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1. Introduction.

In this paper we are concerned with studying the Dirichlet problem
for an elliptic equation on a domain in R®. For simplicity we shall
assume that the domain is a ball Qg of radius R. Thus
(1.1) Qr={zeR®: |z| < R}.

The equation we are concerned with is given by

(1.2) (=A =b(z) - V)u(z) = f(z), z €Qr,
with zero Dirichlet boundary conditions,

(1.3) u(x) =0, x € 0Qg .

Here we shall think of the functions b(z), f(z) as defined on all of R3.
Thus we shall assume that

(1.4) b:R® - R3, f:R®* SR,

are Lebesgue measurable functions. It is well known [5], [11] that the
solution of (1.2)-(1.3) has -at least in the case of smooth functions b, f- a
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representation as an expectation value with respect to Brownian motion

with drift b. Thus
(1) ) = B | [ Oty at]

where E, denotes the expectation is taken with respect to the drift
process Xp(t) starting at z € Qg, and 7 is the first hitting time on the
boundary 0Qpg .

Our main goal here is to prove existence and uniqueness of solutions
to the boundary value problem (1.2)-(1.3) when the drift b is allowed
to have singularities. To specify which kind of singularities b can have
we define the Morrey spaces M (R3) for 1 <p < ¢ < co. A measurable
function g : R3 — Cis in My (R3) if |g|? is locally integrable and there
is a constant C such that

(1.6) / gl dz < C? |QI/7,
Q

for all cubes @ C R®. Here |Q| denotes the volume of Q. The norm of
g, ||9llq,p is defined as

(1.7) llgllg,p =inf{C : (1.6) holds for C and all cubes Q}.

It is easy to see that, with the definition (1.7) of norm, the space M} (R3)

is a Banach space. Let LI(R3) be the standard L? space on R® with
norm denoted by || - ||, . Then one has the relationships for 1 <r <p <
g <o,
18) LY(R®) = MJ(R®) C MI(R®) C M¥(R?),
1.8
ligllq = llgllg.q 2 llgllap 2 llgllq,r -

Our first theorem is a perturbation theory result.

Theorem 1.1. Suppose 1 < r < p < ¢ and |b| € M}, f € M§ for
some q, with 3/2 < g < 3. Then there ezists an €9 > 0 depending only
onr, p, q such that if ¢ € C, |e] < g¢/||bl|3,, , then the boundary value
problem

(1.9) (A —eb(z) - V)uc(z) = f(z), z € Qp,
(1.10) ue(z) =0, x € 0Qr ,
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has a unique solution u. in the following sense:

a) u. s uniformly Holder continuous on Qp and satisfies the
boundary condition (1.10),

b) The distributional Lapacian Au,. of u. on Qg is in M7 and the
equation (1.9) holds for almost every xz € Qp,

¢) ue(z) 18 an analytic function of € in the disk |e| < g for any
fized z € Qpr,

d) The L™ norm of u. ts bounded by

(1.11) luclloo < C B2 fllg,r
where the constant C depends only on p,q,r.

REMARK. The restriction that f is L7 integrable for ¢ < 3 is artificial
since if f € L9 for some qo > 3 then f € LI for all ¢ < qo. The ¢ < 3
restriction is related to b) and the value of ¢ .

Theorem 1.1 will be derived from a theorem on integral equations.
Let T be an integral operator with measurable kernel k7 : R* x R® - C.
Thus for measurable f : R* — C one defines T'f by

(112) Tf(e) = [ kr(e,y) ) dy.

Theorem 1.2. Suppose the kernel kr of the integral operator T satisfies
the inequality

[b(z)]

, z,y € R®,
ey "YE

(1.13) (@, y)| <

where |b| € M]?, 1 < p < 3. Then for any r,q which satisfy the inequal-
ities

(1.14) l1<r<p, r<g<3,

the operator T is a bounded operator on the space MJI. The norm of T
satisfies the inequality

(1.15) 1T} < Cliblls
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where the constant C depends only on r, p, q.

Theorem 1.2 generalizes a result of Kerman and Sawyer [8] which
proves the theorem in the case of L spaces, i.e. r = ¢. The more gen-
eral Theorem 1.2 is necessary to prove Theorem 1.1 even if we assume
f € L1. The Kerman-Sawyer theorem does apply to Theorem 1.1 if we
assume b € M;f with p > 3/2.

Next we turn to the non perturbative situation. It is easy to see
-by considering the case of |b(x)| = €/|z| with large e- that (1.2) need
not have a solution for |b| € M;’ if we make no restriction on the
norm of |b|. To obtain an appropriate non perturbative theorem we
pursue an analogy with a problem which has already been studied in
great detail. Let V : R® — R be a measurable potential and consider
the problem of estimating the number of bound states N(V') of the
Schrodinger operator —A+ V. It was shown independently by Cwickel-
Lieb-Rosenbljum [10] that N (V') satisfies the inequality

(1.16) N(V) < C/ V()% de
]Ra

for some universal constant C. The best value for the constant C' was
obtained by Lieb [9] and is C = .116. This is to be contrasted with the
lower bound on C, C' > .078 obtained from semi-classical asymptotics.
Hence the bound (1.16) with constant C = .116 is in some sense very
sharp. However it may in fact be a bad estimate such as in the case
V(z) = —¢/|z|* with ¢ small. In this situation the right hand side of
(1.16) is infinity whereas in fact N(V) = 0.

In order to understand the cases where (1.16) gives bad estimates
Fefferman and Phong [3] obtained new estimates on N (V') which imply
(1.16) and remain finite in the case V(z) = —¢/|z|? for small e. The
price one pays is that the constant C in (1.16) which follows from their
estimates is far from optimal. The Fefferman-Phong estimate is as
follows: Suppose we have a dyadic decomposition of R? into cubes Q.
Let ¢ > 0 be an arbitrary positive number. A cube @ is said to be
minimal with respect to ¢ if

/ VP da > &? |Q|1—2p/3 ;
JQ
(1.17)
/Q, VP de < QI Q' cq,
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for all dyadic subcubes Q' C Q. Here p is some fixed number, 1 <
p < 3/2. Let N.(V) be the number of minimal cubes in the dyadic
decomposition. Then the Fefferman-Phong inequality is given by

(1.18) N(V) < C. No(V),

where the constant C. is finite provided € > 0 is sufficiently small. Since
it is clear that

(1.19) N.(V) 35—3/2/ [V(2)]*/? de
ma

the inequality (1.16) follows from (1.18).

The analogy between the drift problem (1.2)-(1.3) and the bound
state problem for the Schrodinger operator is roughly in making the
identification —|b|? = V. It has been shown in a previous paper [1]
that one can directly estimate the solution of the drift problem with
V = —|b|?2. However these estimates are not sharp. In fact there
are important differences between the drift problem and the potential
problem. For example there is no semi-classical asymptotic limit in
which the inequality analogous to (1.16) becomes an identity. That
said, our analysis will be close in spirit to the Fefferman-Phong analysis
of the potential problem.

We consider the drift problem with non perturbative drift b. Let
p be a fixed number 1 < p < 3 and € > 0 be arbitrary. Suppose we
have a dyadic decomposition of R? into cubes Q. A cube @ is minimal
with respect to ¢ if

/ blP de > &2 |Q'?/,

Q

(1.20)
/ bPPde <2 |QP0, Q' CQ,
QI

for all dyadic subcubes Q' C Q. Let N.(b) be the number of mini-
mal cubes in the dyadic decomposition. Then we have the following
theorem:

Theorem 1.3. Suppose f e MI, 1 <r<qr<p,p>23/2<q<3.
Then there exists € > 0 depending only on p, q, v such that of N.(b) <
+o0o the boundary value problem (1.2)-(1.3) has a unique solution u(x)
in the following sense:
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a) u is uniformly Holder continuous on Qg and satisfies the bound-
ary condition (1.3),

b) The distributional Laplacian Au of u 13 in M and the equation
(1.2) holds for almost every x € Qg .

Our final theorem generalizes the estimate (1.11) on the L*°-norm
of the solution u of (1.2)-(1.3), to the nonperturbative situation. For
b€ M}, p>1, and n an integer define a function a, : R* — R by

1/
(1.21) an(z) = (2707 / [biP dy) "
|z—y|<2-n

We then have the following

Theorem 1.4. For f € M3,b € M; with N.(b) < 400, let u(z),
z € Qpg, be the solution of the Dirichlet problem (1.2)-(1.3) given by
Theorem 1.3. Let ng be the integer which satisfies the inequality

(1.22) 4R>2"™ >2R.

Then there exists v, 0 < v < 1, depending only on p > 2 such that u
satisfies the L™ estimate

(1:28) [[uflo < Co R4 flgr - ™ sup exp (C2 D anusl2) -
m=0 TCYR j=0

The constant Cy depends only on p, q, r and Cy only onp > 2.

Theorem 1.4 will be proved in Section 6. We shall also show there
that Theorem 1.4 implies the bound

(1.24) [ulloo < C1 R*73/9||f|lq,r exp(C2 Ne(b)),

provided ¢ is sufficiently small depending only on p > 2. Since N.(b)
satisfies the inequality

(1.25) Ne(b) < e~ [|b]l3,
the inequality (1.24) implies the bound
(1.26) oo < C1 B2/ flq,r exp(Ca |IbII3) -
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Inequality (1.26) with ¢ = r = 3, is already known [6]. This is the
Alexandrov-Pucci estimate, which has been proved here using different
ideas.

Our method is based on studying how the drift process Xp(t) differs
from Brownian motion X(t). The technical tool we use for this is the
Cameron-Martin formula [10] which expresses expectations with respect
to the drift process as Brownian motion expectations. Our main idea is
that if p > 2 then the sets on which |b| is large have dimension strictly
less than 1. Hence, by the nonrecurrence property of Brownian motion
in dimension strictly larger than 2, most paths do not often visit sets
where |b| is large.

While there is an extensive recent literature on elliptic equations
with nonsmooth coefficients [2], [4], [7], there appears to be little study-
ing the singular drift problem. The most recent paper we could find on
the subject was the 1980 paper of Trudinger [12]. See also the book by
Friedlin [5] for the relation between functional integration and partial
differential equations.

2. A Theorem in Integral Equations.

Our goal in this section is to prove Theorem 1.2. For z € R? and
r > 0, let B(z,r) be the ball of radius r centered at z,

(2.1) B(z,r)={yeR®: |z —y|<r}.

We define operators S, on locally integrable functions u on R? for any
integer n € Z by

(2.2) Spu(z) =27" |B(z,2‘")|“/

) lu(y)| dy -

(z,2

It is evident then from (1.3) that the operator T satisfies the inequality

(2.3) Tu(z)| S C )y |b(2)|Snu(z),

n=-—oo

for some universal constant C.
Let Qo be the cube centered at the origin with side of length 2770,
We define an operator Tp by -

Tou(z) = Tu(z), z ¢ Qo,

(2.4)
Tou(z) =0, T € Qo .



8 J. G. CoNLON AND J. REDONDO

Lemma 2.1. Suppose the support of u is contained in the ball
B(0,27™~2%). Then for 1 <r <p <3, r < q<3, there is a constant
C depending only on p, q, r such that

(2:5) IToullg,r < CIblla,p [lullg,r -

PROOF. We need to show
1/r
o) ([ 1mourrde)" < bl e 1QF7 1,

for all cubes Q. First let us consider the case

(27) | QI < 275

We use the inequality

(28) Tou()] < Alb(2)] 22 lull;, = € R,

where the constant A is universal. Hence the left hand side of (2.6) is
bounded by

1/r
(2.9) A2’"°|Iu||1(/Q|b|’dx) < A22[u||y [|blls,, Q173

on using Holder’s inequality. Next we use the fact that

(2.10) llells < |lullg,r 1Qol =9,
whence
1/r
(211) (] mour =)™ < 4o, ol P41,

in view of (2.7).
Next let us suppose that
(2.12) 273 < Q) < 273D k<,

and the double of @ contains the origin. Then, by the property of the
support of u, one has

ng
(2.13) /|T0u|fdx5A||u||; > 22’"/ |b|" dz ,
Q Qn

n=k-3
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where the cubes @, have side of length 27" and center at the origin.
Using the fact that b € M: , p > r, the inequality (2.13) yields

. "o
/QITouI’dﬂ:SAIIUII'{ > 2 b5, Qa7

n=k-3

(214) r r - n(r—

= AlulfIbl5, Y 2207
n=k-3

< Blullf |Ibli5 , 20,

for some constant B dependingonr > 1.

We have then
1/r
e15) ([ mrde) " < Clulh bl Q0
Using (2.10) again we conclude that

1/r
([ mourdz)™" < € bl ol Qo7

< C'|bllsp llullq,r QI

(2.16)

Finally, if @ satisfies (2.12) and the double of ) does not contain the
origin then the inequality (2.16) continues to hold.

Let K be an arbitrary cube in R® with side of length 27" for
some integer nx. We associate with K an operator Tk on integrable
functions u : K — C. To do this we decompose K into a dyadic
decomposition of cubes @), with sides of length 27", where n > ng.
For any cube @, C K let ug, be the average of |u| on Q.. Then for
any n > ng we define the operator S, by

(2.17) Spu(z)=2""uq,, T€Qn.

The operator Tk is then given by

(2.18) Txu(z)= Y |b(z)|Spu(z), zcK.

n=ng

We relate the operators T to the operator T by the following
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Lemma 2.2. For z € Qg let Qo(z) be the cube centered at z with side of
length 227 ™, Let u be an arbitrary integrable function supported in the
ball B(0,27™°~2%) and Q an arbitrary cube. Then there is a universal
constant C such that for anyr > 1,

dz

o, 1001 Jono, Taeu(®N"de.

(2.19) / |Tu(z)|"dz < C
QNQo

ProoF. This is a consequence of Jensen’s inequality. In fact Jensen
implies that

dz i
/Qo IQO, QnQolTQo(z)u(x)l dz

z /QnQo (/Qo I%ZJ TQ"(’)u(x))rdm '

Now one merely has to note that, because of the restriction on the
support of u, one has

(2.20)

(2.21) /Q %—f—)—l Tg,nu(z) 2 C|Tu(z)], z€Qo,

for some universal constant C.

The main work in this section will be concerned with bounding the
operators Tk .

Theorem 2.3. Suppose 1 <r <p<3, 1<r<q<3. Then there is
a constant C depending only on p, q, v such that

1/r
@2 ([ o) < bl full Q1
Q
where @Q i3 any dyadic subcube of the cube K.
PrROOF OF THEOREM 1.2. We can assume without loss of generality
that u has compact support where the support of u is contained in a

ball B(0,27"°~%) for some integer ny. Let @ be an arbitrary cube.
Then by Lemma, 2.1 one has

([mra” ([, mra)"s ([, more)”

1/r
(223) <( [ ds) " C bl full, 101
QNQo
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Let K be one of the cubes Qo(z) from Lemma 2.2. Then it is clear
that the set @ N Qo is contained in the union of at most eight dyadic
subcubes Q' of Qo(z) with |Q'| < |Q|. Hence one has

1/r 1/r
( / |TKu|'da:) <y ( / |Txu|” d:c)
(2.24) @nQo o Ve
<8C|blls, llullg,r Q™1
by Theorem 2.1.
Now Lemma 2.2 implies

1/r _
@) ([ Terds) <O blsy by @S,
QNQo

for some constant C' depending only on p, ¢, r. Theorem 1.2 follows
now from (2.23), (2.25).

We begin the proof of Theorem 2.3. We shall assume without loss
of generality that

(2.26) IIblls, < 1.

Lemma 2.4. Suppose u : K — C is an integrable function and Q' C K
18 a dyadic subcube of K such that for all dyadic Q C Q' there is the
inequality

(2.27) 1QI'3*euq < |Q'*+ouq,

for sufficiently small ¢ > 0 depending only on r, p. Then the inequality
(2.22) holds on Q'.

PROOF. Let N be the integer such that the length of Q' is 2=V N >
nk. Then one has

(/Q, |TuK|’dx)1/r < (/Q (Ib(2)] NZ_I Snu(a:)>rdx)1/r

(2.28) nEnK

+ (/Q (1b)] 3 Snu(x))rdx)l/r.
n=N
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We estimate the first term on the right in (2.28). Since ¢ < 3 one has
N-1
(2:29) Y~ Sau(z) < Clullg,r Q71

n=ng

Thus the first term is bounded by

, _ - 1/r
el @175 [ (@) o)
< Clully,r 1Q =1 1@

(2.30)

in view of (2.26). Hence the first term is bounded by
(2:31) C llully,-1Q"1/™1,

which has the form of the right side of (2.22).
To bound the second.term on the right in (2.28) we need to de-
compose |b|. For m an integer let E,, be the set

(2.32) - Em={zeR®: 2™ ! < |b(z)| < 2™}.

We write the sum of S,u(z) over n as
( i S'nu(x))r
n=N
oo k+1 . E .
sy S+ X (3 Se) - (X swi))

= Snu(z)"
o0 1 k r_l
* Z T/ ( Z Snu(z) + t5k+1“($)) Sk+1u(z)dt.
k=N 0 n=N

Now we use (2.27) to obtain the bound

k
(2.34) > Spu(z) +tSerru(z) < (k42— N) 23N Q13 44, .
n=N
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We have then the estimate

(% $uto)" < (@17 u0)"

(2.35) N -
: (SNu(.z') + 3 r(k41- Ny DE=N) Sku(z)) :
k=N+1

For m, k integers with k > N let

(2.36) Am k = Z |Em N le UQyx »
Qe CQ’

where the Q; are dyadic subcubes of Q' with side of length 27%. Then
one has

/ (Ib)| i Swu(x)) dr
Q n=N

r—1 >
(2.37) < (|Q'|1/3 u.Q:) Z 2mr (2_N am N
+ Z r(k+1— N)—193e(r—)(k=N) 9—k am,k) ‘
k=N+1

There are two estimates on a,, » which we use. The first follows from

(2.27). Thus

(2.38) amk < |Em N Q203N o,

The second is obtained by observing that |E,, N Q| < |Q«|, whence
(2.39) am ik < Q' ug: .

It follows that for any «,0 < a < 1, the right side of (2.37) is bounded
by

r—1 2 o 1~
(’Qlll/Bqu> Z 2m.r (2—N (IQII 'U.Ql) (IEm N Qllle’)
m=-—00
o o
+ Y r(k 41— Nyl Dk=Ngmk (|Q'|uQ,)
k=N+1
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. (lEm N QII 2(1+3€)(k-—N) uQ,)l—a)
(2.40)
oo
<C, IQllr/3+a urQ, Z gmr IEm N Qlll—a ,
m=—o0
where the constant C, depends only on a > 0.
We bound the sum with respect to m on the right in (2.40) by
writing

o o]

Z 2mr|Em N Qlll—a
N-1 oo
(241) < |Qlll—a Z gmr + Z 2mr|Em N Qlll—a
m=—00 m=N

oo
SCIQlil—a-—r/3 + Z 2mr|Eanl'l—a.
m=N

In view of (2.26) one has
(2.42) 2™ |En N Q| < 2°|Q'|'?/3,

and consequently it follows because r < p that

[e ]

(2.43) Z 2mr|Em N Qlll—-a < Ca IQlll—a—r/:i ,
m=N

provided a > 0 is sufficiently small. We conclude then that there is a
constant C' depending only on r, p, ¢ such that

> r i/r
b(z S,u(z)) dz <ClQY uo!
e (/Q,(l()lrgv @) d)"" < ClQ'Mruq
< C lullg,r Q11
The inequality (2.44) combined with (2.31) proves the result.

Next we need to remove the restriction (2.27) on the growth of
the averages of u on dyadic cubes. To do this we define a Calderén-
Zygmund decomposition of Q. We can assume without loss of gener-
ality that u € L*°(Q"). Define a function N; on @',

(2.45) N :Q - {k€ZU{oco}: k> N},
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by

a) Ni(z) = 0oif |Q|'/3**ug < |Q'|*/3+4ugy for all dyadic subcubes
Q of Q' such that z € Q,

b) Otherwise 27M1(2) is the length of the side of the largest dyadic
cube @,z € Q C @', such that |Q|*/3*ug > |Q'|'/**+euqg .

We define the set G; to be
(2.46) Gi={z€Q: Ni(z)=o0}.

Since u € L*®(Q') there is a unique finite family F; of disjoint dyadic
subcubes of Q' such that

(2.47) U e=e"\G:.

QEF

If 71 is nonempty then we define a function N, on @' which is analogous

to N;. Thus
e) Na(z)=c0ifz€Gy,

b) Ni(z)= oo if z € Q'\G; and |Q|*/**°ug < |§|1/3+51t6 for all
dyadic subcubes with z € Q C Q € F

c) Otherwise__2'N 2(%) is the length of the side of the largest dyadic
cube Q, z € Q C Q € Fy, such that |Q|'/**+cug > |Q|1/3+5u—6.

Observe that Nz(z) is defined uniquely for z not on the boundary
of any cube ) € F;. Thus it is defined up to a set of measure 0.
Furthermore, one has
(2.48) Ny(z) > Ny(a)+1, ae T€Q".
Now define G5 to be the set
(2.49) G, ={z € Q'\G;: Ny(z) = c0}.

Then, as with Ny, there is a uniqué finite family F; of disjoint dyadic
subcubes of Q' with

(2:50) U @=@\6:\G: .

QEF,
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One can continue this procedure inductively to construct a sequence of
functions Nj,j > 1, on @', a sequence of disjoint subsets G;,5 > 1, of
@', and a sequence of families F; with the properties:

o |JGi=@q,
j=1

b) F; is a finite collection of disjoint dyadic subcubes of Q' such

that
k
Ue=e\Uos,
QEF Jj=1
¢) For any Q € Fi let Q € Fir_; be the unique subcube containing
. Then
QI **ug > [Q'/***ug

k
d) Ni(z)=ooforz € |JG;.

J=1

Otherwise Ny (z) is defined by 273N+ (2) = |Q| where Q is the unique
cube in F; with z € Q.

We have constructed families F;,j > 1, of dyadic subcubes of Q'.
Let Fo = {Q'}. Then we have

Lemma 2.5. Suppose u € L>®(Q'). Then there is a constant C de-
pending only on r, p, q such that

(2.51) /Q (|b(x)l i Snu(l'))rdz < ci 3 1Qlup -
n=N

J=0 QEF;

PROOF. Define a sequence aj, j > 0, by

ag = Ib(z)|" (Snu(z))" da
QI
Ni(z)-2 1 k r—1
+ |b(z)|" Z r/ ( Z Spu(z) + tSk_,_lu(m))
Q' k=N 0 “a=N

*Skpru(z)dt da
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(2.52)
N; +1 (z)-2

=/Q’ |b(z)|'k—N - / Zs u(z) +t Seru(z))

n=N
-Sk+1u(x)dtdz, ] Z 1.

In view of (2.33) the left hand side of (2.51) is given by
(2.53) > a;.
=0

It follows directly from the proof of Lemma 2.4 that there is a constant

C such that
(2.54) a0 < C Q" ugy .

We wish to show that for j > 1, one has

(2.55) a; <C Y |Qluy .

QEF;

Evidently one has

(2.56) ajz/lvj(z)w( yde= 3 /( )dz,

QEF;
where (- ) denotes the integrand in the formula for a;. Let us fix a

particular Q € F; with side of length 2= M > N, whence N;(z) =
M, z € Q. By definition of the families F; it follows that

M
.’L‘ < 2—3€(M n) Q 1/3 u_
(2.57) 2 Sl < ; !
<CQ"ug, =z€Q.
On the other hand, for M < k+1 < Ny (z) — 1, one has

k
Spu(z) +t Sk+1u(2)
(2.58) n,=%1:+1

.<_ (k +1— M)235(k+1-—M)|'Q"l1/3 ua’
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which is analogous to (2.34). Now one can proceed just as in Lemma
2.4 to obtain (2.55). The result follows then from (2.53) and (2.55).

Lemma 2.6. There 13 a constant C depending only on r, p, q such
that

oo

(2.59) S Y 1Qlup < C/QI lu|" dz .

J=0QE¥;

PROOF. Since we can assume ||u|lcc < oo there exists an integer ¢t > 1
such that F; is empty. Thus

(2.60) Q = U G .

i=1

Let us consider a particular Q € F;, 0 < j <t — 1. It is evident
that

(2:61) Qc | Gn.
m=j+1

We wish to estimate | N G, | for m > 5 + 1. We have now

wa:mex

t
Z‘m /Q . |u| da
= > [Qlug

Q€EFnm-1,QCQ

/3

= (1el\’

> Y (@) w
6€Tm—116CQ i

>2m=i Dy (@

6€}_m—ly6CQ

t
=2m=i=Dys|Qn | | Gi.
Q

1=

vV

(2.62)
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We conclude therefore that

|Q n Gml —(rﬁ— )—1)

(2.63) —_— <2 =,
QI
Next we consider
T 1 r
Q| ug = ,_1 Iuldm
IQI

(2.64) 'er— Z / lu| da:

m—1+1 QNGm

At E r
|Q|r 1( Z arm) Z a'—nr(/QnGm |"|d5’3) )

m=j+1 m=j+1

by Hoélder’s inequality, where a,, is an arbitrary positive sequence and
1/r +1/r' = 1. We choose an, to be given by

(2.65) Am = ((g)m—j—l |Q ?ch;m|)l/

In view of (2.63) the inequality (2.64) yields

. L2\ (m=j=1)(r-1) 1
Qe 3 (3) PRI

m=j+1

(2.66) ( /Q o dx)'

¢ (m=j=1)(r—1)
= Z ( ) IQﬂGm|uQnGm .

We conclude then that
(m—j-1)(r—1)
(2.67) Y Qg <c Z ( ) / lu|” dz
QEF; m=j+1 Gm
by Jensen’s inequality. Now if we sum (2.67) with respect to j and use

the fact that the sets G are disjoint we obtain the inequality (2.59).

Theorem 2.3 now follows immediately from the previous two lem-
mas and the estimate (2.31) in Lemma 2.4 on the first term on the right
hand side of (2.28).
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3. Perturbative existence and uniqueness.

We turn to the proof of Theorem 1.1. We first consider the problem
of uniqueness of the solution to (1.9), (1.10). Let us write g(z) =
—Au,(r),z € Qpg, the distributional Laplacian which is assumed to
exist by b) of Theorem 1.1. Since g € MJ and a) of the same theorem
it follows by Weyl’s lemma that u, is given by the formula

(31) w(@)= [ Gole,)gw)dy,

Qg
where Gp is the Green’s function for the Dirichlet Laplacian on Qp.
Thus

1 1 R 1

3.2 Gp(e,y) = —— —— =~
(3:2) PV = eyl W ] =7

where 7 is the conjugate of y in the sphere Q. It follows easily from
the representation (3.1) that the distributional gradient Vu. exists as
an integrable function on Qg and is given by the formula

(3.3) Vue(z) = /Q V.Gp(z,y)9(y)dy, z€Qp.

Now let T be the integral operator with kernel kr given by

b(.’E)'szD(I,y), z,yEQR )

0, otherwise.

(3.4) kr(z,y) = {
It is clear from (3.2) that VG p satisfies the inequality

. z , <
(3.5) VGo(e, )| < gorp

Hence Theorem 1.2 applies to the operator T. In view of (3.1), (3.3)
equation (1.9) is the same as

(3.6) (I-eT)g=f,

provided we extend f, g by zero outside Qr. By Theorem 1.2 there is
an appropriate €9 > 0 such that |¢| < eo/||b||3,, implies that ¢T as an
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operator on M{ has norm strictly less than 1. Since f, g are assumed
to be in MJ equation (3.5) implies that ¢ is given by

g=I—-eT)7'f.

Hence g-is uniquely determined by f. Since (3.1) shows that u. is
uniquely determined by g uniqueness of the solution follows.

To prove existence we define g by (3.7) and u. by (3.1). Thus
g € Mg and ||gllq,r < C||fllq,r for some constant C' depending on &o.
We shall show that the estimate (1.11) holds. In fact from (3.1) we
have

1 l9(y)|
u(z)| < — 2 d
jue(2)| 4ﬂﬁﬂh_m y

1 oo
<__ n
<5 E 2 /ing(y)ldy,

n=ng

(3.8)

N

where @, is the cube centered at  with side of length 27", and ng is
the unique integer satisfying

(3.9) 4R<27™ < 8R.

Using the fact that ¢ € M7 it follows that

lue(z)| < 2" 1Qnl* 7 llgllg,r
(3.10) ,;no lglla

< CaTmerla | f|,,,

since ¢ > 3/2. The inequality (1.11) follows from (3.9), (3.10). We can
generalize the above argument to show that u, is Holder continuous. It
is also clear from (3.2) that u, satisfies the boundary condition (1.10).
Hence a) of Theorem 1.1 holds. To prove b) we use the fact that the dis-
tributional gradient of u. must be given by (3.3) and the distributional
Laplacian of . satisfies —Au, = g. Thus we have

(3.11) —Au.(z) —eb(z) - Vue(z) = (I — eT) g(z),

for almost every z € Qp.

It follows now from the definition (3.7) of g that the right hand
side of (3.11) is just the function f(z). This concludes the proof of b).
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Part ¢) follows by expanding (3.7) out in a Taylor series in €. This
completes the proof of Theorem 1.1.

Next we prove some results which are perturbative in nature but
which will be needed to understand the nonperturbative problem. Let
g : QR — R be a continuous function and u(z), |z| < R be the solution
of the Dirichlet problem

(3.12) { —Au(z) =0, |z < R,

u(z) = g(z), z € 0R.

Then u is given by the Poisson formula

(313)  u(x)= Pg(z) = 47:1{ / ’Tz = Z“l’ o(2)dz.
|z2|=R

Now the solution of the Dirichlet problem
—A —=b(z)-V)u(z) =0, r|< R,
(3.14) ( (z) - V)u( |
u(z) = g(z), z € Mg,
is given formally by the expression
(3.15) u= Pg+(-Ap) Y(I-T)"'b-VPyg,

where (—Ap)~! is the inverse of the Dirichlet Laplacian and has kernel

(3.2).

The formula (3.15) is not appropriate for drifts b € M:. The rea-
son is that even if g is Holder continuous on 02 g the function V Pg(z) is
not in general an L™ function for |z| < R. To get around this difficulty
we average over the radius of the ball on which we solve the Poisson
problem. Thus let us suppose we have a Holder continuous g € C*(Q2g)
for some a, 0 < a < 1. We define Kg(z) formally for = € Qg/; by

o R
(316) I&"g(:lf) == / ux(z) d/\,
R R/2

where u) denotes the solution (3.15) of the Poisson problem on the ball
of radius A\. More precisely let Py, Ty, (—Ap x)~! be the operators in
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(3.15) acting on the ball of radius A. Denote the kernel of (I —Tx)~! by
Hy(z,y) and (——AD,,\)'1 by Gpa(z,y). We can think of Hy and Gp,»
as being defined on R® x R? by simply extending the functions by zero
outside Q2 x Q. It is clear that for || < A one has

22 — Ja[?

|z — 2[°

(317)  VPg(z) = — v.(

— ) (9(2) - g(=)) dz

lz|=2

since the left hand side of (3.13) is constant for g a constant. It follows
therefore that the formal definition (3.16) of K corresponds to

;oo 2 1o — =P
Kg(z) = = / e 3 9(z)dz

|z — |

R/2<]|z|<R

2
(3.18) + = dw/ dy / dz GD,|z|($»w) H|z|(w, y)

R Qr Qr

R/2<]|z|<R
|2* = lyf?
: AV — - .
b(y) ( .1/47rlzl |y _ Z|3> (g(z) g(y))

Proposition 3.1. There ezists a constant €9 > 0 depending only on
p > 1 such that if ||b|z, < €o then u(z) = Kg(z) defined by (3.18)
on Qp/y exists and is Holder continuous. Further, the distributional
Laplacian Au is in M3 for anyr < p, ¢ <3 and

(3.19) —Au(z) - b(z) - Vu(z) =0, for almost every = € Qrs .

PRrOOF. Evidently the first integral on the right in (3.18) yields a
Holder continuous function. We shall show first that the second inte-
gral is uniformly bounded. Let T be the integral operator with kernel
|b(z)|/2m|z —y|?. Then if €, is sufficiently small the operator (I —T)™!
exists in the sense of Theorem 1.2 with kernel H(z,y) say. It is easy to
see now that

(3.20) |H|Z|(_w,y)) < H(w,y), w,y € R3.

We also have

1

—————— R?.
4|z —w|’ B e

|Gp,jz(z,w)]| <
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Consequently the second integral is bounded in absolute value by

2 1
— dw/ d / dz————
R Jo, Qr y 4m |z — w|
R/2<|z|<R
ly|®

(3.22) - H(w,y) [b(y)| [vym l9(2) — g(v)l

1
<c [ av /Q dy o ) b))

using the fact that g is Holder continuous. Since |b| € MY for any
r < p,q < 3, Theorem 1.2 implies that the last integral is uniformly
bounded in z. The Holder continuity of u follows similarly.

Let us define h(z) for z € Qg by

2
h(z) = Ti/ dy / dz Hy;(z,y)
Qr
(323) R/2<|z|<R

(1) (9 i) (00 - o(0)).

By our previous argument it follows that h € M{ for any r < p, ¢ < 3.
We wish to show that the distributional Laplacian Au on Qg is given
by

(3.24) —Au(z) = h(z), z€Qg.

We have

(3.25) h(z) = / h(z,z)dz
R/2<|z|<R

and

) R
u(z) = & /R/z d)\ Pyg(zx)
(3.26)
+ dw / dz Gp;(z,w) h(w,z).

Qg
R/2<|z|<R
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Let ¢ be a C* function with compact support in {2/, . Then it
follows from (3.26) that

/ —Ap(z)u(z)dr

= [, dw / dz (/—Acp(x)GD’M(z,w)da:) h(w, 2)
(3.27) R/2<|z|<R
= /dwdz p(w) h(w, z)

= [ @w ow)h(w),

on application of Fubini’s theorem. Hence we have (3.24). Similarly
one has that the distributional gradient Vu is given by

_2 1 |2[* — |22
Vu(z) = R/47r|z|v’( Iz — 2P )g(”)dz
2
(3.28) +—R A dw/{; dy/dz V:Gp,:|(z,w) H.|(w,y)
R R
2> — |y

. AV, — - .
b) (Vo g a2 ) (90— 99)
Let us define for § > 0, y € Qr, z € Qr\QR/2, f5,2/(y) by

22 = Jyl?
Vel ly — 2P +6

(320)  foa(v) =b()- (V ) (9(2) = 9(v)).-

Then we have for almost every = € §2g/,, the identity

/Q dw /Q dy b(z) - V.G p joy(z, ) Hysy(w,9) fs,1(4)

(3.30) 9= r

:_fé,]z|($)+/ dy Hy;\(z,y) fs,21(¥) -
Qr

This follows since the left hand side of (3.30) is the operator T}, |(I —
T|z|)_1 applied to the function fg.] € M for any r < p, ¢ < 3, and the
right hand side is the operator —I + (I — Tj,|)~! applied to the same
function. It is clear then by dominated convergence that

L2
(3.31) glm —/ dy / dz H;(z,y) fs5,:/(y) = h(z),
—0 R O
R/2<|z|<R
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for almost every z € Qp/,. It follows trivially that

.2
mz [ d o)
R/2<|z|<R
(3'32) _b(m).z / 1 v (lzlz"‘xlz) ( )d
= R arjz| \Je—zp /I

R/2<|z|<R

for any z € Qp/;. Again dominated convergence and (3.28) implies
that

2
lim —-/ dw d
6—0 R Qr Qr y
dz b(z) - V;Gp |:|(z, w) H|z|(w,y) f5,2(y)
(3.33) R/2<|z|<R
= b(z) - Vu(z)

_ 2 1 2> —|z|?
ble) 7 / a2 v,( lz — 2P )9(z)dz'

R/2<|z|<R

It follows then from (3.30) to (3.33) that

(3.34) b(z) - Vu(z) = h(z), for almost every = € Qp/; .
Hence (3.24) and (3.34) implies (3.19).

Proposition 3.2. Suppose u is a Holder continuous function on the
closure of Qp, the distributional Laplacian Au is in M7 for some r, g,
1<r<p,3/2<q<3 andu satisfies the equation

(3.35) —Au(z)—b(z) - Vu(z) =0, for almost every = € Qp/s .
Then

(3.36) u(z) = Ku(z), for all z € Qp/y,

provided ||b||3 , < &9 where ¢9 depends only on r, p, q.
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PROOF. Let us consider the problem
{ —Au(z) — b(z) - Vu(z) = f(z), lz] < A,
u(z) =9(z), |lz| = A.

We shall assume that f € Mf and VPyg(z) is an L™ function for
|z| < A. Then it is easy to see that (3.37) has a unique solution u given
by

(3.37)

u= Pyg+ (—AD,)‘)_I(I — TA)_lb - VPyg

(3.38)
+ (—AD,,\)_I(I — T,\)_lf .

In fact if we put

(3.39) v=u— P,

then

(3.40) {—Av(w) —b(z)- Vo(z) = b(z) - VPrg(z) + f(z), |z| <A,
v(z) =0, lz| = .

Since we are assuming VPyg is L*, Theorem 1.1 implies (3.38).

Let ¢ : R®* — R be a C* function with support in the unit ball
centered at the origin and with integral 1. Then for § > 0 the functions

Pé,
(3.41) ps(z) =83 p(c/6), zERS,

are approximate Dirac § functions. We consider functions us = s * u
where u is the solution of (3.35) given in the statement of Proposition
3.2. Then u;s is a C™ function in the ball |z| < R — 6, and

(3.42)  —Aus(z) — b(z) - Vus(z) = fs(z), |lz| < R—6,
where
(3.43) fs(z) = ps * (b - Vu)(z) — b(z) - Vus(z).

Since f € MJ for some r < p, ¢ > 3/2, it follows that if A < R—§, then

us = Pyug + (—AD,,\)_I(I - T)\)_lb - VPyug

(B.44) (=) (I =To) " fs.
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Let n satisfy 0 < n < R/2 and consider 6 < 5. Then if we integrate
(3.44) with respect to X over the interval R/2 < A < R—n, we have for
any z with |z| < R/2,

2 1 = Jap?

= d

us(e) R—2q / 4r|z| |z — 2|} us(z) dz
R/2<|z|<R—n

2

+ /dw/dy /dz Gp,z|(z,w) H;)(w, y)
R_zn Qn Qr

R/2<|z|<R—1n

(3.45) () (70 o) ) = o)

5 |
+ dw dy
R -2 Qnr Qr

dz Gp,|;|(z,w) Hj;|(w,y) fs(y) -
R/2<[2|<R—7

Since é < 7 it follows that fs € MI(Qr_p).
We shall show that

(3.46) - lim [ fsllg,r = 0.
Let us put h = —Au. Then by (3.35) we have that
(3.47) lim s * (b Vu) = hflg,r = 0.

Next we consider the limit of b - Vus. By Weyl’s lemma we have that

(3.48) u(z) = Gp, r(z,y) h(y)dy + Pru(z),

QR
for all ¢ € Qg. Hence the distributional gradient of u is given by the
formula

(3.49) Vu(.”u):/ V.Gp r(z,y)(y)dy + V. Pru(z), |z|<R.
Qr

Thus

(350)  Vu(z) =/Q ivz(lmim) h(y) dy + w(z),

4
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where w is a C*° function in || < R. Hence we have

(8.81)  Vug(z) = /m 1 Ve (I;) s * h(y)dy + s * w(z),

s 4m z —y|

in |z| < R—6. Here we have extended h to all of R?® by setting h to zero
outside . Evidently s * w(z) converges uniformly in |2| < R — 7 as
6 — 0 to w(z). Also s * h converges to h as 6 — 0 in the space M.
It follows then from the fact that the operator with kernel

1 1
is bounded on the space M7 that

%in}) |lb-Vus—b-Vul,,=0.

The identity (3.46) follows from (3.47), (3.53).

Next we take the limit as § — 0 in (3.45). In view of (3.46) the
final integral on the right hand side vanishes in the limit. Since u is
Holder continuous the first 2 integrals converge to identical integrals
with us replaced by u. Now if we let  — 0 we obtain the formula

(3.36).

4. Nonperturbative uniqueness.

We shall prove the uniqueness part of Theorem 1.3 in this section.
Throughout the section we shall assume that b € ]VI;:’ with 2 < p < 3.

Assume for the moment that b is a C* function. Then for any
A > 0, the solution of the Poisson problem

(1) { —Au(z) —b(z)-Vu(z) =0, lz| < A,

u(z) = g(x), lz| = A,

is given as an integral

(4.2) wx)= [ sav)atdy.
[yl=A
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The function p(z,y) in (4.2) is defined and continuous on the set {(z,y)
€ R¥ xR3: |z| < |y|}. The solution (4.2) can be represented as an
expectation value with respect to Brownian motion with drift b. One
has

(4.3) w(z) = Ex[g(Xu(7a)],

where 7, is the first hitting time of the drift process started at z on
the sphere |y| = A. Let R < A. Then if we condition on the hitting
distribution of the process on the sphere |y| = R, we have from (4.3),
u(0) = Eo [Ex, (rp) [9(Xb(T2))]]

= Eo[u(Xb(7r))]

= / p(0,2)u(z)dz.

|z|=R

(4.4)

We conclude then that

(4.5) p(0,y) = / p(0,2) p(z,y) dz,
|z|l=R

for any y with |y| > R.
The Cameron-Martin formula [10] enables ‘one to write the proba-
bility measure for the drift process Xp(t) in terms of the Wiener mea-

sure for Brownian motion X(t). In particular, the drift expectation
(4.3) becomes a Brownian motion expectation given by

o u(z) = E, [exp (% / "b(X(t))- dX ()
4.6 o
-3 [ BEE®)) a(xX(r)]

Since ¢ = 1 implies u = 1 it follows from (4.6) that for any 6 € R one
has the identity

(4.7 Ez[exp (g /orb(X(t)).dX(t)——f;Af 1bg2(x(t))dt)] =1.
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For any integer n € Z let A, be the spherical shell,
(4.8) Ay ={z eR®: 27" < |z| < 27"F1/2},
We define a measure g on US2.___A, by

n=-—oco0* N

dz
47 |1.|2 (2—n+1/2 — 2—n) ’

(4.9)  du(z) = z€An, neL.

Hence u(A,) = 1 so A, is a probability space with respect to p. We
define an integral operator T, from functions on A, to functions on
An—l by

(#10)  Tuf@ =4nlef [ p0,0) (@), € Au.
Let p,, : A, — R be given by
(4.11) pn(z) = 4m |z|? p(0, ), z € An.

Then (4.5) imples that

(4.12) Topn = pn—-1, neEZ.
We write
(413) Tn = Pn. + Qn )

where P, is the same operator as T, for the case b = 0. Hence the
kernel p(y, ) for P, is just the Poisson kernel. It follows easily that

(4.14) P.(1)=1,
where 1 denotes the function identically equal to 1.

