(K), the principal congruence subgroup Un(®) of I(K)s acts
trivially on the projection Z,(®R) of Za(®R) into V;. In other words, the ray
class group

Cu(®R) = Ru(K, ®R) = I(K)/I(K ) - K™ Un(R)

of K with respect to ® modulo n acts on Ey(®R). It is known already from
[3:83.1] that

E(®) = Ex(®) = Up Eo(®R)/T5

is finite, where v runs over a set of representatives of narrow ideal classes of
k. Since the canonical projection of V; onto V = V; has only finite fibers, it
follows that Z,(®) is a finite set in which Rn(K, ®), of course, has only finite-
ly many orbits.

At the same time, the relation £(71) = £(7) from Lemma 1 implies that if
£eZa(®R, L) and y € I[(K), then y * £ € Ea(®R, £). Thus, the action of I(K) on
Za(®) is also an action of I(K) on Ea(®, £) for each lifting £.
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The action described in [16], as well as that defined here, of the idele group
on the special points of the adelic double coset space, is, of course, closely
related to the action given in [31] of the idele group on the special values of
arithmetic modular functions.

3. Conjugation

We now formulate a generalization of results of §1.3 of [16] to cover our present
situation. The proofs, which parallel closely those of loc. cit., will be mostly
omitted. The purpose of these results is to effect, for each x = £6 € E-(R),
an extension of the k-algebra homomorphism g;g.) to an isomorphism of a
K-algebra

K=K+ K, 2=1, w=a foral aek,

with M, (k).

Let x = £0 € Fw, 9(®) and z = &(.e). Then z = (7, ..., 7°") for some re K
where £(7) = (61, . . ., 6n). For a € K, g(a) = g-(a) is defined by (12) of §2. We
define

-1 7+7 -1 x ,
q(a)=< 0 1 >=< 0 1>eG-(k),

where x = 2Rer ek and G- (k) = {M e G'(k) | det(M) < 0}. Then using (12)
we get

q(vg(a) = q(@q(v). 18)

Hence g, so extended to K, becomes a faithful k-algebra isomorphism of K
with M>(k). Then if x € Mh(k) satisfies g(a)x = xq(@) for all a € K it follows
that xq(1) centralizes g(K') C M>(k) and therefore xq(1) = q(b) for some b € K,
i.e., x = q(bu).

We identify « with the generator of Gal(K/k) and extend the action of I(K)
on

G+(Q\G+(A)/ K,

defined in §2, to an action of the semi-direct product I(K)~ = I(K) x Gal(K/
/k) defined by the exact sequence

{1} > I(K) = I(K)~ = Gal(K/k) = {1},
in the following manner. If x = £6 as above, and if w e G(Z) = G'(9), let

¥ (G4 (Q)xwKe) = G - (Q)g+(1)wXwKeo,
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where G_(Q) = G- (k). It is easy to verify, just as in loc. cit., that this defini-
tion is independent of the choice of representative xw of the given double coset
mod G+ (Q)\/Kx; that if v is such a double coset, then

b*i*v=1*h*yp, belK);

that for each prime ideal p of the ring of integers o of k and 6 € O, there exists
8y € °G’(0p) such that 8,q(a)d; ! = (@) for all a € K, = K ® «ky; and then, in
parallel to the proof of Lemma 1.3.2 of loc. cit., that

¥ (G+ (Q\EA(R)/Ks) = G+ (Q\EA(R)/ K.

In this way, one constructs an action of /(K)~ on the space of double cosets
G, (Q\EA(R)/Kx. As in Section 2, this action commutes with right transla-
tion by elements of G(Z) and provides an action of

Ca(R)™ = Rua(K, R)™ = Ru(K, R)xGal(K/k)

on Z,(®R). (Note that complex conjugation permutes the ray classes modulo
the ideal n of o.)

At the same time, using the relations analogous to those described in the
proof of Lemma 1.3.2 of [16], one sees that the action of 7/(K)~ on the space
of double cosets preserves each of the sets

G+ (Q\Ea(®R, £)/Ke

and provides an action of Cy(®)~ on En(®, £) for each lifting £.

4. Modular Forms and Eisenstein Series

4.1. If K is an open compact subgroup of G(Ay), we form the graded
algebra [3: §1.2]

@(”() = @.- eZ,sza(le W)

of modular forms with respect to K on G.(A). For given w, each element ¢
of @(K, w) induces on each component X,(=9") a holomorphic modular
form of weight w with respect to the arithmetic group I', and for the automor-
phy factor

J(g,2)" = jac(g, 2)", geG.(R), ze 9",

where jac denotes the functional determinant. In general we adopt the nota-
tion of §1 of [3] for the graded algebras of modular forms, the graded k-
subalgebras of those which are k-arithmetic, the graded algebra of
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homogeneous quotients of modular forms, and, in particular, for the ring of
modular functions, respectively arithmetic modular functions, with respect to
an open compact subgroup of G(Ay), or field of modular functions with
respect to an arithmetic group acting on $". As remarked in loc. cit., there
is a standard procedure for lifting a modular form or function with respect
to I', from 9" (= X,,) to one on G+ (A) supported on the double coset Ex(w);
we denote this lifting map by A,. There is also a standard process, given by
a functor \, for lowering a modular form ¢ on G+ (A) of weight w with respect
to K to a family {f,}oeo of modular forms of weight w, where £, is a
modular form on $” with respect to T',.

4.2, We now introduce Eisenstein series, following the constructions of
[2, 3, 16], and record some basic facts about their Fourier expansions and
behavior as transformed by elements of the Galois group & = Gal(Q.»/Q).

The Eisenstein series considered in [3] are constructed as follows: Let p and
b be fractional ideals of k representing respectively a narrow ideal class & and
an ideal class & of k. Let n C o be an integral non-zero ideal of o, and denote
by p; and p; respectively elements of by and of b such that

g.c.d.(o” " 'p1, 57 o2, m) = (1).
Let a; = vb, a2 = b. One forms the series

(N(aia2))”

NGz + £ ©

Gw(z; p1; p2; b5 0; 1) = Lo

(Ma1a2))”

Leo+® NEz + B (e*)

Gii(z; p15 p2; b5 05 11) =
where in the first series the sum is over & = p;modna;, { = 1,2, modulo
multiplication of the pair (&1, &) by a totally positive unit = 1 modn, and
(%1, &) # (0, 0), while the conditions in the second summation are all these
conditions plus the condition

(0 6, 86) =0, *)

where (,) stands for g.c.d. Letqg = hA(n) be the order of the group of ray
classes modn in £, let Cy, ..., C; be the distinct ray classes modn, and for
each/=1,...,q, letr; be an integral ideal in C; and prime to n, and »; be an
integer of k such that »; = 0 (mod r;) and »; = 1(mod n). Then the two sets of
Eisenstein series

{Gw(z; x1p1, mip2s brsosn) [ I=1,...,4q) (e1)
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and
{G¥(z; xap1, mip2; bri;osm) [ 1=1,...,q) (er®)

are linearly independent and span the same vector-space of complex-valued
functions on §". Each G, is a linear combination of the function G, and vice
versa, and the coefficients in these linear combinations are given explicitly as
special values of certain Dirichlet series (cf. [19], §2.2) denoted 6™ and 6.
Moreover, if one defines

E, = (=2wi)~""|Vd| " 'Gy,
then E,, has a Fourier expansion of the form

E\(z; p1, p2; b5 0; 1) = bo(o1, p2; b, 0, 1) +

szw—l
— sgn(N(£1)Np2” ~ Le(up2)e(£1p2),
(@ = DN 1 2y iy - ST VEMNET ™ elhpdettipa)
(¢1) £1p>0

where (£1)n denotes that the summation over £; is, again, modulo multiplica-
tion by totally positive units = 1 modn, and e() = e*™ 7O, All the Fourier
coefficients in this expansion lie in Qnm. Moreover, the coefficients of the
linear combinations by means of wich the Ej,s are expressed in terms of the
G¥'s, or vice versa, all lie in Qng), and if o € Gal(Qnwm)/Q) is such that for
every N(n)-th root of unity ¢ we have ¢’ = %, seZ, (s, N(n)) = (1), and if ¢
is applied to all the Fourier coefficients of E,, the result is

E.(z; p1, p2; b5 0; 1)° = EW(Z; p1, Sp2; b; ;5 11). (19)

By means of calculations based on Klingen’s paper and in principle due to
Karel, we may show that, as a consequence of (19),

G#(z; p1, p2; b; 0;1)° = GiE(z;5 ™ p1, p2; b; v; ). (20)

This equation, which will be proved later, has a convenient formal interpreta-
tion for which we now prepare.

4.3. In[2] we calculated, in the special case of arithmetic groups commen-
surable with the Hilbert modular group, the explicit form of certain Eisenstein
series considered in [15]. These Eisenstein series are associated to a quintuple
€ = (G, P,p, K, s), where G is an algebraic group, P, a parabolic subgroup,
p, a one-dimensional character of P, all defined over Q, KK is an open compact
subgroup of G(Ay), and s is a function on the double coset space

P+ (Q\G(A)/G+(R)K; (e2))
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and these series are constructed by means of a certain function ¢s: G(A) — C.
In this paper we extend the calculations of [2] to a more general situation and
show how, in our case, such series are related to those in section §4.2. The
construction of the series we consider also depends on a certain function

0c:G+(A)>C
which satisfies

dc(bg) = dc(g), g€G+(A), beP.(Q),

where P is defined in §1, and

dc(gk) = ds(g)J(kx, i.€), ke € Koo,

where J(g, z) = j(g, 2)” for some integer w > 0, and finally

de(gx) = da(g), x e G'(d),
oa(b) = |p(b)|aw), beP.(A),

where p is the rational character, defined over k, on the group P’ of §1, such
that p(ﬁ 3) = (ad™')”. Then one forms the series

Es(g) = > s(v&)os(v8), (22)
P, QNG+(Q)>3y
where s is @ Q-valued function on the double coset space (21), and the series
converges uniformly absolutely on compact subsets of G+(A) as long as
w > 2. We have

G+ (A) = LeJn G+ (QuG+ (R)K

and we may letQ = © - H, where H is a set of elements n € G(Ay) such that
id.(det(n)) runs over representatives of the narrow ray classes mod n contained
in the principal narrow class of k, say n=@ 9 for neH. (Here, for
x € I(k)y, id.(x) is the ideal of k naturally associated to x.) Moreover, for each
w €, we have

G:(Q= U Pi(Qerl.,

acA(w)
T = G+ QNG+ (R)K,
G:A)=U U P.(QawG:(RK.

weQ aeA(w)

We may write

v bo .
o= <Ca d¢,> e Gi(k) = G+(Q),
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and let s, be the characteristic function of the double coset
P, (Q)awG . (R)K.

We assume K is the principal congruence subgroup G'(5)(n) of G’(5) for some
integral ideal n of k, IKK = IK(n). Then we may assume each 6 € © is of the form
(3' ?), where v = id.(¢" ~!) is an integral ideal prime to n. Moreover, a full
set of representatives of the cosets C occurring in

I, (k) kX kst Un(d) (Un(d): units = 1modn of d)

for which the ideals of C belong to the narrow principal class, may be taken
as units n’ of the maximal compact subring § of A(k)s(which are 1 at the ar-
chimedean places), and therefore each » € H may even be taken of the form

_(m O
71—01,

with ' €. We need the following
Lemma 2. Let there be given two pairs (c,d) and (c',d') belonging to
(vb, b) and such that
g.cd.(v lc,d)=g.cd (v !c',d) =0,

where b is an integral ideal prime to n. Assume (c,d,n) = (¢’,d’,n) = (1) and
that ¢'=c, d'=dmodn. Then there exists M"eRy\(n) such that
det(M") =1 and (¢, d)M"” = (¢, d’) (matrix multiplication on the right).

ProOE. Let a; = by, a2 = b; these are integral ideals prime to n. We know
([3], §2.3) that there exist a,a’€as !, b, b’ €ai ! such that if

S= <a b>, S = (a b ), then det(S) = det(S’) = 1.
c d ¢ d

Clearly M = S’ 'S belongs to Ry. We have S = S'M. Since (c,d,n) = (1),
there is (by strong approximation) a non-singular matrix 7 of determinant 1
in Ry such that modulo n we have (c1,d1) = (¢, d)T = (¢*, 0), (c*,n) = (1).
Since S = S’M, we have (¢, d) = (¢, d")M and (¢1, d1) = (¢, d)T = (¢', d)YMT =
=(c',d")TM' = (c*,0)mod n, where M’ = T"'MTeR,*. We have, since
c¢'=c¢, d=dmodn, (¢,d)T=(c,d)T = (c*, 0)modn, hence (c*,0)M' =
= (c*,0)modn, and since (c*,n) = 1 and det(M’) = 1, we have

1 0
M’E< , 1)modn for some ' ev.
Y
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We want M, € R, such that (c1, di)M> = (c1, d1) and

M, = <1, O> mod n.
v 1

The case d; = 0 being easily handled as a special case, we assume c¢;d; # 0.
The matrices of the form

o i ldi(e = 1) wek
—dilei(e—1) 2 -« ’ ’

all fix (c1, dh), i.e., satisfy the second condition. Then the first and third condi-
tions are expressed by

ci'dif*ev !, di 'cif* ev, B* en, f* = —cf 'diy mod ci 'din,

where 3* = o — 1. Since b and v are prime to n and 4’ €y, it follows easily
from the Chinese remainder theorem that such a 8* € k exists, hence M5 satis-
fying the desired conditions also exists. Then M'M; ' = (§ {)modn in Ry
and we have (c',d)TM'M;'T™'=(c,d)TM; T ! = (c1,d)M5'T™ ' =
= (c1,d))T~ ' = (c,d), while at the same time M'M5 ' € Ry(n)™, therefore
M" = TM'M; 'T"'eRy(n) and, actually, det(M”)=1. Therefore,
M" €T'v(n). This proves the lemma.

With y € H of the form (8' (1’), 7' €9, 7 normalizes K(n). Let w = 6y and
let &, «,w be the Eisenstein series & on G+ (A) where € = (G, P, p, K(11), 50, ).
Since s, « is the characteristic function of

P, (Q)awG + (R)K(m),
§.,a,w is supported on the union of translates by G- (Q) on the left of
Go,n(A) = 0G4+ (R)K(n),

hence the corresponding holomorphic Eisenstein series E,, o, w i supported on
the union of translates by G- (Q) on the left of

Xo = 0G4 (R)K(n)/KaK(n),

which may be identified with $" on which I',(n) = T'(°K(n)) = I'°K(n)) acts.
If v =id.(6' 1), I'(°K(n)) = I's(n), the principal congruence subgroup of the
group I'y, defined in [2]. The calculation in [2], §5.2, applied in similar
fashion to the present case shows that if

dy btx a2 1 ar 1
o= € , a1 = vb, a2 =b,
Co do a az
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and det(e) = 1 (which implies (ai lco, a3 'ds) = (1)), then

N(a1a2)”
@~ le,d) = b, c =ca(ian), d=dama), ¢, )i NE1Z + £2)™
= G#(z; Cay do; b3 03 1),

Ew,a,w(Z) = (23)

because by Lemma 2, every pair (c, d) satisfying the conditions of summation
is obtained by applying an element yeT'y(n) to the right of (ca,do):
(¢, d) = (Cas do)y. Therefore on the component X, = ", &, . w induces a
standard congruence Eisenstein series for the congruence group I'y(n), and in-
duces the function = 0 on any component not in the left translates of X, by
G+ (Q). Hence the coefficients of the Fourier expansion of this function on
each component X, lie in the field of N(n)-th roots of unity. Therefore, for
o € Gal(Qab/Q) such that {fay = vy, (5, N(n)) =1, we need to find the
result of applying o to all the Fourier coefficients of these expansions.

5. Galois Action and Transformation Theory

5.1. The calculations in this section are based on Klingen’s paper [19] and
were suggested by Karel’s paper [16]. We keep the notation of §4.2 and, for
the greater part where there is no conflict, also that of §3 of [19].

For each / = 1, ..., h(n), let g; be an integral ideal in the ray class C; *. In
our present notation, equation (20) on p. 186 of [19] reads (where Klingen’s
Vorzeichencharakter may be omitted since the weight is even)

h(m)

G3(z; p1,p230505m) = D) D) ”(%Gw(z,m,pz,bgz ;05 1),
=1 geC, 1N

and the Fourier coefficients of the Eisenstein series

172
T Gu(z; p1, p23 b3 03 11) = G (25 p1, p2; b5 0; 1) (24)
lie in Qny. The constant term of the series (24) is zero unless p; = 0 mod vbn,
but if this congruence holds, then necessarily (according to our original
assumptions) we have (6~ 'p2,n) = (1), and in that case, the constant term is
given as
aop1, p2; b; 031m) = (i)~ *"Naiax)*AY> >, Nm)~*,
m= p2(ub), (M)

which belongs to Qnm) by Klingen’s results. If o e @ = Gal(Q.»/Q) is such
that o({nay) = {Nay, then, by §2.2 of [3],

ao(p1, p2; b; v; 1)° = ao(p1, Sp2; b; v; 10).
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That is, for p€b, and (6~ p, n) = (1), one has

((Wi)—anN(ulaz)wAl/Z Z/ \ ‘;Vm—ZW)a —

m= p(nb)

= ((7i)™"N(a1a2)"AY?* >, Nm~ ™).
m = sp(nb)
(m)i

Let C be the ray class modulo n to which 6~ 'p belongs and define

ck@w, C) = > Ng~ .
geC

It is proved on p. 184 of [19] that the constant term may also be expressed by
ao(p1, p2; b; 03 1) = (mi) ~>"e(n)A*No” - £+ (2w, C),

where, of course, a slight modification is necessary in Klingen’s calculation
to take account of the fractional ideal v, and where e(n) is a rational number
depending on n and on the structure of the units group of k. Define

X(C) = (xi) ™ >""e(m)A"*No™ - £x(2w, C) =
— (ﬂ_i)—anN(al az)wAl/Z Z/ Nm—2w'
m=p(mb), (m)it

Then x(C)° = x(sC) and by [19] p. 186, line 3 from the bottom,

@ 1 if Cis the principal ray modn
2 ,cc-1< N‘2w>= . ’
t§ filaw (2, HONg 0 otherwise.

geCt

Here p is the ideal-theoretic Mobius function on integral ideals of k. This can
be written as

"o N —2wnal/2 -1 (7”-)2wn —2w
> (@)~ ?mAY2 . 2w, CCY) NCE >, w(@Ng =
=1 geCr

_ {1 if C= H(n), the principal ray modn,
~ (0 if otherwise.

Use 6(C) to denote the last factor in large parentheses on the left hand side
of this statement. Then 6(C) belongs to Qnm) and the last equations read

hw 1 if C=H@)
-1 C ’
I§ x(CCHC) = {O if otherwise.

Applying ¢ € @ with s defined as above:

ha 1 if C=H@m)
-1 o _ H
Z:l X(SCCHNED {0 if otherwise.
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Comparing these equations and using (21), p. 187 of [19] gives
0(Cy)° = 6(s~'Cy).

According to Klingen

h(n)
Gi(z; p1, p2;b; 0511) = IZ 0(C)Gy¥ (z; p1, p2; Cib; v; ). (25)
=1

Applying o to the Fourier coefficients we get

h(n)
G¥(z; p1, p2; b3 05m)° = D) (s~ 'CNG (z; p1, Sp2; Cib; 03 ),
=1

which, by the equation preceding (20) on p. 186 of [19], is equal to

h(n)
IZ 0(s ™ 'C)G¥ (235~ "p1, p2; 5~ 'Cib; 03 1) = Gik(z; 5™ 'p1, 025 b; 03 ).
=1

This proves equation (20) of §4.2.

Now by applying the above together with §2.3 of [3], it is easy to see that
if we apply o € & to the Fourier coefficients of the expansion of the holomor-
phic modular form induced on each component by &, .., we get the collec-
tion of holomorphic modular forms induced on each component by &, su, w,
where S« is an element of determinant one and congruent modulo Nk, o(nby)>
to

\

a sb
a [+3 *o = N 2'
<s*ca d. ), s*s = 1 mod N ,q(nby)

If we let6eZ> =@, and if for € = (G, P, pw, K, s) we define 6C = (G: P,
ows "@K, 6 - 5), where & - s(x) = s(u(8) ~ 'xu(6)), then linearization of the result
we have just obtained shows that if we apply & to the Fourier coefficients of
the expansions of M(§c) on all components X, the result is M(§ss). This is
analogous to Karel’s result in §2.2.1 of [16].

5.2. One may then proceed precisely as in [16] to establish an operation
6: 8 = B(6)Es = R(w(d) ™ HEse

or Z* = @ on the Eisenstein series for K on G (4). (In this equation, p stands
for a homomorphism of Z* into the adele group as defined by

. (50
= (19



104 WALTER L. BanLy, JR.

in [16], and R(x) is the right regular representation of a group on the functions
on it.) Define & and \(Ec) to be F-rational, F being a subfield of Qup, if
B(6)&c = &g for all 6 € Gal(Qus/F).

With a fixed ideal n and K = KK(n), let &(n) be the graded subalgebra of the
algebra @(K(n)) of modular forms with respect to K(n) generated by all the
Eisenstein series & of weights w > 1, where € is defined as above. &g is a
linear combination with (arbitrary) rational coefficients (if s is Q-valued) of
the Eisenstein series &, ., w discussed above. We let ¢ be an element of the ring
of homogeneous quotients (with respect to its non-zero divisors) of &(n), of
degree zero, and form the transformation polynomial

Ts, K, 50(8)X) = XN + ZNau(g)X (26)
r<
as in [3], §2.1(23), where So € G(Af)ﬂRl, o € M(K, 0, {x}). By a straightfor-
ward generalization of Karel’s results ([16], §2.2.4) we have
B@RM)p = RIM)B(H¢, €0, MeG(Ay. (27)

Since o, is a symmetric function of functions R(Sj)¢ and the relation (27)
holds with M replaced by MS;}, it follows that also

B(E)RM)a, = R(M)B(6)xs. (28)

Using this relation in conjunction with Proposition 3 and its Corollary of [3],
we see that we have

Proposition 1. Let Q(K, Qqp) be the graded algebra of arithmetic modular
forms on G, (A) for K and let the operators (3(6) and R(M) (for M € G(Ay))
be defined on Q(K, Qu) by the obvious extension. Then for every Y€
€ Q(K, Qgp) one has

R(M)B(@)Y = B(GRM)Y. (29)

Proor. For from the foregoing considerations this relation holds for a set
of generators of Q(K, Q).

Corallary. Relation (29) holds for an arbitrary element  of the ring of
homogeneous quotients of elements of Q(K, Qgb).

Now the results of [16], §§2.3-2.3.4 have straightforward generalizations as
expressed in the following propositions.

Proposition 2. Q(K(n)) is the integral closure of &) in its graded ring of
homogeneous quotients and we have

@(K(n)) = G(K(n), Qnvey) ® C.
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Remark. The last statement follows since each Eisenstein series &, has
all Fourier coefficients in Q.

If Fis any subfield of Q.», define ¥ € R(K, Qgp) to be F-rational if B(6)y = ¢
for every 6 € Gal(Q.s/F). Denote the graded F-algebra of such modular forms
by @(K)F. Then we have:

Proposition 3. Let K = K(n). As a graded algebra over Qgup, Q(K, Qqp) is
generated by G(K)2.

Since for 6 € Qu, 6€®, we have B(6)(0Y) = 6°8(6)y, this follows, as
remarked in [16], from §14 of [6, AG]. Therefore

weQ

where V3 is the Satake compactification of V,, is an algebraic variety defined
over Q (but not irreducible over Qus, of course), and by the result of Borel
and Narasimhan referred to in §2.5 of [3], the set of cusps Vi — Vi is defined
over Q as well, while each component V¥ is defined over Qnm), and V,, is a
Q~nm— open subvariety of V.

The conditions for y € @(K, Qas) to belong to the Q-structure are equivalent
to the following: If weQ, let

Yu(2) = T a(p, w)e*™ 9, e mbde) ™’

be the Fourier expansion of the modular form with respect to I',, = I'(°K) in-
duced by ¥ on X,. Then for every & € Gal(Q.»/Q) = ®, one has

a(p, 0)° = a(p, p(6)w).

6. Splitting of the Class Polynomial

6.1. The multiplier polynomial. We consider the class polynomial

Py, g, 4(X) = H Py &, 5, 4(X)

defined for any order ® of K containing the maximal order of k& and an
arithmetic modular function ¢ for I';” holomorphic on all points of the set
Eo(®R) for given v, as defined in §3.3 of [3], and where

y
Poa.s.0(X) = T (X - 6(0),

0i,...,0k being a set of representatives of the orbits of Iy’ in Zs(®, £). In
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case ® = O, the maximal order of K, it has been shown in [3: §3.3, Theorem
4] that Py, 0,4(X) € Q[X]. We shall show here, in a later section, that

Py,0,5,4(X) € K*(E)[X], (30

where K*(£)o is the totally real subfield of the reflex field K*(£) associated
to the lifting £ of T (cf. §§2, 6.2).

If Se G+ (A) = G4 (A(k)) and S written as a two by two matrix over A(k)
is @ 5, lety=ad— bcel,(k), a be the g.c.d. of ay, by, ¢, and dy, and
U = U(S) be the integral ideal a ~%». If ¢ € Q(K, w), define ¢ | S € R(°K, w) by
(0] S)(g) = ¢(gS) for g e G+ (A). Then, following the definition of §2.4(48)
of [3], put (where N = Ng,Q)

o||S=NW"-¢|S.

By Lemma 1 (loc. cit.), if ¢ € Q(K, w, R"), where R’ is a finitely generated
subring of a number field, then ¢ || S belongs to Q(SK, w, R"), where R" is in-
tegral over R’ in some finite extension of that field. (N.B. The second
sentence of the proof of Lemma 1 of /oc. cit. should be corrected to read:
“We may write for that weQ such that SeG,(A) and for each
W' € w 'S = Siywk for some Sir € G+(Q), ke K.”” and then S’ replaced
by S, in the rest of the proof.)
Fix Sp = (Z ,’,’z) € G'(A(k)y) and suppose So € €(w1). We write

N
Ci(So) = KSoK = | SjK.
j=1

Then det(Ci(So)) C det(So)det(K), so that by §1, Ck(So) C Cx(wi) and for
each weQ, wCk(Sp) C Ck(wwy); therefore, wS;e Sjsww1K for some S}, €
€G+(Q),j=1,...,N. We introduce the so-called multiplier polynomial for
any non-zero-divisor ¢ € Q(K, w)

N
M, s,(8)(X) = II1 X - (¢11Si/#)() = X" + 12;\ w6, 50(&X, (1)
Jj= <N

where clearly u, 4, 5o is @ modular function for KK, and on each component X,,,
it induces a modular function my, ¢, s,,» for I', defined by

)—w(N—I)

mi, ¢, s0,.(2) = Jj(g,i.€ w6, 50(&w),  zZ€9",

where g € G+ (R) is such that z = g(i.e). Let o; denote de #-th elementary sym-
metric function in N variables and observe that for each weQ,j=1,...,N,
and g € G+ (R) we have

(4] S)(gw) = B(gwS)) = d(gSjarbwr) = ¢(Sjuwguw1),
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hence, (¢ | Sj)u(g) = dwwi(Siwog), and therefore for ge G (R)

w,6,50,0(8) = on-1((¢ || S8 - - - » (B || SN)u(£))/ D @) ™'
= UN—I(d’wm(Siwwg)’ e d’wwl(S]IVmwg))d)w(g)I_NNQ[M(N_I)-

From this and from the definitions we have for z = g(i.e) € "

m1,6,50,0@) = ON - 1((four || Sia/fo)@)s - - - s (four || Sha/f)@))- (319

Now for the present, we assume So € G+ (Q)r and w; = 1, and fix the order
® Do in K and assume ¢ is non-zero at all the cusps and at all the finite
number of double cosets in Vi representing points of Za(®). Then on each
component X, = Xy, My, 4, 5o, 1S holomorphic at all the cusps and at all the
points of Ey(®R). Letf, be the modular form for I',, induced on X, by ¢.
Then as a polynomial with meromorphic coefficients on $”, the multiplier
polynomial takes the form

N
Mj,, s0,o(2)(X) = jl;g (X = NW)"(fs | Sjo/So)(2)).-

We now wish to consider the roots of this polynomial for certain z € Z,(®R)
and for a conveniently chosen double coset Ck(So), for the particular case
K = G(2).

6.2. We refer to the notation of §3.3 of [3]. LetE = (61, . . ., 6») be a lif-
ting of X, where each g; is an injection of K into C. Letf € © be one of the
double coset representatives appearing in (6), letw = 8, K = G(Z), and v =
= id.(det(w) ~"). Then, as in §3.3 of [3], we let 4’ = Ay, & be the number of or-
bits of Iy in Ey(9, £), and form the polynomial P, o &, Where ¢ is a Q-
arithmetic modular function holomorphic on o1, ..., 0k. Our purpose is to
show that for all such ¢ this is a polynomial with coefficients in the totally
real subfield K*(£), of the reflex field K*(£) = Q({Zoexn’ |7 € K }). Show-
ing this is evidently equivalent to showing that the image Ax(9, £) of Ex(0, £)
in Vi is a zero cycle rational over K*(£)o. Recall that Vi is itself defined over
Q.

To show this, we need to consider certain of the roots of

M, 50, 0()(X)

for £ € Ey(0), suitable C(So) = Cs@)(So), and a suitably chosen modular form
n with respect to I'y .

Letp be a prime ideal of first degree in o and unramified over Q such that
p splits, p = P - P in the maximal order © of K. Let L be the smallest Galois
extension of Q containing K and assume that the rational prime p contained
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in B does not ramify in L. Denote by P also the extension of P to an ideal
in the maximal order of L, and let H be the Galois group of L over K and G
be the (absolute) Galois group of L over Q. Let B = Q. - - - . Om be the fac-
torization of B into prime ideals in the maximal order of L, let f be the degree
of each of these over K, and /4 be the order of H. Then & = mf, fis the order
of the decomposition group of each £; over K, and is also the order of the
decomposition group of each £; over Q, since the absolute degree of P is 1,
and H permutes £, . .., On transitively; therefore, H consists of precisely
those o€ G for which ¢ carries any £); into the same or some other £,
1 £1i,j < m,sothatif e G — H, then the ideals ‘3 and ¢*B are prime to each
other. Let a be a positive integer such that B* is principal, say B* = (IT). Then
g € G — H also implies that IT and IT° are relatively prime to each other. Thus,
if £ = (61,...,6n) is any lifting of £ and if s denotes complex conjugation,
the elements

nmo, ..., m-, s-I%,...,s- 0% (33)
are the images of I under representatives of the distinct 27 = [K: Q] cosets
of H in G, and are therefore pairwise relatively prime. Let

Ne() = I 119,
el
and suppose £’ is some lifting of X to K distinct from £ and from s- £. If
gL, let £(0) = 6 be the element of £ which extends o to K. Let I’ be the
set of g€ X such that £(o) = £'(6) and " be the set of o€ X such that
£(0) = s- £'(0); then & = Z'UL” and L’ and " are both non-empty. Let
M=ME)= J[II°, M=M@E)= []I.

oel’ ceXx”
Lemma 3. Ne(IT) = M - M’ and, under the assumption &' #£,s- £, we
have for any positive integer k
Ne(ID* + Ny-s(I0)* # Ne(ID)* + Ny-s(ID)k.
Proor. The first assertion follows from the definitions of Ng(II), M,

and M'. Moreover we then see that N;.g(IT) = sM - sM’, Ng-(II) =M - sM’,
N;s-5«(IT) = sM - M’ and therefore.

Ne(ID¥ + Ns-£(IDF — Ne(ID* — Ny-g(I1) = MF — sMO)(M* — s - M%),

For the lemma to be fafse, one would have to have either M¥ = (s - M)* or
M* = (s - M')*. However, £’ and £” are non-empty. Therefore, by the discus-
sion preceding the lemma, neither equality can occur since the two sides in
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each case have distinct prime ideal factorizations in L because s is in the center
of G (since L is a CM-field) and takes any set of n of the 2n quantities in (33)
onto its complement. (This argument occurs in Hecke’s thesis [13], §12, for
the case when k is a real quadratic field, but the idea is the same.)

6.3. Let £€5(0, L) so that vé + o is a fractional ideal of the maximal
order O in K. (Cf. [3], §3.1) Since I1 € O, where Il is as in §6.2, we have

II¢ = at + B, sIT-¢=a't+ B,
M-1=v&+6  s-1=+%+0, (34)

where «, 8, o, 8'€o, B, B'€v”", v, v €v are such that ad — By = '8’ —

— By = Ngi(Il) = 7> 0, while g.c.d.(o,08,0" l'y, 0) = g.c.d.(¢o/, 083,
v~ 1y, 8) = (1). Let So, Sb€ R, be defined by

e B , o Br
SO_(W 5>’ S_<7’ 6'>'

Then So, Soe To(w) (as defined in §3.1 of [3]) and (under linear fractional
operation) we have

So- (&) =S6-(5)=(H, (35

so that the image of (§) in V, = V; is a fixed point of the Hilbert modular
correspondence associated to Ty(w). Moreover, U(S) = (7) for all S e Ty(x).

So we let ¢ be a Q-arithmetic modular form of weight w = O0mod 2 and f,
be the holomorphic modular form with respect to I',, it induces on each com-
ponent X,, and P, p, I, 7, So, and S¢ be as just now described. As S runs
over a set of representatives Sy, . . ., Snv of the right cosets of I'y contained in

Co(So) = Co(S6) = Ty STy, (36)
then
us(@) = N ((f. | $)@)/f(2)) (37)

runs over the roots of My, s,,+(z)(X) as functions of z € ", where we con-
tinue to assume f,, is non-vanishing on all £ e Z,(0). Let E = Ex(O) and
E(E) = Ev(9, £). By definition, £, | S takes the form

(fo | $)@) = fu(S - 2)i(S, 2)",
hence, if §=(¢ §), us(2) is equal to

N(Udet(S))"fu(S - 2)ful@) " 'Nicz + d) ™ =
= Ne@(@)?fu(S - fu@) "Nz + d) ™. (38)
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Let fi,...,fme MTy , O, {x}) be Q-arithmetic modular functions generat-
ing the field of Q-arithmetic modular functions with respect to I's” such that
each is holomorphic on

E(So) = EU To(So)E,

(T»(So) being the correspondence on Vi associated to Cy(So) = Co(S§)), and
such that if £ €5 and ze€ " — E, then there is an index 1 <j < m such that
fjis holomorphic at z also and fj(z) # fj(¢£). We may assume fi, . . ., fm are the
affine coordinates on an affine Q-open subset U of V¥ containing Z(So) and
all the cusps. Since V¥ is a Q-normal projective variety, U is a Q-normal af-
fine variety and we may assume that if g is any Q-arithmetic modular function
regular at all £ € £(So) and at all cusps x, then g may be written as a quotient
of polynomials in fi, . . ., fi» with coefficients in Q such that the denominator
does not vanish at any £ € 5(So) or at any cusp x. Let uy, .. ., us be indeter-
minates (at first), define

m

Fu2) = 2] uifiz), z€9",

Jj=1

and define the polynomial
N
Gr,uX; (/i) =TI (X = Fu| S),

where Si, ..., Snv are as above and, of course, (Fy | S)(2) = Fu(S2). Gr,« is a
polynomial in X, u, ..., un whose coefficients are Q-arithmetic modular
functions holomorphic on %, hence, expressible as rational functions of
f1, ..., fm with non-vanishing denominators on =. By appropiate choice of ¢,
we may assume it does not vanish on Z(So), hence us; is holomorphic at every
point of E. We then form another polynomial

- N
X, ) = PauX) =TT (X = (us(@) + FulSi2))

whose coefficients as a polynomial in X, uy, . . . , 4, are Q-arithmetic modular
functions holomorphic on X, hence expressible as rational functions in
fi,...,fm with denominators that do not vanish for z = (§) € &.

For any (§) € &, say (&) = (¢°, ..., &™), £ K — k, we consider the system

of equations

@, (X + Fu(S*(8), f1(5), . . ., fm(§) =0 (39
depending on u € Q", with S* = 5o or Sj. Now

So((8)) = S6((9) = () (40)
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because of (35) (apply 6;€ £ to (35) for j = 1, .. ., n); therefore, F,((So(%))) =
= Fu((S6(%€))) = Fu((%¢)). So consider the roots of the polynomial ¥(X, u; (£))
defined to be

P, u(X + Fu(), £1(9), - . ., Sm(§)).

For all complex u = (u1, . . ., um), p = pso((§)) and p’ = pg((£)) are roots of it.
Written out, we have

P u(X) =XV + ZNP,,(ul, vy Um D)X,
r<

where the coefficients of P,(u1, ..., Um; Z) as a polynomial in u,, ..., u, are
Q-arithmetic modular functions of z € " having no singularities on the set =.
The roots of & .(X;(§) are pr((¥) + Fu((LE), L € Co(So), which equals
ur(§) + F,(§) for all u if and only if L(§) is in the I'y -orbit of (£). But suppose
L’ € Co(So), so that det(L’) = n'w > 0 for some totally positive unit 4’ and so
that L' is everywhere locally a primitive element of the o-lattice R,. Suppose
also that L'(¢§) eIy (§), L'(§) = 6~ (&), o €Ty or L(¢) = (¥), where L = gL' =
= (f;‘ 38), say, and det L = nw > 0, 5 € 0+ . As before this implies there exists
M € C such that

M-(=at+ 0
M = y& + 6. 41

By assumption, £eE = Ey(09), so that M€ O, and M -sM = ab — B¢ = 97
(where, as usual, s is complex conjugation). Then the prime factorization of
M is of the form PB°-sP, b,c>0, b + ¢ = a. But if bc # 0, M would be
devisible by p, hence at the prime p, (¢ §) would not be a primitive element
of the lattice Ry, contrary to definition of Cy(So). Hence (M) = PB* or sP*
and so we may assume M = II or s-II, hence L = Sp or S§; in other words,
L'eTy* -Spor L'eTy - S Then the roots of ¥(X; u; (£)) as a polynomial in
X are

pr = pr(€) + Fu(L(§) — Fu(®), L € C(So).

If F.(L§) — Fu(%) is not identically zero as a function of u, i.e., if fi(§) #= fi(L§)
for some i, 1 < i< m, then there is u € C" for which the above root pr will
not be equal to any root of

Y(X; 0; (8) = Mx 1., (X; (8)-
Hence the only common roots of ¥(X; u; (£)) for all u are

K1 = PSos M2 = PSo (42)
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The values of u for which other roots in common with ¥(X; 0; (£)) exist then
form a proper Zariski-closed subset Z(£) of u-space depending on &. Therefore
there exists (#o) = (41, . . ., Um)o € Q™ such that ¥(X; 0: (£)) and ¥(X : uo; (£))
have monic g.c.d. of degree two having only the two roots u1, pz in common.
Since the number of I'y -orbits among such (£) is finite, we may assume uo is
always the same. By the Weber-Perron theorem [32, 23], the monic g.c.d. of
these two polynomials has coefficients which are rational functions of
S1(®), ..., fm(§) defined over Q; thus,

p+ p2 = P(fi®), . . ., fm()/QU1(B), - . ., Sm(8)), (43)

where the polynomials P and Q belong to Q[X1, . . . , X and are independent
of £eZ and Q(fi(9), ..., fm(®) #O0.

We now obtain expressions for the roots u1, p2. Take £ € K — k as above
such that (§) e £, A = v¢ + o being a fractional O-ideal of K, and let IT€ O be
a fixed generator of P? as before. We use the relations (34) and the fact, just
observed, that '

g.c.d.(a,08,9" v, 8) = g.c.d.(&/, 08,0~ 1y, &) = (1).

Then II=~&+6,s-I1=+"- £+ &', and according to (38) we have (since
& =¢",...,if ¥ =(61,...,0n) and £€ E(X))

us(®) = N(m>"fu(S - 9 (™" T (8 +d°) "> =
GEX

— Nk/Q(W)szi(H)_zw — Nsi(n)ZW
because w = II - sI1. Similarly, ps(£) = N&an2; therefore,
p1 + p2 = NI + N:s(ID)>,

which depends only on £ and II, and not on &.

As before, L is the Galois closure of K over Q. Then K*(£) C L and it is
known [25, §5] that L is a CM-field, too, and that the automorphism s of
complex conjugation is in the center of G = Gal(L/Q). For n € K, define
6(n) = Y55 1°. Then 6 is just the trace of the representation @ ;<56 of the
Q-algebra K. Therefore K*(£) contains all the determinants

Nz(n), neKk,

of that representation. This shows that p; and g both belong to K*(¥)
Moreover, pz = su1, hence p1 + p2 € K*(£)o. Now we have shown that

p1+ p2 = R(f1(9), . . . . fm(9))

and the left side is an element A(TI, £) of K*(£)o. We also write pi = pi(L),
i=1,2, for fixed II.
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Clearly Ey(9, £) = Eo(0, s - £). Suppose now that £’ is another lifting of
such that E,(0, £’) is non-empty and £’ = £, s£.

Proposition 4. If L' = £, s- £, then A(L, L) # AL £).

Proor. This is the same statement as that of Lemma 3 in different nota-
tion. Consider then the equation

AQL L) = P(fi(®), - - -, fnEN/QU1(D), - - ., fu(E)),

where P(X1, ..., Xm) and Q(X1, ..., Xm) € Q[X1, ..., Xm] and are indepen-
dent of £e =, and Q(f1(9), ..., m(£) #0 for all £€E. Let

Us(X1,...,Xm) = P(X1, ..., Xm) — AQL £)O(X1, . . ., Xm).