Lemma 4.1. Suppose f € L (Ay) for some v, 1 <r < co and satisfy-
mng

(4.15) fdu=0.
An
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Then there exzists a universal constant v,0 < v < 1, such that P,f €
L} (An-1) and there is the inequality

PROOF. First we prove (4.16) with v = 1. We have

(4.17) P, f(z) = 4 |zf* /A o(v,2) F(v) du(y)

where p is the Poisson kernel. It follows then from (4.14) and Jensen’s
inequality that

(4.18) [P f(2)]" < 47r|-%‘|2/A p(y, @) [F()I" du(y) -

Now (4.16) with 4 = 1 follows on integrating (4.18) and using the fact
that

(4.19) [ axlel v, x) dutz) = 1.
An—l
To obtain v < 1 we use (4.15). Observe that (4.15) implies
(4.20) / P,f(x)du(z) =0.
An—l

Since P, f(z) is a continuous function there exists zo € A,—; with
P,f(zo) = 0. Now let us write f as a sum of its positive and negative
parts,

(4.21) f=fr=f-  Puf=Pufs—Puf_.

By the properties of the Poisson kernel there exist universal constants
1, ¢o such that forz € A,,_;,

(422)  Paf-(2) 2 e Paf-(20) = 5 Palfl(z0) 2 2 Pl f(3),

where 0 < c3 < 1. Hence

(423)  Puf(2)= Puf*(z) = Paf™(z) < (1 - &) Palf|(x).
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Since we can obtain a similar lower bound on P, f(z) we conclude that

(4.24) [Pafllr < (1 = e2) 1Pal fl - < (1 = e2) [ fl- -

Thus we can take y =1 —¢; < 1.

Lemma 4.2. Let1 < r < co. Then for any 6 > 0 there exists € > 0
depending only on r, p, 6 such that ||b||3, < ¢ implies the inequality

(4.25) 1Qufll- <8lIfl-,  feELL(An), n€Z.

PROOF. Let r' be the conjugate tor, 1/r + 1/r' = 1. We consider the
adjoint @}, of @, . We shall show that @} is a bounded operator from
L; (An-1) to L"L (Ar) and satisfies

(4.26) 1Q7 Il < &1 fll -

This will imply (4.25).
We have from (4.10) that T, is given by the formula

2n.+1

51 /A p(z,y) f(y)dy.

To obtain @)}, we need to subtract off from (4.27) the operator corre-
sponding to b = 0. This can easily be done from the formula (4.6).
Comparing (4.2), (4.6), (4.27) we have

(4.27) T: f(z) =

2n+1 2—n—1/2

Q;f(m)z—\/?—l/;_"_l d,\/0 ds
E(5 [ by axe -7 [ mExe) )

- exp (% /0 b(X(t)) - dX(t)
-3 [ iexa a) sx ).

(4.28)

Equation (4.28) can be written as

2—n—1/2

. B on+1 1
Q,,f(:c)—ﬁ_l/z_n_l d/\/o ds
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(4.29) B(5 [ bexen-axw -3 [ e a)
exp (5 [ bOx(@)-ax - 3 [ bPCE) di)
xp (s(5 =) [ BECK@) ) (X))

Now we apply the generalized Holder inequality to (4.29). Let m be an
integer satisfying m > r. Then, observing that

1 1 1 1 1
4. —_ 4 = - = o -
(4.30) 2m+2r+(2r 2m)+r’ 1
we have
Q7 f(z)]
2—n—1/2

1 2n+l
< [ ds / dA
/0 (\/5— 1 /2-n-1

G [ wexey-axco-5 [ prcee) )]

gn+1 2—n-1/2
(ol @
. r 1/2r
-Er[exp (rs/o b(X(t))~dX(t)—rzs/0 |b|2(X(t))dt)])
(4.31)
on+1 2=n-1/2
{C =TI
B, [exp (% /0 bE(X (1)) dt) |

2-—-1!—1/2

2n+1
' (ﬁ— 1 /2

If we use (4.7) with § = 2r, we can conclude from (4.31) that for z € A,,,

Q% f(2)|”

1/2m
.E,

—

>(1/2r—1/2m)

1/
dA Er[|f(X(m))|"]) :

2—11—1/2

o 2n+1
<Clflil 5= .. @
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(4,32)
1 T 1 T 2 2m r'/2m
B3 [ pxey-axw - [ wreeoya)”])

2—»—1/2

2n+1 O
' (\/i —1 /2

‘E, [exp (-"12%”21_—;—12 /0 ' |b|2(X(t))dt)]

)r'(l/2r—1/2m)

where C is a universal constant. Observe now that
£((5 [ "b(X(1) - dX(8) -+ / “rex )]
(4.33) <& |( /0 "b(X(2)- ax(1)""]
+ g B[ [ wPcxana)™].

It follows from (4.7) that there exists a constant C,, depending only on
m such that

B.[( [ bexe ax) ™|

(4.34) ) )
gcmEz[(/o |b|2(X(t))dt) ]

We can assume without loss of generality that 2m > r'. Hence if
we integrate (4.32) with respect to = over A, and apply Holder with
exponents 2m/r' and 2m/(2m — r') we obtain the inequality

' '
1Q=flI7 < C I
2—n—l/2

n+1
' ( 2 1/ @
2—-7:—1

V2 —
3 du(e) B[ ( | e a)”

+( [ wrcxeya)™)

2—n—1/2

-</ndp(x)(;f_:ill/rn_l d

r'/2m
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(43 mr(2r — 1)
-E, [exp (m—

)] ) Y u ) T

Yl " IbP(x())di

h

for some constant C' depending only on m. It follows from Jensen’s
inequality that

2—n—1/2

2n+1 I
(\/i— 1 /2

430 B e (T / b (X (2)) dt)Dm o

2(m —r)
2n+1 2—n—1/2 r \
< <
<53 /2_ ) E,[exp (a/o Ib)| (Y(t))dt)]
where
_mr(2r—1) 2m  r'(m—r)
(4.37) 2(m —r) max {1’ 2m —r'  2rm } ’

It follows from Theorem 1.1.b) of [1] that if ||b||3, < € and ¢ is suffi-
ciently small depending only on «, then

2—n—1/2

gn+1
(4.38) V2-1 /2—n—1 @ T
./An dp(z) E;{exp (a/o |b|2(X(t))dt)] <o,

On the other hand by the same argument one has

2—n—l/2

nt1
g B
(4.39) / dp(m)Ex[(/or |b|2(X(t))dt)m

n

([ mreceya)] < oo,



ESTIMATES ON THE SOLUTION OF AN ELLIPTIC EQUATION 37

where C depends only on m. We conclude therefore from (4.35), (4.38),
(4.39) that

(4.40) 1Qnfll~ < éllfl-

provided ¢ is sufficiently small. The inequality (4.25) follows directly
from this.

Lemma 4.3. Let p, be the density (4.11), and 1 < r < oco. Then
for any &6 > 0 there ezists € > 0 depending only on r, p, § such that
|Iblls,, < € tmplies the inequality

(4.41) llpn — 1| < 6, forall neZ.

PROOF. From (4.12) we have

pn-1—1=Thpp—1
(442) = Ippn + ann -1
= Pn(pn - 1) + Qn(Pn - 1) +Qn1

Hence by Lemmas 4.1 and 4.2 we have

(4.43) pn-1 = Ulr < vllon =1l + & [lpn — LlI- + &',

where §' can be chosen arbitrarily small depending on €. Since v < 1
we can therefore have v + 8’ < 1. It follows then by induction from
(4.43) that for any M > n one has the inequality
M ¢

.44 n— 1 < gHyM-n -1}y + ———— .
(448) o=l < O+ M low = L + T
Letting M — oo and choosing é' such that §'/(1 — v — §') < § yields
the inequality (4.41).

Now let us return to the operator K on functions g € C*(Qg)

defined by (3.18).

Lemma 4.4. Suppose g € Qr\Qr/2 and g(x) > go > 0 for [z — zo| <
ro, 9(z) > 0,2 € Qr\Qr/2. Then there exzists a positive constant
¢(ro/R) depending only on r¢/R such that

(4.45) K g(0) 2 ¢(ro/R) go
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provided ||b||3 , s sufficiently small.

PROOF. With p(z,y) defined as in (4.2) we have the identity

R
Ko0) =% [ L [ p0.90:)ds
I

(4.46) zl=A

2

=R p(0,2) g(z)dz.
Qr\Qr/2

Since g(z) > 0 for z € Qp\Qpg/, it follows that
2
{z€QR\QR)2:|z2—20|<70}
For z,y € R® with z # y we define a function &(z,y) as follows: For

A > 0 let Oy be an arbitrary open subset of the sphere {z : |z] = A}.
Then

/ &(z,y) dy = probability that the drift
(4.48) y=z€0x process started at x
exits the sphere |y —z| =\
through the set =+ O, .

It is clear that ¢ and the previously defined function p are related by
the equation

(4.49) p(0,y) =£(0,y),  y€R\{0}.

Let N be the integer N = [4|zq|/r0], where [] denotes integer part. For
j=1,...,N -1, let z; € R?® be given by

(4.50) Zj=j—+—
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Next we define zy by
7‘0 1120
4 Jzo]

For j =1,...,N, § > 0, let Bjs be the ball of radius éry centered
at zj. We first choose § < 1/8. This ensures that the spheres Bj s,
j =1,...,N are disjoint. Let K(§é) be given by

(4.53) K(6) =sup{|z —w|/ro: 2z€ BN-15, w € Bns}.
It is clear that

(4.54) K(6) < % +26.

Now for arbitrary z € Bn_1 6 let y satisfy

(455)  ly—z=K@®)r, ool = Iyl <laol + 2.

Then we need to choose é sufficiently small such that if y satisfies (4.55)
then |[y—z¢| < ro. This is clearly possible provided é is chosen to depend
on the ratio ro/R < 1. We then have the inequality

(4.56) / p(0,2)ds 2 (47“ 6 7‘0 H/ dy]

{2€92R\Q R 2:|z—20]<70}

'f(owl)f(yl,?h)'"f(yN—x,?!N)-

The inequality (4.56) can be explained as fellows: First constrain the
integration on the left hand side to the surface of the sphere |z| =
|zo| + €, where —r¢/8 < € < r/8. Second, constrain the variables
y],] = 1,...,N to lie on surfaces |y;| = €1, |y; — yj—1| = €5, J =
, N, where
ro(1/4—06) <ey <ro(l/4+6),
(4.57) ro(1/4—-26)<ej<ro(1/4+26), 3=2,...,N—1,
(K(6)—46)ro <en < K(6)ro .

Then we have the inequality

N
@58) [ o021z 2 (T] [ doy)0,00) &) Eum—s, uw).
i=1
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This is true because the left hand side is the probability of the drift
process starting at 0 exiting the sphere |z| = |zo|+ € where it intersects
the ball |z—z¢| < ry. The right hand side gives the probability of a set of
paths which accomplish this. The second condition on é following (4.55)
guarantees that any path included on the right hand side exits through
the intersection with the ball |z — zo| < 9. The inequality (4.56) is
obtained from (4.58) by doing the radial integrations and observing the
constraints (4.57) on the¢j, 7 =1,...,N.

The inequality (4.45) will follow if we can show that

1

(4.59) pr;

/ £(yj-1,y5)dy; >y >0,
Bj,&

where v depends only on ||b||3 , . However, this is an immediate conse-
quence of Lemma 4.3.

The previous lemmas enable us to prove a maximum principle for
the solutions of the elliptic equation (1.2). This will then imply unique-
ness of the solution as given in Theorem 1.3.

Theorem 4.5. Suppose b satisfies the conditions of Theorem 1.3, u
18 o Holder continuous function on Qr with distributional Laplacian
Au mn M3 for somer, ¢, 1 <r <p, 3/2< q< 3 and u satisfies the
equation

(4.60) —Au(z)—Db(z) - Vu(z)=0, for almost every = € Qg .
Then if u has a mazimum interior to Qg the function u is @ constant.

PROOF. Suppose u has a maximum at an interior point o € Qg. By
the conditions on b there exists an open ball B(z¢,d) centered at zg
with radius ¢ such that the closure is contained in (g and ||b|j3, < ¢
when b is restricted to B(x¢,6). We can therefore apply Proposition
3.2 to u on B(zg,6) to conclude that

(4.61) u(zo) = Ksu(zo),

where K5 is the operator (3.18) for the ball B(zo,6). It follows from
(4.61) that

(4.62) 0= Ksg(zo),
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where g(z) = u(zo) — u(z). Since g(r) > 0, z € B(zo,¥6) it follows
from Lemma 4.4 that g(z) = 0 for all z,6/2 < |z — 29| < 6. One can
further deduce that g(z) = 0 for all + € B(z,6). The result then is a
consequence of the connectedness of {2 .

5. Nonperturbative existence.

We shall complete the proof of Theorem 1.3 in this section. The
basic input is that the boundary value problem (1.2)-(1.3) has a C*
solution u(z) provided b and f are C* functions. This is a well known
result [6]. We then prove existence of the solution to (1.2)-(1.3) for
nonsmooth b and f by smoothing b and f with approximate Dirac §
functions and taking limits.

Let Qo be the smallest cube concentric with Qg and containing
it which has side of length 27"° n, an integer. Suppose now b €
M},e > 0 and N,(b) < +oo. Then there exists a unique minimal
integer m.(b) > ng such that every dyadic subcube Q C Qo with side
of length 27 ™« has the property

(5.1) / Ib? de < &? |Q'[P/3 |
QI

for all dyadic subcubes Q' C Q.
Our main theorem in this section is the following

Theorem 5.1. Suppose b and f are C™® functions and u is the solution

of the boundary value problem (1.2)-(1.3). Then there ezists € > 0
depending only on p, ¢, v such that

(5.2) lulloo < C1 R273/% |||y, exp(C2 me(b)/mo),
for some constants Cy, C; depending only on p, q, 7.
Next we consider a possibly singular b € M3 with N.(b) < +oo

for some € > 0. Let » : R® — R be a nonnegative C* function such
that

(5.3) /ma p(z)dr =1, suppe C {z : |z| < 1}.
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For § > 0 let ps(z) = 6 3p(z/6), = € R®, and put bs = s x b. Since
b€ Mg it is clear that bs is a C*° function. We choose é to satisfy the
inequality

(5.4) §<bp=2""1,

Let yeR? be an arbitrary vector satisfying |y| < § and Q C Qo be a

dyadic subcube with side of length 27™<. Then for all dyadic subcubes
Q' of @ we have

65) [ Ibe+uPde <8 QP < 5oy QP
Q'

since the translate of Q' by y intersects at most 8 dyadic cubes with
side of length 26,. We see from Jensen’s inequality that

(5.6) / [bsl? dz < (8¢)? |Q'['P/3,
QI

for all dyadic subcubes Q' of the cube Q. It follows in particular that
(5.7) mae(bs) < me(b),

provided é satisfies (5.4). We shall need the following

Lemma 5.2. Let R >0, g : Qp\Qpr/2 — R an L™ function and b be

a C* drift. Let ) be the first hitting time for the drift process started
at z,|z| < A, on the sphere {y : |y} = A}. Define v(z) for |z| < R/4 by

R
(5.8) v(z) = % /R , E,[g9(Xn(72))] dA.

Then there exists € > 0 depending only on p > 2 such that, if |b||s, <€,
the function v(z) is Holder continuous for |z| < R/4. In particular v(z)
satisfies the inequalities

(59 ol <lgler (=) = o(w)] < Cligloo (224",

where C and a > 0 depend only on p, €.
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PROOF. The first estimate in (5.9) is immediate from the definition
(5.8). To obtain the second estimate we use the method employed in
Section 4 to prove Lemmas 4.1 and 4.2. For z, y satisfying |z], |y| < R/4
we choose (z +y)/2 as our origin and define regions A, as in (4.8). Let
n; be the smallest integer such that |z — y| > 27™~! and ngo be the
smallest integer such that R/8 > 27"~ If n; < ng then the second
inequality of (5.9) follows from the first inequality. Hence we shall
assume n; > ng + 1. For n < ny let p,; , be the density corresponding
to (4.11) on the set A, for the drift process starting at . This can
be constructed exactly as in Lemmas 4.1 and 4.2 by using spherical
shells centered at z up to radius 27" ~2 and then making the next
transformation to the spherical shell A, centered at (z + y)/2. We
conclude that for € sufficiently small there is an inequality || pz n, || < Cr
where the constant C, depends only on r > 1. Since there is a similar
inequality for p, n, we conclude that

(510) “Pr,m - Py,nq ”r <C: )

for some suitable universal constant depending only on r > 1. Now by
Lemmas 4.1 and 4.2 one has the inequality

(5.11) lpz,n = pynllr < Y™ 7" Cr nzny,

where v is a constant depending only on ¢, r, 0 < v < 1. In particular
(5.11) holds for n = ng. Next we can use the method of Lemmas 4.1
and 4.2 to estimate the densities of the drift process starting at z and y

on Qr\Qg/s. If we denote these by p., py it easily follows from (5.11)
that

(5.12) lloz = pyllr < 4™ 7™ Cy .

Since

(5.13) @)= [ ele)az)dutz),
Qr\Qg/2

where

(5.14) du(z) = %
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it easily follows from (5.12), (5.13) that the second inequality of (5.9)
holds with a defined by

(5.15) - 27% =4, where 1/2<y<1.

This completes the proof.

PROOF OF THEOREM 1.3: EXISTENCE. We shall use Theorem 5.1 and
Lemma 5.2 to construct a solution of the boundary value problem. Let
€o be chosen so that Lemma 5.2 and the perturbation Theorem 1.1
holds for ||b||3,, < &o, while Theorem 5.1 holds for € = ¢¢ . We restrict
€ so that € < €9/64. Now for é satisfying (5.4) let us be the solution
of the boundary value problem (1.2)-(1.3) with drift bs and observable
fs=ws*f, f € Mi q>3/2. In view of (5.7) and Theorem 5.1 we
have the inequality

(5.16) luslleo < C1 R*7*/9 || £ly,r exp(Ca me(b)/n0),

since || fsllg,r < | fllg,r -
Now let z¢ be an arbitrary point in Q2 and consider bg restricted

to the ball centered at zy with radius 69, B(zg,09). It follows from
(5.6) that ||bs||3, < €0 . We consider = in the ball B(z,d/4) and for
b0/2 < A < &g let T be the hitting time for the drift process started at
z on the boundary of the ball B(zo,A). Then if 7 is the hitting time
on the sphere 9Qr we have

us(z) = E, /OT fg(Xb6(t))dt]
(5.17) —E, /OA f,s(Xb,(t))dt] +EI[/T fa(Xb6(t))dt]

- E, /0 fg(Xbé(t))dt] +E, [ué(xbé(n))] :

Integrating with respect to A we have then for |z — z¢| < 60/4 the
representation

u(e) =5 [ " D / " fo( (1) ]

0 Jéo/2
(5.18) 2 [

+ = d\ E, [ua(Xbo(Tz\))]
0 J6o/2

= ws(z) + vs(z).
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In view of Lemma 5.2 and (5.16) we have vs is Holder continuous and

lvs(z) — vs(y)

(5.19) <c (lmg) y|)"R2—3/q”f||q’, exp(Cy me(b)/no).

It follows now from Theorem 1.1 that ws is Holder continuous and

T — B o_
(5.20) |lws(z) —ws(y)| < C (L(—Sg—yl) 53 3/q 1 fllar »

where the exponent § depends on ¢ > 3/2. Hence the functions
us, 6 < 8o , form an equicontinuous family, which by (5.16) is uniformly
bounded. The Ascoli-Arzela theorem implies then that there exists a
sequence 6,, n > 1, with lim, . 6, = 0 such that the us, converge
uniformly to a limiting function u. The function u must necessarily
be Holder continuous in view of the uniform Holder continuity of the
functions ug.

We shall show that u is the solution to the boundary value problem
(1.2)-(1.3) in the sense of Theorem 1.3. Evidently a) of Theorem 1.3
follows immediately from our preceding work. To prove b) we consider
equation (5.18) again. Letting Ks be the operator K of (3.18) adapted
to the ball B(xz¢,d¢) with drift bs and Ts » be the integral operator on
Mg with kernel (3.4) corresponding to the drift bs and ball B(zg,A),
we can write (5.18) as

2 b0 -1 -1 e
(521) u,;(a:) = 6_0‘/6 p d/\(—AD',\) (I - Tg’,\-) fg(.’l,‘) + I\5(U5) .

Now we take 6 = 6,,n > 1, in (5.21) and let 6 — 0. Since bs converges
to b in Mp3 and fs to f in M7 and u; is uniformly Holder continuous
as 6 — 0 it follows that

2 [b
(5.22)  u(z)= —63/6 , A\ (=Ap ) "I = Tox)  f(z) + Ko(u),

where K, and T » are the operators which correspond to the drift b.
It follows easily from (5.22) that the distributional Laplacian Au(z) for
|z — zo| < 80 /4 is given by

2 [% ) i
(5.23) —Au(z) = 5_0/5 , d\(I —Top) " f(z) — AKo(u).
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Proposition 3.1 and Theorem 1.2 then imply that Au € MJ. Finally
Proposition 3.1 and the perturbative existence argument at the begin-
ning of Section 3 imply from (5.23) that

(5.24) —Au(z) — b(z) - Vu(z) = f(z), |z — zo| < 60/4,

where Vu is the distributional gradient of u. The proof of Theorem 1.3
is complete.

We turn to the proof of Theorem 5.1. We shall pursue the same
method we used in Section 4 to prove uniqueness. Let f : R® - Rbea
C® observable and b : R® — R? a C* drift. For any > 0 we define
a function py ,(z,y) on the set {(z,y) € R* x R®: |z| < |y|} as follows:
Let A > 0 be arbitrary and 7, be the first hitting time for the drift
process started at a point z,|z| < A, on the sphere |y| = A\. Then for
any continuous function g on the sphere |y| = A, one has

/ pra(z,y)9(y) dy
(5.25) lvl=2

= B X)X (130l = [ A1) )]

where x is the Heaviside function, x(s) = 1, for s > 0, x(s) = 0, for
s < 0. It is clear from our definition that py , is an increasing function
of n and

(5.26) nll’ngo Pf,n(l', y) =p(z,9),
where p(z,y) is defined by (4.2). Let A, be the region (4.8). For any

integer n € Z we can define ps, » : A, = R in analogy to p, : A, = R
given by (4.11). Thus we define ps, » by

(5.27) pran(z) =47 |2 pry(0,2), T € An.

Lemma 5.3. There ezists € > 0,C > 0 depending only on r, p, ¢ such
that ||b||s,, < € implies the inequality

C
(5.28) lon = Pl < 7
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PROOF. Since ||pa|l1 =1, ||pg,n,nll1 < 1, the inequality (5.28) holds for
small 7. Therefore we may assume that 7 is large. Now we have

2n
lon = psa,nlli = 751
—n41/2 -~
(5.20) | C By [ 1Ay de=n 3211, .

From Theorem 1.1 and (1.11) we have that if ¢ is sufficiently small then

(5.30) Eo[ /0 " |f|(Xb(t))dt] S C A3 Sl

for some constant C; depending only on r,p,q. Hence (5.29), (5.30)
and Chebyshev’s inequality implies that

9-mn+1/2

pAS c, G
5.31 n n < / d\ — = —.
( ) llp Pfunllt \/i 1 )y 1 1

The proof is complete.

To complete the proof of Theorem 5.1 we follow the argument of
Lemma 4.4. Thus for z,y € R® we define a function {5 ,(z,y) in analogy
to the function {(z,y) of Lemma 4.4. For A > 0 and O, an arbitrary
open subset of the sphere {z : |z| = A} we define

/ €fq(z,y)dy = probability that the drift
y—z€0, process started at z
(5.32) exits the sphere |y — z| = A
through the set  + 0, and

/0 A (X)) dt < X229 ||flg,r .

Now let ¢ be an arbitrary point in Qg and 7 be the time for the drift
process starting at x¢ to hit 90Q2g. We define points z;, j = 0,1,2,...
by

(5.33) zj=x0 4352 ™ ®k,
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where k = (0,0, 1) is the unit vector in R? in the positive z direction,
me(b) is as given in the statement of Theorem 5.1. Let B; s be the ball
of radius §2~™¢(®) centered at zj,j = 1,2,... We choose § < 1/2 so
that the balls B; s do not intersect. Then, in analogy to the inequality
(4.56) we have

Pro ([ 191080001 dt < N 0220 1), )

N
(5.34) S (ﬁ)N(g/BM dyj)

“Er (o, y1) Epn(y1,y2) - Erm(yn—-1,yn),

where

(5.35) N = Tfﬂ)l +1 ) = 9—me(b)+1

o

ki

Lemma 4.3 and Lemma 5.3 imply that
: 1
. — _1,y;)dy; > .
(5 36) 226 \/l;j,‘s Ef,ﬂ(y] liyl)dy1—7>0

where v depends only on p, g, r, ¢, provided 5 is sufficiently large. We
conclude then from (5.34) that

(630 Po( [ 1A d < N2 flg,) 24",
whence it follows that
T N
(538). sup Po( [ IFIKu(t) dt > N X )y ) <197,
T€QR 0

where 0 < v < 1. The estimate (5.2) follows from (5.38) and the
Markov property. In fact

o)) < Bx [ [ 17100 ]

(5.39) < N a3 fllgr 31— 4N)*
k=0

=Ny V2239 fllor s
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since (5.38) implies by the Markov property that
(5.40) sup PI(/ |fl(Xb(t))dt > an/\z_:;/q' "f”q,r) < (1_,7N)k ,
z€QR 0

for k=1,2,... It is finally easy to see that
(5.41) N~V \273/4 < ) R*3/9 exp(Cym.(b)/no),

for some constants Cy, Cz depending only on p, ¢, .

6. L>°-bounds.

We shall prove Theorem 1.4 here by refining the estimates already
proved in [1]. It is clear we may assume b and f are C* functions on
Qr. Hence the drift process Xp(t) is defined and also the expectations
of f we shall be considering.

Let Qo be a cube concentric with Qg having side of length 27",
where ng is defined by (1.22). We have the following

Lemma 6.1. Suppose for some integer m > 0, the drift b satisfies the
inequality

(6.1) / blP do < e? |QI'/°
Q

on all dyadic subcubes Q C Qo with side of length 27", n > m + no.
Let u be the solution of the Dirichlet problem (1.2)-(1.3). Then if € 1s
sufficiently small, depending only on p > 2, there ezist constants C
depending only on p, q, r, and Cy only on p > 2, such that

62)  Jullo < Gy R fllgr sup exp (C2 3 ang4s(2))

i=0

PRrROOF. If m = 0, the perturbative Theorem 1.1 applies and the esti-
mate (6.2) is just the same as (1.11). Therefore we may assume m is
large. In that case we modify the proof of Theorem 1.4 of [1]. Consider
the function £(z), z € Qg, given by

(6.3) 6(z) = B, exp (= 2 [ 1F1(Xu(®))dt)] |
B Jo
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where 7 is the time for the drift process starting at = to hit 9Qo. The
parameter y is given by the formula

(6.4) p=CRfllgr

where the constant C is to be chosen large, depending only on p, ¢, 7.
Let U be the set

(6.5) U={y: 27m ™1 < |g—y| <27 "0},

We define a density p : U — R by the relation

menet [ v g [o X e (=2 [" 151000000 )]
(66) = [ oty atw) dy,

for all continuous functions g : U — R. Here 7) denotes the hitting
time for the drift process started at = on the sphere {y : |z — y| = A}.
From Sections 2 and 3 it is clear that

(6.7) / p(y)dy > % ,

p(y)<280m+ro)
provided ¢ is sufficiently small depending on p > 2, and C in (6.4) is

chosen sufficiently large depending on p, ¢, r.
It follows from (6.3) and (6.6) that

1 T
68) &)= / dy p(y) By [exp (- = / FIXu(t)) dt) ]
U H Jo
Now we apply the same argument as in Section 5 of [1] to conclude that

(6.9) £(z) 2 n(z)?,

where
1) = [ du o) By [ew (- 5= [ 110X at

(6.10) 0
-5 [ mprayar)],
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and X (t) is standard Brownian motion. Applying the same argument
as in the proof of Theorem 1.1.a) of [1] to (6.10) we obtain the inequality

(6.11) 77(:6) 2 ’;' exp ( - C ianoﬂ(l‘)) )

where C; > 0 is universal provided C in (6.4) is chosen sufficiently large
depending on p, ¢, r.

Evidently (6.11) implies a lower bound on {(z). The inequality
(6.2) follows from this bound and Lemma 5.1 of [1].

Next we consider the probability of hitting a dyadic subcube @,
of Qo with side of length 27" n > ng, before exiting Qg .

Lemma 6.2. For n € Z, let Q,, be the region
(6.12) Qn={zeR®: 27" < |zg| < 27"},

For z € §, let P, be the probability that the drift process started at
z exzits Q, through the sphere {y : |y| = 27"}, Let § be a number
satisfying 0 < 6 < 2/3. Then if |z| = 2™™ there 1s a constant C
depending only on 6 < 2/3 and p > 2 such that

(6.13) P, > 6§ exp(—C an—1(0)).

PROOF. Let x be the function defined on the boundary 052, of §,, by

1, if 2| =277
(6.14) x(z) = '

0, otherwise.

We define a function {(z) analogous to (6.3) by

(6.15) §(z) = Ez[x(Xn(7))],

where 7 is the first hitting time on 9%, for the drift process started at
z € Qy. Hence {(z) is the probability of exiting 2, though the outer
sphere. We wish to generalize the inequality (6.9). Let K > 0 be some
arbitrary constant to be specified later and put

e

(616)  n(e)= B [x(X(r) exp (- / ' bE(X(8) dt)],
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where X (t) denotes Brownian motion in (6.16) and 7 is its first exit
time from Q,. Then for any s > 1,1/s+ 1/s’ = 1, we have by Holder’s
inequality and the Cameron-Martin formula.

()= Bx [x(X(7) exp (55 [ bX(®)-dX(0)
-+ [ pRxeya)
-
. exp (— 5 /0 b(X(t)) - dX(t)
-1 &= [Mpporey)]

< 6@ B [oxp (52 [ b(X(E)- ax(0)

-5 =2 [Tproena)] "

(6.17)

In view of (4.7) we have the inequality

(6.18) n(z) < E@)°,
provided
Y| s\2
Hence if we choose K by the formula
(6.20 K = L
* ) - s — 1 I

then the inequality (6.18) holds. Note that K diverges if we let. s
approach 1.

We can estimate 7(x) from below in exactly the same way Theorem
1.1.a) of [1] was proved. In fact we have the inequality

[ ]
(6.21) n(z) > E.[x(X(r))] exp ( ~CK'* Y am(z)> ,
m=n-—2
where the constant C' is universal, provided z lies in the region

(6.22) 272 < g < 272,
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It is a simple matter to compute E;[x(X(7))]. In fact we have

4 2—-n—l
2 (X =—(1-=—).
(6.23) EX (=3 (1- “5r)
Now consider an arbitrary point o, € 2, with |z = 27". Choose

s > 1 sufficiently small so that §!/° < 2/3, and let B be the ball

(6.24) B= {:1: : |z = zo| < min {2—"(%),2-"(1 - 2—1/2)}} .

It is clear from (6.23) that B is contained in the region (6.22) and
(6.25) E.[x(X(r))]>é*, =zeB.

Let X (t) be an arbitrary continuous path with X(0) = z¢, X(t) € B,
t < 7, and X(7) € 0B. We claim that there exists an + = X(t) for
some t, 0 < ¢t < 7, such that

oo

(6.26) > am(z) < C1an-1(0),

m=n—2

where the constant C; depends only on 61/* < 2/3 and p > 2. Here
we are taking b(z) = 0 for ¢ ¢ Q, in our definition of a,,(z). The
inequality (6.13) clearly follows from (6.18), (6.21), (6.25), (6.26).

We are left to prove (6.26). Let C; > 0, 8 be constants with
0 < B < 1 and consider the sets

(6.27) Sm={z€B: am(z)>Ci1 8™ "an-1(0)}, m>n—2.

We shall assume that

(6.28) (X(): 0<t<r}C O S -

m=n—2

Otherwise there exists a point = on the path X(¢) in the complement of
all the sets Spn, m > n—2, in which case (6.26) clearly holds since § < 1.
For each = € S, let D, be the open ball centered at z with radius 27 ™.
From (6.28) it follows that the sets {D; : ¢ € Sy, m > n — 2} form an
open cover of the path X(¢), 0 < ¢t < 7. By compactness of the path
there exists a finite subcover I' = {D; : 1 < j < N} for some integer
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N. For each integer m > n — 2, let I, be the subset of I' consisting
of balls with radius 2=™. Let D be an arbitrary ball and D the ball
concentric with D but with three times the radius. Then there exists a
subset I',, C T,, of disjoint balls such that

(6.29) U pc U D

DeT'm D€l

Since the balls in T',,, are disjoint it follows from the definition (6.27) of
Sm that the cardinality |I'm| of the set I'y, satisfies the inequality

Lol (Cy B™ ™ ayq(0 sz'"(s"’)/ bJ? dy
(6.30) I (Cy 1(0)) in l

< 9(3-p)(m+1—n) an—l(O)p ,

which implies the bound,

- 23—=p ,93-P\m-n
. <
(6:31) Pml < 7 ()

We choose 3 so that
2%-p
3P

This is possible since 2 < p < 3. It is clear that for any point = on the
path X(t), 0 <t < 7, one must have the inequality

(6.32)

< 2.

oo . 2‘—71

(6.33) e —zol < Y 6:27" Tm| < A7,
m=n—2 1

where A depends only on J satisfying (6.32). Since X(7) lies on the

boundary of the ball B in (6.24) the inequality (6.33) is violated for

z = X(7) provided C) is chosen sufficiently large. Hence we have a

contradiction to our assumption (6.28). The proof is complete.

Lemma 6.3. Let Sy, Sy,..., SN be a set of concentric spheres with radii
To,T1,.--,TN Satisfyingrg <r; <ry < ---<ryn. Forj=1,..., N—-1
let gj(z,y) be non negative functions of x € S;, y € Sj_1 satisfying

'(6.34) 0< / gi(z,y)dy <g; <1, reS;,

Sjl
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for some positive numbers q1,...,qN-1 .

Suppose now the gj(z,y) are probability density functions for a
stochastic process Y (t) with continuous paths in the following sense:
For any open set 0 C S;_1,

Prob {Y started at x € S; exits the region

6.35
( ) between S;_, and Sj;, through 0} = /qj(x,y) dy.
0

Let . € Sn—m for somem, 1 <m < N — 1, and P, be the probability
that Y started at x exits the region between Sy and Sy through Sp.
Then there is the inequality

1+pN—1 +PN—1 PN -2 4ot H DPN—j
gN-1  4N-1 gN-2 j=1 IN-j
(639 i PN-1  PN-1P P
1+ -1 + -1 N—2+.“+ N—j
gN-1  4gN-1 gN-2 j=1 IN-j

where the p; are defined by p; =1—¢q;,7=1,...,N —1.

PROOF. Observe that the right hand side of (6.36) is just un_., where

Unp,n =0,1,..., N is the solution of the finite difference equation
Up = Pp Un+1 + ¢n Un—1, 1<n<N-1,

(6.37)
up =1, uny =0.

Hence the lemma merely states that P, is bounded by the probability
for a random walk on the spheres S;, 7 =0,..., N, with transition
probabilities determined by the upper bound ¢; in (6.34),7 =1,..., N-1.

To prove the lemma we first consider the case when N = 3. For
z € S; U Sy let u(x) be the probability that Y started at z hits S
before hitting S3. Then u(x) must satisfy the equations

u(z) = / 2z, y)u(y)dy, TE€S5,
(6.38) %
u(:c>=/5p1<m,y>u(y>dy+/ a(z,y)dy, €S,

So
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where p;(z,y) is the probability density for the process started at = € S;
of hitting S before So. It follows from (6.38) that

w@)= [ | / e )Py, ) u(z) de dy

(6.39)
+/ / @(z,y)q1(y,z)dzdy, z € 5,.
S1 JSo

Putting u; = sup,¢g, u(x) it follows from (6.39) that

(6.40) ug < sup A(z),
IES;

where

/ / ga(2,y) ar(y, ) d= dy

S JSy

1—/ / q2(z,y)p1(y, 2) dz dy
S1 J8S,

Using the fact that for any y € 54,

(6.41) A(z) =

(6.42) /S pi(y,z)dz =1 —-./s q1(y,2)dz,

we have that

) 1+/S qz(fc,y)dy((/s qz(w,y)dy)_1 —1)

(6.43) =
Ale) /5 /S 22(z,y) 1(y,2)dzdy

Using (6.34) for 7 = 1, we have from (6.43) that A(z) satisfies the
inequality

(6.44) A(lm) >1 +q—11 <</51 qg(m,y)dy)_l - 1) .

Next, applying (6.34) for j = 2 to the right side of (6.44) yields

1 1 /1 P2 P2 D1
6.45 —z1+—(——1)=1+——+——.
(6.45) A(z) a1 \q2 2 9@ q
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Inequality (6.45) together with (6.40) implies (6.36) for N = 3, m = 1.

Next we consider the case N = 3, m = 2. From (6.38) we have

w0 = [ [ nen ) ue)dsdy
(6.46) 52 751
+/ a(z,y)dy, zT€S5.
So
Setting u; = sup,¢g, u(z) we obtain from (6.46) the inequality

(6.47) uy < sup B(z),
IESl

where

/ q1(z,y)dy
So

1~/ / p1(z,9) q2(y,2) dz dy
S, JS,

Using (6.34) with j = 2 it follows that

(6.48) B(z) =

/ a1 (z,y) dy / a1 (z,y) dy
(6.49) B(z) < So = o .
1—412/ pi(z,y)dy 1—q2+q2/ q1(z,y)dy
52 SO

Next, applying (6.34) with j = 1, yields the inequality

. 1+ 2

6.50 B(z) < ! = g2 )

( ) ()_1—q2+Q2Q1 1+p_2+p_2p_1
q2 92 41

Hence (6.36) for N = 3, m = 2 follows from (6.50) and (6.47).

The situation for N > 4 can be derived from the N = 3 case by
induction. Suppose we already know that (6.36) holds for any sequence
of less than N + 1 spheres. We consider the case of N + 1 spheres
So,S51,...,5n. Let k be an integer satisfying 2 < k¥ < N — 1, and
consider the case of the four spheres Sy, Sk—1,Sk,Sn. Let @, be an
upper bound on the probability of Y starting at z € Si_; of hitting
So before Si. Similarly let Q2 be an upper bound on the probability
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of Y starting at ¢ € Si of hitting Sx—; before Sy. Then by our result
already obtained for the 4 sphere case, we have

1 /1 -1
6.51 P¢5(1+—(———1)) . z€Sk.
(651 o \Q |
By our inductive assumptions we have bounds on @;, @2, namely
k-1
1 _ _ _ i
__21+Pk1+17k1pk2+“_+ Pk],
@ Qk-1  Qk-1 Gk—2 iy Gk
N-—k
(6.52) H PN—j
— =12 .
Q2 - N—k-1 )
1+pN—1+...+ H PN-j
gN-1 j=1 dN—j

Substituting the right hand side of (6.52) into (6.51) clearly implies the
bound (6.36).

Finally we must deal with the case k = 1. Here the four spheres
are Sg, S1,52,Sn. Let @, be an upper bound on the probability of V'
started at = € Sy of hitting S; before Sy. Then from (6.47), (6.50) we
have
(6.53) P —2N
T1-Q:+Qean’

By our induction assumption we have the bound

.’EES].

1+PN—1 4+ 4+ PN—j
gN-1 j=1 IN-J
(6.54) Q; < N
1+ PN-1 + 4 H PN-j
dN-1 j=1 IN-j

Hence we have

qil(l—czz)wz:1—Q2+%(1—Q2>+Q2

N-1
PN-1 DPN—j
14 By
(6.55) qN-1 o1 IN=
>
- N-2
1+pN—’l+'_.+ pN-—]

dN -1 1 IN—;
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Substituting (6.55) into (6.53) yields the estimate (6.36) for z € S;.

Lemma 6.4. For any integer m > 0 and arbitrary ¢ > 0 let U,, C Q
be the union of all dyadic subcubes @ of Qo with side of length 2~ "0—™
such that

(6.56) / |b|P dz > e? |Q|'P/3.
Q

For z € Qg let Xp(t) be the process with drift b starting at x, where
we set b to be identically zero outside Qo. For X > 0 let T5 be the first
hitting time on the sphere of radius A centered at z and P,,(z) be the
probability

P, (z)

6.57
(6:57) = Prob { Xy(t) hits U, in the time interval Tpjy <t < Tg}.

Then there ezists a constant 4,0 < v < 1, and constants Cy, Cs de-
pending only on p > 2 such that

(6.58) Pp(z) < C1e7P4™ sup exp (02 Zano+]-(y)) .

yEQ"O ]:O

PROOF. We can assume m large since the right hand side will be larger
than 1 if m is small. Let @ C Qo be a dyadic cube with side of length
27™0~™ and center zo . Then for any path X (t) there exists a time ¢g
with 0 <ty < TR/, such that

| &

(6.59) | Xb(to) — zo| =

For j = 0,1,2,... let S; be the sphere centered at z(, with radius
2-m0~m+i Then from (1.22) we see that Xu(?o) lies in the region
outside the sphere S,,_4. Also the ball of radius R centered at z lies
inside the sphere S,,;;. Hence the probability Py of Xy(t) hitting
@ in the time interval 7p/; < t < 7g is less than the supremum of
the probabilities of the drift process started at z € Sp,—4 of hitting Sp
before Sp41.

Now we can use Lemmas 6.2 and 6.3 to estimate this last proba-
bility. From Lemma 6.2 we have that

(6.60) 4; < 1= 8 exp (= Cangrm—j-1(20))
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Hence the inequality (6.36) yields
1 ™ C «
(6.61) Pyo<A (E - 1) exp (-1——_-—5 Z a,.o+j(:1:0)) ,
=0

for some universal constant A. Here we have used the fact that b = 0
outside @,, and that

(6.62) §7lef—1<(671-1) expl—f——é—, £>0.

Finally we estimate the number N,, of cubes Q C U,,,. From (6.56)
we have, if 0 is the center of Q)g, that

(6.63) P 2= (motm)B-p) N < 27me3-P) g (0)?
whence
(6.64) N, £e?2mB-P g, (0).

Hence P,,(z) is bounded by the product of the right side of (6.64) and
the supremum over zo € Qg of the right side of (6.61). Now using the
fact that, p > 2 and 6 can be chosen as close as we please to 2/3, yields
(6.58).

Lemma 6.5. Let f € M?, q> 3/2,1 <r < q. Then there exists «,
0 <~ <1, depending only on p > 2 such that

wp Bo[ [ 106

TEQR
(6.65)

S ORI flgr 309" sup exp (G ) anrs(2))
m=0 z R 7=0

The constant Cy depends only on p, q, v and C; only onp > 2.

PRroOF. We write

B[ [ / FI(Xu(t)) ]

(6.66)

TR

= > Eufxn(Xn) [ IfIXu(t) ]

m=0 TR/2
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where X, is the characteristic function of the set of paths which visit
Um between times 7g/, and 7 but do not visit any U, with n > m.
We use Schwarz’s inequality to obtain

e[ [ / 1F1Xu(®) ]

(6.67) o . 212
<> Be[unn) ([ 1A1X(e) dt) ] Prua) 2.
m=0 TR/2

We have now that

B Jxn) ([ 151000 )]
(6.68) TR/2

<B[( [T 1Ko @) at) ],

where b, is equal to b on Qo\ Uj2,,4+; U; but zero otherwise. This is
true because the characteristic function x,, restricts to paths which do
not visit U2, ,U; . The drift by, satisfies the conditions for Lemma
6.1 and hence if ¢ is sufficiently small there is the inequality

sup x| [ 171(Xun(0) i

TENR

m
< CrLR*39(fl0r sup exp (Cz Zano+j($)) :
z€NR

=0

(6.69)

It follows from (6.69) using the Chebyshev inequality and the Markov
property that

sup B2 [( [ Irixum)ar) ]

TEQR
(6.70)

<40C, R*73/9||f||,.r sup exp (Cg Z an0+j(z)) .
TEQR j=0

The inequality (6.65) follows now from (6.70), (6.67) and Lemma 6.4.

PROOF OF THEOREM 1.4. We bound the solution u(z) of (1.2)-(1.3)
by

(6.71) u(z)] < Z:IE [/

Tr/2k—1

|FI(Xn(8)) dt]

R/2k



62 J. G. CoNLON AND J. REDONDO

From Lemma 6.5 we have the inequality

B[ [ inonm) af

R/2k
< ¢, 2~ (2-3/9(k-1) p2-3/q Nfllg.r

. — m—(k—-1) - i
(6.72) m§—1 v ySElg:t exp (Cz ,-=zk;1 ano+1(y))

< €, 2-(@=3/0(k-1)/2 p2-3/g
oo m
> sup exp (C2 Y angts(®))
m=0  YEUR j=0

where v; = max{y,2~(2-3/9/2}
Summing the right side of the last inequality with respect to k
proves the theorem.

Our last result shows the inequality (1.24) follows from Theorem
1.4.

Proposition 6.6. There exist universal constants C, c such that for
any € >0, z € R3, there is the inequality

oo

(6.73) D" aa(z) H(an(z) —€) < C Nee(b),

n=-—oo

where H(t) is the Heaviside function, H(t) =1, if t > 0 and H(t) =0,
ift <0.

PROOF. For n € Z let c,(z) be defined by
1/p
(6.74) cn(z) = (2"<3—P> / |b|P dy) :
2-n-il|z—y|<2-"
It is clear from (6.74), (1.21) that there is the identity
(6.75) 27C=P) g 11(2)? + cn(z)P = an(z)?.
Let a be an arbitrary positive number, 0 < a < 1, such that

(6.76) §7=(1-a?)27>1.
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If cn(z) > aan(z) it is clear that
(6.77) an(z) H(aa(z) —€) < @™ cp(z) H(cn(z) — ac).

On the other hand if ¢,(z) < aan(z), then (6.75) implies that a,(z) <
6 ant1(z), and hence

(6.78) an(z) H(an(z) —€) < 6ant1(x) H(an41(z) —€).

Putting (6.77), (6.78) together we conclude that for all values of a,(z)
there is the inequality

() H(an(2) = €) < 6 api1(¢) H(ans1(z) — €)

6.79
(6.79) + a7 en(z) H(ca(z) — ae).

If we sum (6.79) over n € Z we obtain the inequality

oo

> an(z)H(an(z) —¢)

(6.80) . -
< =9 Z cn(z) H(cn(z) —ace).

n=—0oo

Now let us suppose we have a dyadic decomposition of R? into
cubes Q. For any n € Z, let S, be the set,

S,={Q:Qn{y:27" < |z —y|<27"}

6.81
(6.81) is not empty and |Q| < 2_3("+3)} .

For any € > 0 let N, »(b) be the number of minimal cubes for b
which ‘are in S,,. It is clear from the definition (6.81) of S, that

(6.82) Y New(b) < 2N.(b).

Next let us suppose cn(r) > ae. Then we have

(6.83) (ae)p <27CP 3" / |blP dy .
Q

Q€S
IQl=2"3n+3)
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Since there are at most 2!? cubes Q € S, with side of length 27 "~3 it
follows from (6.83) that one of them must satisfy the inequality

688 [ IbPdy 2 (acam 200y Qs

Hence if cq(z) > ac and c satisfies the inequality
(6.85) ¢ < a2-12/p 36/p=1)

then from (1.20) one must have N, »(b) > 1.
Finally we use a result of Fefferman [3]. Let ¢ > 0 be arbitrary.
Then there exist disjoint sets E, E,,..., Ep with the properties:

M
o Je=UE.

QESy J=1
b) Each E; is a subset of a cube Q; € S, .

c) / [b|Pdy < C; €? |Q;|'~P/3, for some universal constant Cj,
E;
j=1,...,M.
d) M < Cy(Ng,n(b)+ 1), for some universal constant C; .

We can bound c,(z) by using the Fefferman deconposition. Thus
for any ¢ > 0, we have

M

n(ap <260y [ ol ay
j=1"E;
M

(6.86) <2 P N0 (ce)? QTP

j=1
<Ci(ce M
£C1(ce)? Cy(Neen(b)+1).
Now if we choose ¢ to satisfy the inequality (6.85) we have that
(6.87) ca(z)P <2C (ce)P Cy Nee n(b),

provided cn(z) > a¢e. The inequality (6.73) follows from (6.80), (6.82)
and (6.87).
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Formulas for approximate
solutions of the 89-equation
in a strictly
pseudoconvex domain

Mats Andersson and Hasse Carlsson

Abstract. Let D be a bounded strictly pseudoconvex domain in C™.
We construct approximative solution formulas for the equation :90u =6,
0 being an exact (1,1)-form in D. We show that our formulas give simple
proofs of known estimates and indicate further applications.

Introduction.

Let D be a bounded strictly pseudoconvex domain in C*. The
main result of this paper is a weighted approximate solution formula
for the equation 3

(0.1) i00u =4,

where 6 is an exact (1,1)-form (current) in D.

The equation (0.1) is of interest mainly because of its connection to
divisors (zero sets) of holomorphic functions. Namely, to each such di-
visor there is associated a positive closed (1,1)-current and the selutions
to (0.1) are precisely functions of the form u = log | f| (disregarding for
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the moment possible topological obstructions) where f is a holomorphic
function that defines the divisor. Hence bounds on the solution u in
(0.1) proves the existence of holomorphic functions in various function
classes with given zero set §. For results of this kind, see for instance
[H], (8], [V2] and [B].

When n = 1, (0.1) is just Poisson’s equation and can be solved by
the Newton kernel (1/27)log | — z| if 6 has finite mass in D. However,
if e.g. 6 just satisfies the Blaschke condition

(0.2) /D d(¢,0D) [6(¢)] < +oo,

then one has to use a weighted solution kernel; the Green’s functions
in D, which is not explicitly given in general but nevertheless well un-
derstood, at least if 0D has some regularity.

If n > 1, (0.1) is usually solved by following a two step method
that goes back to Lelong. One first solves

(0.3) idw=0

so that wg ; = —; o, (assuming 6 real). For bidegree reasons Owg; = 0
so one can solve

(04) ) Bv = wo,l .

Then u = v + © solves (0.1).

In 1975 it was proved independently by Henkin [H] and Skoda
[S] that (0.1) admits a solution in L(9D) if 6 satisfies the Blaschke
condition (0.2). This result had been conjectured for some time and
the main problem for the solution was to get L!(dD)-estimates for
(0.4). This was solved by Henkin and Skoda by introducing solution
formulas with weights that gave the desired estimate.

However, in other situations it is (0.3) that offers the greatest dif-
ficulties, as for instance in Varopoulos’ result, [V2], that there is a
solution u in BMO (0D) if @ satisfies a certain Carleson condition.

Explicit solution formulas for the L2%-minimal solutions to (0.1)
in the ball in C" were obtained in [Anl] and [An2] (L2 = L?((1 -
|¢[?)*~1d))). For appropriate choices of @ these formulas admitted
simple and natural proofs of the (known) estimates for (0.1) discussed
above. Earlier Berndtsson [B] used an explicit formula for the ball in
C? to show that (0.1) has a negative solution if § has finite mass. Re-
cently this result has been generalized by Arlebrink [Ar] to the strictly
pseudoconvex case.
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Let p be a strictly plurisubharmonic C* defining function for D
and put L = LP((—p)*~1d)\) if @ > 0 and L} = LP(8D). In this paper
we use ideas from [Anl], [An2] and [Ar] to construct operators M,,
acting on (1,1)-forms 6 in D, and P, and Fy, acting on functions, such
that

(0.5) u = M,(i88u) + Pou + Fou,

where P,u is pluriharmonic and F,u is a weakly singular integral
operator and hence somewhat smoothing; roughly F¥ M, is nicer than
M,0 and F™ maps L} into C(D) if m is large enough. If 6 is an
exact (1,1) current and ug is an Ll-solution of i00u = 6, then by
(0.5),u1 = M6 + F,ug also solves (0.1). Repeating this argument, we
get a new solution %,,

(0.6) tm = Mob+ FaMob+ F2Mo0+ -+ F™ M0+ F™uq .

Thus, given a starting solution ug € L), estimates of the solution u;,
are reduced to estimates for the explicitly given M,#.

We also get a similar expansion of the L2 -minimal solution of (0.1)
in terms of M,0. As a by-product we get an expression for the L2-
orthogonal pluriharmonic projection

I,:L2NH— D,
(H denotes pluriharmonic functions), such that
Myu = P,u+ Rlu+ R M, u,

where P, and R}, are explicit and R}, are regularizing (compact). In
particular, when a = 0, Pyu only depends on the boundary values of u,
so if u € L?(8D) has pluriharmonic extension U to D, then

U= P0u+Kou,

where K| is a compact operator on L?(8D). When n = 1, Pyu is the
classical double layer potential of u, which provides an approximate
solution to Dirichlet’s problem.

In order to clarify our argument for (0.5), we conclude this para-
graph with a sketch of the proof in a simple nontrivial case, namely
when D is the unit disc Ain C, a =1 and z € 0A.
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Claim. If u is smooth on A, and z € OA, then
(1—1¢?)? 8%

u(z) = [ = = d\

= [ e e

1 uQdr 1
+2Re7r/A(1—C_z)2 WA (€)dA.

(0.7)

The following argument for (0.7) is possibly not the most simple,
but it follows the general scheme in Section 3. First we write (w =

Ou/8¢)

1 uQd 1 (-P)zw

(0.8) wu(z)= ) a-crtr) acea-o =Gu+ Kw.

Then we rewrite Kw as

1/(1—-IC|2)(2—5)w 1 [ (A-[¢P)Cw
== +

™

Kw

(1-C)A-¢z) 7] 1-C)(1-C2)
=1/u—mm2w

- —G L

An integration by parts shows that

I=

1 L9 e,
27!’/(1_(—2)(1 —(z) 8¢ 1 . I<1%)

=_1_/ -2 32“_+i (1-K*)?zw
2 ) (1-C2)(1-¢2) 8¢d¢ ~ 2m J (1—-Cz)(1—(2)?

(0.9)

Now we apply a trivial instance of the crucial Proposition 3.2, namely
(1-[¢P)wz = (1 = (2)wz + (1 — (2)¢w,

to the last term in (0.9) and get

po k[ AR 1 0ok
2 J (1-C2)(1—(z) 9¢9¢ ~ 2« (1-¢2)?
L1 [_(A-i)Cw
2r ] 1-¢2)(1—=¢2)’
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and since the last term here is I /2, we can solve for I and get

1 [A-KPEw 1 Q=) zFw
Kw‘¥/ 1-(z +?/ (1-C2)
1 (1 - [¢?)? 0*u

7] T-na =<z acat

Finally one can integrate by parts in the two integrals involving w, and
then summing up one arrives at (0.7).

To prove (0.5) in general we need suitable integral formulas to
replace G and K in (0.8). We describe them in Section 1. In Section
2 we state our main results and also point out some applications, as
e.g. L?(0D)-estimates for (0.1) and the BMO-estimate of Varopoulos.
In Section 3 and Section 4 we construct our operators and show their
relations, whereas some estimates are left to Section 5.

1. Some preliminaries.

Let D = {p < 0} be a bounded strictly pseudoconvex domain in C*
where p is a C? strictly plurisubharmonic defining function. Suppose

that ¢(¢,2) : D x D — C is C? and satisfies

(1.1) 2Re ¢ > —p(¢) — p(2) +6|¢ - 2|*
and
(1.2) e === 0p (= d¢b =z, (=z€D.

Then |¢(¢,p)| ~ |é(p,¢)| if p € D and ¢ € D, and for p € 8D,

Bi(p) = {¢ € 0D : |4(¢,p)| < t}

and

Q«p) ={¢C € D: |¢(¢,p)| <t}

are the Koranyi balls in 8D and in D around p € 8D, see for example
the discussion in [AnC]; indeed By(p) (Q+(p)) is ~ v/t in the complex
tangential directions at p and ¢ in the last one (ones). In particular,
|Bi(p)| ~ t™ and |Q:(p)| ~ t"t1. Also, if ¢ is another function that
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satisfies (1.1) and (1.2) then |§| ~ |¢|. We recall the following well
known estimates

- do (() 1y
(1.3) L weor= s (Sm) 0 >0

and

—p(¢ ﬂd,\c 1 a
09 [ s () a>0 aeo

There is a Cl-fl_mction #(¢,2) : D x D — C™ which is holomorphic in
z for fixed ¢ € D and such that

¢(C’ Z) = (q(Cv Z), z - C) - p(C)

satisfies (1.1) and (1.2), see [F]. If we put s(¢,z) = —¢(z,() and make
the identifications s ~ ¥s;d(; and similarly ¢ ~ £g¢;d(;, we can define,
for a > 0,

et = gt (55)

, / (—p)*'u[—pdq — ng A dp] A (g)" !
D prte ’

(1.5)

for functions u, and
_Tnt+a-1) i\
Qav() = F oy m =1 (27r)
_ / (=p)*'s Aw A [—pOg — (n — 1)g A Op] A (9g)"?
D ¢(¢, z)mre14(z,() ’

for (0,1)-forms w and z € dD. Then, see [AnB, Example 1], Q,w(z) is
the boundary values of a function Q,w(z) on D, such that

(1.6)

(1.7) QaOu =u — Hyu
and

(1.8) 0Qow =w if dw=0.
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REMARK 1. If we let o tend to 0 in (1.5) and (1.6) we get

(1.5") Hou(z) = (%)n/al)%a;q)ﬁ

and

, _/iNm [ wAsAgA(Dg)"?
a8) Q)= (5)" [ LS

and (1.7) and (1.8) still hold. We also notice that
H,: L} - I2nO(D)

boundedly. For a > 0 this follows by (1.4) and Shur’s lemma, whereas
for a = 0, Hj is a singular integral operator and the argument is more
involved and uses Cotlar’s lemma, see [KS].

We will use the solution operator @), above later on, but for our
primary purposes we need analogues of (1.5)-(1.8) with a modification
v of ¢ that we now construct.

To begin with we let n; = z; — (; and put

1
(1.9) —v(C,2) = p + Tpjn; + 5 Xpjknine

where p = p((), p; = Op/0¢; and so on. Clearly v satisfies (1.2) and
since p is strictly plurisubharmonic it also satisfies (1.1) near the diag-
onal A C D x D. Let x = x(]z — ¢|) be a smooth function supported
and identically 1 near A and put

—¢;((,2) = X(Pj + -;— ijkm-) = (=) -
k

Then we define v globally by

(1.10) —v(¢,2) = (¢, 2),2 =€) + p(C).

This v coincides with v in (1.9) near A and (1.1) holds globally (with
v instead of ¢) on D x D. The main reason for requiring that v be as
in (1.9) near A is that

(1.11) v((,z):v(z,()+0(|z—(|3),
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i.e. v((,z) is almost conjugate symmetric. For further discussion of
v((, 2z), see Propositions 3.1 and 3.2 in Section 3. We also put s((,2) =
—q(2,() so that

—(S(C,Z),Z - C) + P(z) = ’U(Z,C) = v((vz) + 0("7]3) .

Again identifying s and ¢ by (1,0)-forms, we can build the operators H,
and Qq, ¢f. (1.5) and (1.6). Then (1.7) still holds, but since Hou no
longer has a holomorphic kernel, (1.8) cannot hold in general. However,
since ¢((, z) is holomorphic in z near A, we have, ¢f. Example 1 and
the proof of Theorem 1 in [AnB],

(1.8") 0Q.w = w+ Xow, if ow=0,

where

Xoou= [ 0((=p)7) ABu= [ O((=p) )

and O((—p)*) denotes a smooth kernel which is O((—p)®) and has
bidegree (0,1) in z (for @ = 0 the last integral is over the boundary).
Since clearly X,w is O-closed if w is, we can apply any reasonable
solution operator for 9, e.g. Q4 from (1.6), to X,w and then obtain
new operators Lo, such that

5faw = éQaw —w,

and L, such that B o _
OLou = 0Qo0u — Ou.

Moreover, it follows from e.g. Section 5 that £, and £, have smooth
kernels that are O((—p)®) and O((—p)*~!), respectively. Finally, we
put

(1.12) Kow = Qow — Low, Gou = Hou+ Lou.
Then

(1.13) Ko0u=u—Gau

and

(1.14) OK o w = w if Ow=0.
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Moreover, G, has a holomorphic kernel and maps L2 — L2 N O(D)
boundedly, since H, does. An important consequence of (1.11) (and
(1.12)) that we need later on is that (letting small letters denote the
corresponding kernels)

ga(c,z) - go{(za C) ~ ha(C,z) - ha(Z,C)
1.15 nl3
( ) — (_p)a—l 0( |77| ) ,

|v|n+a+1

which makes it a weakly singular kernel and hence represents a (some-
what) smoothing operator (and a compact operator on L2).

2. Main results.

With the notation introduced in Section 1 we can describe the
boundary values of our solutions for 0. However to describe them for
z € D we also need the following notation. If « > —1and ({,z) € DxD
we let

_a+1 (1—|r])>dX(7)
(21) ha,ik(C,2) = s /,;Kl (1—aF)i(1—ar)x’
and if a = -1,
, ' _ _1_ do(T)
(2.1 ho1,i4(62) = T /TI=1 (1—a7)i(1—ar)k’
where

_ vr(Q)r(2)
="y
Because of (1.1), |a| < 1 with equality if and only if { = z. Also hq j &
1if z or ¢ is on OD. Moreover, one easily verifies that hq jo = ha,0k
1, hajk ~ ([0} /o) ¥ 2 j + k> a+2, haji ~ 1 +1og|v|*/o
jtk=a+2and ho i ~1ifj+k < a+2, where 0 = (1—[a]?)|v|* =
[v]?2 = p(¢)p(2), so that o ~ |2 — (|? if (¢,z) € K CC D x D. More
precisely, hq j x can be expressed in terms of hypergeometric functions,
see [An2], but we are only interested in its asymptotic behaviour. We
also put ha¢ = ho e/2,¢/2, 50 that |ha j k| < ho j+k and Rat1,e41 ~ oy
if | > a+ 2. Now we can state our main result (recall (1.12) for the

definition of G ).

—
L)
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Theorem 1. Let D be a bounded strictly pseudoconvez domain in C*
and p a strictly plurisubharmonic C* defining function. For each integer
o > 1 we have operators Py, F, and M, such that for smooth functions
u)

(2.2) u = My(i 80u) + Pyu + Fyu.

Here
Pou=Gyu+Guu

18 plurtharmonic,

a—1
—p)* "yl
(2.3) |Foul < A —_(‘v|nz-a—1/2 ho—2nta—-1/2 dA,

( p)**16 A (100p)" !

M0 = i
+k n+a ’U]'U " o
! 7,k>1
_ E cfjk
Jjtk=n+a+l
5k>1
(—p)o+16A (— p(2)iddp +i(n—1) aﬁ/\év) INCEED)
/D vivk gk
(2.4)
+ >
Jtk=nta
5 k>1
(—p)o+20N (— p(2)i08p + i(n—1)d5 A év) A(:88p)™~2
/D pIit1gk+1
“hogt1,j41,641 + Rob,
where
|Ro0|
(25) _ [ (=p)"(=olol+ =5 (18 A 3ol +16 A Bp))
~ "Uln+°' 1/2 O' 1,n4a—-1/2 -
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In particular,

— [

|Mo8)| < (=p)®
~ Jplv|*t

(2.6) . (._p|9| +v=p (|0A0p| + |0ADp|) + |0/\6p/\5p|) ha-1n+a-

The exact values of the constants are
S 1 (n+a)(n+a—3j-1)!(n+a—-k-1)
T T =D+ D)l(nta-—j-k)!

o = 1 (n+a—j)(n+a—k)
T Enr (n-Dia+ ) (n+a—j—k+1)

and
o 1 jk(n+a-y3-Dl(n+a—-k-1)

T enr n-D)(a+2)!(n+a—j—k)

Notice that the kernel for My is ~ |hg—1,n4al ~ [( — z|~(3n=2) if
n > 1 (and ~ log|¢ — z| for n = 1) when ((, 2) is in the interior of
D x D.

REMARK 1. If D is the ball, then M, is the solution operator M, from
[Anl] and [An2], G, is the L%-Bergman projection, F,u = —Gqu(0) so
that P, + F, is the L2-orthogonal pluriharmonic projection.

REMARK 2. For o = 0, we have the same result as in Theorem 1 for
z € OD; i.e. everything holds for @ = 0 if z € 8D, and

|Fou(z)|§/a M-{-/DJ—“(—QL z€0D.

p =7 Jp o

_ Our main application of Theorem 1 is to estimate solutions to the
00-equation, and to this end we need the following technical result:

Proposition 2.1. Under the conditions of Theorem 2.1,

a—1
. —p u
(27) |F£U(Z)| S, D (lvln)"'—a"klﬂl ha—?,n+a—k/2 d\ s
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fk<2(n+a)-1,

IFEMA)N 5 [ B s (~olfl+ =56 A 00l + 10 )

(2.8) +10ABpA 5p|) hoactnta—i/2dX,

if k <2(n+a—1), and if k is large enough F¥ maps L), into C(D)
boundedly.

This proposition is proved in Section 5.

Now, suppose ug is a solution to :90u = 8 in L}. Then u; =
M,6 + F,uq is another solution, and by iteration so is

u=Mu0+ FoMy0+F:M,0+---+ F"M,0+ FTlu, .
From Proposition 2.1 we then get
Theorem 2. If ug € L), solves i 0uy = 6 so does
u = My0+ Rob + Toug ,

where My0 13 as in Theorem 1, Toup € C(D) and

(—n)*
< —_
|Ra9| ~ Dlvln+a_1/2

- (~Pl81 + V=5 (1618p| + |6ABpl) + 167 BpADp])

' ha—l,n+a—1/2 .

In order to apply Theorem 2 to get various estimates of solutions
to :90u = 6 we need an a priori solution ug in some L. (D). This is
provided by

Theorem 3. Assume that 6 i3 a d-ezact (1,1)-form (current) such
that

(29)  (=p)(~ I8l + V=5 (18 A Op| + 16 A Bpl) +16 A 8p 1 5pl)
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is a finite measure in D, a > 0. Then there is a solution u € L. (D) to

i100u = 4.

If o = 0 this is the Henkin-Skoda theorem, [H] and [S], and the case
a > 0 is due to Dautov and Henkin, [DH]. This theorem was the first
outcome of solution formulas for the J-equation with weights. With
the modern technique the proof is rather simple and for the readers
convenience we sketch it when a is an integer.

SKETCH OF PROOF. Assume first that @ = 0 and that 8 is a d-exact
real (1,1)-current such that

16111 = —p161 + /=5 (16 A Bp| + 16 A Bpl) + 16 A 3p A Bp|

is a finite measure (if 6 is positive this is equivalent to [, —ptracef <
+00). First we look for a solution to :dw = 6 such that

(2.10) / ol + 7= (190 Aol + 18p Awl) < +oo.

If D is convex, one can use the simple homotopy for d obtained by con-
tracting D to a point, i.e. w = ifol h*6 dt, where h(t, z) = tz (assuming
0 € D). For a general strictly pseudoconvex domain D one can piece
together such local solutions to a global one by a cohomology argument.
It is at this point the d-exactness of 6 comes into play. If wg; is the
(0,1)-part of w, then for bidegree reasons, éwo,l = 0. We may assume
that w is chosen so that @g; = —w;o. Wé now apply the solution
operator Q4 from (1.6) and put v = Qiwg, . Then (1.3), (2.10) and
Fubini’s theorem immediately yield that

vda</w + wo.1 A 9p| < 0o.
/a|| lwou| \/—m |

Putting u = 2Rev = v + 0, we get a solution u € L(8D) to :00u = 6

It follows from the R?™-Riesz decomposition that also u € L!(D);
however we show this with another argument that also covers the case
a €Z,. Let D c C™*° be the strictly pseudoconvex domain defined
by D = {(z,2') € C***: j(z,2') = p(z)+]|z'|* < 0}. Then (2.9) implies,
cf. Section 5,

/_ 3101 + /=3 (16 A B3| + 8 A Bp|) + |8 A B A Bj| < +oo.
D
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Hence, by the case @ = 0 applied to §(z,2') = 6(z) in D, we obtain a
solution u € L(8D). We may assume that u is independent of z’ and
then, by Lemma 5.1, [,(—p)*|u| ~ [55 |u|dé < +oo.

Recall that a measure p in D is a Carleson measure if u(Q¢(p)) < t*
where Q¢(p) are the Koranyi balls in D. As an application of Theorem
2 we can prove Varopoulos’ theorem:

Theorem 4. Assume that 0 is d-ezact and that |||0]|| is a Carleson
measure. Then there 13 a solution u € BMO (0D) to i 90u = 6.

By Theorem 3, there is a solution ug € L!(D) and hence T,ug €
C(D). It is easy to see that R0 is bounded on 8D, and a standard
estimation of the integral defining M6 shows that M,6 € BMO (9D).
For the details of this argument see Section 6. Thus we have obtained a
relatively simple proof of Varopoulos’ theorem that avoids the delicate
task of solving the Poincaré equation tdw = 6 with Carleson estimates,
¢f. Section 0.

By interpolation, Theorems 3 and 4 imply that there is a solution in
L?(8D), 1 < p < oo, if |||4]|| € W~1/P. Here W are the interpolation
spaces between the finite measures W° and the Carleson measures W
in D. This can also be seen by simple estimates of the integrals, using
the following charctacterization of W, see [AmB],

peW* ifandonlyif p=kdr,

where
reW! and ke LYO~dr).

EXAMPLE 1. If D has enough regularity then the operator T, in
Theorem 2 will map L), into C¥(D), and so our technique can be used
also to study C"t*-regularity for the solution. However, we do not
pursue these things in more detail in this paper.

We will go one step further and show that in fact M,0 is the
principal term of the L2-minimal solution N8 to i 90u = 6, but to
this end we first have to study the L?-orthogonal projection

M,: L} - L:ZNH,
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where H denotes the space of pluriharmonic functions in D. First we
note that, cf. (2.2),

(2.11) u = (Py+ Fa)u

if u is pluriharmonic, a > 1. .

Since II, is pluriharmonic, P,II, = I, — F,II, and since P, :
L? — L2 NH, c¢f Section 1, I,P, = P,. Taking adjoints we get
P = P;IT}, and after subtracting I, — F,II4 — P} = (Py — P})II,

and thus
(212) Ha=Pa+Fa+Aa(I-HOI),

if Ay = P:— P, —F,. Note that, since P, = G4 + G4, (1.15) and (2.3)
imply that A, is weakly singular. By iteration we get

Theorem 5. The L2-orthogonal projection I, : L2 — L2 N'H can be
written

My = Py+ Fy+ Ao(I — Py — Fa) — A%(I — P, — Fy)

(2.13) |
++ (~)"AT NI - Py — Fo) + (-1)"MAT(I - 1L,).

Since A™ maps L? into C(D) (or even into C*(D) if 8D is suffi-
ciently smooth) if m is large enough, ¢f. Proposition 2.1, Ilou has the
same regularity as P,u; e.g. if D is C* then P, maps C*(D) into
C>=(D) N'H and hence also II, does.

EXAMPLE 2. Formula (2.11) also holds for @ = 0, ¢f. Remark 2, for
z € OD. Then Pyu(z), z € 0D, has to be interpreted as the boundary
values of the pluriharmonic function Pyu(z). Since Pyu only depends
on the boundary values of u, we can take any operator V, e.g., the R?"-
Poisson integral, which represents a pluriharmonic function in terms of
its boundary values, and then

(214) U= Pou'f‘FoV’u

is a representation of the pluriharmonic function U in terms of its
boundary values u, Pyu is pluriharmonic and one can show that FoV :
L*(@D) — L*(8D) is compact. When n = 1,

u(¢) d¢

1
Pou(2)=2Re%AD—CT;
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is the classical double layer potential of u, which provides an approxi-
mative solution of Dirichlet’s problem.

Finally we state our result about the L2-minimal solution N, to

i00u = 6.

Theorem 6. If § is ezact in D, then the L? -minimal solution N, of
1 00u = 0 i3 given by

Nob = Mo8 — AgMo6 + A2 M0

2.15
(2.15) b ()™ APTI M0 + (1) AT NG,

PRroOOF. This follows immediately from (2.2) and (2.13) once one has
noticed that if u is any solution, then

N =u-—-T,u.

3. Proof of Theorem 1 when z € 8D.

We first assume that z € dD. The general case~wi11 then be ob-
tained by applying the first result to a certain set D C C™*! where
D = C" N D. Our starting point is the relation (w = Gu)

(3.1) u=Gau+ Kyw,

see (1.13). For convenience we recall that

Gou(z) = £(£+_a) (é;)n

n!T'(a)
(3.2) _ / (=p)*~"u[=pOq — ng A 9p] A (Og)"*
D v™te((, z)
+ nice operator
and, for z € 0D,
. T(n+a—1)/i\n
Kaw(z) = pym =) (ﬂ)
[ (=p)*'s Aw A[—pOg — (n —1)g A Op] A (9g)" 2

(33) L v(c, z)n+a—1v(z’ C)

+ nice operator.
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The objective now is to generalize the argument given at the end of
Section 0, i.e. rewrite K,w in a appropriate manner to obtain (2.2),
and to this end we need

Proposition 3.1. If p is C® and v,s,q are defined as in Section 1,
then

(3.4) 0v = —s + O(|n|) = ¢+ O(|n]) = —8p + O(|n|)
(3.5) sAg=0(nl), 9pAdv=0(n]),
(3.6) 8q = 83p+ O(ln))

(3.7) 0p N0 =5 A g +0(nf?),

(3.8) v(z,¢) = v((,2) + O(Inl*),

and

(3.9) dv(¢,z) = O(Inl*)-

and

Proposition 3.2. If p is C3, v is defined by (1.9) and z € 8D, then

(n—1)wAdsABpAdp A (00p)"~2
= (—(n—l)w/\dﬁ/\dv/\ap—pw/\dﬁAaép

—vw Ado ABOp+vw Adp A 85;)) A (80p)" "% + |w| O(In*)

and O is in CY(D x dD).

All differentials are with respect to (. Note that (3.8) means that
v((, z) is nearly conjugate symmetric (self-adjoint) and (3.9) means that
it is nearly antiholomorphic in (.

The equations (3.4) to (3.6) follow quite easily from the definitions.
Clearly (3.9) follows from (3.8), which is wellknown and used e.g. in
[KS]. It can be verified by a straightforward computation but it also
follows immediately from (3.11) below, which we anyway need in the
proof of the much harder Proposition 3.2.
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The equation (3.7) was first used in [Ar] and can be verified as
follows:

PROOF OF (3.7). Since Y qimx = —v((,z) — p({) and, by (3.8),
S oime = —0(G,2) - p(z) + O(Inl?), we have for small 1, 5= nxdax —
g = —0p and Y nk0sk —s = —0% + O(|n|*). Hence, since by (3.4)

s =—q+ O(|n]),
OsNOG=qAs+ ana(% +sk) + O(|n[?).

Now

@ = —pi(C) - % ijk(C) nj

and 1
sk =p(2) =3 > pik(z)nj
J

so that 9(gr + sx) = O(|n|) and thus (3.7) follows.

PROOF OF PROPOSITION 3.2. By (3.9) and for bidegree reasons it is
enough to prove that A A (89p)"~% = O(|n|*), where

A=(n—-1)wAdAI(p+v)ABp+(p+v)wABIADOOp—vwADpADp.

To simplify the computation we want to choose suitable holomorphic
coordinates. The definition (1.9) depends on the choice of coordinates
but if v' is defined by (1.9) with respect to new holomorhpic coordinates
Z', we claim that

(3.10) v=2v"+0(]n*) and G;v =0 +O(|n)?).

Let as assume (3.10) for a moment and complete the proof of
Proposition 3.2. Let ( € D be fixed. By (3.10) we may assume that v
is defined with respect to holomorphic coordinates such that

8dp(z) =Y _ d¢i Adl; + O(Inl*)

and hence also p;;z(¢) = p;;z(¢) = 0. By linearity we may assume that
w = d(;. Now (89p)"~? is a sum of terms A;(d(; Ad(;) where i assumes
all but two of the numbers 1,...,n, and only the differentials in A with
respect to these to variables make any contribution to such a term.
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Thus if we let v = d¢; A di A dCx A dCx A (80p)™~2 (7 is independent
of k), we have

wA 0% AB(p+v)AdpA(80p)"2

= Z dCy A (B1kp + M dCy + TkdCr) A nidCi A Biip A (90p)" 2
k=2

= Z(—Pmkﬁk + pkmnk) v,
k=2

(p+v)w A8 A dBp A (80p)™ 2

= (p+v)dC A0y0 NGk Nl A (8Dp)""

k=2
=(n-1)(p+v)(p +m)y

and

o AOp A Bdp A (80p)" 2 = Z vd(; A B1p A dCk AdCr A (80p)™ 2

k=2
=-(n—-1)vp17.

Hence,

AN(BOp)" 2 =(n—-1) (pl(p —v =0 =) i)
k=2

+(p+v)in+ )y, pu‘nnk)v +0(Inl*)
k=2

= (n = D)pr(=p(2) + O(Inl*)) + O(Inl*)
= O(Inl*)

as p(z) = 0, and the proof is complete.

PROOF OF (3.10). We first assume that p is real analytic and let u((, z)
be the unique function that equals —p for ( = z, is holomorphic in z
and antiholomorphic in {. Then u((,2) = u(z,({). Since v (and v') is
nothing but the Taylor expansion of u up to second order, we have

(3.11) v=u+0(n]*).
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Note also that 9¢v((, z) = d¢u((, z) + O(|n|*). The same formulas hold
for v' and since u and Ou are invariantly defined, (3.10) now follows if
p is real analytic. The general case can be obtained by approximation.

We now replace v(z,() = 5(¢,2) 4+ O(|n|*) by © in (3.3), dq by 80p
and s A w by 9p A 09. Then we get

KoweLinta-1) 1) / (—p)*d5 A w A (88p)"1
T T(@m-1) 1)' yrta—1p
(3.12) ] ]
(—p)*"10p Aw Adv A Op A (80p)" ! .
n— 1)/D onta—1p ) + Fow,
where

vigk

+ / (=p)* M w A p A 0(|77|2'")

Fow= Z/ (—P)a‘l“w./\ O(|nl2m+1)

vipk

if £,j,k,m >0,and L+ m —(j +k) > 1—n—a, and O(|n|?) is in
CY(D x D). To obtain (3.12) we have used Proposition 3.1 and that

__1___1 (Inls)
v+ 0(n)}) o [v]?

We need the following auxiliary notation:

Y

Aok = (%)"/ (—p)*w A di A (88p)"~?

vigk

i\ [ (=p)*wAd5AdpAdpA (8dp)~?
B gk = 5—7; /

vipk ’

i\n / (—p)*Ow A OV A v A (65/’)"_2

vigk

b (=p)70w 1 (33p)
ik = 27r / vIo ’

'U
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Hence (3.12) can be written

_I'n+a-1) Fn+a-1)

Ba,l,n+a—1 + Fow.

Let Ry = Rqf denote any term that satisfies (2.5) (since z € 0D,
hamnta—-1/2 = 1). Then we have

Lemma 3.3. Ifj+k=n+F+1and B> a—1 then

1
Bpjk = =7 Ap+1,jk
(3.13) B+1 ) )
—_—C ; F,+R,.
+(ﬂ+1)(ﬂ+2) ﬂ+2,]+l,k+ o+ Ry
Thus
_ I'(n+ a)
3.14) Kot = Tlaa Dy -1y Ao
(3. I'(n+a)

+ Ca+1,n+cx,1 + Fa + Ra .

Fla+2)(n—2)!
By repeated use of

Lemma 3.4. If j+ k=n+ a then

k n+a

Aaik = g TF Atk Y e T G ) Dot
jk(n—1) -
(@a+1)(a+2)(nta—Fk) otaithiH
k(n —1)

- a ) Fa @
@t D(nta—k Cortikn T Fat R

and recalling that 6 = : Qw we obtain from (3.14) that (z € dD)
(3.15) Kow = My + Aaonta + Fa

and then by (3.1), (2.2) is proved since we have
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Lemma 3.5.

(3.16) Agonta = Gau + Fpu
and
(3.17) Fow = Fou.

As —p < |v| and |n| < y/|v|, (2.6) follows from (2.4) by (3.4), and
Theorem 1 is completely proved for z € 9D.

The rest of this paragraph is devoted to the proofs of Lemmas
3.3 to 3.5. Lemmas 3.3 and 3.5 are obtained only by some elementary
integrations by parts whereas the proof of Lemma 3.4 is somewhat
involved and depends on the crucial Proposition 3.2.

PROOF OF LEMMA 3.3. Note that

/ d(—p)P*1 Aw A di A Bp A (80p)" 2
Bﬁ,j,k = .

vigk

Thus an integration by parts yields

(—p)PT** Aw A doAdvABpA(89p)~?
Bg,jk = Ap+1,5k + /D pitIgE

(3.18)

+ (—p)P*t10w A do A dp A (36—;})""2
D 'Uj’t_)k )
To handle the first integral, notice that

(_p)ﬂ“w Ado Adv A Bp A (89p)" 2
EY d(—p)P** Aw A d5 A dv A (88p)" 2
+ (=pP* 1w A Bp A O(In]?),

and so after an integration by parts, the integral becomes

+F,.

1 (—p)P*2 A Bw A do A dv A (88p)™2
B+2 / viHIgE
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However, for bidegree reasons and (3.9),
dw A dv A dv A (88p)"~2 = dw A 85 A Bv A (89p)™~2 4 dw A O(|n|*)
and hence the first integral in (3.18) is
Cpt2,j+1,k + F.+R,.

Now consider the last integral in (3.18). Again, for bidegree reasons,
dv A Op can be replaced by 0v A dp and then an integration by parts

yields 5
1 v =
- —p)B+2 —_ n-2
512 /D( p)Te0w A dvit‘)" A (00p)

whichisan Royif f>a—-1landj+k=n+(+1.

PROOF OF LEMMA 3.4. In this proof = means equality modulo terms
R, and F,. By Lemma 3.3,
J

(3.19) Agt1,jk+1 = —(a+1)Ba jk+1 + P

Co+2,j+1,k+1 -

Now we apply Proposition 3.2 to the B-term in (3.19) and get, using
the same argument as when handling the first integral in (3.18) in the
proof of Lemma 3.3,

J
Aa+1,j,k+1 = - 0’+1ijk+l + o +2 Ca+2’j+l’k+l
a+1 a+1 a+t+l
= 7 Aatrikrr ¥ ——7 Aokt + 7 Aagjik -

Solving for Aq41,j,k+1 yields

n—1 J(n—1)
A : = _ C : — = C i+1.k-
a+1,j,k+1 S a+1,j,k+1 T (n+a)(at2) a+2,j+1,k+1
a+1 a+1
(3.20) + nto Aa,j—1,k+1 + nt o ik
Note that

hosu = - [ OLEAA @0
O,J,k - D ,U],Bk

1 / d(—=p)**t! Aw A (88p)"?
D

_a+1 vipk



90 M. ANDERSSON AND H. CARLSSON

and hence an integration by parts yields

(3.21) Aa,jk = Ac+t1,jk+1 + Do,k -

a+1 a+1

Combining (3.20) with (3.21) and solving for A, j finally one gets
Lemma 3.4.

PROOF OF LEMMA 3.5. For bidegree reasons, w A do = Ou A dv can be
replaced by du A 0% in the definition of A4 0,n+o and hence

i\ [ (—=p)*du A8 A(80p)"?
Aa,O,n+a = (g) L

pnta
_ (" (=p)* *u A 85 A Dp A (89p)™ !
= ()", + Fuu
=Gou+ Fou,

¢f. (3.2) and Proposition 3.1. This proves (3.16), and (3.17) is obtained
in the same manner.

A FINAL REMARK ABOUT THE CASE a = 0. Anything we have done
above works equally well for @ = 0 if only integrals as a [},(— p)* 1dpAy
are interpreted as fa p7- In particular,

1 1
< _— R
IF[)'U»I ~ AD IUlO( |v|n_1/2)+L'u|O( Ivln+1/2)'

4. Proof of Theorem 1 for z € D.

Let p and D be as before and consider the strictly pseudoconvex
domain

D = {(¢,6nr1) €C™ 2 p(¢) + [Gair|* < 0}

and put 5(8) = p(¢) + [Gat1[?, where & = (¢,Cat1). Then D = D
{.C"‘H = 0} so a function u in D can be considered as a function in
D, not depending on the last variable. By Theorem 1 we now have
operators P,_ju, F’O,_lu, M, _,80u and so on so that (2.2) holds for
€0D,a>1.
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Proposition 4.1. With the notation above Po_1u(z,2n41) does not
depend on the last variable and Pyu(z) = Poy—1u(2,2n41). For z € D
we thus have

(4.1) u(z) = Paw(2)+ Fac1u(z,\/—p(2)) + Mu1(: 80u)(2,/—p(2)) .

It is therefore natural to define

M (i 8Bu)(z) = Mo_1(i 80u)(z,/—p(z))

for z € D, and F,u(z) similarly, and then it remains to check that
(2.3)-(2.6) hold.