Then Us has coefficients in K*(£)o, and the set of points where it vanishes
cuts out a hypersurface section V(I1, £) on the Q-open affine subset U of Vi
such that V(I1, £) is itself defined over K*(£)o and such that V(I1, £) intersects
Ay(9), the image of Ey(0) in V¥, in the image Ay(0, £) of Ey(0, £) because
according to Proposition 4, V(II, £’) cannot meet A,(II, £) if £’ = £, s&. Ac-
cording to Theorem 4 of [3], Ax(O) is a Q-set (in the statement of that
theorem, the first & was mistakenly put in place of A). Therefore we have the
following theorem, due to Hecke in the case of real quadratic k,

Theorem 1. The finite zero-cycle A(9, £) on Vi is defined over K*(£)o.
Therefore if f is any K*(X)o-arithmetic modular function for T'y which is
holomorphic on Ey(0O, £), then

Py 0,5,/(X) e K*(E)o[X].

Now let A(9) = UsAs(0) and A(O, £) be respectively the images of UnEs(O)
and of UnEs(9, L) in Vz = UsV& and if n is any integral ideal of k,
let An(O©) and A,4(9, £) denote respectively the corresponding images of the
same sets in V). Since Ax(0O) is the pre-image of A(O) under the canonical
morphism w: VEm — V@ (defined via inclusion of double cosets), and 7 is
defined over Q with respect to the Q-structure defined earlier on Viw, it
follows that as an algebraic zero-cycle on Vi, An(O) is defined over Q,
while A,(0, £) is defined over K*(£)o.

Let L(Y) be the minimal field containing K*(£) over which each of the
points of 4(0, £) is rational and L.(£) be the minimal field containing K*(Z)
over which each of the points of A4(O, £) is rational. Each of these is a nor-
mal extension of K*(£) because it is the splitting field of a polynomial over
K*(£). in fact, each is an abelian extension. Let G(£) = Gal(L(£)/K*(£)) and
Gn(£) = Gal(Lo(£)/K*(E)). Then, following the same idea as utilized in
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Hecke’s thesis, one may see that G(£) is isomorphic to a certain subgroup of
the group of those ideal classes C of K for which Nk« (C) lies in the narrow
principal class of k. In [16] there is a generalization of the same idea for the
classical (one-variable, n = 1) case (of elliptic modular functions) to the situa-
tion where one considers modular functions for principal congruence
subgroups of the modular group and the extension of an imaginary quadratic
field which their special values generate, which is closely related to Hasse’s
paper [12]; one of Karel’s results [16] says that, without using the theory of
elliptic functions as such, one may show such extensions are abelian (cf. §5
of [16]) with Galois group isomorphic to a subgroup of a certain ray class
group. It is possible, using the results we have proved, and without using the
theory of abelian varieties, to show that G,(£) is also abelian and isomorphic
to a subgroup of the ray class group mod n of K. We intend to provide further
details of this in a later paper.

One may also obtain the reciprocity law for the extension Ly(£)/K*(£), in
form very similar to that of Shimura (with some possible modifications con-
nected with the units of k). This is already indicated in Karel’s paper. To deal
with the reciprocity law we need a certain g-expansion principle to be proved
in the next section. Other details will be supplied in a subsequent publication.
We should like, however, to emphasize at this point the important influence
on all these developments of Hecke’s original ideas.

7. A g-expansion principle

We use the notation of [1]. In particular, I" denotes an arithmetic group acting
on a rational tube domain &, V = I'\S, and V* is the Satake compactification
of V. Let k be a number field and make the Assumptions 1’ and 2’, p. 649
of [1], namely that

(1" A9 = REY(M ® «C

for some positive integer do, where @Z%(I") denotes the graded algebra of
modular forms for I of weights = 0 mod dp having the coefficients of their
Fourier expansions at o in k, and

@) If feQk, (), then only finitely many primes
divide the denominators of the coefficients of the Fourier expansion of

Sflat ).

Denote by o the ring of integers of k. Then according to Theorem B, loc.
cit., there exist a positive integer dp and a finite set & of prime ideals of p such



ARITHMETIC HILBERT MODULAR FuncTtions II 115

that if F = 0[& "], then the graded algebra @¥°.(I") of modular forms (with
respect to I') of weights = Omod dy having all Fourier coefficients in R is
finitely generated as graded algebra over R, and in fact by a finite set
(bo, b1, ..., bum) of elements of weight do. Since the modular forms with
Fourier coefficients in R actually span the graded algebra of all modular
forms as a vector space, we may trivially replace R by any larger finitely
generated subring of k.

Let £ € T be a point where all k-arithmetic modular functions holomorphic
at £ take values in a fixed algebraic number field K/k (of finite degree over
k). In other words, the image x of £ in V* is a K-rational point of V*, V*
itself being defined over k C K.

If fis a k-arithmetic modular function, or, equivalently, a rational function -
on V* defined over k, and if y € V*(K) for some finite extension K of k, we
say f is defined and finite modyp at y, for a prime ideal p of k if:

a) fis defined and finite at y in the usual sense (and then f(¥) € K); and

b) y belongs to a k-open affine subset U of V* such that for some system
al, ...,anm of affine coordinates on U, «i(y),...,am(y) are inte-
gral over the valuation ring of p in k and f may be expressed in the
form

f=Plai,...,am)/Q, . ..,on),

where P(Xi,...,Xum) and Q(Xi,...,Xum) belong to o[Xi,...,Xuml
and are such that Q(ai(y), ..., am(»)), which belongs to K and is in-
tegral over the localization o, of o at p, is not divisible (locally) by any
prime ideal ‘B extending p to K. (In particular, f(») is integral over

o)-)

According to [32, §§9-10; 27, 4(iii)], for every prime p of k, V* defines a
p-variety. Let us fix some covering of V* by a system of affine coordinate
neighborhoods (in the Zariski topology). Then by Proposition 23 of [32], for
almost all p these provide a covering by affine coordinate systems of the p-
variety associated to V*. By the nature of the definition of p-variety, for fto
be defined and finite mod p at y € V*(K), it does not matter which system of
affine coordinates for the p-variety one uses for the criterion for fto be defined
and finite mody at y € V*(X). Then we have:

Theorem 2. Let x € V*(K) be the image of £ € 3. Then there is a finite set
&' of primes p of k with the following property: Let f be a k-arithmetic
modular function for T'. Suppose y is a prime ideal of k, p ¢ &', and suppose
fis defined and finite mod yp at x and defined and finite at the image ® of the
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cusp at  in V*, and such that all the coefficients of the Fourier expansion
of f at © are in the maximal ideal of the valuation ring of . Then

S(x) = 0mody,

the congruence being taken in the intersection of the valuation rings of K con-
taining .

Proor. With by, ..., bu e Qr,(I")4, being as before, we may assume,
possibly after adding a finite set of primes to S, that bo = 1 mod &, for some
suitably large L and that bo(£) # 0. (Cf. [1], Proposition 2.) The congruence
means that, in a suitable ordering, all Fourier coefficients of by corresponding
to indices less than a certain bound (i.e., all the early terms in the Fourier
series) are zero, except for the constant term which is 1. Then oo, £ € V*(by),
the affine open subset of V* on which bg # 0.

Let aj = bj/bo, j=1,...,M, so that oy, . . ., s is a system of affine coor-
dinates on V*(bo); then all the coefficients of the Fourier expansion of each
ajarein R, j = 1,..., M. The system of affine coordinates ay, . . . , aa deter-

mines the structure of an affine R-scheme on V*(by), and for all but a finite
number of primes p their reductions mod p are a system of affine coordinates
on a neighborhood of any specialization ref p of x on the reduction mod p of
V*(bo). We may assume «;(£), aj() all belong to the integral closure of R
in Q. The statement that f is defined and finite mod p at £ means that

f=P(C¥1,...,OlM)/Q(O[l,...,OZM)=(P/Q,,

where P and Q are polynomials in M variables having p-integral coefficients
in R such that Q(£) # 0mod ‘B for every prime P extending p in the field
generated over k by the coordinates {oj(£), aj(0)|j =1,...,M]}. Then

O, ..., f = Pla, . . ., o) = by YNP*(bo, by, . . ., bu),

where P*(Xo, X1, ...,Xnm) is a homogeneous polynomial of degree N in
M + 1 variables. Thus

bYO(a, . . ., am) f = P*(bo, ..., bu),

which is a modular form of weight Nd,. By hypothesis the Fourier coefficients
at oo of b5'Q(a1, . . . , ans) all lie in R, and those of fin pR. By inverting a finite
set of primes, we may assume R is a principal ideal domain ([20], Prop. 17,
p. 22). Let 7 be a generator of pR: pR = w - R. Then the Fourier coefficients
of ¥~ 1P*(by, ..., ba) all lie in R. This means, by the choice of by, . . ., b,
that we may write

P*(bo, . .., ba) = - P*(bo, . . ., bu),
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where P# is a homogeneous polynomial of degree N with coefficients in R.
Then

f=m-by "P*(bo,...,bm)/Qa1, ... ,0m) =
=7 Pi(a,...,am)/0al, .. .,am),

and P; is a polynomial in M variables with coefficients in R. Therefore,

S =7 Puar(®), ..., om(8))/Qs(®), ..., am(8) =
T Pi(a1(®), . . ., am(§)/QE)

which is clearly an expression = Omodyp. Q.E.D.

8. As a Convenience to the Reader

We list here some minor corrections needed in [3] as a predecessor to this
paper:

In the line immediately preceding equation (49) of 2.4 (of [3]), M2(Z) should
be M ().

On the next page after that in the fourth line of the proof of Lemma 2,
following the last = sign there should be

N
U ““'KSjer' NG +(Q)r-

j=1
And on still the very next page after that, the second displayed equation,
line eleven from the top, should read

a,.(z) = on- V(fwwl(si;l 2. sfwwl(SIIVZ:I - 2)).

These corrections are in addition to other needed corrections pointed out
in the course of this paper.
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Polynomial Invariants
of 2-component Links

K. Murasugi

1. Introduction

Let L = XUY be an oriented 2-component link in S>. In this paper, we
will define two different types of polynomials which are ambient isotopic
invariants of L. One is associated with a cyclic cover branched along one of
their components, and the other is associated with a metabelian cover of L.
These invariants are defined for any link unless the linking number, /k(X, Y),
is +1.

The invariants a;f, A defined in [5] can be considered one of the special
cases of our polynomial invariants. In fact, we can prove that ¢ depends only
on lk(X, Y); therefore, for all n, a;f coincides for two links with the same link-
ing number. (See Theorem 5.7.)

It should be noted that our metabelian representation of the link group dif-
fers completely from those studied in [2], [3], [9] or [10], where in most of
the cases there exist only finitely many metabelian representations. We will
prove in this paper that every 2-component link L with /k(X, Y) # +1 has
infinitely many metabelian coverings. In particular, if /k(X, Y) is even, then
the link group G(L) has a representation on the dihedral group of order 2% *!
for each k£ > 1. (See Proposition 3.3 and Theorem 4.1.) Our polynomials are,
in fact, the covering linkage invariants associated with these (infinite) se-
quences of coverings.
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In this paper, some of the basic formulas involving Fox free differential
calculus [1] will be used without proofs, since they have already been proved
in [9] or are easy consequences of the results in [9].

2. Group Actions

Let F be a free group (of rank 2) freely generated by x and y.

Let P = Z[[1]] be the ring of formal power series over the ring of integers
Z. Denote by Sym(S) the group of permutations on a set S.

Associated with an ordered sequence s = {j1,/2,...,Jk, ...} of 1 or2isan
action ¢ of F on P; that is, a homomorphism ¢: F— Sym(P) deéfined as
follows:

¢(x)< i a,~t‘> =ap + i (ai + 8(i)a; _ )t
i=0 i=1

¢(}’)<.ZO aiti> =ao + Z (@i + (1 — 8G))ai- Dt (2.1

i=1

where 6(f) = 1 or 0 according to ji =1 or 2.

Throughout this paper, we do not distinguish between an action
¢: F X P— P and the homomorphism ¢: F — Sym(P), associated with ¢, and
therefore the same symbol will be used.

ExampLeE2.1. Lets= {1,2,1,2,...}, whereji = 1if and only if kis odd.
Then for f(1) = >, ait'e P,
i=o0

BIO) = f@) + 3 @t

O =f@) + .ZO @i 122,

Using Fox free derivative [1], we can now express the action®$ more pre-
cisely. The following proposition is essentially Proposition 3.1 in [9].

Proposition 2.1. Lets = {j1,/2,...,Jk, ...} be an ordered sequence of 1

or 2. For ueF, write ¢(u)< > aiti> = >, bit'. Then
i=o =0

(1) bo = ao,
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(2) Forg>1,

ou \° %u \° 0% °
bo=ag+ag_1|2L) +a, o —2% ) 4+ ... _ %% ) @2
= e e 1<3zq> T 2<az,,_1azq> +a°<azl---6zq> 2

where z; is x or y according to ji =1 or 2, and o denotes the trivializer.

For the proof, see Proposition 3.1 in [9].

Let F be the free group freely generated by {xrq), Y7o |f(O)eP}. Let (DD}
be the Reidemeister-Schreier rewriting function of £ associated with the action
¢ ([4] or [9]). Dy: F— F is characterized by the following two properties:

For any f(f)e P and u, v e F,

(1) Drpx) =xr¢p and DY) = yro,
(2) Drry(uv) = Dy - Do v- 2.3)

The following properties will easily be proved from (2.3).

D) Dy ™) = Do~ yo@) "
() If puv~1) = 1, then Drpyv ™) = Dsepu) - (Drrv) L. 2.4

Now let y: F— P be a homomorphism defined by ¥(xr¢) = 0 and ¥(¥r) =
=f(. ’

Proposition 2.2. Lets = {ji,j2,...,Jjk, ...} be an ordered sequence of 1

or 2. For ueF and f(t) = Y, ait' € P, write yDyou = 2, bit'. Then
=0 =0

1) bo = ao,
(2) Forg > 1,

ou\° u \°
bq=aq "a; +aq_1 azqay +

8% ° 37+ >°
t+a|l———F) +tal ——— | 2.5
1<az2. . .azq6y> 0(6z1 ...0zZ40y (2-3)

where z; is x or y according to ji=1 or 2.

For a proof, see Proposition 6.1 in [9].

In this paper we are particularly interested in the group action associated
with a sequence {1,1,...,1,...} or {1,2,2,...,2,...}. Our approach,
however, is different from what we did in [9] and hence, we obtain different
representations of the link groups. To be more precise, we define two actions
g and 7 of Fon P.
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Definition 2.1. For f(f) € P, define
o) f(@) = (1 +0f@®

o) =f(® (2.6)
70 (@) = f(@2) + f(0)¢
(@) = A + 0 f (@) — f(O)t. (2.7

Let P* be the set of power series f(¢) for which f(0) = 1. Then ¢ and 7 in-
duce actions of F on P*, since for any u € F, [o(u)f(©)l:i=0 = [t@)f[®)]t=0 = 1.
Furthermore, let g(¢) be an element of P and (g(¢)) the ideal of P generated
by q(¢). Denote by R the quotient ring P/{q()).

Proposition 2.3.
(1) o induces an action o of F on R.
(2) If q(0) = 0, then 7 induces an action 7 of F on R.

Proor. It suffices (and is easy) to show that (g(¢)) is closed under the
actions o and 7. )

Remark2.1. Let g(f) = X7 osit' and let s, be the first non zero coefficient
of g(#). Then every element f(f) in R has a unique representative f(¢) of the
form: f(f) = @ + @t + ...+ at“+ ..., where @, ...,an-1 are integers,
and if s,, is positive, then ar(k > m) is a non-negative integer less than s, but
if s, is negative, ax(k > m) is a non-positive integer greater than s,,. We call
this unique representative f(#) the normal form of f(z).

ExaMPLE 2.2. Let g(f) = 2 + 3¢. Then the normal form of f(#) = 3 + 6f —
— 232 +3t%is 1 + ¢+ .

Since Propositions 2.1 and 2.2 for ¢ = ¢ or 7 will be used quite extensively
in this paper, it will be convenient to state them as separate propositions.

Proposition 2.4. For ueF, write
a(u)< aiti> = >, bit' and T(u)<
i i=0

Then for any q > 0,

u\° u\° - 87 u\° 9%u\°
(1) bg=aq+ a;-1 Ix +ag-2 ax? +...+a 951 + ao pre
ou\° *u\°
(2) cg=aq+ aq—1<a—);> +aq—2<5:y“2> +

XA u \°
+ GI<EF> + ao<<§x6-}F> . (2.8)

©

> a,-t’> =2, cit'.
=0 i=0

M

0 i
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In particular, ao = by = co.

Proposition 2.5. Let Df () and Df ) be the Reidemeister-Schreier rewriting
JSunctions associated with the actions o and 71, respectively. For

f®O=> ait'eP,
i=0
write
YD n(u) = ‘ZO bit' and YDfp(u) = ZO cit'.
Then for g = 0,
1) by=a %o 62u>°+ +a 0u o+a 07" Tu\?
77 "\ oy 0xay T ax gy \ ax%y ) °

ou\° 0’u 0% \° 07w\
2 - - — . .
@ €= a"<3y> * e ’< y2> Tt a‘<6y"> ¥ a°<6x6y"> @2

3. Representations of a Free Group

For an integer n (positive, negative or 0), let

gn() = 3, <':>t =1+ -1

i=1

As usual,

<rlz> denotes n(n — 1)..i.'(n—:+ 1

Lemma 3.1. If m =0 (modn), then g.(tf) = 0 (mod gx(?)).

A proof is easy.

Now let R(n) be the quotient ring P/{qg.(?)), and let R*(n) be the set of
elements f(¢) in R(n) such that f(0) = 1. Since g»(0) = 0, it follows from Pro-
positions 2.3 and 2.4 that ¢ and 7, respectively, induce actions ¢, and 7, of
F on R*(n). Let Qy(n) and 2.(n) denote the orbits of 1 in R*(n) under o, and
7a respectively. Namely,

Qo(n) = {on(u)(1) |ueF} and QAn) = {(7.(W)(1)|ueF}.
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0. and 7, define homomorphisms

on: F = Sym(Q,(n)) and 71,: F— Sym(QAn)).

Proposition 3.2.
(1) on(F) is a cyclic group of order |n|.
(2) 7.(F) is a metabelian group.

Proor. (1) Since (1 + 8" = 1(mod gn(f)), Qs(n) consists of exactly |n|
elements {1,1+¢ (1 + 0% ...,(1+ 9" ~1}. Since ax(1 + ) = (1 + t)**1,
it follows that o(x") = 1, but o(x*) # 1 for 1 < k < |n|, and hence ox(F) is a
cyclic group of order |n|. '

(2) Let G = 74(F). As a special case of Proposition 9.1 in [9], we see that
G" = [G’, G'] = 1. Therefore, G is metabelian.

Generally, 2/(n) is not a finite set. Therefore, to obtain a finite representa-
tion of F, we need to ‘‘truncate’’ higher terms of f(¢). Let Ix +1 be the ideal
of P generated by t**! and ga(f). Let Re(n) = P/Ix + 1 and let R¥(n) be the set
of elements f(f) in Ri(n) such that f(0) = 1. An element of Ri(n) is a
polynomial of degree at most k, and it has the (unique) normal form of degree
< k. (See Remark 2.1.) Obviouly, 7, induces an action 7¢,, of F on Ri(n).

Let Q«(n) be the orbit of 1 under 7, »; i.€., Q(n) = {7k, (W) |U € F}. Tic,n
defines a (transitive) homomorphism 7x, »: F — Sym(Qx(n)).

Proposition 3.3.
(1) 7x,2(F) is nilpotent of class at mos k.
(2) If n is a prime p, then 1 »(F) is a finite p-group.

(3) In particular, if n =2, then 7« o(F) is the dihedral group of order
2k + 1.

PRrROOF.

(1) follows from Proposition 3.2 in [9];

(2) since a proof will be done by an easy induction on &, the details will be
omitted. Note that (7, p(x))”k =1 and (7x,,(»)” = 1;

(3) denote X = 74, x(x) and Y = 7« a(»). Then a straight-forward calculation
shows that for any f(¢) € P*

1) X*(f(0) = f@O mod I +1
@) Y(f(t) = f(ymod I + 1
(3) XY)X(f(t) = f(t)mod Iy + 1. 3.1)

Therefore, 7«,2(F) is a quotient group of the dihedral group

Dok = (A, B|A¥ = B> = (AB)* = 1).
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But it is easy to see that they are, in fact, isomorphic. The details will be omit-
ted.

Remark 3.1. We can prove, further, that for a prime p,

{Tk.p[x,y, X =1
Tk, pl%s ¥, ¥y ., ¥ =1, (3.2
k times

-1, -1
where [u1, uz] = uiuaug "uz ~ and [us, uz, ..., Uml] = [[u1, Uz, . . ., Um-1], Um].
In particular, 72,, is isomorphic to the group

M(p) =,y |xP =yP =, )P =1, [x, 3, x} = [x,y,y] = 1).

Remark 3.2. p-group representations of F obtained in Proposition 3.3 (2)
and (3) are quite different from those discussed in [9, §10] or [10, §§2-3].

4. Representations of Link Groups

Let L = XUY be an oriented 2-component link in S>. In this section, we will
define a homomorphism from the link group G(L) onto the group o,(F) or
Tk, n(F) for various n and k.

For the first group o.(F), such a homomorphism X,: G(L) = o,(F) always
exists, since g(F) is.cyclic of order |n|. In fact, let m, and m, be meridian
elements of X and Y, respectively. Then for any integer n, a mapping
Xn: G(L) = on(F) defined by

{En(mx) = gn(X)
Ta(my) = id 4.1)

gives a required homomorphism. However, it will be seen later that X, is only
interesting in our purpose when # divides /k(X, Y), the linking number between
X and Y.

On the other hand, the second group 7«,.(F) is not an obvious group. In
fact, 7«,»(F) is metabelian, but not abelian. Nevertheless, for any &, we can
find a homomorphism from G(L) onto 7, .(F) when lk(X, Y) is divisible by n.

In this section, we will prove the following theorem.

Theorem 4.1. Let n be an integer. Suppose lk(X, Y) =0 (modn). Then
for each k > 1, there is a homomorphism

Ti,n: G(L) = 7k, n(F) C Sym(Qi(n))
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such that Ty, n(myx) = 7k,n(x) and Tk, (m,) = 76,n(y). n can be 0 only when
Ik(X,Y)=0.

Proor. Since there is no essential difference in proving the theorem we
may assume that » is a positive integer. Also we may assume w.l.0.g. that
Ik(X,Y)>0.

Now, if k = 1, then 7« (F) is a cyclic group of order n, and the theorem
is trivially true. Therefore, we assume that k > 2.

Let G(L) = {xi, yj | ris s>, 1 i<\, 1 <Jj<u be a “modified”” Wirtinger
presentation of G(L) in the following sense.

x1 and y; correspond to prescribed meridian elements m, and m,, respec-
tively, and relators are of the form

{ri = wixiui 'xiih, I<i<h-1

-1,-1
n=nx1m X1,

K
S
where u;, vj are words in {x;, y;}, and 5 and £ represent longitudes of X and
Y, respectively, so that {xi;,n} and {yi, £} form peripheral subgroups of
GWL).

Let F* be the free group freely generated by {xi, yj, ] <i<\, 1 <j<pu. As

before, F denotes the free group {x,y| ). Let p: F* — F* and »: F* > F be
homomorphisms defined by

viyivi yidh, I1<j<<pu—1
EnE il

p(x1) =x and p() =y
p(xiv1) =uxiui ',  1<i<N—1
p(yj+1) = viv1vj I<j<p—1.

{V(Xi)=x, 1<ig
v(y) =, I1<j<p.

Using p and », we define the third homomorphism
O+1=vp*: F*>F for k>0.

(0 +1 will be called the Chen-Milnor homomorphism.)
Let T = 7«,n0k+1 be a homomorphism from F* to 7« .(F). Then T will
induce the homomorphism Tk, »: G(L) = 7, o(F) if

T(r) =1, 1<ig<\, and T(s) =1, 1<i<p 4.2)
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Now, Proposition 5.1 in [9] proves (4.2) except the last two relations
T(rn) = 1 and 7(s,) = 1. Therefore, it only remains to show that

T, x11=1 and TI§ ] = 1. (4.3)

Since one of the relations in (4.2) is redundant, it is enough to show that

Ty, x1] = 1.
For simplicity, write 6 +1(n) = A. Since 0« + 1(x1) = X, it suffices to prove
that '

Tk, n(hx) = T, n(xh). 4.4)

Denote u = hx and w = xh, and write

o

Tk,,,(u)<z aiti> = >, bit' and -rk,,.(w)<z aiti> = > cit'.
i=0 i=0 i=0 i=0

Then, since ap = 1, it follows from (2.8) (2) that for g > 1,

ou'\° 0w\ [ o \°
(l) bq=aq+aq_1<5> +...+01<F> + <W> (4.5)

and

Ow\° 37 w\° Tw \°
(2) Cqg=0aq+ ag-1 5 + ...+ @ ayq_l + axayq_l .

Now
r,,\ o r.\o o
ay ay" r ay

[1], and (8h/3x)° = 0. Further,
Fu N\ _[a[% u\]°_ [ h \°
axoy?~t) T lax\ay?"')|  \oxdy?!
Fw \° o[ & 'h\]|°_ a"‘lh‘°+ ah \°
axay? 1) T lax\Fay 1) | T \gya? axay?-1) -
Therefore, it follows from (4.5) that

ou\° ow\°
bo=C0=1, b1=<a> = and C}—<a> —1,

and
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and hence,
© © q Ih
Se= B oo 5 () 0= Sowrr B )

Since n devides m by the assumption, it follows from Lemma 3.1 that

5 <q'f 1>th0 (mod gx(1),

q=2

and hence

S e, q—thq (mod Ik + 1).
g=0

g=0

This proves Theorem 4.1.
Now, let g = 0« +1(§) and v = gy and z = yg. Note that (dg/dy)° = 0. Since
Tk, nl£, ¥1] = 1, we have 7k, n(V) = 7x,2(z). Write

Tk,n(U)< Z a;ti> = Z biti, a=1
i=0 i=0
and
Tk,n(Z)(Z aiti> = Z Citi, ap = 1.
i=0 i=0

Then by (2.8) (2) we obtain
(l) a=bo=co=1 (46)

For g > 1,

"9v\° R AN % \°
(2)bq=aq+aq_1($ +...+a15)7;:7 + EW

and

az o aq—lz o aqz o
(3)cq=aq+aq_15) +...+a1F + &F .

Since (dv/dy)° = (3z/dy)° = 1, it follows that for g > 1,

() - (5 - ()
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3% \° d%g °+ 977 1g \°
axdy?~1) — \axay?~! dxdy? 2

3% o 3% o
<3x6y"'1> - <6x6y"‘1> )

Therefore, 7«, (V) = 7«,4(2) yields the following

and hence

and

Proposition 4.2. Letg = 0+ 1(§). Then for k > 1,

a o 62 o aq o
e (Z8) e (o)t =0 (modisy).
ax dxdy axay? : 4.7

Remark 4.1. A homomorphism X,: G(L) — o,(F) is formally given as
follows. First, define a homomorphism X*: F* — g,(F) by

{E*(x,-)=a,,(x) for i=1,2,...,\, 8

T*(yp)=id for j=1,2,...,n.

Then *(r;) = X*(sj) = 1 for any i, j. Therefore, £* induces the homomor-
phism Z,: G(L) — a.(F). This rather obvious observation will be used in the
next section.

5. Covering Space (I) Cyclic Covering

In the previous section we found representations X, and T, , of G(L) on an(F)
and 7x, o(F).

To each finite representation ¢ we can associate a (unbranched) covering
space M. Let U(X) and U(Y) denote tubular neighborhoods of X and Y in
S3, respectively. Then the covering space M associated with ¢ is a compact
3-manifold with boundary consisting of tori.

Suppose we have a homomorphism

o:m(M)— A

from m1(M) to an abelian group A. Then ¢ induces the homomorphism ¢
from Hy(M) to A. The most characteristic element of H1(M) is a ‘‘longitude’’
¢ of each boundary torus of M. In many cases, such a ’’longitude’’ can be
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realized as a “‘lift’’ of a longitude ¢ of dU(X) or dU(Y), and then ¢(§) will
be an invariant of the original link type L. By taking 4 as the polynomial ring
Ry(n), we will obtain our polynomial invariants.

In this section, we define such polynomial invariants for a finite representa-
tion X,: G(L) = on(F) C Sym(Q.(n)).

Let M, be the (unbranched) covering space of S — L associated with Z,.
M, is in fact the n-fold cyclic covering space of S — X.

Let D, be the Reidemeister-Schreier rewriting function associated with the
action X*: F* — g,(F) C Sym(Qs(n)), where £* is defined in Remark 4.1.
(4.8).

Now the set S,= {Dfp(x), Dfe) |1 <i<MN1<j<p,f(D)eQ(n)
generates a free group F and m1(M,) has a presentation {S,: R,, U,) where
R = (DJe(rd, D) | 1 i <A\ 1<J < f() €m)) and U, = (D (1),
S(t) eQo(n)}.

Theorem 5.1. Let n be an integer. Suppose lk(X, Y) = 0 (mod n). Then for
k 2 1, there exists a homomorphism ®,: w1(M;) = Ri(n) such that for any

S(0) € Qu(n),
Do(Df(x1) =0 and (D} (1) = f().

Remark 5.1. n can be 0 only if /k(X, Y) = 0, and then M, is an infinite
cyclic covering space of §° — X.

ProoF oF THEOREM 5.1. To prove the theorem it suffices to define a
homomorphism ®¥: FF — Ri(n) such that ®}(w) = 0 for we R, or U,.

Now let F;, be the free group freely generated by a set {xrq), Vro | f() € Q(n) },
and let Y, be a homomorphism from F, to Ri(n) given by

Yolxrw) =0 and Yo(yrw) = (0. (5.2)
Using v, we define, for f(¢) € Q,(n) and for any i, j,

{M(ﬂb}‘&)(xf)) = Yo DF w0k + 1(x) (5.3)

PHDF (1) = YeDfwybk +1(3)).
Note that
PHDF 0 (x1) = YeDf 0k 4 1(X1) = Yo DF ) (¥) = Yolxr0) = 0,
and

‘i’j(ﬂ)}k(‘;)()’l)) = ¢U§D;(z)0k+ 1On) = %53}’(1)(}’) = Y,(Vrw) = f(@),
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and therefore, ®# satisfies (5.1). We will prove further, for any u € F*,
‘P:S)}F(L;)(“) = ¢aina(t)0k+ 1(#). 5.4

A proof will be done by induction on the length /(u) of u.
If (u) = 1, then u = xi*! of y#!. If u = x; or yj, (5.4) is trivially true. Sup-
pose u = x;i 1. Since on(Xi) = 0n(Bk + 1(x)), it follows from (2.4) (1) that

PrDFG 1) = BPEDE i 1o )]
= Y [D, - 1yl + 1G] 7
= Vo[ D 0k + 1000~y i+ 16D 1
= Yo D7 Ok + 1 (x) ™!
= Yo7 0k + 1 (X7 ).

Similarly, (5.4) holds for u = y; *.

Now suppose (5.4) holds for any element u with /(u) < d. Let w be an ele-
ment of F* with /(w)=d. Then w=ux*' or uy/' for some u with
lu)=d - 1.

Consider the case w = ux;. Then

o7 5)}‘5)(“’) = &7 33}%(“"1’)
= ‘I’:‘[(S)}‘Z) u) - (S)a*,,(u)f(t)(xi))]
= o7 SD}R(Z)(U) + ¢§®::(u)f(t)(Xi)
= VoD 0k + 1) + Yo D0, 100k + 1(xi)
= ¢a[3);(t)0k+ (@) - S)gn(u)f(t)ek +1(x)].
Since 0,(u) = o4(6k + 1()), the last expression becomes

Vol D7y (0k + 1(1) - Ok + 106))] = Yo DF 00k + 1 (uxi). (5.5

Since similar computations provide the proofs for other cases, the details
will be omitted.
Now we must show
q’:(SD}W(z)’i):O, i=1,2,...,\

P . (5.6)
qD;k(S)}k(t)Sj) =0, Jj=1, 2,..., Q.

First consider ri = uixiui 'xih, 1 <i<\. Since Or+1(Xi+1) = 0k +2(xi+1)
(mod Fy +») by Proposition 5.1 in [9], Propositions 2.5 and (5.1) in [1] imply
that

VeDF0y0k + 1(Xi + 1) = YoDFy0k +2(Xi + 1).
Since Ok + 2(xi + 1) = Ok + 1(uix1ui” ) by the definition, we obtain

o %0 -1
‘I’ffS)}:(t)(XH D= ¢§$;(z)(uix1ui )s
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and hence
PX[( f(t)(x1+1))( f(t)(uixlui_ l))_l] =0
which is equal to
SrDFo i s 1(uixiui )~ =0,

by (2.4) (2).
Similarly, we can prove ®7D7)(s;) = 0 for j # p.
Now it remains to show that

(1) ®5DfH[n, x11 =0, or .
() ®5DF;[E 3] = (5.7

Since o,[£, y1] = id, (5.7) (2) is equivalent to

PIDfo (Er1) = B5DF; (019, (5.8)

To prove (5.8), we compute both sides separately. Note that 0+ 1(y1) =y
and o,(y;) = id. Then

P5DFH(Er1) = BF[DF5 (D) - Divaro ()]
= $7DF (&) + I DI @r0 ()
= ®7Df () + Ve Ds.@r 00k +1(01)
= ®7D;H (5 + (D (D).

On the other hand,

BIDFH (18 = BE(Df )1 Do)
= &7 Dfpy1 + BIDFH(H)
=f(t) + 5D f(t)(f)

Therefore, it suffices to prove
SO =0())f()  (modIk+1). (5.9

Since m = lk(X, Y) = 0 (mod n), it follows from Lemma 4.1 that g.(f) =0
(mod g.(£)). Also, since 0on(§) = 0a(x™), a(x™)f(@®) =1+ ") =1
(mod gn(?)).

This now completes the proof of Theorem 5.1.

A straightforward computation of the relation ®3Df, [, x1] = 0 yields the
following
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Corollary 5.2. Lei h = 0k +1(n). Then
i aq * l_h th +1
g=o0 \ x99y

Remark 5.2. (5.10) can be considered as the ‘‘dual’’ form to (4.7).
Now before our polynomial invariants are introduced, we need a few pro-
positions.

0 (modlk+:y). (5.10)

Proposition 5.3. For any f(t) € Qs(n),
q’frkiDi"u("]) (I)*:Df(t)(n)-

ProOF. Let u = 0k +1(n). Then ®;DF; (1) = ¥eDF0)0k + 1(n) = YoeDFr(1).
For f(¢) = Z ait' € P*, write Y,D3(u) = Z bit' and ¥oDfy(u) = Z it
=0

Then Proposition 2.5 yields, since ao = 1,

o oo +1 o
W Sori=3 (aq ”) 4
i=0

g=0\0x%y
© } © © aq+1u o . o0 aq+1u o
= , — A —— ) 9. (5.11
) i=20ct j;a,[qg]o(a ) t ] + > <axqay> t9. (5.11)
By (5.10), for j > 0,

© 97 +1 .
Z <axqay> "'=0  (modgn(®)

and hence,
Sibiti= D, it (mod ga(0)).
i=0 i=0

This proves Proposition 5.3.

Proposition 5.4. For any f(f) € Q4(n),
P}, (8) = f(OI2; DT (B

Proor. Since f(¢) € Q,(n), f(¢) is of the form (1 + )" for some 0 < r < n.
(We assume that n is non-negative.)
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Write
P7DF (&) = YeDF i +1(8) = ‘Zo cit' and ®7DI(E) = YoDk+1(5) = .ZO bit'.

Denote w = 0k +1(£). Then Proposition 2.5 yields again

© . © qg+1 o
M) Shii=3 <‘9 W) £, and
i=0

g=0\ dx79y

) © aq+1 . '
©) Z ct' = 2 a,[ D ( > ‘WJ. (5.12)

Qay

Since
. - B\
fO=Q0Q+t =2 at' and <__‘_v> =0,
i=0 dy

it follows from (5.12) (1) (2) that

ax"ay
oo © aq+1
q+Jj
& [z Gy J
=‘Z cit'

Definition 5.1. Let n be an integer that divides lk(X, Y). Then for any in-
teger k > 1, define the polynomials 7{(f) and £°(t) in Ri(n) by

() = ®¥DF(n), and
E(n) = ®EDT(Y). (5.13)

Theorem 5.5. For any k> 1, 3@ and {f)EP(®),f(H) €Q(n)} are
invariants of an oriented link type L.

Remark 5.3. For any u € F, 0k + 1(4) = 0 + 2(u) mod Fy ; 2, and hence, for
any / > k,

72(8) = 1{°(?) (mod Ik + 1)
£ = £€°(t)  (mod Ik 4 1). (5.14)

Since k£ can be taken arbitrarily large, these invariants are formal power
series.
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Corollary 5.6. Suppose Ik(X,Y)=n#0. Let X7 ,ait' be the normal
form of 7. Then for any i >0, a; = a}*, where a} is the invariant defined
in [5].

Now, as we did in [4] or [9], these invariants can be interpreted as the ‘‘link-
ing number’’ between one component of the lifts of X or Y and the
characteristic link defined in [9]. Using this geometric interpretation, we can
obtain more information on n{”().

Let X and Y = YoU...UY,_ be the lifts of X and Y, respectively, in
the covering space M, associated with the homomorphism X,: G(L)—
= Sym(Q4(n)).

Theorem 5.7. Suppose lk(X,Y) =rn, n> 0. Then, for any k > 1,

70 = r{(';) + <’22>t + .+ <Z>t"‘1}. (5.15)

In particular, the invariant af* defined in [5] is completely determined by the
linking number Ik(X,Y).

Proor. By [4] or [9], the characteristic link associated with the linking
function or the homomorphism ®,: w1(M;) = Ri(n) is a 1-cycle

n-1

Y= (1+0'Yi in H(Y;Re(n)),
i=0

and Y bounds a 2-chain D in Cx(M,; Rk(n)). Then by [4], 3%°(¢) = Int(X, D),
where Int denotes the intersection number. Since X bounds a 2-chain €in M,,
Int(X, D) = Ik(X, Y) = Int(C, ¥). Obviously, Int(C, ¥i) = r and hence

n-—1 n
WO =r2 (1+ty=r), <'f>tf"1.
i=0 ji=1\J
This proves (5.15).
Corollary 5.8. If lk(X,Y) =0, then for any n and k, 7{°(t) = 0.

Corollary 5.9. £(0) = 0 and 7 (0) = lk(X, Y).

Proor. By Remark 5.3, £(0) = £”(0). Since 6:(8) = x™, m = lk(X, Y),
we have

£ = SEDIE) = YeD:1(9) = Yo DIE™) = 0.

Therefore, £(0) = 0. The second part follows from (5.15).
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Suppose /k(X, Y) = 0 and take n = 0. Then, since ga(£) = 0, £(?) is a ra-
tional function on . Furthermore, if we let s = 1 + ¢ and express £(¢) as a
Laurent polynomial on s, then it is essentially the n-function defined in [6].
In fact, we can prove the following theorem

Theorem 5.10. Suppose that Y is contractible S* — X. Let n(L, X, Y;s) be
the polynomial defined in [6]. Write £(f) as a Laurent polynomial &(s) on
s =1+ t. Then for a sufficiently large k,

&) = (L, X, Y;s),

where A = B means that A and B are equal up to a unit in Z[s,s™'].
A proof follows from the definition of £2(f) and Theorem 2 in [7].

6. Covering Space (II) Metabelian Covering

In this section, we consider the other representation Tk,»: G(L) — Sym(Q«(n))
and the covering space Mr of S* — L associated with Tk, ».

Theorem 6.1. Let n be an integer and suppose lk(X, Y) = 0 (mod n). Then
for each k > 1, there exists a homomorphism

q’-r: (ST: RT> - Rk(n)
such that, for any f(¢) € Qx(n),
2ADfx1) =0 and  @(Dfpy1) = f(0), (6.1)

where §D}"(T,) denotes the Reidemeister-Schreier rewriting function associated
with Tk,, and S; = {5)}“(7,)(x,~), DN T <i<N1<j<p, f(t) €Un)) and
R = (Dfp(r), Dfy () | 1 <IN 1 <J < f(2) € Qlm) ).

Proor. We can use the same argument employed in the proof of Theorem
5.1 using the Reidemeister-Schreier rewriting functions D}, Df, and homo-
morphisms &7, . instead of Dfy, Df, P75, ¥o. What we need to prove
here is the formula (6.2) below corresponding to (5.7) (1).

PIDFG (x1) = BFDFG (xan). 6.2)
First we compute both sides separately. The left hand side is

ST} (x1) = BTDFyn * DI, anrrX)
= D) + BFDT s *1)
= ¥ }k(‘;)("l)
= ¥ D70k + 1(n).
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On the other hand, the right hand side is

= 7D, s
= ¥D7, L crobe+1(n).
To compare these terms, letu = 0k +1(n) and f() = D, ait’.
i=0

Write

ViDfobesrtn) = 35 bit' and  §: D wcorbeartn) = 3 it
1= i=
Then by (2.9) (2), we have, since ap = 1,

(1) bo = <a—”> — m = (X, Y)
ay

(2) For g > 1,

ou\° o%u\° 0w\ (37t u\°
by = aq<a}> + aq_1<$7> +...+ ¢11<5y71> + <W> . (6.3)

Now 7,n(X) = f() + t =1+ (1 + a1))t + >, a;t’ and hence, (2.9) yields,
again,

@ a=01+ al)<gff>
Y

+
-l
R
=
\_/o

(3) For g =22,

ou'\° %u\° 37" u\°
cq=aq5 +ag-1 5}7 +...+a —ayq_l +
0%u\° [0 'u\°
— ———). (6.4
+a +al)<3y"> ¥ <6x6y"> €4
Therefore, for g > 1, ¢q — by = (8%u/3dy?)° and hence

o o © ai o
D0 bttt — D ct? = 2] <—‘f> t.
q=0 q=0 ay

i=1

() =(“7")=(7)
ay') i T\

Since
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for i > 1, it follows from Lemma 3.1 that

© aiu o . © m P _
,;1 (5?) =2 <i>t =gm(®)=0  (mod ga(?)),

i=1
and therefore,
Z bq[q - Z C[th = 0.
qg=0 g=0
This proves (6.2).
Proposition 6.2. For any f(t) € Q(n),
PFDT(n) = BFDFG) (). (6.5)

PrROOF. Let f(f) = 27 ,ait’ and write ®FD#*(y) = 27 ob;t' and
BIDF M) = X c;t'. Then by (2.9) (2) we have, for ¢ >0 and u = 6 + 1(n),

aq+1u o

ou'\° %u\° ou\® (97t 'u\°
2) Cqg= aq<»$> + aq-1<5)7> + ...+ a1<5d> + <5xayq> . (6.6)

Therefore, bo = co = m = lk(X, Y) and

© © o ou\° 62u>0 (aqu>02
cqt? — bat? = ag\ — | +ag-1lz=) +...+a|l ) (7
qgo ! qgo ? qgl { q<3y> ! 1<3)’2 \oy“

- ./'21 aj[ ig;l (r?)t”j_ I:I

=0 (modg.(?)),

since for j > 1,

.21 <r;1>ti+j-1 =0 (mod gn(?)).

Proposition 6.3. Tk, .(§) = id.

PROOF. Let w =0k 1(§) and write Tk o(5)(X0 o ait’) = X5, bit’, where
ao = 1. Then by (2.8) (2),

aw\° 97~ 'w\° w \°
by=aq+ ag-1 5}; +...+a ayq-l + axay"" .
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<6iw>" <(6w/6y)°> ) <6w>°
2 . =0, since {(—) =0
ay i ay

. aqw o
bq = az + axayi~1) "

By Proposition 4.2 (4.7),

However,

Therefore,

w \°,
Zl E?F t?=0 (mod gn(5)
q=

and hence

S o~ St = T (20 r=0 moaqo)
q=

q=z0 qg=1 B;a}q—

Proposition 6.4. For any f(t) € Q«(n),
PFDT(8) = PFDFG (D).

Proor. The details will be omitted, since a proof can be obtained, using
similar computations shown in the proofs of Propositions 6.2 and 6.3.

Definition 6.1. Lef n be an integer that divides Ik(X,Y). Then for any
integer k > 1, define the polynomials 7°(f) and EP(f) in Re(n) as follows:

() = 2D (),
00 = 20T 6.7)

Theorem 6.5. For any k> 1, 7°(f) and EP(f) are invariants for an
oriented link type L.

Remark 6.1. As is stated in Remark 5.3, for /> k, 7\ =7{@)
(mod Iy + 1) and E7(f) = EM(¢) (mod Ik + 1), and therefore, these invariants are
formal power series.

Now, it follows from Proposition 7.1 in [4] that these invariants also can
be interpreted as linking numbers between two cycles in the covering space M,
associated with Tk, ,. Since Tk () = id, every lift £ of a longitude ¢ of Y in
M., is a simple closed curve in M, and hence, £{’(f) is interpreted as the
intersection number between £ and a 2-chain in C>(M,; Ri(n)) which bounds
the characteristic link. On the other hand, 7, »(n) may not be an identity, and
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therefore, a lift 7 of a longitude 5 of X in M, may not be a closed curve. Let
r be the smallest positive integer such that 7%, »(n") = id. Then Proposition 6.2
shows that for any f(f)eQ(n), ®rD};n") =r@FDI'(n) and therefore,
®FDF (m) = 7() can be considered the ‘linking number” between a
““longitude’’ of a covering torus and the characteristic link in M.

Corollary 6.6. Suppose Ik(X,Y)=n#0. Let > ,ait' be the normal
form of 3(f). Then @y = n and a; = h}, where h} is the invariant defined in

[5].

Corollary 6.7. If the Alexander polynomial of L is 0, then all invariants
7(2), &@), 7(2), &) vanish.

Corollary 6.8. E”(0) = 0 and 7{°(0) = Ik(X, Y).

Proor. The proof of the first part is similar to that of Corollary 5.9. On the
other hand, 7{”(0) = 7¢”(0) and 7§(?) = @*D}"(n) = ¥~ Db1(n) = ¥-DIOY™) =
= Y. (yT") = m, since 70,,(¥) = id and 6:1(y) = y™, where m = lk(X, Y).

Finally, we study the behavior of these invariants under simple transforma-
tions of the link. The following two propositions are easy to prove, and
therefore, the details will be omitted.

Proposition 6.9. Let L' be the mirror image of an oriented link L. Then
for any n and k,

1O = =10
E(r = — &P
O = -7,
EO(OL = —EP(Or.

Proposition 6.10. Let L* be the link obtained from L by reversing the
orientation of one component, X say. The n for any n and k,

{"‘k"’(t)u = —nP(t).
ED(Ls = EP(OL.

7. Examples

In this section, we compute our invariants for two simple 2-component links.
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Example 1.Torus link of type (6.2).

Y

- GL) =<xy:[n,x] =1, [£,¥] = 1)
x where 1 = x~ 'yxyxyx~! and
£ = xyxyxy 2.
-

Ik(X,Y) =3 and A(x,y) = 1 + xy + x*%.
Let n =3 and ga(¢) = 3t + 3t> + £3. Then for k > 4.

m@ =3+ +22 + ¢
)=t +283 ++*

w@)=3+2+28+1¢*
E(t) =12 + 283 + 4.

Example 2. Whitehead link.

- G(L) =< y:in,x] =1, [£y] = 1)
X ‘ > where n =y~ 'xyx " 'yxy " 'x~! and
1

E=x"yxy layxT Ty L

Ik(X,Y)=0and A(x,y) = (1 — x)(1 — ).
Let n = 3 and g3(¢) = 3¢ + 3¢ + ¢3. Then for k > 4,

n(t) = 0
) =t*+263 + ¢
{ﬁk(t) =t2+28+¢*
&(t) = 0.
Let n =0 and go(f) = 0. Then for any £ > 0,

{ﬂk(t)=0
G@O=0+D""'-2+0+D
=2+ — ...
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The Concentration-
Compactness Principle
in the Calculus of
Variations.

The limit case, Part 1

P.L. Lions

Abstract

After the study made in the locally compact case for variational problems with
some translation invariance, we investigate here the variational problems
(with constraints) for example in RY where the invariance of R" by the group
of dilatations creates some possible loss of compactness. This is for example
the case for all the problems associated with the determination of extremal
functions in functional inequalities (like for example the Sobolev inequalities).
We show here how the concentration-compactness principle has to be
modified in order to be able to treat this class of problems and we present
applications to Functional Analysis, Mathematical Physics, Differential
Geometry and Harmonic Analysis.
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Introduction

We have studied in the preceding parts (P.L. Lions [20], [21]) variational
problems set in unbounded domains, where the unboundedness induces some
possible loss of compactness (a classical example of such loss of compactness
is the well-known fact that Rellich Teorem does not hold on unbounded do-
mains like RY for example). Roughly speaking we had to take care in [20], [21]
of the difficulty caused by the invariance of RY by the non-compact group of
translations.

We want to study here, in a systematic way, variational problems where not
only compactness may be lost because of translations but also because of the
invariance of R", say, by the non-compact group of dilations. This difficulty
was absent from [20], [21] since we were interested there in the so-called local-
ly compact case, while it is encountered there when studying the so-called
limit-cases problems, or problems with limit exponents (see below for concrete
examples).

Before giving examples and explaining the statements above, we would like
to mention that most of the problems considered below have their origins in
Geometry and in Mathematical Physics and have been studied by many
authors. In particular we refer to the fundamental studies of T. Aubin [3] on
the Yamabe problem; J. Sacks and K. Uhlenbeck [32], Y. T. Siuand S. T. Yau
[34] on harmonic mappings; and of K. Uhlenbeck [41], [42], C. Taubes [36],
[371, [38].

The dilations invariance of R" is a typical difficulty in the study of the ex-
istence of extremal functions in functional inequalities; indeed if A is a linear
bounded operator from a Banach space E into another Banach space F, one
may consider the smallest positive constant Cp such that the following ine-
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quality holds for all u in E;
|| Aul|r < Colul|£; ¢))

and one may ask whether the best constant Cy is obtained for some u. Now
if E, F are functional spaces, it is often the case that (1) is preserved if we per-
form a scale change that is if we replace u(-) by u(- /o) for o > 0. Of course
the question concerning Co is equivalent to the solution of the following
minimization problems:

Minf{||u||s/u € E, ||Au||r= 1} 2
or
Min{ —||Au||r/u€E, ||u||g = 1}; 2)

and the invariance of (1) by scale changes is often reflected by the invariance
of ||-||e or ||-||r by changes such as:

u() — U'“u<;>
(0}

where o depends on A, E,F. And this invariance will imply compactness
defects on minimizing sequences of problems (2)-(2').
Let us give a few examples of such situations:

ExampLE 1. Sobolev inequalities.

Let 1 < p < N/m, m > 1 and let E be the Banach space consisting of func-
tions in LI(R") with ¢ = Np/(N — mp) such that all their derivatives of order
m are in LP(R"); E is equipped for example with the norm ||D™u||rr&™. The
so-called Sobolev embedding theorem (or Sobolev inequality) yields that E is
continuously embedded in F = LYR™). Therefore the question of extremal
functions in the Sobolev inequealities

[|u]|agemy < Co||D™ul|Lrrm 3

is an example of the above framework—A being the injection of E into F. The
associated minimization problem is, for example,

Min“PN|D"‘u|”a’x/u €E, JPNlulqu= 1]. @)

One then checks easily that if we replace u by o ~™%u(- /) for any o > 0,
the two functionals occuring in the above variational problem are preserved
(this invariance being nothing else than the invariance of Sobolev inequalities
(3) with respect to scale changes).
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ExampLE 2. Hardy-Littlewood-Sobolev inequalities.

Let 0<pu <N, 1< p<(N/(N - p) and let g satisfy: (1/p) + (u/N) =1 +
+ (1/q). The Hardy-Littlewood-Sobolev inequality then states

||K * u]|Lageny < Col[u|orm,  Vu € LP(R™) )
where K = 1/|x|*. The determination of the best C is then equivalent to
Min[ — [ K * u|?dx/u e LP(RY), w117 dx = 1] (6)

(that is (2'), with E ='L?, F = LY, Au = K*u). Again the two functionals are
invariant by the transformation: u — o~ May(- /o) for all o> 0.

ExaMmPLE 3. Trace inequalities.

Let 1 <p<N,N>2, m>1andlet g be given by: g = (N — 1)p(N — mp) .
It is well—known that there exists a bounded linear operator A—called the trace
operator—from E = {ue L*(R¥N "' x R4), D"ue IP(R""! x R;)} witha =
= Np/(N — mp) equipped with the same norm as in Example 1 into F =
= LI(RN 1) such that if u € D(R"), Au is the usual trace of w on RV~ ! x {0}.
For obvious reasons we still denote Au by u. In this context, problem (2)
becomes

Min[JPN_]XrR+ |D™ul? dx/u €E, (i, lu(x', 0) |4 dx’ = 1]. 0]

And again both functionals are preserved if we replace u by o~ ¥~ Y/4y(- /o).

There are of course may more examples of this type (some are discussed in
the following section). Let us now explain on these examples what we mean
by loss of compactness induced by the dilations group (or the scale change
invariance). This can be easily seen on the fact that, even if we know there
exists a minimum in (2), (2'), (4), (6) or (7), the set of minima is not rela-
tively compact in E: indeed if # is a minimum then ¢~ “u(- /o) = u, would
still be a minimum for all ¢ >0 (o =N/q in Examples 1, 2, a=
= (N — 1)/q in Example 3). Now if o = 0 or ¢ — o, u, converges weakly to
0 (which is not a minimum) and the probability |u.|? (or |u,|P) either converges
weakly as 0 — 0 to a Dirac mass or spreads out (vanishing in Lemma I.1 of
[20]) as o — oo. This loss of compactness may be also seen on the fact that g
in the various examples is a limit exponent and that if we consider only func-
tions with support in a fixed bounded domain and if q is replaced by a smaller
exponent, then the various minimization problems are standard consequences
of the Rellich theorem. Notice also that the set of minima in (2), (2'), (4), (6)
or (7) is also translation invariant therefore we also have the loss of compact-
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ness induced by the translation invariance, as we had in the problems studied
in [20], [21].

We present here a general method to solve variational problems (with con-
straints) where such difficulties are encountered, that is problems with limit
exponents or with a scale change invariance or problems like (2), (2’) in func-
tional spaces. In particular our methods enable us to prove that any minimiz-
ing sequence of problems (4), (6) or (7) is relatively compact in E up to a
translation and a scale change™. In particular there exists a minimum; this
last assertion has been proved in Example 1 for the particular case of m = 1
by Rosen [31], G. Talenti [35], T. Aubin [4] and in Example 2 by E. H. Lieb
[18] but all these works depend on the use of symmetrization and therefore
cannot be extended to cover fully examples 1-3. Let us mention a few other
applications of our methods.

EXAMPLE 4. Yamabe problem in R".

An important problem in differential geometry is the so-called Yamabe
conjecture or Yamabe problem (this problem will be explained in detail later
on, see Yamabe [44], N. Trudinger [39], Eliasson [14] and T. Aubin [3]). We
will come back below on the case when the problem is set on a compact
manifold but here we restrict our attention to R™-prototype of a complete but
non-compact manifold. We look for a positive function # in R solution of

] ad .
——(aij(x) —li> + kOGu = KuN*’®-2 in RN, u>0in RY (8)
0x; 0x;

where a;;, k, K are smooth functions, (a;;) is symmetric definite positive. First,
if we look for a solution which vanishes at infinity, our general method
enables us to study completely the variational problems associated with (8).

Next, if we consider solutions which remain positive at infinity, we also
solve similar variational problems where we look for functions which con-
verge to a given positive constant at infinity. However in that case, we need
severe restrictions on k, K. In [28], Ni proposed a different approach of (8)
by the method of sub and supersolutions —that we recall in an appendix—
which gives a very general existence result. Roughly speaking, one can find an
interval ]0, i[ such that if 0 < u < j, there exists a minimum solution u of (8)
such that: u(x) = p as |x| = . We prove below that under quite general
assumptions, there exists a second solution u of (8) such that: u(x) > u(x) on
RY, u(x) = p as |x| = . This is achieved in the appendix by looking at the
problem satisfied by (v — u) and by solving the associated variational problem
by our concentration-compactness method.

@ Of course if p = 1 in Examples 1,3; L' has to be replaced by the space of bounded measures.
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EXAMPLE 5. Nonlinear field equations.

In various domains of Mathematical Physics one encounters the following
nonlinear problem

—Au=fu) in RY, ux)—>0 as |x|— o )

(here to simplify the presentation, we take scalar functions ). Of particular
interest is the so-called ground state solution which, if it exists, is the
minimum of the following problem (see for instance Coleman, Glazer and
Martin [13], H. Berestycki and P. L. Lions [6])

I = Min [ j | Dul? dx/LRNF(u) dx = 1,ue L*NN-D(RM),
Du e L*(R"), F(u) e Ll(rRN)] ) (10)

where F(¢) = L; f(s)ds, N = 3 (to simplify). In view of both known existence

results on this problem (see the references above and their bibliographies), the
behaviour of F at 0 and at o is known to be determinant: more precisely in
all known existence results of a minimum in (10), F is supposed to satisfy

lim F()|z] =GN -2 Lo, lim Fp)|t| - VN -2 <.
=0 ] > oo
Our method enables us to give a much more general condition for the
existence of a minimum in (10) which will cover both the situation above and
the case of the best Sobolev constant i.e. F(¢) = |¢|/*®~?, We assume that
Fe C(R), F(0) =0 and

iteR, F{)>0 and (11)
lim F* ()|t~ VN = 4 >0, lim Fr)t| VN2 =5>0"
7] =04 B (12)

(of course if a, 8 > 0, F"may be replaced by F); and we denots by

I° = MinUPN|Du|2dx/fm,\,|u|2N/(N'2) dx = 1};

(cf. Example 1 above). Then we prove that any minimizing sequence (un) is
relatively compact in L*™ ® =~ D(R) (and F(uy) is relatively compact in L'(R"))
up to a translation if and only if

I < {max(e, B)} - VPN (13)

(if « = B8 = 0, (13) holds automatically). We also prove that, if we allow the
equality, (13) always holds, any minimizing sequence is always relatively com-
pact in L2 ®=2(RM) up to a translation and a scale change (and we can
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analyse what happens exactly when the minimizing sequence is not compact
up to a translation).

On those two examples, we see that the problem is not invariant under the
action of the group of dilations; nevertheless the underlying invariance of RY
by dilations plays a crucial role in our solution of such problems. But even
the full invariance of RY by dilations is not needed, only the local part of it
plays a role and this explains why our method also applies to problems set in
regions different from R™, These regions may be compact —in which case the
group of translations does not induce any more some form of loss of
compactness— as is the case in the following typical example of such prob-
lems.

ExawmpiE 6. Yamabe problem on compact manifolds.

Let (M, g) be some N dimensional compact Riemannian manifold, a general
open question is the determination of the class € of functions on M which can
be achieved as scalar curvatures of metrics g (pointwise) conformal to g. To
solve this problem, one introduces for some positive function # on M a new
metric given by: § = u*’ ™ ~?g; we assume N > 3. Then if we denote by A the
Laplace-Beltrami operator on (M, g) and by & the scalar curvature, one checks
(see [3]) that the scalar curvature of § is given by

4N -1

K= {—%Au + ku}u“N”)/(N‘z),
Therefore K —a given function on M— belongs to C if there exists u solution
of

_4N-1)

N3 Au + ku = KuWN+*Y® =D in M,u>0 on M. (14)

And up to some multiplicative constants such a u exists if we find a minimum
of
I=1nf[ [, [Vul® + ku?dV/ue H'M), [, Klu "> v = 1], 19

where k, K are given functions in C(M).

Under natural assumptions on (—A + k) and K, we prove below that for
any minimizing sequence (u,) weakly convergent to some u then: either u is
a minimum of (15) and (u,) converges in H' to u, or u = 0 and there exists
Xo € M such that

K(xo) = max K, |un|2N/(N_2) - Olaxo, |Vun|2 - Baxo
M

for some B > 0, and where o = 1/max K (the above convergence is for the
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weak topology of bounded measures on M). This immediately yields the
following result due to 7. Aubin [3]: if we have

I< (max K) ~(N-2/Npe (16)
M

(where I is given as in Example 5), then there exists a minimum in (15) (ac-
tually we prove that any minimizing sequence is relatively compact in H*(M)
if and only if (16) holds). And we refer to [3] for a sharp discussion of (16).

In fact, we present below more examples: in particular we will present the
recent results of AH. Brézis and J. M. Coron on the Rellich conjecture [8] and
on harmonic maps [9] in the light of our systemtic tratment of such problems;
and we will explain how it is possible to recover the results of Jacobs [15] on
holomorphic functions by our general approach. ...

At that stage, we would like to explain the main lines of our method:
roughly speaking in all the problems listed above, the main difficulty —
created by the possible loss of compactness— is due to the fact that some
functional is not weakly continuous and that strong compactness is not a
priori available. Then, in the same spirit as in Parts 1 and 2 [20], [21] where
we explained what were the two possible forms of ‘‘non compactness’’ due to
unbounded domains, we investigate here what happens when passing to the
limit on those functionals along weakly convergent sequences. We use basically
some general compactness lemma which, roughly speaking, tells that weakly
convergent sequences are converging strongly except possibly at ‘‘isolated”’
points where Dirac masses appear in the densities of the functionals. And this
is of course a local property. A typical example is the following.

Lemma. Lef (), be a bounded sequence in W™ P(Q)* for some m > 0,
pell, N/m[, and a bounded smooth domain Q of R". We may assume that
un, converges weakly in W™ ® to some u and that |u,|? converges weakly in the
sense of measures to some v, where ¢ = Np(N — mp)~'. Then there exist
(x)i=1in Q, (v))i=1 in [0, o[ such that

v=ul?+ D viby;, D1 < oo,
i=1 i=1

Actually we obtain more information on »;, x; and we show that any such mea-
sure » can be obtained as the weak limit of |u,|? for some bounded sequence (i)
in W™ ?(Q) weakly convergent to u. In addition such a result is not at all restric-
ted to Sobolev spaces but is based upon the underlying invariance by dilations.

Let us also emphasize that such a phenomenon of ‘‘energy’’ concentrations
at points was first observed by J. Sacks and K. Uhlenbeck [32] in the study
of harmonic mappings: see also Y. T. Siu and S. T. Yau [34]; S. Sedlacek [33]

If p = 1, we replace L'(Q) by the bounded measures on Q.
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for similar observations in the context of Yang-Mills equations and K.
Uhlenbeck [43] for a general presentation. Let us only mention that this lem-
ma is very simple and holds for arbitrary sequences (un).

With the help of such results, we are able to decide what happens to the
functionals if the minimizing sequence (u,) is not compact. Roughly speaking,
u, breaks in two parts ¥ and (u, — u) = i, which ‘‘concentrates around the
isolated points x;”’. Then this enables us to conclude that all minimizing se-
quences are relatively compact if and only if some strict subadditivity in-
equalities hold, exactly like in [20], [21]. Those inequalities with equalities
allowed always hold and they involve, like in [20], [21], a notion of problem
at infinity which is essentially obtained by using the dilation invariance of RY
(or the local invariance for other domains) and concentrating a test function
around any fixed point of the domain.

In examples 1, 2, 3, those inequalities hold because of the homogeneity of
the problem and the conclusion is reached, while in examples 4, 5, 6, only one
of these collections of inequalities does not always hold and this explains the
role of the strict inequalities that we mentioned in Examples 5, 6.

Despite the generality of the argument and of the approach, we postpone
its general presentation until section III, while in section I we treat examples
1, 4, 5, in section II we treat examples 2, 3. Finally section IV is devoted to
various problems in compact regions like example 6.

The results presented here were announced in [25], [26] and combined with
those of P.L. Lions [20], [21] are the subject of lectures given at College de
France for the Cours Peccot.

Finally, it is a pleasure to thank H. Brézis and J. M. Coron for several
discussions and their interest in this work and to acknowledge that some of
the questions treated here are motivated by E. H. Lieb’s work [18].

Let us warn the reader that this work is divided in two parts: Part 1 consists
of Section I, while the remainder is contained in Part 2. Notations are iden-
tical for both parts.

I. Sobolev inequalities and extremal functions

I.1 The main result

Let m be an integer (to simplify) > 1, let pe[l, o[. If N>2, ¢ D(RY)
we denote by |D™¢(x)| any product norm of all derivatives of order m at
the point x. The classical Sobolev inequality states that if p < (N/m), g =
= Np(N — mp) ™! then there exists a positive constant Co such that for all
o € D(RY)

(Jiow 17 dx) V7 < Co( [ |D" el ) 2. 3)
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We then denote by D™7 the completion of D(R™) for the norm
lull = ([ ID™el? ) 7,

actually for the special case p = 1, we consider directly D™ ! as the space of
u in LY(R™) such that D™u € Myp(R"). The Sobolev inequality then holds for
any ¢ € D™, In order to decide whether the best constant Cp is achieved, we
have to determine whether the following minimization problem has a
minimum

I= Inf(jPNID’”ude/ue:D’""’, jRNlul"dx= 1); 4
(we will also write / = I; and I, will be the value of the infimum of the same

problem but with 1 replaced by \).

Theorem 1.1. Every minimizing sequence (un)» of (4) is relatively compact in
D™? up to a translation and a dilation i.e. there exist (Jn)n in RY, (0n)n in
10, [ such that the new minimizing sequence iy = 05 ~ %Un(- — Yu/0n) is
relatively compact in D™7? for p > 1 and in L? for p = 1 (in this case |D™u,|?
is tight).

In particular there exists a minimum of (4).

In the case when m = 1, this result implies easily the
Corollary I.1. Ifm=1, p > 1, any minimum u of (4) is given by
ulx) = a‘N/qu1<'——Z> where yeRY, ¢>0
g

and ui(x) = {1 + bxP’P=-D}yP-N/P where b > 0 depends explicitly on p, N
and I below. Moreover we have

e —p '+ N/2QT(N) )N
I=x""N{(p- DN -p)~'} ¢ "/"{
I'(N/pT'(1 + N — N/p)
Remark 1.1. The value I and the fact that u, 4; are minima were found by
G. Rosen [31], G. Talenti [35], T. Aubin [4] and this was based upon a sym-
metrization argument and some optimal one-dimensional bounds discovered
by G. A. Bliss [7].

Remark 1.2. Of course Corollary I.1 holds with the norm [Du| chosen to be
the usual norm on R".
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We begin with the proof of Corollary 1.1 using Theorem 1.1: by Theorem
I.1 we know there exists a minimum u of (4). Now by a simple use of Schwarz
symmetrization we see that v = u* is also a minimum and thus v, = 0~ 7 -
- v(x/0) is a minimum for all ¢ > 0. In addition, v, being spherically sym-
metric, v solves the O.D.E. form of the Euler-Lagrange equation associated
with (4) namely

N-1
—(p = D|vslP vy ———r—~|v.’,]"‘1 =n¢ ' for r>0
Ué(o) = O’ Vs 2 O’ vl’! < 0, UU(O) = U_N/q.

And remarking that for any constant /, there exists a constant b (which can
be computed explicitly) such that the unique solution of this O.D.E. is given
by

Volr) = *{?/ P~ 4 prP/ P DYP-NVP

where p = (N — p)/(p(p — 1)). Computing the L? norm of v (or v,) one then
gets the values of b, /. Finally from the fact that both » and v = u* solve
the same Euler equation, we conclude as in A. Alvino, P.L. Lions and
G. Trombetti [1] there exists y € RY, u(y + -) = u*(-).

Theorem 1.1 is proved in the next section but we would like to explain the
general scheme of proof here. First of all we saw in P.L. Lions [20], [21] that,
if (u,) is a minimizing sequence of (4), a crucial quantity is the concentration
function of |un|?. For technical reasons we have to consider the concentration
function of

m
Pn = Z |Dluniqj
Jj=0
where g; = Np(N — (m — j)p). We denote by L, = IRan dx, of course: L, >
2 [rnv|un|? + |D™unlPdx > 1 + I, and L, being bounded we may assume
without loss of generality that L, > L > 1 + 1.

In ““locally compact’’ problems the occurrence of vanishing (see [20], [21]
for more details) was easily avoided. On the other hand, here vanishing may
occur since the concentration function Q,° of u°(+) = 6~ ?u,(- /o) is given by

7(0) = Ou(t/0) for t>0,

(and playing with o = 0, > ©©, one may build minimizing sequences for which
vanishing occurs). We will avoid vanishing by choosing (¢,). in [0, — [ such
that

Qn(1) = 1/2 )
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(of course we could replace 1 by any R €]0, «[, 1/2 by any 6 €0, 1[) indeed
0r(1) = Qu(1/0) and Q, is a non-decreasing continuous function such that

0x(0) =0, 1 < lim Qx(2).
tTeo

In what follows, we will still denote by u, the new minimizing sequence uz"
and by Q, the associated concentration function, hence we have by (17):
On(1) = 1/2.

The proof given in the next section is organized as follows: Step 1: Using
(17) and the concentration-compactness argument of [20] [21], we will show
that p, is up to a translation a tight sequence of bounded measures on R"; Step
2: Using again (17), we will check that u, does not converge weakly to 0; Step
3: we conclude by proving that u, converges weakly to u satisfying:
Jra|ul?dx = 1. Both Steps 2 and 3 will rely on a Lemma stated in section 1.2
and proved in section I.3.

1.2. Proor. In what follows we will denote by (u,) all subsequences extracted
from the original sequence (u,).
Step 1. In view of (17), if Qu(r) 7> O(f) for some non-decreasing, non-

negative function Q on R, we have

0<1/2=0)< 0O <C, VI<I<+oo.

Applying the method of [20], [21], in order to prove that there exists (yn) in
RN such that pa(- — yn) is tight on R, we just have to show that dichotomy
cannot occur. In order to prove this claim, we assume that dichotomy occurs
and we will reach a contradiction since: I = N/?1, thus

I=5L<I,+ 11—, Vo e]0, 1]

(i.e. (S. 2) holds!). Therefore we assume that there exists & € ]0, L[ such that
forall e >0
Iy, € RY, 3R, R, > 0, R,> Ry and R, .
_ " (18)
& - Jynwkop”dxl’ .[Ros x—ynl <R, PROX S €

Let £, € Cpo°(RY) satisfying: 0 < £ < 1,0< <1, £=1if |x] <1, £=0if
x| >2,7=1if |x| > 1, 7 = 0if |x| < 1/2. We denote by & = &(x — ya)/R0),
1n = 7((x — ¥n)/Rx) where R; > Ry is determined below. We then have

| Jione 1D snl? dx = [ |D" Grtn) P i = [ D (nnun) [P dx| < CXR + Xa) + €

provided n is large enough so that: 4R; < R,; and where

m-1 ) ) ) 1/p
= < 2, (ID"el? + |D™na|P} | DYl dX> :
RN j=0
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Using Holder inequalities, we obtain

m-—1
X2<C 3 (JneN |D™ g, P+ |D’”"jn,,|pfdx)”/”f-
i=0
o o
) (J.Ros |x=ynl <Rn |Dlu"|qj dx)p Y
where p;/p = (gj/p). We deduce in view of (18)
m-1
Xi<Ce 3 ([ D™ ~8al7 + | D™ =P )22
j=
and
Ji D™ el (D7 naf? i = [ | D™ Il 4 | D7 dx
since (m — j)p; = N. We obtain finally
”RN |D™un|? dx — [RN|D'"u,%|P dx — LRN |D™u2|P dx| <CE”+6. (19
where up = Eqiin, UZ = Nnlin.
Without loss of generality we may assume that

LRNIuJ]”dx7a, jwluﬁ]qu;»ﬁ

and 0<a,8<1, |8~ (1 —a) <.
We claim that for all e small enough |D™u}|,» remains for i = 1, 2 bounded
away from 0: indeed the above proof shows that

m
f Zo |Duz|% dx — &I' S CEY? + )
J=

} J i |Du2|% dx — (L — &)| < C(eV” + ¢)
j=o

and & €]0, L[. Therefore let us denote by y > 0 some constant such that for
all € small and for all n: v < |[D™uz|%». Next, if for some sequence e 7 0,
the constant ax = a(ex) either goes to 0 or to 1, we deduce from (19)

IZ2T1+ v — 6(ex)
where 6(f) >0 as t— 04; and this is not possible. On the other hand if

a2 a€]0,1[, B« ¢ 1 — a and we obtain from (19): I > I, + I -« and again

this is not possible.
In conclusion we have proved that there exists () in R” such that: Ve > 0,
3R €]0, o

L 3 |Dun|Y dx < e. (20)

x—yn|ZRj=0
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We still denote by (#n). the new minimizing sequence (#»)» obtained by
Gn(X) = tn(x + yn),  VxeRM.

Without loss of generality we may assume that u, converges weakly in D™?
and a.e. to some u € D™?; and that D’u, converges weakly and a.e. to D’u
in LY(RM).

The next result —that we will call below the second concentration compact-
ness lemma— is the crucial tool for the next two steps of the proof of
Theorem I.1. Before stating this result let us observe that if (u,). C W™ ?(Q)
for some smooth bounded region Q of R", by standard extension theorems we
may assume without loss of generality that (1), C W™P(R™) and |u,|? is tight
(even with some uniform compact support!).

Lemma I.1. Let (u). be a bounded sequence in D™? converging weakly to
some u and such that | D™un|” converges weakly to yand |un|? converges tightly
fo v where p, v are bounded nonnegative measures on RY. Then we have:

(i) There exist some at most countable set J and two families (xj)jes of
distinct points in R, (v))jes in 10, [ such that

y=lul? + 3 b, @
(ii) In addition we have
b2 DUl + 3 by 22)
Sor some y; > 0 satisfying
vP4 L wi/l,  for all j 23)
hence
,%;J Vf/ 7 < o0,

(iii) If v € D™P(R) and |D™(un + v)|” converges weakly to some measure
ji, then ji — pe L'(R™); and therefore

i 2 D"+ 0P + 3 b
jeJ

@iv) If u =0 and: (j'd,u) < I(jdu)”/"; then J is a singleton and: v = vbx, =
= u(Iv*/?%) ™! for some v >0, xoe R".
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The proof of this lemma is given in the next section.

Remark 1.3. We claim that if ¥ € D™?(R"), J is an at most countable set,
(xj)jes are distinct points in RY and (v))jes are positive numbers such that
Sjesv?/4 < oo, then the measure » = |u|? + 3} jes»;8y; is the tight limit of a
sequence |u,|? where u, converges in D™ to u. Hence, the above result com-
pletely characterizes the limits of |u.|? for weakly convergent sequences of
D™P. Of course u, converges in L7 to u if and only if » = |u|?; therefore the
loss of compactness (for the Sobolev limit exponent) occurs at a countable
number of points x; (with weights »; such 3 »#/% < « and p/q < 1).

To prove the above claim, we consider ¢ € D(RY) with [lel?dx = 1 (say) —
observe that we can take [ |D™¢|” dx as close to I as we wish — . Then for
any xo € RN, on = on = n™%(- — xo/n) satisfies

{j |D™en|” dx = I|D"’<p|” dx, quonl"dx =1

|n|? =850,  @n770 in D™P weakly.

Next for any finite subfamily J’ of J, we consider for n > no(J'): ¥n = 2l jes
V}/ 907, Supp ¢ are disjoint for je J'. Clearly we have

[1D™gl? dx = ( 3 u;’/q> [ID™of? ax < <Z uf’q> [ID™o]7 ax
jeJ’ JeJ
JI‘Pnlqu =2v WP 2 viby,  ¥a0in D™P weakly.
jer jer

eJ
Increasing J' to J, we obtain by a diagonal procedure a sequence ¥, such that
JIDm Bl dx < (3, 70) [ 107l
. \jeJ
Jl@nlqu—,{ 2 Vi Yn>0 in D™P weakly
jeJ

|¥nl? = 3 96y, tightly.
jeJ

JE

We finally set: #, = u + ¥, and one easily checks that u, has the required pro-
perties. Actually one even checks that

D™u,|? = |D™ul? + (| |D™o|” dx) >, v27%,;.
J J
jeJ

We go back now to the proof of Theorem I.1:

Step2. u,the weak limit of the minimizing sequence u,, is not identically 0.
Indeed, in view of (20), we may apply Lemma I.1 (extracting if necessary
some subsequences) and we know by (20)

jPNd,L =1, LRNdu =1. 24)
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Now if ¥ = 0, we may apply part iv) of lemma I.1 and we deduce: » = };4 =
= by,, fOr some xo € RV.
On the other hand

1= 0D > [ fualdx 7 1

this contradiction shows that u # 0.

Step 3. u, converges strongly to u.

Let us denote by o = [~ [u|?dx: by step 2 we know that « €]0, 1] and we
have to prove that o = 1. Suppose that o # 1, then applying Lemma I.1, we
see

oz=erN|uiqu, 2vi=1l-«

JjeJ

wi = IvP, JRN |D"ulP dx < I — le-
je

Hence, we obtain

[ 1Dl dx ST = 3

jeJ
<I<l -3 y;’/‘?>
jeJ
< 1(1 - (Z v )Mf = Ia?
jeJ

while [~ [D"™ulPdx 2 I = I, = IoP’?. The contradiction shows that « = 1
and we conclude easily.

Remark 1.4. We may rewrite the above argument in a way which clearly
shows the role of sub-additivity inequalities like (S.2). Indeed

I=1> LRNID'”u|pdx+ Szl I v I+ 2 L,>0 (),
jeJ

jeJ JjeJ
since we know that 1y is strictly sub-additive and o + D, »; = 1.
JjeJ
1.3 The second concentration-compactness lemma

We now prove Lemma 1.1: we first treat the case when u = 0. The goal is to
obtain some reversed Holder inequality between » and p which will give the
various informations contained in Lemma I.1 via Lemma 1.2 below.

Let ¢ € D(RY), by Sobolev inequalities we have

([l @1l ax) 912 < ([ o |D™(oun) P dix) 7. 25)

The left-hand side member of (25) goes to ([rn|e|?dv)'/I'? as n goes to
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. Now the right-hand side member is estimated as follows
| ([ow 1D oun) 7 dx) 2 = ([ lolP\D™unl? dx) 7| <

<CZ ([un D" o D )

And using the fact that ¢ has compact support and the Rellich theorem we
see that this bound goes to 0 as n goes to c. Therefore, passing to the limit
in (25), we obtain for all ¢ € D(RY)

(Jiolel?dr) @ < T2 ([ Lol i) . 6)
And lemma I.1 is proved in the case u = 0, by the application of

Lemma 1.2. Let p, » be two bounded nonnegative measures on R satisfying
for some constant Cp = 0

(Jawlel?@) 4 < Co([en ol dn) 2, Vo e DR 26)

where 1 < p < q < +. Then, there exist an at most countable set J, families
(x)jes of distinct points in RN, (v)jes in 10, o[ such that

v=, v;0x;, w=Co? Y Vf/qaxj.

jeJ jeJ

Thus, in particular

If in addition: »(RM)Y? > Cou(R™)/?, J reduces to a single point and v =
= vbxo = v P/4CPp, for some xo € RN and for some v > 0.

Lemma 1.2 is proved below; we first conclude the proof of Lemma I.1. We
now consider the general case of a weak limit # not necessarily 0. Of course
(25) still holds and, if we denote by v, = u, — u, Brézis-Lieb lemma [10] yields
for all ¢ € D(RY) '

i Lol lunl® dx = [ ol nl dx =[xl 7]0a]? dx

But, clearly, v, is bounded in D™ and |v,|? is tight; therefore applying what
we proved above we obtain the representation (21) of ». Next, passing to the
limit in (25) and using as before Rellich theorem we find for all ¢ € D(RY)

(Jrwlel?dv)ar® < ([onlol? du) 7 + c':;j: ([ D™ 0l?| Dul? dx) V.
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If o satisfies: 0 < ¢ < 1, ¢(0) = 1, Supp ¢ = B(0, 1), ¢ € D(R™); we apply the
above inequality with ¢((x — x;)/€) for e > 0 and where j is fixed in J. We ob-
tain

v}/ VP < w(B(xj, €)"7 +

m-—1 .
_ _i X — Xj
+ C Z <Jv e—p(m i) Dm 1¢< J>
i=1 B(xj, €) €

Now we may estimate each term of the sum by Hoélder inequalities recalling
that D'u € LY(R™) (by Sobolev inequalities)

. (X — X .
e—p(m—l)J Dm—1¢< J> ]DIUIde<
B(xj, €) €

. . p/qi . Cx\ |Pi qi-p)/qi
< I |D'u|?|D'u|? dx e~ Pm=0 J D”'"qp(—> dx>
B(xj, €) RN €

where pi = gip(qi — p)~ ', (gi — p)/qi = (m — i)p/N. Hence, we have

12 1/p
)D’u{"dx) .

p

m-—1 . p/qi
v}/ 1P < w(B(xj, )P + C Y, q |Dul|% dx> '
i B(xj, €)

i=1
This implies that u({x;}) > 0 and

p= v, vjel
and thus
w2 Z IVf/qaxj = p1.
jeJ

Since by weak convergence we also have: yu > |D™u|? and since |D™u|? and
w1 are orthogonal, (22)-(23) are proved.

Finally to prove part iii) of Lemma I.1 we just observe that for all
e C(R™), ¢ 20

(jﬂ?”“plpm(”" + o) dx) - <.[|PN¢|Dmun|p dx) 1/pl <
(JrRNS”IDmUIPdX) vp,
Passing to the limit in n, we find

e ) = (fawh) |  (fuwsha)

where € L (RY). And this shows that the singular parts of 7 and p are the
same; and we conclude.

We next turn to the proof of Lemma 1.2. We first remark that (26") holds
by density for all ¢ bounded measurable. Therefore we see that in particular
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v is absolutely continuous with respect to pi.e.: » = fu where fe LY (p). Since
»(A) < Com(A)*?, vA Borel cC RV

we have in fact f€ L%(u). Next, if p = gv + o where g e LY (), o is a bounded
nonnegative measure such that if K = Supp ¢, »(K) = 0; considering i = 1xu
and taking ¢ in (26’) of the form 1xy where ¢ is bounded measurable, we see
that without loss of generality we may assume that o = 0. We next denote by
vk = g%lg=nv, where a = g/(q — p). We are going to prove that v, is given
by a finite number of Dirac masses; this will prove that »1g<«) is a finite
number of Dirac masses for all k£ < o and letting k — oo, the claim on » will
be proved (since »({g = +}) =0).
To prove our claim on vk, we take in (26') ¢ of the form

/ -
<p=g1 g p)l(gsk)lp

where  is an arbitrary bounded measurable function. We thus obtain for all ¥

([ 1917 @) 70 < Co [ |17 a2

(indeed: g7/ Pl < iy = g7 Pl =iyp).

This reversed Holder inequality now yields our claim on vx: a short proof
of this standard statement is the following. For any Borel set A the above in-
equality gives

vi(A)"? < Covi(A)VP.

Therefore either vx(4) =0, or »(A) =6 = Cy »”“~P > 0. Since for each
xeRY, v({x})) = limeo ! va(B(x, €)), we have for all xe RV

either wi({x}) =6, or 3e>0, vi(B(x, €)) = 0.
Thus there exists a finite number of distinct points x; in RY such that

w({x}) =26 Vvi<j<m
vi(B(x,€)) =0 for some €= e(x) >0, vx ¢ {x;/1 <j<m}.

Let K be any compact set in O = {x/x # x; for all 1 <j < m}, we have by
a finite covering of K by balls B(x, e(x)): v«(K) = 0, therefore »«(O) = 0; and
our claim is proved.

At this point, we have proved the representation of » and by (26’) we have

p({x}) = Co Pv({x;} )7

Finally if »(R™)"? > Cou(RM)'/?, taking ¢ = 1 in (26") we see that »(R™)"/? =
= Cop(RM¥?; and using Hélder inequality we find for all ¢ € D(RY)

([n L1 @) 72 < Con(RYY? ([ l01di) 7
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where 6 = (¢ — p)/(pg). Observing that
Y(RY) = Cu(RM)*P = {Con(R™)*}Iu(RM)

we deduce from the above inequality: » = {Cou(R™)?}%u. Therefore we have
for all ¢ € D(RY)

(Jrwlol*dr) e < v®Y ™ ([iowlol? dv) /2.