PROOF OF PROPOSITION 4.1. To be precise, we first construct P,_;
in the following way: We let 'D(f, %) = v(¢,2) — (nt+12n+1 and form
the corresponding weighted formula Ha—;, ¢f. (1.5), in D. Then
H,_ 1U(2, zn41) will not depend on 2,41 if u = u(z) does not. Then we
modify it by a smooth kernel £,_;u as in (1.12). Since H,_, is already
holomorphic in the last variable, this can be done in such a way that

Go_1u-and hence Py_; = Go_1 + Ga_; is independent of Zpt1 if u is.
Thus the proposition follows from

(4.2) Hoyu(z,2n41) = Hou(z).

To see (4.2), we first note that (with obvious notation)
(¢, 2) = 4(¢, 2) + Cat1 dCnta

and

7w [ (EP)TuO(=p0F — (n +1)i A OG) A (8D
(43) Ha—l - / (U(Ca z) _ Cn+lzn+1)n+°

Now,
(=503 — (n+1)3 A 85) A (9"
= ((~(p+ I¢n+11*)3g = (n +1)g A Bp) A n(Bg)"""
(=2 + Caal? = (0 + Dl )(9)") A dnia A i
= (n+1)(~p0q — ng A 9p) A (8g)" ™" A dlat1 A dlnt1 -
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Thus
Hoyu(z) = (n+ 1)/ (—p3g —ng A 9p) A (9g)" 'u
D
/ (=p(¢) — |Cn+_1|2)°_2d4n+1 A dCnt1
(v = Cag12n41)" e
[¢nt11<y/=p(C)

and if we make the change of variables \/—p({)T = (n41 in the inner
integral we get

Hoyu(s) = /D (=p)*'u(—p8q — ng A 3g) A (9g)"~*

onta ha—2,n+a,0 )

of. (2.1), with a = /—p(¢)/—p(z)/v({,2) and hence (4.2) follows,

since ha—2,n+a,0 =1.

Next we compute M,_10(z, \/—p(z)) for 8 = 6(¢). For simplicity
we just consider a typical term, namely
[ (=p)*0AD5 A DDA (80p)"
b Gthi
with Z = (z,1/—p(2)). We first notice that 0% = 09 — Zp41dCn41 and
00 = 0v — zp41dCp41 so that

I

6 A0 A A(80p)?
=6A (|2n+1 |265p + (Tl — 1)81_) A 51)) A (agp)"'z A an+1 A dC—n+1 .

Noting that |2,4+1|2 = —p(z) and proceeding as in the proof of Propo-
sition 4.1 above we get

_ [ (=p)**8 A (=p(2)30p + (n = 1)05 A Ov) A (99p)"~*

D 'Ujﬁk

with a = \/—p(¢)/—p(z)/v((,z). In the same way,
Fou(z) = Famyu(z,+/—p(2))

I ho:,j,k.

so that

(=p)* 2 |ul
(4.4) IFau(Z)I 5 b |,l~)ln+a— 1/2
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Gf a=1,
do(¢ dA(¢
Fw(Z)S/a In£132 / Jul |,.E.3)/2

and proceeding as before we get

a—1 u
|Fau(z)| 5 .(I_’U%l ha -2, n+a—1/2 -

This completes the proof of Theorem 1.

5. Proof of Proposition 2.1.

We recall from the last paragra.ph that if u is defined on D, then
.,,u(z) = c,,_lu(z) and M,0(z) = My_,16(Z) where 2 = (z, \/—p(z )) €
dD. By writing the operators this way we avoided the factors hq j &
in their integral representation. However, since F,_, was defined as
an integral over D, to compute compositions such as ﬁ’a_l o 1:"0,_1,
etc., we need to know Fa_ju(%) also for 2 € D. We will avoid this
difficulty by rewriting Fy_iu as an integral over the boundary of a
domain D, C C*te,

REMARK. When a = 1, ﬁ’a_l,u consists of both a boundary integral
and an integral over D. So in this case the argument is slightly different
as we only need to rewrite this last integral as an integral over 0D, .
We omit those details and assume that a > 1 in the sequel.

Let Ca = (Cla ceey Cna Cn+17 Tty Cn+0) = (C> Cl) € C™t* where C =
(¢1,..-,¢n). We define the strictly pseudoconvex domain D, by D, =
{¢* € CFa : pa((®) < 0} where p2(C%) = p(C) + 20, [Cusil®. We
then have v,((%,2%) = v((,2) + Cat12Zn+1 + *** + CntaZnta- When
a =1, we write D for D, and ( for (! (as in Section 4). Note that D,
is obtained from D by applying the map D — D, o times.

Lemma 5.1. If u is defined on D, then
o [ rrruoa© =2 [ @) ue

and

b) /D u(€) dA(C) ~ /a _u(Q)do(().
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ProoFr. We have

/_(—ﬁ)“"ludf\= / u(¢) Q) / (=p(€) = [Cns1 2™ dA(Capr)
D D
[¢nt+11<4/=p(C)
=2 [ o) a0 axo).

We obtain b) from a) as

wQdo(d) [ ey
Ly i = lima [ OO,

We also need

Lemma 5.2. If D is a strictly pseudoconvezr domain in C", then for
z€D, weadD

[ do(Q) 1
oD |U(Z,C)|alv(c’w)|b ~ |v(z,w)|a+b—n
if0<a,b<nanda+b>n. If a+ b < n the integral s bounded.

PROOF. We first observe that

do(¢) _ .
5.1 I= / —= < 4T if 0<a<n,
( ) da(c, Z) ~y
d(¢,z)<6
and
da(() - .
5.2 IT = —2 < T if a>n.
(52) ()
d(¢,z)>6

Here d is the pseudometric that defines the Koranyi balls in. D, see
Section 1 and [AnC]. Then d(z,w) ~ |v(z,w)| if w and/or z is on the
boundary.

We first prove (5.1) and (5.2) for z € dD. Then

I~ / do(¢) / %=/O+wzf—i / do(()

d(¢,2)<6 t>d(¢,z2) d(¢,z)<min{t,6}

) n +oco
t n dt n—a
5 / tat+l dt +6 / tet+l 5 8 :
—o0 )
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Similarly,

+oo dt +oo t‘n.
11~/ — / dacgf ~ ",
5 o+l ( ) 5 ta+1

§<d(¢,2)<t

If z € D, let zg € 0D satisfy d(z) = d(z,20) = d(z,0D). Then
d(¢,z) 2 d(¢,z0) and (5.1) follows if we apply it to zo. To prove (5.2)
we consider two cases. If d(z) < C6, then if d(¢,z) > 6, we have
d(¢,z) ~ d(¢, z0), and we are done by the case zo € dD. If d(z) > C§,
then (1.3) (it is proved in the same way as (5.2) by observing that
d(¢,z) ~ —p(2) + d(C, 20)) implies that II < (—p(2))"™* ~ d(z)** <
e,

Now choose ¢ small enough (so that ¢cC < 1/2, where C is the

constant in the triangle inequality for d), let 6 = cd(z,w) and put
B¢ = 0D\(Bs(z) U Bs(w)). Then

do(¢) N da(()
/aD (2 O [o(C, W) /,36(,) * /Ba(w  Jpe (2.0 (G, w)
=A+B+C.

The integrals A and B are estimated in the same way. Observe that if
¢ € Bs(z), then d(z,w) < C(d(z,¢) + d({,w)) < d(z,w)/2+ Cd({,w)
and hence d({,w) 2 d(z,w). Thus by (5.1),

< ! do(¢) < 1
~ d(z,w) Jaewy<s 4°(C, 2) 7~ d(z,w)etbon

To estimate C, we note that if ( € B€ then d(z,() > cd(z,w). Hence
d(¢,w) < d(¢, 2)+d(z,w) < d(¢, z) and by symmetry we have d({,w) ~
d(¢,z). This implies by (5.2)

c < / do(¢) 1
d

(¢2)>6 d“'H’(C,z) — d“'H’“"(z,w)

if a+b>n. If a+ b < n the integral is bounded.

PROOF OF PROPOSITION 2.1. First we claim that

(=)~ Ju(©) N
TS h"‘“‘”“)‘/b sCar

[ O e
a )

D, [UU(Caa za)ll

(5.3)
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if |(zn41,--+52n+a)| = V/—p(z). In fact, for the first equality cf. the
proof of Proposition 4.1; the last equality is obtained for z* =
(z,4/—p(2),0,...,0) by repeated use of Lemma 5.1, and then the gen-
eral case follows since the integral is rotation invariant with respect to
(Cn+1 1ct Cn+a)-

By (5.3), (2.7) is equivalent to

64 RIS [ LG ——

D. Iva(za, Ca)|n+a—k/2

1 <k <2(n+a). We will prove (5.4) by induction. It is true for £k =1
since then (2.7) is nothing but (2.3). Assuming (5.4) for k£ we have

k41,0, lFfu(()lda(("’)
IFQ ( ), 5 /aDa |Ua(za,ca)|n+a_1/2
 do(¢%) |[Fru(w)| do(w®)
7/ J

8D, [Va(2%, ()" o=*/2 [op, |va(Co,we)|nte=1/2 "

By Fubini’s theorem and Lemma 5.2 we now get (5.4) for k + 1.

We also see that if £ > 2(n + @) — 1, F¥u has a bounded kernel
(when k = 2(n + a) — 1 it has a logarithmic singularity), and since the
kernel of F, is continuous (and much more) off the diagonal and this is
preserved under composition, we have F¥u € C(D).

To see (2.8) first note that, by (2.6) and the argument for (5.3),

IMab(C)| S / [16]1lp dA(w™)

D, |va((*, w®)|mte

if |(Cnt1y-- -y Cnta)l = /—p(C) (recall that |||6]|| = —p|8] + /—p(]6 A

Op| + |8 A Bp|) + |8 A Op A Bp|). Hence, by (5.4),

My,6(()| do(C™
ch’:Mae(z” N /E;D |UL(Z°,(C°3|)'”i(°_2/2

do(¢°) l6lllo dA(w*)
<), J

D. [va(2%,¢¥)|ntak/2 [ |ua (¢, w™)[nte

~ / 1161110 dA(w®)
Dq

| / do(¢®)
50, [0a(z2, (T2 ug(Co, we) [ Fa
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< / 18]l p dA(w®)
~ D. |va(<'a’wa)ln+a—k/2

161]] dA(w)
- /D(—'p)o{|v(z,w)|""’°‘—'€/2 hoat1ntatk/2 )

and the proof of Proposition 2.1 is complete.

6. Proof of Theorem 4.

In this section we assume that y = —p|0|++/=p(|6 ABp|+|6ADp|)+
|6 A 3p A Op| is a Carleson measure and prove that M,60 € BMO (9D).
It is easy to see that R,8 € L*°; in fact,

Rb( S [ e ()

too gt
~ [ du(() yresyry
-/I; ( a(c.z) $n+1/2

too dt oo ﬂ(Qt(C))
- = /m,,)« a0 = [ Lt < oo,

as u(Q¢(¢)) < t". The other terms in M0 are estimated in the same
fashion, so instead of giving detailed arguments for each of them we
concentrate on a typical one. Our choice is

[ (o8N D6, 2) A Bu(C, ) A (95p)
fl=)= /D o(C, )" (¢, 2) ‘

We want to estimate

1

M ) =
W(p) |Br(P)| /B, (p)

|f(2) = frldo(z),

where f;, is the mean value of f over Bj(p). To this end we need

Lemma 6.1. If y 1s a Carleson measure then

_ dp(@) 1
= / dra(C,p) ~ ha
—p(¢)>h
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PROOF. Let ( = (y,z) where y = —p({) and z € 8D. Put
Erm ={C: 2°7'h <y < 2%, m2*h < d(z,p) < (m + 1) 2%}

if k > 1. When k = 0, we replace the lower bound for y by 0. Then
{—p(C) > h} = Uk>1 UmZO Ek,m. Since IEk,ml ~ (2kh)"+1m"—l, Ek’m
can be covered by < m™~! Koranyi balls Q4+4(g;), and hence

#(Eem) <Y (Qarn(gi)) S mm (2R

From this we obtain

N
K

oo
J Z ( m))n+a 'U(Ek’m)
k=1m=0
<i§:‘) ko N _______mn—l 1
~ pho k_l"' = 1+m)n+a N ha )

as desired.

We also need

(6-1) [v(2,¢) = v(w, )| S (hd(C,p))"/2,
if z,w € Bi(p), ( ¢ Bcr(p). This follows immediately if we write
'U(Z, C) - v(w, C) = U(Z’w) + (q(sz) - Q(za C)a z = w)
+ (q(Z’C) - q(w, C)a C - ’UJ) .

Let us return yo the estimate of My (p). We have

Mh(p)sm / / 1£(2) = f(w)|do(z) do(w),

z€Bn(p) wEBL(p)
and

£(2) ~ fw) = ( / ; / ) (o

ySCh  y<Ch
‘ ((917(2)/\511(2) Ov(w) A Ov(w)

o H()0e(z) | on (w)oe (w)

)/\0/\(03/))" 2

= Moo(z,w) + mo(z,w),
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where y = —p(() and v(z) = v(z,() for short. Consider first the part
where y > Ch. Then

9v(z) A Ov(z) _ Op(w) A dv(w)
vrtl(2)0%(2) v (w)o%(w)

— a3 1 -
= av(z) A 8v(z) (vn+1(z)6°’(z) - ’U"+1(w)f)a(w))

1 _ _ B —
+ m(@v(z) A Ov(z) — Ov(w) A Ov(w)).

1 < [o(z) = v(w)|
v"+1(z)z7°’(z) vn+l(w)5a(w) ~ d”+a+2((,p)
Vvh

Furthermore by (3.4),
d5(z) A Bv(z) = 8p A dp + O(Inl) (8p + dp) + O(Inf*)
and

05(2) A Ov(z) — 85(w) A Bv(w) = 8(2) A (Bv(z) — 51}(11)))
+ (00(z) — Ov(w)) A Ov(w)
= O(Vh) (8p+ Bp + O(In)) -

Hence the integrand in me, is bounded by VA d(¢,p)~("*+1/?) du. By
Lemma 6.1 this implies

1 .
_— Meo(z,w)do(z)do(w
|Br(p)|? /Bh(p) /Bh(m () doz) dotw)
Vh

1
6.2 5———/ do(z daw)/ ——d
(62) [Br(P)I” JBaip) ) Bi(p) ( y>cn (G p)m72

SY==1.

SIS
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The contribution from the part where y < Ch, is dominated by two
terms of the form

1 41|00 A OvAOA (aép)“-2|
AT d

/ Bao)] / (=) prreri(g, ) o)
y<Ch zGBh(p)

1 |0 A Bv A6 A (68p)"‘2|
Z= /E LA [ r e

zE€By (p)

Again we use 89(z) A Ov(z) = 8p A 9p + O(|n|)(8p + 3p) + O(|n]?) to
obtain

< —_ S
~ B /Eo,m du / (¢, z)"H do(z)

m=0 z€By(p)

S Z ﬁ/Eo,m du(y,z) / W Tz 7)) do.

2€Bx(p)

But if ( = (y,z) € Eg;m, then

/ y do < —
(y +d(z,z))"t  ~ (1+m)nH
z€By(p)

and we obtain

oo ) n—1

By (6.2) and (6.3) we get My(p) < 1, and the proof is complete.
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Hiperbolic singular

integral operators

Andrea R. Nahmod

Abstract. We define a class of integral operators which are singular
relative to the hyperbolic metric on simply connected domains of the
plane. We study the necessary and sufficient conditions for such op-
erators to be bounded on L? of the upper half plane relative to the
hyperbolic metric.

Introduction.

Let Q be an open simply connected subset of RZ. Let us denote
by 052 the boundary of © and by é(z) the euclidean distance from z to
0. Let p(z,y) be the hyperbolic distance between z and y in Q. And
let m(z,y) = inf{voly(B) : B is a ball containing = and y}, where by
vol,(B) we denote the hyperbolic volume of B and B is the ball defined
relative to the hyperbolic metric (when @ = R% and B has hyperbolic
radius 7, voly(B) is like sinh?(r/2)).

We consider a class of operators given by kernels satisfying stan-
dard estimates -like the usual Calder6n-Zygmund operators- but with
respect to the hyperbolic metric. We study the necessary and sufficient
conditions for such “hyperbolic singular integral operators” T to extend
to a bounded operators on L?(Q,dz/é(z)?).

In hyperbolic spaces, the volume of a ball grows exponentially as
a function of its radius. We can not then have a doubling measure.
Therefore, hyperbolic spaces are not examples of spaces of homogeneous

103
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type and we cannot view them within the same framework of general
Calderén-Zygmund theory developed for these spaces (¢f. for example
[CW], [D3S])

The motivation for considering operators given by this kind of ker-
nels arises when looking at the Green'’s function of the upper half plane
in two.dimensions:

G(z,y) = log :i:z: , for z,y e R:.

It is well known that the Green’s operator is not bounded on
L*(R% ,dz), where dz is Lebesgue measure. But if we consider

N N
G(2,y) = log =/ Xpz 51} -

then the operator associated to é(z, y) is bounded on L*(R? ,dh), dh =
dz/6(z)? = dz/z}. This is a consequence of |G(z,y)| < ¢/m(z,y);
that is the Green’s function decays like the inverse of the volume of the
smallest ball -relative to the hyperbolic metric- containing z and y.

~ The philosophy to deal with such “hyperbolic singular integral op-
erators” would be the following. If the hyperbolic distance between
z and y is larger than one, then the kernel would decrease “exponen-
tially” and we have enough decay to handle the L2-boundedness via
Schur’s Lemma. If the distance between z and y is less than one then
these points lie “in the same” Whitney cube where euclidean distance
and hyperbolic distance are comparable. We are then reduced to the
euclidean case and the T'1-Theorem of David and Journé applies (cf.
D)),

This article is part of my Ph.D. Thesis under the direction of Prof.
Ronald R. Coifman. I would like to thank him for his guidance and
insight. I also thank Peter Jones and Stephen Semmes for many helpful
conversations.

1. Definitions, examples and statement of results.

Definition 1.1. A hyperbolic standard kernel is a continuous function
K :Q xQ\ A — C for which there ezists a constant ¢ > 0 such that

c

1) |K(z,y)| < m_(aTy)

, for all (z,y) e XA x Q\ A.
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2) If(z,y) € 2 xQ\ A are such that p(z,y) < 1, then

6(z)é
IWM%M+Wﬁ@wg&§%%

(A = {(z,y) : = y} and the gradients are taken in the distributional
sense and assumed to be functions).

Definition 1.2. A hyperbolic singular integral operator T is an oper-
ator taking CJ(Q) into L. () and associated to a hyperbolic standard
kernel K: for every f € CJ(Q),

1ww=/meﬂw£§,

for x ¢ supp f.

Notice that when p(z,y) < 1 we have that m(z,y) is comparable
to 8(z) 6(y)/|z —y|? and that 1/4 < §(z)/6(y) < 4; therefore our hyper-
bolic singular integral operator coincides with a usual singular integral
operator in euclidean geometry.

We refer the reader to [B] and [BP] for precise definitions and
properties about hyperbolic geometry.

EXAMPLES. i) Let @ = R% | (z1,22) = z, y = (y1,y2) and consider
the Riesz transforms

|z =gl

lz -yl

0 \2
(v2557) G@w)s  Gle,y)=log

where the derivatives are taken in the distributional sense.

Then (z2 8/0z1)2G(z,y) equals

- _ o —y) = (22— y)® (21 —y1)? — (22 + 1)
Ko =4 (F=5 = )
K(z,y) is a C'-function away from the diagonal and it is easy to see
that it satisfies 1) and 2).

ii) Take & = R% and for 0 < r < 1, let B(¢,r) be the ball of
hyperbolic radius r centered at :. Given z,y € R there exists a
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Mobius transformation v such that p(z,y) = p(vz,vy) = p(z,pt). Since
p(i,pi) = |log p| we have that,

volp B(z, p(z,y)) = volp B(3, | log p|).

Let k be a smooth function so that |k(r)| < ¢/r? and |k'(r)| < ¢/r® and
define k(r) = k(p(z,y)) = k(|log p|). Then let K(z,y) = k(p(z,y)), if
p(z,y) < 1 and K(z,y) = 0 otherwise. Clearly K satisfies 1) and 2).
And we have that,

Tf(z)=Tf(vi) = [ k(p(vi,p1)) f(ui) dh(u) = k*G f
G

if vt = z and ut = y; v, 4 € G, the group of Mdbius transformations
(¢f. [CW2, Chapter 10]).

iii) Let k(r) = (1/sinh® r)!** and let K(z,y) = k(p(z,y)). Then
it is clear that I satisfies 1) and 2).

Let 2 =R3 . In Section 2 we prove,

Theorem 2.1. Let T be a hyperbolic singular integral operator. Then,
T extends to a bounded operator in L2(R? ,dz/z3) if and only if, for
any 0 < e <1,

1) T(w) € wBMO(dh); w(z) = z5,
2) T*(w) € wBMO(dh); w(z) = z5,
3) T satisfies the “local weak boundedness property” (LWBP):

Let {Q,} be the Whitney decomposition of R4 . Fix Q; and let dw;
be dz/|Q;|. Then w;j(Q) = |Q|/|Q;| for @ C Q;. Let f,g € C§ such

that supp f,supp g C @, QCQ; and | f(z)— f(y)| < cla—y["w; (@)™ "%
same condition also for g. Then,

(L) = | [T gta) | < e00,(@) o lglle

where ¢ is a constant independent of j .
By BMO(dh) we mean, modulo constants the space of functions f
such that

1
su
{Q:volh(%)gl} VOIh(Q)

/ f = (mh)o f|dh(z),
Q
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where @ is a cube in R% with sides parallel to the coordinate axis,
dh(z) = dz/z% and

1
.(mh)qf=m/fdh-

For other domains different than R we can get a partial result for
Q a simply connected domain in R? bounded by a Jordan curve that is
a K-quasicircle with K = 1+ ¢, € > 0 very small and R an operator
associated to a kernel R(z,w) that is closely related to a hyperbolic
standard kernel when p*(z,w) > 1, p* is the hyperbolic distance in Q.
In Section 3 we prove,

Theorem 3.1. Let Q be a simply connected domain in R? bounded
by a Jordan curve that 13 ¢ K-quasicircle with K = 1+¢ and e > 0
very small. Let p* be the hyperbolic distance function in Q and 6(z')
the euclidean distance dist {z',0Q}. Let R(z',w') be a kernel defined
on Q x Q such that R(z',w') = 0, if p*(2',w') < 1 and |R(z',w')| <
cep (WK ip x( w')y > 1.

. Then, if R 13 the operator associated to R(z',w'), we have that
there exists n = n(e) > 0 such that

R(6")(z") < e87(2"), dh almost everywhere,
where dh = d2'/6(2')? is equivalent to the hyperbolic measure on Q.

By Schur’s Lemma it is an immediate consequence of Theorem 3.1
that R defines a bounded operator on L%(f,dz'/6(2')?).

Actually, if G(z w') is the Green’s function on any simply con-
nected domain of R? (with non trivial boundary), then |G(z',w')| <
ce P W) 5f (2 w!) > 1.

REMARK. We also have that

IG(z',w')| < ¢ (1 + log for p*(2',w') < 1.

*( I I)Z)

This estimate is enough to prove that C~;'~, the operator associated to
the kernel G(z',w") X p* (2 wiy<t ® satisfies G(67)(2') < 67(z'), dh almost

everywhere, for 0 < n < 1, Q simply connected in R?.
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The Green’s operator on A, the unit disk, defines a bounded opera-
tor on L?(A, dh). Therefore the Green’s operator on {2, any simply con-
nected domain in the plane, defines a bounded operator on L%(2,dh).

REMARK. Kernels K(z',w') defined on Q x @, 92 a K-quasicircle,
K =1 + ¢, satisfying: K(2',w') =0if p*(2',w') < 1 and
min{6(z')?, §(w')?}

|I{(z',w’)lgc Iz’_w'lz

, if p*(z',w') > 1,

are also kernels of the kind described in Theorem 3.1:

Being 09 a K-quasicircle, there exists F' : R2 — R?, F(c0) = oo,
f = F|a: A — §Qis univalent and F is a K2-global quasiconformal
map (recall that F~! is also K2-quasiconformal).

Also F satisfies: if z,w,u € R? then (cf. [A])

min{lz—wll/K2 |z—w|K2}< F(z) — F(w)

lw—ul 7w —ul I F(w) — F(u)
_ . 1/K? . K?
Smax{‘z w| ’|z w| }
|lw — ul |lw — ul

Therefore,

min{&(z’)2,6(w’)2} < e—p(h(z’),h(wl))/}(z :
EErT

where h = f~! and p is the hyperbolic distance function in A.
Before proving Theorem 2.1 we wish to recall,

Schur’s Lemma. If K(z,y) is a nonnegative kernel, if p and q are
strictly positive measurable functions on X and Y respectively, and if
a and 3 are positive numbers such that

/ K(z,y)q(y) du(y) < ap(z),  for almost every z-dy',

/K(z,y)p(z)dp'(z) < Bq(y), for almost every y-du,

then K(z,y) is a bounded kernel and |K||> < a8. That 1s, the oper-
ator associated to K(z,y) maps L*(X,dy') — L*(Y,du) continuously.
(X,dy') and (Ydu) are measure spaces, p' and p are positive measures

(cf. [HS)).
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2. Proof of Theorem 2.1.

Write,

1= [ Kewfwgh+ [ Keniwgs
{p(z,y)<1} {o(z,y)21}

=)+ T,

for f € Cf and z ¢ supp f. Then, the theorem will follow from:

A) T, : 25 L® — z5 L. Recall that on R?, §(z) = zo if
z = (z1,z2).

B) If T: L*(dh) — L%(dh), then T : 2§ L>® — z5 BMO(dh).

C) If Ty has the LWBP on each Q; and T1(1) € BMO(dh), Ty(1) €
BMO(dh), then T; is bounded on L?(dh).

PROOF OF A). We need to show that there exists a constant ¢ = ¢(¢) >
0 such that ||T2(f)(:)/6()lec L ¢||F||loo; f =25 F, F € L*™.

- . dy
ITo(f)()] < / K (2,0)] 45 Flw) o
{p(z,y)>1}
1 . dy

) 2
{p(z,y)>1}

T2Y2 dy
< "||Flloo / Iﬂf——y_Py;y_% ;
{o(z,y)>1}

since for r = p(z,y) > 1, sinhz(r/2) ~ ¢e", and then,

1 1 T2Y2
m(z,y) = |z -y

By means of a (Mobius) transformation we get,

2
< el Pl 0} [ =z ut ™ du

|z — Zzw|?

+oco 1% +o0 1
<cl||lF a:E/ dw; dw
<c||Flloo 5 o w;_€($2+$2w2)2 _°°1+(x1—x2w1)2 L
Tg + Tows
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+oo 1
<cn||F .1:5/ — dw
Pl [ oy o

S e(e) || Flloo 23,

where

1 1
c(e)—c(g+ 1—5)'

PROOF OF B). Assume T : L%(dh) — L%(dh). By A) and Schur’s
Lemma we have that T; : L2(dh) — L%(dh) continuously, therefore
we know that Ty : L%(dh) — L?(dh). We define the action of T} on
x5 Lo

Let @ be a cube such that volx(Q) < 1, then everything is like in
the euclidean case ([DJ], [DJS]). )

Let f =fo +f(1_XQ) =fi+ f2. Q@ = 2Q is the cube with
the same center as () and sidelength 24(Q).

(Tif)g = BLIE | B _ g,
where !
cQ= / \(:Ean) f ( )

{v: p(zq,9)<1,y¢Q}

where z¢ is the center of Q.

(T1 f)o(z) = ﬂ%()

K(z,y) K(zQ Y)
+ . foly) —=
(- ne g
{o(z,9)<1}NQ°

(T1f)q is well defined up to constants (depending on Q).
Now, denote by dg = d(Q,R), and let fi(z) = zéF(z)xQ(z) €

L%*(R%, dh). By the boundedness of T} and Jensen’s inequality we have,

1 [ MA@ de _ _dg de
voln(Q) Jo =% 2= volh(Q)AlTlfl(x)'zg

y 1 , dz)/?
<4 (s J, e )
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< (g /Q (@) ii—)/ .

But |fi(z)] £ ||F|lec dg, therefore the last expression is less or equal
than ¢||F|o -
On the other hand,

K(z,y) _K(zq,y) dy
) ( 73 P R
{p(z,y)<1}NQc

- , dy
< || Flloe / IK(@.9) - K(za,)] 5
2

{p(z,9)<1}NQ¢

1
ot [ i
{y:0(z,)<1}NQc
+oo 1
<CIQM PN [
lQ]l/zr
<c||Floo -

Therefore, T} : 25 L — x5 BMO(dh), which proves B). Similarly, we
have that if T*: L?(dh) — L?(dh) then, T*: 2§ L — z§ BMO(dh).

It is easy, and left to the reader, to check that if T': L%(dh) —
L?(dh) then T has the LWBP on each Whitney Q.

Now we should prove the converse. Once more we remark that A)
has already established, by Schur’s Lemma, the L?(dh)-boundedness of
T,.

ProOF OF C). If T} has the LWBP on each @; and T1(1) € BMO(dh),
Ty (1) € BMO(dh), then T is bounded on L%(dh).

To see this we take the Whitney decomposition {Q;} for the upper
half plane and we divide it into 9 subfamilies F;, F,, F3, ..., Fg so that
if f is a function supported in @;; and g a function supported in Qy,,
and Qk;, € Fi, Qj; € Fi, ki # ji. Then, suppTi(f) and suppTi(g)
have disjoint interiors.

For Q) a Whitney cube denote by N; = Q U {8 neighbors}. A
neighbor of @) is a Whitney cube having one side or one vertex in
common with Q.
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Now let f be in Cg(R?2) and let {Q;} be the Whitney decomposi-
tion for R2 and write

9 9

J Ji Ji

=1 j; =1
Then,
9
ITL(FIE < e9) DD ITa( £l -

=1 ji
We wish to conclude that || T3 (f;;)||3 < co || fj; ||3 where cg is independent

of Q;, any Whitney cube. Observe that || f||3 = E?=1 > 5 II%.
To see this, let us write 7} in the following way: for h such that

supph C Q;
Ty(k) = Lj(h) + E;(h),

L= [ xg@Kenht) .

{o(z,y)<1}
. dy
Ej(h)(z) = X, \q; (8) B(z,9) h(y) — -
i Y2
{p(z,y)<1}

Then L; : L*Qj,dw;) — L*(Qj,dw;) continuously. Indeed,
T2(w) € wBMO and T(w) € wBMO, w(z) = z5. Then Ti(w) €
wBMO, and
M € BMO(dh) implies %ﬂ € BMO(Q;, dw;).

w

Now, if z € Q; then
w(z) = z; =d; b(z)°,

.where 1/4 < b(z) < 4 is independent of j and d; = d(Q;,R). Therefore,
on Q;,
Ti(w)(z) Ti(b)x)
w(z) — bz)

and so

Ty (b)(=)
b(z)

€ BMO(Q;, dwy).
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Observe that b(x) is a positive, Holder continuous function on Q;
with constant cd;®.
Then by Stegenga [Sg] we can prove that if

leg(bi()m")-e BMO(Qj,dw;)  then  Ty(b)(z) € BMO(Qj,dw;)

with constant depending on the BMO constant of Tj(w)/w, on ||b]|es
and on

1 1
o= s 5 (e ) /Q o) = mabldw; ,
1
mqgb = Te) /; b(x)dw; .

It is easy to see now that since |b(z) — b(z')| < c|z — 2'|*/d5, we
have that o < 1.
Then Ty (b) € BMO(Q;, dwj) with constant independent of j .

On the other hand,
Ti(b) = Ta(bxg,) + Ta(b(1 = xq,))-

But T7(b(1 — Xq, )) is in BMO(Q);, dw;) with constant independent of j
(this follows from Lemma 2.1 at the end of this section; in fact, T (b(1 —
Xg, ))(z) ~ log(|Q;|'/?/d(z,0Q;))). Then Ti(bx, ) € BMO(Qj, dw;).
In the same way T} (b Xg, ) € BMO(Q)j,dw;j). Therefore,

1) Lj(bxg,) € BMO(Q;, dwj),

i) Lj(bxg,) € BMO(Q, dwy),

iti) L; has the WBP on Q; -relative to dw; .
Therefore, by the T'1-Theorem (c¢f. [DJ])

dz dz
Lj : L2(in F) — L2(QJ" ?)
2 2

with constant independent on j .
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Now we concentrate on E;. We wish to show that

B 1N, 52y — (v, 5,
K(z,y
E(1)@) = [ xg,0) =G xy10, ) F)

If we call K(z.y)

. — aAlzy)

e,(:t,y) - XQ, (.’E) y% XN,\Q, (y)
then c
Iej(m,y)|Sm, forzeQ;, ye N;\Q; .

We will show that there exist two positive measurable functions p(z)
and ¢(y) and two positive numbers a and 3 such that

(S1) / le;(z,9)l a(y) dy < ap(z),  for almost every ,

(S2) /{ej(_z,y)|p(z) dz < Bq(y), for almost every y .
Let

a(y) = d(y,0Q;) %,  yeN;\Q;,
p(z) = d(z,8Q;)""/%, T€Q;.
‘We need to show that

(S1) xg, (“‘)/N\Q lei(e,y)] d(y,0Q,) 72 dy < ad(2,0Q;)7"2,

(52) Xy, @) [ les(o )] dlw,00,) /2y < plz, 0;)77.

First we observe that it is enough to prove (S;) and (S;) for C=2j instead

of N;\ Q; where éj is the cube with the same center as @} and 5 times
its side length.
Next we observe that it is enough to show

() x5, (2) [} Iy, 9B;)7 /7 dy < e d(z, 9B,) 7

S x. (2) / e, (2. )| d(y,0B,)~"/? dy < B d(z,dB;)""/2,
B;\B; B;
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where Bj; is a ball with same center as ); and radius comparable to
4Q;)-

Indeed, given Q; and Bj, there is a bilipschitz map h : R? — R?
sending B; to ;. The interior of B; goes to the interior of Q}; and
there exists M > 0 such that

1 _he)-hw)

zZ—w

Therefore if Jh is the jacobian of h, |Jh(z)] < 2M? almost every-
where. Moreover, there exists a bilipschitz map & : R? — R? send-

ing BJ \ B; to QJ \ @;. First consider h; bilipschitz from R? to
R? sending B to QJ and the interior to the interior. Then we con-
sider a neighborhood C; of h;(Bj) at a distance proportional to OB j
and 8B; and consider h; : R?® — R? a bilipschitz map such that
ha(z) = ha(z) if z € Cj and ho(2) = z if z € R?\ Cj.

Here, h, is the map that sends C; to another neighborhood C; and
maps h;(B;) -inside Cj- to Q; -inside C}-. Also, C;\ h1(B;) is mapped
to C;\ Q; .

Finally, we take b = hooh;, h:R? — R? and B;\B; to Q;\Q,
and is bilipschitz with constant M’ independent of j, (¢f. [T], [JK]).

To prove (S}) and (S}) we can proceed in two different ways. One
is elementary, the other more constructive. We choose to prove (S))

in the elementary and (S5) in the other way. We can assume B; is
centered at 0, that « lies in the real axis, and it is in the interior of B; .

Let r be the radius of B;. Then,
L lesteldiv, a8, 2 dy
B;j\B;
1
< ——— d(y,0B,)"*dy
/B \B |z —y|? ( 2
3r _ ~\—1/2
—-nJr p2+|1‘12—2pll‘|008 6
p
=92 d
”[ (o — )2 (52— [e2) 7

3r
™ dp
=2 / (= "(p—[2])
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3 3r+|z| dp
=27 1/2
r—|z| P(P + lxl - T‘)

T

< —
Vr =z

= nd(z,0B;)""/?,

where we have used

1) if 8% > ¢?,
dz _ 2 (b —c)tan(az/2)
/ b+ccosaz  a(b? — c2)i/2 ar“t"m( (B2 — )1/ ) T
2) if b< 0,
dz 2 (az + b)!/?
= arctan ————— +c.
z(az +b)1/2 |\ /7p V—b

To prove (Sj) we can assume with no loss of generality that B; =
A, the unit disk centered at 0. We wish to prove that there exists 5 > 0
such that

—.1 - —_—
Alx—y|2(1_|ylz) Vidy < B(Je|* —1)71/2, forz ¢ A,

1 1

1 _
/Am(l —|yI*)Mdy < —

ST Sy oap T,

where @ = 1/z and |a| < 1. There is no loss of generality in assuming
that z is real and that |a] > 3/4. So, it is enough to prove that

1 _ _
/Am(l—lylz) V2dy <c(1-|af?) /2.

To do so we look at the level lines for 1/|1 — ay|, at the points ¢, =
27" /(1 — |af?)

1 2 }
l—ayl (1-laf?)
1 e 21— faP)?
={vea: |z -y ==L}
{vea: |- laf }
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These are circles centered at 1/a@ and radius 2*(1 — |a|?)/|a|. Observe
that if n = 0, the radius is (1 — [a|?)/|a] ~ 1/|a| — 1. This gives us
the first circle whose intersection with A occurs in its boundary. As n
increases we obtain a sequence of circles each time with double radius.

Then

[em - e sy [ oy,

n=0

where

An={y€A: 2" (1-|af?) < (1-ay) < 2*(1-a])}, AC ] 4n

n=0

But the last inequality is less than or equal to

22n - 1/2d
Z<1—|a|2>2/f‘,.<1—|y|2)1/2 / T (= )™ s,

where Ry, = A\ UnM_"O A,. Now, A, is contained in a larger region
T, for n £ My where M, is the last integer n before C, touches or
includes 0 in A,41. In polar coordinates, Ty, is defined by letting 8 vary
between 0 and 4(T,) and r between 1 — 27(1 — |a|?) and 1. We call
Tp = 0(Uj=o4;) N OA.

If y € Ry, then |1 —ay| > 1/10, and

1 1 1
dy < 102/ 1 4
/RM 11 —ay|? (1— |y[2)~1/2 y 3 A=)z Y

<co(1—|a?)"V2.

Now,

LTy)
dG/ dr
L" (1- |y|2 T=ppir / 1-27(1—[a|?) (1—7"2)1/2

< cl(T,)2"2(1 — |a|?)Y/2.

But circle is chord arc and so we have that ¢(T's) ~ |bp, —dn| < c2™(1—
|a|?), where c is a positive absolute constant and b,, d, are the points
where C,, crosses 9A. Therefore,

Mo 9-2n oo
3n/2 (1 _ 1,12\3/2 1412V —1/2 —n/2
c;—(l_la,2)22 (1-1]a]*)*’* < (1~ af*) ;2

<ec(1-|a?)7V2.
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Therefore we have (S5) and with this we conclude the proof of Theorem
2.1.

Lemma 2.1. Let S be a singular integral operator associated to a
kernel s(z,y) satisfying standard estimates. Then S(1 — Xo, )z) s in
J

BMO(Q;) with constant independent of the size of Q; .

PROOF. The proof of this uses the same sort of argument used to show
that a Calderén-Zygmund operator maps L* into BMO continuously.
We refer the reader to [DJS], [N].

Preliminaries for Section 3.

We would like to recall some of the results necessary for the proof
of Theorem 3.1. No proofs are shown but they can be found at the
indicated references.

Given a simply connected domain 2 (with nontrivial boundary)
the Riemann mapping Theorem tells us we can construct a univalent
mapping -that is a conformal homeomorphism- f of the unit disk A
onto 2.

Lemma P.1. Suppose Q and Q' are domains on C and f : Q' — Q
i3 conformal. Then if G(z,w) 13 a Green’s function on Q, G'(z,w) =

G(f(2), f(w)) 1s a Green’s function for Q'.

Theorem K. (Weak form of Koebe 1/4 Theorem). Suppose f: A —
C is univalent, f(0) = 0, and f'(0) = 1. Then there exists ¢ > 0
(independent of f) such that D(0,cq) C f(A).

Corollary K. If f: Q@ — Q' is conformal, then for all z € (2,
v dist { f(z),0Q'}
! 2z ~
Q! dist {z, 00}

If f is a univalent function on A, f' never vanishes, so we can write
f' = e¥ for some holomorphic ¢ on A.

Theorem P.2. There is a universal constant ¢ > 0 such that of f 13
univalent on A and f' = €% then |p'(2)]| < co(1—|z])7! forallz € A.
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Theorem P.3. There is a universal constant €9 > 0 such that if f' =
e? where ¢ 1is holomorphic and |p'(z)] < €(1 — |2])7! for € < € and
z €A, then f: A — f(A) 13 a conformal map onto a Jordan domain
bounded by a quasicircle (with constant ~ 1+ ce).

And conversely, let Q be a simply connected domain in R? bounded
by a Jordan curve that is a K-quasicircle (co 13 fized), K = 1 + ¢.
Let f be the Riemann map from A to Q (f has ¢ K2-quasiconformal
eztension to R?, oo remains fized) and let f' = e¥. Then,

sup ' () (1= |2I*) S eoe,

where ¢g > 0 is an absolute constant (cf. [P], [L]).

A quasicircle is a Jordan curve I' in R? that is the image of the unit
circle T under a globally quasiconformal homeomorphism of R? onto
R2. Conformal maps are mappings sending small circles to small cir-
cles. Quasiconformal mapping take small circles to ellipses of bounded
eccentricity, (¢f. [A], [LV], for an exposition in the subject).

Definition P.4. For g defined on A we define
lglls = sup l9' ()l (1~ |2]*).

The set of holomorphic functions g on A with ||g||p < +o0 is called the
Bloch class B; || - ||g s conformally invariant.

Note that on A, 1 — |z| ~ 1 — |2|? so if f is univalent and f' = e¥
then by Theorem P.2, ¢ is in the Bloch class.
Recall that on A the hyperbolic distance is defined by

11— zw| + |z — w|

=1 .
plzw) = log [T 0 o]

Lemma P.5. If ¢ is holomorphic on A then ¢ € B if and only if
there 1s an A > 0 such that |p(z) — p(w)| £ A p(z,w) for all z,w € A,
Moreover, if Ag 1s the smallest such constant Ag ~ ||¢|l8 (cf. [P]).
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3. Proof of Theorem 3.1.

Set K = 1+¢, then K% ~ 1+ 3¢, ¢ is very small and it will become
clear at the end of the proof how small it should be.