And the above proof already shows that: » = >)/L; v;6y;, where m > 1, (x;)i
are m distinct points in RY and »; > 0.
We choose ¢ € D(RY) such that ¢(x;) = a; > 0; thus we find for all a; > 0

m 1/q/ m (g —-p)Yprq m 1/p
> ol > i S(Z ofvi| .
i=1 i=1 i=1

And this is possible if and only if m = 1.

Remark 1.5. Lemma 1.2 is of course valid in an arbitrary measure space and
the various conclusions hold provided one replaces points in R" by atoms...

1.4 Variants

We briefly mention here a few related problems and inequalities which can be
treated in a similar way. In particular in all the cases mentioned below all
minimizing sequences are relatively compact up to a translation and a scale
change; and the analogue of Lemma 1.1 holds in each case. The proofs being
very similar to the previous ones, we skip them.

i) Other norms in D™P(RY).
Of course we may replace the norm on D™” by the following one
&) = |(—-A)’"/2u|ﬁp(,pn) if m is even
= V(=)D 2yfmn,  if m s odd.
We could in fact take any norm in ™7 but the particular one chosen above
is of interest since some additional information on extremal functions is

available (see Corollary 1.2 below) and since we have by easy integrations by
parts

&(u) = D%ul|?%-. 27
(u) |a§m| ulz 27)

if p =2, ue D™?(R™) —and we recover the previous norm! The existence of
extremal functions is determined by the following minimization problem

Inf (8(u)/u € D™P(RY), (L |u|?dx = 1}. (28)
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Corollary 1.2. Let (un). be a minimizing sequence of (28). There exist
O in RN, (on)n in 10, [ such that the new minimizing sequence
fin = 07 " Un((- — yn)/on) is relatively compact in D™? (for p > 1, and in L?
Jor p =1). In particular the minimum is achieved. And if p > 1, for any
minimum u of (28), there exists y € RY such that ii = u(- — ) satisfies

(—A)®i is spherically symmetric, nonnegative and decreasing
in |x| for all « € N such that o < m/2.

The statement about the geometry of the minima is obtained as follows: let
u be a minimum of (28). We set

f=(-A)"u if m iseven, =(—A)" Y2y if m is odd.

If m is even, fe LP(RY) and if m is odd fe L”(R") with p = Np/(N — p) (and
Vfe LP(RY)). If we denote by ¢* the Schwarz symmetrization of ¢, we in-
troduce v solution of

(-A)*v=f* in RV, ve LYRY),

with a = m/2 if m is even, o = (m — 1)/2 if m is odd.
Smoothing and truncating f, we see that we may apply (« times) Talenti
comparizon theorem on linear elliptic problems to deduce

u*<v a.e. in RY,
In particular we have
erN |u|%dx = LRN |u*|?dx < LRN |v|?dx
and
&) = LEle*I”dx = JRNIfI"dx =8) if m iseven
while
8() = [on [Vf*1P dx < [ [VfPdx = &) if m s odd.

Hence v is also a minimum of (28) and all inequalities are equalities. We then
conclude using the results and methods of A. Alvino, P.L. Lions and G.
Trombetti [1] (in particular the method with Green functions).

ii) Systems.

Let £ > 1, we want to consider here systems analogues of Sobolev inequali-
ties (our motivation comes from the problem of nonlinczr icld equations —see
section 1.6 below). Let u € (D™P(RM)*; u = (u?, ... u*) with u’ e D™P(RY).
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We denote by
k .
8(u) = Zl jRN |D™u’|P dx.

Let F e C(R) satisfy: F(¢) > x > 0if ¢ # 0, F is homogeneous of degree g on
R¥. We deduce from Sobolev inequalities

(jPNF(u) dx) 4 < Co8(w)' (29)

And the existence of extremal functions is determined by the following
minimization problem

Inf(8w)/u € (D™ PR, [y F)dx = 1}. (30)

Exactly as before, any minimizing sequence is relatively compact up to a
translation and a scale change, and there exists a minimum of (30). In addition
the analogue of Lemma I.1 holds with |u,|? replaced by F(u,). The only
technical point we have to explain is why Brézis-Lieb lemma [10] still applies;
and this in an application of the following remark:

Lemma L.3. The nonlinearity F satisfies for all a, b e R*

|F(a + b) — F(a)| < €|al? + C(]b]? + 1) (31)

for all e > 0.

Proor. Recall that F satisfies: [F(#)] < C(1 + |t|%) on R*. Hence to prove
(31), we may assume without loss of generality that |a| > 1, |a + b| > 1 since
if, for example, |a + b| < 1, we have

|Fla + b) — Fa)] < C + C{ + |a|
<C+C1+ |b9

and (31) holds. Furthermore we may also assume that, for any 6 > 0 fixed:
|b| < 8|a|. Indeed if this is not the case we have

|Fla + b) — Fa)| < C(1 + |a+ b|?) + C(1 + |a|?)
< C+ Clal? + C|bJ?
<C+ (Cs77+ O)|b|2.

But if |b| < 6|a|, we deduce

la| — |a + b| ) |b] )
< s < :
|a + b| 1-6la+b|] 1-6

|la + b| — la|| < élal,
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And we obtain

|Fla + b) — Fa)| =

4 a+b el 4
'”*”’<E¢30‘*”Famﬂ

5] |la| = a+b]| _ 26
= la+ b| la+b]

a+b4 a
la +b| |a]

1-6

Hence choosing 6 small enough, we find for any fixed ¢ > 0

a+b a
Avs) i)
|Fa + b) - F(@)| < F<ﬁ>

<Clla+ 6]~ |al’| + lal*

€
—>

<
2

lla+ B~ |al’] + 3 |a]”

<ea|” + C.Jb) .

We next turn to some other extension to systems (again motivated by
nonlinear field equations): let £ > 1, let g; €10, g[ for 1 < i < k be such that:
>¥_1qi = q. We denote by 6; = gi/q. Clearly Holder and Sobolev inequalities
yield that for any u = (u?, ..., u*) e (D™ P(RM))*, we have

(J‘RN|u‘|q1 o uk|® dx) e < CoB )P (32)

where

&u) = iﬁ (JNWN |D™u'|? dx) 0

=1

In view of the homogeneity of the problem in each u;, the existence of ex-
tremal functions is equivalent to the existence of a minimum of

I= Inf{—JRNIuW‘“ w7 dx/u e (D™ P,
vl i<k, jw |D"ulPdx =1} (33)

We denote by I(\, ..., ) (for \; > 0) the value of the infimum where.the
constraints of norm 1 are replaced by

J‘ﬂ?f\’ }D’"u,-lp dx = >\i-

Clearly

*:J»

a’/p
1(>\1,...,>\k)=< x?"> I<0.

i=1
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Therefore we have
IA,..., ) <IO, ..., M)+ I =Ny, ..., 1 — N\

for all A\; €(0, 1) such that

M=

0< Ni<k.

i=1

This strict sub-additivity inequality shows (cf P.L. Lions [21] and the
arguments above) that any minimizing sequence (#,), is such that: |[D™u}|? are
tight, TT%-; |uy|% is tight. And this enables us to argue as before, therefore
any minimizing sequence is relatively compact up to a translation (the same
for all u}) and a scale change and a minimum of (33) exists.

Remark 1.6. Of course in (28), (33) we may take any norm on D"”"? and the
choice may depend on ie {1, ..., k}.

iii) Fractional derivatives.
We first recall that a norm on W™ P(R") for 0 < m, 1 < p < = is given by

o D*u(x) — D*u(y)|”
By = 3 D%l + “ | O 4 ay
| RN x RN

o= w0 ‘X—)’|N+Sp

where «p is the integer part of m and we assume: oo < m < o + 1; and
s = (m — ag). The Sobolev inequality still holds

|| Laqeny < Collu||m, ps Yu e WP(RM);

where ¢ = Np/(N — mp). But if we replace u by o ~¥%u(- /o) in this inequality
we find

[[4llzaz < Cof 55 o= |D%ullfr +

lal = a0
+ [[1D=0ue) = Dou)[Plx — y| =N dx dy} e,
Therefore sending o to 0, we find for all u € W™ ?(R"Y)
||u| | Lagrny < Co8(u)'"? (34)

where

_ |D*°u(x) — D*°u(y)|”
E(u) = JTPNx@N P dxdy.

We then denote by D™?(RM) the space of functions u satisfying ue L9,
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&(u) < oo; it is a reflexive Banach space equipped with the norm &(u)'’”.
Exactly as before the best constant in (34) is achieved (and all minimizing
sequences are compact up to translations and dilations). In lemma I.1 which
still holds we have to replace |D™u,|?(x) by

[ 1D0un(x) = D*un(y)[?|x = | =¥+ dy.

Remark 1.7. Of course we may replace &u)"” by any norm on D™ ?(RY).

For example if p = 2 and if 4 is the Fourier transform of u#, we may take

{LEN ‘a(s)‘2|512m dE] 12
In lemma 1.2, |D™uy,|* is to be replaced by
IF— I(Emﬁ)'z-

iv) Convolution and Sobolev inequalities.
The general Choquard-Pekar equations (¢f. E. H. Lieb [19], P.L. Lions
[22]) use the following limit embeddings

(] [imon [0 x = 5~ dxdy) V@0 < Col D"ulluri (35)
where m>1, 1l < p< o, 0 <a <N and ¢ is given by
29 = QN — a)p(N — mp)~ .

For example if p = g =2, m = 1 then o = 4 (and N > 5). All the results proved
above adapt to this situation and in particular Lemma I.1 holds with |u,|?
replaced by

4 7G0) - [ |t ‘O = ]~y

v) Korn-Sobolev inequalities.

To simplify we will consider only N =3, p =2, m = 1. Let ue H'(R*>,
we denote by e;i(u) the linear deformations tensor; e;i(u) = ; {(Oui/dxj) +
+ (0u;j/0x;)}. A fundamental inequality in elasticity theory is the Korn ine-
quality which yields the Korn-Sobolev inequalities: for all u € H(R*)? we
have

||ullsrs < C{[|ullr2ws + ||e()]] 2023}
where e(u) = {2, | e:i(1)|*}*/*. The same dimensional analysis (u(-) = o~ '>
u(- /o)) shows that in fact

||| 63y < Col|e()| | () (36)
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and thus (36) holds for all € (D"'%(R*)? and ||e()||.2 is an equivalent norm
on (D%(R*)3. Therefore all the results given above still hold in that case.

vi) Time-dependent problems.
Let O = RY x R. Then Sobolev inequalities give in that case

[lullae) < Collull,  vYueD(Q)

m

where ||u||? = ||ui||Lr0) + ||Di"u||Zs(o) (or any other equivalent norm, for
example if m = 2, p = 2, we may choose: ||u|| = ||u: — Au||r2). Here and
below wehave: m > 1,1 <p< (N+ m)/mand g = (N + m)p(N + m — mp) ™.
We then denote by D™ "(Q) the completion of D(Q) for the norm ||-||. The
existence of an extremal function is equivalent to the existence of a minimum
of

Inf{||u||?/ueD™P(Q), jQ|u|"dxdt= 1} (37)

Corollary 1.3. For any minimizing sequence (un)n of (37), there exist
((Pns t))n in Q, (on)n in 10, o[ such that the new minimizing sequence

~ — (N / = Yn + —ln
On On

is relatively compact in O™ V?(Q). In particular there exists a minimum.

Of course there are many extensions that we skip such as:
Dfuel?,Dfuel?...

vii) Nonlinear embeddings.

We just give one example of many situations which can be treated by the
methods described above. Let u € (D% (R™)" with s = (N + 2)/4; then we
have

J\ 2 172
|(u - V)ul2 = UPNZ@M%) dx} < Col[ul|s.2 (38)

7 \T  0x

—such norms have been defined above even if s is not an integer. Such
equalities are interesting in the context of Navier-Stokes equations. Our
methods yield the compactness up to translations and dilations of all
minimizing sequences, the existence of extremal functions in (38) and infor-
mations on the weak convergence such as Lemma 1.1 (one replaces |u,|? by
[(tn - VItn]* . . ).

Another application of these methods to the existence of extremal funtions
for Sobolev-type inequalities is given in D. Jerison and J. M. Lee [16].
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1.5 Yamabe problem in RY

We already explained in the Introduction the motivation for the study of the
following equation

R T PN _ 4YWN-2), N
,ZJ; %, (au(x) an> + k(xX)u = K(x)|u| u in R (39)

with N > 3. One is particularly interested in positive solutions of (39). We will
assume (to simplify) all throughout the section

aj=a;e Co(RY),  ay—af as |x|— o
>0, vxeRY, (q(0)=vin (40)
k, K € Cy(R™), k— k=, K—K” as |x|— .

And our first approach of (39) will require either
1 >0, vu e D(RY),

ou du
o Sty 24 2
iL,J

2 > 2 1
5 8% + k(x)u® dx = o|Du|1> 41
suprvK >0, k*>0 or keLN*(RY)

or

{3a>0, Kx)>a on RN @

k>0 or keLM*RM

If one is interested in solutions of (39) which vanish at infinity, then a
minimum of the following minimization problem will provide such a solution

du ou
I= f ii - 2 1,2 [RN,
In { . lz’j:a,(x) et k()u® dx/u e DV*(RY)

j

k(x)uzeL‘(fRN),j K(x)uzdx=1}- (43)
RN

Then if (41) or (42) holds, the class of minimizing functions is not empty and
minimizing sequences are bounded in D' 2(R"); observe also that if (41) holds
then k> 0 and that if k® > 0, the minimizing class is included in A*(R") and
minimizing sequences are bounded in H*.

We have seen in the previous sections that if a;j, K are independent of x and
if k=0, then, if « is a minimum, & = ¢~ ""%u(- /o) is still a minimum and
nothing may prevent losses of compactness for minimizing sequences due to
dilations (i.e. scale changes as above). Here of course, in general, the problem
is not invariant by those scale changes anymore but we have to decide when
and how the non-compactness in L? of a minimizing sequence (for
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q = 2N/(N — 2)) —i.e. when Dirac masses (as in Lemma I.1) do appear in the
limits of |u.|7— is avoided. Of course we have also to avoid the non-
compactness due to translations and we know (cf. [20], [21]) that this is done
using the problem at infinity

- U uodu ., 2N wj }

I = Inf 2 Gij—— + k®utdx/ue DV *(RY), K lu|9dx =1

RN 0Xi0X; RN
and T = +o if K°<0.
Here to avoid the non-compactness due to dilations we have to introduce

a different notion of problem at infinity: to this end we denote by

&) = j Zau(x)a a Yy k(x)u?dx
J

J@) = [N KCO)|u|? dx.

Then for any fixed point y € R", we consider for u e D'? or H!

&'(u) = lim &0~ Mu((- - y)/0)) = f Z au(y) (X)— () dx,  (44)

a—0
T3 = lim Jo ™M u((- = 9)/0)) = [ KO)|ul? dx, (43)
I3 = Inf(&7)/u e D**(RY), J5 ) = 1) (46)

and Iy = + if K(y) < 0. We could say that 73 is the value of the infimum
of the problem ‘‘at infinity at y’’. We finally introduce

I? = Inf{Iy/y e RN} 47)

Observe that I’ — I as |y| = o, and thus: I° < 1.
In the particular situation at hand 75 and I* may be computed using dila-
tions, homogeneity and symmetry arguments

I7 = K* (») ™% det(a;(y))"""1°
where I° corresponds to the best Sobolev exponent
I° = Min{ [ |Vu|* dx/u € DVXRY), [ionul? dx = 13.
Therefore

17 = Inf (K*(y)~*?det(ay(»)""™}1°. (48)

yeRN
The above construction of I easily yields

I<r 49
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and if we denote by I, Ix the values of the infima of the same minimization
problems but with 1 replaced by A > 0, observing that

Lo=N,  IY =\
we deduce from (49)
I=hL<I,+1I7-., va €]0, 1. (50)

Therefore condition (S. 1) (of [20], [21]) holds if and only if I < I®. By
analogy with [20], [21], we expect the

Theorem 1.2. We assume (40) and (41) or (42). Let (u,)n be a minimizing
sequence of (43).

i) If I<I®, (un)n is relatively compact in D> (R™) (and in H\(R"), if
k* > 0). In particular there exists a minimum and any minimum is, when
I> 0, a positive solution of (39) up to a multiplicative constant.

If I = I, there exist minimizing sequences which are not relatively compact
in DLARY).

(i) If I=I< Iy for all y € RY, and if (un)n is not relatively compact, there
exist (Yu)n in RY, (on)n in 10, o[ such that: |yn| 2 o, on N un((- — ya)/on) is
relatively compact in D"*(RY). In addition if k™ > 0, 0, > . And there exist
such sequences (Un)n.

iiiy If I = I™ < I, u, converges weakly to 0, |u|?, |Dun|* are tight. And if
we denote by C = {y e RN, I = I} and if |un|? converges weakly to some
measure v, we have

v = K(»)6y for some yeC;
3A0n, 7 0, 3V, Y/ Onk el and
O Un((+ + Y1)/ 0n,) is relatively compact in D!+ 2(RY).

And such sequences (un), exist for any y € C.
iv) If I = I = I® = I} for some y € R then the conclusions of either ii), or
iii) hold for subsequences. And both cases occur.

We see that, even when compactness is not available, parts ii), iii), iv) describe
exactly the phenomena involved. We will not explain here how to check the
condition: I < I”. Let us just mention that this is by no means easy and one
may use the techniques of T. Aubin [3] (see also H. Brézis and L. Nirenberg
[12]): this method is illustrated in the example following the proof of Theorem
1.2. Let us also observe that if (42) holds and k = uko for some ko < 0, ko # 0,
ko€ LN?, then I < I for p large. Of course if 7 <0, then I < I”™!
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ProoF oF THEOREM 1.2. In all cases (#,), is bounded in D% and if £* > 0,
(un)n is bounded in H'. Depending whether k* = 0 or k® > 0, we consider
pn €LY (R™) given by

pn = |Vtn|® + |ua|? O pn=|Vu|* + |ua|? + ui.

Applying the arguments of P. L. Lions [20], [21], we conclude that p, is tight
up to a translation if vanishing does not occur: indeed observe that we have

I=L<I,+L_. VYac]0,l].
Now if vanishing occurs i.e.

VR < oo, Sup Br p,,a'x—">0; (51)

yeRN y+
we have clearly

”RNK(x)lu,,de - K”jPNlu,J"dxl < Clxslusz |K(x) — K| + CjBR |un|? dx;

aunaund B Z Uau,,au,, xl <
ox; 0%

<C2 sup. |aiji(x) — af| + CIBRIVun|2dx;

i,j x| =

[jPNk(x)u,%dx~ LRNk""u%dx| c sup |k(x) — k=| + C LBR u? dx

x| = R
if k°>0;
< Clk||nr2wn - gy + CR(IBR Iunl"dx)”".
Therefore choosing R large and then » large, we see that vanishing implies:
I>I=1r1".

In a similar way if p, (or a subsequence) is tight up to a translation y, such
that |ya|— o, then I = I = I". Therefore if I < I, we have

Ve > 0,3R < o, Vn, Lx|>Rp,,dx<,e.

We now complete the proof of Part i) of Theorem 1.2. We may now assume
that (un)» converges weakly to some u (and a.e.)® We first show that u # 0O:
if it were the case we would have by Lemma 1.1

|un|? = Z ViOxy
) keJ

for some at most countable set J of distinct points xx in R and of positive
real numbers »x. In addition we have the:
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Lemma 1.4. Let a; = ajie Co(R™) and assume (a;) >0 on R™. If un—>u
weakly in DVHRM) and |un|? is tight, we know by Lemma 1.1 that:
|un|? = |u|? + 2kes vibu. Extracting if necessary a subsequence, we may
assume that

Sfor some positive bounded measure p., then

ou du
Z aij(x) — — + > v PN1%det aij(xk))" Nox..
0x; axj =
This lemma is proved after the proof of Theorem 1.2. Of course it is valid
with various adaptations in any D7,
Now if we go back to the proof of Theorem 1.2, we see that

I> > ¥~ 2M1%det a;;(xi))N + lim f
keJ n

1< Z K(xx)v.
keJ

k(x)u? dx

”Q/\/

Next we claim that:
LRle|u3 dx— 0.
Indeed if £* > 0, since u, 3> 0 in L?*(Bg) strongly for all R < « by Rellich

theorem and p, is tight, we see that u, > 0 in L?*(R™) and our claim is proved.
On the other hand if k* = 0 and thus k € L""?, we remark

LRN |k|uz dx < jBR |k|uz dx + C||k||Lnv2mwn - Bry < MJ‘BR ug dx +

+ Cl|(1k| = M) ™ ||vr2ry + Clk|[Lrz®y - Bry

and we conclude choosing R large, then M large and finally » large.
Therefore (52) yields

1> 3 N 2"NI°(det a(xa)) N
keJ

1< Z K(xk)vk.
keJ
On the other hand since I < I and I” is given by the formula (48), this implies
that J reduces to a single point xp which is a minimum point of
K~ ?4det(a;)*’" i.e. a minimum point of ;> and I = Iy, = I*. Of course if
I < I*, this is not possible and u # 0.
We next conclude the proof of part i) of Theorem 1.2 by showing that
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frvK|u|?dx = 1. Let us denote by o = v K|u?| dx. By Lemma 1.4 we know

qu 9 i
I> j Sa0 2 Y ax £ 3T VDN det ayGa))N + j Kk(GOuZ dx
RN 7 ox; dx; keJ n Jr~y

l=a+ Z vie K(xk);
keJ

and exactly as before we prove that
jn?N k(x)u? de —> jﬂ? ~kCou? dx.
Hence, we have

I>8w) + > v~ 2N det a;;(xx)) Y
kedJ

1—a= D) mK().
kel

Using (48), we deduce

I>8w) +I° Z V;(N—Z)/NK+(xk)(N—2)/N
keJ

> 8(u) + 1”{ S K (xk)}W-ZW =8 + I
keJ

where
B=2 K ()=>1-a.
keJ

If « <0, 8> 1and we obtain: I > 8(u) + I” > I, a contradiction with the
large inequality 7 < I which always holds.

If o <1, we find: 7> &) = I, > I, another contradiction.

Finally if o €]0, 1[, we find

I:]lzg(u)'l’llw—a?Ia'f'I?c—a

and this contradicts (50). And part i) is proved.

To prove part ii), we observe that from the second part of the proof that,
in the situation described in ii), either p, ‘‘vanishes’’ or p, is tight up to a transla-
tion y, such that |y,| > . In the first case p.(- — ya), for some arbi-

trary y, satisfying |ya| W, “‘vanishes”’ and by the arguments given above
iIn = un(- — yn) in both cases is a minimizing sequence of I. If k* = 0, we ap-
ply Theorem I.1 and we conclude. If k& > 0, remarking that I = (K<)~~~ 2/N[,

k= [on i dx 20,

and thus (K%)~ V' ~2/Ng, is also a minimizing sequence of /o. And applying
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Theorem 1.1 we find (z,), in RY, (0x)» in ]0, [ such that
fn = 07 V(- = 2n)/0n)
is relatively compact in D!?(R™). And this implies
0<6< j o @) dx = a7 NgY j o U2 dX

therefore o, 7> +. And part ii) is proved.

Part iii) is easily deduced from the above arguments: we just need to observe
that if u, = 0, |ua|? = K(»)éy, then (i), is @ minimizing sequence of I° and
by Theorem 1.1 we conclude easily. Finally part iv) is a consequence of the
proof already made.

Remark 1.8. Of course if we know that there does not exist a minimum of 7,
then the conclusions of Parts ii), iii), iv) hold. In particular this is the case when

(a;j(x)) =2 (@), Kx) <K%,  k(x)=k".

Proor oF LEMMaA 1.4. We take the notations of the proof of Lemma 1.1 and
we have for all fixed ke J and for all e >0

d X — Xk 0 X — Xk
o B [ P o2

of X — Xk Oun Ouy <
- da et dx| <8
LN¢ ( € >{§a’ ox; axj} dx’ ©

where 6(e) denotes various quantities (ind. of n) which go to 0 as e goes to 0.
But Supp ¢ C B(0, 1) and a;; is continuous, hence

of X — Xk Oun Oun

— (X)) 7 o =

LN¢:< € Xgaj(x) oxi 3xj} o

d X — Xk a X — Xk
s i ()
_ q
¢<x x") |u,,|"dx>.
N €

W(B(xk, €) = —8(e) + I°(det ay(xe)) Vv¥/?.

> —8(e) + lo(det aij(xk))l/N<j‘
R

And sending n to o, we deduce

We conclude letting € — 0.
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ExampPLE. We want to mention a simple situation where I < I”. We take
k = 0. Observe that if a;; does not depend on x for all i,j, the minimum is
achieved if and only if K(x) = K* > 0. Indeed if K = sup K, any minimum u
of I will satisfy

8w =I<I%  (supK) [n [u™ V"2 dx>1

and this contradicts the choice of 7”.

Now we take for example: a;i(x) = a(x)6i, 0<a<a(x), Kx)<1,
K(x) = K=, a(x) = a” as |x| = . We will assume N > 5 and we may always
normalize K, a by assuming K(0) = a(0) = 1 (the choice of the origin is ar-
bitrary).

In order to try to prove I < I®, it is natural to use the extremal functions
of I =1°ie. udx)= (e + |x|»~¥~?/2, This method was first used by
T. Aubin [3] (see also H. Brézis and L. Nirenberg [12]). We compute
y?

B4 _
1+ lylz)Ndy>e(N 7

&u) = (N — 2)2< vLNa'(ey)
Jwd) = e N [ K@) + [y dy

And if a is twice differentiable at 0, we deduce easily (using symmetry
arguments for the first expansion terms)

&) = e_(N_Z)I°||u1||Lq +

(N-2) ,_ _ _
+ e - Zaijyiyj>!y|2(l+|y|2) Ndy + o(¢* ™M)
1]

J(ue) = € V|us||fa + GZ_NLN<ZKU}’WJ')(1 + )" Ndy + o(¢€™M)
LJ

where
d%a ’°K

W= axian, V= 3xian ©).

Since I < &(u)J(ue) ™ N ~2"N, we conclude that I < I by choosing e small
enough provided

J <Z a,~,~y,~y,~>|y|2(1 + [y Ndy < COJ <ZKUy,~yj>(l + |y) Ny
RN \i,j RN \i,j
(recall that the origin is arbitrary !), where

Co = 2(N(N — 2)||u1||22)~ .

It is possible to treat more general potentiels k: one possible extension relies
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on the following result. If N > 3, we have
[u|?|x| ~2 dx <4 |Vu|® dx vu e DI HRY) (53)
BN x (N _ 2)2 BN ’

(this classical inequality is sometimes called the ‘‘uncertainty principle’’!).
Hence if we consider for o > —((N — 2)?/4 the coercive quadratic form

uZ
() = j IVul? + o dx,
RN | x|

we may study the question of the existence of an extremal function for the best
constant of the Sobolev embedding when D! %(R") is endowed with the norm
sw)? i.e.

Io = Inf(&@)/ueD"XRY), [ |uN"?dx=1). (54)

Theorem 1.3. For any minimizing sequence (un)n of (54), there exists (on)n
in 10, o[ such that the new minimizing sequence iin, = o5 ™ 2"Mu,(-/0s)
satisfies:

i) If o < 0, i, is relatively compact in D' *(R™) and thus a minimum of (54)
exists.

ii) If a = 0, there exists (yn)n in RN such that ii.(- — y») is relatively com-
pact in DV3(RY) and if & > 0, | ya| = . In addition if « > 0, I* = I° and no

minimum exists.

The proof of Theorem 1.3 is very similar to the above proofs and we will
skip it. Let us just mention that if v.(-y,) is relatively compact in D**2(R™),
and if |y.| > c then

LEN]vn|2[x| “?dx—0,

Next, we explain without even stating a theorem, what is one possible exten-
sion of Theorem I.2. Take, to simplify, a;j=6;, K=1, and ke Co(RM
satisfies

lim k)|x|* = a> -

lx| = 4
Then we set: I® = I (thus I* = I° if o > 0). With these notations we can
prove that if I < I, all minimizing sequences are relatively compact while if
I = I”, there is a least one minimizing sequence which is not relatively com-
pact —and we may analyse as in Theorem 1.2 what are the possible losses of
compactness.
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At this point let us observe that everything we did concerned positive solu-
tions of (39) which vanish at infinity and if we go back to the original motiva-
tion of the Yamabe equation (39) —given in the Introduction— it is not clear
that the new metric —basically given by |u|*' "~ ?qa;;— is complete (and in
general it is not complete). On the other had if we consider positive solutions
of (39) such that: u(x) >« on RY for some o > 0; the new metric will be
automatically complete. This is why in the remainder of this section we will
consider bounded solutions of (39) positive uniformly on R™. At this stage,
let us mention the work of Ni [28] (see also [29], Kenig and Ni [17]) where,
in the particular case a;j(x) = é;, kK =0, general results are obtained by the
elementary method of sub and supersolutions. This approach is recalled in the
appendix where we also explain how it is possible to obtain twice more solu-
tions —and this is done by variational arguments involving our general
method. Here, we present still another approach which in the special case
afore mentioned does not cover the full generality of Ni’s results since more
severe restrictions are made on K but on the other hand we obtain additional
information on the solution and the approach also provides a general way to
check the assumptions necessary in order to apply the method of sub and
supersolutions of Ni.

We consider the following minimization problem

I = Inf{8W)/u — ace DV XRY), J(u) = \} (55)

where o > 0, N > 3 are fixed. &, J still denote the same functionals and we
assume
aij=a;icCo(RY); >0  (a5(x) = vIn (40"

k,Ke L'\RMNCy(RY); K>0 on RY (56)
We define the energy at infinity exactly as before, but since K = 0, we have

P = Min {(K*(»)~%det{a;(y)} N} 1°. (48"

yeRN

Theorem I.4. We assume (40") and (56):
i) Every minimizing sequence of (55) is relatively compact in X = {o +
+ v, ve DVHRM) if and only if

L<Is+ RX-g, vB e [0, \[. (S.1)
ii) If we assume in addition
3y >0,vee D(RY),  &(p) = v|Dolt2wn (57)

then there exists Ao > 0 such that: I is decreasing on [0, \o] from — to b,
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and 1, is increasing on [\o, + o[ from I, to +. In addition there exists a
unique o1 € Hiso(RY)NBUC(RM) satisfying

0 o1 .
- > —| aij(x)— ki = RN
iE,j o <a (%) ax,-> + k(XxX)p1 =0 in (58)
e1>0 in RV, p1—a as |x|—> o

and &(¢p1) = by,  J(e1) =ho, o1 — e DVARY).
iii) Furthermore if Ne€10, o[, (S.1) holds and there exists a unique
minimum of (55), ux € X which satisfies

d 6u>\
— 3 (@952 ) + k@ + O KuN DN =D _ 0 ip RN
§axi <a,(x) axj> ()un + O\ Kuy in (59)
uxe BUC(RY), wu>0 on R, w—a as |x|— w;

where 0y is a positive Lagrange multiplier. In addition u, is the unique solution
of (59) (in Hi. say) and 0y decreases continuously on 10, ho[ from +oo to 0,
while uy increases continuously from 0 to ¢; on R".

iv) Finally there exists 6 > 0, such that for A € 1\o, Ao + 6|, (S. 1) kolds. In
particular there exists a minimum uy of (55) which solves

d a

-3 <a,-,-(x) ﬂ) + k(un = KuN /N =2y RN (60)
i,j 0Xi axj

and uy € XNBUC(RY), ur— o as |x| = o; where 0y is a positive Lagrange

multiplier.

Remark 1.9. Assumptions (56), (57) may be relaxed but the main assumption
k, K € L'(R") subsists. In part i), we have: [y = +o and I, = +oasa— 0.,
hence the strict inequality in (S.1) holds for « small.

Setting v\ = 0" ~?”*u, and using the variant of Ni’s method given in the ap-
pendix, we find the

Corollary 1.4. We assume (40"), (56), (57). Then for any p > 0, there exists
a unique solution u of

- 9 <a,~j(x) 2?—) + k(u + KuWN+PN-D -0 in RN

i,j ox; Bx,- (39')
ue Hipc(RMYNCHRY), u>0 on RY, u-pu as |x|— o
and u increases continuously in p, u < (u/c)¢1 in RN, u — pe DV2(RY).

There exists po > 0, such that:
i) for u > po, there does not exist a solution u of (39) such that:

u € Hh(RMNCy(RM), uz=0 in RY, u—pu as |x|— .
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ii) for 0 < p < po, there exists a solution u of (39) in Hisc(R™M)N Cp(RY) satis-
fying: u—pas|x| = o, u> @/a)er >00n R, u — pe D*(RY) and u is the
minimum positive solution of (39) in HibcNCy converging to p at infinity. In
addition u increases continuously with p on R".

Proor ofF THEOREM [.4. We will prove part i) since it is a straightforward
repetition of arguments given before provided we show that if (u.). is a
minimizing sequence of (55) then u, — o is bounded in D'2(RY). Indeed if
Un = (un — o), since J(un) = \ and K > 0 on R", we find:

||ttn| |[L2v/ v -23BR) + [|Un|L2v V-8 K CR, VR < .
Next, in view of (40'):

v|Dua|32 < G + ZJRN|k|a|vn| dx + jPN |k|v? dx
< C + C||vn||2nn-» + JFEN/BR |k|vzdx
<

C+ CHU,,||L2N/(N—2) + ||klILN/z(neN_BR)l|v,,||12_2N/(N—2)

and we conclude using Sobolev inequalities and choosing R large.

We next prove part ii): we first show that L, — +© as A= 0, or A\ > + o,
Indeed if I\ remains bounded when A — 0, the above argument shows that
{(veDVARY), &+ v) < h + 1, J(a + v) €]0, 1[} is bounded. Hence there
exists v, bounded in D *(R™) such that J(e + va) - 0. Since K > 0 in R, this
yields: v, = —a in measure locally, and this contradicts the boundedness of
Un in DVARY) since —a & DARY).

Next, if A\ = +o and I < C, there exists v, in D'*(R") such that

&(a + vn) < G J(a + vn) 3 +o0.
But
&(t + vn) = y|Dun|2 — C — C|Dvy|12

hence v, is bounded in D!**(RY) and this contradicts the assumption on
J(a + vn).

Next, denoting by Ao( > 0) an absolute minimum of the continuous function
(A — 1), we show the monotonicity properties of I.: we first observe that if
A €10, Mo satisfies

I\ = min{l,/p€]0,\]}, for some \>\,

then necessarily A = N\o. Indeed, clearly for such a A, (S. 1) holds. By part i),
there exists a minimum ¢ of I, which is a local minimum of & on X, therefore
@ solves (58) and by standard regularity results ¢ € BUC(R™). We now prove
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the uniqueness of such a function ¢ proving thus the equality between \ and
No. Remark first that necessarily ¢ > 0 on R".
Indeed for R large enough, denoting by

ad d
A= — Z‘— <aij(x) 5_;> + k
J

07 0xi
Ap=0 in Bg, ©>0 on 0Bgr (60)

and (57) implies that the first eigenvalue of operator 4 on Hg(Bg) is positive.
We may thus apply the maximum principle to (60): ¢ > 0 on Bg.

Next if ¢, € Hioac NBUC solve: Ap = Ay = 0in RY, o, = « as |x] = o,
we show that ¢ = ¢. Indeed for R large enough we have

a—e<p,y<a+e on 0dBr

where e = ¢(R)— 0 as R — co.
Since (60) holds for ¢, ¥ and since we may apply the maximum principle,
we obtain

o+ e o+ € —
p=2y, ——VY=¢ on Bg;
o — € o —€

and we conclude letting R — o (e(R) — 0).
At this point we have proved that

Lo<h<lI, if 0<pu<A<NA\o.
Next if u > N = Ao, for each € > 0 fixed, there exists ¥ € X such that
h<8W) <, +e Jw) =p

and considering @ = 6u + (1 — )¢, for 0 € [0, 1], we find 0 € [0, 1] such that:
J(i7) = \. On the other hand since u — ¢; € D 4(RY)

&@W) = &(p1 + 0(u — ¢1)) = E(p1) + 0°8(u — 1)
and &(#) is strictly convex with respect to #. Hence we find
D<) < 68(u) + (1 — 0)8(p1) <O+ €) + (1 — Oy

and this yields: I < I,.. Next if Iy = I,, clearly Is = I, = I, for all X € [\, ] and
thus (S. 1) holds for X €]\, u[. Therefore for X € ]\, u[ fixed, there exists a
minimum ¢ of I which is clearly a local minimum of & on X, hence
@ = ¢1, A = ho. The contradiction shows: L, < I < I, if Ao <\ < p; and part
ii) is proved.
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We now prove part iii): the properties of I, we proved imply easily that (S.1)
holds for A €]0, Ao[. Therefore there exists a minimum u of I, (¥ € X) and
observing that if for some ¢ € D . (R™): jRNKIul‘”(N'Z)uga dx > 0, then for ¢
small enough

Eu—tp)=21,>1,, forsome pel0,A\[|.

This shows that the Lagrange multiplier (—#8,) is strictly negative and thus u
(e XNBUC(R™)) solves (59). The remainder of part iii) is proved by showing
that for each 6 > 0, there exists at most one & = iy solution of

Au+ 0K|a[¥ Y P =0 in R", i1 € XNBUC(RM). (61)

and that g > ilg, if < 6. We first observe that # > 0 on R™: indeed for R
large enough: @ > (o/2) if |x| > R. Next we have

A+ 0K|a|* NP5 =0 in Br, #>=(x/2) on 4dBgr

and A\i(4 + 0K|a|* V=2, H}(Br)) > M(A, H3(Br)) > 0; therefore applying
the maximum principle, we find # > 0 in Bg.

Next, let u, v be two solutions of (61) corresponding to # > 6’ > 0: we just
need to prove that ¥ < v on R™. Indeed for R large enough: 0 < o — € <
Su,v< o+ eondBg, withe=e(R)—>0asR— . Let w= ((a + €)/(ax — €))v,
we have

o+ € _
Aw + QKW+ V=D 5 — (4 + KoV TN D)
o —€

+
> 2" (Av + PN TDN=D) =0 on Bg
a—€

and w > u on dBg. Applying the maximum principle once more we conclude:
w > u on Bg.

We finally prove part iv): we just have to prove that (S. 1) holds for (\ — o)
small, positive. Let A > Ao, if (S. 1) does not hold there exists u €10, A\[ such
that

IN =I,l +I)f°_#.

We first observe that g € I\o, A[: indeed I, > I, and if p €10, No[, Ip + IN- . >
> b + -, > by + -, = I\ Next we claim that (S. 1) holds for ,: indeed
for p€]0, u[

U+ - )+ K-, >+ K_zz2h=1+K-,.
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Therefore there exists a minimum u, of 7, and one proves easily that u, > 0
in RV and u, — « converges strongly in D%(R™) to ¢1 — « as u — \o. Observ-
ing that p — No when A — Ao, we conclude the proof of part iv) as follows: we
denote by 4 = \ — p and we consider ¢ € D 4 (R") such that

N+2
N-2

jRNK¢§N+ D/N=-D g gy = 1,

obviously (N +2)/(N = 2) [y Kul* ' Dpdx=0,~1 as p—>h. We
introduce v, = u, + k6, ‘¢, clearly v, € X and

N+2
Jw) = Jw) + ~F j KU TN gy dx = b= N
R

N-2
&(v,) < 8(u) + Ch

for some C independent of #€]0, 1[. The properties of I, as a function
of N then yield: h < &) < &w,) + Ch=1,+ Ch. On the other hand:
I, =1, + If; and we reach a contradiction for 4 small enough since I’ =

= ITh®N -2/,
1.6 Nonlinear field equations and limit exponents

As we explained in the introduction, one is interested in the so-called ground
state solution of

—Au=f@) in RV, ux)—0 as |x|— oo; )

where u is (for example) a scalar function. The ground state is determined
through the minimum, if it exists, of the following minimization problem

I= Inff j o [Dul? dx/JRNF(u) dx = 1, ue DVXRY), Fu) e L'(RM}  (10)

where N > 3, Fe C(R), F(0) = 0. For more details concerning the relations
between (9) and (10), we refer to H. Berestycki and P. L. Lions [6].
We assume

IteRr, F¢)>0 11

lim F* @)t~V -2 =qa>0, (12)

M"’O+

lim F*()|t| VN2 =8>0;

[t] = o0
and we denote

8() = [on [DulPdx,  J@) = [\ F)dx.
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If us(-) = 6~ V=2"Ny(. /o), &(us) = &(u) and
J(us) = o™ [ Flo™ V2 Nu(x)) dx.

Therefore

1) = B [pon UV P dx as 004,
while

J(us) = o JIRN U N=Ddx as g +oo.

And this yields
I<TI° = Inf(8w)/y jRN lu| NN gy = 1, u e DHHRY))
with y = max(a, 3); or
ISI® =~ (N-2)/Np0 (62)

of course if y=01i.e. « =03 =0, I = + and the inequality is strict.

Theorem 1.5. Under assumptions (11), (12), any minimizing sequence (tn)n 0Of
(10) is relatively compact in DY *(R™) up to a translation if and only if: I < I*.
In particular if this strict inequality holds, there exists a minimum of (10).

Remark 1.10. If v =0,1<I” = +o and we recover the most general exist-
ence result —for the ground state— due to H. Berestycki and P. L. Lions [6],
H. Brézis and E. H. Lieb [11]: in [6], this result was proved by a symmetriza-
tion argument which does not show that all minimizing sequences are relatively
compact up to translations. Of course if ¥ = 0, we are in the locally compact
case and the result of P. L. Lions [21] also applies to that particular situation.
Let us also mention that the fact that minima of (10) yield ground states of
(9) is due to Coleman, Glazer and Martin [13] —see also [6], [21]—. Except
for a particular case (covered by the result above) due to F. V. Atkinson and
L. A. Peletier [2] obtained by an O.D.E. method, the above result is the first
where F is allowed to behave like |¢|*""®™ =2 near 0 or at infinity.