Let f : A — Q univalent. Let A = f~! : @ — A univalent,
p* the hyperbolic metric on Q, p*(z',w') = p(h(z'), h(w')) = p(z,w),
z' = f(z), w' = f(w), p the hyperbolic metric on A. We want to prove
that if 6(w) = dist {w, 0N} then there exists n = n(¢), 0 < 7 < 1 and
¢ > 0 an absolute constant such that for 2’ € Q,

/R(z w')§(w') — 6( ,)2 <cé(")".
Recall that if A C Q, volu(4) = [, dw'/6(w')?,
/R(z', w') §(w')"? dw'

(1= [R()P)VE" (1 = |h(w") ) /X
|1 — h(z")h(w")|*/K*

< s(w)" 2 dw'

{w'ip* (+',w')>1)

1—|h(z")|? = d(h(Z"),04) and fl(z) = -I;(lz_') if h(z')=z2.
By Theorem K we have that
d(w',00) ~ |f'(w)|d(w,08)
1 )2
lhl(u)’)l (1 lh(w )l )
h is conformal. Therefore, if w = h(w')
dw dw'
§(w)2  §(w')?
Then, the last inequality is
1/K%4q
< NLI/K? NIV (1-|w | ) g _GW
_C6(Z) lh( )| |1 h(Z’) |2/1\2 |f( )l 6( )2
{w:p(w,z)>1}
. 6(w l/I\ +n
< 1 — 2\1/K? o\ - n___
___C( lzl ) |1 ZU.7|2/I\2 |f( )I (S( )2

{w:p(z,w)>1}
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We know that f' = e for some ¢ in the Bloch class such that ||¢||s <
co€; call § = ¢ge. Then we can make the last expression less than or
equal to

—p(z,w)/K? jqRe p(w) dw
=Ce’7“(z) e-—p(z,w)/K2 en(u(w)—u(z))é‘(w)ﬂ dw
A Sy’

where u = Rey and |f'(w)|" = e"(*). But,
lols <& implies  u(w) —u(z) < fp(w) — ¢(2)] < 6 p(w, ).
Therefore,

< cenu(Z)/ e—(1/K*=n8) p(w,2) §(w)"? dw
A

< goute) [ A= [2DVETT (1 — fw]p)=A/KTntad)
= a (11 = zw[2) /K7 w5

w.

Let 1+a=1/K? —n§,r = —=(-1/K? + 2 —n + 6)/2. Then

2\2r
_ nu(z) _ 2\14a (1 — |’U)| )
=ce (1-1z)%) A—_Il—zwl""”“’ dw.

Call B(z,2)™" = (1—|2|?)?". We know that forr > —1/2and a—r >0
(cf. [CR)),

B(w,w)™" 1
_ (e ——
/A [1 — zw|2(1+e) dw < (1 — |z[2)2(a=")
But,
1,1 1 . . 1 1
7‘—5(7\;2-—2—775-|-T]>>—§ lfandonlylf T]>(1—I—{E)-1—_—5
And,

1
"SGrK

Recall that § = cg¢, and that K? ~ 1 + 3¢. Then, for ¢ sufficiently
small, we have that

1y 1 1
°<(1‘ﬁ)1—5<(1+5)1{2'

a—r>0 if and only if




122 A. R. NaHMOD

Therefore, altogether, we have that

cem(?)

(=P . , ,
A Rppe Sl @I A- 1) S ed,00)" = cé(x')"

for

(]_.__1_)___1__.< <___1___..
K2)1=6 ~ TS +oK?’

since 1 + a — 2a + 2r = n. This concludes the proof of Theorem 3.1.
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Fourier coefficients
of Jacobi forms
over Cayley numbers

Minking Eie

Abstract. In this paper, we shall compute explicitly the Fourier coef-
ficients of the Eisenstein series

1 - . (az+b
Eim(z,w) = 5 Z (cz+d)™* Zexp {27rzm (mN(t)
(c,d)=1 t€o
w cN(w)
+U(t’cz+d) cz+d)}

which is a Jacobi form of weight k and index m defined on H; xC¢, the
product of the upper half-plane and Cayley numbers over the complex
field C. The coefficient of e2™i(?*+2(t:2)) with nm > N(t), has the form

2(k — 4)
By 1;15,, .

Here S, is an elementary factor which depends only on v,(m), v,(t),
vp(n) and vp(nm — N(t)). Also S, = 1 for almost all p. Indeed, one has
Sp = 1if vp(m) = vp(nm — N(t)) = 0. An explicit formula for S, will
be given in details. In particular, these Fourier coefficients are rational
numbers.

125
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1. Notation and Introduction.

As usual Z,Q,R, C denote the ring of integers, and the field of
rational numbers, real numbers, and complex numbers, respectively.
Cy is the Cayley numbers over the field f and o is the ring of integral
Cayley numbers in Cr. Cy is an eight-dimensional vector space over
f with a basis eg, ey, €3, €3, €4, €5, €6, 7 Which is characterized by the
follwing rules for multiplication ([1]):

1) zeg =ez ==z, forallz €C,

2) e2=—e, 1=12,...,7,

3) €1€2€4 = €2€3€5 == €3€4€5 = €4€5€7 = €5€¢€] — €7€1€3 = —€Q .

Also o has a Z-basis aq, a1, ag, a3, as, as, ag, az given by

g =€, a3 =¢€, Qaz=¢€, Qa3 =¢€4,

1 1
a4=§(61+62+63-€4), 015——-5(—60—61—64-*-65),

1 1
0’6=§(_60+61 — ez +¢€5), a7='2'(—60+62+64+€7)-

7 7
For z = ijej, Yy = Zyjej; rj,y; € f, we define

7=0 7=0

7

7
N(z):Zz?, a(m,y):Zijyj.
i=0

j=0

Let k,m be a pair of positive integers. A holomorphic function 3
on H; x Cc is a Jacobi form of weight k£ and index m if it satisfies the
following conditions

az+b w

2z Yy = k ; _c
oord’ cz+d) = (cz+d)* exp {2rimN (w) cz+d} P(z,w),

(J.1) %(
for all (: Z) in SLy(Z).
(J.2)  Y(z,w+ Az + p) = exp{—2mim(zN(A) + o(A,w))} ¢¥(2,w),

forall \,u € 0.
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(J.3) % possesses a Fourier expansion of the form

P(z,w) = Z Z ay(n,t) e2milnzto(tw))

n>0  t€o
nm>N(t)

For positive integers k, m with k even and k > 10, we let

1 _ . saz+b
Eim(z,w) = 3 Z (cz+d)7* Zexp {2mm (c.:_-l——&N(t)
(c,d)=1 t€o

w cN(w)
’cz+d) - cz+d)}
with (z Z) € SLy(Z). Then a direct verification shows that Ej .,
satisfies (J.1) and (J.2). For the proof, see [5].

+or(t

In this paper, we shall show that the Fourier coefficient ex m(n,t)
with nm > N(t) in the Fourier expansion

oo
Ek,m(z,w) - Z Z ek‘m(n,t) 621ri(nz+0(t,w))

n=0 nm>N(t)
t€o

of Ex m(2,w) is a rational number of the form
2(k —4)
B 1;[ S, .

Let v, be the standard discrete valuation in Q, with l/p(pj) =3
7

forall j € Z. Fort = Z%tjaj € o, we set v,(t) = 01;1}271/p(tj). For our
]=

convenience, we set A = mn — N(t) and A' = A/m =n — N(t)/m.

Theorem. For positive integers m, k with k even and k > 10, the
Fourier coefficient ex m(n,t) =0 of nm < N(t). If mn = N(t), then

1, if t =mt' and n = mN(t') for some t' € 0,
ek,m.(nvt) =

0, otherwise .
If mn > N(t), then

eem(n t) = -2 =4 I1s,.

B4
)

where S, 1s given by
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1) If yy(m) =0, then S, = Z;;(OA)pj(k—s)_
2) I Vp(m) > vp(t), then

1-p (9—k) {Plz(l—P4—k)—1, if vp(t) < yp(n),
Sp=p" 1= P ksz + 0, if vp(t) > v(n).

j=0

3) If yy(m) < Vp(t), then

l 4—k\—1 .
p?(l—p , if vpy(m)<uwy(n),
.S'_p 1 4k§ G ")+{ ( ) f »(m) < vp(n)

0, vp(m) > vp(n).

) kel
+VPZ p("—5)(vp(A’)—J')_{pl4(1_p4 97 v(m)<v(AY),
i 0, if vp(m)> v, (A").

In 2) and 3), one has
h=—(k=1)vp(m) + (k= 5) (L),
ly = =(k = 1)vp(m) + (k= 5) (L) + (9 - k) 1p(t) + 8 — &,
I3 = (10 — 2k)vpy(m) + (k= 5) v, (A) +8 -k,
Iy = (10 = 2k)vp(m) + (k= 5) v, (A) +4 - k.
Also
a = min{y,(t),1,(n)}, B = min{vy(m),vp(n)}

and

v = min{y,(m),v(A")}.

REMARK. Note that in the above, (1) is a special case of (3) and S, in
(1) can be obtained from S, given in (3) by setting v,(m) = 0.

In particular, we have

1, if 0= N(t),
ek1(n,t) = { _2(k—4) or_s(n — N(t)), if n>N(t).
By—4

From this, we conclude that Ej 1(z,w) is a product of Ex_4(2), the
normalized Eisenstein series of weight k¥ — 4, and

e(z’w) — Z e21&'1'(zN(t)+¢7'(t,w))
t€o

which is a Jacobi form of weight 4 and index 1.
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The Fourier coefficient éx m(n,r) of the Eisenstein series

. 1 —k . (az+b ,
Eg m(z,w) = 3 (cg—l(cz +d) ,gzexp {27rzm(cz T4 A
2
w cw
+2/\cz+d_ cz+d)}

was given in [4] in terms of Cohen’s function H(s, N); i.e.

H(k—1,4n —r?)
¢(3 —2k)

€xa(n,r) =

If m is square free, then

2

ék,,,,(n,r)=———-"Ck(‘:;(_””‘2)1:)1 3 dk‘lH(k—l,—4nn;2_ )

dj(n,m,r)

by the relation Ej ; lT(m) (2, w) = or_1(m) E.m(z,w). Here T(m) is
the Hecke operator on the space of Jacobi forms of weight k£ and index
1, Jx 1, defined by

b
Blrimy(zyw) =mE YD 37 dE (2.

ad=m 0<b<d

However, we do not see any relation such as
Exa |1(m) (2,w) = 0k—1(m)Ek,m(2, )

in the cases for Cayley numbers even if m is a prime number.

2. Fourier Coefficients of Ej , .

From the formula for Ex m(z,w), we separate the sum over ¢ and d
into two sums E} . (z,w) and Ej} (2, w) according to ¢ is zero or not.
If c=0,thend=1o0r —1. We choose a=d=1or —1,and b =0, so
that

(1) Y n(z,w) = 3 e2mimEN@+o(tw),
t€o
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Obviously, E,?,m is a linear combination of e2™(nz+o(t.w)) with coeffi-
cient 1 or 0 according to nm = N(t) with ¢t = mt', n = mN(t') for some
t' € o or not. For those terms with ¢ # 0, we can rewrite the sum as

Ekm(z w) = Z "‘Z(z-{- )

(c d)=1 t€o

) exp {2rim (- o 4 S

Note that the substitutions d — d + cp and t — t 4+ ¢ correspond to
z—z+pand w— w+ \in E} .m> Tespectively. Here p is an integer
and A is an integral Cayley number. Hence

EL(z,0) = Z ok Z Z (27rsz(t))

(c,d)=1 t€o/co

(3) d(mod ¢)
d t
- Frm(z+ oW Z)
with
—k . Nw+2)
— k A
(4)  Fim(z,w)= I;Z/é(z + p) " exp ( —2mm P ) .

The function Fi m(z,w) is a periodic function in z and w, so it has
Fourier expansion of the form

Fk'm(z, u)) = Z Z ’7(71,t) 621ri(nz+g(f'w)).

n€Z t€o

In order to compute the Fourier coefficient y(n,t) of Fi ,, , we need the
following lemma which follows from the well known Poisson summation
formula.

Lemma 1. For any h > 0, we have

Zexp{ —2rhN(w + A)} = hl4 Zexp{ - Zn(—]% +i0'(t,w)) }

A€o t€o
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Proposition 1. Notation as above, then one has for k > 10,

_ % k—5 2ni(nz+o(t,w
(5) Fk,m(z,w)—-n—{,:;-% ; (nm — N(t))¥ %€ (tw)

nm>N(t)
with
(—2mi)k1
o = ———
(k—5)!

PROOF. By Lemma 1 and a standard argument (see [2, p. 226]), we
get

Zexp(—27rmN(w+/\)) = (z+p)° Zexp (27ri N() (= +p) ),

1 .
v z+p mt L m + 27mio(t,w)

for any z € H; and p € Z. It follows

! - N(t) (2 + mio(t,w
Fym(z,w) = oy Z Z(Z +p) k+4 exp (27:'1——(—)£—n——?-2> e2mio(tw)
pEL t€o

Note that the series

3 (z+p)Fexp (MM)

m
pEZ

is a periodic function in z = z + 1y. Let

Z(w + zy +p)—k+4 exp (27” ]\T(t) (1' + ly +P)) — ch(y) eZvrinz: ]

m

PEL pEL
Then
! ~ N(t)(z + iy +p)
= T +1 ~k+t exp { 2mi =
enl) = [ St iy +p)7H+ exp fomi (UL nz))} da

pEL
+oo e21riz(—n+N(t)/m)
dz

=exp(—s7rN(t)y/m)[. T i)

[ ax(A)RTS ey i nm > N(t),
B 0, if nm < N(t).
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Here A’ = n— N(t)/m. For detail of calculations, see [4, p. 19]. Hence

> (z+p) F* exp(2miN(t) (z + p)/m)

PEZ
— CZk_] Z (nm _ N(t))k—S e2'lrinz
m n€eN
nm>N(t)

and our assertion for Fi ., (z,w) follows.

In our next proposition, we shall express ex m(n,t) as a Dirichlet
series with an Euler product.

Proposition 2. For nm > N(t) and k even, k > 10, one has

~ s 1 = (k-
cum(n,t) = s (nm = N(O)' ™ g5 D Tu(@)a ™70

with
T.(Q) =#{A&o0/ao: mN(A)—o(t,A)+n=0(mod a)}.

PROOF. We substitute Fj (2, w) in Proposition 1 into (3), and get

(6) Ei.’m(z,w)zz Z ek,m(n,t)ehi("z'*'”(t’w))
n€eN t€o
nm>N(t)
with

Ak :—
ekm(n,t)=—= (nm — N(1))*~°

MLt Teofm (gD}

c=1 (c,d)=1 t€o/co
d<c

Since (c¢,d) = 1, we can replace A by dX in the third summation of
ekx,m(n,t). Hence

erm(n,t)= n;k_l (nm — N(t))k_5
(8) . Zc_k Z Z exp (27ri%i(mN(/\)+a(t,—/\)+n)).

c=1 (c,d)=1 X€o/co
d(mod c)
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Let Q(A) = m N(A) — o(t,A) + n. Use the well known formula

(9) Z e27!':'aiN/c= Z /"(zc;)a

(c,d)=1 al(¢,N)
d(mod ¢)

with p(a) the Mobius function. Hence

oo

A - _ c
chn(n )= S NP St Y e
=1 a|(,Q(N)) A€o/co
alQ(X)
(778 . > —k c Cc.8
:F(nm_N(t))‘ IR m2)a (=) >o1
=1 a|(c,Q(N) A€o/co
a|Q(X)
Let ¢ = ab and use the formula
s 1
p(d)o™° = — for Res>1,
2 HOY =

to get
. Qg e 1 e —(k—
(10) ekm(n,t) = Ziy (nm = N(O)'™ gy 2 Tu(@)a™ V.

Here

To(Q)=#{A€o0/ao: Q(A)=0(mod a)}.

To obtain the explicit formula for e n,(n,t) when nm > N(t), we
have to find the value of the Dirichlet series

Y T(Q)a
a=1

at s = k — 1. Here

To(Q) =#{A€o0/ao: Q(N\)=mN(A)—o(A,t)+n=0(mod a)}.

By the multiplicativity of T,(Q), it suffices to consider the case a = p”

(veZ,v>0).
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In the following consideration, we set T,,(Q) =T+ (Q), w, = e ilr”
We also set

Z(s)=) T(Q)p™"".

v=0

Proposition 3. For any positive integer v, we have for

7 7
A:Zx\]‘aj, t=thaj,
j=0 Jj=0

that

) @=L X ).
J=0 m}j=t; (mod p*~7)

where o' ranges over all positive integers between 1 and p“~ T with

(a',p) =1 in the summation .

PROOF. By the p-adic version of Siegel’s Babylonian reduction process,
we can express 1,(Q) as a Gaussian sum given by

pV
T,,(Q) — p—-u Z Z ws(mN(z\)-a(/\,t)+n) i

a=1 A€o/p*o

Over the p-adic integers, the quadratic form N is equivalent to the

quadratic form with matrix ( E g) where F is the 4 x4 identity matrix.
Thus
3 wgmNOI=e(r04m)
A€o/p’o
p U
— wgn H ( Z Z wa(m/\ A)+4 t AJ+4 tJ+4A ))
]=0 J =1 ’\J +4= =1
3 P’ P’
=w3n H ( Z —at1+4/\ Z wa(rrn\ —t; ),\J+4) )
j=0 )\j: XJ+4 1
Note that

Z w"‘(m" —t) A4 P, if a(mA; —t;) =0(mod p”),
0, otherwise.

.v+‘1—1
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On the other hand, we let a = a'p” with (a’,p) = 1 and get our
assertion by an elementary calculation.

REMARK. For fixed v > 1 and 0 < 7 < v, the product

v

3 P P’
(12) H ( Z Z w:'_(:_"'\j)\ju"fj/\i“—j+4'\5))

7=0 /\_,'+l z\j+4=1
is zero unless the congruences
— v—r .
mAj; =t; (mod p¥™7), 7=0,1,2,3

have a solution. By the symmetry of ¢; and ¢;44 we conclude that the
product in (12) is zero unless the congruences

mA; =t; (mod p*~ "),  for j =0,1,2,3,4,5,6,7

have at least a solution.

3. Cases with v,(m)=0.

From Proposition 3 and its remark, we note that the evaluation of
T,(Q) depends on solving the congruences

(13) mA; =t; (mod p*™7), j=0,1,2,...,7.

Obviously, the solvability of the congruences is wholy determined by
vp(m), vp(t) and v — 7.

In this Section, we shall investigate those cases with (m,p) = 1.
Under such assumption, the congruences in (13) have always a unique
solution.

Proposition 4. If (m,p) =1 and § = v,(n — N(t)/m), then one has
for Res > 8,

oo 1— p3_8 [ (—t);

—vs _ —(s—4);
> T.(Q)p ™" = -, E 2 :
v=0 7=0
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PROOF. Denote the solution of the congruences
mA; =tj(mod p*~7), 7=0,1,2,3

by Aj =t;/m, j =0,1,2,3. Hence by Proposition 3, we have

TV(Q) 3u ZP4TZT @ (n N(t)/m)

Apply (9) to the second summation; we get

min{é,v—1}
T,(Q) = Zp‘“ > weTT)p?

j=0

Note that u(1) = 1, u(p) = —1 and p(p') = 0 for [ > 2. It follows

T,(Q) = ( Z piTpr T — Z p4rpu—r—1)

0<v—7<é 0<v—r—1<6
_ 4y 3T 3r—1
=P ( E p - E p )

0<v—7<6 0<yr—1-1<$§

Now we shall prove by induction on é that our assertion is true. In
order to distinguish the cases for different 6, we let

When 6 = 0, then 7 = v in the first summation and 7 = v — 1 in
the second summation. Hence

1— p3—s

oo oo
- Tv —vs _ Tv—4 _—vs __
v=0 v=1

Suppose that for § = ¢ the assertion is true. Now

Zg41(s) — 24 Z p T pmrie=d) Z pAr=a=2)=1p=v(s=0)
v=q+1 v=q+2
_ p(at =0 1-p*e

1— p7~.9
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Thus the formula is also true for § = ¢ + 1 and our proof is complete.

Corollary. If n > N(t), then

2k — 4)
B4

ek‘l(n,t) = - Ok— S(n_N(t))

PROOF. From (10) and Proposition 4 we have

ex1(n,t) = ak(n — N(1))*° ((kl— ) ng — i; DR el

d|[n—N(2)]
= REO%T) ok_s(n — N(T)).
But
ap (=2mkt 2k —4)
((k—4)  (k=5)!¢(k—4)  Bi-g ’

hence our assertion follows.
Corollary. E; 1(z,w) = Er_4(2)0(z,w) with

9(2710) — Z e21ri(N(t)z+a(t,w)) )

t€o

PROOF. Notethat e 1(n,t) = Ounlessn > N(t). Alsoer 1(N(t),t) =1
by an observation. Then we have

Ek,l(za UJ) — Z e27ri(N(t)z+a(t,w))

t€o

20k — 4 ;
_ ( ) Z o_k_s(n_N(t))e2m(nz+a(t,w))
B4
n>N(t)
- Z 621'ri(N(t)z-}-a(t,w))
t€o
2(k = 4) 2mi(n+N(1)) 2o (t,w)
— OL—-5lM)€E ’
B 227

= (1 ;k_4) ZU‘ s(n)e2‘mn.> 6(z,w)

n=1

—4(2)0(z,w).
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Corollary.
9(2’ w) - Z e21ri(N(t)z+a(t,w)) ,
t€o

18 @ Jacobi form of weight 4 and indez 1.

4. Cases with 0 < y,(t) < vp(m).

For fixed v > 1and 0 < 7 < v. If 0 < () < vp(m), then the
congruences

mA; =t; (mod p¥™ "), 7=0,1,2,3

have solutions only if v — 7 < v,(t). Moreover the number of solutions
is pt(¥—7),

Proposition 5. Under the condition 0 < v,(t) < vp(m), then one has
for Res > 8,

> T(Qp~re=) p
v=0 J=0
{p(s—s)u,,(t)+7—3(1 —p"7)7Y, i (1)< (),
+ .
0, of Vp(t)> Vp(n)r

where a = min{v,(n),v,(t)}.

PROOF. Begin with (11) of Proposition 3 and the observation above,
and get

oo o
T 1
Z T”(Q)p—us =1+ Zp—us Z P3u+4fp4u—4r2 wg_nr )
v=0 v=1 V—TSI/,,(t) %
Apply (9) to the third summation, we get

min{v—r,v,(n)}

DT =1+ p7 Y > ueTT)pl.
v=0 v=1

v—1<w,(t) j=0

Denote the coefficient of p(7=*)" by A4, . According to v,(t) < v,(n) or
vp(t) > vp(n), we have the following two cases.
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Case 1. v,(t) < vp(n). Then min{r — 7,1p(n)} =v — 7 sincev —7 <
vp(t) < vp(n). Therefore

. v if v<vu
A=) > ﬂ(P”"“’)p’={p’ < (1),

v—1<u,(t) 0<j<v—r Pyp(t) , if v> Vp(t).

Hence
[o o] o
Y T(@p =1+ pT""A,
v=0 v=1

vp(t)
= Z pj(s_s) +p(8—8)ll,(t)+7—s (1 _p7—3)—l .
=0

Case II. v,(t) > vp(n). Then

”p(t)

A=Y Y we T+ Y, > u@T)pl.

v—1<y(n) 0<j<v—r v=r>u,(n) 0<j<pp(n)

Note that the first sum in A, can be computed as in the case I. The
second sum in A, is zero unless v > v,(n)+1, v—7 = vp(n)+land j =
vp(n). For such exceptional cases, the sum is —p»»(™ . Consequently,

we have , )
Az{p, it v < uyt),
0, if v > 1(t).

It follows

vp(n)

et oo
S LQp =143 pv 4, = ¥ pit-e).
v=0 v=1 j=0

This proves our assertions.

5. Cases with v,(m) < y,(t).

For fixed v > 1 and 0 < 7 < v. If yp(m) < v,(t), then the
congruences

mAj =tj(mod p’™ "), 7=0,1,2,3
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always have solutions. The number of solutions is p*»(™) if Vp(m)
<v—r,and if v,(m) > v — 7, the number of solutions is pt(v=7)

Proposition 6. Under the condition v,(m) <v,(t), one has for Res>8

S T(@)p = zp(s ”

v=0
+{p(s Nwp(m)+T=s (1 _pT=9)=1  4f y,(m) < vp(n),

0, if vp(m) > vp(n),
3 s Vp(A)
+p4u,,(m) 7 - Z p(4 8)j
j=v+1
p(8—-s)u,,(m)+7-—s (1—]?7_3)—1, if Vp(m)s VP(A'),
_{ 0, if vy(m)> v ().

Here f = min{v,(m),v,(n)} end v = min{r,(m),v,(A")}.

PROOF. We begin with (11) of Proposition 3, and separate the series
into two subseries according to v — 7 > v,(m) or v,(m) < v — 7. Hence

ZT(Q) "”—1+Zp(3 DY 4’“"”“’”2 o

v=0 v—1>v,(m)
Nasd T
7 ’
LD DEED DI ) DA
v=1 v—7<y,(m) %

where o' ranges over all positive integers between 1 and p”~" with
(a@’,p) =1 in the summation ".

Let Z;(s) be the subseries corresponding to the summation v—7

> v,(m) and Z(s) be the remaining sum. By the computations in
Proposition 5, we have

Zy(s) = ZP(B VI

+ { plETe (1-p"=)7", if vp(m) < vp(n),
0, if v,(m) > vp(n),
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where = min{v,(m),vp(n)}.

Also we have

oo min{v—r,v,(A")}
Z\(s) =p4”"('")(2p(3‘”” Yot > weTT)p?
v=0 0<r<v 7=0
0o min{v—r,v,(A")}
-S> Pl > e T)p)
v=0 v—r1<v,(m) j=0
o
=p4up(m)(zp(4—s)u( Z p3r _ Z p3r—1))
v=0 o<r<v(A) 0<r—-1<w(A’)
0o
_p4up(m) ZP(4—s)u< Z p3‘r _ Z p31'—1>
v=0 0<r<y 0<r—-1<y
S
p5up(m) Z p(B—s)upti(u—up(m)-l)’ if I/p(m) < VP(AI),
- v=v,(m)+1
0, if v(m)> v(A").

Here v = min{v,(m),v,(A")}. Now by the computations of Proposition
4, we conclude that

3—s v(A")

1_ .
_ . 4vy(m) p —Jj(s—4)
Zl(S)""p P 1_p7__.s Z p
j=v+1
B {p(S—s)u,,(m)+3——s (1 _pT—s)—l, if up(m) < VP(AI),
0, if vy(m)> v, (A").

Combine Proposition 2 and Propositions 4, 5, 6 with s = k—1 together.
Also using the well known result

ak (=2mi)F~* _2(k-4)

(k-4 (k-5)1C(k—4)  Bis '

we get

2(k —4
ek,m(n‘at) = —(B_k,;—). HSP )
B P

where S, is as we claimed in the Theorem.



142 M. EE
References.

[1] Baily, W. L., Jr., An exceptional arithmetic group and its Eisenstein
Seires. Ann. of Math. 91 (1970), 512-545.

[2] Baily, W. L., Jr., Introductory lectures on automorphic forms. Princeton
University Press, 1973.

[3] Coxeter, H. S. M., Integral Cayley numbers. Duke Math. J. 13 (1946),
567-578.

[4] Eichler, M. and Zagier, D., The theory of Jacobi forms. Progr. Math.
55, Birkhauser, 1985.

[5] Eie, M. and Krieg, A., The theory of Jacobi forms over the Cayley
Numbers. Trans. Amer. Math. Soc. 342 (1994), 793-805.

[6] Karel, M. L., Fourier coefficients of certain Eisenstein series. Ann. of
Math. 99 (1974), 176-202.

(7] Serre, J. P., A course in arithmetic. Springer-Verlag, 1973.

Recibido: 3 de marzo de 1.994

Minking Eie*
Institute of Mathematics

Academia Sinica
Nankang, Taipei, TAIWAN

and

Institute of Applied Mathematics
National Chung Cheng University
Ming-Hsiung, Chia-Yi, TAIWAN

mkeie@math.ccu.edu.tw

* This work was supported by Institute of Applied Math., National Chung Cheng

University and N.F.S. of Taiwan (NSC-0208-M-194-011).



REVISTA MATEMATICA IBEROAMERICANA
VoL. 11, N.° 1, 1995

Trajectoires de groupes
a l-parametre

de quasi-isométries

Volker Mayer

1. Introduction.

Un homéomorphisme g : R2 — R? est une (L-)quasi-isométrie si
pour tout z,y € R?

e~y < lla(@) — 9wl < Lz ~ ]

Soit G = {g; : t € R} un groupe a l-parametre. Il est dit quas:-
1sométrique sil existe L > 1 tel que tout élément de G est une L-quasi-
isométrie.

Le point de départ de ce travail est ’étonnant exemple de P.
Tukia [T2] d’un groupe quasi-isométrique du plan R? n’étant pas quasi-
isométriquement conjugable a un groupe d’isométries, 7.e. il ne s’écrit
pas sous la forme

G=fodof™,

ol f: R? — R? est une quasi-isométrie et ® est un groupe d’isométries.
La raison pour laquelle ceci n’a pas lieu est simple. Le groupe G de
Tukia a une trajectoire I' = {g¢(0) : ¢t € R} le “snowflake” ou encore
la courbe de Von Koch. Cette trajectoire I' n’est pas rectifiable; elle a
meéme une dimension de Hausdorff strictement plus grande que un.

143
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Le fait qu'un groupe quasi-isométrique peut agir transitivement
sur une courbe fractale est remarquable et la question se pose: quelles
sont les trajectoires d’un groupe a l-parametre quasi-isométrique en
général? On les appelle dans la suite quasi-isométrique cercle (QI-
cercle) ou, plus précisément, L-QI-cercle si les éléments du groupe sont
L-quasi-isométriques.

D. Sullivan [Sul] et P. Tukia [T1] ont montré qu’en dimension
deux tout groupe quasiconforme est quasiconformément conjugué a
un groupe conforme. Un groupe quasi-isométrique a 1-parametre est
alors le conjugué quasiconforme d’un groupe d’isométries a 1-parametre
parabolique ou elliptique; ¢f. la classification des applications con-
formes, par exemple dans Greenberg [4]. Par conséquent, les QI-cercles
sont des quasicercles, c’est a dire les images d’une droite (ou d’un cercle)
par une application quasi-conforme de RZ.

Avant d’énoncer des caractérisations des QI-cercles fixons les no-
tations necessaires. On note par D(p,r) le disque ouvert centré en p
de rayon r > 0. Dans tout le texte, disque signifie toujours disque
ouvert. Le bord du disque D(0,1) est noté S!'. Le symbole I'(p, q)
désigne un sous-arc demi-ouvert d’une courbe I'| joignant p a ¢ et con-
tenant le point p mais pas ¢. Quand I' est une courbe de Jordan on
prend pour I'(p, q) le sous-arc avec le plus petit diametre (s’il existe;
sinon on choisit librement un des deux sous-arcs). Si E C I' est un
sous-ensemble, N(r, E) est le plus petit nombre de disques de rayon r
necessaires pour couvrir E.

Théoréme 1.1. Une courbe ' est un L-QI-cercle si et seulement si
une des propriétés suivantes est vérifiée.

(1) Il eziste M > 1 eth:R—T ouh:S' — T un homéomor-
phisme tel que
Ih(z +t) — h(z)|| < M |[h(y +s) — R(y)|l ,
pour tous =,y € R ou S! et pour tout 0 < t < s.

(IT) Il existe une mesure w de I' non-triviale et o-finie, i.e. 0 <
w(T'(p,q)) < oo pour tout p,q € T distincts, vérifiant pour une constante
A>1,

w(T(p1,p2)) < Aw(T(g1,42)),

pour tous p;,q; € I' avec ||p1 — p2|| = |la1 — ¢2]|-
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(III) T vérifie la propriété géométrique suivante: il eziste une con-
stante H > 1 telle que, st p1,p2,q1,92 € ' sont deuz paires de points
telles que ||p1 — p2|| = |lg1 — ¢2||, alors

N(r,I'(p1,p2)) < HN(r,I'(q1,92)), pour tout T > 0.

En plus, toutes les constantes dépendent l'une de l’autre. Quand
Vune d’entre elle est égale a un, les autres peuvent aussi étre prises
égales a un.

Le fait quun QI-cercle doit étre un quasicercle se reflete dans ce
théoréme. Si on remplace par exemple dans I'inégalité de (I) y par z
on a précisement la condition qui dit que h est une quasi-symétrie et
donc que I est un quasicercle. On va aussi voir que (II) aussi bien que
la propriété géométrique (IIT) implique la propriété des trois points de
Ahlfors: une courbe I" est un quasicercle s’il existe une constante ¢ > 1
telle que diamI'(p, q) < c|lp — ¢||-

Remarquons encore que si I' vérifie (II) ou (III) avec constante 1,
alors I" est forcément une droite ou un cercle (¢f. Proposition 3.1).

Dans [FM] K.J. Falconer et T.D. Marsh étudient les “quasi-self-
similar” cercles. Grace a leur étude on peut dire que ce sont des courbes
de Jordan I' paramétrisables par un homéomorphisme h : S — T°
vérifiant

.
T — a
=9 < age) ~ hwpll < e o — il

(1.1)

pour tous z,y € S!, ot ¢ > 1 et 1/a = Hdim(T) € [1,2[. Ceci
et le Théoréme 1.1 impliquent que toutes ces courbes sont des exem-
ples de QI-cercles. En particulier les ensembles de Julia des fonctions
fa(z) = 22 + X, ) appartenant & l'intérieur de la cardioide principale
de l’ensemble de Mandelbrot [Su2|, aussi bien que les ensembles limites
de certains groupes kleiniens [Bo].

Les “quasi-self-similar” cercles ont des jolies propriétés fractales.
Par exemple, toutes les différentes dimensions (Box, Hausdorff) d’une
telle courbe coincident et, a une quasi-isométrie pres, ils sont définis
uniquement en fonction de leur dimension [FM]. Dans le Paragraphe 5
nous étudions comment étendre ces résultats aux QI-cercles.

Je tiens a remercier Michel Zinsmeister pour des nombreuses dis-
cussions et pour m’avoir aidé a clarifier ce travail. Je remerci également
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le referee. La condition (II) du Théoréme 1.1 est basée sur une idée a
lui.

2. Etude de la propriété géométrique.

Nous résumons dans ce paragraphe quelques résultats importants
pour la suite.

L’astuce suivante va étre utilisée a plusieures reprises: il est clair
que le nombre de disques de rayon r > 0 necessaires pour pouvoir cou-
vrir un disque D(p, R), R > r, se majore par une constante v = v(R/r)
dépendant que du rapport des rayons. Une conséquence immédiate de
ceci est

(22) NGI) < v (T) NRI),

quand r < R et p,q € I'. Voyons pourquoi (II) et (III) sont des condi-
tions plus fortes que la propriété des trois points de Ahlfors:

Lemme 2.1. Toute courbe ' vérifiant la propriété géométrigue (III)
est un 2H -quasicercle, 1.e.

diamI'(p,q) <2H |lp—q||,  pour tousp,g €T'.

Quand une courbe T vérifie (II) elle est un 2A-quasicercle.

PREUVE. Supposons le contraire dans le cas ou I' vérifie (III): il existe
p,q € T tels que diamI'(p,q) > 2H]||p — ¢||. Soit r = ||p — ¢||. Il existe
a,b € T'(p,q) avec |la—b|| =r et |Ja—z|| < r pour tout = € I'(a,b). D’otx
N(r,T'(a,b)) = 1. Comme diamI'(p,q) > 2Hr, le nombre N(r,T'(p,q))
est strictement plus grand que H. On a alors une contradiction avec
(11I).

Considérons maintenant une courbe I" vérifiant (II). Soient p,q € T’
et a,b € I'(p,q) tel que diamI'(p,q) = |la — b||]. On choisi m € N de
sorte que (m + 1)|lp — gl > [la = b| > mlp — g|l. Alors, par (II),
w(l(a,b)) > mw(T(p,q))/A. Or, I'(a,b) C I'(p,q), et donc m < A.
Dou, diamI'(p,¢) < (m + 1) [|p — ¢|| < 24 lp — ¢||-

Les nombres N(r,~) sont définis dans 'introduction. Nous aurons
besoin d'une quantité analogue: on appelle r-ensemble de I'(p, ¢) un en-
semble de points {zg = p, ®1,...,2n = ¢} C I'(p, ¢q) ordonné et maximal
pour que ||z;—; —z;]| =7,2=1,2,...,n—1. On note n(r,I'(p,q)) = n.
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Lemme 2.2. Pour un K-quasicercle I' les nombres N(r,I'(p,q)) et
n(r,T(p,q)) sont équivalents:

N(r,I'(p,q)) < n(r,I'(p,q)) < v(4K) N(r,T'(p,q))-

PREUVE. Choisissons un ensemble {zq,...,z,} C7, v = I'(p, q), max-
imal pour la condition suivante: on prend zo = p et successivement
z; € I'(zi1,9), © = 1,...,n — 1, de sorte que |[z;—y — z;|]] = r et
|lz—=zi-1|| < r pour tout z € I'(z;_1, z;). Enfin on prend comme dernier
point z,, = ¢. Ce choix assure que les disques D(z;,7),2 =0,1,...,n—1
couvrent v. D’ou N(r,v) < n < n(r,v).

Partons maintenant d’un r-ensemble {z¢,z1,...,z,} de y=T(p, g).
Quand n = 1 tout est clair. Soit alors n > 2. Dans v; = I'(z;-1,z;),
¢ =1,...,n—1, il existe un point p; tel que min{||p;—z;_1]|, ||p:—=:||} >

r/2. T étant un K-quasicercle, ||z — p;|| > r/2K pour tout = € v\vi.
Un disque de rayon r/4K contenant un des points p; n’a pas de point
en commun avec v\7; . D’ou et par (2.2) on a bien

n(r,7) < N(gg,7) < vAE) N(r,7).

Lemme 2.3. Soit ' une courbe vérifiant (III). Alors, il eziste une
constante n(H) > 0 dépendant que de H telle que pour tout p,q € T et
0<r<R<|p—gq| ainsi que a,b €T avec |ja —b|| =R on a

n(H)n(R,T(p,q)) N(r,I'(a,b)) < N(r,T(p, q))
< Hn(R,T(p,q)) N(r,T(a,b)).

PREUVE. Notons v = I'(p,¢), {®0,...,2n} un R-ensemble de v, v; =
I(zi—y,z;) et soit a,b € I avec |ja — b|| = R. Quand n = n(R,vy) =1
necessairement ||p — q|| = ||a — b|| et le lemme suit directement de (III).
Supposons alors n > 2. A cause de (III) on a

N(r,7) <Y N(r,%) < HnN(r,I(a,b)).
i=1

Pour voir I'autre inégalité considérons d’abord le cas r < R/4H.
Cette restriction fait qu’un disque D(z,7) a une intersection non vide
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avec au plus deux des arcs v; qui doivent étre des arcs voisins. Sinon il
existe u,v € I'(p, q) avec ||u — v|| < 27 et tel que v; C I'(u,v) pour un
1 €{2,...,n—1}. Or, T est un 2H-quasicercle et donc

— >—R>
||u vH_2Hd1amP(u v) > 2HR 2r.

I est alors possible d’extraire d’un recouvrement minimal de I'(p, q)
de disques de rayon r un recouvrement de U1<2k +1<n Yok+1 tel que
chaque disque a une intersection non vide avec qu’un seul arc vog41.
D’ou, N(r,I'(p,q)) > Zl<2k+1$n N(r,v2k+1). Le méme raisonnement
s’applique aux v; d’indice pair, ce qui implique

2N(7"F(paq)) > ZN(T’7i)

=1

1
> 5 (n= 1) N(r,T(a, b))
> % n(R,v) N(r,I'(a,b)).

Il reste a voir le cas R > r > R/4H. Par les lemmes précédents et
avec (2.2) on voit que

R

N(r,T(a,b)) < N(H,I‘(a,b)) < .u(8H2)N(2HR, I'(a,b)) = v(8H?)

et
n(R,T(p,q)) <v(8H)N(R,T(p,q)) < v(8H) N(r,T(p,q))-

La constante n(H) = min{1/4H, 1/v(8H)v(8H?)} vérifie alors
I'inégalité de gauche dans les deux cas.

Lemme 2.4. Soit T’ une courbe vérifiant (1II). Alors, pour toute con-
stante H > 1 il eziste d > 0 dépendant _que de H et de la constante H

de (II1) telle que si N(r,T(p1,p2)) < H N(r,T(q1,q2)) pour un v > 0
avec v < ||q1 — q2|| alors ||p1 —p2|| < d||lg1 — 2| -

PREUVE. Soit ||p; — p2|| > ||¢1 — ¢2]| = R. Par le Lemme 2.3 on a

N(r,L(p1,p2)) 2 n(H)n(R,T(p1,p2)) N(r,I'(q1, 92)) -
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En appliquant ’hypothése on en déduit ﬁ/n(jf) > n(R,T(p1,p2)), ce
qui montre ||p; — p2|| £ d||l¢1 — ¢2|| avec d = H /n(H).

3. Démonstration du Théoréme 1.1.

(I) vmpligue T' est un QI-cercle. Cette preuve est fortement basée
sur un argument utilisé par Tukia dans [T2].

a) Le cas non compact; on suppose que I' est homéomorphe a R.
On cherche un groupe quasi-isométrique a 1-parameétre G = {g; : t € R}
pour lequel T" est une trajectoire: ' = {g4(p) : t € R} avec p € T un
point quelconque.

Soit A : R — I une paramétrisation vérifiant (I) et notons par
H : R? — R? lextension K = K(M)-quasiconforme de Beurling-
Ahlfors-Tukia [T3] de h. On considére le groupe

G=Ho{z—z+t: teR}oH '=HoToH™'.

Ce groupe a I' comme trajectoire. Afin de montrer que G est un groupe
quasi-isométrique on va d’abord établir 'inégalité

dist {H(uy,v),T'} <L
1

(3:3) dist {H(uz,v),T} = 7~

pour tous u;,us € R et v € R\{0}, pour une constante L; =L, (M)>1.
Il existe t; € R avec dist {H(u;,v),T'} = ||H(u;,v)—h(t)|, 2 =1,2.
Soit s; € R tel que

ll(u1,v) = (s1,0)l| = [[(uz,v) — (t2,0)[| = {
et utilisons le fait qu’une application quasiconforme de R? est L'-
quasisymétrique avec ' = I'(K) est une constante dépendant que

de K et donc que de M, [Ge2]. Alors,

dist {H(uy,v),I'} <||H(uy,v) — h(s)]| < K’

h(sy + 1) — h(s1)]|
et donc, avec (I),

dist {H(u1,v),T} < K'M ||h(ty + 1) — h(t2)]|
< K'*M ||H (uz,v) — h(t2)]| -
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Par le choix de t,, dist {H(u;1,v),I'} < K'?M dist {H (u2,v),T'} ce qui
est précisément (3.3) avec L; = K'2M.

On conclut maintenant comme dans [T2] preuve du Lemme 1.
Soient U; = H({z2 > 0}) et U; = H({z2 < 0}) les composantes con-
nexes de R?\I". L’application H, étant I’extension de Beurling-Ahlfors-
Tukia de h, est, restreinte a {2 > 0} ou a {z2 < 0}, difféomorphe et
une quasi-isométrie hyperbolique. La constante de quasi-isométrie
hyperbolique dépend aussi que de M [T3]. On définit sur U; la métrique
quasi-hyperbolique par |dy|/dist {y,I'}. Cette métrique étant équiva-
lente a la métrique hyperbolique, il existe Ly = Ly(M) > 1 tel que

1yl gyl o ldyl
L, dist {y,T} — dist {g¢(y),T} ~ dist {y,T}’

pour tout t € Ret y € Uj, 7 =1,2. Or, y et g,(y) sont dans une méme
courbe H({(z1,v) : z1 € R}) pour un v # 0. L’inégalité (3.3) implique
donc

1
= ldy| < |dgu(y)| < LiLz|dy|,  pour presque tout y € R?,
142

Les g; étant quasiconformes on en déduit que le groupe G est bien
un groupe quasi-isométrique (pour la métrique euclidienne) et que sa
constante bilipschitzienne dépend que de M.

b) Le cas compact. On suppose maintenant qu’il existe o : §' — T’
vérifiant (I). Soit encore H l’extension de Beurling-Ahlfors-Tukia de h
et G =HoRoH™ ! ot R ={z+ Uz : U matrice orthogonale} le
groupe des rotations euclidiennes fixant 0 et co. Ce groupe a I' comme
trajectoire. Pour montrer que G est un groupe quasi-isométrique on
peut supposer, quitte a conjuguer G avec une translation, que 0 est un
point fixe des éléments de ce groupe. Supposons pour l'instant aussi
qu’il existe p € T avec ||p|| = 1. Ceci implique I' C A(K') = {z € R?:
1/K' < ||z|| € K'} puisque l'application H est K’-quasisymétrique
avec K' dépendant que de M et on a H(0) = 0; le groupe G fixe 0.

Notons ds la métrique sphérique (définie par ||dz||/(1 + ||z||?)).
L’involution #(z) = z/||z||? est une isométrie pour cette métrique. La
métrique euclidienne et la métrique sphérique étant équivalentes dans
A(K"), Papplication h =i o h : ' — T = (T") vérifie aussi I'inégalité
de (I) pour une constante M dépendant que de M.

Soit C; la composante connexe de R?\I" contenant 0 et C, 'autre.
On considére G; = G|c, et G3 = i 0 G|, 0i. Comme dans le cas
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non compact on montre que G et G, sont quasi-isométriques -pour
le groupe G on utilise que % vérifi (I) et que H = i o H 0 est une
extension quasiconforme de h ayant les propriétés de ’extension de
Beurling-Ahlfors-Tukia.

Dans C; U#(C3) C D(0, K') la métrique euclidienne et la métrique
sphérique sont équivalentes. G;, G2 et donc aussi G sont alors des
groupes quasi-isométriques pour la métrique sphérique. Or, un groupe
de R? dont tout élément fixe 0 est quasi-isométrique pour la métrique
sphérique si et seulement s’il I’est pour la métrique euclidienne (¢f. [T3],
on peut le voir en utilisant I’expression infinitesimale de cette métrique).
G est alors bien un groupe quasi-isométrique pour la métrique euclidi-
enne et sa constante bilipschitzienne est controlé par M.

Quand aucun point p € T" est a distance un de l'origine, le groupe
G* = d;/r0God,, avecd,(z) = rz et r = ||p|| pour un p € I' quelconque,
est, par le précédent raisonnement, un groupe quasi-isométrique dont
la constante bilipschitzienne dépend que de M. 1l en est alors de méme
pour G puisque conjugaison d’un groupe quasi-isométrique par simili-
tude ne change pas sa constante bilipschitzienne.

T est un QI-cercle implique (III). Il existe G = {g; : t € R} un
groupe L-quasi-isométrique de R? agissant transitivement sur I'. La
courbe T' est un I{(L)-quasicercle puisque G se conjugue quasicon-
formément en un groupe isométrique et on a un controle de la dilatation
de ’application conjugant en fonction de L, voir [T1].

Soient y; = I'(p1,p2) et v2 = I'(q1,q2) des sous-arcs de I' avec
R = ||p1 — p2]| = |la1 — ¢2||. On veut montrer N(r,v2) < H N(r,v1)
avec H = H(L). Pour éviter un probleme d’orientation on suppose que
soit g¢(71) C v soit g¢(71) D 72 ou t € R tel que g¢(p1) = 1.

On prend {z¢ = ¢1,%1,...,Tn} ordonné et maximal de sorte que
z; € yp pour ¢ = 0,1,...,m — 1 et tel que ||z; — z;—1|| = R/L ainsi
que ||z — ;|| < R/L quand = € I'(z;—y, ;). Le choix de ces points
et le Lemme 2.2 impliquent m < n(R/L,v2) < v(4K)N(R/L,v;). T
est un I-quasicercle et donc v, C D(¢1, KR). Avec (2.2) on en déduit
m < v(4K)v(LK)=H,.

Pour conclure on majore les nombres N(r,I'(z;-1,z;)) en fonction
de N(r,v1) . Soit t € R tel que g¢(p1) = x;—1. Par le choix des z;
et le fait que le groupe est L-quasi-isométrique I'(z;—1,z;) C gi«(m1).

Prenons D; = D(y;,r),j =1,..., N un recouvrement minimal de ;.
Or, ¢/(Dj) C D(gi(y;).Lr) et donc, encore avec (2.2), on a
1

Sy N Doy, 20) € NI Diaioy, 20)) £ N(rym).
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D’ou
N(r,72) <Y N(r,T(zi-1,2:)) < v(L) Hi N(r, 1)

=1
ce qui termine la preuve. Remarquons que H = H; v(L) dépend que

de L.

(III) implique (I). Par le Lemme 2.1 une courbe vérifiant (III) est
un quasicercle. Elle est alors soit homéomorphe & R soit & S!.

a) Le cas non compact. Supposons d’abord que I' est une courbe
vérifiant (III) et homéomorphe a R. On peut supposer que 0 € I'. No-
tons I't I'une des composantes connexes de I'\ {0} et soit v = I'(0, ¢) C
=+ ..

I'" choisi de sorte que ||g|| = 1.

Considérons un m € N tel qu’il existe un r, > 0 avec N(rp,,7y) =
m. A ce m on associe une application continue h,, : R — R? de la
facon suivante: soit {p; € I' : ¢ € Z} un ensemble de points ordonnés
avec pg = 0, p1 € I'" et ||pi —pi—1|| = rm pour tout : € Z. L’application
h,, est alors définie par h(z/m) = p; et par

1—1 3

—] — [pi—1,pi] affine.

"G=1)/m,ijm] [ m 'm

On montre que {hn,} est equicontinue et que la limite d’une sous-suite
convergente est bien un homéomorphisme de R sur I' satisfaisant (I).
La preuve de ceci est basée sur les inégalités suivantes: il existe C;(H)
tel que

(34) || ’“)—h (= )H<C(H)Hh ]+l)—hm(—rjg)}|,

pour tous 7,7 € Zet 0 < k <1, et il existe C2(H) tel que
. < C,
(3:5) ‘ hM(M)H Ca(H)

G
quand M > met :/M < 1/m.
Montrons (3.4). I' étant un 2H-quasicercle

diam'(pj,pj+1) _ 7
lpj+i — pjll > QHJ ! Y

L’inégalité (3.4) est alors une conséquence du Lemme 2.4 s'il existe H
dépendant que de H tel que

(3.6) N(:H F(Pan—l-k)) <HN (TH I'(p;, PJ-H))
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Les disques D(pi4y,2Hrm), v =1,...,k, couvrent I'(pi, pi+«). De ceci
et de (2.2) on tire

Tm
N (55 D(pispiss)) < v(4H?) N(@2Hrm, (pi,pis)) < v(4H?) .

D’autre part, I < n(rm,T'(pj,pj+1)) puisque {pj,...,pj41} est un rp-
ensemble de I'(p;,p;4i) non nécessairement maximal. Par le Lemme
2.2 on a alors

U< V(8H) N(rm, T (p;,p+0)) < v(SH) N (22, T(p;,pj41))-

Ces dernieres estimations montrent bien que (3.6) a lieu avec H =
v(4H?) v(8H).

De la méme facon on montre (3.5): pour pouvoir appliquer le
Lemme 2.4 on se convaint qu'il existe H dépendant que de H tel que

(3.7) N(rM,r(o,hM(%))) < ﬁN(rM,r(o, hm(%))) ,

quand M > m et i/M < 1/m. On montre comme plus haut que

N(rM,I‘(O, hM(%))) < u(2H)N(2HrM,I"(O, hM(%))) < v(2H);i.

D’autre part, les Lemmes 2.2 et 2.3 font que

N(ry,7) < Hy(8H)N(rm,7)N(rM,I‘(0, hm(T—i-))) .

Comme N(rg,v) =k on a alors

M 1,

— < Hu(BH)N(rM,I‘(O,hm(m))) .

Or, i/M < 1/m et donc (3.7) est bien valable avec H = H v(2H) v(8H).
En conséquence de (3.4) et (3.5) il est clair que {hn,} est equicon-

tinue. Par le Théoréme d’Ascoli il est alors possible d’extraire une

sous-suite de {h,} convergeant uniformément sur les compacts de R.

L’inégalité (3.4) implique que la limite h satisfait ’inégalité de (I) et

que h est soit constante soit un homéomorphisme de R sur I". Afin

de voir que h n’est pas une application constante il suffit d’établir que
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|R(1)|| > 0; h fixe 0. Comme {hm(i/m): i =0,...,m} est un rp-
ensemble de I'(0, h,(1)) on a

N(rm,v)=m < n(rm,I(0,An(1))) < v(8H) N(rm,I'(0, hn(1))).

On peut alors appliquer le Lemme 2.4: il existe d = d(H) tel que
Ilhm(1)]] > |l¢]|/d = 1/d. La fonction h est donc bien un homéomor-
phisme.

b) Le cas compact: I est homéomorphe 4 S'. Supposons que 1 € T
Soit r > 0 suffisament petit et P = {pp = 1,p1,...,Pm—1} ordonné r-
espacé et maximal sur I tel que r/2 < ||pm—1 — po|| < 3r/2. A partir
de ce choix on conclut comme dans le cas non compact.

(IT) si et seulement si (I). Soit d’abord I' une courbe vérifiant (II)
et paramétrons cette courbe a 'aide de la mesure w: comme I' est un
quasicercle (Lemme 2.1) c’est une courbe homéomorphe soit a R soit
a S'. Considérons d’abord le cas non compact. Soit p € ' et notons
't et I'™ les composantes connexes de I'\{p}. On définit h: R — T’
par h(z) = q € T+ le point avec w(T'(p,q)) = ¢ quand =z > 0 et par
h(z) = ¢ € T'~ le point avec w(I'(p,q)) = —z quand = < 0. Quand
T' est homéomorphe & S! on note A la mesure de Lebesque du cercle
normalisée de sorte que A(S') = w(I'). Pour définir A : S' — T on
prend z € S', p € T et on munit les deux courbes d’une orientation.
Alors, I'image de y € S! soit h(y) = ¢ € I le point tel que les segments
joignant dans le sens positif z a y, p a ¢ respectivement, ont une méme
longueur (mesuré avec A\, w respectivement).

Dans les deux cas on obtient ainsi un homéomorphisme 4 : R ou
S! — I'. Montrons pour I’ non compact que cette paramétrisation
vérifie I'inégalité de (I). Soit h : R — T', z,y € Ret s > ¢ > 0. On note
p1 = h(z),p2 = h(z+1t), 1 = h(y), g2 = h(y+s) et R = ||g2 —q1]|. Soit
{ao,ai,...,a,} un R-ensemble de I'(p;,p2). Quand n = 1, forcément
lP1 — 2]l < |l¢r — ¢2||- Sinon, les hypotheses sur w et la définition de h
impliquent

t = w(D(p1,p2)) = Zw(r(af—l»ai))

=1

n—1 n
> —A‘W(F(lh,lh)) 2 2=t

o
24° = 24

On en déduit que ||p; — p2|| < nR < 24 ||¢1 — ¢2||-
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Pour la réciproque on pose w(E) = |h™Y(E)| = [,_1(g) dz ol
E C T est un ensemble mesurable. C’est une mesure non triviale et
(o-)finie, i.e. w(I'(p,q)) = w(T'(h(z +t),h(z))) = t. Montrons qu’elle
vérifie bien I'inégalité de (II). Soit R = |[p1 — p2|| = |l¢1 — ¢2|| avec
Pi,qi € I et soit 0 < t = w(['(p1,p2)) < w(I'(q1,92)) = s. Notons
yi = h™1(qi) et aj = h(y1 + jt); on suppose que y; < y2. (I) implique
lai — ai—1|l 2 |lp2 — p1l|/M = R/M.

Soit k € N le plus petit entier tel que y; + kt > ys, i.e. tel que
kt > s. T est un K = K(M)-quasicercle ce qui implique ||a; — a;|| >
R/(KM) quand ¢ # j. Par conséquent tout disque de rayon R/(2K M)
contient au plus un des points a; et donc

k< N(MLM,F(ql,qg)) < W(2K*M) N(KR,T(a1,42)) = v(2K>M)

ce qui montre bien

k
w(D(01,02)) < Y w(T(aicr,a:)) < (2K2M)w(T(p1,p2)).

=1

3.1. QI-cercles avec constante un.

Pour terminer la démonstration du Théoréme 1.1 il suffit de préci-
ser ce qui se passe quand une des constantes est égale a un. Or, dans
le cas ou le groupe est 1-quasi-isométrique c’est un groupe d’isométries
et donc I' est soit une droite soit un cercle. Si la constante de (I)
est un, ’homéomorphisme h est une 1l-quasisymétrie et [McKV] im-
plique que h est une transformation de Mobius. Quand I' vérifi (II)
avec constante A = 1 il est clair que ’homéomorphisme obtenu par
paramétrisation comme dans la preuve (II) implique (I) est égalément
une 1-quasisymétrie. Le cas restant se trouve dans la

Proposition 3.1. SoitT" une courbe vérifiant (III) avec constante égale
d un, alors il s’agit soit d’une droite soit d’un cercle.

La preuve de ce fait est basée sur le résultat suivant.

Lemme 3.2. Soit T' une courbe vérifiant (III) et soient v; = I'(pi, ¢i),
1=1,...,k, des arcs disjoints. Alors
N <o+ N(7r, v
hm (Ta7l)+ + (Ta /L) —

1.
T Nrm U U )
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PREUVE. Il suffit de considérer deux arcs disjoints ;1 et v2. Siy, N7, =
@ tout est clair. Sinon, {p} =7%,N¥,, on a toujours N(r,v;)+N(r,v2) >

N(T‘, My 72) .

Soit v; » = vi\(vi N D(p,10Hr)) pour ¢« = 1,2 et 7 > 0 petit par
rapport a diam~;, ¢ = 1,2. Puisque I' est un 2H-quasicercle (Lemme
2.1) on a ||z1 — z2|| > 10Hr/2H = 5r pour tout z; € 7ir, ¢t = 1,2.
Les disques de rayon r d’un recouvrement minimal de 71, sont alors
disjoints des disques d’un tel recouvrement de v, . D’ou

N(r,71,r) + N(r,72,r) £ N(r,71 U 72).
En réutilisant le fait que le disque D(p,10Hr) se couvre par au plus
v = v(10H) disques de rayon r, on en déduit
N(r,71)+ N(r,72) < N(r,yie) + N(ryy2,r) + 2v
< N(r,mUvy2)+2v,

ce qui acheve la preuve.

PREUVE DE LA PROPOSITION 3.1. Il suffit de reprendre la preuve de
(III) implique (I) et de voir que la constante Cy(H) dans (3.4) peut
étre prise égale a un quand H = 1. Dans ce cas, on obtient encore une
1-quasisymeétrie envoyant la droite ou le cercle sur T'.

Notons p; = hm(2/m) et supposons qu’on puisse avoir ||pit+r—pi|| >
llpj+1 — pjll avec k < 1. Dans ce cas il existe z € T'(pi,pi+x) avec
llz — pill = llpj+1 — pj|l = R. Alors, par le Lemme 3.2 et par (III) avec
H=1

k
i 2=t N DPitv—1,Pi40))
1
0 3 =1 N T(pjtv—1,Pj4v))
L N T 2) + N, D@, piss)
= lim .
r—0 N(T‘, F(pJ7p]+I))
Or, quand ||pi+«x—z|| > R il est clair que M, I'(z,pi+&)) > N, [(pi, z)),
r < R. Sinon on applique le Lemme 2.3,

n(llpi+k - Cl?”,F(pi, 1)) N(Tv P(xvpﬂ-k)) 2 N(T‘, F(Pi, ‘7:)) .
D’on, il existe € > 0 tel que

- N(T‘, P(Iapi+k)) : N(T‘, P(ph 1))
1>1+4 lim >1+4¢lim =1+4+¢,
r—0 N(r,I'(pj, pj+1)) r—0 N(r,I'(p;,pj+1))

ce qui est impossible.

k
> 2
1_l
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4. Les QI-cercles et la géométrie fractale.

Comme on ’a remarqué dans 'introduction, les “quasi-self-similar”
cercles sont des QI-cercles. Quasi-auto-similarité veut dire que des
petits morceaux d’une courbe s’agrandissent par une similitude en des
arcs d’une taille standart, lesquels se plongent quasi-isométriquement
dans la courbe elle méme. Une conséquence de ceci est que les sous-arcs
d’une méme taille sont quasi-isométriques; cf. (1.1). Cette derniere
propriété est aussi valable pour les QI-cercles. On peut méme dire
qu’elle les caractérise. Par contre, il n’y a plus de rapport entre des
sous-arcs de différentes tailles.

Cet affaiblissement des propriétés fait que les résultats des “quasi-
self-similar” cercles ne se transmettent pas directement a des QI-cercles.
Néanmoins, on peut montrer que pour un @QI-cercle la dimension de
Hausdorff coincide avec la “lower Box-dimension”. En plus il est possi-
ble d’étendre le théoréme de Falconer et Marsh [FM] a des QI-cercles.

Pour pouvoir faire ceci nous aurons besoin de mieux connaitre le
comportement de certaines mesures sur un @QI-cercle I'. On lui associe
d’abord une fonction p, appelée fonction de dimension canonique, de
la fagon suivante: quand I' est compact on pose p(r) = 1/N(r,T),
0 < r < diamI'. Sinon on choisit ¥ = I'(a,b) un sous-arc quelconque
de T avec |la — b|| = 1 et v, = I'(a,z) D v avec |la — z|| = r ainsi
que |la — y|| < r pour tout y € I'(b,z). Alors, on définit maintenant
p(r) =1/N(r,y) pour 0 <r < 1let p(r)=N(1,7v,) pour r > 1.

Lemme 4.1. Sur un QI-cercle T il existe une mesure w et des cons-
tantes C3 et Cy telles que

48 = <2@9) g

< <Cs, pour tous p,g €', p#gq,
Cs ~ p(llp —4ll) ’

et

(4.9) w(D(z,r)) < Cyqp(r), pour tous z € R? et r>0.

PREUVE. Soit w la mesure de (II) du Théoréme 1.1 normalisée par
w(T') =1 quand I' est compact et par w(y) = 1 sinon, v étant ’arc de
la définition de p.

Soit ' non compact et considérons d’abord le cas r = ||p — ¢|| < 1,
p,q € I'. Notons {zg,...,2n} un r-ensemble de v. Alors I'inégalité de
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(II) implique
l=w(y)= Zw(r(wi-z,fﬂi)) < Anw(l'(p,q))

et aussi nw(I'(p, ¢))/2 < A. L’inégalité (4.8) en résulte immédiatement
puisque les nombres n et N(r,v) sont équivalents (Lemme 2.2).

Quand r = ||p — ¢g|| > 1 on choisit {z¢,...,z,} un l-ensemble de
vr et on applique encore I'inégalité de (II):

w(T(p,9)) S Aw(y,) = A w(T(zio1,2:)) < A’nw(y) = A’n

=1

et A%w(I(p,q)) > n/2. 1l suffit encore d’appliquer le Lemme 2.2 pour
en déduire (4.8).

Quand T est compact on procéde de la méme fagon.

De ces estimations on déduit (4.9). Effectivement, puisque I' est un
2H-quasicercle, avec H la constante de (III), I’ensemble I' N D(z,5H )
contient un arc o = I'(u,v), u,v € dD(z,5Hr), contenant ’ensemble
I' N D(z,r). Dou w(D(z,r)) = w(I' N D(z,r)) < w(o) et par (4.8)
ceci devient w(D(z,r)) < C3 p(||lu — v||). On en déduit (4.9) puisque
|l —v|| <10 Hr.

La fonction p définie avant le lemme précédent est croissante et elle
vérifie lim, o p(r) = 0. A une telle fonction on peut associer la mesure
de Hausdorff suivante

(4.10) m,,(E):li_rg inf { Zp(ri): EcC U D(z;,r;) avec r; < r} ,
i=1 i=1

pour ECT.

Lemme 4.2. Soit T un QI-cercle, p sa fonction de dimension canon-
ique et m, la mesure de Hausdorff associée. Alors, il eziste une con-
stante Cs telle que

1 _
A p(lp — qll) < mu(T(p,q)) < Csp(llp —qll), pour tous p,g € T'.
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PREUVE. L’inégalité de gauche est une conséquence du Lemme 4.1 et
du lemme de Frostman. Effectivement, si I'(p,q) C iz, D(zi,r;) alors

“(D(p,0)) € Y- w(D(zirs)) < Ca Y pi(rs)

et donc Cy4 C3m,(T'(p, q)) 2 p(llp — qll)-
Dans la preuve de l'autre inégalité on fait appel aux Lemmes 2.2

et 2.3. Quand R = ||p —¢|| > 1 alors

N(r,T(p,9))
N(r,y)

< Hn(1,I(p,q))

< H?v(8H) p(|lp — qlI)

my(L(p, ¢)) < liminf

etquand R=|p—g¢g||<lona

N(.T(p,g)) . 1 1 e —dl)
N(r,y) ~ n(H)n(R,y) ~ n(H)

m,(L(p, ¢)) < lim inf

4.1. Les QI-cercles et les différentes dimensions.

Connaitre le lien entre les différentes notions de dimensions a des
avantages pratiques. Par exemple, la simple définition des “Box-dimen-
sions” fait qu’elles s’évaluent facilement alors que l’estimation de la
dimension de Hausdorff est souvent laborieuse et difficile.

Précisons ces termes pour un compact K C R2?. Sa dimension
de Hausdorff est Hdim (I) = sup{é > 0: m.s(K) = +oo}; m,s est
la mesure de Hausdorff de dimension §. Les “Box-dimensions” sont
données par

Bdim (K) = lim inf log N(r, K)

—logr
Bdim (K) = limsup 8N R)
r—0 —logr

On a toujours Hdim (K) < Bdim (K) < Bdim(K) et pour les “quasi-
self-similar” cercles ces trois nombres coincident.
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Proposition 4.3. Un QI-cercle T a toujours la dimension de Haus-
dorff égale a la “lower Boz-dimension”: Hdim(I') = Bdim (T'). Par
contre, il eziste des ezemples pour lesquels les différentes “Boz-dimen-
stons” sont distinctes: Bdim (") < Bdim (T").

PREUVE DE Hdim (T") = Bdim (T"). Il est suffisant de considérer y CT" un
arc quelconque puisque sur I agit un groupe quasi-isométrique transitif
et les dimensions sont invariantes par quasi-isométrie. Prenons alors
pour v ’arc de la définition de la fonction de dimension canonique p
quand I n’est pas compact et ¥ = I sinon.
Pour tout
B < 6 = Bdim (v) = liminf log p(r)
r—0 logr

on a lim,_ p(r)/r? = 0. Comme m,(y) > 0 (Lemme 4.2) il suit que
Myp (7) = +00.

Un exemple d’un QI-cercle ayant différents “upper” et “lower
Box-dimension”.

Utilisons la construction du “snowflake” et notons T, ; la trans-
formation qui associe & un intervalle I = [a,b] la premiére iterée du
snowflake avec les extrémités a et b. Plus précisement, soient a =
(a1,az2) , b= (b1,b;) ainsi que

b—a a+b 1
Ty =a , To = b —az,a; — b)) —=
1 + 3 2 5 + (b2 —az,a; — by) Wi
et 28
2(b—a
Tz =a + T) .
On associe a ces points quatre similitudes contractantes T; ,: = 1,...,4,

— —
envoyant ab sur azy, T;x3, 223, T3b, respectivement. Notons
4
Top(K) = U Ty(K), K compact de R? .
=1

Soit Jo = [a,b] avec |ja —b|| = 1 et J; = T,4(Jp). Jy consiste
en quatre cotés de longueur 1/3, ce qui correspond a une dimension
6, =log4/log3. Soit 0 < & < (6 —1)/4 . Il existe k; € N tel que

1

)
4kl<m) =1, avec 1 <6< 1+e¢.
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En fait, on saute k; itérations de T, 3 pour ramener la dimension proche
de un. Partageons alors J; en 4k1 [ai, b;] de longueur 1/(3ky): J; =

U3Xt[a;, b;]. Maintenant on va effectuer k, itérations de T, s, sur les
intervalles [a;, b;]. Soit donc

4k,

J2 = U T:.-zb,- ([aivbi]) ’
=1

ou ky est choisi de sorte que

1 1\¢
ko = —
ak2g k, <3k2 3k1) 1,

avec cette fois ci 6; — e < 6§ < 6;. Les prochaines k3 itérations de T,,s,
on les saute pour avoir de nouveau une dimension proche de un et ainsi
de suite.
Soit I'(a, b) la limite de ce procédé. L’exemple cherché est
1 1
=T((0,0),(1, 0))ur((o 0),(5; v3 ) ur( ‘/_ ), (1, 0))
Clairement, I" est un QI-cercle le critere géométrique (III) étant vérifié

et on a
Bdim (T') < Bdim (T").

4.2. Classification des QI-cercles par quasi-isométrie.

Si on veut établir un analogue du théoréeme de Falconer et Marsh
[FM] pour les QI-cercles on est amené a prendre une notion plus forte
que seulement la dimension, & cause de ’exemple du paragraphe précé-
dent: ce sont les classes de fonctions de dimension.

On appelle une fonction p : Rt — RY croissante et vérifiant
lim, ¢ p(r) = 0 ainsi que lim,_. p(7) = 400 fonction de dimension.
Remarquons que pour les courbes compactes seul le comportement de
p au voisinage de 0 est important. On se contente alors dans ce cas de
définir la fonction de dimension au voisinage de 0. Deux fonctions de
dimension pyg, p2 sont équivalentes s’il existe a, 8 > 0 tels que

<8, pour tout r > 0.
p2()
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Au début de ce paragraphe nous avons associé 4 un QI-cercle I' une
fonction de dimension canonique p. L’ensemble de fonctions de dimen-
sions équivalentes & ce p est appelé la classe de fonctions de dimension
associée a I'.

Théoréme 4.4. Soient I'y et I'y deuz QI-cercles, tout deuz compacts
ou non. Il eziste ® : R? — R? une quasi-isométrie identifiant les
courbes, ®(I'1) =Ty, st et seulement 31 'y et 'y ont la méme classe de
fonctions de dimension.

REMARQUE. Ce théoréeme contient le résultat de Falconer et Marsh
[FM]: si T’ est un “quasi-self-similar” cercle, sa classe de fonctions de
dimension est celle qui contient la fonction constante 6(r) = dimT.
D’ol, pour deux telles courbes I'y et I'; il existe une quasi-isométrie
@ : 'y — T’y si et seulement si les deux courbes ont la méme dimension.

PREUVE. Montrons l'existence de la quasi-isométrie ® sous ’hypothése
que les I'; ont la méme classe de fonctions de dimension. On note
p1, p2 les fonctions de dimension canoniques de I';, T', respectivement
et m,, les mesures de Hausdorff associées. Ces mesures permettent
de paramétrer les courbes I';; ¢f. la preuve (II) implique (I). Notons
hi : RouS' — T, ¢ = 1,2, ces paramétrisations. On montre que
@p=hyo hl"1 : 'y — I'; est une quasi-isométrie.
Par le Lemme 4.2 il existe Cs > 1 tel que

ol 22 <, (0, 0)) < s il — 0l v € T
5

Sip1,p2 € T'1 et sig; = o(p;) € Ty, ¢ = 1,2, alors m,, (F1(p1,p2)) =
m,(T2(q1,92)) et donc

_15 < P1(Y||P1 — p2ll) <c?.
O p2(llar — az2||)

Par I’équivalence de p; et p, il existe a, 8 > 0 telles que

B _ pi(llpr = p2ll) 2
2 A 7Rl 2.
C? = p(la—gl) = °

De cette condition il est facile & voir que ¢ est une quasi-isométrie. Il
suffit d’expliciter p;(r) dans les différents cas et d’utiliser le Lemme 2.3.
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On peut prolonger ¢ en une quasi-isométrie ® du plan grace a un
résultat de Gehring [Gel]. Une autre possibilité est de montrer, comme
dans la preuve “(I) implique I' est un QI-cercle”, que ® = Hy 0o H':
R? — R?, avec H; les extensions quasiconformes de Beurling-Ahlfors-
Tukia des quasisymétries h;, est une quasi-isométrie du plan.

Soit maintenant ® une L-quasi-isométrie de R? telle que &(T';) =
T'; et notons encore p;, p, les fonctions de dimensions canoniques de
T'; , I'; respectivement. On doit montrer qu’elles sont équivalentes.

Considérons d’abord le cas I'y et I'; compact. Si D(zy,r),...,
D(zn,r) est un recouvrement minimal de I';, alors les ensembles
E; = ®(D(z;,r)) couvrent I'; et E; C D(®(z;),Lr). D’ou et avec (2.2)
il est clair que N(r,I';) > N(Lr,T'2) > N(r,I'7)/v(L). Par symétrie du
probléme il en résulte 1/v(L) < pi(r)/p2(r) < v(L).

Quand les I'; ne sont pas compacts on doit montrer qu’il existe
C > 1 tel que

l<N(ra7l)<C et i<N(1’7l,r) <
C - N(T,‘)’z) - ’ C - N(1$72,T) -

ou les arcs viennent de la définition des p;. Ce qui compte est que les

extrémités des v; et des ; , sont a distance égale. D’ou, la preuve de

cecl est exactement le contenue de la preuve “QI-cercle implique (III)”.

Le role des g; dans cette preuve prend ici g2 ;0 ® ou G2 = {g2¢ : t € R}

est le groupe quasi-isométrique de I'; .
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Weyl sums and

atomic energy oscillations

Antonio Cérdoba, Charles L. Fefferman and Luis A. Seco

“...cuando hay vino beben vino

cuando no hay vino, agua fresca.”

A. Machado.

Abstract. We extend Van der Corput’s method for exponential sums
to study an oscillating term appearing in the quantum theory of large
atoms. We obtain an interpretation in terms of classical dynamics and
we produce sharp asymptotic upper and lower bounds for the oscilla-
tions.

1. Introduction.

The purpose of this paper is to study a certain sum that plays a
crucial role in the asymptotic analysis of non-relativistic atomic ener-
gies. The sum is given by the expression

ar 2141
‘I’Q(Z) = 12—1 1 i l(l+ 1) -1/2
= ;/(VTF(T)— = ) dr
+

.u(%/(vTZF(T) _ 1(_1;2_1_)>:/2dr> :

165
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where u(z) = dist {z,Z}? — 1/12, V.Z is the Thomas-Fermi potential
with charge Z (see [Li]), which satisfies the perfect scaling condition

(1.a) VZ(r) = Z4PVL (21/3 r)
and we have

(1.b) Vi(r) = izﬁ , . (3_;)2/3

and y is the Thomas-Fermi function, solution of the Thomas-Fermi
equation

3/2(,
y"('l”) = yrl/(Z ) )
y(0) =1,
lim y(r)=0,

r—-+00
and Iyp is the greatest integer such that V.Z(r) — (I 4+ 1)/r? is positive

somewhere. Here, and throughout this article, we set

1/2

(@)+ “{ 0, ifz<0.

The role of the function ¥g(Z) in atomic physics is as follows:

Consider a non-relativistic atom, consisting of a nucleus of charge
Z fixed at the origin, and N quantized electrons at positions z; € R3.
The hamiltonian of such a system is given by

Hon =3 (8- 2) + 10
Z,N = 8z, T T o T
— lzil J 2 &1 lwi —
acting on

N
veH=N\L(R°©Z) .

=1

We define the energy of such an atom as

E(Z)= jpf B(Z.N),  E(%,N)= | ;%;{ (Hznd,9).
sll=1
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The computation of E(Z) can only be done explicitly for Z = 1, when
it equals —1/4. For Z = 2 good upper and lower bounds are known,
but the situation gets more and more complicated as Z grows. It was
observed very early in the history of quantum mechanics, in 1927 (see
[Th] and [Fe]), by Thomas and Fermi, that for Z large, E(Z) must
approximately equal crpZ7/3 for crr a well known explicit constant.
This was made rigorous by Lieb and Simon in 1973 ([LS] and ([Li]), a
very beautiful result which also holds for molecules.

Comparisons with numerical results showed that the Thomas-
Fermi approximation was only good up to a term of size Z2, and Scott
([Sc]) in 1950 was the first to realize that this Z? effect was due to
electrons very near the nucleus, which behave as if they were in the
exactly solvable model without electronic interaction. His argument
was make rigorous in a series of papers by Hughes-Siedentop-Weikard
([Hu], [SW1], [SW2] and [SW3]) in 1985-89. This was proved to be true
also for molecules by Ivrii-Sigal [IS].

A smaller effect, of size Z5/> was observed by Dirac, in 1930 ([Di]),
which comes from a delicate analysis of electronic correlations. Addi-
tional effects were also found by Scott ([Sc]), corrected by March and
Plaskett [MP], and then finally established by Schwinger ([Sch]), who
argued that the asymptotic energy expansion should then contain the
term cps 2%/ 3 for cps an explicit constant. The proof of Schwinger’s
result was announced in [FS1}, and is as follows:

E(Z):CTFZ7/3+%Z2+CD5 Z5/3+0(Zs/3_a) y a>0'

Its complete proof appears in [FS2], [FS3], [FS4], [FS5], [FS6], [FST7]
and [FS8].

It has been known for some time that nice asymptotics for atomic
energies in powers of Z!/3 will stop after the Dirac-Schwinger term.
This can most easily be conjectured by looking at simpler, exactly solv-
able .models such as the harmonic oscillator (see [Si]). Comparisons
with numerical results also show that the next correction will be oscil-
latory in nature. We refer the reader to the book of Englert ([En]; see
also [ES1] and [ES2]) for a physical discussion of the energy asymptotics
up to including oscillatory terms. The exact form of the function ¥g
above originates from the proof of the Dirac-Schwinger’s term in [FS1],
where it is seen that
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where a > 0, although the current estimates for a above do not yet
guarantee that ¥q really dominates over the O-term.

Note that in establishing (2) not only do we need estimates for the
error terms with a large enough, but also we need lower bounds for the
size of the function ¥q, which are not completely obvious. It follows
from our results in the present article that one would need @ > 1/6 in
order to show that ¥ dominates over the error terms contained in the
O-term.

From the abstract mathematical perspective, sums such as ¥ are
quite old, the best known going back to Gauss, which is related to
estimating the number of integral lattice points inside a convex curve:
most notably, a circle, which gave rise to the circle problem, and a
hyperbola, which comes from the divisor problem, two of the most
elusive problems in analytic number theory (see [GK] for a general
description; [IM] and [Hx] for the latest results). It is worth noting
the close similarity between our problem and the circle problem, which
comes from a refined analysis of the number of bound states of quantum
free particles in a box.

A step higher in sophistication, but still within the same realm of
problems, is the Selberg trace formula, which, very loosely speaking,
expresses spectral information about the laplacian on an abstract man-
ifold in terms of the closed geodesics on that manifold, which can also
be seen as the mathematical version of the Feymann Path integrals for
abstract systems. We refer the reader to [G] and references thereof for a
wealth of ideas in the theory of trace formulas, quantum chaos, classical
mechanics, and all that.

An announcement of our results, which are described below, ap-

peared in [CFS].

Our work is organized as follows: First, after making some trivial
modifications to the well known stationary phase lemma (Section 1),
we set out (in Section 2) to study sums of the type

0= 2(2)s(1(2)

where ¢"(z) > ¢o > 0, and p is a periodic function of average 0. Ex-
amples of such sums are
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1. If f =1, p(z) = ¥, ¢(z) = z?, we have the well-known
Gauss sums modulo A.

2. If f=1, p(z) =z — [z] — 1/2, then S represents the error term
in the lattice point problem for a curve ¢ dilated by .

While the first item above is well understood, the second remains
very hard. In our analysis, we will have to deal only with functions u
whose Fourier coefficients decrease rather rapidly (i(n) ~ |n|=3/2%¢),
and this allows a complete analysis of the sums via the usual method of
Van der Corput (Poisson summation followed by stationary phase; see
[GK}), since all expressions turn out to be absolutely convergent in this
case. A little elementary number theory will be needed here to rule out
the possibility of a small denominator problem, which gives rise to an
error term whose size depends on whether a certain number is rational
or irrational.

In Section 3, we apply the results of Section 2 to ¥, obtaining a
new sum ¥, a leading “dual” version of ¥q, reminiscent of the Jacobi
identity for the modular function. Sharp upper bounds for ¥q are
an easy consequence of this. However, obtaining the right regularity
properties for the curve and amplitude involved in the formula for ¥¢
turns out to be rather tedious.

In Section 4 we obtain lower bounds for ¥q in the form of an
Q-result, by understanding how ¥, behaves on average.

In Section 5 we use the duwal expression ¥y to give us a dynamical
interpretation of the sum ¥q as a sum of classical data extended over
all closed trajectories of a classical hamiltonian. This result appears to

have similarities also with a recent result of Bleher [B2].

Section 6 is devoted to side issues.

1. Stationary Phase Estimates.

We begin with a review of stationary phase. Consider f € C§°(R).
Then, if t > 0,

+oo 2 : T too 2;¢2 £
/ eite f(’l) dz = em/4 \/;/ e~ "/t f({) d{
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Using the identity
1
e’ = 1+/ e’ sdu,
0

we deduce

/ gt f(z)dz

—00

+o00 1 2, ¢2

_ mif z ; -7 —n2iug?/

. 4\/:(f(0)+/_°° fo) [ e aua)
: +oo 1

_ wif _7_!' l_ T —w?iug?/

=e 4\/:<f(0)+4t " f ({)/0 e ¢ ‘dud{)

i ] oo " ! its?ju 4
= /41/§f(0)+é/-00 f(:c)/0 eit=’/ ul—’;dx

1 1/2
g9+(z) =/ eite’ /v (—t-) du.
0 u

Note that g¢(z) = t'/2g; (t!/2z), and

for

: 3/21 35 1. 1/2
y1(x)=ie”2/“-u$—20—52/0 e“”z/"ux—zdu,

hence |g1(z)| < 2/|z|? and thus, g; is integrable. Furthermore
llgelly = llgall, = O(1)
and |g¢(z)| < 2 |z| 271/

We also consider one-sided integrals of the form

+oo 2
/ et f(z)dz.
0

Define
f(z), if >0,

t(z) =
7o {f(—fb‘), if z<0,
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and consider f. = ft * ., for a suitable approximation to the identity
pe. Using our previous identity, we obtain

+oo +oo
/ eits’ f(z)dz = - hm/ eit=’ f, (z)dz
0

1 m' . +oo ’

=3° “M—ﬂm+§ﬁﬁh%/ () gi(x) de
1 7rz/4 ' e "
=3 f t3/2 f"(z) go(z) dz .

The last step follows since g; is integrable and both functions ¢g; and
fT are even.

Definition. Let ¢ such that
60 (2)| S Cn, (0<n<5), ¢ =infl¢"(z)| >0,

for z in a certain interval which will be clear in our applications. We
denote by

+

54
¢ =min{l, ¢}, B(¢) = (%ﬁ)

0

Lemma 1 (Stationary Phase Lemma). Let f(z) € C¢(R), such that

Fancd M TS oy
| N2, if |2 > L, e

and

M, , if |z|>L,

and let ¢(z) such that ¢(0) = ¢'(0) =0, qu(")(a:)l <C, for0<n<35,
and ¢"'(z) > ¢ > 0 for all = in the support of f.
Then

(3.) ’/_+°°e,~t¢(£) f(z)dz — (El_g%(_o_))l/z Gsign(t) mi/4 f(0)’

< 4B (Iflleo + M1 + 5727

, My, i |z|<L,
1f"(2)] < (M; < M)

N,
a4+ )
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Simalarly,
too . /2 ,
itp(z) _ 7r sign(t) 7i/4
b ‘/0 e f(z)de (2|t|¢"(0)) ¢ f(o)‘
(3.b) N M
< AB@)t™ (Iflloo + N1 + 5727 + M + 577 ) -

We also have the usual L-independent estimates

0 | @i () w0 50)

< AB($) ([ flloo + 11, + I1F"111)
and
too T 1/2 .
ezt¢(z) T — sign(t) vi/4
(3.d) |/0 fla)de (2It|¢”(0)) - f(O)‘
< AB@®)t™* (I flloo + Il + 1£"111)

where A is a universal constant, and B(¢) i3 as defined above for = in
the support of f. Here, sign(t) stands for the function which equals 1
ift>0and -1 3ift <O.

PROOF. It will obviously be enough to consider the case t > 0. Consider
the change of variables given by

u(z) =z %(:—;2

and its inverse z(u). We begin by obtaining regularity properties of u
and z.

Let k£ > 1. In what follows, A; will denote a collection of universal
constants depending only on k. First, we consider |z| < 1 and define

bi(2) =272 §(z).

Since -
¢1(x)=/ / ¢"(stz)sdtds
o Jo

[$1llcx < Ak Illcr+ -

we have
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Next, define
$2(z) = v/ ¢1(z), lz| <1,
and note that
Yoo @) ¢ P ()

1iiy+-tp-ip=k
d*gy(z) | >0

dz*¥ k 1/2( ) ’

which can easily be checked by inductlon. As a result, we have

(L+lIgaller)* (1+|Ipllcr+2)*
l[p2llcr < Ak = < A =V R
0 0

where we have used the fact that ¢;(z) > ¢y/2. Therefore, since u(z) =
z ¢(z), we conclude that

d”U(ﬂf)l < A (1+H¢||c'=+=)’°

k172 , when |z| < 1.
c

When |z| > 1 we obviously have that

2 L SR SR T Ty

i=1 1- i1+---+p-ip-k
1; >0

hence .
(1+|I¢llcx)
4+k-1/2 ’
Co

[u®)(z)] < Ak z| > 1,

so altogether we obtain

”u“ (1 + “¢”C"+2)k
cr < HE172 :
0

Finally, since
Z'(u(z))u'(z) =1,
and, for k > 2,

d* U =
T @) W @) = 3 Kip o= (u(x))
p=1
S @)t ()

Liy+edgig=k+1—p
1; >0
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and

u'(z)| = ]¢§§zc, =gt

we obtain by induction that

Vﬁﬁﬂsm(%%%“u+mmm?