Remark 1.11. Combining the method below and those of P. L. Lions [21],
we could treat as well x-dependent functionals or higher-order functionals. Let
us also mention that the same result holds if u takes its value in R™ (m > 1),
then we just need to assume (11) and

lim FY*()Fo()"'=a >0

|t|_’0+
lim F*O)F:(t)" '=8>0 (63)

[t] > oo
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where Fy, F; are continuous, positive on R” — {0}, homogeneous of degree
2N/(N — 2); I” is given in this situation by

I° = Min [Inf{ jw |Vul|? dx/u e (DY RN)™, jPNFi(u) dx =1}].
i=0,1
Observe that both infima are achieved by the results of section I.4.

Remark 1.12. If @ = 3 =+ >0, then by Theorem 1.1, there exists uo such
that

o € DVARY), 8uo) = I7, [p [N Pdx =71, u0.

i) If F(6) = ~|t) N~ and F(®) = y|t|™~?, then I<I®: indeed we
observe that, choosing by dilation %y the maximum of u, large enough, we
may assume

(e Flito) dx > 1, 8(uo) = I*.
Let vo(-) = uo(-/N) with
NN = [onFluo)dx > 1
then J(uo) = 1 and 7 < 8(uo) = NV~ 28(uo) < I”.

ii) If F(O) < || V=2 and F = y[t|*¥~2, a similar argument shows
that there does not exist a minimum of (10).

Remark 1.13. If a=+v 28, a >0 and if for some 7 >0
Ft) = a|t|™®-? for tel0,f)] (or te[—to,0])

and F = o|t|*™=2 on [0, to], considering ¢~ “ =2 Nyy(- /g) with uo as in
Remark I.12 and ¢ large enough, we deduce from the argument given above
that I < I”.

Remark 1.14. By looking carefully at the proof below, we see that if 7 = I
and if (un). is not relatively compact in D 2(R") then

i) if « <, there exist (on)x in 10, [, (¥n)r in RY such that: o, o,
in = 07 Y Nun((- — yn)/on) is relatively compact in D2 and the limits of
its converging subsequences are minima of 7%;

ii) if « > 8, the above still holds but with o, > 0;
iii) if o = @3, the above still holds but (o). is arbitrary.

Remark 1.15. Of course, if we are only interested in finding a (non trivial)
solution of (9), we may use the maximum principle and assume: f= F’,
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Fe CY(R) (for example), (11), and if ¢+ = inf(¢ > 0, F( ¢) > 0) we assume
in addition

lim Fr@)|f| M N-2=4>0
[t]-0+

either 3¢y > ¢4+,f(¢+) <0, or lim F*@|f] MWD =8>0

|t] = +
and

either 3¢ > ¢, f(=¢-) >0, or lim F*())t] V%= =8>0.
jt] >

We now turn to the proof of Theorem 1.5: first we observe that (u,). is
bounded in D' 2(RY) and F(u,) is bounded in L!, for any minimizing sequence
(Un)n.

Indeed, since &(u») is bounded, Vu, is bounded in L? and u, is bounded in
L?N/WN=2_ Byt (12) implies the existence of a constant C >0 such that:
F* () < Clt|™™=2; hence F* (un) is bounded in L' and using the constraint,
the bounds claimed are proved. The proof below will use the concentration-
compactness method of P. L. Lions [20], [21] with the sequence:

pn = |Vin|® + (a2 4+ |Fun)|

We may of course assume that: j'nezvp,, dx > M > 0. In what follows we will
still denote by u, all subsequences we extract. With these preliminaries, we
prove below: Step 1, p. does not vanish; Step 2, dichotomy does not occur;
Step 3, weak limits are non trivial; Step 4, we conclude.

Step 1: p, does not vanish.
Indeed if p, vanishes i.e. if (in particular) there exists R €10, oo[ such that

N
yseungv y+BRP" dx0

then we denote by G(?) = (F(?) — |t/ ™~ ?)* and we claim that
Gun) >0 in L'Y(RM.
To this end we just need to observe that G satisfies

lim G@)|t|~N-D =0, lim G@)|tf|" V-2 =.
]tl_'°+ ]t]—»w

Therefore, using Lemma II1.2 of P. L. Lions [21], we deduce that G(u»,) 7> 0 in
LYRM).
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But this yields

limyj |un N "D dx > 1, 8(un) 7 1
n RN

and this contradicts the strict inequality 7 < I*. Hence if I < I*, vanishing
does not occur.

Step 2: Dichotomy does not occur.

In view of the concentration-compactness lemma (Lemma I.1 in P. L. Lions
[20]), we check that dichotomy does not occur. To this end we first remark
that if we replace 1 by A > 0 in (10) and if we denote by I, the corresponding
infimum, then

L= Inf{&u <P7’T’> / J) = 1,u e DVXRY), F(u) eLl} = -2y

therefore the subadditivity inequality (S. 2) holds
I<Iy+1I_q, va €], 1]. (S. 2)

We now prove —as in P.L. Lions [20], [21], see also P.L. Lions [23],
[24]— that dichotomy does not occur by contradiction. We will use a variant
of the explicit dichotomy procedure of [20], [21] in order to cover the full
generality of functions F: the idea of this variant was given to us by H. Brézis
(see also H. Brézis and E.H. Lieb [11]). If dichotomy occurs we find
a €10, M[ such that for any fixed e > 0, there exist (¥n)» in RY, 0 < Ro < ,
R, in ]Ry, + oo satisfying

pndx — (M- a)| <e

—_al < I
”yn+BR0p"dx O‘l S6 |x=yn| = Rn

(64)

’ Undx < € R, — co.
JRoslx—y,,lsR,. " =0 ™ on

If we still denote by (u.). the minimizing sequence translated by y,, we are go-
ing to “‘cut’’ u, in two pieces such that both functionals &, J split in the sums
of the corresponding functionals.

To this end, we introduce for A > 1, R €]0, [ the mapping: Tx = x if
|x| <R, Tx =M — (\ — 1)Rx|x| ™!, and we set ux(x) = un(Tx). We now com-
pute J(us), &(un)

Ju) = [ cn Flum dx + [ Flun(T)) dx
= [iar P dx + [\ Fuso)$0) dy

with ¢() "' =M\ + R|T | "M@ =NV ">\ if |y|>R.



190 P.L. LioNs

Hence we deduce
. c )
| ) = [ Flam x| <5 (65)

Next, we compute &(un)
@) = [ o |Val?dx + [ o IVT - Vun(Tx)| dx

and

R
Tij= Ao + O\ — 1) 73 (xix; — 85 ]x[°),
|x]

therefore

Lxl eIV Vu(Tx)|* dx < CX Ly‘ - |Vun(»)|*(y) dy

<C |Vun|?dy + CO\ — \ — DR/R.)* N

Rn=|y|=R

if R < Ry, with Ry =} (Rx + (\ — )R). Thus we obtain

Ix|=R

lS(u,l,)— [ |Vu,,|2dx| < Ce+ CO\— (\ = DR/R)' N
if ROSR<Rn, Ra=1Ru+(N-1R).

And thus choosing R = Ry, \ large enough, we find for n large

{|J(u,1) ~ [ g Pl dx| < ¢, -
|8ud) = [, < o | Vil dx| < Ce.
We build #? in a similar way: we consider the mapping
Sx=pux if |x] <R, =x+(u— DRx|x| ' if |x| >R,
where u > 1, R > Ro; and we denote by: uz(x) = un(Sx). We have

Joui)=pN | Flun(»)¥() dy

with $(») "' = (1 + (x — DR|S™ |~ YN~ 1. Therefore if uR < R,

Fundy + |

[yl =pR |¥| =pR

2 -N
|7 = [,y 2, FenONdy| SCuN 2 1o [Fn) dy +

+ Cl(1 + (p— DR/Ry)~ =P — 1};

where R, = R, — (. — DR.
On the other hand, we have

&um) =p~ N2 Lyl < or |Vital>dy + f|x| _ o |VS - Vu(Sx)|* dx
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and

R
Sij=0ij+ (p— I)W(lezﬁij — XiXj).

Therefore if uR < R,

[12r 178 - Vun(Sx)> dx — |- [Vu,,(y)zldyl <
<Cu LRS Iy <Rn |Vu,,(y)|2d_y +

+ {122, V86 ™) - VusG)HO) — [Vua* ().
2 R 2
SOk fypaiyan, Vinl? @y + Clu= D+ [ o Vi (1¥0) — 1]} .
Finally we obtain if Ro < uR < R,
]8(u2)—j |Vu |2dy| <O N4 Cau+Cu-nE 4
" Iyl=pr 750 S p’ p R,

+C{1—(1+ (- DR/R)~" NP} (69

Combining (68), (69) and choosing y = 1/Ve, R = Ry we deduce finally that
for » large enough

|9 = [,/ o, Fn dy| < Ce, o
|8i2) = [,)1 &, [Vunl* dy| < CVe.

We may now conclude: indeed if J(us) - B, we claim that 8 —which de-

pends on e— belongs to ]0, 1[ and remains bounded away from 0 or 1 as e goes
to 0. Indeed if B = B. - B = 0, this means that:

lim lim &(uz) > 1,
€ n

while (67) and (70) yield

lim lim &(u2) + lim lim 8§(u}) < I;
€ n € n

and we reach a contradiction since

li;ml_iES(u,,) > 0.
€ n
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If this were not the case we would have

rn

a = limlim pndx = limlim | F(un)|dx
e n UPRo e n vPRo

n

= limlim | |F(u?)|dx

n
=limlim | —F@?) + 2F* (u2)dx = 0.

J

If B 2 B < 0, then for € small and n large, J(u7) < 1 and we deduce from (67)
and (70): J(u»?) < 1 and &(u2) < I, and this is not possible.

Finally if B. > B > 1, we argue as before replacing u7 by us. Thus we may
assume that (. 2 B €10, 1[. We then deduce from (67) and (70) for e small

I'> lim &(u3) + lim 8(u3) — CVe > Is = 113 — 8(¢)
-n n

where 8(¢) = 0 as e > 0., and this contradicts (S. 2).

Therefore, from Step 1 and the above contradiction we deduce, using the
concentration-compactness lemma of P.L. Lions [20], [21] that, if I< I,
there exists (yn)» in RY such that p,(- — y,) is tight

Ve>0,3R<oo,Vn>1,Lx_y 2 rPndx <e. (71)

We still denote by u, the new minimizing sequence u,(- — y,). We may assume
that u, converges weakly in D'%(R™) and a.e. on R" to some u € D"*(R")
(and F(u) e L'(R™) by Fatou’s lemma).

Step 3: u#£0ifI<I”.

If u = 0, then we claim that G(u») = (F(tn) — v|un|* ™~ ?)* converges to
0in L'(R™). Indeed since F(¢) < C|t|*™~?, we may find, using (71), R large
enough such that

inzRG(un)dXSe, vn > 1.
Now on Bg, we use the fact that u, >0 in L'(Br) and that
GO < et]MN-D 4+ Ct, VvteR.

Therefore the claim is proved and we show exactly as in Step 1 that we reach
a contradiction with 7 < I,
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Step 4: Conclusion.

We first assume that /< I” and thus u # 0. We just need to show that
J() = 1. Of course J(u) < 1, since &(u) < 1.

By lemma 1.1, we know there exist (vx)xex €10, o[, (Xx)xex in RN —where
K is at most countable and the points xx are distinct— such that

IunIZN/(N—Z) 7 |u|2N/(N—2) + ; Vkaxk in iD’(fRN)

and

fRNIunIZN/(N‘Z) dx - JRNIu'IZN/(N'Z’ dx + 2, vk.
k

We claim that

1 = lim J(un) < J@W) + B D] vk. (72)
n k

We first choose R —using (71)— such that for all n > 1

Lx!aR |Flun)| + lun|2N/(N_2) dx <,
LM IF)| + [N Ddx<e

>, w<e
k:xx €BR

To simplify the notations we assume that xx € Br, Yk € K. We next apply
Brézis-Lieb [10] to obtain

[ ) ~ F@) = Flutn — )] dx 3 0;
this is possible in view of the following observation: ve >0, 3C. > 0
|F(a + b) — F(a)| < e1a|2N/(N—2) +C(l + |bl2N/(N-2))
for all a, b e R. Then (72) is proved provided we show

IiijBRF(un —u)dx < 6; Vi.

But we already know that: |u, — u|* ¥~ = 3, yibs, and by the same
proof as in Step 3, we conclude

lim jBRF(u,, —u)dx < limeBR |tn — u| NN -Ddx = B; Vk.
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Using (72) and Lemma 1.1, we finally obtain

lSJ(u)+ﬁ;vk<J(u)+'y;Vk

1386+ S PN 5 8y + [o<2 pk>(N—2)/N'
k 3

If J(u) <0, 2kvi =1/y and

I> IO<Z Vk)(N-Z)/N> [0y~ V-D/N _ p
k

Hence o = J(u) €]0, 1] and if a €]0, 1]
I I+ 0%~ V-2N1 - )N=2N - [+ IT-,

But this contradicts the condition (S. 1) which holds here if 7 < I*. Therefore
o =1 and the compactness is proved.

On the other hand if 7 = I, we build a sequence (u») such that F(u,) € L',
I,RNF(un) dx 1, &(un) 5> I” and u, is not compact even up to a translation.
Indeed if vy = o« > 8, and v > 0, we consider uo € Co(R") satisfying (cf. section
I.1)

a jRN luo| VN Dx =1,  &uo) = I™.

We set u, = n~ W ~2’Nyy(- /n) and we check easily the above properties. On
the other hand if y = 8 > «wand 8 > 0, we take (). in D(RY), such that: Supp
Un = B, |Vtn|? = I60, Bfrn |un|* V=P dx = 1. Again it is easy to check
the above properties. And Theorem 1.6 is proved.

Remark 1.16. Using the particular quadratic structure of &(and the x-
independence of the functionals) one may give in Step 4 a slightly simpler
argument: indeed if u, > u, then

'{S(u,,) —8n—u)=2 LRNVu,, -Vudx — JPNWu]zdx? &(w)
J(un) — J(un — u) 5> J(1)

and if J(u) €10, 1[ we simply use (S. 2) to conclude.
However this argument is very dependent on the special structures of &, J
and fails completely if & is x-dependent or if

8u) = IRN|Vu|2dx is replaced by jRN|Vu|"dx for p=2!
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I.7 A remark on Moser’s treatment of the limiting case of Sobolev
inequalities

We want to discuss here a few properties of functions in W§'V(Q) where Q is
a bounded open set in RN and N > 2. Clearly the Sobolev exponent becomes
infinite but W§'™(Q) is not embedded in L=(Q). It is possible to check that if
|Vu|~vey < 1, there exists some « > 0 (independent of #) such that

jn exp{aju/MV =D} dx < C.

This was proved by N. Trudinger [37] (see also S. I. Pohozaev [30], T. Aubin
[5]...). This estimate was sharpened by J. Moser [27] who proved that if
an = No¥ N~ where wy is the volume of S¥ (for example oz = 47) then we
have

jﬂ exp{an|u|¥N -V} dx < C|Q| (73)

and ax is the best constant in the following sense: exp(a|u|™ ™ =) e LY(Q) for
any o > 0 but an is the biggest constant such that exp(a|u|™® = V) is bounded
in L1(Q) independently of . In other words W¢:™(Q) is embedded in the Orlicz
space determined by ¢(¢) = exp{an|t|¥ V).

A natural question is then: is this embedding compact? The answer is no:
indeed, if for example Q is the unit ball, we consider (u,), defined by

n \&V- /N
un(x) = fu(—NLog |x|); fn(t)=<a’> . if 1<n,

W-1)/N
n .
= <—-> if t>n.

aN
Clearly
|Vin|Dv = NV~ o3 J:[f,’,(t)l”dt
e [ (2T
0o \OaN n
and

Jexp {aunin™ NP} 10 = o 1N [Cexplan(fu@) NP — 1) dt >
> wN_lN-lj:exp{n ~t}dt =wn_ 1N~ ..

Since u, >0 a.e. and weakly in W§™(), the embedding is not compact.
Observe that |Vu,|Y — 8 in D(Q) and exp{an|uaV Y~} = ¢y for some
c>0.

The following result shows that this is the exceptional case
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Theorem 1.6. Let (un), C W3 N(Q) satisfy: |Vun|yay < 1. Without loss of
generality we may assume that u, 7 u, |Vitn|? —> 1 weakly. Then either p = x,
Jfor some xo € @ and un > 0, exp(an|un|™' N ~P) = ¢y, for some ¢ > 0, or there
exists a > 0 such that exp{(an + )|ua|~'® =} is bounded in L*(Q) and thus

exp{an|un|V NP} > explamu|VN P} in LYQ).
In particular this is the case if u # 0.

Remark 1.17. We also deduce from this result that except for ‘‘small weak
neighborhoods of 0°’ the embedding is compact and the best constant oy may
be improved.

PROOF OF THEOREM 1.6. We first treat the case when u = 0. Let £ C'(Q),
we have using Rellich theorem

VCun) B = [ [(VEun + £VunV dx > [ |£]N

since u, Z;,O (strongly). Without loss of generality we may assume that
|Vin| v = 1 (consider vy, = un|Vun|;~), hence [dn =1 and Supppu C Q.

We first observe that if (eC'(@), £>0 and [|¢¥dp=1, then
exp{an|ua|Y¥ =1} is bounded in LF({¢> 1+ 8}) for p=ps>1, §>0. In
particular exp{an|u.|" ¥~} converges to 1 in L({£>1 + 8}) for any
6> 0. Indeed |V(¢un)|z~ > 1 and

j o €xp { o £un| V'V = V|V (Eun) | N DY dx < C.
thus for any vy €1, (1 + 8@~ Y[ we have for n large enough

J(Ezl+6) exp {any|ua| VNP dx < C. (74)

Next if p = 6, for some xo € @, taking & with £(xo) =1, £>1on o — {x0},

and remarking that Vu,— 0 weakly in L™(Q) and thus u,— 0 weakly in
Wi NQ), we deduce

exp { an|un|V® "V} - cby, for some c>0.

On the other hand if p is not a Dirac mass, we claim that we can find Fi, F>
compact contained in @ such that

uw(F1), l(F>) €10,1] and FUF = Q.
Indeed if x is not a Dirac mass, there exists F compact contained in Q such
that: u(F) = 0 €]0, 1[. We denote by O = RY — F, O, = {xe RY, dist(x, F) > €}.
Clearly —considering u as a measure on R™ supported in 2— we have:
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w(0) =1— 60 =1im Tu(Os). Hence, there exists ¢ small enough such that:
el0

w(Oe) €10, 1.

Then if F; = QNO¢, F»=QNO0,, clearly FiUFR =Q and pFi) =1 -
— (09 €10, 1[, p(Od) < u(F2) S w(0).

But we may now consider £;, & € C1(Q) satisfying

£,£20, &H=3;0+pF)") on F,
L=50+uF)"") on B,
[tau=1, [au=1.

And using (74) we deduce that for some v > 1, we have for n large enough
and thus for all n > 1

jﬁ exp {any|ua|V V" DYydx < C
sz exp{any|uaVV D}dx< C

and we conclude.
We next consider the case when u#0 and N=2: we claim that
Un = exp{az|un|®} converges to v = exp{azu?} in L”(Q) for

p<p=Q1-|Vu)™' (p= -+ if |Vulrz=1).
Indeed we have
Un = exp{oau? + 2u(un — u) + (Un — u)*]} = VDD,

where

v=expf{oau®} €LUQ) (Vg<®),  Un=exp{2a2u(un — u)}
converges to 1 in LY(Q) (Vg < ). Finally remarking that

Cn= Jn |V(un — w)|*dx=1— Zjﬂ Vun - Vudx + Iﬂ |Vul*dx 3 2,
we obtain

lexp{a2Ca H(un — w)*} |11 = |01 < C

and we conclude easily.

Finally if u#0 and N > 3; we claim that v, = exp{an|u.|"® P} con-
verges to v = exp{an|u|/M¥ "V} in LP(Q) for p<p = (1 — |Vu|y)~ VD,
Since v, > v a.e., we just need to prove that for all p < p

exp{anp|un|V Y1} dx < C  (inf. of n). (75)
Q
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By standard symmetrization argument we may assume that Q is a ball, u,, u
are spherically symmetric, non increasing with respect to |x|. Without loss of
generality we may assume that Q is the unit ball and we consider —following
Moser [27]— f» defined on ]0, o[ by

un(x) = fl(—=NLog |x]),  u(x)=f(—NLog|x|);

Jn, f are continuous, non decreasing and f,(0) = f(0) = 0.
In addition we have for all @ > 0

1= fﬂ |Vun|Ndx = N¥ ™ tan-1 f:lf,’,(t)lth
[qexplalun¥ N DY dx = N~ o1 [Texplal O]V @D — 1) dr.

We next consider g.(¢) = (f»)*(?) the decreasing rearrangement of f; on ]0, oo
and we set: fu(t) = Lt) gn(s) ds, i, = fu(—NLog |x|). Then we have

jn |ViZo|[Ndx = N¥ oy mf;,(z)lth =NV"lon_4 j:if;,(t)|th =1
dn(x) = Jo_ NLoglxlg, (s) ds > jo_ NLoglxlf,',(S) ds = un(x), vxeQ.

In addition f; = f weakly in L™(0, ) and thus we may assume that g, = g
weakly in L™(0, «). And if @, > if weakly in W§°™(Q), then

jﬂ [Va|Ndx=N""won_1 j:|g(t)|th >NV"lon_y j:|f(t)|th = jﬂ |VulN dx

Hence, we just need to prove our claim for the new sequence 4, i.e. we may
assume without loss of generality that not only u., u are spherically sym-
metric, non increasing but f7, is non increasing i.e.

1
U + —up<0 on 10,1].
|x|

But this yields that Vu, is relatively compact in L? (e < |x| < R — ¢) for all
p < o, ¢ >0 —where R is the radius of 2. Hence we may assume that Vu, —
— Vu a.e. in Q.

All these reductions enable us to adapt the proof made below in the case
N = 2. Indeed using Brézis-Lieb lemma [10], we deduce that

|V — w)|Eneay 7 1 = | Va2
thus for 6 > 0 small enough and for n large enough
[o explanp(l + 8)|un — ulVN"Pyax < €

while exp {an|u|¥ ¥~} e LYQ) for all g < o; and this proves (75) and the
theorem is proved.



CONCENTRATION-COMPACTNESS PRINCIPLE 199

Remark 1.18. In fact we have proved that:

i) if u # 0, then exp{a|u,/""™ "} is bounded in LQ) for 0 < o <
< an(l — |Vu[in) " VE-D,

ii) if u is without atoms, then exp{a|u.|™®~ P} is bounded in L'(Q) for
all a > 0.

In fact, we can prove by a close examination of the above proof that if we

consider § = max u({x}) and if § € [0, 1] then exp { or|u,|¥" ™~} is bounded in
xeQ

LY(Q) for 0 < o < an(l — )" V=D,
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A Littlewood-Paley
Inequality for Arbitrary
Intervals

José L. Rubio de Francia

1. Introduction

For every interval 7 C R we denote by Sy the partial sum operator: (Sif) =
= fx;. Given a sequence {Ix} of disjoint intervals, we form the quadratic ex-
pression :

Af(x) = (Z 1 Sz,cf(x)lz)”2 (1.1)
k
We aim to prove here the following

Theorem 1.2. For every p with2 < p < o, there exists Cp, > 0 such that, for
every sequence {1} of disjoint intervals, the operator A defined by (1.1)
satisfies

1Al < Cplflp  (feLP(R)). (1.3)

Two particular cases of this result were previously known:

1.4. When {Ix} is a lacunary sequence: Ix = [ax-1,ax] with (say)
(@k+1 — ax) = 2(ak — ax-1), then (1.3) holds for all 1 < p < o, and a con-
verse inequality: Cp|Af|» < |Af|p is also verified by every f such that supp

1
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(f) C Urlx. This is a classical theorem due to Littlewood and Paley [11],
which is sometimes a good substitute for Plancherel’s theorem in L?, p # 2
(see [16], [5]).

1.5. When all the intervals Ix have the same length, then inequality (1.3)
holds for 2 < p < o, and this is best possible as it is shown by the example:
L=k - 1,kl, k=1,2,...,N and f= x5 (with N large enough). This
result was first proved by L. Carleson [1], and a different proof was given by
A. Cérdoba [3], who used it in order to obtain L” estimates for Bochner-Riesz
multipliers, [4].

In the proof presented below, we first reduce the problem to the case where
the intervals {[I}, after suitably dilated do not overlap too much. Once we
are in this situation, it is possible to regularize the partial sum operators, ob-
taining, instead of Af, its smooth version Gf, which is easier to handle as a
vector valued singular integral. The estimates required for the kernel of G are
a combination of classical Littlewood-Paley theory and the ones used in a
simplified proof of the case (1.5), given in [14]. In the last three sections, we
discuss some variants of the main result: weighted estimates, results in L? with
p < 2, and n-dimensional analogues.

This problem came to my knowledge through A. Cérdoba, who was always
firmly convinced of the truth of such a general statement. My finding the proof
was greatly stimulated by conversations with L. Carleson, P. W. Jones, J. P. Ka-
hane, M. Reimann, P. Sjogren and P. Sj6lin, during a delightful stay in Sweden.

2. Reduction to the well-distributed case

All the intervals considered will be of finite length. For every interval 7 and
¢ >0, we denote by cI the interval with the same center as I and length:
lcI| = c|I].

Definition 2.1. A sequence of intervals { Iy} is well distributed if the doubles
of the intervals have bounded overlapping, i.e.

; Xor,(¥) < C (xeR)

Now, we define the Whitney decomposition W(I) of an interval I as
follows: First of all, the definition is invariant under translations and dila-
tions, and if 7= [0, 1], then W(I) consists of the intervals:

{[ak+l,ak]}k=0; B—%] {[l‘akyl_ak+1]}k=0
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where ar = 27%/3. Observe that the intervals of W(I) form a disjoint covering
of I, and:

2HC I for every He W)

2 X)) <5 for all x 2.2)
HeW()

Lemma 2.3. Given disjoint intervals {1}, let Af(x) be defined as in (1.1),
and let

Acf() = (H > ISHf(x)IZ)”Z

EWL(
Then for all 1 < p < ©, we have the equivalence

|Af ]~ “(;(Akf)z)“ (fel”

p

Proor: This is essentially known, and a more general (weighted) version of
it will be given in 6.3 below. Here is however a short sketch of proof: The
operators Ay are uniformly bounded in L*(w) if w € A, (see [10]), from which
it follows that

”<§(Akfk)2>m i <G (z\; lfk|2>1/2 2.4)

p

for all 1 <p<o. When we choose fr=Sif in (2.4), we obtain the
inequality > in the Lemma. Since there is equality of norms when p = 2, the
usual duality argument proves the converse inequality < .

It follows that Theorem 1.2 holds for the sequence {Ix} if and only if it
holds for the sequence

UWU) = (H/He W) for some k}
k
But this last sequence is well distributed according to (2.2), and we arrive at

Lemma 2.5. In proving Theorem 1.2, it is no restriction to assume that the
given sequence of intervals {Ii} is well distributed.

3. The smooth operator and the basic estimate

We start with a well distributed sequence, and we divide each interval I into
seven consecutive intervals of equal length

I=I1Y01?U...uI?, |19 =1|/7
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so that 87> C 2I. It suffices to prove the theorem for each one of the families
(r® | I €initial sequence}. Therefore, we can assume from the beginning that
we are given a sequence I of disjoint intervals such that

2 X)) < C (xeR) (3.1)
Iel
It will be convenient to label the intervals of the sequence according to their
length. Thus, for each integer &, let
(I}j= el |2k |I| <2k

For every k, J, let nj be the first integer such that n/2* € I/, and fix a Schwartz
function Y(x) whose Fourier transform satisfies

X(=2,2 S ¥ < X[_3,3
Then we define
Vi) = 2°9(2*x) exp(2minj2*x)
so that the Fourier transform of y/ is adapted to 7, i.e.

1 if el

0 if £ ¢8I (3-2)

W) ®=9Q "¢ -n)) = {
Definition 3.3. The smooth operator G associated to a sequence of intervals
satisfying (3.1) is
G/ = (3 190 ) =
keZ j
= {; | [ 259@*(x = ») exp(—27ini29)f () dym vz
sJ
It follows from (3.1) and (3.2) that 3k,;|(¥}) (£)|*> < C, which, by Plan-
cherel’s theorem, implies that Gf is well defined in L%(R) and satisfies
|Gfl2< C|f]2 (3.4

Our objective is the corresponding L” inequality, 2 < p < . This will be a
consequence of the main estimate for Gf stated below. We denote by (-)* the
sharp maximal operator of Fefferman and Stein [6], and also,

Mof(x) = (M(|f|D)}?  (1<g< )

where M = M stands for the Hardy-Litlewood maximal function. Then, we
have for every fe L&(R) = {bounded functions with compact support}
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GN*HN) S CM2f(x)  (xeR) (3.5

The next two sections will be devoted to the proof of (3.5). We wish to
observe here that this will complete the proof of Theorem 1.2, since for all
felfand2<p< o

|| (kZ ISImZ)“ <GIG 1< GIGN" 1, < CGIMS 1, < CEL Sl

(the first inequality follows by the usual truncation argument which can be
seen in [5], [16], [17], because Spf= S,;"(\bi*f)).

4. A lemma for vector-valued singular integrals

Let H be a separable Hilbert space, and let K(x, y) be an H-valued function
defined in R? such that |K(x, -)|z is locally integrable for each fixed x € R.
Then

/() = [ fDIK(x, ) dy
is well defined for every fe LE(R). Given x, z € R, we denote
In(x,2) = {(yeR:2™x —z| < |y — 2] 2" *|x — 2|}
where m is an integer.
Lemma 4.1. Suppose that T, defined as above, is a bounded operator from

L%(R) to L%(R), and that the kernel K(x, y) satisfies, for some A >0, oo > 1,
the condition

27"\ &

4.2)
Ix — z]

L”.(x,z) [<K(x,y) — K(z,7),\) |*dy < A*

Sforevery x,ze R, A€ H, and m > 1. Then, for the operator Gf(x) = | Tf(x) |
we have the estimate

(GNH* () < CA, )Mf(x)  (feL®)

Proor. It is essentially a repetition of the argument in [6]. Given x € R and
an interval I centered at x, we define the vector

hi= |, SO y)dye H
so that, if = fx,;

/@) - hr = TF@ + |, ,,, JOIKG, ») - K(x, )] dy
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Denoting by g(z) an arbitrary H-valued function with | g(z)|u# < 1 for all z€ 1,
we can write

j | Tf () — hi rdz < j | TF@) | m dz +

1] 171

j <g(z),j f(y)[K(Z,y) K, »ldyydz| = (1) + (2)

Now, the first term is easy to estimate

1/2
)< <mj |f|2> < CV2ZMof(%)

and in the second term, the value corresponding to each fixed g is majorized
by
1 oo

= 2 j | &), K(z,y) — K(x,y)>| dydz <
| Jr m=1 Jbn»

© 1/2
<sup 2, <J If(y)lzdy> A27 M2y — | 712
Iy (z,x)

zel m=1

where we have used (4.2) and the fact that |g(z)|# < 1. Thus,

(2) <24 Z 20 = 9m2pp £ ()

m=1

and the series converges because o > 1. Since

(GNH*x) < Csup JIITf(z) hi| adz

7]
the proof is ended.

It is easy to formulate generalizations of this lemma: One can consider
kernels defined in R” x R" with values K(x,y) e L(A4, B), for some Banach
spaces A,B, and replace the exponent 2 in our initial assumptions:
| 7f]> < C|f |- and (4.2), by different exponents p, g. Some of these variants
are considered in [15]. The simple case stated here is precisely what we need
for our present problem.

5. Proof of the basic estimate

Here we shall use the preceding lemma in order to prove the pointwise
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estimate (3.5), thus finishing the proof of Theorem 1.2. We must therefore
consider the /*-valued kernel

K(x,») = (292" — 2*y) exp(—27in)2*y) )«

where ¢ and ni are defined in §3, and we must prove that K(x, y) satisfies
(4.2). It suffices to do so when \ = {)\'{c}k‘je /% has unit norm, and for every
such A, we let

Kn(x,¥) = (K(x, ), \) = 2 N250(2"x — 2%y) exp(—2min]2*y) =
k,Jj

= ; 2592 x = 2°y)qu(2*y)

where, for each k € Z, g is a 1-periodic function defined by its Fourier series
qi(?) = X N exp(—2min]t)
J

Observe that n,{ # ni’ if j #j’, so that each g, satisfies

j““|qk(t)|2dt<1 (aeR;keZ) (5.1

a

and this is the only property of the functions g that we shall use, so that we
disregard the fact that they also depend on A. Our problem is then reduced
to establishing the inequality

[ KOG D) = Kz, )P dy < A27*"|x — 2] ! (5.2)
with o > 1. We can assume that z = 0, since this amounts to translating gx by
2%z, so that (5.1) is preserved. On the other hand, replacing x by 2x does not
change the inequality (5.2) at all, and thus, we can also assume that
1 < |x| < 2. Writing Inn(x, 0) = In(x) we have by changing variables

1K, +) = N0, +) | 22atmonn <
< 3 2([ 0 9@ =) = W=D lac) P dy )2

kezZ

S sz/z{ Sup I‘p(zkx_y) _ ¢(_y)|}(2k+m+2 + 1)1/2
y

k €lk + m(x)

© -h-1

= 2+ 2

k=—-h k= -

where we choose A = [2m/3]. For the terms in the first sum we use the fact
that |Y(»)| < C|y| 3, so that
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sup  |Y(2kx — y) — Y(—y)| < C27 2

yelk + m()

and then,

Z (...)SC Z 2—k_3'n/2<C2_SM/6
k=-h k=—h

For the second sum we use the majorization

sup  [Y(2x — ) — Y(—y)| < C2*x < C2F !

yelx + m®)

and we obtain (since k + m<m — h<m/3)

_hzil (...)<C —hz_l 23k/2pm/6 (g —5m/6
k

k= - = —

Combining everything, we have proved the desired inequality (5.2) with
5
oa=3> 1.

Remarks. The initial computations involving )\{;’s are rather formal, and
serious convergence problems may arise. However, everything becomes cor-
rect if we define a truncated smooth operator Gr by allowing only a finite set
F of k's and j's in the definition. The final estimates are independent of the
set F and so, a limiting argument proves the same result for the whole
operator G.

A somewhat shorter computation is needed to show that

Ly_z, 22—z MK D) — KNz, )| dy < C (5.3)

(instead of (5.2)). The analogue of Lemma 4.1 under this weaker assumption
shows that | Gf | smo < C| f|~, which is certainly weaker than (3.5) but still
enough to prove our theorem, since interpolation with (3.4) gives

1Gflp < Col flp 2<p < oo.
However, for the weighted analogues of Theorem 1.2 which we shall obtain
in the next section, the full force of the basic estimate (3.5) is required.

6. Weighted inequalities

The following extension of the theorem just proved holds.

Theorem 6.1. If2 < p < o, and if the weight w(x) (in R) belongs to the class
Apsa, then, the operator A defined by (1.1) for an arbitrary sequence of dis-
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joint intervals satisfies

[ 1A we) dx < Cp(w) [ | FPw) dx

Proor. Let us consider first the smooth operator G associated to a sequence
of intervals satisfying (3.1). Then, for all we 4,2 (2 < p < ) and f good
enough

[ IGF@Pwi) dx < Cp,w [ GH* (P W) dx <
< CCp.w [ IMLSOOP W) dx < o [ | £ W) dx
On the other hand, for arbitrary intervals [}, the inequality

(i), < (317)”

< Cp, w
LP(w)

6.2)

LP(w)

(we Ap, 1 < p < ) holds, because it holds for the Hilbert transform (see [10]
for details). Thus, the usual truncation argument can be applied, i.e.: If {ZIx}
is the given sequence of intervals, and the associated somooth operator is
Gf = (Zk [¥a*f|?)?, with Jx = 1 on I, then we define fi = Y« *f and use
(6.2) to obtain

[ 187w dx <y [ 1GFPWE) dx

(we Ap; 1 < p < ). Putting everything together, the theorem is proved for
well distributed sequences of intervals.

Now, for the reduction to the well-distributed case, we argue as in §2, and
we only need to prove the weighted analogue of 2.3, namely

Lemma 6.3. Given a sequence of disjoint intervals {I}, let W(lx) be the
Whitney decomposition of each Ix. Then, for all we Ap, 1 < p < ©, we have
the equivalence

(LDl W O

k HeW(y)

LP(w)

for every fe LP(w).

Proor. Let Af be defined as in (1.1), and let Axf be the corresponding
operator for the sequence W(lx). As we mentioned in Lemma 2.3, the

operators A are uniformly bounded in L?(w) if w e 4,, and more precisely
(see [10)) if supp(f) C Ix

Cit [IFPw< [@efPw< Cu[IPw  (wesd)
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with C,, independent of k. By the extrapolation theorem for A,-weights (see
[81, [13]) this implies

|(Z147)

for all we A, and fre LP(w), 1 < p < o, and taking fx = Si,.f we get the
desired equivalence

- |

Lp(w) !LP(W)

187 lzrn ~ | (S 187)

LP(w)

which completes the proof of the lemma and the theorem.

The theorem is best possible for p > 2 in the sense that A cannot be bounded
in L, for all we A, if g > p/2 (since this would imply that A is bounded in
L2~ <(R), which is false for some sequences {Ix} of intervals). It is natural to
expect, however, that

j;lszkflzws(?wj IfPw  (weA)) 6.4

for every sequence {Ix} of disjoint intervals, since this is the limiting case of
6.1, and it is known to be true in the extremal cases considered in (1.4) and
(1.5). It would suffice to obtain the same inequality for the smooth operator
G, but the basic estimate: (Gf)* < CM,f is not enough to prove it.

7. Some results in L?, p<?2

Given a sequence {Ix} of disjoint intervals, one may ask more generally for
which values of p and g does the inequality

|(Sisusie) | <cists @.1)

hold. The example in (1.5) shows that a necessary condition (not only for arbi-
trary {1}, but even for equal length intervals) is: ¢ > max(2, p’). Thus, we have
proved in Theorem 1.2 the best possible result for 2 < p < o, and it is natural
to expect that, for 1 < p < 2, the best possible inequality is also true, namely.

Conjecture 7.2. For arbitrary disjoint intervals {Ix} and for 1 < p < 2, the
inequality

(s

holds for every fe LP(R).

<Gl fl»
p
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As supporting evidence for this conjecture, apart from Theorem 1.2, we
mention two partial results:

a) If {Ix} is well distributed, f —> (Zk |Sp.f|”") """ is an operator of weak

type (p,p), 1 <p<2.
b) If 1 < p< 2 and g > p’ then (7.1) holds for arbitrary disjoint intervals

{Ze }.

Proor oF (@). The Hilbert transform A admits a vector valued extension:
H((f©)) = (Hfx) which is bounded in L?(/%) for all 1 < p, g < , and expressing
every partial sum operator in terms of H (as in [16], for instance) we obtain

| (1) ] < Coe] (F1507) 03

< Cp,q
p

P
Now, we define yx so that ¥x is adapted to I, i.e.
Xlk s {b‘k S XZIk

Moreover, all Y can be defined in terms of a fixed Schwartz function v, so
that |Yx(x)| = lk|¥(lx)| with lx = |Ix|. Then, the operator

f_’ Wk *f)kElN
is bounded from L to weak-L(/), because sup |y« *f| < CMf, and it is also
k

bounded from L2 to L2(/%) due to the fact that the intervals {Ix} are well
distributed. By interpolation

(e

<Glfl, (A<p<2) (7.4)
P,

and we only have to apply (7.3) with fx = Yx*fand g = p’.

Proor oF (b). We interpolate between the obvious inequality

|(Zisur?) | <1s1e - ey

and the following consequence of the Carleson-Hunt theorem ([2], [9])

”suplSrkfl “ . <Cg|fli+e (feL'*%;8>0).
k 1+

8. n-dimensional results

By an interval in R", we shall mean the product of #n one-dimensional inter-
vals: I=[ai,b1] X [az, b2] X ... X [an, by]. We would like to state the
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analogue of Theorem 1.2 for an arbitrary sequence of disjoint intervals in R”,
but in order to adapt the argument developed in sections §2 — §5, we should
need a lemma similar to 4.1 for product-type vector-valued kernels. No such
result seems to be known so far, though one may hope that the methods of
[7]1 could be suitably modified to this end.

What one can prove by standard reiteration techniques is a theorem for
«cross-partitions»: A cross-partition of R" is a family {Ix}kxenr of disjoint n-
dimensional intervals such that

L=IPXIPx...xI" (k=(kikz,...,kn)EN")

where, for each i =1,2,...,n, the sequence of intervals {Ij‘i’ }jen form a
partition of R.

Theorem 8.1. If {Ix}renn is a cross-partition of R” and 2 < p < «, then for
all fe LP(R")

<Gl Sl»

p

(pisur)”

Proor. For notational simplicity, we shall assume n = 2. Let [jx = I} X
X I¥(j, k € N) be the given family of intervals, and let Sj,«, Sf and S¥ denote,
respectively, the partial sum operators in R? corresponding to the intervals
Ik, I} X R and R X I{. By the one-dimensional result and Fubini’s theorem,
we have

<G|flr (feL?2<p< ) (8.2)
P

"(; ISJ"f|2>1/2

and similarly for S¥, kK € N. Thus, the operator
8" f= 8"f = (Skfken

is bounded from L?(R?) to LZ(R?), where H = /%, and the theorem of Mar-
cinkiewicz and Zygmund [12] (which is also valid for Hilbert space-valued
functions) gives

p/2 p/2
HZ IIS"fj(x)I!%r> < Cl j <Z Ifj(x)|2> dx 8.3)
J J

Now, given fe LP(R?), 2 < p < o, we apply (8.3) with f; = S/f taking into ac-
count (8.2) and the fact that S¢S}f = Sj,«f.