3‘
N

With our previous estimate for ||u||cx we then conclude that

d2w)) o, (14 [8llern 2
du Tduk | = < A ( cg' ) )
Then
+w . +w - 2 ~
/ e'9(®) f(z)dzz/ e f(u)du,
for

flu) = f(=(w)) ' (u).
Note that f(0) = f(0) \/2/¢"(0). Since z'(u) < ¢!,
Ny, if |u|<cL,

[f'(z(u))l < {

N, , otherwise,

Mla if |U|SCL,

M, , otherwise.

" (2(u))] < {
As a result, using stationary phase, we arrive at

|/ Wmﬂ@“’(%ﬁﬁ)ﬂw“ﬂm

<t (L] + 1L+ 15)),

for
h=/mmwmwwwwm,
h=/meMMVWVMMm
=/Qm0ﬂuw»£wfmh
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Now,
1+ ||d|lcs \ 54
51 < Bellos Wfll [ lontw)l du < A (FELEE)
o
Next,
Co \ (1t lI¢llce e
<
|I2|—A(\/a)( & )
-(N1 / lg¢(u)| du + 2 N, / t-1/2u—2du)
|u|<cL |u|>cL
1+ Idlles ) 2N,
< A (= %lcs 22
<4( o ) (Ml + 57)
Finally,
|I] < Myc™3 / lge(2)| dz 4+ 2 My ™3 / t7124 "2 du
lui<e L lui>cL
2M.
-3 2
<Mc ||91||1+m»

which proves the first claim in our lemma. The one-sided integral is
estimated in the same way. The L-independent estimates are obtained
in a similar manner, except that integrals I, and I3 in this case are
estimated directly by

Co (1+]9llce\" |\ o
L] <
1Bl < 2= () 1 s Nl

3] < ¢ [1f"llo Nlgelly -
The one-sided estimate in this case is also analogous.

This lemma will be complemented with the following trivial results:

Lemma 2. Let f € C(R), and ¢ such that |¢'(z)| > d for all z in the
support of f. Then

(4.a) 'Aeit¢(z) f(:z:)d'b' < ¢! (”fc;”l 4 ”sznul) |
‘/eim&(z) f(z) d1:| < ¢! (”f_jz”i)
R
Y +4t7? (”Z;Hl + ||f’d<;§”111),
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| / ) (a) da| < 1047 (Mf"nl LA
R
I|f¢m ||fl ¢r:)2“1) ‘

(4.c)

[
+ 7

PROOF. Integration by parts yields

/me“"’(’) f(a:)dzz-i—lt/eiw(z) d‘i (;‘,((z)))d
(5) = Z_lt/ itg(z) i’g da

_ l ite(z) f((l?) ¢ (III) dz
T

This yields (4.a). For (4.b) we perform another integration by parts to
the first integral above, which equals

l :t¢(z) f (.’1}) zt¢(z:) f’($) ¢"($)
t2/ e Tt e / P "

which yields (4.b). For (4.c), we integrate by parts also the last integral
in (5), which gives

o [(F@8@) |, f@ @) @@ s g
e ( F@r Ty (@) ) 4

as needed.

Lemma 3. Let f € C%((a,b)) and ¢ such that ¢"(z) > co > 0, and
¢'(z) #0 for z € [a,b]. Then,

| /"e,-w(z) f(z)dz| < -1 |b—a|(”f;’”°° N Hfllooll¢”l|oo).
a 0

Co

REMARK. The point in this result is that the estimate is independent
of inf |¢'(z)]|.

PROOF. f vanishes at a at order 2, which implies

@] <N lloo |z —al®, 1F'(@)] < Nf"lloo |z — al.-
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So,
¢'(z) 2 co(z —a).

The lemma follows trivially by integration by parts, since

[ (-5 e

The following is a trivial variant of the usual Van der Corput lem-
mas.

Lemma 4. Let f be differentiadle in [a,b], and ¢ such that ¢"(z) >
co >0 for z € [a,b] Then,

b
[ fa)da] < 82 (1 flln + 111).

a

PROOF. Let R =t"1/2¢}/? and consider
E; ={z: |¢'(z)| > R}, E, ={z: |¢'(z)| < R}.

It is obvious that E; has at most two components, and |E2| < R/c¢p .
The contribution of the integral over E, is thus trivial. The integral
over E,, after integration by parts, equals

f(z)
it ¢'(z)

+:(L — I)
9F,

for

- eitd(z) f'(z) _ itg(z) f(2)8"(2)
I] /El t(ﬁ'(x) d:b, I2 /;31 € t¢'(;,;)2 dz .

The boundary terms contribute with at most 4| f||s/(t R), which is
fine, and the I; are trivially estimated by

“f,“1
l < =
| ll - tR

e @), _ 4l
T e
5 9@ TSR >

which gives us the bound in the claim of the lemma.

12| < [ flleo
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2. The heart of the matter.

In this Section we consider a function p periodic with period 1,
average 0, and Fourier coefficients satisfying

i) < Mn|™, o 21.

We also assume that

(6) >~ Vinl la(n)] < +oo

n#0

Our estimates will depend on M in a trivial way, but since for the
applications we will be satisfied with M = 10, we will not bother to keep
track of the dependence on M. In fact, we will be mostly interested in
f(n) = |n|™°, with s = 0 + it and o > 1, and for the applications to
the energy asymptotics we will be dealing with

1 e—'}rin
=di . 2 _ Y S
p(z) = dist {z,Z} 5 p(n) R

However, our estimates will be independent of the value of the sum in
(6), which could even be A-dependent.

Consider also ¢ smooth, defined on [a,b], and satisfying the cru-
cial nondegeneracy condition —¢"(z) > ¢o > 0: of course, the same
argument would work if we assumed ¢"(z) > ¢, with only a few signs
being flipped, but we choose this sign in our non-degeneracy condition
because it is exactly the one satisfied by the function ¢ in our applica-
tion to the sum ¥q(Z).

We also assume the bounds

’¢(n)($)|gcn, 0<n<5, forz€l[a,b],

where |b — a| is bounded by a universal constant, and define

sw= ¥ 1(3)r(re).

lE(Z+~)N[aAr,bA]

where « is a real number.

In our applications, we will be concerned with the following two
situations: on the one hand, we will have functions f and ¢ independent
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of ); this simplifies some estimates, but the amplitude function f does
not vanish at the endpoint b, which gives origin to a certain diophantine
analysis of the phase ¢. On the other hand, we will have to deal with
functions f and ¢ which depend on A, which will force us to keep track of
error terms in a careful way: furthermore, there is no obvious multiscale
analysis in the problem and we thus have to analyze blow up manually.
However, in this case the amplitude function is supported inside [a,b]
which avoids diophantine discussions.

We summarize both cases as follows.

Case I f € C§°((a,b]). In this case, we shall impose that the
bounds satisfied by ¢ and f are universal, t.e., independent of A. The
obvious singularity in the sum appearing around ! = bA will give rise
to a purely arithmetic behavior of the sum.

Case II: f € C§°((a,b)). In this case, the functions ¢ and f
will depend on A in the sense that the bounds satisfied by ¢ will grow
(slowly) as a function of \. We will thus keep track carefully of the
dependence of our error bounds in terms of the regularity assumptions
of f and ¢. The absence of singularities in this case will make the study
of the sums purely analytical.

We wish to understand the behavior of S(A) for large A in both
cases.

Case 1. As mentioned above, f and ¢ will satisfy universal bounds for
its derivatives of the type

1¢'(@les <C,  —¢"(@)2c0, (fllc==C,

for constants C' and ¢y independent of A\. As a consequence, we will not
keep track of the dependence of constants on the regularity properties
of either f or ¢, and the constant C will be ubiquitously used to denote
a universal constant depending on the regularity properties of f and ¢
as stated above. Another constant will play a role, though, which is
#'(b) in the case that it is a rational number p/q: in this case, some
constants will depend on ¢, and this dependence will be made explicit.

Let (z) supported on (—o0,b), identically equal to 1 on [a,b —
A"1/2-¢€] for € = 1/20, ¢ as smooth as possible. We denote by
@

In=[b— 27127 b
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the set where ¢’ is supported.
It is clear that

l l
S(\) = fl= A3(5) ) @A) + O(|| fll oo A/%70)
= 21 (5) (o)

and that in the new sum above, only finitely many terms are non-zero.
Moreover, u(Aé(z/A))(f)(A~1z) is a piecewise smooth function of
compact support. We set

ps(z) = (fe)2)
which satisfies ||¢f|lco < || f]loo , and

, if z¢1I,,
5@ <1 .
A/2+e if z€ly,

if = ¢ IA )
]cp (1)' = /\1+2£ , if z€ly,

The Poisson summation formula yields

> k(2e) e

1€+~
_ Zezm'l-y [+wu ()‘ ¢(§)) o (A" 1z)e~2miel gg
=S / (2(3)) psA 2y izl d

= z n) 627”1‘7/ 27ri(An¢(z/A)—zl) le()\_lx) dz

leZ
n#0

b
= Z #(n) e21r:17/ 2rid(ng(z)—zl) le(l') dr .

lez
n#0

We will show below that the sum is absolutely convergent, due to the
fast decrease of /1 assumed in (6), and the fast decrease of the integrals;
therefore, the infinite sum can be taken in any order we like.
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Define
. b .
I(n, l) — 627"'7/ eZm;\(nd:(z)—-z:I) (pf(.”l?)dl' .

For integers.n and [, define z,; as the unique point (when it exists)
satisfying ¢'(z,1) = l/n. Note that

-1 l ! > J— l I
C |72 |Znt — T | > (16" ———
Define also
9(71, l) = nqﬁ(:vn,,) — lwn,l
and
0¢(n, l) = )\1/2 _1__ e—sign(n) mif/442mi(A 6(n, )+~ 1) .

In ¢ (zn)|'"?

We write o4 to point out that o depends only on ¢: the amplitude f
does not appear.

We begin with the following crude estimate, which is a trivial con-
sequence of Lemma 4.

Lemma 5.
[I(n,1)] < C A7V |n|7V/2,

This already implies that only the terms appearing for small n play
a role in our sum.

Theorem 6. With the previous notation, we have

SN = D in)ent flzag)a(n, )+ A(N),

n#0
lEZ
Tn1€(a,b]

where e, = 1, unless ¢'(b) =1/n when e, =1/2, and
A(X) = o(AV/?).
If ¢'(b) = p/q, then we have
AN =0(C /27y y>0.
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If, however, ¢'(b) is irrational, the o-term depends on the diophan-
tine properties of ¢'(b).

In any case, |A(N)| < CV/X for C which only depends on || f||c2
and B(¢).

PROOF. Note that there are three types of pairs (n,[): those for which
¢'(z) = l/n for some z = z,; € [a,b), those such that ¢'(z) never
equals //n for any = € [a,b), and those (if any) for which [/n equals
¢'(b) (¢'(a) will play no role here since f vanishes to infinite order at
a). We need to deal with these cases separately, and we thus write

S(A) = S1(A) + 52(A) + S3(A),
where

SSN=x f(n) I(n,1),

¢'(a)<1/n<¢'(b)

SN =X > An)I(n1),

[/n=¢'(b)

SN =2 > An)In,D).
l/n¢[¢'(a),8’ (b)]

Sum S;: For every term in this sum, the integrand in I(n,!) has a
stationary point z, ;. Our stationary phase analysis then shows, using

(7), that

'/\I(Tl,l) - f(a:n,l)o'n,l| S )‘En,l ’
(8)

/\1/2-{»25
. -3/2 ; 1+2
En,I—C(/\ |n|) (1+n11n{)\ i |n|1/2dist {In,,’I,\} }) ’

where the minimum appears as the best of estimates (3.a) and (3.b)
above.

The terms in S; will be grouped into three categories. First, those
for which z, falls far from b, and second, those for which z, ; falls near
b. Within the second class, we will have to consider separately those
that appear only when n is large, and those with n small.

Fix n in the sum above. For each n, the number of terms in the
sum in [/ is at most C |n|. And of those terms, the number of [ for which
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1 falls within d of I is bounded by at most 1+ C |n|(d + A™1/27¢).
If, say, ¢'(b) = p/q is rational, and we take d > A\~'/2, we have

-1
42 bzl 2 €7 |2 -2 T

which means that, if
In| <|i¢ligz g d™,

then there are no [ such that z,; falls within d if Ix. Similarly, if ¢'(d)
is irrational, the number of such [ is at most 1 for

n| < |l¢llcs d?

if d > A71/2=¢, We denote this unique ! (when it exists) by lo(n,d, )),
and we denote by ng(d, ) the smallest |n| for which n has such an .

After all this, we choose
{ I¢llce » if ¢'(b) is irrational,

d=/\_7€, ct = _
I¢llcs a7, ﬂwm=§,

and break up
VrEW = Y I+ S an)I(n,)
Inj<ct d~! |n|>ct d?
d(zn,1,Ix)>d all !

+ > a(n)I(n,lo(n,d, X))

ctd=>|n|>no(d,N)

where it is understood that if ¢'(b) is rational, the sum in the third
term.above is null, and the sum in n also in the third term is extended
only to those n with a corresponding ly(n,d, A).

For the first term we use (3.a) to obtain

En1 < C(M|n|)™%/2 (1 + |n|71/2 /\1/2+95) ’

Since |n| < ¢! A7¢, we obtain (recall ¢ = 1/20),

En,l S C ln|—2 /\-—1+9£
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and, using again € = 1/20, we obtain

. Ai(n)I(n,1)
[n|<et a?
d(zn'l Jn)>d

> M) fEag)oni+ 0NN \ﬁg‘—)D .

|n|<ctd? n#0
d(zn,1,I12)>d

For the second term in (9), we use the trivial estimate (3.b) in (8) to

conclude that
En,l - O(/\_1/2+2€ |n|—3/2)

and since |n| > cf A7¢,
En,l — Oq()‘—l/Z—s |n|—15/14)
and we obtain

> Aa(n)I(n,0)

[n|>ct d-1
= 3 M) f(En)oni+ 0, (3 Y Jfff?ﬂﬁ) -

|n|>ct d-1 n#0

Note that, here, we could simply have used Lemma 4 to conclude that

both I(n,l) and o, give a negligible contribution, but this would have

required, either, to use the stronger assumption that ¢ > 3/2, or to

obtain an error estimate which depends on the value of the sum (6).
Finally, for the third term, it is clear that

)‘lim no (A7, 4) = 00,

which, using Lemma 5, implies that

> I d )| <C Y lam)] (An)) 2

In|2n0(d,) |n|2n0(d,A)

S C/\_1/2 |Tlo(d,/\)l_a+l/2

= o(A71/%).
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Similarly, observe that

Z ﬁ(n) f(xn,l) On,lo(n,d,\) < C,\l/2 |no(d, /\)|—0+1/2
|n|>no(d,A)

= o(A1/?).
Therefore, we can conclude that

Si(\) = > i(n) f(zn1) ong + o(A/?).

l/n€[d'(a),8'(b))

Sum Sy: If ¢'(b) is irrational, this sum is empty. We thus assume
that ¢'(b) is rational.

If we tried to proceed as we did for S;, we find that E,; is too
big, and this has no remedy. This is so because we would be comparing
I(n,l) with the wrong thing: it is not f(z, )0, what we should look
at, but f(z,1)0on,1/2 instead. We proceed as follows:

Say ¢'(b) = l/n. We have, by (3.d), that

1
621”17/0 627rz/\(n¢(:c)—l:c) Lpf(l‘)d'l?

1
— leril'y/ eZ‘rrb\(nd)(z)—lI) f(.’L‘) dz + O(,\—l/2—5)
0

oy f(@n 1) on + O((|n|A)~%/2) + O(A~1/2~%) |

which yields

1 ~ —&
SN =5 Y in) f(zn1)oni+ OA/TE),
21/n=¢'(b)

Sum S3: As for S, we deal separately with those ! and n for
which ¢'(z) — {/n is small or large, and for those for which it is small,
we distinguish between small and large n.

When |¢'(z) — I/n| > d for all * € [a,b], we use (4.c) to obtain

/\—3/2+5 )\—2 /\—2
N =
I(m.1) O( P P aEE TP d4> !
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which implies

S A

{(n,0): |¢'(z)—1/n|>d}

—3/2 f(n) E 1 1
=CA nz;ol n ‘ d gt Eg )

If we now set d = A~ we obtain
> i(n) I(n,1) = O(A™Y/27%).
{(n,0): |¢'(z)—1/n|>d}

When 0 < |¢'(b) — I/n| < d, for a fixed n there are at most 1+ |n| d
terms in the sum. And, as before, if ¢'(b) is rational and |n| < d7!,
then there are no [, and if ¢'(b) is irrational, there is at most one such
[, which, if it really existed, we would denote by ly(n,d, ); we denote
by ng(d, A) the first |n| for which n has such an I. Therefore we break
up the remaining part of Ss given by 0 < |¢'(b) — {/n| < d, into

> i(n) I(n,1)

{(n,D): |¢/(z)~1/n|<d}
[n|>d!

and

> awn)I(n,l(n,d,N)) .

[n|>no(d,A)

The first sum above is trivially controlled by (4.c), which implies
I(n,1) = OA™" 3 |n| ™),

hence

> i(n) I(n,1) = O(A~1/27¢)
{(n,D: |¢'(z)=1/n|>d}
In|>d~?

For the second term, note as before that limy_., no(d,A) = oo, and
therefore, using Lemma 4, we get

> AmInh(nd )| <C Y Jam)] (Al

In|2no(d,A) [r|2no(d,A)

<C /\—1/2 n(;-o’+l/2

= o(A71/?%).
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All this implies that
S3(A) = o(A1/?)

and the theorem follows.

Case II. In this case we will not need ¢(z) since f is compactly sup-
ported and smooth. In fact, u(Aé(z/N)) f(A~1z) is a piecewise smooth
function of compact support, and by the Poisson summation formula,
as before,

5 u(2e5)) 1070

l€EZ+~

b
=\ § [L(n) e21ril~// e21riz\(n¢(z)—zl) f((l‘) dr .
A a
n#0

Define, as before,
b
I(n,l) — eZwil-y/ e27\’1',\ (ng(z)—zl) f(IE)d.’L'
and z,,; as the unique point (if it did exit) satisfying ¢'(zn1) = I/n.

Also as before, we have

-1 11 I
2 fent = 2w 2 16"l |- = |

gl

g |———

n n

Define also 6(n,l) and o(n,l) exactly as in Case I.

Theorem 7. With the previous notation, we have

S(A) =Y in)o(n,1) + O(B(#)lIfllcz (1+[1f'lls0)) -

n#0
I€Z

PROOF. In this case now there are only two types of pairs (n,!): those
for which ¢'(z) = I/n for some @ = 2, € [a,b], and those such that
#'(z) never equals [/n, and thus we write

S(A) = 51(A) + 52(A),
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where

SSN=xr Y wn)I(n),

l/n€[¢'(a),¢'(b)]

SN=x Y wn)I(n.
U/n¢[¢'(a),d'(D)]

Sum S1: We proceed as in the previous section,
|/\I(TL, l) - f(l'n,l) Un,ll < A En,l 3

where, by (3.c), E,; is given now by

Eng = CB($) |Ifllc: (MIn)~*/2.

For each n, the number of terms in the sum is at most (3 + C;)|n|.
Therefore, we can conclude that

Si(A) = A > a(n) f(zn1) ong + OCT B(¢) | fllcz A71/?)
1/n€l[¢'(a),d'(b)]

for

Ct = max{1,C;}.
Sum Sy: By Lemma 3, we have
[I(n,)] < C||fllc2 B(¢)(Anl)~",

which we use when || < 2C|n|' 7%, for § > 0, to obtain

3 i(n) I(n, )] < C A7 fllc2 B(6)CT D 'ﬁ?l -

{(nD: <2 CT[nf1=0} n#0
Outside of this range, we have

11
> == T 1,01 .
'_2 n" for all z € [a,b]

!
n

6/(2) -
Therefore, (4.b) implies

Cliflic: B(¢) (n® | [n*  n*
e CIME (12 MO 14) :
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Therefore,

la(n)|
[n|1—2

> i(n) I(n, D] < CA72||fllc= B(¢) Y

{(n,): |l|>2C}|n|t-6} n#0

3. Energy Asymptotics.

We plan to apply our previous estimates to the function

Ve(Z) =2 2 > n(1 2713 u(Z 2 g(127113))
1€(Z+1/2)N[1,a-1/221/3Q,]
where
1
— & . 2 _ -
p(z) =dist {z,Z}" — 13
1 0?2 1/2
o =2 [ (Vin-35) o
a_1/2/<y(r) a92>1/2
= -— dr,
m T r ),
Q
77( ) ma

-1/2

1 QZ
P(Q) = VTF(T) - 1’_2 dr
+
r2(a'/? Q) 2\ ~1/2
:a—3/2/ (y(r)_‘a? ) dr .
r1(al/2Q) T T

Here, r;(Q2) are the two points where y(r)/r equals Q2/r? (see below)
and Q. is the supremum of the Q for which

yr) @

r r2

is positive somewhere.

The crucial result we need is the non-vanishing of the second deriva-
tive of ¢. This was proved in [FS8]. Because of its vital importance,
we display it explicitly:
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Theorem 8. There ezists a number cg such that

—¢"(Q) > ¢y >0, for all Q€ (0,9,).

We will first recall some known results (which appear, for example,
in [FS8], [Hi] and [Hu]) which we will need here. After that, we will
complement them with further properties of ¢ and P, some of which
are taken from similar estimates appearing in [FS2-8].

Review of earlier results. If we set u(r) = ry(r), then u has a

unique maximum at r = r., where r, ~ 2.1. We set Q2 = u(r.). Then,

u is increasing on [0,7.] and decreasing on (r.,+o0). This is a crucial

fact whose proof goes back to Sommerfeld, and can be found in [Hu].
Around 0, u satisfies the expansions

oo
u(e) =Y una™?,  wp=1, ug=0, wuy~—1588.
n=2

Rigorous numerical bounds for u4 can be found in [FS8]. However, it
is easy to see analytically that uy < 0. We also have

oo
Zlunlpg<+00, p0>07

n=2

therefore, the function
oo
f(z) = Z upz™
n=2

is analytic in a small neighborhood around 0.
Around infinity, we have the expansion

144 N _ure

u(:t)=?2bnz /2
n=0

where

b0=1, blN—13, « ~ 0.772.

_VT13-T
==

Again, rigorous numerical bounds for b; are found in [FS8], and it can
be seen analytically that b; < 0. We also have that

oo
Y lbalpf <400,  p1>0,
n=0
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and, as a result, we have

144 . _,
(10) u(@) = —5 f(z %)
for a function f analytic in a neighborhood of 0.
Given any Q € (0,Q.), there exist two numbers, r;(Q2) < ro(Q)
where u equals Q2. We then have

Lemma 9. The following formulas hold:

-1/
() =2 ; " a9,
where
1/2 dz
FO) = [ (ue) -9}
FI(Q) _ ——Q/ (u(”c) _ Qz);1/2 d_;l,_ ’
r2(Q)—6 2o
FI() = -l (/ (u(@) = 92) """ y(e)do + c(9)5—1/2> ,
- r1(Q)+6

where c(2) 1is uniquely specified by requiring the finiteness of the limit.
Moreover, if b is any number less than ro(2), then

d? /b 1/2 dz
— u(z) — Q2 —_
a7 |, -, S

b
— lim (/ (u(z) — 92) % y(z)dz + c1(Q) 5—1/2>
r1(Q2)+6

again, for a constant c; that makes the limit finite. The corresponding
symmetric case also holds.

Furthermore, F' can be extended as an analytic function to a com-
plex neighborhood of (0,Q.]. However, 0 is an essential singularity of
¢ (or F), and, moreover,

: " Y _ _
m ()W =k,  y=
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where k 13 a strictly negative real number.

A consequence of this which is of importance to us is that although
¢ and ¢' remain bounded as we approach 0, the second derivative blows
up slowly, and third will blow up much faster. In other words, ¢ does
not satisfy sensible non-degenerate multiscale analysis bounds.

Further background results. Here we will obtain growth and regu-
larity properties of the functions ¢ and P above. We define

-2

g(z) = /; (t- 1)"1/2 t7dt, for 0<z <

N =

We begin listing several elementary results of calculus.
Lemma 10. For v € R, we have
(11.a) ¢ (z) < Ci (] +1)F a2k for k>1.

Furthermore, of v < —1/2, then

(11.b) L2 (z) <100 100
. —_— S g+ T) S + —
ly+1/2] =77 Iy +1/2|

and if v > —1/2, then

[ G g |

(11.¢) -—|7+1/2|

100
< g4(z) < <1oo+ ——-—) g 72t
(@) hT1/2]

where 0 < 2 < 1/2.

PROOF. Estimate (11.a) is completely trivial. For (11.b), we use
2 +oo
/ t71/2 gt < g (z) <4 +/ (t—1)"V2H7 gt
1 2
For (11.c), we use the fact that ¢t —1 > t/2 for ¢t > 2 to write

=2 -2

z z
/ t12dt < g (2) < 21013 4 2/ t712 gt |
1 2
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which implies (11.c) after using the fact that 217+1/2 < 4 z=2v-1,
Lemma 11. Define

f@) = (@207
Then, |f®(Q)| < Cr Q7% for Q< Q. /2 and k > 0.

PROOF.

(12)  f()=97"g(

Sl

) , for g(z) = (1 - 12)_1/2 .

Lemma 12. Gwen 8 > 0, 6 > 0, 2, > 0, 7, d and w, for n =
0,1,2,... let

n=0

where v, =T+ fn and |y, +1/2| > 6 for alln > 0.
Assume that 3" wnp2™ has a radius of convergence p and Q2 < p/2.
Then,

dk f (Q)) - C Q2ri—k f T<-1/2, N Q<02
e s when ,
dQk T | cQittR, of 7> -1/2, -

for a certain constant C which depends on everything ezcept 2.

PROOF. Let us consider first those n such that v, > —1/2. In this
case, using Lemma 10 we obtain

d*m,

l
i ()]

as! Q.

k
()] < Y Clhki6) (n+ D=t @rmte=t=D gt
=0
< C(k;8) (n+ 1)k Q2w+ qd=1-k
If, on the other hand, v, < —1/2, the | = 0 term above has to be

estimated by
C(k;6)(n+ 1)k Q2wmtd=k



194 A. CérpoBA, CH. L. FEFFERMAN AND L. A. SEco

and we obtain

d*m,

L0 ()| < C(ki8) (n + 1) (2141 Q175 4 Qrmra=h)

< 2C(k;6) (n + 1)k Q2wmtd=k

because 2 < (2, . Since we can only have v, < —1/2 for finitely many
n, we conclude that

E (k - —
n=0 On )(Q) - ko (Q) ’

where the sum converges absolutely, and we obtain the required esti-
mate.

This ends our presentation of calculus results. In what follows we
will develop the regularity bounds for ¢ first and then P.

Lemma 13. For constants C,, and ¢ > 0 we have

d"é
aqr

<C QI (n>9)

l6(t) < Co, 161 < Cu,

and

—4"(Q) > e

PROOF. As in Lemma 9, in order not to bother with the presence of
the constant a, we will prove this result for the function F instead.

The inequalities for ¢ and ¢' are obvious. For the higher deriva-
tives, the bounds outside a neighborhood of 0 are a direct consequence
of the analytic extension of F' to a complex neighborhood of (0,Q.],
which is Corollary 1.3 in [FS8]. We are thus left with proving the
bounds in an arbitrarily small neighborhood to the right of 0, given by
(0,9.), for a small universal number Q. to be picked up later in the
proof.

Arguing as in formula (4.1.a.b.c) [FS8], using Lemma 9, we write

—F”(t) =L+ + 13
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for
b
L= [ (ur)-2) " yryar,

I = Jim </ (u(r) = 9%) ™ y(r) dr - Gl(a)é—l/z) ,

80 \Jri(@)+5
ra(R)—6 32
I = %in(l) / (u(r) — QZ) y(r)dr — Go(Q)671/2 | |
- b

with G; such that the limit is finite, and a and b any numbers such that
r1(Q) < a < b < (). In practice, we will take a and b such that

u(a) = u(b) = Q2

for Q. a small number, and later, we will take Q. < Q. .
First, I;(2) is C* in a neighborhood of 0, and therefore satisfies

ldk[l

W(Q)] < Ci(Q), for Qe€(0,9.),

no matter which {2, we will end up choosing.
For I,, we write I, = diz/dQ, where, by Lemma 9,
a

L(Q) =9 (u(r) — Q%)
r1(Q) r

-1/2 dr

Let r(t) be the inverse of u near 0, u(r(t)) = ¢, and set w(t) = r'(t)/r(t).
Changing variables above we obtain,

Q?
L) =0 (t - Q?)
QZ

T2 w(t)dt

Q202
= 92/ (t—1)""? w (tQ?) dt
1
which implies, after differentiation,

a-2q?
Iz(ﬂ)=29/ (=177 h(t02) dt—2(02 - 02) T w(d) 2
1
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for
h(t) = tw'(t) + w(t).
Next, we recall that u(r)=r f(r'/?) for f analytic around 0 and f(0)=1.
Therefore,~u1/2(r) =~r1/2 f(rl/z), for f also ~a,na.lytic around 0, or
ul/?(r) =f~£r1/2), for f also analytic around 0, f(0) = 0 and f'(0) = 1.
Therefore, f has an analytic inverse g, with g(0) =0and ¢'(0) =1, and
therefore, r1/2 = u/2 §(ul/?), for § analytic and §(0) = 1. Squaring
both sides, we obtain 3
r(t) = t4(t'/?)

for § analytic around 0, 5(0) = 1. As a consequence of this, we also
have

w(t) =t~ W(t/?)
for W analytic around 0 and
h(t) =t~ H(#/?).
It was shown in [FS8] that H(0) = H'(0) = 0, and H"(0) = —2y'(0),
which implies that in fact
A(t) = fu(#/%),  fa(0) = —y'(0).
Therefore,

= i haz™, f: |ha| p3 < +o00,

n=0 n=0

for p, a small universal constant.

We break up () = f1(Q) + f2(Q) for

Q202 Q
f]l(Q)=2Q/1 (t—1)"Y2h (¢t Q%) dt = Z‘)h Q't" g, /2(9)

-1/2

f(Q) = -2(Q2 - Q%) T w(@) Q.

Lemma 11 shows that fék)(Q) is bounded for all £ > 0 and Q@ < Q./2
by a constant that may depend on .. For f;, we apply Lemma 12
withd =1, 7 =0 and 8 = 1/2 to obtain

d* £,
d({L(Q)]<CLQ )k
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We conclude the analysis of I; by observing that all the bounds we
obtained are in agreement with the statement of the lemma.

We continue now with I3. Denote by r(t) the inverse function of
u(r), such that u(r(t)) = t. We proceed as in Section 4 in [FS8] to
construct w(t) = —r'(t)/r(t) and then set h(t) = tw'(t) + w(¢) which
allows us to argue as before to obtain (equation (4.21.a) in [FS8])

Q-2q?
L = zQ/ (t—1)"12h (:Q2) dt — 2 (Q2 — %) w(?)0? .
1

By (10) we have that r?u(r) = g(r~*) for ¢ analytic in a neighborhood
of 0, with ¢g(0) = 1/144. Therefore, setting z = r~ and u(r) =t
we have t = 2%/%g(z), or t*/2 = j(z) for a new § analytic in a small
neighborhood of 0, with §(0) = 0 and §'(0) # 0. Thus, § has an
analytic inverse, f, with f(0) =0, f'(0) # 0, and we have z = f(t*/2%),
or z = t*/2f(t*/2?) for f analytic around 0 and f(0) # 0. Therefore,
r(t) = 27Y/* = t71/2y(4*/2) for a new function v analytic around 0
which also satisfies v(0) # 0. Hence,

(13) r'(t) = t 732 v, (t2/?), (1) = t 750, (t%/?),

for functions v, and v,, analytic in a small neighborhood around 0.
Therefore,

h(t) = ;llgf,,(t"/?),

where, by (13), fa(z) is analytic in a small neighborhood around 0,
|z| < pi. It is observed in [FS8] that f,(0) = 0 and f;(0) > 0 (Equation
(4.20) in [FS8]). This allows us to put

I3(2) = f1() + f2(2),

where
Q)= 2hama(Q),
n=1
(14) 9—293
1
and

F2(Q) = —2(22 - 2) 2 p2) 02 .
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If we make sure that

(15) 02 < = i

N =

we can invoke Lemma 12, with 7 = —1 + a/2, which is less than —1/2,
B =a/2 and d =1 to obtain

d_k_ﬁ.(g)‘ < C(Q 'k) Q- 1to—k

dQk - i '

This ends the proof of all upper bounds in the statement of the lemma.
For the lower bound for —¢", we use the notation in (14) to write

AQ@) =2k m(Q)+ f1(Q),  A@) =) 2k, ma(9Q).
n=2

Applying Lemma 10 to the first term above with v = —1+a/2 < -1/2,
and Lemma 12 applied to f;(2) with 7 = —1 + a > —1/2, we obtain

f1(Q) > chyQ~1Fe /1) < C(Q.).

Since all other terms in the break-up of —¢" remain bounded as 2 — 0,
we conclude that

—-¢"(Q) 2 Q7 Q<.
for Q. < ., as required.

We now turn our attention to P. In this case, rather than intro-
ducing a new function that allows us to do without the bothersome
constant a, we will simply proceed as if a did not appear in the def-
inition of P. This simplification clearly does not change the result,
except of course, that the details of the proof will not contain the a
dependence.

The following result is a trivial adaptation of Lemma 1.2 in [FS§]
for P instead of ¢.

Lemma 14. We have P € C*(0,9.). Furthermore, P admits an
analytic extension to a neighborhood of (2. .
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PROOF. Let
r2(Q)—6

H(5,Q) = Q/ (u(r) — 92) "% rdr.
T (Q)+6

Consider the analytic change of variables given by
Q2 —u(r) 1/2, if r>re,
(16) im=1{ " .
—(Qf—u(r))/ , i r<r,.

Note that ¢ is smooth and strictly increasing in the range (0, +00). We
can therefore consider its inverse, r(t), and use it to rewrite

t2(6,Q2)

H(6,Q) = Q/ (D2 — )% () dt,

11(6,Q)
where .
ti=t(r14+6), ta=t(rs—6), D*=Q2-0%, w(t)=r'(t)r(t).
Note that w is smooth on ( -2, ), and that
- h=-DA+n@), t2=D1+m(),
' cd<|r| <Cé for 1 =1,2,
uniformly on compact subsets of (—.,.), which implies that
D™ty
H(5,Q)=Q (1—2) 7% w(tD) dt

D_lh

converges as § — 0 uniformly to the C? function

1

(18) H(O,Q):Q/ (1-1¢%)

-1

—-1/2

w(tD)dt = P().

To show analyticity around 2., note that w(t) is analytic around 0;
thus, it admits a convergent power series expansion given by

s <)
w(t)=Y wat", [t <p,
n=0



200 A. COrpoBA, CH. L. FEFFERMAN AND L. A. SEco

which implies
oo 1
PQ) =0 w, D"/ 1-2)"2mar.

n=0 -1

The integral corresponding to the odd terms in the sum is 0, which
implies that in fact

oo 1
P(Q) =0 ws, 192"/ (1—12)7? g2n gy
n=0 -1
which defines an analytic function of Q around €., since D? now is
analytic in Q.

Lemma 15. For constants C,, and ¢ > 0 we have

d*P

d—m(Q)] <CLQ3F . |P@Q)| > 0.

PROOF. Lemma 14 establishes our inequalities outside an arbitrarily
small neighborhood of 0. For a neighborhood to the right of 0 given by
(0,82, ) we proceed as before, setting

f)=hL+L+1I

for

b
L =/ (u(r) — 02)™* rdr,

L= / (u(r) — Qz)—l/2 rdr,

1(R)
T2($2)

L = / (u(r) — 92) " rar,
b

with @ and b any numbers such that 71(22) < a < b < 72(2). We will
take a and b such that u(a) = u(b) = Q2 for Q. a small number to be
picked later.

I is C*° around 0, and thus satisfies all the required upper bounds.
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For I, denote by r(t) the inverse function of u(r) around 0, such
that u(r(t)) = t, r(t) < r., and set w(t) = r'(t)r(t). By the same
argument as before, we can see that

w(t) = t folt/?)
for

fo(z) =) waz"

n=0
analytic for |z| < p3, ps a small universal number, and f,(0) # 0.
Then,

Q2
L =/ (t—02) 7% w(t) dt
92

0-202
= Q/ (t— 1)1 w(tQ?)dt
1

= i Wa Q7" g14nj2 (QE') '
n=0 ]

Thus, Lemma 12, for Q. < p3/2, 7 =1, =1/2,d =1, yields

d* I,

r 1
W(Q)‘ <C(kQ)Q™*,  for Q<5 Q..

For I3, denote by r(t) the inverse function of u(r) around infinity,
such that u(r(t)) = ¢, r(t) > r¢, and set w(t) = —r'(t)r(t). By the
same argument as before, we can see that

w(t) =t2 f1(t%/%)

for

analytic for |z| < p4, ps a small universal number, and f;(0) # 0.
Then,

Q2
I =/ (t— 92) 7% w(t)dt
Qz
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Q-2q?
= Q/ (t—1)72 w(tQ?)dt
1

oo Q-2
-3 Z anan/ (t— 1)-1/2 $—2+an/2 gy
n=0 1

= z wp Mp(§2),
n=0 )
where 0
ma(@) = Q7" s (o)
Thus, Lemma 12, for 2, < py/4, 7 = -2, f = a/2, d =1, yields

d* I

—3— 1
W(Q)\gcw;ﬂe)a E, for 0550

For the lower bound, we write
L(Q) = wamo(Q) + L(Q),  B(Q) =) wama(R).
n=1

Lemma 10 applied to mo and Lemma 12 applied to I3 with 7 = —2 +
a/2 < -1/2, B =a/2,d=1, yield that

Imo(Q)] > cQ™3, |L(Q)] < C(Q,) Q3+ for Q< %QE .
Therefore, for Q2 small enough, we obtain
L()>c02, Q<.

for a number Q. < Q.. Since I; and I, remain bounded as Q2 — 0, the
lemma is proved.

Corollary 16. For constants Cr. and ¢y we have

k
W) 2a0t, |

W(Q)‘ <CV*, k>0,
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We apply now our growth estimates for ¢ and n to show that ¥U¢
is very much like ¥q in the introduction.

Lemma 17.
[¥q(Z) — ¥c(Z)| < C 23,

PROOF. Set
1+1/2

A )

[=

A= 23,

and note that )
4xz
We then use (1.a) and (1.b) to conclude that

(+ 1A= -

Itr i

\I'Q=27rZ4/3Z \/~ - ,u(Zl/3¢( iz—z—li_?))'
iz _

1=1 p(

Define Ipax as the largest | appearing in the sum defining ¢ . Note:

1. Each term appearing in the definition of either ¥ above, or in
¥, is bounded by a constant independent of Z .

2. The sum in ¥q is taken over integers, while the sum in ¥q is
taken over half-integers.

3. The number of terms in either sum (¢ for ¥g and lpax — 1/2
for ¥¢) may differ slightly because in general, Lz +1/2 # lnax -

We show now that the number of terms in both sums differ by at
most 1. Ipax is the greatest element in Z + 1/2 which is less than or
equal to a~1/2 Z1/3 Q. . Similarly, I is the largest integer that satisfies

1 1
= st - - < g V2z13Q .
lre (Irr + 1) (lTF+ 2) \/1 2l +12 = ° Z 7" Qe

An immediate consequence of this is that
cZ\P <l <CZY3, cZMV3 < lpax < C 23,

Then, for Z large enough, lpp +1/2 < a™'/2 Z}/3Q, + 1, which implies

1
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On the other hand,

lmax = lrr S @72 ZV3 Qe —lpp .
Since we must have

a—1/2 Z1/3 Q.

TF 2
\/1 —(2lTF+3)

b

which implies

a_l/z Z1/3Qc—lTp— Sg .

N =

we conclude that [, —1/2 -l < 1, or

(20) lmax - % S lTF .
Thus, using (19),

’ 1
(21) lmax"é_lTF Sl,

for Z large enough.
As a consequence of this, if we rewrite

Imax—1/2

V¢ (Z) = 2n Z*/3 Z ,7((1+ %) Z—1/3)
=1
.”(21/3 ¢((l+ %) Z—1/3)) ’

¥ _ 4/3 2 I 1/3 ig 1
o(Z)=2r2° ¥ — w(2 7 6(\1 - 53))

= (- )

which makes sense by (20), and by noting that lp.x in fact refers to a
half-integer, we see that

|%0(2) - ¥q(2)| < C 2*,
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since, after all, the difference is at most one term of size at most Z 4/3,
Next, we compare ¥¢ and ¥ term by term. To this end, we observe
that, since [ > Z~1/3, we have

PSS S P RV
P(D) P( jz_ﬁ) p(i)P(\/iz—jw)
gCi65_4i(1_ 1-— : )

412 )2

(for & € [1/12 —1/(4X2),1])

which implies
1+1/2 ] |1 1
i) st
=

Similarly, since ¢' is bounded,

s i)

[~1)\2

IA
Q

and since p is Lipschitz, we conclude that

(vo(H528)) sy ) 0o

Therefore, the terms indexed by [ in \ilQ and VU¢ differ by at most

C (/\‘2 2+ sup (@) A7),
€[ (12—-1/(422))1/2 1]

which implies

l
|¥0(2) - ¥c(2)| < € 2 i (z74Pe+27400) <c 24,
=1
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as required.

In what follows, we will denote either of the sums ¥¢ or ¥q simply
by ¥, since we now know that both are the same modulo errors of order

VAL
Define Q,; such that ¢'(2,,1) = I/n, and
0(n, 1) =n¢(Qni) =10, .

Theorem 18.
U(Z)=Wo(Z) +0(2%?),

where

\IIO(Z) =97 ZS/Z Z n(Q",I)ﬁ(T;’ZZ e27ri Z1/3 g(n, )+ mi(l—sign(n)/4) .
n,l |T'l. ¢’"(Qn,’)i

Also, g satisfies the bound
|0(2)| < C Z3/2

for a constant C.