The same inequality holds in LP(w) if we A}/, = [Ap — weights with
respect to all n-dimensional intervals], 2 < p < . Another partial result is the
following.
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Theorem 8.4. Let {Q;} be a sequence of well distributed cubes (in the sense
of 2.1) in R". Then
I|<Z |SQ;f|2>1/2
Jj

pSCp“f"p R<p< ™)

The proof is a repetition of the arguments in §3, §4 and §5. More generally,
if I;, g; are fixed positive numbers, one can prove the same result for a family
of intervals {I;} such that I; has dimensiones /;67* X 67" for some §; > 0. In
this case, the definition of well distributed sequence is made in terms of the
non-isotropic dilations: 6 - x = (6%%x1, 6%%x2, . . ., 69"xy,).

By putting both theorems together and using the general arguments of §2
(see also [14]), one can find a huge variety of configurations of intervals in
R” for which the inequality stated in 8.1 turns out to be true, but the general
n-dimensional analogue of Theorem 1.2 seems to be still out of reach.

Added in proof. Since the result proved in this paper was known, several
authors became interested in it making some contributions. Thus, another
proof of the basic estimte (3.5) was given by P. Sjolin, and a different ap-
proach to the problem was found by J. Bourgain yielding, for a sequence of
disjoint intervals covering R, the inequality

1f1n < }'(; ls,kfv)” (1<p<2)

p

(which, for 1 < p < 2, is equivalent to theorem 1.2). Finally, J. L. Journé has
been able to prove recently the general n-dimensional version of our theorem,
namely, the analogue of theorem 8.1 for an arbitrary partition of R” into n-
dimensional intervals.
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Stable Planar

Polynomial Vector
Fields

J. Sotomayor

1. Introduction

A vector field in R? of the form
d 0
X=P2 +0
ox Qay

where P =X ayx'y’ and Q = X byx'y/, 0<i+j<n, is called a planar
polynomial vector field of degree < n. The N = (n + 1)(n + 2) real numbers
aij, bi; are called the coefficients of X. The space of these vector fields, endowed
with the structure of affine R V-space in which X is identified with the N-tuple
(aoo, @10, - - - » @on; boo, - . . , bon) Of its coefficients, is denoted by x.

The Poincaré compactification of X € x, is defined to be the unique analytic
vector field ®(X) tangent to the sphere S = {x*> + y?> + z2 =1} and to the
equator S'= {S%,z=0)}, whose restriction to the northern hemisphere
S%2 = {8%,z> 0]} is given by 2"~ 'p«(X), where p is the central projection
from R? to S%, defined by p(u, v) = (4, v, 1)/(?* + v* + 1)/2. See 3 or [6] for
a verification of the uniqueness and analyticity of ®(X).

Definition 1.1. a) X ey, is said to be topologically stable if there is a
neighborhood V and a map A: V— Hom(S?, S') (homeomorphisms of S?
which preserve S') such that Ax = Id and Ay maps orbits of ®(X) onto orbits
of ®(Y), for every Ye V.

15
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b) If furthermore, 4 can be chosen such that for each x € 2, ¥ — hy(x) is
of class C", r=1,2,...,©,w, then X is said to be r-stable.

Define by £, (resp. X5) the set of X € x» defined in a) (resp. b)).

The topological (vesp. r) bifurcation set in x, is defined by xi = xa» — Zn
(resp. xi' = xn — En).

The point topological properties of £, have been studied by Pugh [17] and
dos Santos [19] Their works describe an open dense set of x, denoted here by
Sy, such that 8, C X,, which is defined by properly extending to elements of
the form ®(X) the conditions given by Andronov-Pontryagin [1] and Peixoto
[14] for smooth vector fields on compact domains. These papers were preced-
ed by the work of Gonzales [6], devoted to the generic properties of elements
of x, at infinity, i.e. on S'.

Definition 1.2. Denote by 8, the set of X € x, for which ®(X) has a) all its
singularities hyperbolic, b) all its periodic orbits hyperbolic and c) no saddle
connection contained in S — S'.

The characterization of X, depends on a delicate point, apparently
overlooked in [19], which for future reference is formulated here as a
problem.

Problem 1.1. Prove (or disprove) that the hyperbolicity of an attracting or
repelling periodic orbit in $2 — S! is necessary for topological stability in xs.

The main results of this paper, characterize X; as 8, and establishes the
simplest affine, analytical and measure theoretical meagerness properties of
the bifurcation sets x» and x% ' of x.. These meagerness properties have ob-
vious thickness counterparts for £, and X;.

Theorem A. a) The set of r-stable vector fields X, r=1,2,...,w, coincides
with 8,.

b) Furthermore, xz' = xn — Sn, r=1,2, ..., w, is contained in the union
of countably many one-to-one immersed analytic submanifolds of codimen-
sion =1 in xn.

Corollary 1.1. x%! and, therefore, xi have null Lebesgue measure in xn.
Corollary 1.2. Let £:R— X, be a C' map. Call G(§) the set of Ve x,, such
that £ + V meets 8, except at most in a countable set of points. Then G(§) has

total Lebesgue measure in X,.

The null Lebesgue measure of the bifurcation set in compact plane regions
was established by the author in [25].
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Corolary 1.2 is a rather crude description of bifurcations of codimension
one of X,,. The actual geometry of the bifurcation phenomena of ®(X) as the
coefficients of X change along curves that meet X' transversally at regular
points, has been studied in the simplest situations in [13].

2. Proof of Corollaries

Assume Theorem A, b).

Let x,—8,=US;j, j=1,..., where S; are analytic submanifolds of
codimension > 1.

The map F(V, -) = V + &(-) is transversal of S; if and only if ¥ belongs to
the set R; of regular values of the projection of F~'(S;) onto X,. Clearly
G(¢) = R;. By Sard’s Theorem [20], G(£) has total Lebesgue measure. This
argument applies to any map £: R* = x, of class C*. It gives Corollary 1.1 if
k =0, and Corollary 1.2, if £k = 1.

3. Proof of Theorem A

Take coordinates (6, p), 27-periodic in 6, defined by the covering map from
R x (—1,1) onto 8% — {(0, 0, =1)}, given by (8,p) = (x,»,2) = (1 + p)~'/?
(cos 8, sin 0, p).

The expression for 2"~ 'p«(X), X € X, in these coordinates is

. ] ‘
(1 +p?)¢ ”")/2[ (E”IA”"'(G))a_e - p(?-?p'Rn—i(o))(%], 3.1

where i=0,1,2,...,n and

Ax(0) = Ax(X, 0) = — Pr(cos b, sinf) sin + Qk(cos b, sin§) cos §

2
Ri(0) = Ri(X, 0) = Px(cos 8, sin f) cos § + QOxr(cos 8, sin ) sin 6, (3-2)

with Px = S aix’y’, Qx = D byx'y’, i+ j = k.

This shows that ®(X) must be given by (3.1), mod 2x, and is therefore
analytic in S? and tangent to S’.

Denote by B(i) the set of X € x,, which to not satisfy condition i = a), b),
¢) of Definition 1.2. Theorem A, b) will follow from.

Proposition 3.1. a) B(a) is a semi-algebraic set in X,,.

b) The set C of vector field of x, — B(a) with some graph of saddles and
separatrices is closed in x, — B(a).

¢) B(b) is a closed semianalytic set in the open set A = (X, — B(a)) — C.
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d) B(c) is the union of finitely many one-to-one immersed analytic hyper-
surfaces in X,, — B(a).

Proor. a) Notice that B(a) is the projection into X, of the union of the
following semi-algebraic sets.

{(P=0,0=0;A=P:Q — P,0Ox =0},
{(P=0,0=0;A>0,0=P:+ Q, =0},
{An=0,A47=0} and {A,=0,R,=0}.

The result follows from Tarski-Seindenberg Theorem [21].

b) If X— Yin x,, — B(a), and Y does not have any graph, by continuation
of all the saddle separatrices through saddle connections of Y one would ar-
rive to separatrices whose limit sets are attractors or repellors.

By continuity, the same would hold for neighboring systems and, therefore,
X could not have had graphs.

¢) The following remaks will be needed.

Remark 3.1. If X has a periodic orbit at infinity, i.e. if S is a periodic orbit
of ®(X), then it is hyperbolic if and only if

b= [ Ra(X, 0) A7 (X, 6)db # 0.

Actually, the derivative IT'(0) of the Poincaré return map IT associated to
a transversal segment is given by

logIT'(0) = (—1ap, (3.3)

where o denotes the sign of the orientation of the orbit relative to the
canonical orientation of S*.

In fact, from (3.1) the trajectories of ®(X) near S* satisfy the following dif-
ferential equation

dp _ —p(Zp'Ra-i(6) . _
=T 1—0,1,...,71
do Eo'An-i(0)

Denote by p = p(po, 6) the solution of this equation, with initial condition
0(po, 0) = po. The Poincaré return map is therefore given by II(po) = p(po, 27).
Therefore,

o2m

oy = 9P _ 1
[0 = 5 (0, 2m) = exp[ — [ Rudi "],
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as follows from (3.3) and a well known formula for the derivative of solutions
with respect to initial conditions. Since, in this case,

021r_ 27
fo “’IO’

this proves (3.3).

Remark 3.2. The derivative of u in the direction of

a a
V= - bl n
T6x+ Uayex

is given by
Dux(V) = |77 (TaQn — UnP)Ai (X, 0) b,

which is not null. In particular, if

V=@ +y2)"<x£—c + %) n=2k+1, DwV)= jj”A,:‘(e)de # 0.

This shows that the space of vector fields in x,, # = 2k + 1, with a non
hyperbolic orbit at infinity, is an analytic hypersurface.

The proof of ¢) can be finished as follows.

For X € A take a neighborhood V C A, such that the Poincaré return map
II; VX Li— Liof ®(Y), Y eV, is defined on a segment L;-transversal to each
periodic orbit ; of X. Write 0 = L;N+;.

Let n; be the multiplicity of ; as a periodic orbit of X that is, n; is the order
of the zero of ITi(X,x) — x, at 0 e L;. Using the Weierstrass Preparation
Theorem [29], write IT;(Y, x) — x = Ui(Y, x)Pi(Y, x), where

Pi=x"+ad (Y)x" "'+ ... +af(Y),

with af? and U; analytic functions, U; # 0 in ¥ x L; and a/’(X) = 0.
There are two cases:

a) If +; is a periodic orbit on S2 - S!, Dxap#0. In fact,
ao = ILi(-,0)U~1(+), and by [23; 1p. 383], if V = T(3/dx) + U(3/dy),

Dxao(V) = U™ (X, 0) [jexp[ - [, div X |(PU - QT) dt,

where 7 is the period of ;.
b) If v; is the periodic orbit at infinity, ap = 0, and P; = xQ;, where

0= ¥+ gy (TR dlCD)

where #; is odd and a®(Y) = U7 (Y, 0){exp[(—1)ou(Y)] — 1}, according to
Remark 3.1.
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The non hyperbolic periodic orbits of ®(Y’) are near some ;. In case a) they
intersect L; at points where the quasi-polynomial P;(-, x) has a multiple root.
In case b), this happens when a(Y) = 0, for non hyperbolicity at infinity,
and at multiple roots of Q;(-,x), for non hyperbolicity on S — S

These sets, defined by the condition of having multiple roots are
semianalytic. In fact, they are inverse inmages by the analytic maps
Y= @P_ (Y),...,a$’(Y)), for case @), and Y = (a_,(V), . . ., a{(Y)), for
case b), of the discriminant locus of the generic polynomials of correspondent
degree, which is a semi-algebraic set [27].

d) The semi-algebraic set X, — B(e@) has finitely many connected com-
ponents Cy, Cy, ..., C; [28]. On each such component C, the saddle singular
points p;(X) of ®(X) as well as its four separatrices S/(X,s), i =1,2,3,4,
parametrized by arc length s; with origin in p;j(X), are well defined analytic
functions of the two variables. Take S(Y,s;) and S§(Y,s;) two such
separatrices, the first unstable and the second stable, which correspond to sad-
dle points p;(Y) and pi(Y), which may be equal.

The set Bjx of (Y,))e C x R, for which $J(¥) and S§(Y) form a saddle
connection of lenght / is an analytic submanifold of dimension N —1 in
C X R, whose projection into C is a one-to-one immersion.

In fact, for (X, /o) € Bj, take a small segment L transversal to X through
a point po = SY(X, 51(0)) = S5(X, 52(0)). There are analytic functions si(Y),
i = 1,2, implicitly defined by S{(Y, s1(Y)) € L, S¥(Y, 52(Y)) € L and such that
5i(X) = 5:(0).

It was shown in [23], see also [2,18], that the derivative of the function
S = SIY, 51(Y)) — S5(Y, 52(Y)) is given by

Dsx(Z) = r_owexp[—j;divX](RT— QU)dt,

where Z = T(d/0x) + U(3/dy), and the integral is computed on the saddle con-
nection. Without loss of generality assume that the saddle connection does not
contain (0, 0, 1), and the coordinates (o, 6) of (3.1) can be used.

Writing X = P(3/0x) + Q(3/dy) and X+ = —Q(3/0x) + P(3/dy) in these
coordinates and applying the above integral formula, one gets an expression
of the form

DSx(x*) = [~ _glo, O)pdt,

where g(p, 0) is strictly positive. This shows that DSx # 0.

Clearly this ends the proof of d). In fact, when S(Y) = 0, the lenght of the
saddle connection is given by /(Y) = 51(Y) + s2(Y) which is also analytic.
Therefore, Bjx is an analytic manifold of dimension N — 1, which projects
regularly into C. The set B(c) in C is the union of finitely many images of such
projections.
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The proof of (4, b) follows from Proposition 3.1, by the stratification of
semi-algebraic and semi-analytic sets into analytic manifolds. See Lojasiewicz
[11] and Whitney [28].

The proof of Theorem A, q) is straight:

1) If X €8, the constructions of topological equivalences in [1, 7] all pro-
duce r-stability. Therefore, Xe X, r=1,...,w.

2) If XeXZy, r=1,...,w, from A, b) X must be topologically equivalent
to an element of $, and therefore the singularities and periodic orbits of ®(X)
must be finite and there must not be saddle connections contained in S* — S*.
The r-stability condition forces the singularities and, particularly, the periodic
orbits to be hyperbolic. Actually, for the hyperbolicity of singular points and
infinite periodic orbits it is sufficient to impose topological stability.

4. Final Remarks

1) For the study of stable smooth vector fields on non compact domains,
the reader is refered to Nitecky et al [8] and the references quoted in this work.
Here, perturbations with compact support are allowed and stability is not a
generic property.

2) The set A = (x» — B(a)) — C in Proposition 3.1 is related to the class of
polynomial vector fields studied by Poincaré [15, Theorem 17], for which the
finiteness of limit cycles was first proved.

For extensions and further developments of this finiteness Theorem, the
reader is refered to Chicone-Shafer [3], Paterlini-Sotomayor [12], Iliashenko
[9], Ye Yanquian [30], Pugh-Francoise [5] and references quoted in these
works. v

3) Using Thom’s Transversality Theorem [26], it can be asserted that the
generic one parameter family of elements in X, has at most countably many
bifurcations. The idea of Corollary 1.2 was suggested to the author by his
previous work [24] and by the reading of Pontrjagin [16].

4) Although Theorem A expresses the meagerness of the bifurcation set in
analytical terms and implies, through Corollary 1.1, that a vector field in X,
is probabilistically almost surely stable, i.e. on 8,, it cannot be regarded as the
ultimate result on this line of ideas. In fact, it does not give any estimate on
the cost involved in deciding whether or not a given vector field in X, is stable,
i.e. on 8., in the sense of complexity theory, a la Smale [22].

A Kkey step for such estimate amounts to the study, in terms of n and R,
of the volume of a tube of radius R of the set X7 NSV ™! relative to the
volume of the unitary sphere SV~ of X,,. The study can be done for the part
of the tube around B(q) in viev of the algebraic nature of this set, using ideas
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of integral geometry, as suggested by Smale [22], and results of Demmel [4].
The analysis for the part of the tube on B(b) and B(c) does not seem to be
straight. The set B(b) is not semi-algebraic, as follows from results of Illias-
henko [10]. Also the set B(c) is not semi-algebraic, as is easy to verify at least
for n big. For n = 2, this is not known [30].

These remarks indicate that new different techniques and expectations
should be devised in connection with the possibility of developing a comple-
xity theory for the stability and bifurcations in x,,.
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Singular Integrals on
Product H* Spaces

R. Fefferman

1. Introduction

We shall begin describing some terminology and notation. By «Calderdn-
Zygmund space» we shall mean the class of all bounded operators, 7, on
L?*(RY) given by a kernel k(x, y) so that TA(x) = le k(x, y)f(»)dy and so that

for each fixed x e R!, ke C®(R!/{x}) as a function of y and satisfies

a o
‘ <a_y> k(x,y)

We shail often identify the operator 7 with its kernel k. For a particular choice
of a positive integer N, we define the norm of 7 in Calderén-Zygmund space
IT|czby | Tlcz = IT |12, 12 + 2~=1Cax where here C, denotes the smallest
constant for which (*) is valid.

Suppose k(x) now stands for a kernel on R! with values in Calderén-
Zygmund space satisfying:

SColx—y|7'7® for a>0. *)

C
(D) [k@)|cz < |—;|

d\’
(2 ’(Ec) k(x)

JEN

czs |x|j+1’
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and

(3) J‘(X

Then k defines an integral operator taking functions f(xi, x2) on R? to func-
tions Hf(x1, x2) on R? as follows:

k(x)dx =0 Vo< a<B.

<l|x|<B

Hf (01, x2) = {[ Kober, 31, %2, 2./ 01, y2) dyrdys ()
where
ko(x1, y1, X2, 2) = k(x1 = y1) - (X2, 2).

Another way of understanding how k gives rise to H is as follows: Suppose
we associate to each function f(x1, x2) on R?, the function fon R! taking its
values in the space of functions (on R') of xz given by f{x1)(x2) = f(x1, x2).
Then

Af () = [kGa = y0) - fon dyr.

Our theorem is then:

Theorem. Let0 < p < 1. Then there exists N so that if k(x1) is a kernel satis-
fying (1), (2) and (3) above and H is as in (), then H maps HF(R% X R%)
boundedly to LP(R?).

Recall that fe HP(R% x R%), product HF, means that f is a distribution
on R? with the property that

sup | f*ds,,5, (xl,xz)' e LP(R?)
61,62>0

for

b € CE(R?), bon, 1201, X2) = 67 '67 ‘qs(’ﬂ ff)
61 ’ 52

Before proving this theorem let us put it into some perspective. First of all,
in case the values of k(x) are convolution operators, then this theorem is
already known. (See the article of E. M. Stein and the author [1]). The spirit
of the proof we give here is along the lines of C. Fefferman’s theorem on the
maximal double Hilbert transform [2]. There, the product structures of the
kernel plays a role, where here, we assume no such structure. The other main
ingredient of the argument below is the atomic decomposition of H? spaces
on product domains ([3], [4], [S]). We shall assume that the reader is familiar
with the properties of product H¥ atoms.

Finally, we should mention the interesting work of J. L. Journé [6], where
non convolution operators in the product setting are treated, and proven



SINGULAR INTEGRALS ON Probpuct H” SpPaces 27

bounded on the L* spaces and from L* to product BMO (for the properties
of product BMO, see [3]). This paper, we feel, should have simple generaliza-
tions to cover operators like Journé’s bi-commutators, and the proof is prob-
ably very similar to the one given here.

Proor oF THE THEOREM. In order to simplify things a little, we shall assume
p = 1. The case p < 1 requires no major changes. We shall let a(x;, x2) be an
H'(R% x R%) atom supported in an open set Q, which by dilation invariance,
we may assume to have measure 1. For this atom a, we then show that if
¢ € C*(R"), ¥ supported in [—1, —1] is even and has its first N moments
vanishing, then the corresponding square function in the first variable is in
L'(R%:

+o 12
< 2 I‘I’zk*l(k*a)(xl,xz)|2> e L'(RY).

= —

This will prove the theorem.

(Here ¥,i(x1) = 2~ ¥¥(x;/2%), *; refers to a convolution taken only in the first
variable for each fixed x, and k#*a is the function such that k+*a(x;) =
= lek(xl — 1) - d(t)dt; see the introduction for an explanation of the ~
notation).

We shall sometimes find it convenient to assume that ¥ has the form
VO 4 ¥ D where ¥ has properties similar to those listed for ¥. Also it will
suit our needs to define a cutoff function ¢(x;) € C*(R"), which is even, is sup-
ported in } < |x1| < 4 and so that 3¢ (x/27) = 1. Define kj(x) = k(x)p(x/2’)
and kk,_,'(x) = Vo * kj(x).

Our proof will show that the norms | (Zk |k, k +j* a(x1, X2)|%)**|, decrease
geometrically as |j| = c. Then summing over j finishes the proof. To see
what is going on let us first consider the case j = 0, and write kx = ki, k. TO
estimate (O |k« * a|?)!/? we next decompose a as follows: Using the notation
of [3], [4] and [5], since a is an atom, it can be written as @ = 2 g < ¢ eg Where
the sum is taken over the dyadic subrectangles of 2, and we are going to use
this representation of a to do a splitting of a which depends upon the point
(x1, x2). For an integer r > 0 and an integer / consider the following defini-
tions: R; is the collection of all dyadic subrectangles of 2, R = I X J where
| 7| = 2" and where J is a maximal dyadic interval such that I x J C Q. Split
the rectangles in R; into disjoint subclasses R, x,),1,- by setting Ry, - to be
those rectangles of R;, R = I x J where 27"~ ! < M(X;)(x2) <2~". Then for
each fixed (x1,x2) = x,

U Rx,1,r
leZ
reZ,r=0
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is precisely the collection of all dyadic subrectangles of Q, R=1 X J so that J
is maximal.
Finally, we let

(r1,x2) _
ar; = Z ( Zes >,
ReRy, 1,y \SCR;x1length of S =2/
so that

a=a,.
I

Now, we claim that (3 |k *af . ; /%" has an L' norm which is 0(c{/!c}) as
|j], r— o where the ¢; < 1 for i = 1,2. Summing these estimates on j and r

finishes the argument that
<Z 'kk*a|2>l/2 el
k
Again, we consider the special case j = 0 and show that

|(5 et Py
k

' = 0(c"), c<l1l, as r— oo, )
It

If r > 1, by the way we constructed ay , it is clear that kx *ay,, has support
in (1, X2) | Ms(Xa)(x1, %2) > 15557} = & Since by the strong maximal
theorem, |Q,| = 0(r2"), by the Cauchy-Schwartz inqueality, to show (0) it will
be sufficient to show

|(Sera, )] =02

.

We shall estimate |k *aj| 2 by using the following trivial lemmas:

Lemma 1. Suppose b(x) is a function on R! whose support lies in the union
of the disjoint intervals Ix, and which has its first N moments vanishing over
each Ir. Suppose a point x € R! lies outside the union of the doubles of the
Ir. Then for any Calderon-Zygmund operator T on R?,

|Tb(x)| < C|T |z sup MX )N ) - b)),
where
Jb)x) = (Z M 2(Xz,,)) V2. (Z M 2(bXJr,c)(X)) 2,

Lemma 2. Let b(x;, x2) be a function on R? supported in an open set § of
finite measure. Denote by by, the function given by by,(x2) = b(x1, x2), and by
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Li(x1) the component intervals of 0, = {x1 | (x1,x2) €60}. Let § denote the
operator which acts in the x; variable for each x;, defined by

I(b)x1, x2) = (; MZ(XIk(,l)(xz))‘”(Z MZ(XIk(xl)bxlxxz))“

Then |9(B) |2 < C|6|?|b| 2.

The point of these lemmas is that, as a function of x; for fixed x1, af, -(x1, -)
has the properties of the function in lemma 1, so that kx(x; — ) as a singular
integral in the x; variable applied to af (¢, -) is dominated by

|ki(xr — Ol cz - Slag, (¢, )] - 27N < Jku(xr — D)z - Jlar(t, -Maw(t, )] -2~
where

ax = Z eR.
R<a
R=IxJ
1] = 2%
We also have |, |k(9)|czdf < C.
Therefore |k *ai ,(x1, x2)| < |ki|cz*1 (@)(x1)(x1,%2) - 27 and by lem-

ma 2 we see that | J(ax)|2 < C|ax|2. It follows that

” <Z|kk*allcc,r[2>l/2 < 2_N’C<Zuak||§>l/2 <Cc2M
K 1 k

If r = 0 we estimate (Zk | ki * a,§’0|2)1/ 2 by observing that this function is sup-
ported in the set {My(Xy) > 11—0} which has measure < C. To estimate its L'
norm we estimate its L norm by observing that

|(Z Ik o) 22 <
< B |(Zlhewag, )
k

r=1

L (Eeat)

12

so we have only to estimate (X |kx*ax|?)'?|;2. But this is easy since
le |k()|czdt < C, so  |ki*ar|2<Clax|2 and so i |ke*ak|; <

< C3k|ak]} < C'. Now, let us pass to the next case where j > 0 and r > 0.
That is, we require an estimate of

“(Z |kk*a,’§+j,,|2>”2” = 0(c/*") for some ¢ < 1.
r3 1

Again, the support of ki *ay ., ; , is contained in @, of measure < Cr2’. So
as above we need to estimate |[kx*ay.;,[2. By using the fact that
Y= yP*y® we may write kx*ai, = ki*(5@*1ai,;,) where ki has
similar properties to kx. Now we use the special form of ai ., ; , to estimate
ki* (YR =145, ;. ,). It turns out that essentially i, ; (x:,X2) over a dyadic
interval in the x; variable of length 2% */, say the interval [0, 2¥ */], is of the form
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Y(x1/2¥ 7Y « ay, 1(x2). Then, for x; € [0, 2¥*/] we have |ySR * [¥(x1/2* *9)]| <
< C277N because of the vanishing moments of . It follows that

x1+2k

; 1
|Kex (V3R #1625 5,) (61, x2)| <2777 j ()t o) dt

2 X1 — 2

where ax + j(x2) is the function such that ax 4 j(x1, X2) = ¥(x1/25 ) - ok + j(x2).
Again, from the lemmas, it follows that

| ke (W3R %108 )2 < €27 ™M ae 4 42,

and this is the estimate we needed.

(Actually aj,,, and a,,; and a;,; over dyadic intervals of length 2k+J
(say [0,2%*/] are averages over 7€[0,2%*/] of functions of the form
Y(x1 — 7/2¥ *)a,(x2); this average does not, however, interfere with any of
the estimates done above; see [5]). The case r =0 and j > 0 follows from
the cases r >0, j<O0 as was carried out previously. If >0 and j <0,
then we estimate |(Xx |kic* @i _;,,1%)"*|; by observing that the support of
ki*ag _; (x1,X2) is contained in &, of measure < C(r + |27+ we
estimate, as before, the L? norm of kk*ay _ ;. by using the fact that for
each fixed x2, ax . ;i (-, X2) has the following property: There exist disjoint
intervals of length 2~ over which the first N moments of ag_ji, (- X2)
vanish. Just as for the familiar case of scalar valued kernels, we may take
advantage of the smoothness of kx(x) and subtract off the correct Ta§lor
approximation to kj to produce kx such that ki *aj _ Ulr = ki *aj _ 1jl,r but
|ki(@)|cz < 27%2~ VIV, Now we use the fact that for fixed xi, af_ ;. (x1, -)
has N vanishing moments over the component intervals of {xz|(x1,x2) €
€Urerec_1j),, R} to dominate kg() acting on af_j; (a1 -) by
27N g(ag - ;1,000 — t, ) |ki®)| o s0 that

i a _ 11, 61, 2)| < €27 N K] 1 Sk - 11)
and obviously
[eex s §a- 101 < €27 W a1,
which proves that

(i)

< C2- NG+ b,

Passing to the estimate of |(Xk|ki* ag_ji,0|*)"?, is routine and left to the
reader.

Now we are almost finished. We have shown that ﬂ(Zk lkexal®)?] < C
and all that is left is to show that |(Zk |kk,« +;*a|?)'/?], tend to 0 geometri-
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cally. But this is immediate, since for say j > 0, k«, « + j(x) satisfies all the same
estimates as 2™k 4 j(x) and so by the estimates above,

(Z lkk,k+j* a|2>1/2
k

=02~M).
1

This proves our theorem.
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On the Boundary Values
of Harmonic Functions

P.R. Garabedian

1. Introduction

Over the years many methods have been discovered to prove the existence of
a solution of the Dirichlet problem for Laplace’s equation. A fairly recent col-
lection of proofs is based on representations of the Green’s function in terms
of the Bergman kernel function or some equivalent linear operator [3].
Perhaps the most fundamental of these aproaches involves the projection of
an arbitrary function onto the class of harmonic functions in a Hilbert space
whose norm is defined by the Dirichlet integral [5]. Here a problem has re-
mained open concerning continuity at the boundary of the solution that is
constructed by orthogonal projection. Past discussions of this question turned
out to be successful in space of two or three dimensions, but failed for larger
numbers of independent variables [2]. It is the purpose of the present note to
remove any such restriction and simultaneously to give a concise treatment of
the boundary condition that is applicable to other existence proofs.

Let D be a domain in #n-dimensional space that has a smooth boundary dD.
We introduce the Hilbert space H whose elements are the gradients of har-
monic functions # with a finite Dirichlet integral

[ul® = @, u) = [, |Vul* dr.

That H is complete follows easily from the mean value theorem for the partial
derivatives of u.

33
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Let w stand for a continuous function on dD that can be extended inside
D so that its Dirichlet integral there is finite. According to the Riesz represen-
tation theorem the bounded linear functional (#, w) can be expressed as the
scalar product

u, w) = (u, U)

of u with an element U of the Hilbert space H. In fact U may be viewed as
the orthogonal projection of w onto H. It might be anticipated that U solves
the Dirichlet problem for Laplace’s equation in D with boundary values w
assigned on dD. However, we shall not attempt to establish this directly.

Let us consider the auxiliary function

where r stands for the distance from a point x in D to a variable point of in-
tegration £, and where w,/(n — 2) is the surface area of a unit sphere. After
a preliminary application of Green’s theorem that resolves the singularity at
¢ = x, differentiation under the sign of integration shows that v satisfies the
partial differential equation

Av = Aw

in D, since 1/(wnr""?) is a fundamental solution of Laplace’s equation. To
prove that w — v solves the Dirichlet problem formulated above it therefore
suffices to show that v vanishes continuously at the boundary aD. It is our
intention to develop an elementary proof of this result in the next two sections
of the paper.

2. Green’s function of a nearly spherical domain

In Neumann’s method of the arithmetic mean [4] the solution of the Dirichlet
problem is sought as a double-layer potential

u_l ] lda
" wn apﬂaur"_2 ’

where » stands for the inner normal. A Fredholm integral equation

1
By — pdew=w
2 wnJop
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is found for the determination of the unknown density p on dD, where

a 1

do="
@ v rt =2

do
becomes, after division by n — 2, the solid angle subtended from the point
X = Xo on dD by the surface element do. An exact solution may be obtained
when D is a half-space, since in that case dw = 0, so u = 2w.

More generally, following Neumann, one can try to determine p as the limit
of a sequence of successive approximations y; defined by the formula

2
pLj=2W——J‘ uj_ldw.
Wn JoD

A proof of convergence hinges on estimating the difference

2
Kirl = W= ——J [wi — pi-1] do.
Wn JaD

For the moment let us suppose that aD consists of two pieces, one being the
infinite section S; of an (n — 1)-dimensional hyperplane that is cut out by a
small cell S; of some convex surface, and the other being S, itself. Further-
more, let us assume that with reference to any point xo on S; or S, the solid
angles subtended by either S; or S, are both less than ¢/(n — 2).

From the hypotheses we have formulated one can derive the estimate

4e
|wi+ 1 — w] < —max|p; — pj-1l.
Wn

This follows because any line intersects the surfaces S; and Sz in at most three
points, so that the solid angle of integration dw/(n — 2) does not become
multiplied by more than two. Therefore u; converges to a solution u of the
Fredholm equation provided that € < wn/4. We conclude that the Dirichlet
problem can be solved and the Green’s function

G = anln__z. 4+ o
for Laplace’s equation exists in either of the two infinite domains bounded by
Sl and Sz.

Let us return to the case of a smooth surface dD bounding a finite domain
D. To assess boundary values we require that each point xo of D can be
touched by a closed sphere located enterely in the exterior of D. An inversion
mapping this sphere onto a half-space transforms dD into a surface that
becomes convex in the neighborhood of the boundary point xp. Consequently
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a convex surface element S, of 3D enclosing x can be cut out by a hyperplane
whose outer section S; combines with S» to meet the hypotheses announced
above. Thus we are assured that a Green’s function G exists in the infinite
region bounded by S; and S, that contains D.

In the next section we shall use G as a parametrix to estimate the boundary
values of the auxiliary function v. To complete our discussion of Neumann’s
method here we observe that, coupled to the Kelvin transformation [4], it pro-
vides a convenient construction of the Green’s function for a nearly spherical
domain. Moreover, convergence of the Neumann series can be proved without
the assumption of partial convexity that we have introduced as a matter of
convenience.

3. Continuity at the boundary

We proceed to establish that the auxiliary function v defined in Section 1 ap-
proaches zero as its argument x approaches any point xp on the boundary sur-
face dD. The analysis of Section 2 shows that it suffices to consider the case
where xo lies on a convex surface element S, of dD which, together with the
outer section S; of a corresponding hyperplane, bounds a domain containing
D and possessing a well defined Green’s function G.

Let us recall that w — U is orthogonal to every harmonic functon u of the
Hilbert space H in the sense that

(w—-U,u)=0.

Since the difference between G and the fundamental solution 1/(w.r" %) of
Laplace’s equation lies in H, it follows that v has the representation

v=(w-U,QG).

Because G vanishes on S, we wish to draw a similar conclusion about v.
Given any number 6 > 0, the locus of points ¢ where

G=Gx9H=6

is seen to lie inside D when x is chosen sufficiently close to the boundary point
Xo. The estimate of G required for the proof follows from a comparison with
the Green’s function of a half-space enclosing S; and S.. In this situation
Green’s theorem yields the identity

v=— j (G — ) Awdr + j (Yw — VU) - VG dr.

G>é G<é

As x — xp the first integral on the right tends to zero with § provided that w
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has bounded second derivatives. The second integral, which is evaluated over
the part of D where G < 8, has the same property in view of the Schwarz ine-
quality
2 2 aG 2
[ j (Yw —VU) -VGdr|* < |w— U] j G—do=5|w-U|’.
G<s G=5%

This completes the proof that v vanishes on dD. Thus w — v solves the Dirichlet
problem posed in Section 1, and our existence theorem is established.

A similar treatment of the boundary condition can be given for the solution
of the Dirichlet problema constructed from Dirichlet’s principle rather than
from projection onto the Hilbert space of harmonic functions. The method
succeeds for more general linear partial differential equations of the elliptic
type, too [1]. The main requirement is that a fundamental solution can be found
in the large. The proof can also be based on other principles of functional
analysis, such as the Hahn-Banach theorem [2]. One advantage of the present
approach, as we have already indicated, is that it applies in space of arbitrary
dimension. On the other hand, a disadvantage is the restriction to domains with
a smooth boundary.
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On Discrete Subgroups
of Lie Groups and
Elliptic Geometric

Structures

Robert J. Zimmer

In this paper we continue the investigation of [7]-[10] concerning the actions
of discrete subgroups of Lie groups on compact manifolds.

Let H be a connected semisimple Lie group with finite center and suppose
that the R-rank of every simple factor of H is at least 2. Let I' C H be a lattice
subgroup and M" a compact n-manifold with a volume density. Let P> M
be a G-structure on M where G is a real algebraic group. More precisely, let
GL(n, R)® be the k-jets of diffeomorphisms of R” fixing 0, and P*’ — M the
principal GL(n, R)®-bundle of k-frames on M([1], [13]). Then GL(n, R)® is
a real algebraic group and the (k-th order) G-structure P — M is a reduction
of P® to the real algebraic subgroup G C GL(n, R)®. We shall let
Aut(P) C Diff(M) denote the subgroup of diffeomorphisms of M that
preserve the G-structure.

In [6] we showed that under the above hypotheses any volume preserving
action of H on M which preserves the G-structure is either trivial or implies
the existence of a non-trivial Lie algebra homomorphism L(H)— L(G), or
equivalently, a Lie algebra embedding L(H') — L(G) for some simple factor
H' of H. In [7], [8] we put forward the following conjecture.

39
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Conjecture. With hypotheses as above, assume there is a smooth volume
preserving action of I' on M defining a homomorphism T' = Aut(P). Then
either:

a) There is Lie algebra embedding L(H’) = L(G) for some simple factor H'
of H; or
b) there is a I'-invariant Riemannian metric on M.

We remark that, as explained in [7], the conjecture would imply in par-
ticular that actions of I' on low dimensional manifolds are trivial on a
subgroup of finite index.

In [8] this conjecture was proven under the additional assumptions that the
G-structure is of finite type (in the sense of E. Cartan [3], or more generally
in the sense of Tanaka [5]), and that the I'-action is ergodic. (In [8] the ex-
istence of a I'-invariant C°-Riemannian metric is deduced. However the
arguments of [10] show that in fact an invariant C* metric exists.) In this
paper we weaken the assumption of finite type to that of ellipticity at the ex-
pense of assuming that Aut(P) acts transitively on M. (However the ergodicity
assumption is no longer needed.) We recall that the G-structure is elliptic if
the infinitesimal automorphisms of P (i.e. the vector fields defined by
1-parameter subgroups of Aut(P)) are characterized as those vector fields
satisfying an elliptic partial differential equation. For first order structures,
this is equivalent to the simple condition on G that the linear Lie algebra
L(G) C ®l(n,R) contains no matrices of rank 1 [3, Prop 1.1.4]. (For higher
order structures see [1,p. 71].) One of the salient features of an elliptic G-
structure is that Aut(P) is a (finite dimensional) Lie group. The main result
of this paper is the following.

Theorem 1. With H, I', M, G, P as above, suppose that I" = Aut(P) is a
volume preserving, G-structure preserving action of I' on M. Assume that

a) Aut(P) is a Lie group (e.g., G elliptic), and
b) Aut(P) acts transitively on M.

Then either

1. there is a Lie algebra embedding L(H') — L(G) for some simple factor
H' of H; or
2. there is a I'-invariant Riemannian metric on M.

We remark that if Aut(P) is almost connected (or more generally if a subgroup
of I of finite index is mapped into the connected component of the identity,
Aut(P)°) then Theorem 1 follows from the work of Margulis [4] combined
with the result of [6] described above and Kazhdan’s property for I" [2], [12].
In general, if course, Aut(P)/Aut(P)° may be infinite.
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There are two basic known results we need for the proof of Theorem 1. The
first is that the above conjecture is true if conclusion (2) is weakened to asser-
ting the existence of a I'-invariant measurable Riemannian metric on M. (By
a measurable Riemannian metric on a vector bundle we of course mean a
measurable assignment of an inner product to each fiber of the bundle.) This
is a consequence of the superrigidity theorem for cocycles [11], [12, Thm.
5.2.5]. More precisely, we have:

Lemma 2. (Cf. [7, sections 2, 3]). Let P— M be a principal G-bundle where G
is a real algebraic group. Let H be a connected semisimple Lie group with finite
center such that the R-rank of every simple factor of H is at least 2. Let I" C H be
a lattice. Assume that every Lie algebra homomorphism L(H) — L(G) is trivial.
Let V be a vector space on which G acts linearly (and smoothly), and E - M
the associated vector bundle. If T acts by principal bundle automorphisms of
P covering a finite volume preserving action on M, then there is a measurable
T-invariant Riemannian metric on the vector bundle E.

The second result we need, proved in [7] enables us to give an estimate for
the integrability properties of the measurable invariant metric in lemma 2.

Lemma 3. [7, Theorem 4.1]. Let T be a discrete Kazhdan group (i.e., group
with Kazhdan’s property T [2], [12]), and T'o C T a fixed finite generating set.
Then there exists K > 1 with the following property. If (S, ) is a standard
Borel ergodic T'-space with I'-invariant probability measure, and f: S— R is
a measurable function satisfying |f(sy)| < K| f(s)| for almost all s and all
v €T, then fe L\(S).

Now let V be a finite dimensional real vector space. If 5, £ are inner pro-
ducts on V, we set (as in [7, section 3])

M(n/) = max{|v],/|v]]v = 0,0 V),

and if 7u, &m(m € M) are measurable Riemannian metrics on a vector bundle
E— M we let M(y/%): M — R be M(y/£)(m) = M(nm/%n). Suppose T' acts on
E by vector bundle automorphisms, that M is compact, that » is a measurable
T'-invariant metric, and £ is a smooth metric. Then for yeI', and m e M,

M(n/&)(my) = M(y*n/vy*§)(m) = M(n/~*E)(m)
< M(n/§)(m)M(&/~*£)(m).

(Cf. [7, Cor. 4.2]). We thus deduce that there exists B > 0 such that me M
and v € ' implies M(n/&)(m~y) < BM(y/£)(m). From these remarks and lem-
ma 3, we obtain:

Lemma 4. Let I' be a Kazhdan group acting smoothly on a compact
manifold M. Suppose I" preserves a smooth probability measure p on M. We
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let p= jE® uedv(t) be an ergodic decomposition of n under the T'-action.
(Thus (E, v) is the space of ergodic components.) Suppose v is a measurable
I'-invariant Riemannian metric and that £ is a smooth metric. Then for q suf-
ficiently large, we have M(n/£) € L¥ %M, p;) for almost all t.

We now assume the hypotheses of Theorem 1, and suppose that every Lie
algebra homomorphism L(H)— L(G) is trivial. By lemma 2, there is a
measurable I'-invariant metric  on 7M. Choose g as in lemma 4. If
fi M—(0,) is a measurable I'-invariant function, then fy is also a
measurable I'-invariant metric. There is clearly a measurable A: E— (0, o)
such that [z h(®)*%(f M(n/£* %dp:) dv(f) < o and thus if we let f=hop
where p: M — E is the map defining the decomposition into ergodic com-
ponents we have that fy is a measurable I'-invariant Riemannian metric satis-
fying M(fy/€) € L¥9(M, ). Thus, replacing n by fy, we shall assume
M(n/8) e L¥9(M, p). Let Y be the set of (globally defined) infinitesimal
automorphisms of P, so that (by hypothesis (a) of Theorem 1) Y is a finite
dimensional vector space of smooth sections of TM and (by hypothesis ()),
for each m € M the evaluation map en: Y — TMp, is surjective. For Fe Y, let
®(F) = [ | FOm) | 772 dp. Since M(y/§) e L¥UM), 0 < ®(F) < 0, and it is
clear that ®(¥) = 0 if and only if F = 0. Furthermore & is continuous. (To see
this simply observe that

|®(F)| < [ |M(n/8)|V | Fim)| 2
< |M@/9V o] | Fem)|B2)V2.

Thus, if max |F(m)|, — 0, we have ®(F)—0.) We also observe that &:
meM

Y — [0, ) is homogeneous of degree %. It follows from these properties of ®
(and the fact that dimY < oo) that {F| |®(F)| < 1} is a (non-empty) open set
with compact closure. Since 7 is I'-invariant, it is clear that @ is also I'-
invariant, and the preceding sentence implies that the representation of I' on
Y is uniformly bounded. Since dimY < oo, there is a I'-invariant inner product
on Y. Via the maps {en} this defines a smooth metric on 7M, and it is clear
that I'-invariance of the inner product on Y implies that this metric on 7M
is I'-invariant. This proves Theorem 1.

Remarks (a). 1f % is a local field of characteristic 0, A an almost k-simple
algebraic k-group, with k-rank(H) > 2, and I' C Hk is a lattice, then super-
rigidity and Kazhdan’s property hold for I' [2], [12]. Thus, the above argu-
ment shows:

Theorem 10.5. Let M be a compact manifold, P a G-structure on M such
that Aut(P) is a Lie group acting transitively on M. Let T' C Hy be as above,
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and assume that I'" acts on M so as to preserve a volume density and the G-
structure P. Then there is a I'-invariant Riemannian metric on M.

(b) If Aut(P) is a Lie group which is not transitive on M but the globally
defined infinitesimal automorphisms of P define a foliation of M (which is
then of necessity I'-invariant), then the above argument shows that there is a
I-invariant smooth metric on the tangent bundle to the foliation.
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ABSTRACT. This paper is the second part of a work devoted to the study of
variational problems (with constraints) in functional spaces defined on do-
mains presenting some (local) form of invariance by a non-compact group of
transformations like the dilations in RY. This contains for example the class
of problems associated with the determination of extremal functions in ine-
qualities like Sovolev inequalities, convolution or trace inequalities... We
show how the concentration-compactness principle and method introduced in
the so-called locally compact case are to be modified in order to solve these
problems and we present applications to Functional Analysis, Mathematical
Physics, Differential Geometry and Harmonic Analysis.
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1. Introduction

This paper is the second part of a work devoted to variational problems with
compactness defects. We use the notations of Part 1 [65] and we refer the
reader to Part 1 [65] for a general introduction to the problems studied here.

Finally, formula (1 — n) will mean formula (7) of Part 1 while formula (n)
is the n™ formula of th’s paper.
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2. Extremal functions in unbounded domains

2.1 Hardy-Littlewood-Sobolev inequality

In this section we are mainly concerned with the minimization problem
associated to the «best constant» Cp in the following classical inequality
—called Hardy-Littlewood-Sobolev inequality—; see [39], [40], [32], [74]:

luxlx|*re < Clylzr,  vueL/(RY) 2.1)
for some C depending only on N, p, g, N\ and where:

N 1 A 1
<N, 1 A L L 2.2
0<X <P<y—yw RtN-lty 2.2)

Following E. H. Lieb [53], we consider the minimization problem:
= Inf { — [ |Kxul?dx /ue LP(RY), [ \|ul?dx = 1]; 2.3)

we will also denote by I, the corresponding infimum where / is replaced by
p>0 so that: I, =pu??7<0. Of course we consider in this section
K(x) = |x|~ » but our goal is to show how our general method applies in this
example and gives the existence of 'a minimum (and compactness of minimiz-
ing sequences) without using the very particular properties of K namely the
fact that K is spherically symmetric and decreasing. And this will enable us
to treat general classes of potentials K(x).
We prove here the following:

Theorem 2.1. Under assumption (2.3), let (un)» be a minimizing sequence of
problem (2.3). There exist (yn)n in RY, (on)n in 10, o[ such that the new
minimizing sequence U, defined by:

n( ) = 05 YPn((+ — Yn)/0n)

is relatively compact in LP(R™). In particular there exists a minimum of
problem (2.3).

Remark 2.1. The existence of a minimum is proved in E. H. Lieb [53], hence
the above result is a minor extension of [53], but we emphasize the fact that
the proof in [53] relies on symmetrization arguments which prevents any
generality on the class of potentials K while our methods does not depend on
the particular form of K.

Remark 2.2. Using —a posteriori— the symmetrization, one easily sees that
any minimum of (2.3) is spherically symmetric, decreasing (up to a trans-
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lation)— see [53] for more details. In addition if p = ¢’ or p = 2 or g = 2, the
explicit values of I and of the minima are given in [53].

Proor oF THEOREM 2.1. Let (un), be a minimizing sequence of (2.3); since
both functionals [en|K «u|?dx, [} ev|#|?dx are invariant by the change:
o~ NPu(- /o), we have to get rid of the possibility of «vanishing» exactly as
we did in Part 1 for Sobolev inequalities (Section 1). We thus consider a new
minimizing sequence —that we still denote by u,— obtained by dilating u,
such that:

On(1) =3 2.4
where

On(t) = Sup [, on@dx (V120 pn=ual”.
ye

Exactly as in [55], [56], [65], we exclude vanishing by (2.4) and dichotomy
as in [55], [65] since [ = A?P(<0) is strictly subadditive ((S.2) holds!) —here
since (#n), is only in L?, we do not have to use smooth cut-off functions to
perform the dichotomy and the argument is exactly the one described in [55],
[58]. In conclusion, there exists (¥n), in R" such that @n(-) = un(+ + ¥n),
satisfies: |dn|? is tight. In the remainder of the proof, we still denote by u,
the new minimizing sequence #,. We may of course assume that: u, = u weak-
ly in LP(R™). Let us also observe that |K *u,|? is tight and that K *u, = K*u
a.e. on R™: indeed for all R < M < co:

| el < Colunl s +

+J‘
x| =M

x| =

q

1 1
L <r |—x“:y—|>\ u(y)dy| dx <
yI<

(] = R dx 2 <

< e(R) + 6r(M)

where ¢(R) = 0 if R = +o0 and 6r(M) — 0 if M — +oo for any fixed R < oo.
This shows the tightness of | K un|?.

Concerning the a.e. convergence of K = u,, we just observe that we have the
following series of inequalities:

| K * (unlpg) — K *n) 1o < €(R),

IK%(ulpe) — K*xu|a < e(R)
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where e(R) = 0 if R = +o0;
Ka*(unlpg) = Ks#(ulpg) (vxeRYN, v6>0, VR < )
where K5 = 1|x| »5K;
|Ks* (nlpg) — K*(unlp)|m < pr(®)  (ind" of n)

where pg(6) > 0as 6 > 0., melN/\ ql.

And this yields the convergence in measure.

There just remains to prove that: LRN |u|?dx =1 (we will denote by

Co = —1I). To this end we adapt to our setting the method of sections I.2-1.3
of Part 1 [65]: a basic ingredient being the following lemma corresponding to
lemma I.1 in [65]:
Lemma 2.1. Let u, converge weakly in L°(R™) to u and assume |un|? is tight.
We may assume without loss of generality that |K * u,|?, |un|? converge weakly
(or tightly) in the sense of measures to some bounded nonnegative measures
v, u on RN. Then we have:

iii) There exist some at most countable set (possibly empty) and two families
(xj)jes of distinct points in RN, (vj)jes in 10, [ such that:

v=|Kxul?+ 2] viby;. 2.5)
jeJ
ii) In addition we have:
p=|ul? + X v9Cy Py, (2.6)
jed

iii) If u=0, Cou(RM?? < w(R™); then J is a singleton and v = Cobyo,
= (co/Co) * P78y, for some co > 0, xo € R".

Remark 2.3. Exactly as in Remark 1.3 ([65]), if » is given by (2.5) with
u e LP(RY), Yjes»?/? < o then » is the tight limit of (|ua|?)» where u, con-
verges weakly in LP(R") to u.

Remark 2.4. Both lemma 2.1 and 2.1 have the same consequence: for exam-
ple in the context of lemma 2.1, if u, — u weakly in Z?(R") and if |u.|? con-
verges tightly to a measure p without atoms then K * u, converges strongly in
LP(RY) to K *u.

Using lemma 2.1, we may now conclude the proof of Theorem 2.1 follow-
ing the scheme of the proof of section 1.2: first, if # = 0 and if |K * un|?, |un|”?
converge tightly to some bounded nonnegative measures », u, we have

(RN =Co, wRYM=1.
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Hence we may apply part (iii) of lemma 2.1: p = 8, for some xo € R. And
we obtain a contradiction with (2.4).
Next, if « = [_4|u|”dx€]0, 1], we observe:

L=1I= —I |K*u|?dx — ] vj.
RN JjeJ

In view of the homogeneity of (A — ,) we deduce:

L1+ 21, with = (vj/Co)P”?
jeJ

Since J;J/Aj <1 — a by (2.6), we finally obtain:
11 ? Ia + Il -
and this contradicts the fact that (S.2) holds for all p > 0:
L<Iy+1, o, Va €]0, pul. (S.2)
Therefore @ = 1 and we conclude.

Proor oF LEMMA 2.1. Many of the arguments below are identical to those
introduced in the proof of Lemma 1.1 [65]; only technical details differ!

We first observe that since (K * u,) converges a.e. to K*u and (|K* us|9),
is tight, applying the Brézis-Lieb lemma [21] we just need to prove (2.5) in the
case when u = 0. Using Lemma 1.2 [21], we only have to prove that:

[leledy < Co([lel?du)??,  vee DRM. 2.7)

This inequality will then prove i) and iii).
To show (2.7), we first remark that for all ¢ € D(R™):

j[K*(gpu,,)["dx < co(j |17 |un| P dx ) 7.
Then (2.7) is deduced from the following claim:
| j |K * (oun)|? dx — j |o]9| K * un|qu‘ - 0.

Using the argument we already made on the tightness of |K * u,|? we just have
to show that for all M < oo: K (pun) — o(K * un) converges to 0 in LI(Byy).
But for almost all x we have:

K+ (oun)(x) — o(X)(K * un)(x) =

1
- j; | Rm("’(}’) — e(Nun(y)dy + oK * (unlcr)
yi<

where C® = {yeRY, |y| > R).
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Since |#n1cr|r < €(R) with e(R) — 0 if R — +0; we just have to bound for
any R < oo:

1
1 Lqu [P (e(¥) — e())un(Y) dy| = va(x).

Denoting by R(x,7) = (¢(¥) — ¢(¥))|x —y| "™ and observing that
R(x, )1, <g€L” (R") for each x where r <25 if N> 1, r< +0 if A< 1,
we see that: v, — 0 a.e. on R". Finally for some s> g

lvn| LsBay < CM, R)| tin| 1» = C(M, R)

and thus v, — 0 in LY(Bu); and (2.7) is proved.

We next show part ii) of Lemma 2.1: since p > |u|?, we just have to show
that for each fixed je J:

p({x3}) = (vi/Co)?.

Let o = (—'T'H), where o€ D 4+ (R™), ©(0) =1, ¢ <1 and Suppe C B;. We
have:

[ 1K * (petn)| dx < Co( [ o2unl? dx) 2. 28)

We fix e and we let n go to +o: we estimate the left-hand side of (2.8) as
follows:

K (ettn) — (K * un)pe = K* (pettnlcr) — [K* (unlcr)]ee + ¥

where ¥ = Y(e, n, R) satisfies: |¢|rs < 8(R) =0 as R — +oo. In addition ex-
actly as we did before:

| K * (petin) — (K * tn)@e| raqix| > sy S p(M) >0 as M — oo,
Finally by easy arguments identical to those given to prove (2.7), we show:
K (peutn) — (K * un)pe = K (peut) — (Kxu)pe in LU (Bm).
This together with (2.8) yields:
([lodear) @< cy®([lod”du)'” +
+ 6(R) + p(M) + "Afu"Lq(BM) + [ {(K*(ulcr) o] Lq(BM()2'9)

where ARv = K+ (v1cree). Since AR is a family of uniformly bounded
operators from L? to L%(By), in order to show that A%u converges in L¥(Ba)
to 0 as e goes to 0, we just need to check it for v € D(RY) and this is then ob-
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vious since ¢.v.— 0 in LP(R™). Therefore using the fact that ¢.(xj) = 1,

Supp ¢ C B(xj, €) and (2.9), we obtain letting e go to 0, then R, M go to +co:
() = 0} < ()77

and this yields (2.6).

Remark 2.5. Of course, we also have the analogue of part iii) of Lemma 1.1:
namely under the assumptions of Lemma 2.1, and if ve L?(R"), |v + ua|”?
converges weakly to some measure j then ji — p e L'(R") and

i u+v|?+ 2/ Co)P 5y,
JjeJ

Remark 2.6. Another proof of (2.6) consists in using Brézis-Lieb lemma [21]
to deduce

q/p
Co<j iwel"dﬂ> > j |K * (peu)|? dx + lim J |K * (pevn)|? dx
where v,(un, — u) = 0. Thus in view of the proof of part i) we deduce:
1imj |K * (e vn)|? dx = j |oe|? d7

i; = Z fjaxj.

JjeJ
Therefore we have:

Cop(B(xj, €))7 = v,.

2.2 Other potentials

In this section we consider various questions related to problem (2.3) where
K is now a general potential. To simplify the presentation (see the remarks
below) we consider only the following situation:

K(x) = p(0)K(x) + ¥(x) (2.10)
where
eeCy(RY), o) =B as |x| >, yx)eLMNRY) (2.11)
t*K(x) = RK(tx), vt>0, vxeR"- (0},
KeCRN - {0}), K>0 on RN-(0}. 2.12)

We will denote by a = ¢(0).
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Clearly enough, except in the case when ¢ is constant (#0) and ¢ = 0, (2.3)
is no more invariant by dilations. But, still, the invariance of R" by dilations
induces possible loss of compactness; to understand this possibility we com-
pute for any u € LP(R"), ¢ > 0:

LRN ‘K* [U'N/pu(';)”qu = LEN

with K(x) = 6*K(0x) = 0(6x)K(x) + o (o%).

Ko+u|?dx

Therefore the value 7 of the infimum is not changed if we replace K by K,
for all o > 0 and letting 0 > +o0, or ¢ = 0 we deduce:

I< Inf{—jwmk*uvdx/u e LP(RM), jRNlulpdx= 1]
or
I< Inf{—-jRNlaIZ*ude/ueL”(fRN), IPN|u|”dx= 1]
and we denote by I the minimum of these two upper bounds i.e. if
v = max(|e, | 8]):
I° < Inf [ _JRNl’yk* u|? dx/u e LP(RM), LRNlu|pdx = 1]. (9.13)

Denoting by I, I,” the values of the infima in (2.3), (2.13) where 1 replaced
by > 0 and observing that I, = p??I, I = p?PI° with I, I < 0 we conclude
these considerations by observing that we have proved:

L<I?, wwuw>0; ISI” (2.14)
L<I,+I_o<Iy+1I;-,, Vo € [0, pul. (2.15)

Therefore, we expect the:

Theorem 2.2. We assume (2.2), (2.11), (2.12).

) If o=B#0, y=0, then every minimizing sequence (un)n of (2.3) is
relatively compact up to a dilation (on), and a translation (y»)» in L°(R") i.e.
07 NPun((- — ya)/on) is relatively compact in LP(R") for some y, in RY, o, in
10, ©[. And (2.3) has a minimum.

ii) Any minimizing sequence of (2.3) is relatively compact in LP(R
a translation if and only if:

M up to

I<I®. (2.16)

Remark 2.7. We first observe that if o« = 8 = 0i.e. K € LN*(R") then (2.16)
automatically holds since I* = 0 and all minimizing sequences are compact up
to translations. But as it will be observed in Step 1 of the proof, this is due
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to an easy compactness argument which shows that this case is actually treated
by the concentration-compactness method in the locally compact case [55],
[56]. In fact this compactness property still holds for Lorentz spaces i.e. when
Ke LN *(RM) for any 1 < a < o (same proof as below).

Remark 2.8. Condition (2.16) clearly holds if, for example,
px)Z2a=p>0, ¢ #*a, v=>0

Indeed let uo be a minimum of I (which exists by case i) of the above result,
we may assume that uo > 0 (replace uo by |uo|) then:

I< - LENlK* uo|?dx < — erthl?)* uo|? dx
< —IPNIIE* uo|?dx < I
On the other hand the same type of argument shows that if
0<p)<vy=a=8, e¢#y, >0 y¢¥=0
not only (2.16) does not hold i.e. 7 = I but (2.3) does not have a minimum.

This class of K contains the example mentioned in [2.53].

Remark 2.9. In fact, the method of proof enables us to treat much more
general potentials K. First of all in (2.12), the condition that K > 0 may be
replaced by K # 0; next we could treat

Ms

K=

1

1 Pi()Ki(x — xi) + Y(x)

with ¢ € LYMRY), @i € Co(RY) and 32 1 |0i(x)| € Co(R™); K; € C(RN — {0}),
Ki(tx) = t Ki(x) vt >0, vx #0, |Ki(x)| < (C/|x]"; (x)i =1 is a family of
distinct points in RY. Denoting by a; = ¢:i(0), 8 = lim ¢;(x) (which we assume

x| >0

exists). Theorem 2.2 still holds provided we define I* by
I* = Min(igfl?, I;f)

with I, IZ corresponding to the potentials «;K;, X BiKi.
Other technical extensions of (2.10) are possible and we will skip them.

Remark 2.10. Another possible extension is to replace K*u by some
j RNK(x_, Yu(»)dy. For instance if we consider K(x,y) = R(x, )K(x — ¥)
where K satisfies (2.12), R(x, y) € Co(R™ x R™) and R(x, y) = Bif |x — y| = o.
Then part (ii) of Theorem 2.2 still holds if we replace I° by
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= Min{ Inf I3 1:}
yeRNn
where I I3 correspond to (2.3) with the potentials R(y, »)K, BK.
Remark 2.11. Even if we may extend the classes of K for which we may
analyse completely problem (2.3) (see also Corollary 2.1 bellow) we are unable
to treat (2.3) for an arbitrary K e MNNRM) = L¥**(R)V. This is due to the

fact that Lemma 2.1 which still holds for potentials like (2.10) is not true in
general for arbitrary K e MN*(R"). Indeed consider:

K(x) = |x1] %), x1€R', xeR"

and (for example) O0<a<n, oeD,(R™) (p#0), x=(x1,x2). Then
KeM™™if N/\ = n/a. In this example, one remarks that if (#,), converges
weakly in ILP(RY) to u, if |us” is tight and if we choose
Un(x1, U2) = vn(X1)Wn(x2) where v, converges weakly to v in L?(R"), w, con-
verges weakly to w in LP(R™) then denoting by u, » the tight limits of the
measures |un|?, |k*un|? (or subsequences) we have:

v=|Kxul|?+ 2] b ® (p* w)?
ieJ
p=lul?+ }%(Vj/c)p/qlsx{@ﬁ
je

for some at most countable family J, distinct points xJ in R" bounded
nonegative measure i on R™, C > 0.

We now turn to the proof of Theorem 2.2:

Step 1: Preliminary reductions

We first explain why ¢ may be assumed to be 0: indeed we just need to observe
that if

un—>u weakly in LP(R™),  (|ux|"). is tight (2.17)

then ¥ * 1, =,y * u strongly in LP(R").

By the density of D(RY) in LY(RY), we may without loss of generality
assume that y € D(R") since

I *un — ¥*un|1? < C|¥ — ¥ v

But if ¢ € D(RY), Y #*u, converges a.e. to Y *u and ¥ *u, is bounded in
LPNL>. Finally since |u,|” is tight, |¢*u,|? is tight and we conclude easily.
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This easy observation indicates that ¢ creates no difficulty in the argument
below, hence we assume from now on: y = 0. Next, if we still denote by O,
the concentration function of |u|?, where u, is a minimizing sequence of (3)
and if we denote by u$ = 0~ ¥Pu,(- /o) we observe that the concentration
function of |u;|? satisfies:

On(®) = Qu(t/0), vt > 0.

Therefore there exists (o.)» in ]0, o[ such that (4) holds. We denote by
i, = uy". Observe that:

J | K *un|?dx = j | K * 61,7 dx

where K, = ¢(x/0,)K(x) and recall that we already saw that for each n > 1 the
value of the infimum (2.3) is not changed if we replace K by K.

We now apply the standard concentration compactness method ([58], [59],
[55]): vanishing is ruled out by (2.4). If dichotomy occurs we find « €10, 1]
such that for all € > 0, there exist Ro, R, y» satisfying:

H[ﬁ,l,lpdx—aISE, j|ﬁ§|pdx—>1—a, R, — o,
~1 _ -~ o
Un = Un " X(|x-yul =Ro}> Un = Un* X{|x—yn| sRn}*
Let v, = i, — (% + ##3), we have clearly:

U]K,,*ﬁnl"dx— j]K,,*(a}, + ai)lqull < Ce
i
le"*ﬁ},l"dx;la_E, %nj‘lKn*ﬁﬂ"dx;Il_a.

Since (S.2) holds (cf. (2.15)), we reach a contradiction since
[ j|1<,,*(a,1, + @2)|9dx — f Ko a7 dx — [ |Kox 3|7 dx| <
< C[ IR« || |K+ |1~ + |R+ | @] | K+ |ah] " d.

To conclude we prove that this integral goes to 0; and since both terms are
basically equivalent, we will only treat the first one: first

Jito e (RGN R o 17 e < C 1R 5]
Translating if necesary #,, we may assume y, = 0. Then 7y has its support in
a fixed ball Br, and we deduce as in section 2.1 that the above integral is
bounded by 6(M)— 0 as M — « (ind. of n). Next we consider:
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[ag g 1B * ][R0 2] e =

- J‘IX|<M, f|x—yIsRo+Mk(x_y)|ﬁ'l'(-y)| dy
' H|y|=R,,k(x‘~")
< R"_ELXRMZ”(X)‘ jI?(x - »x - ylflﬁ,,(y)ldy‘q‘ldx

where 0 < e <\, Zn = (K - X{|x| <Rro_ ) * |#1|: Zn is bounded in L'NLI. We
conclude observing that

() dy|? ™ dx| >

|(K|x|9)=|@5]?"" is bounded in L, with r.=gq./(q—1)

and g, is given by: }1—, +Ae=1+ (71(— (choose e small enough), hence g. > g,
re>q' and r{e]l, q].

Therefore dichotomy does not occur and we conclude: there exists (y,)» in
R™ such that |i.( - + yn)|? is tight. We still denote by 7, this translated se-
quence. We may assume that i, converges weakly to e LP(R™), that
on— 0 € [0, ©]. We denote by C = —1I, C = —I where I corresponds to (2.3)
with K=aK, K*=8Kif 0 =0, = aK if 6 = + o, = p(6x)K if 6€]0, .

Step 2. A variation of Lemma 2.1.

Lemma 2.2. Let i, converge weakly in L(R™) to ii and assume |ii|” is tight.
We may assume that |K,*i|?, |d|” converge weakly to some measures v, p.
Then part i) of Lemma 2.1 holds with K replaced by K= in (2.5); and we have:

p=lal? + Z (Vj/é)p/qﬁxj if 0€]0, o[
jeJ

2.18

w2 al” + 3 0i/C)"6,, if o=0. 2.18)
jeJ

And if i = 0 and Cp(RM?? < »(R™) with C; = C if 0€]0, ], C; = C if

o = 0; then J is a singleton and v = Cobxo, p = (Co/Cl)p/thxo for some xo € RY,

co > 0.

Proor. The proof is very similar to the one of Lemma 2.1, and we will only
sketch it. Since |K,| < C|x| ™%, it is clear that (|K,* @x|%)x is tight. In addition
(Kn* i)~ K®+ia.e. in RY, and K, * i — K®* — 0 in LY(R"). Furthermore
ifo >0, (K, — K®)*i— 0in LI(R") and this proves the above result if ¢ > 0.
In the case when o = 0, we just go through the proof of Lemma 2.1 and we
find if u =0:

(Jow8l7dv) < C( [ €17 dn) ™, vEe DRY).

And this reverse Holder inequality allows us to conclude.
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Step 3. dn is compact in LP(RV).

If =0, by Lemma 2.2 since »(RM) = —I=C, p(R¥) =1, » = Cby,
u = Cby, for some xo € RY. But this contradicts (2.4). Hence i # 0; now let
0 = [ ~|4F dx. If 6 €]0, 1] we argue as follows: first of all if o = —oo, then
by (2.18) and (2.5):

1260+ 2w with pi= (n/C)P4
jeJ

I=1121_9+ ZI_,L_,-219+I;°_0
jeJ

and we reach a contradiction in view of (2.15).
On the other hand if o €]0, I, still by (2.18) and (2.5):

120+ 2 p
jeJ
I=I1219+ZI—W>[9+1°1°_0
jeJ

and again we conclude.
Finally if ¢ = 0, we again use (2.18) and (2.5):

{1 20+ 2w
jeJ
I=L 215+ I_¢;

and we conclude: 6 = 1 i.e. i, converges to i in LP(R").

Step 4. Conclusion.

If we had 0 = +o, then (K, — aK)*i#— 0 in LIYR"); indeed |#,|” and
x| = f,|? are tight hence we may restrict the integrals on |x — y] < K. But
® (‘—'2) converges uniformly to « if 0, = + o on such a set and we conclude.

On

Now this would imply:

I=1lim J‘ |Kn# thn|9dx 2 T > T%;
and if (2.16) holds this is not possible.

On the other hand if we had ¢ = 0, then we claim that
(Kn — BK)*1i,—0 in LYRY)

And again (2.16) would rule out this possibility. To prove the claim we just
have to prove for any R < o that

\[ \]' - ¢
x| <R | JIy| <R

0y

_ _ q
<x y>—B1K(x—y)lﬁn(y)|dy dx— 0.
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Taking subsequences if necessary, we may assume that |,| < # which belongs
to LP(RY), and thus the above integral is estimated by:

C i <r|fivi<rXtismsi<ar- [x =y ) dy |"dx + &

where €} — 0, for any fixed 6 > 0. And we conclude since the first integral con-
vergesto 0 as 6 > 0.
Therefore o €]0, + [, but this is equivalent to the compactness of u,.

We have actually proved the:

Corollary 2.1. We assume (2.2), (2.11), (2.12) and we denote by IT, I5 the
infima given by (2.3) where K is repalced by oK, BK. Let (). be a minimizing
sequence of (2.3), then there exist (on)n in 10, o[, (Jn)n in RY such that
dn(+) = 05 YPun((- — yn)/0n) is relatively compact in LP(R™). In addition, if
I=1I7 < I3, all limit points of (on) lie in 10, — =), and there exists (tn)n sSuch
that o, — +o; while if I = I3 < I{°, all limit points of (oy) lie in [0, o[ and
there exists (Un)n such that o, — 0. Finally if I = IT = I3 both cases occur.

2.3 Trace inequalities

We first recall the well-known trace theorems (see for example Amdas [1]):
let u € D™P(R™) with p € [1, N/m[, m integer >1 (for example!), N > 2, then
there exists a bounded linear operator yu mapping D™?(R") into LY(RN 1)
—where ¢ is given by: ¢ = (N — 1)p(N — mp) ~'— such that if u es smooth,
then ~yu is the restriction of ¥ on RV ™! x {0}. For obvious reasons we will
still denote by u the trace operator yu.

The minimization problem associated with the question of the attainability
of the norm of v is of course:

I=Inf UPN D" u|? dx/ue D™PRY),  [ono i U, 0))dx’ = 1} (2.19)

here ([|D™u|?)"” is just any norm on D™ ?(R") which is «scale invariant»
like for example:

( 2 ||Da””fw>1/’ (for any re[l, =],

lel=a=m
|A™?u| o if m is even, |V(AFu)| ., if m is odd...
It is clear that both functionals are invariant under the change

u—g - un(';) ] for any o > 0; and that if J, denotes the infimum given
by (2.19) where 1 is replaced by \: I = NP/?I; = \P/[; and thus (S.2) holds.
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Theorem 2.3. Let (un). be a minimizing sequence of (2.19), then there exist
(0n)n in 10, [, (¥n)n in RN~ such that the new minimizing sequence ii, given
by:

n (', xn) = o7 NV 9,((X" — Y3)/0n, XN/ 0n), vx'e RN~ wvxneR

is relatively compact in D™P(R™)®. In particular (2.19) has a minimum.

Remark 2.12. Just as in section 1.4 the above result admits many variants
like: m non integer, Korn-trace inequalities, convolution-trace
inequalities, «time-dependent» spaces, limit cases (mp = N)... Let us also
mention the following extension of Theorem 2.3, we may instead consider the
trace of u on R* for 1 < k < N — 1 (i.e. on R* x {0}) then ¢ = kp(N — mp) !
and the above result still holds with y,eRF (provided g>gq i.e.
p>(N-k)/m.

Remark 2.13. If m =1 and |Du| is the usual norm on RY, then if u is
minimum of (2.19), the Steiner symmetrization of # —that we denote by u"—
is still a minimum of (2.19): " is spherically symmetric in x’ € RV~ !, non in-
creasing with respect to |x’|, and even in xn, non increasing for xy > 0.

Remark 2.14. We could of course replace W™?(R") by W™?(Q) where
QO = RV~ 1x 10, o[, then Theorem 2.3 still holds. If m = 1 the corresponding
value of the infimum 7 is given by:

[=3L =271

Proor. We are going to apply the concentration compactness method to the
bounded measures (Pn)n:

Po= 3 D%un| + |un] G, 0) ® o)
J =

where q; = Np/(N — (m — j)p), and where (un). is a miminizing sequence.
Hence, we consider:

On(t) = sup Pa(y + B)), vt > 0.
yeRN

Remarking that if we replace u, by o ~ V'~ /%uy(%), Qa(?) is replaced by Qa(%),
we may always assume choosing ¢ = g, conveniently:

0.(1) = %

Such a choice prevents vanishing from occuring while, as usual, dichotomy
does not occur (cf. sections 1, 2.1-2). Therefore there exists y, = (¥n,Vn) €
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€ RV~1 x R such that P,(- + y,) is tight i.e.;
Ve>0, 3IR<o, ¥n>21, Pu(RY—(yn+ Br)<e (20)

We next claim that we may choose y; = 0; indeed if € < 1 then |y4| < R since
if |yi| >R

Yn+ BrC RV X R*, thus .fo=0 |un|?dx < €

and this contradicts the constraint. Therefore taking j, = (yn, 0), (2.20) still
holds if we replace R by 2R; and we may thus assume y;, = 0.

The remainder of the proof is then an easy adaptation of arguments given
in the sections above in view of the

Lemma 2.3. Let (un)» be a bounded sequence in D™P(R™) such that
(|D"un|?) is tight. We may assume u, converges a.e. to u € D™?, |D"uy,|?,
|un|2(x’, 0) ® So(xy) converges weakly to some bounded, nonnegative measu-
res on RN p, v —and Supp» C {xn = 0}.

i) Then we have for some at most countable family J, for some families
(xp)jes fo distinct points in R¥N =1 x {0}, (vj)jes in 10, o]

v = |u|x’, 0) ® do(xn) + Z;Jp,-ax, (2.21)
je
p=|D"ul? + Y IvP%y; (2.22)
jeJ

ii) If u = 0 and p(R™) < Iv(R™M)?/? then J = {xo} for some xo€ RN~ ! x {0}
and v = cobye, p = IcE %6y, for some co > 0.

We skip the proof of this lemma which is totally similar to the one of Lem-
ma 1.1 (or Lemma 2.1).

2.4. Singular inequalities

Let us first recall the following inequality
an |u|?|x| =7 dx < CJRNIVuV’dx (2.23)

for all u e D'P(RM), with 1 < p < N —this inequality is easily proved by the
use of Schwarz symmetrization and standard one dimensional inequalities

f:}ulptﬁ dt < C(p, B) j;"lu'lptﬁ”dt (2.24)

for 1< p< o, BeR, uedDO, ).
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We next want to observe that there exists a general class of inequalities like
(2.23) namely

[l Plx] ™™ dx < C [ |D™u|Pdx,  vueD™PRY) (2.25)

where m > 1, 1 < p < (N/m), and ([ |D™u|? dx)"/? is any norm on D™?
which is «scale-invariant». In particular to prove (2.25), we will choose the
norm

[(=A)Y"?u| Lprny if m is even, | V(—A)" Y2y owny if m is odd.

By density we may consider only u € D(RY — {0}). We then observe that if
f=(=A)Y"?u or (—A)™~ Y2y depending on the parity of m, and if we denote
by v (€ D™P(RM)) the solution of

(-Afv=f* in RV k=% ifmiseven,k=%ifmis odd)

where ¢* denotes the Schwarz symmetrization of ¢, then by Talenti compari-
zon theorem [77]: u* < v a.e. on RY, and thus

[(=8Y"u| o = |(~AY"?0] s if m is even
[V~ D2 1 = [f | 1o > |V *| 1o = [V(~8)"P20| 1, if m is odd
[ 2017151 =2 e < [ Jua*] Pl =2 e < [ [0]7)] =™ dx

and thus it is enough to prove (2.25) for spherically symmetric functions.

Now for spherically symmetric functions v we may assume by density that
ve D(RY — {0}) and we remark using (2.24)

[ 10171%1° dx < O, B) [ V0171172 dx

for v spherically symmetric, € D(RY — {0}), Be R, p € [1, o[. Then we obtain

jRN|u|P|x[ P x < Cy jRN|Dv|P|x| —POn =D gy <
<G jPN|DZUlp|X| —Pm=2) gy CL;;N |D™|? dx

and (2.25) holds. Another proof (communicated to us by H. Brézis) uses Lo-
rentz spaces: if u € D™?(R") then u € L*?(R") and thus |u|? € L7?'}(R") whi-
le |x| =™ e LN/@P)-=(RN), This proves the claim since (¢/p)’ = N/(mp).

In addition if we combine (2.25) with Holder and Sobolev inequalities we
find
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‘ulq 1/7q 1/p
—rdx|] <G |D™u|Pdx) , VueD™P(RY  (2.26)
RN Ix‘ RN
where p < g < Np/(N — mp), 1 < p < N/m, m > 1; and r is given by

N—-r N-mp
q p

or r=N-q(N - mp)/p. 2.27)

The associated minimization problem is then
I=Inf URN |D™u|? dx/u € D™P(R™), jRN |u|9)x| =" dx = 1} (2.28)

Observe that this minimization problem is not invariant by translations and
is invariant by dilations or more precisely by the change

U“’O'_(N")/qu(;), Vo> 0

Let us also remark that if /y denotes the infimum corresponding to the con-
straint where 1 is replaced by A >0

L =N = NP9, wA>0
and thus (S.2) holds.

Theorem 2.4. Any minimizing sequence (un). of (2.28) is relatively compact
in D™P(R™) up to a dilation i.e. there exists (on)n in 10, o[ such that the new

minimizing sequence in(-) = 0.~ N """, () is relatively compact in
D™P(RM). In particular there exists a minimum in (2.28).

Remark 2.15. Exactly as in section 1.4, Remark 2.12, there are many
variants and extensions of the above inequalities and results in particular we
may replace |x| =7 by various potentials K satisfying for example

lim K(x)|x| "= a >0, llim K@|x|"=B>0.
x=0

[x] o0

Remark 2.16. If m =1, by a symmetrization argument and an O.D.E.
analysis one may compute explicitely the expression of 7 and of any minimum.
The existence of a minimum and these explicit expressions are given in Glaser,
Martin, Grosse and Thirring [38], E.H. Lieb [53].

Remark 2.17. Clearly if p = g, I, = N and (S.2) fails; and neither does our
method continue to apply, but also —at least if m = 1— there does not exist
a minimum of (2.28).

Proor oF THEOREM 2.4. Again the proof follows the general scheme of our
method: if (u.), is a minimizing sequence and if
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m
pn= 25 |D’un|”
Jj=0

where p; = Np/(N — (m — j)p), we may choose g, > 0 such that, if we still
denote by (un)» the new minimizing sequence [0, ©~7u,(-/0,)], we have

1
Ou(l) = =+ with Qn(t)=SupJ pndx,  VI3>0.
2 . yeRN Jy+ B,

Since (S.2) holds we prove easily that u, is tight up to a translation i.e. there
exists (¥n)n in RN such that

ve>0, 3R<e, [ . eNdr<e.

We claim that (y.)» remains bounded and we argue by contradiction: |y.| (or
a subsequence) goes to +o as n— . Then let £€ D, (RY), £=1 on B,
0 < £< 1, Supp £ C B; and let us denote by &, = (- — yu)/R). The above in-
equality easily yields

LRN|D”’(u,, — Ug)|Pdx <) >0 as e—0
where v, = &,u,. Therefore for € small enough
[ lonllx] 7 ax >3-
On the other hand
JRvanlqlxrdx < J'X—Ynl < g |Un|?|X| 7 "dx < C(|yn| = 2R)™', for n large

and we reach a contradiction which proves our claim. Hence (y,). is bounded
and we may as well take y, =0.

The remainder of the proof is then a repetition of arguments made above
and in Part 1 [65] in view of the following lemma —which is also proved by
similar methods as before.

Lemma 2.4. Let (un). be a bounded sequence in D™ *(R") such that |D™u,|”
is tight. We may assume that u, converges a.e. to ue€ D™P(R™) and that
|D™un|?, |ua|%\x| =" converge weakly to some measures p, v. Then we have:

i) v = |u|"|x| T+ vobo Wwith v = 0;
ii) u = |D™uP| + Iv§/98,

Remark 2.15. If |ua|?, |un|?|x| ~™ converge weakly to some measures »*,
»° where g* = Np(N - mp), we have
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0 = |u|?|x| =™ + »10

v = ul” + > 96y, andif 1w >0, Oe{x/jel)}
JjeJ
y*(0)(* = VTP >

Remark 2.16. The fact that only 6o occurs is clear: since u, is bounded in
LT (R™), |ua|?|x| " is bounded in Lf(RY — {0}) for some « > 1 (and part i)
above is obvious!).

2.5. Nonlinear problems in unbounded domains

We want to give in this section a few examples of nonlinear problems in un-
bounded domains which possess a variational structure and that we treat by
our concentration-compactness method.

We begin with a model problem namely the Yamabe equation in infinite
streps: let N>1, Q=0 x R? where 0 es a bounded domain in R™ and
m + p = N. We consider positive, nontrivial solutions (vanishing at infinity)
of

—Au-Mu=u¥? in Qu>0 in Q ueHYQ) (2.29)
where A > 0. This problem —somewhat related to the Yamabe problem— was
investigated by H. Brézis and L. Nirenberg [23] in the case when  is boun-
ded— see also sections 4.1-2 below.

In view of the homogeneity of the nonlinearity, we obtain a solution of
(2.29) if we solve the following minimization problem

I=Inf Un Vul? - mﬁdx/jQ |u|¥°2 dx = 1], ueH§® (2.30)
and we denote by
I® = Inf UPN|Vu|2dx/jPN|u|2N/(N‘2)dx = 1} .

We denote by \; the first eigenvalue of —A in H§(0) (\; is also the infimum
of the spectrum of —A in H§(Q)). The methods of Part 1 and the sections abo-
ve immediately yield:

Theorem 2.5. For any minimizing sequence (un)» of (2.30), there exists
(n)n C {0} X R? such that (un( - + yn))n is relatively compact in H§(Q) if and
only if (2.16) holds

I<r1= (2.16)
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In particular if (2.16) holds, there exists a minimum of (2.30) and a solution
of (2.29). In addition (2.16) holds if N > 4 or if N = 3 and \ € 1\1, \i[ where
A1 € [0, M.

Remark 2.17. The result —as long as the existence of a minimum and (2.16)
are concerned— is very much the same as in A. Brézis and L. Nirenberg [23].
And the quick discussion of (2.16) we mention above is deduced from [23]:
indeed if Bg is a ball in R? of radius R we have

<Ig=1In ul© — Au“dx u"z—NZx:,ueoxR
I<1, Inf OxBR|V ]2 e d OxBx N-2( 1 H{(OxBgR)

and in [23] it is proved that: Ir < I®if N >4, Ir < I°if N= 3 and A € INF, \i[
for some AR. Clearly NX L X; as R + o and we do not know if \; > 0 or A; = 0.

Remark 2.18. The above problem and result is only an example of our met-
hod: we could as well treat general minimization problems (combining the
methods of P.L. Lions [55], [56] and of Part 1 [65]) such as

I= Inf{ Zau(x)—é—— + c(x)u? dx/j FGe,u)dx = 1}
Qi a ax, X Q

where (a;)) is uniformly elliptic and a;j, ¢, F(x, t) satisfy various assumptions
and where Q is an arbitrary unbounded domain (strip, halfspace, exterior do-
main...). In particular this could allow us to study the Yamabe equation

a
.—Z <au(x) ) + C(x)u = K(x)uN % in Q
i,j ax; X
ue :DI,Z(Q)’ u> O in Q, Uu= O on aQ.

Remark 2.19. Concerning semilinear equations in infinite strips
~Au=f@m) in Q, u>0 in Q, ue HyQ)

where @ = D X R?, O bounded domain in R™, N > 3 and fe C'(R), f(0) = 0
f'(0) > =\

Such problems have been studied in M. J. Esteban [34]; C.J. Amick and
J.F.G. Toland [3]; J. Bona, D. K. Bose and R. E. L. Turner [15]; P. L. Lions
[56] in the «locally compact» case. If we assume, for instance, that fis odd and

@ — F1(0) <OLS'W) - F1(0)), VIER, (2.31)

for some 0 €]0, 1[;

—N+2

llm f(t)|t| N-2=0g20; (2.32)
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then the above problem will be solved if we find a minimum of
I=1Inf {8u),ucH}Q), u=#0, Ju) =0} 2.33)
where
&(u) = J"Q L\Vul> - Fwydx,  Ju) = jn |Vu|? - fuyu dx,
and
F(t) = j; £(s) ds.

To this end we introduce

I® = Inf {§°(u), ueD"*RY), u=#0, Ju)=0)}
with-

N-2 2N

o0 2 2N . w
Je = |Vu|* — aulv-2dx  (fa=0, I®= +o).
RN
If « > 0, by an easy scaling argument /% is also given by

o _(N— N+2
I =I(§V/20l (N-2)/2 2N ,

Io= Inf”RN|Vu|2dx/jM|u|%dx= 1]-

Then any minimizing sequence of (2.33) converges up to a translation (of
the form (0, y»)) if and only if I < I*.

Sketch of the proof of Theorem 2.5. We apply the general scheme of proof
we used before: in particular we use the first concentration compactness lem-
ma ([58], [55]) with the density

2N
pn = |Vin|® + ui + |un|N-2.
And we just have to explain how we avoid i) vanishing of p,, ii) that the weak
limit # of u, is not trivial if u, is tight.
First, if p, vanishes i.e. if

sup pndx— 0, VR < oo;
yeRN Jy + Bg

where p, is defined on RY by extending u, by 0 —then we know (cf. P. L. Lions
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[55], [56]) that u, — 0in LP(R™) for2 < p < N—Z%Vi. Thus for all 6 > 0, |us| 6—0

0 in LP(RM) for 2 < p < . Let v, = (Jus| — 8)*, we have

1 n
meas{v, > 0} = meas{|us| > 6} < lun*dx < -
6° JrN )
J vidx < C(Iv’,{dx)yp forall p>2

and thus v, — 0 in L”(R™) for 2 < p < ;2% - Therefore

I'=lim [ |[Vua]® = Nusi dx >
n
> E@JRNIVWIZ + l_iELRN |Vwa|? — widx >
n n
> li_mLRNWv,,Izdx, where wyp = |us| A8
n

and IRvanINN}Z’dx* 1. Hence 7 > I and this contradicts (2.16).

Next, if p, is tight and if u, converges weakly and a.e. to some u € H3(Q),
we want to check that u # 0. But if u = 0, since u? is tight, u, — 0 in L*(Q)
thus

I= &nIIVu,,de;I”
n

and again this contradicts (16).
The remainder of the proof consists then of straightforward adaptations of
previous arguments.

We now turn to a nonlinear problem involving nonlinear boundary condi-
tions: this problem —in the locally compact case-was investigated in P.L.
Lions [56] and we refer to [56] for various considerations on its solutions—
may be formulated as follows

b= Inf{ [ |Vul*dx/[, Fads = )] 2.31)

where \ > 0, u belongs to D) (closure of Clomp(?) for the seminorm
|Vu|L2¢0)), Fis a given nonlinearity and Q is and unbounded domain (smooth)
of RY. To simplify the presentation only, we will consider two examples

Q= {xny>0} (2.32)
Q = RY — O, where O is a smooth bounded open set in R". (2.33)

We will assume that N > 3 and that F satisfies
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FeC(R), F0)=0 (2.34)
lim FF(0)|¢| " 9=a>=0 (2.35)
7| -0
lim F*()|t] 7=8>0 (2.36)
l1] o0

(if o or B > 0, we may replace F* by F) and where g = 20’=2. We denote by

I = Inf”(m>o) |Vu|* dx/u € D *(xn > 0), j _olul?dx’ = 1}.

XN

(recall that this problem was solved in section 2.3).

Theorem 2.6. If Q is given by (2.32), we assume (2.34), (2.35), (2.36) and we
denote by I¥ = (max(c, B\~ 1) "2y (= + if o = B = 0) while if Q is given
by (2.33), we assume (2.34), (2.36) and we denote by I = (A~ )~ *I,. If
(2.32) holds, every minimizing sequence is relatively compact in D" *(Q) up to
a translation of the form (yn, 0) if and only if

Lh<K (2.37)

If (2.33) holds then every minimizing sequence is relatively compact in D'**(Q)
if and only if

Lh<Il,+ K- Vo e [0, \[. (S.1)

Remark 2.20. By an obvious argument, if Q is given by (2.32), I = )\%{% I
and thus (2.37) is equivalent to (S.1). On the other hand if Q is given by (2.33),
since dQ is bounded, the problem at infinity (for the translations group) dis-
appears and thus there only remains the problem at infinity obtained by focus-
sing u at a boundary point via dilations.

Sketch of the proof of Theorem 2.6. We first explain why the large in-
equalities always hold (i.e. I, < I¥ in the first case, ) < I, + - o Ya € [0, \[
in the second case). If (2.32) holds, we introduce u,e D(R") satisfying:
Supp un C B(0,1/n), [on|Vun|*dx—To, |, _olun|?dx’=1; we consider
vn = B~ Y\, and if B > 0, we deduce

J.XN= OF(Un) dx'— 1, I(XN> o Ianiz dx— B3~ Z/q)\Z/qlo.
In a similar way if o > 0, we may choose u, € D(R") satisfying

— q —
max i = 1, [yl dx' =,

2 —2/qy 2/
LN>0|Vu,,| dx— o= I\,
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1 N-2 .
and we let v, = (+) ? ua(n-). Then we find

fx~=0F(v”) dx' = A\ Lw>0 Ivvn|2 dx—«a _Z/q)\Z/qlo.

Hence I, < K and if I, = I, there exists a minimizing sequence which is not
relatively compact even up to a translation.

In the second case —i.e. if (2.33) holds— let o € [0, \[ and let (us), be a
minimizing sequence of I,. On the other hand let %2 be a minimum of I, we
may always assume that 0 € 3Q and that ey = (0, ..., 0, 1) is the unit inward
normal to 92 at 0. We then set

_N-2 _
Uy =05 2 - O‘)Z/qB 2/qu2(_/an)

where o, — 0 is to be determined. We finally set: #, = u» + u2. Observing that
we may take ! in D(RM) if we wish, it is easy to check that we may choose
(0n)n in such a way that

| Jso Fumds = [, Fauyds — [, Blui|*ds| >0,
janﬁluﬁlds*)\ - a,

[ [Va4n]? dx jQ|Vu,£|2dx— [q IVua?dx—o,
jn V2|2 dx = K- .

Therefore (un). satisfies: [ [Van|>dx = In + K- o, [ 50 F(ttn) ds =\ and u, —
— u} — 0 weakly in D**(Q). And this proves the large inequalities and the fact
that strict inequalities are necessary for the compactness of all minimizing se-
quences.

The proof of the sufficiency of the conditions (2.37) of (S.1) iwghen very
similar to proofs made in Part 1 and before. We will only explain how we con-
clude in the case when (2.33) holds once we know that |Vua|* + |u,,|N_2§7 is
tight. By arguments similar to those made in section 1.6, we obtain:

Lemma 2.3. Assume Q is given by (2.33), that u, converges weakly in
DLXQ) to u and that p, = |Vua|* + |u,,|N2_]-vi is tight. We may assume that
|V tn|*, vn converge weakly to some measures p, v where v, is the measure on
Q supported by dQ such that: Yo € Cp(Q), [edvn = [, ¢F(un) ds. Then there
exist J at a most countable set (possibly empty) of (xj)jes distinct points of
0Q, (vj)jes €10, o[ such that

V= v+ B0 iy, p = |Vul?+ I 2 i %y
JjeJ jeJ

where v is defined by
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[edve= [, eFwds, veeC®.
Remark 2.21. Similar results hold of course for sequences in D™ 7(Q).

We skip the proof of the lemma since it is very similar to arguments given
in Part 1 and before: let us just observe that

jw |F(tn — 1)) — Blttn — u|?| ds—0

and that the fact that the best constant /, (for half-spaces) occurs in the
estimate for y is due to a localization argument. Indeed if we follow the proof
of Lemma I.1 ([55]) or Lemma II.1 we see that the lower bound on u({x;})
is obtained by multiplying u, by some convenient cut-off function ga(""‘f)-

€

Thus all computations take place in the ball B(x;, €) and using local charts we
may actually argue as if we were in a half-space.

We next conclude this section with another problem —motivated by
geometric considerations, see Cherrier [25] and section 4.2 below—; we will
consider it in an unbounded domain Q, we look for positive solutions of

0 _
—Au=fu) in Q, a—: =gu) on 902, u>0 on (2.38)
where f, g € C(R), f(0) = g(0) = 0; n is the unit outward normal. Denoting by
F@) = j'; f©)ds, G(t) = | ;g(s) ds and assuming for example that f, g are odd,
one way to solve problems “‘like’’ (2.38) is to consider the following minimiza-
tion problem

b= Inf{ [, [Vuldx | [, Fapdx + [, Gy ds =)]. (2.39)

However a solution of (2.39) leads only to a solution of (2.38) where f, g are
multiplied by a Lagrange multiplier which can be taken care of only if F, G
are homogeneous of the same degree —and this case is not really interesting—
or if Q is a half-space,

2N 2N-1)

= q1-2 = q2-2 i =— = —
S@)=1ul""u,  g) =u|®"u with qi=r—  @=—F—

This is why we will not consider (2.39) —that we may analyse easily with our
methods.

Instead, we will use the artificial constraint method (see for example C. V.
Coffman [26], [27], P. L. Lions [56]) which will requiere the following struc-
ture conditions on f, g

S = fo(t) — mt, m 20, 0 < fo)t ™1 <0730 vieR (2.40)
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g =g —pt, p20, O0<go(t '<0gi(t) VieR (2.41)

lim fo(9)|?)>~ ¢t =120

|t]—>co
2.42
lim go()|t)> 2t =620 2.42)

|¢] = o0

if m=0, lim fo()t~ 9 VY =q; >0 (2.43)
t—0 4

if u=0, lim go()t~ 2"V =, >0. (2.44)
t—0 4

We consider now the following minimization problem
I=Inf{&8w)/Fu)eL'(Q), Gu)eL'@Q), Jwu) =0} (2.45)
where
8w) = [, 51 Vul* - Fwdx — [, GGods,
Ju) = Jn | Vu|> - f(uyudx — ng(u)u ds.

Using (2.40)-(2.41), it is easy to check that a minimum of (2.45) is indeed
a solution of (2.38).

To simplify the presentation, we will consider only the cases when Q is given
either by (2.32), or by (2.33). We need to introduce the following quantities

== Inf(&8'w)/J™ ) =0, u#0}, =123

&% 1(u) = jwﬂ Vul|? — Fuydx, J>'(u)= Lw‘ Vul? — fyudx

8 2(u) = J(x~>0)% | Vul? = (B1/q0)|u|” dx — J(x~=o> (B2/g2)|u|* dx’

J>2(u) | Vul? — Bi|u|? dx — LW(» B2|u|? dx’

= J‘(XN>0)

873 (u) = 2| Vul? = (er/qv)lu| dx - (e2/qo) | dx’

j(xN> 0) .[(XN= 0)

T30 = [y | VU =l = [, ol

Of course if m (resp. u) > 0 we set a3 =0 (resp. o2 =0) and if a1 = a2 =0
(or B1=B2=0) we set I3 = +o0 (or I™? = + ).

To motivate the introduction of these various functionals, let us explain
that ™! corresponds to the ‘‘problem at x¥ = +oo’’ obtained by the action
of the translation group if for example Q is given by (2.32), while 72 is obtai-
ned by ‘‘concentrating #’’ at a boundary point by the action of the dilation
groups (‘‘concentrating #’’ at an interior point is not necessary here since it
is contained in I*'!), and finally 7**® is obtained by ‘‘scaling out’’ u
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(u— 0~ N=2"2y(. /o) with 0 = + o) again by the action of the dilation group.
The next two results correspond to the two domains Q we consider:

Theorem 2.7. We assume (2.32), (2.40)-(2.44).

DIfm=p=0, fo=y|t|" "1, go = v2|t|2 "t with v1,v1 > 0 then any
minimizing sequence of (2.45) is relatively compact in D**(Q) up to a scale
change (6 — 0~ = 2"2y(. /o) and a translation of the form (¥4, 0). In particu-
lar there exists a minimum.

We denote I® = Min(I™!, I*%,1™3). Then the condition
I<I” (2.16)

is necessary and sufficient for the compactness of all minimizing sequences up
to a translation of the form (yy, 0).

Theorem 2.8. We assume (2.33), (2.40)-(2.42) and we denote by
I® = Min(I*!, I*%). Then (2.16) is necessary and sufficient for the compact-
ness of all minimizing sequences of (2.45).

Remark 2.22. We could treat as well arbitrary unbounded domains such
that: VR < w0, yeQ, B(y,R) C Q, or strip-like domains... Combining the
methods of P. L. Lions [55], [56] and of Part 1 [65], we may treat exactly as
below x-dependent problems and in particular

_9 a,-,-(x)a—u + k(xX)u = KuN+»®=-2 ip Q
ox; dx;

0 _
#—i—k'u:K’uN/(N'z) on 9%, u>0 in 0

where a;j, k, k', K,K' are given functions having limits as |x| =, x€Q,
(aij(x)) is uniformly elliptic, K, K’ are not everywhere nonpositive and are
nonnegative at o and the quadratic form associated with the linear part of
the problem is positive on D''*(Q). Of course v* is the conormal associated
with (a;(x)) i.e. vf' = ayn; Vi.

Remark 2.23. In fact our method not only shows Theorems 2.7-8 but also
explains how compactness may be lost if I=17*: for example if
I=I"2<I*!AI*3, a noncompact minimizing sequence (i), will satisfy:
| V tun|* = Bxoy B1|tn]?" + Ba|tn]?> = b, for some xo € RV~ 'x{0} and there exist
On— 0, Yn=(¥n, 0), —yn/on— Xo such that oy ¥~ 22u,((- —y»)/0on) conver-
ges to a minimun of 7°*2 (up to subsequences. . .). And there exists such a se-
quence (Un)n.
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Remark 2.24. We will not discuss here conditions (2.16): this strict inequali-
ty may be analyzed as in P. L. Lions [55], [56], [65], T. Aubin [6], H. Brézis
and L. Nirenberg [23]... Let us only observe that by a symmetry argument
similar to the one used below we have if Q is given by (2.32): I< 3™ and
thus 7° = Min(I™2, I*3).

Sketch of the proof of Theorems 2.7-8. First of all, in the case when (2.32)
holds and m=p=0, fo=v|t|""'%, go=/t|2"', ~v1,72>0, the
minimization problem (2.45) is ‘‘scale invariant’’ and invariant by transla-
tions of the form (', 0). We claim that I < I™'!. To check this strict inequality,
we just observe that there exists u € D *(R") symmetric with respect to x (ac-
tually radial) such that

1™ = [ 31 Vul® = (/g0 [u|” dx
JPNi Vul> - y1u|?dx = 0.

Thus: J(x~> . | Vu|® — y1|u|? dx = 0; and there exists § € ]0, 1] such that if v = u

LXNN» v v|2 ~mlvfdx - I(x;v=0) v2|v|?2dx’ = 0.

Therefore we have denoted by « = J(xN>0) | Vul*> = %IRNI Vul*dx

o

I= 92%— o —;]1—(020: ~ 67'q)
1 2

11 11 11\ 1
e ___>+9q, <_—_>< <_-_>=_1=°-1.
a<2 9 N\ ¢/)5%274/)72

Thus, by a convenient choice of the scaling and of a translation, we may
assume that any minimizing sequence satisfies

pn = | Vun|* + y1|tn|” + v2|tn|? ® So(xn) is tight and SupyerRNL“;1 dpn =
= L where L < Inf, |_ydpn. Indeed vanishing is ruled out by the scaling,
dichotomy as in [55] and the tightness cannot be obtained through a sequence
(»™) such that y% is unbounded because of the strict inequality: 7 < I=!.
Assuming that u, converges weakly and a.e. to u, we have to show that u # 0:
If this is the case, we conclude easily adapting arguments given before (or in
Part 1) and in [56]. Now if u =0, we may assume that |V u,|?, v1|ua|?,
v2|un|? ® So(xn) converge weakly to some measures pu, v1, v2: we already
know that »;, v, are given by countable sums of Dirac masses and that u
charges any point charged by »; + v». We claim that p, »1, 2 are given by one
Dirac mass contradicting thus the constraint on p,.

Indeed if x° € {xn > 0} is such that

w((x°)) = V(X)) = ¥ ((x°)) < 0
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then we may find ¢ € D(R™) supported in a small enough ball centered at x°
such that

“J(Eun) > —a <0

1 1 1 1
- - — un| " dx + | - — — un|?dx' - g <1
<2 q1>71j‘(x1v>0)|£ n‘ <2 q2>72 Jl(x]v=0)|£ "l g

Indeed observe that

1 1 1 1
I=(z==)|a'+(z-=)|an*
<2 ¢11>jdy " <2 112>jdy

It is then easy to reach a contradiction as in [56]. Therefore for each point
x7 in the support of v; + »,, we find

p({x}) — v ((x'}) — *({x'}) = 0
and thus

0< X u({x}) — »({x'}) — v({x')) < jdu - Jdv‘ - dez —o.
jeJ
Hence

n= Z]”’jaxh Vl = Z V}axj, VZ = Z V.lzaxj
je

JjeJ jeJ
and

pi=vj+ >0, Xe{xn20}, w=a@)’" + ()
This last inequality yields that J is finite (since u; > 0, Vj € J). In addition
choosing for each j € J a cut-off function £ supported in a small ball centered
at x/, we see that

11 1 1 11 1 1
(D (D g (D (=)
<2 q1> / <2 )" j‘eZJ 2 @) T \2 T @)

and this only possible if Jis singleton. Hence: g = poby0, »! = vbdy0, v* = v§dyo
where po > 0, v§ + v§ = po, ¥6 20, 15>0, x° e {xn=0}. (If x¥ >0, 5 =0,
v6 = po and we would have: I = I, Therefore x¥ = 0, v5 > 0, v} > 0).

In the general case, we apply the arguments of P. L. Lions [55], [56] to de-
duce that pn, = |Vun|> + |ua|%t + mus + (Jun|%2 + pu) ® So(xn) —if (32)
holds; if (33) holds we consider | V u,|*> + |ua|?* + muz— is tight: in particular
we use the strict inequality 7 < 7! to obtain that if p,(- + y") is tight then y5
is bounded if (32) holds, or y" is bounded if (33) holds. Then if u, converges
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weakly and a.e. to u, we have to check that u # 0 and the remainder of the
proof is then a combination of arguments of P. L. Lions [56] and of those gi-

ven in Part 1 and above.

Let us check that u # 0: if u =0, we observe
. . 1 1
I =lime(u,) = hmJ‘ =f(un)un — F(un)dx + J —g(un)un — G(un)ds.
22 a0 2
And since p, is tight, we deduce easily

1 _ _(1_1 a1 gy | -
Unif(u")u" F(un)dx <2 ql>Lﬁllunl dx| =0

- 0.

1 _ _(r_1 e
”mig(un)un G(un)dx <2 q2>Lnleunl dx

Similarly, we have
J(un) — J>2(u) =0, thus J=2(u,)— 0.

This shows that

1 1 1 1
I>inf — - — 9y + — - a g
ol [, G- ap e [, (33, Jma

ueDXQ), S w) = o} =I"?

and this contradicts (16).

3. The General Principle

3.1 Heuristic derivation

In this section, we want to explain the common features of the problems and
methods introduced in Part 1 and here exactly as we did in the locally compact
case in P. L. Lions [58], [55], [56]. By no means, the claims below concerning
the equivalence between certain compactness results and the subadditivity in-
equalities (S.1), (S.2) are to be understood as rigorous results: they are indi-
cations on what are the crucial inequalities to be checked and on a general
scheme of proof.

We begin with the general case (the case of invariance by translations or di-
lations being treated below) and we keep the setting used in [58], [55]: let
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H be a functions space on R (more general situations are considered below)
and let J, & be functionals defined on H (or on a subdomain of H') of the fo-
llowing type

&) = j v €05 AUCONX; J@) = [ ilx, Bu()dx

where e(x,p), j(x,q) are real-valued functions defined respectively on
RN x R™, RY x R" and j is nonnegative; A, B are operators (possibly nonli-
near) from H into E, F (functions spaces defined on R" with values in R™, R")
which commute with the translations group of RY. We assume
&(0) = J(0) = 0. We want to study the following minimization problem

I=Inf{8w)/ueH, Ju)=1)} (3.46)
and we embed this problem in a one parameter family of problems
I=Inf{8w)/ueH, Ju)=N\} (3.47)

where X\ > 0; of course I = I.

As we saw in the examples we have treated in sections 1 and 2, we have to
evaluate the effects of the non-compactness of the translations and dilations
group. This is why (to simplify) we assume

e(x,p) > ex(p), jix,q)—~jel(@) as |x|—> o (3.48)

(the precise meaning of the above convergence has to be worked out in all
examples) and we set

L% = Inf{&8>%(w)/ue H,J™ (u) = \} (3.49)
where
8 %) = [ exduwdx, J>=) = [, j=(Bu)dx.

Next, to take care of the dilations group, we assume to simplify that there
exists a critica power o > 0 such that T, yu = 0~ *u((- —y)/0) e Hif u € H and
if ye RY, and we assume

&(Ty,0u) = &%), J(T,ou)—> ") if o— +o (3.50)
8(Toyu) = B2 (), J(Toyu) = J*Pw) if 00,4 (3.51)

and we introduce for all y e RV
IR® = Inf(&>°w)/ue H, J* “(u) = \} (3.52)

= Min(l‘f»”, 1>, Inf I‘i"”). (3.54)

yeRN



78 P.L. LionNs

We may now state a heuristic principle (which holds in all the examples
treated before and below) that we call the concentrantion-compactness princi-
ple. To be rigorous, the following claims need many structure conditions (a
priori bounds on minimizing sequences which insures in particular the
finiteness of I, the continuity of /\ with respect to \...; convexity or weak
1.s.c. properties of the «main» terms in &, J...) and it seems very difficult
to give a unique framework covering the variety of the examples we treat.

We first claim (this part being easy to justify by the very way Ix was defined
and the arguments of [55]) that we always have the large subadditivity
inequalities

LI+ I, Vo € [0, N]. (3.55)

Next, we «claim» that, for a fixed A > 0, all minimizing sequences of (47) are
compact if and only if

h<Iy+TI\_q Vo e [0, N]. (S.1)

Indeed we first «prove» the «tightness» of any minimizing seqeunce (#.), by
applying the first concentration-compactness lemma (see [58], [55]): since
(S.1) implies

{A <I,+ 152  Yae]0, N\
L < Min(I&=, I2)

dichotomy, vanishing and tightness up to an unbounded translation cannot
happen. Next if (1), «converges weakly» to some u € H we claim that u # 0:
if u were 0, then the effect of the «almost dilations invariance» (4 = T¢,ou)
would be that u, concentrates around at most a countable number of points.
But since (#n). is a minimizing sequence, we claim that u, concentrates around
a single point (up to subsequences); one way to understand this claim is to
" argue as follows, isolate one concentration point x° and split u, into two
parts: the part concentrating at x° and the part concentrating around the other
points. If this were to happen, we would have for some « €]0, \[

LhzI.+ Inf IN?, 21, + -,
yeRN

contradicting (S.1). Hence, (u,) concentrates at a single point x° and we
deduce

0 .
hzIX 2z inf RY2 IR
yeRN

again contradicting (S.1). Therefore u # 0. Finally if J(«) = a €10, \[ we split
u, into two parts: basically # and u, — u (this is only a rough idea — cf.
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precise arguments in sections 1-2). Again u, — u concentrates at a countable
number of points and we deduce

Lh>2I,+ inf IN?y > 1, + IN- o
yeRN
The contradiction shows that u, converges to u, a minimun of (47).

This heuristic argument not only shows that (S.1) is a necessary and suffi-
cient condition for the compactness of all minimizing sequences of (47) but
also enables us to analyse what are the possible losses of compactness if (S.1)
fails. For example if we know that

L<I,+I¥_,, Va €]0,\[ (3.56)
then (S.1) is equivalent to
h<I%\. (16)

And if i = F>'° < Min(ly>®, %), ¥y € RY, we obtain that any noncompact
miniznizing sequence is compact up to a translation y, such that | y,| = . Si-
milarly if I, = I” < Min(lx =, **) for some y € RY; then any noncompact
minimizing sequence concentrates at an infimum point y° of Infyer~y I
(and conveniently rescaled is compact, converging to a minimun point of ™7
if I satisfies (S.2) below !)...

Next, we explain that the above ideas still carry out to cover more general
situations where j is not nonnegative, or R" is replaced by and unbounded re-
gion Q such that

VR< o, 3yeQ, y+ BrCA.

Indeed if j is negative somewhere, in general we still have to consider only
o € [0, \[: this is basically due to the fact that J(0) = §(0) = 0 and with the
above notations if 4 = J(u) > \, we would have: 7, < I and this is not possible
in general.

And when RY is replaced by Q, we assume (48) for |x| = o, x€Q and we
replace in (54) the infimum over y € RY by the infimum over y e Q.

We now turn to problems with a complete or partial invariance: first of all
we consider problems which are invariant by the changes /I, for all 0 > 0,
yeRN ie.: 8T, yu) = 8w), J(T,yu) =Ju) VueH, vo>0, VyeR". In
this case by similar arguments to the ones given above any minimizing sequen-
ce (un)n is relatively compact up to a change T,,,y, if and only if (S.2) holds:
in particular if (S.2) holds, then there exist (on)x in 10, ©[, (¥)» in RY such
that Ts,,,,un is relatively compact.
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Next, we may consider problems which are invariant by translations but not
by dilations: in this case we set

= Min(iX*, °

(observe that I” = %, vy € RY); and any minimizing sequence is compact
up to a translation if and only if (S.1) holds. Conversely, we may have to solve
problems invariant by dilations but not by all translations: for example prob-
lems in a half space {xny > 0} invariant by dilations and by translations of the
form (y’, 0). In this situation, we define I as before by considering

&%) = llim Eu(- +y), J=%w) = lim&u(- +y))

y|—w

(in this example above we only take: lim ) and we set Iy= I"". And
YN+ o

all minimizing sequences are compact up to a dilation (and a translation of

the form (y5, 0) in the example) if and only if (S.1) holds. Similar variants

exist if the problem —or the domain— has only a restricted number of trans-

lation invariance (exs.: strips, half-spaces...).

We now turn to the important particular case of a compact region Q@ of R™
(or a N-dimensionnal compact Riemannian manifold). If the problem is «set
in Q», it is clear that the translations do not play anymore any role and simi-
larly for 7,,yu when ¢ — + . Thus the only «non-compactness» remaining
concerns the action of T, ,u as ¢ — 0, for any y € Q; hence we just assume
(51) for y e Q and we set for all A >0

I? = Inf IYV. (3.57)
yeQ

In this very particular case, the above principle reduces to the following ideas:
(S.1) is a necessary and sufficient condition for the compactness of all minimi-
zing sequences. In addition if (56) holds and thus (S.1) is equivalent to (16),
then we have:

i) if (16) holds, any minimizing sequence is compact, ii) if (16) does not hold
i.e. I, = IX then there exists a noncompact minimizing sequence and any such
sequence converges weakly to 0, concentrating at a minimum point yo of (57)
(up to subsequences). In addition if I satisfies (S.2), there exist (on)n in 10, [,
(Fn) in RN such that T, y, un is compact and converges to a minimum of I"*?°,
and g, — ©, — yn/0, — y up to (subsequences). Let us also point out that when
Q is a compact manifold, the action 75, is not well defined but since we want
to concentrate u at the point y only the local properties of Q near y matter and
via local charts and the tangent space 7,2, we may still define I>” as a pro-
blem on the tangent space i.e. R if Q is N-dimensional.
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We next want to make several remarks: i) we may treat as well problems
with multiple constraints

I\, .. ., A\m) = Inf{EW)/u € H, Ji(u) = \i}

then one defines exactly as we did I°(\y, ..., )\m)/and (S.1) is to be replaced
by

I(}\],...,}\m)<](0£1,...,0£m)+Iw()q _al,...,>\m_a1n)

for all o; € [0, )\i], Z,’ o < Z)\,‘.
ii) It may be important to treat the following type of constraints

I=Inf{&8w)/ueH,J(u)=0,u#0)}

—see [56] and section II—. Then denoting by 7, the infimum corresponding
to J(u) = X for ANe R, (S.1) is to be replaced by

I<hL +1IZ2\, w0, I<I®

where I is defined as before. Very often the first series of inequalities hold
easily (notice also that 7 is not modified if we replace & by & + uJ...).

iii) In the locally compact case (cf. P. L. Lions [55], [56]) we refind the fact
that the action of T, , does not play any role observing that &** or J*** and
&% or J™7 are trivial in this case and thus Ix reduces to Ix**.

iv) If J has a completely indefinite sign, it may happen that (S.1) has to be
replaced by

h<ls+RK-o VYoaeR-—{A\} (5.1

Remark III.1. In order to illustrate (at last !) the above discussion we wish
to indicate briefly a list of the various types of problems encountered and the
corresponding results in Part 1 and here:

1. Invariance by dilations and translations: Theorem I.1; Corollary 1.2;
Problem (1.35); Theorem II.1.

2. Invariance by translations, not by dilations: Problem (1.30);
Theorem 1.5; Theorem I1.2; Theorem II1.7 ii).

3. Invariance by dilations, not by translations: Theorem I.3; Theorem I1.3;
Theorem I1.4; Theorem II1.7 i).

4. Restricted invariance by translations: Theorem II.3; Theorem II.5;
Theorem I1.6; Theorem 1I.7.

5. Nonisotropic dilation invariance: Corollary I.3.

6. General situations: Theorem 1.2; Theorem 1.4; Theorem I1.6; Theorem
I1.8.
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7. Multiple constraints: Problem (1.33)
8. Constraint J(#) = 0: Theorem II.7; Theorem II.8.
9. Problems in compact domains: section IV.

We next would like to explain what we mean by concentrates around a
point: this means that the densities of the functionals or of related norms —
which are bounded L% functions— converge weakly to Dirac masses (cf.
Lemma I.1; sections 1.4 ii), iii), iv), vi), vii); Lemma I.4; Theorem 1.6; Lemma
II1.1; Lemma I1.2; Lemma II.3; lemma II.4...).

Finally, we want to conclude this section by emphasizing that (S.1), (S.2)
are necessary and sufficient conditions for the compactness of all minimizing
sequences but that there might exist a minimum even if (S.1) (or (S.2) fails)
see P. L. Lions [ ] for such an example in the locally compact case. In addition
(S.1), (S.2) may be difficult to check (but anyway one has to check them!):
in particular when (S.1) reduces to (16) and Ix°= Inf, I*?, in order to check
(16), it is natural to try as a test function: ilg = Ts,,,# where yo is a minimum
point of (57), # a minimum of I}**° and & goes to 0. Indeed observe that any
noncompact minimizing sequence will be very similar to #g (if IX satisfies
(S.2)) if I, = IX. This motivates the choice of #g in order to analyse (16): this
choice was first considered by T. Aubin [6], see also H. Brézis and L.
Nirenberg [23], H. Brézis and J. M. Coron [19], [20], P. L. Lions [65].

We make two final remaks on (S.1) and (S.2) —that will be developed fur-
ther elsewhere—: first of all, if I, < I, I,”satisfies (S.2) for all x €]0,\] and
(S.1) does not hold there exists a € ]0, N[ such that

h=1I+ K-
We then claim that 7, satisfies (S.1): indeed if we had
I,=Is+ I7 5 with Bel0,«f
this would imply
L=+ I3 g+ Ix-o>Ig+IX-g =1L

a contradiction. In addition {a€]0,\], (S.1) holds for I,} is open if
Igu~'— + o0 when p— 0. : indeed if (S.1) holds for I,,, then for a near «,
I, < Iy and if (S.1) fails for I, there exists 8 €10, [ such that

IB+IZ°_,3=ID(, B_’Olo as o oy.

But there exists a minimum for /g (cf. the argument above) which converges
to a minimum of I,, as B—«, Hence it is easy to show that:
I, < I + C(o — B) for « near ay; in other words Iy - g < C(a — () for a near
oy, if (S.1) fails. Thus (S.1) holds in a neighborhood of «.
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3.2. The role of symmetries

In this section, we want to explain how the invariance of functionnals by sym-
metries (orthogonal transformations of RY) fits in the general picture of
minimization problems and the concentration-compactness principle. To
motivate what follows let us recall that it was observed in W. Strauss [75] (and
developped in H. Berestycki and P. L. Lions [13]) that the embedding from
H' (R into L(RY) for 2<p<2N/(N-2) (N>3) is compact when
restricted to spherically symmetric functions. This was used in [75], [13] to
solve various minimization problems by restricting a priori (or a posteriori via
symmetrization) the infimum to spherically symmetric functions (see also
P. L. Lions [62]). Such compactness arguments are extended to more general
symmetries in P. L. Lions [62], [63]. In addition in those compactness results
one proves that if H*(R™) is the subspace of H*(R"™) consisting of spherically
symmetric functions then H}(RY) < L*(|x| > &) for any 6 > 0 (see Appen-
dix 2 for more general results of this type) hence on the domain (|x| > 6) the
limit exponent 2N/(N — 2) is meaningless for H}(RY) and compactness is
available (see M. J. Esteban and P.L. Lions [35] for an application of this
fact).

We want here to explain these observations by the help of an extension of
the concentration-compactness principle, taking into account the invariance
of the functionals by a group of orthogonal transformations of R". Let us
also mention that we were led to the heuristic principle which follows by the
study due to C.V. Coffman and Markus [28] and that the analysis below will
be developped further elsewhere.

We still consider the general setting of the preceding section where R" is
replaced by a domain Q. We assume that Q, &, J are inva, iant under the action
of a group G of orthogonal transformations of R (of course if Q is a compact
N-dimensionnal manifold we adapt the notion of such a group in a
straightforward way...) and we consider for A > 0

I =Inf{8w)/ueH, uis G-invariant, J(u) = \}

where G-invariant means: u(x) = u(g - x), vxeQ, vgeG.

We need now to define the problems at infinity: first of all we define K>
exactly as before adding to the set of minimizers the constraint that u is G-
invariant.

Next, observing that if «u is concentrated at y» and if u is G-invariant u
is also concentrated at every point z = g - y for some g € G, we consider the
equivalence class: w(y) = {z = g-y/g€ G}, and we denote by s(y) = #w(y).
If s(¥) < o, we define
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I = 3 Kugy = SO (59)
zew(y) _

(Of course if 0@, w(0) = {0} and s(0) = 1) I” does not really depend

of y but on its equivalence class w(y). Next if s(y) = +, we set: I =

= lim nly;;, €] —o, +] (The fact that the limit exists is an easy exercise,

n-w
since the function ¢(¢) = I;>? is subadditive on [0, A]). In many cases this limit
is trivial (either 0 or +c0).

Finally, to take into account the effect of the translations (if Q satisfies:
VR < o0, 3y €, B(y, R) C Q) we consider

sg = inf[#w()/|x| 2R, xe€Q] < +o.
For R large sg is constant and we denote by s its value. We then set

K™ = sI3e si s< o
= = lim nL5f if s= +o (60)
n-—o

The same heuristic considerations of the preceding section show that the
strict sub-additivity inequality.

h<Il,+LK_, va € [0, \ (S.3)

is still necessary and sufficient for the compactness of all minimizing se-
quences of (58). And we have the same adaptations, extensions, variations as
before for problems invariant by dilations, (some) translations. Furthermore
if (S.3) fails, we know how compactness is lost on noncompact minimizing
sequences. :

In particular, in the locally compact case, I,? reduces to I defined by (60);

while if Q is compact, I**, I>** disappear and I\ reduces to Inf .
yeQ

Before giving briefly two examples below (more may be found in section IV
and in a future study), we would like to point out that in some vague sense
symmetries may help to find a solution of the Euler equation associated with
(58) or equivalently with (47) (if &, J are C',...) since ng(%) > o(\) if ¢ is
subadditive and since nqa(%) is «essentially nondecreasing» with respect to n
(at least along multiples...) therefore I essentially increases if s, inf s(»)
increase. yet

Another way to see this improvement of the conditions (S.1) — (S.2) is to
observe that if s = + oo, the first concentration-compactness lemma yields that
we have either vanishing, or compactness. And recalling that if p, = u3 + |Vu,,|2
vanishes then u, — 0 in LP(R") for 2 < p < 2N/(N — 2) (cf. P. L. Lions [55],
[56]), we find back the compactness results of W. Strauss [75], P. L. Lions [63]
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in a very direct way. Similarly if Inf {s(») | y € Q} = +, no Dirac masses may
Jform since J would contain an infinite set w(y) on which each Dirac mass 6,
has a fixed intensity thus contradicting the summability of the measure!

Example 3.1. Let N > 3, consider the functionals on H*(R")

[ Yo,z 1 2, 1 u>()u’(y)
8(u)—LN2[Vu| +2V(|x[)u dx 4JLN><RN____—IX—}1| dxdy

J(u) = j u? dx;
RN

where V e LP(R™) + LYRM) with ]5" < p, g < «. If we do not use the spherical
symmetry of V i.e. we only consider

I=1Inf{8w)/J(u) =1, ueH'(R")}

then —cf. P. L. Lions [55], [59]— all minimizing sequences are relatively com-
pact if and only if

2 2
I< 1°°=1nfU 1|Vu|2arx—1ﬁ L) edy) ) = 1}-
RN 2 4 )Jrvxry |x =y

And if V>0, V#0, there is no minimum.
On the other hand (this was observed in P. L. Lions [57] and it is clear in
view of the above arguments) if we consider for A > 0

L =1Inf (8w)/J(u) =\, ueH'RY), u spherically symmetric},

then I, < 0 and all minimizing sequences are compact and a minimum exists
(thus [; > I'). This is also clear in view of our arguments above: since (we are
in the locally compact case) i’ =0, IX*? =0, ¥y and I"® = limnky, = 0
and thus (S.3) is equivalent to I\ < I, Yo €]0, N[, and this is easily checked
since I < 0.

Example 3.2. Let N >3, consider the functionals defined on D!%(Q)
—where @ = {xeR", |x|>1}— by

&) = Jn a(|x|)|Vu|? dx, J(u) = [9 K(jx])|u| NN =2 gy

where a, K are positive continuous, @, K = a®, K” > 0 as |x| = c. We then
consider

I, = Inf |&u)/u eD“XQ), Jw) =\, u spherically symmetric}.

We compute easily: 5> = +oo, Y = 4+, VyeQ and
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2 = Inf {a"“ JRN |V u|®dx/ueD"*R"), u spherically symmetric,
K [ V™2 i =),

And (S.3) reduces (since i =\~ 2N[,, =AYV to
LT < I_)‘:c

If this condition holds, all minimizing sequences are compact and a minimum
exists, while if /,® = I there exists a minimizing sequence which is not com-
pact and any such sequence (4,). satisfies: 3(on)» €10, o[ such that o, — 0,
an N =272y,(% ) is relatively compact and its limit points are minima of I

On
4. Problems in compact regions

4.1 Yamabe problem

Our main goal in this section is to explain T. Aubin’s results on Yamabe problem
in the light of our general arguments. We first recall the nature of the problem.

Let (M, g) be a C* N-dimensionnal Riemannian manifold. We denote by
A the Laplace-Beltrami operator on (M, g); in local coordinates this operator
is given by

1 d .0
_ _ y__
Vg xZJ: axi<@g 3Xj>

where X ; gijdx' dx’ is the metric, g¥ = (gij) ™!, g = det(gy).

Let k be the scalar curvature of (M, g). One is interested in the determina-
tion of all functions K which can be realized as the scalar curvature of a metric
which is pointwise conformal to g i.e. of a metric g obtained by multiplying
g by a positive function on M. Now if we introduce the unknown function u
(positive on M) such that

5= y -2

g I

the above condition on K is equivalent to the so-called Yamabe equation (see
H. Yamabe [84], T. Aubin [9]; H. Eliasson [33] for the detailed computations)

~ 2Au + ku = KuWN+»’WN=-2 in M, u>0 inM Y)

—4

—where of course N > 3. In fact, H. Yamabe considered in [84] only the case
when K is constant and claimed that in this case the problem could always be
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solved. As it was remarked by N. Trudinger [79], the argument in [84] was
not complete and the case when K = 1 is still an open question (at least for
3<NK)).

Let us mention at this point that related questions concerning scalar cur-
vature and deformations on variations of metrics are considered in J. L. Kaz-
dan and F. W. Warner [(47], [48], [49], [50], J. L. Kazdan [46]; A. E. Fischer
and J.E. Marsden [37]; J.P. Bourguignon and J.P. Ezin [17]; J.P.
Bourguignon [16].

Let N\ denote the first eigenvalue of the operator

N-1

—4— A
oAtk

on H!(M); it is easily seen that:

i) if A1 > 0 and K £ 0, no solution of (Y) exists;

ii) if A1 = 0: no solutions exists if K # 0, K < 0 or K > 0; trivial solutions
exists if K =0 (and are unique up to a multiplicative constant);

iii) if A; < 0: no solution exists if K > 0 while if K <0, K # 0 it is a stan-
dard exercize on semilinear elliptic equations to show that (Y) has a
unique positive solution (one can also make a few remarks of the same
spirit if K has both signs). We refer to T. Aubin [9] for a brief exposi-
tion of these facts.

In view of these remarks, it is natural to assume

A > 0; Max K > 0. 61)
M

In this case, one way of finding (possibly) solutions of (Y) is to look at the
following minimization problem

I=1Inf {8w)/ue H' M), Jwu)=1) (62)

where

8(u)=j 45_—1|Vu|2+ku2, J(u)=j K|u|MW=-2,
M N-2 M

Then any minimum of (62) is, up to a change of sign and multiplication by
a positive constant, a solution of (Y’). Let us emphasize that the converse may
be false! Let us also mention that, as long as (62) is concerned, it is not
necessary to consider only a function k which is the scalar curvature and in
what follows, k, K are arbi<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>