PROOF. Construct now a partition of unity given by {U,,0,} for v =
0,1,..., such that

U, =[ay,b], a,=2"""%a"12Q,, b,=27" a1?2Q,

def
duébu“au, du"’au"’bu,

1, if 0<z<Q,,

otherwise,
6, € C§° and suppb, CU,, for v>1,
6o(2) =0, for 2 ¢ [ao,bo],
dre, _k
dz* (2)| < Cud*

for universal constants C) independent of v. Clearly, we have

(22) ‘IIC(Z)=27TZ4/3§:S,,(ZI/3)’

v=0
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for

s= Y we)(3)u(re(d), r=zr.

lez+1/2
Note that we have

(l#@)<C,  #@IC,
cd;i*e < |¢"(2)| < CdyHe,

(232) VS| <oate k22,
d*(8,
[T @) <car k20,

for z € U, , which implies that, in each S,, we have
(23.b) B(¢) < Ca; 0 < C240".

We consider
141 =€1|10g2 /\l, &1 =10—3.

For v = 0, we apply Theorem 6 to obtain

(24)  So =D entfi(n)80(Qnt)n (i) o(n,1) +0(Z/°).

nF#0
leZ

For 0 < v < vy, we use (23) and Theorem 7 to obtain

(25) Sy =3 i(n) (B,1) (Rmy) o(n,1) + 0(22°°) .

n#0
leZ

If v > vy, we argue directly as we did before Theorem 6 to obtain that

S, =AY in)I(n0),  I(nl)= / (8, n)(z) 2mMme(=)=12) 4y,

n#0
leZ

In order to analyze I(n,l), we use Lemma 4 to obtain

(n, D] < C (M) 7? (d5 1) 72 a+e,
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which we will use when |/| < 4||¢'||e |7/, to obtain

(26.a)

> ﬁ(")f(n,l)l < CATY2gitelr,
{14114 llco Inl}

When |l| > 4||¢'|| 2|, we have |¢'(z) — I/n| > |l|/(4|n]); thus, we
apply (4.b) directly to I(n,!) to obtain

_ d4+o: _ d3 d3+a
II(nJ)IS(AInI)l”—2+4(f\|n|)2( — +—F )

(3w) ) G’

which implies that, for n fixed,

ATy A d3+a)

In| In

1 > I(n,l)‘ <C (A-l dite +

{E 1124116 lleo In|}

which finally implies

(26.b)

3 ﬂ(n)f(n,l){ Sry

[11>4 116" llco |

Putting (26.2) and (26.b) together, we obtain
1S,| < AV2d8

which implies

(27) I Z S,,| < AV/2973w - \1/2-3e

v>ur

Also,

Z z fi(r) (1 60)($2n 1) (2miX O(n, 1) +mi(i—sign(n) /4)
|n ¢II(Qn’l)|l/2

”>V1 {(n,l): Qn,leuu}

<C  sup [p(z)

zeurL, 1 Uv

= 0(dt) =0(r™*%) .
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and, putting (22), (24), (25) and (27) together, we obtain

U(Z) = 0o(Z) + o(z3/2) .

4. Lower Bounds.

Theorem 18 told us two things: that ¥ has a leading expression as
a trigonometric sum, and that the size of this trigonometric sum, and
therefore of ¥, is at most of order Z3/2. The question remains whether
this bound is sharp or not. In related problems, such as the lattice point
problem, sharp upper and lower bounds on average have been known
for over fifty years (see [B1] and [HB] for recent developments). This,
in our context, would translate into the statement that indeed Z3/2 is
best possible.

The aim of this section is to derive such estimates on average for
the function ¥y . Classical ideas will work effortlessly after we show
that a certain number is not 0. This number can be viewed as a certain
(analytic, not necessarily arithmetic) L-function evaluated at the point
s = 2. Thus, it is not surprising that such a condition appears if one
thinks, for example, about the lattice point problem for parabola.

First, we will consider real values for Z, and then use this to study
the case of interest, integer Z, as it relates to our original goal to un-
derstand the ground state energy of an atom of nuclear charge Z.

We begin by defining

= AM) (@) rigi-sign(n)/a)
nl =T 71 i/ € .
T n gt (zag)|M/?

Let {6,} the set of all possible values of 8(n,l), selected such that
6, # 6, for v # v'. Define

L, ,= Z] 3 auy

v 6(n,l)=6,

2

)

which Lemma 20 will prove to be non-zero; if, however, L were equal
to 0, then it is easy to see that in fact we would have that

Uo(Z)=0, allZ.
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In the meantime, we will simply assume L # 0.
Define also

4 ' 2/3
0= 14 (Bl
C()L

¢ = inf {[6(n, 1) — 6(n', )| : 6(n,1) % 8(r',1') and |n|, |n'| < C*} .
Therefore, setting as usual A = Z/3,

23 NW(2) = Y an T OO0
n,n' LI

> Z Ap 1 Ty 1

n,n' 11U

8(n,l)=6(n",l")
+ Z an,lmeZWiA(O(n,I)—G(n',I')) _
8(n,l)#6(n’ I)
The first term above is our L defined above. In the second term,
we separate the terms for small |n|, |n'|, which we keep untouched, and
the ones for which either n or n' are large, which we estimate using the

fact that |I] < ||¢'|leo 2] and |I'] < ||¢']|eo |7, to obtain

> L— Z an Imehri/\(e(n,l)—ﬁ(n',l'))
[8(n,l)=6(n",I")|>0
o], |n'|<C*
-1 2 2 1—=5/2
=2¢" iz 1915 Y Inn'|™
In|>C*
all n’
2 L - Z an Imemriz\(ﬁ(n,l)—e(n',l'))
[8(n,0)—6(n",I")|>0
[nl, In'[<C™

—24¢57 Inll% 114112 (C* = 1),

which, by our choice of C*, implies

— L N — g
Z73 |0y(2)) > 5~ Z e CCORLCR

16(n,1)—8(x' I')|>0
In|, |n'|<C*
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Now we consider Zy > 1 and Z < Z;/2 and prepare to integrate both
sides from Zy to Zy + Z. For that, note that dZ = 3A%2d\ and, if we

set Ao = Z3/3, then
(Zo+ 2P =X +A, A<Z/Z23.
Also,

b 2
/ A2e"\9d,\‘ < % a,b>0.

Therefore,

Zo+Z dz VA B
L Sz -2 e il 141
Z |nn'|'5/2
o7 16(n, 1) — 8(n, 1]

[6(n,)—6(n",I")[>0
In], [n'|<C*

2y goge MEL 5~ e

25 1

“ O apln<cr
> E L— 23/3 18000”"7“20 ”¢,“go .

2 coct

As a consequence, taking Z/Zg/3 large depending on L, co, c*, |[7]co
and |[¢'||co, but still Z not larger than Z,/2, we have

Zot2 dz _ Z
2 z
— > 1.
/ZO |o(2)] 527 L

Next, we turn to the non-vanishing of L. In preparation for the proof,

set
ar = ¢'(0), az=4¢'(a7?Q,)

and note that 0 > a; > a,. Clearly, the (n,l) that enter in the sum
for ¥y are determined by the lattice points in Z? which fall in the
double-cone

I'={(u,v): as |u| < —|v|<aq |u], uv<0}.

Define z,, », for (u,v) € T, as the unique point satisfying

¢,(l‘u,v) = % .
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Note that z, , is strictly positive.
Then, we define

O(u,v) =ud(Ty,y) —VZy,, (u,v) €T.
The following is a trivial fact

Lemma 19. On T we have

VO(u,v) = ($(2u,), ~Tu,0) -

A consequence of this trivial fact is the result we mentioned above.
Lemma 20. L # 0.

ProOOF. We will show that there is one 6, which only has one (n,{) € T’
such that 6(n,l) = 6,. This clearly shows that L is not 0.

Let ng be the smallest positive integer such that (n,!) € T for some
l. In our case, this I'is negative. Choose the largest (negative) such I,
which we denote by . That is, I is the largest negative integer that
satisfies | < a; ng. Then we claim that there is no other pair (n',') € T
such that 8(ng,ly) = 0(n',!"). Indeed, since 8(n,!) is strictly positive
for n > 0, and strictly negative for n < 0, such n’ would also have to
be positive. It cannot equal ny because, since we should have I' < [y,
by the previous lemma we have

6(no,!') > 8(no, o).
We must then have n' > ng, which also implies
I'<ain' <ayjng (<0)
thus showing that I’ < . But this is also impossible because, also by
the previous lemma, there exists a pair (£,7n) on the segment joining

(no,lp) to (n',1'), such that

6(n', 1"y — 0(ng,ly) = d)(:cf‘n)(n' —Ng) — Teq (I' = lp)

and this last expression is then strictly positive.
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We summarize all this in the following lemma

Lemma 21. There 13 a small constant ko and a large constant K such
that

Zo+Z
/ 273 | Wo(2))? dz > Ko Z,
Zy

whenever Z > K Zgls, and Zy > K.
PROOF. Our previous calculations show this result in the case that

zZ > CZgl3 but Z < Z/2, for a certain large constant C. For the
general case, break up

Zo+Z ) N Zny1 .
/ 273 | Wy(2))° dz = Z/ 273 |Wo(2)|° dz,
Z, n=0 Zn

1]
where
Zpy1=1012, whenn=0,...,N—-1; In+1 =20+ 2,

and N is chosen so that 1.01Vt1 Z, < Z, + Z < 1.01¥*2 Z,. Our
previous calculations would apply to each of the integrals in the sum
provided

Zn—Zna >CZH%, (n=1,....N);, Z+2Zy>2Z)°,

n—1>

which amounts to requiring Zp > 10°.

This mean value information can be used to obtain information
about the oscillating behavior of ¥y, as follows

Let X
I=[2,2+C 2% = I

for
L=(Z0+8 2%, 2o + & +1) 23],

where C is large depending on K and ¢ is small depending on &g .

Denote also, for any function f,

my(f) = inf |27/ f(2)].



214 A. CérpoBa, CH. L. FEFFERMAN AND L. A. SECcO

Corollary 22. Given any ¢ > 0 small depending on ko, any C and
¢ as above, with the extra requirement that ¢ i3 small depending on ¢,
and Zy also large enough, there exists a constant 0 < a < 1 such that
m;(¥o) > ¢ for at most aC /¢ of the I;.

PrOOF. Put
Z-3/2 Uo(Z)=F(Z)+ E(Z)

such that F(Z) contains only finitely many terms in the sum, and
|E(Z)| is always less than . In particular, we have that in order that
m;(¥o) < € we must have m;(F) < 2¢. It will therefore be enough to
count how many of the m;(F') stay below 2¢ to obtain the conclusion
of the lemma.

Since both ¢ and ¢' are bounded, we have the trivial bound
|F'(2)| < C. 2723,

for some constant C. which depends on €. Thus, if m;(¥,) < €, we
have F(Z) < 2e + ¢ C. which implies

/1. |F(z)>dz < 16|L;] (2 + & C?) .

Therefore, if we denote by
M = number of j such that m;(¥,) < ¢,

we use the trivial bound [F(z)| < C for all z, for a universal constant
C, to get

Ko CA'ZS/3 §/|F(z)|2 dz
I

1

<(§-m)cezil y16mazt (42 c?).
c

This implies that

»

C—Ko

M< :
=« C —16(c2 + &2 C2)

, for o =

G)I

By adjusting ¢ depending on ¢ it is easy to make a < 1.
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A consequence of this corollary is another which shows that the
size of ¥y(Z) is at most ¢ Z3/2, for a small constant ¢, even when we
restrict our attention to integer values of Z.

Corollary 23.
limn inf Z7M39y(2)| #0.

— 00
Z=123,...

PROOF. Apply the previous corollary to any € > 0 small as required,
and to any C large and ¢ small also as needed, and then to infinitely
Zy to conclude that there are infinitely many intervals of lengths going
to infinity where |£=3/2 ¥y(z)| is never smaller than .

5. The Classical Picture.

In this Section we identify all quantities appearing in the expression
for ¥y in terms of data coming from the classical dynamics of a particle
in the field created by the Thomas-Fermi potential. We begin with
a brief review of elementary classical mechanics, which can be found,
among many other places, in [Ar].

Consider a particle with mass 1/2, in R?, moving in a negative
radial potential —V'(r), which for us, will equal —V](r). The motion
is planar, and can be described by the distance to the origin r(t) and
the angle ¢, which satisfy the relations

(F+r%%) = V() =E

Y
Il
=

where M is the angular momentum, and E is the energy of the orbit.
We begin assuming that the particle travels counter-clockwise in our
frame of reference (r,p). The motion takes place between radii rpyin
and rpax given by the two solutions of the equation

M2
—V(’l“) + 7 =F.

This implies that all trajectories for a fixed energy and angular momen-
tum can be obtained by rotation of a fixed one.

At energy 0, we denote by tyi, and tpax the times at which the
particle passes through ryi, and rpax respectively. The angle of motion
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¢ and the distance to the origin r satisfy the equations
2 2
£=21/V(r)—£, Q=—M/r .
dt r2 dr M
V) -

As a consequence, the particle going from rpin to Tmax sweeps out an
angle given by

Tmax M -1/2 dr
[T (ver-z)  F=mrean,

and the trajectory is clearly symmetric with respect to either rpyi, or
Tmax - Therefore, the angular momentum M will give rise to a closed
orbit if and only if

(28) (M) =1

and in this case, n represents the number of times the particle oscillates
between successive ryi, (Or rpax) before closing, and ! represents the
winding number of the orbit around 0. Our initial assumption that the
particle travels counter-clockwise means that n,! > 0. In our previous
notation, we also have

M=Q,_,.

If (I,n) =1 (where (:,-) denotes greatest common divisor), the orbit is
usually called primitive.
The period is given by

tmax

T(M)=2n/ dt:n/ m-—-—d"—xﬁ
tmin Tmin ’V(T) _ r_2

In order to find the action S along this closed trajectory,

=nP(M).

tmax
S=2n / (Kinetic Energy + V) dt,
t

min
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we note that, since we are at energy 0, Kinetic Energy = V(r), which
implies

S [T YO

2/ V(r) - M2
([ [ J—: )

=2r(n¢(M)+1M)
=21 (N ¢(Qn,—1) + 100 1) .

As a consequence, denoting by S(M) the action along a closed counter-
clockwise trajectory at energy 0 with angular momentum M, we have

27 B(n, —1) = S (Un.—1) -

When the particle travels clockwise, we agree that S, T', n and [ change
sign, but we keep M > 0.

We have so far identified all terms in the definition of ¥, except
n @"(Qx,1). For this one, consider a closed trajectory arising from angu-
lar momentum M, which gives rise to n oscillations between successive
rmax(M); for € small, consider a trajectory with angular momentum
M + ¢ which begins at ryax(M + €) and denote by 27 a(e) the abso-
lute value of the angle the particle forms between the initial position at
rmax(M + €) and the position after n oscillations also at rmax(M + ¢€),
where we take a between 0 and 1/2. Then

D(M) Y lim e ™" anr(e) = |n ¢"(M)].

It is clear now that the nonvanishing of the second derivative of ¢
translates into the fact that closed trajectories are isolated modulo the
trivial symmetry given by the rotation group.

The motion degenerates for the one circular orbit arising from
Mpax = a~1/2Q., the maximum angular momentum allowed in our
system. In this case, we define the above classical variables simply in
terms of ¢’ using the formulas we derived for the other trajectories.
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Theorem 24.

Vo(2)=2r2%2 Y 6——""(;)M ID(M)| ™2

closed trajectories
energy 0

. ei(Z”sS—ﬂ'(H-sign(n)M))
b

where circular trajectories appear in the sum only when they have asso-
ciated a finite number of oscillations n. We have § = 1 ezcept for the
circular trajectories, when 6 = 1/2. The sum is absolutely convergent.

REMARK. Note that the contribution of each trajectory depends on the
particular frame of reference we take to compute n and [/, but the sum
is independent of it.

REMARK. One might think of the different values for é as follows:
non-circular trajectories contribute fully to eigenvalues, while the cir-
cular ones, being right at the outskirts of the classically allowed region,
contribute half as eigenvalues, half as resonances.

6. Further Considerations.

In this section we will compute the derivatives of ¢ at the ends
of our interval of interest [O,a‘l/2 Q¢]. The derivative at a=1/2Q,
plays a role in the sense described on Section 2, since its rationality
or irrationality translates into the appearance or absence of a certain
contribution to ¥ or size Z3/2. The derivative at 0 does not play such
a role since the amplitude vanishes there.

Lemma 25.

1 1 —/2 1
—=F'(Q) = (1 —5r/? yi“) = ———— ~ 1.9376783.
1-— 5 Te Qc

PROOF. We use the change of variables ¢(r) given by (16), and its
inverse r(t), to write

1
PR = [ 1= u)dr,



WEYL SUMS AND ATOMIC ENERGY OSCILLATIONS

with
r'(0) 1 V2
w(0) = = = - 77
Tc Tc (TC) Te lu (T‘C)l

Thus,

1 _ 2 _ 2y(7'c) 1/2

T F (QC) - 1/2 - Tc u"(rc) ’

re |5 u"(re)

since

1 1
;/ (1—tH Vgt =1.
-1

Manipulations using the identities

uz) =zy(z), u'(z)=zy'(z)+yx),
u'(z) = zy"(z) + 29 (z) = "2 **(z) + 20/ (2)
and
rey'(re) = —y(re),

yield our result.

Lemma 26. 3
i ) = 3T
élgl(]F(Q) =5 -

219

PROOF. Let ro(f2) and r;(Q2) be the two solutions of u(r) = Q2. We

study first the asymptotics of ro and r; .
For ry, put z = r(l,/2; then, for

f(z)=u(z®) =2 —wz* + 0(2%)

we have that f(z) = Q2. This implies that z = Q@ + O(Q?) and thus

ro(R) = 2 + O(°) .

For r;, since u(r) decreases monotonically to 0, r;(2) — +oo0. Since

we have that u(r) = 144r=2 + O(r=27%), for a > 0, we get that

ri(Q) = 19-2- +o(Q71) .
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In order now to analyze F'(Q2), take ¢ be a small enough constant
to be picked up later and rewrite

9() = /E (u(r) - 92)‘1/2 _‘i_r

0($2)

()
+/ (u(r) - @2) /> &

(29) : :
= u'(re)(r — —1/2ﬂ
o RCIOIE
r1(Q2)
+/ (u(r) - 02)7/* ?JFRO(Q),
for
€ -1 -1 dr
Ro= [ ((utr) =997 = @) —ro) 7).

We show first that Ry = O(1).
Fix Q:

-1/2 -1/2

(w(r) = 9%) """ = (@ (ro)(r = 10))
=3 en (u(r0) (r =10)) "% ((u(r) = u(re))—u'(ro) (r —10))" .
n=1

Throughout this analysis, ¢, will denote a generic sequence of bounded
constants.

Note that

lu(r) = u(ro) — u'(ro) (r — ro)| < % sup |u"(r)| (r — ro)?

0<r<e

< (y'(O) + % 6”2) (r—ro)°

< Cy (r—m0)°

since u”(r) = 2y/(r) + ry"(r), [y'(r)] < ly'(0)] and y"(r) < V2,
Therefore, the sum converges uniformly for |r — ro| < Co/2 and inte-
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grating with respect to dr/r on (ro,¢), for € < Cp/2, we obtain

3
IN
s

' —n—1/2 an n—1/2 dr
enl (7o) gl — ol &
To

3
Il
-

M

_ayz [EIT d
eal /(o) 2 G2 [ (g1
1

3
Il
—

-1
Tg €

leal /()| ="/ g rg ™2 (y — 1y 2

M

3
Il
-

Jenlfu(ro)] 7112 G en 12,

M

3
Il
e

For Q small enough, we can make [u'(r¢)| < 2, and this will make the
previous sum converge to O(1) for € small, thus proving that Ry is
bounded.

Recall now that Qr¢(2)~!/2 — 1, what implies

< _1/2 dr -1/2 ro'e
Q/ (r-—ro)+/ — =Qr, / y"l(y——l)'lﬂdy
To r 1
oo 1 1/2
_>/ y Ny —-1)"dy =,
1

which, with the fact that u' (ro(2)) — 1, implies that

imQ [ (ur)—2) &
Q=1 S, r
. f -1/2 € —1/2 dr
= lim Qu'(ry) (r —ro(R2)) — =,
a1 ro(%) r

which completes the analysis of the first integral in (29).

As for the other integral, we break it up into 5 pieces as follows

[ wry -

T
M rfs/wo /2 7'1-—1‘12/3 ry
5 M 7'199/100 r1/2 rl—rlzls

=h+L+L+1,+1I5 .
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It is clear that I; = O(1), so we do not worry about it.
For I, note that, if M is large enough so that u is decreasing from
M on, we have on its domain that

I’U,(T) —_ Q2| Z u (7‘?9/100) _ u(rl)‘ 2 C (7}139/100) —2 _ 2 >C r —-99/50

and thus.

99/100

1
L] < c/ |r§’9/5° < Cr¥1% 1ogry
M

)

‘1/2 dr
r
which does not contribute to the result.
Similarly, for Is, note that
‘u(r)—92| > ( inf |u (r)[) |r—r1]ZCr1_3 |r — 7],
[r=—m|<
thus

T1 d
1| < C o Tf/Z (r1 — 7~)—1/2 T

T —T]
T1
<cn’? (ry—r)"12dr
1 2/3
T —Tl
< Crl2s
<cn®,

and again, it does not contribute to the total outcome.
For I, note that

[u(r)—92|2(1nf ! (r)|) 23 5 orp3e2,

This implies two things:

First, since |u(r)—1447~2| < Cr~ 272 < Cr*7 % for a = (V73—
7)/2 > 1 — 2/3, we have that 144772 — Q% > 0 on this range, for
small enough.

And second,

‘ (u(r) _ Qz)—1/2 _ (1;14 B Q2)—1/2(

< ch lu(r) — Q2|72 (Crm )"

n=1

oo
Z 3 2/3 n+1/2 —n(2+oz)

n=1
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and thus
2/3
T =T o2 __1/2_ %_ 2 -1/2 ﬂ
/r1/2 ‘(u(r) @ ) ( r2 f ) r

(e ]
< 3 e (ORI )

n=1

<C r§7/3) 3/2)—(2+a)

= o(r1(R2)) .
Finally, for I,

/2 _
2\ —1/2 144 2 1/2 _d_r
/;199/100 (u(r)—Q) _(7 _Q) r
n/z 2 ry ,\—n1/2 dr
1y —n(24+a) 20
< fres oo (130 =) " et

1‘1/2 et
—2|—n=1/2 _n(2+4a) ﬂ
< oo o en O e S

2n+1/2 —99n(2+a)/100
E Cn [Crli ) /
n=1

IN

S C 7"? r1—99 (2+a)/100

= o(r1(12)) .

Therefore, the second integral in (29) agrees modulo o(27!) with
2/3
/‘“_T1 144 o\ ~1/2 dr
()
£99/100 r r
1
2/3
_ [t (144 Uz Q12 dr
“/rgsuoo r?) ( - 144) T

1 Q(ri—ri®)/12 2v—1/2
—at | (1- )12 dy

7‘?9/100/:12

and therefore

. rl(Q) R 2 —]/2 _ ! 2 _1/2 _ s
lim (u(r) — Q%) = [ (1-vy% dy_-2—,
€ 0

Q—0
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which proves the lemma.
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A remark on gradients

of harmonic functions

Wensheng Wang

Abstract. In any C!* domain, there is nonzero harmonic function C*
continuous up to the boundary such that the function and its gradient
on the boundary vanish on a set of positive measure.

1. Introduction.

In this note, we will extend Bourgain and Wolff’s result in [2] into
the general C1* domain of RY.

Theorem. If D is a CY* domain in R* with s > 0 and d > 3, then
there is a harmonic function v : D — R which is C' up to the boundary
and such that

{Qe€dD: u(@) =0, Vu(Q) =0} >0.

The idea for the proof of this theorem follows from the argument
in [2]. We also need to use Aleksandrov-Kargaev function (see [1])
as our basic constructing factor. Since there is no reason to apply
directly Alexandrov’s result to the arbitrary domain, we have to work
on the “almost flat” domain first and then get our final result by Kelvin
transformation.

227



228 W. WaANG

NoTATION. Let A and M be positive large numbers. Let ®,; be a
collection of C1»* domains in R? which are of the form

Q={X = (z,2q) €R?: 24> ¢(x), z € R}

such that ¢ is some C'1* function on R~ satisfying ¢(0) = 0, Vi (0) =
0 and

IVolloo + IVellcs <™ and  Vp(z) =0

when | X| > 1.

When X = (z,z4) € 092, we denote by Nx the normal vector of 9f2
at X, and n, the normal vector of R¥~! at (x,0). By the assumption
of , we know that [Nx — ng| < e ™™ for any X = (z,24) € 0Q. We
use notation V,u to denote the tangent gradient of w on 0€2. Finally,
we usual use B to denote the ball in R? and  to denote the cube on
RI~L. If Q is the cube on R?~1, then @) denotes its image on Q2 by
. C always denotes an absolute constant.

2. Several lemmas.

Lemma 1. Suppose ¢ is a CY* function on R and Q = {X =
(,24) €ERT: 24 > p(x), 2 € R¥™} is a CY* domain. Let G(X,Y) be
the Green’s function of 2. Then for any X, Y € 050, we have

d d C

1 — —GX)Y)| < —— .
() dedNyG( ’ )_|X—Y|d

PrROOF. When Q is a bounded domain, the result is known (see [4],
[6]) but we do not find a good reference for the proof. When € is
unbounded, it is not true in general. So we would like to give a proof
for such special case and one will see the proof still works for bounded
domains with a tiny correction.

Claim. Let X € 022 and R > 0. If u is a harmonic function in
QN B(X,R), |ul <1 on QNIB(X,R) and u =0 on 02N B(X, R),
then |Vu(Z)| < C/R forall Z € QN B(X,R/2).
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PrROOF OF CrAM. We may assume that X = 0. Let D = QN B(0, R)
and D_ = Q°N B(0,R). Consider a map ® : D_ — D defined by
D(z,24) = (2,2 p(2) — z4). Then the function u o ® solves

divAyV(uo®@) =0 in D_,

where N
_ _ I 2 (V)
— NnNIy—=1/d5/\—1 _
Ao = (@17 = (e )
is an elliptic matrix (see e.g. [3]). Let w =win D, w = —-uo® in D_.

Then with A =1 in D and Ap in D_ , w solves div AVw = 0 in B(0, R)
in the weak sense, because the function w is an odd ‘reflection’ of w.
By the assumptions for the functions v and ¢, we know |w| < 1 and
|Allcs < Ce M1, If we define functions v(Y) = w(RY) and B(Y) =
min{R~%, 1} A(RY) in B(1), then v solves div BVv =0 in B(1) and B
has uniform C*® bound. So by [4, Lemma 3.1], we have |Vu(Y)| < C.
Hence, |Vw(Z)| < C/R. This proves the claim.

Now let us fix X, Y € Q and let R = |X — Y|. If we apply the
claim to the function R¥=2G(Zy, Z,) for Z, € B(Y, R/100) with Z; €
B(X, R/100) fixed, then we have |Vz,G(Z1,7Z5)] < C/R%! for all
Z1 € B(X,R/100) and Z, € B(Y,R/100). Similarly, if we apply the
claim to the function RV, G(Z1,Z,) for Z; € B(X, R/100) with
Zy € B(Y, R/100) fixed, then we get |Vz, Vz,G(Z1,Z5)| < C/R? for
all Z; € B(X, R/100) and Z; € B(Y,R/100). Finally let Z; go to X
and let Z3 go to Y, to conclude.

Lemma 2. Let Q be as in Lemma 1 with 0 € 0X). Suppose u is a
harmonic function in Q which is C** up to the boundary. Assume the
restriction function of u onto 0S) is supported in 9Q N B(0,1). Then
for all X € 0Q2 with | X| <2,

d
(2) |2 40| < Cllullcron)

dN

When X € 0Q2 with | X| > 2, we have

‘ d

—d
I U] < Xl -
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PROOF. The first result is a well known fact when €2 is either a bounded
domain or the upper half space. Here we would like to give a short proof

without using layer potential theory. Since u(Y') has compact support
on 09, for X € ),

d
uX) = | o GELY)u() do ().

If X € 002 with | X| > 2, then by (1) we have

d d?
X‘:‘/ (X, Y)u(Y)do(Y
v 0 =] aneazy GO u) do(Y)
1
< Cllullc (o) / X V] do(Y)
Yeaq, |Y|<1

<C|x| ullcog) -

This proves (3). Now let us fix X € 9Q with |X| < 2. Choose a
function ¢ € C§°(R?) with ¢(Z) = 1 when |Z| < 10 and ¢(Z) = 0
when |Z| > 20. Let us write

up(Y) = u(Y) —u(X) p(Y = X) = (Vou(X),Y — X) ¢(Y — X),

which is supported in 92 N {]Y| < 15} and bounded by

IVrullos o) Y — XM, when |Y — X|<8.
So we have
d
w(Z) = / L G(2,Y) us(Y) do(Y)
a0 ANy

+u(X) /aQ % G(Z,Y) $(Y — X)do(Y)

d
T /a vy GEY) (au(X),Y = X) 4V — X) do (¥)



A REMARK ON GRADIENTS OF HARMONIC FUNCTIONS 231

For uq,
_— = Y)do(Y
dNX u (X ‘ ‘ /89 dNXdNy up(Y) do(¥)
|X _ Y|1+s
/ W ||VT’U,| C*s(89Q) dO'(Y)

X€an, |X-Y|<8

1
o[ g lleen
X€aQ,|X-Y|>8

< Clullers o) -

Notice that us is a bounded harmonic function whose boundary value
is 1 on 92N B(0,4). So apply the claim in Lemma 1 to the function
u(X) — uz2(-), we have |Vua(Z)| < C|ul|e for Z € QN B(0,2) so that

‘Euz(X)‘ < Cllullcrs(a) -

Finally consider the harmonic function uz(Z) — (V,u(X), Z— X) which
is bounded in 2N B(0,4) and whose boundary value is zero on 92 N
B(0,4). So again by using the claim in Lemma 1, we have

d
v 10| < Clullorom < O llullorsos)

since (V,u(X),Z — X) is linear. This proves Lemma 2.
Now let a and € be two positive numbers. Let

e+ xq/a
“X/ateedt

E2(X) =
We denote by n, the normal vector of R~! in R? at z € R4~1,
Lemma 3. We have the following properties for E*(X) :

. . X —d—il
(4) ‘V’Eg(X)‘ < Ca "' min {s_d_”l, —‘ } ;

a
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forall X € Q andt=0,1,2.

‘/@Q(Ob) ‘1+—E“ )‘ l)da(X)

O [ (e el 1)

< Qe PM ppd-1 gd-1

ife <e M

(6) /MO ’ (J1+ %E“(X)‘p ~1)do(X) < ~ (1~ %) a1

if p> 0 is small but independent of e, M, a. Here b= aM in (5) and
(6), and n is an absolute small positive number.

PROOF. (4) follows directly from the calculation. After a change of
variable, the left hand side of (5) is the integral over a subset {|z| < b}
of R4~ of the following integrand

([1+(VE2(X), Nx)IP = 1) (1+|Ve(2) )2 — (11+(VEL(x), ng) [ ~1).

If we introduce a term —|1 + (VE®(z),ng)[P(1 + |Ve(z)|?)/? and sub-
tract it, then the integrand becomes

(11 4+ (VEX(X),Nx)|? — [1 + (VE&(x),ng)|") (L + V() [*)'/?
+ L+ (VEX(x),n2) P (1 + |Ve(z)[>)/? = 1)
— (14 |Ve(z)[*)'/? - 1)
=1+ 1II+1II.
Up to multiplying a constant, I is bounded by
(VEZ(X),Nx) — (VEZ(z),ng) "

< [VEZ(X) = VEZ(z),ng) [P + (VEZ(X), Nx — ng)|”
=I;+1.

For Iy, since X = (z, p(x)), by (4),

Il = |<VES(X) - VEg(x)vn:nH
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—d—2+1
X —

T

S a—2+1

S

2" ()]

Sa_l‘—
a

xr|—d
<2
a

/ 1| dz < MAA-P)=~L g=pMgd=1
|| <b

Since |[Nx — ng| < C ||Vl < Ce ™M, again by (4),

x|—dp
/ Ip| do < CePM ‘—‘ dx = C M*¥1-—P)~L =M gd=1
|| <b lw|<b '@

By a similar method, using (4) and the assumption of ¢,

—d~\ p
/ |II|dx§C/ (1+‘£‘ ) e~M dx
|lz|<b |lz|<b a

< Cad_l G_M Md(l—p)—l )

And it is trivial to get
/ 11| dz < Ce™™ de < Ce ™M qgd=t Mot
|z|<b |z|<b

So combining those estimates of the integrations for I = I; + I, II and
III, we have that the left hand side of (4) is bounded by

Cad_l (Md(l—p)—l e—pM + Md(l—p)—l e—pM + Md—l €_M)
< Cat "l Mi-tePM

Let us now prove (6). From [1] or [2], we know that if p > 0 is
small enough then for all small ¢,

d P d—1
_ go _ < _
/Rdl (‘1+dnE€(a:)‘ 1>dx_ na® ",

with a small absolute positive number 7. From this integral, we easily
get

p

/|w|<b (‘1 + %Eg(x) — 1) dx
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§—nad_1+/ H1+—Ea( ‘ —l‘dx
|z|>b

—d—1
dx

|z|>b a
< —(n—-CM~?)at!

(7) < —natt+C

by (4). So combine (7) and (5). We have that the left hand side of (6)
is less than or equal to

(= CM™2)ad=! 4 CePM pd—14d-1 _ (71 _ %) ad—1
when M is large enough independently of a and €.

We state our main lemma.

Lemma 4. Ifp > 0 and 1/M > 0 are small enough, then for any
Qe ®y and e > 0 and any cube Q = Q(0,1) on R~ with I < 1 there
exists a harmonic function FQ which is C1 up to Q with supp F¥|sq C
©B(0,¢el) such that

) [y oo dotx) < 2o,

) [VE2(X)|<C min{s_d, e~ (d=1/H)M (‘?‘_dﬁ- ‘?‘_dﬂ/z)} ;

if X € 092, where 3> 0 is such that

o—28P — 1 _ ge—(d—l)M_

PROOF. Let a = e[ and E%(X) be as above. Define
I ={z e R 2971 < |z| < 29110}

and p; a cut-off function in R with supp p; C Q(0,2771)\ Q(0,2771)
and |Vip;| < 1/(271)%, for ¢ = 0,1,2 and for j = 0,1,... such that
> pi(X) = 1for [X] > 1. Let p =1—3% p;(X). Denote by FX
the harmonic extension into © of p EZ(X)|sq and QF. the harmonic
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extension into Q of p; EZ(X)|oe. Let Qf = >, QF.. Then EZ =
F&+ Q2.
An easy computation and (4) of Lemma 3 imply that
105 clloe < Ca? (2714,
(10) IVrQ5 clloe < Cat (221)77,

IV7Q% . |lcs < Cat (271)=%

If we let u(Y) = Q4 _(271Y'), then the restriction function of u onto 99
is supported in 9QN B(0,1) and ||u|gr. < Ca®(271)~%1 by the above
estimates. So apply Lemma 2 to u. When X € 9Q with |X| < 2/+2[,
we get

d

W (;76(X) S Cad (2]l)_d
X

When X € 0Q with |X| > 2772[,

‘dN 10| < Cat|X| 7 < Ca |X[7H2 (200) 72,

Lowl<( Y Y )| S e

|X|<20+21 | X|>20+21

<C Yt +C ) et (@) X2

| X[<29+2] | X|>27+21
(11) < Cat|X|74+ Cad|X|~ /2712
X —d X |—d+1/2
<c(lol +5 )

since a = e=™[. We notice that if | X| < 41, the process of estimates
above also give

(12) ‘diN Qg(X)‘ <Ce ™.
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Now we estimate (7). Let b = Ma.
/ (= S ERX)P 1) do(X)
PQ dN = *

= [ (e gy 0 - e[ 1) dotx)

‘PQ(O’b)
d P
A4 e _
+ / (‘1+dNFE (X)‘ 1>da(X)
(13) PQ\¢Q(0,b)
13 d P
< —_pge _
< / (‘1+dNE€(X)‘ 1) dor(X)
‘PQ(O’b)
d . P
+ / (‘1+WQ€(X)‘ 1) do(X)
WQ(OJ))
d P
4 e _
+ / (‘1+dNFE (X)‘ 1) dor(X)
PQ\pQ(0,b)

by triangle inequality. When |z| > b, the integrand in the last integral
is bounded by C'|z/a|~%2, by (4) and (11). So

d P
ey 29 _ < d—1 3 r—1/2
(14) / (‘1 + - F (X)‘ 1) do(X) < Ca"' M
PQ\¢Q(0,b)

Since p < 1, by Holder inequality,

d P
Q)| do
/apQ(o,b) dN
d
S ‘— Qqe X
;fm(o,b) an @)

< Cpli-r/A@-0 3 (/

j ®

p

do

d 2 p/2
Q0| do

Notice that ¢€2 is a Lipschitz graph with uniform bound. Theorem
2.2.6 of [5] shows that

d a 2 2
‘/Lpg‘d—N G do .

do < C / V..
P2
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So by (10),

2 qux)[do
/soQ(o,b) AN
2 p/2
< O p1-p/2)(d—1) ‘ a
<Ch Z( |7 o)

<Cb(1 p/2)(d— 1)2 / 2]l d2d0_>p/2

< C % p(t-r/2)(d-1) Z(2jl)—dp+p(d—1)/2

J

(15)

< Catt (al)p(d+1)/2 M (=p/2)(d—1)
— O g%t e PM(d+1)/2 pr(1-p/2)(d=1)

Now apply (6) to the first term in the left hand side of (13) and combine
(13), (14), and (15). The left hand side of (13) is less than or equal to

_ (77— Q) a1 1 0 ad=1 M2 L0 it o-PM(d+1)/2 p(1-p/2)(d-1)
m a—1_ " __M@d-1)
<! = .

Hence
p
[ [+ g R0l e < (1= Fe ) o) = e joa,

with some (3 > 0.
Now we turn to prove (8). First we have

[VEZ(X)] < VR (X)[ + [VEZ (X))
X (-4 | X |—-d+1/2
so(fal 1)

d+1/2

<o (|77 |7

by (4) and (11). In order to bound |VF2(X)| by Ce~%, we notice that
when | X| <le <1,

d a
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is bounded by (12) and of course is less than Ce~?.

part follows directly from calculation and (4).

The remaining

Corollary 5. Let p, M and € be as in Lemma 4. Let 2 € ®opp. For
any Xo = (cq,p(cg)) € 02 and sg > 0, Q C Blcq, so) is a cube in
RY=L. For any function I : 00 — R with supp I C ¢ such that

1(XQ) () = T(Xq)llo < g e @),

there exists a harmonic function FQ in Q which is C* up to Q such
that supp F@ C pB(cq,el(Q)) and

Q
) [ [0+ 105 G 6)

p
do(X) < e I(XQ) I [¢Ql,

VFE(X))
(17)

X—Xp|—d
< . —d _—M(d—1/2) ‘ Q‘ ‘
< C'min {8 , € ( Q) +

_ —d+1/2
o)

PrRoOOF. Under a new coordinate system such that X is the new origin
and the tangent space of 9 at X is the new R¥~1, Q € ®)/. Then
this corollary follows directly from Lemma 4.

Let us first prove a weaker version of our theorem.

Theorem 1. Let 2 be as in the Corollary 5. Then for any small
number so > 0, there is a harmonic function u : Q@ — R which is Clup
to €2 and such that

HX € 0Q: |X| < sg, u(X) =0, Vu(X)=0}| >0.

We will give the recursive construction. Let Qo = Qo(0,s9) C
R4, Let {6,}$° be a sequence of small numbers such that 6.1 €
Z which are chosen by induction later. Let {K,} and {e,} be two
sequences of numbers which are decided later with K,, 400 and
e \( 0. a will be a large universal number also decided later.
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Let :,, be the collection of (5;(d_1) cubes of side §,, in R¥~! whose
union is Qo . Let 3, be a subset of R,, such that

(18) (A%I%%

where V,, = [ J{Q : Q € 3} and u,, is the C1* function in Q defined
by induction later. When n = 1, let dg = sp and g = {Qo} and ug
a harmonic function in © such that wug|so € Cy*(©Qo/1000). Suppose
we have S, and u,. Let 0,,1 with 0,41/0, € Z be such that 0,
small enough and decided in the following lemmas. Let S,4+1 C Rpq1
be such that @ € 3,41 satisfies

1/
pda(X)) g < AePm,

(19) Q' €S, for all Q' € R, with Q C Q'

1 du,, |P 1/p
20 — — " do(X < K,.je P,
(20) (par | || 4o) .

Now let us define

where Ffi ., 18 as in Corollary 5.
Lemma 6. For X € 012,

(21) Z |VF3L+1(X)| < C’e‘f‘/f(d—l/2)(6n+1 n (5n+1>1/2> ,

QESh+1 P P
[z—cq|>p

if p>Cdpyy.

(22) |Vty+1(X) = Vur(X)| < C Kyt e P E;‘;j_l ,

if 041 small enough.

PRrOOF. By (17) of Corollary 5, the left hand side of (21) is bounded
by

3 e—M(d—1/2)(‘X —cQ ‘_d n ‘X —cQ _d+1/2>
1

5 5
|e—clo>p nt ntl

< CeM(d-1/2) (5n+1 n (5n+1>1/2) |
p p



240 W. WaANG

if p > Cd,41. Let us prove (22) now. Since du,/dN is continuous,
after making 6,,4+1 small (20) will imply that

du,,

dN (XQ ) S 2Kn+1 6_,8"

Y

for all Q' € S,41. For X € 09, there is at most one Q € 3,11 such
that for any other Q' # Q, Q" € Ip41, |z —cg'| > p. Then the left
hand side of (15) is bounded by

du,,
> |y Xe)
Q' €S nt1
Q'#Q

6 +1 |+- € +1()(”

‘ dun

(Xq) ‘|V

<2K,p1e P (C+Cety)
<CKp e P E;‘;j_l ,
where we used (21) and (17) in the first inequality.

The following lemma says our process in construction of u,, is pos-
sible, i.e. (18) is true.

Lemma 7. There exists a large universal constant A such that

(/ ‘dun-i-l ‘ do )1/]) < Ae—ﬁ(N+1) .
Vot

PROOF. As in [2], we first state a claim as follows. One may find the
proof in [2].

Claim. If §,,+1 ts small enough, then for all X € ¢Q, Q € Sp41,

du,,
> gy Ke)
Q’ESn-o-l
Q'#Q

X))

€n+1(

< O e M@-1/2) ‘dun X)‘+6—M(d—1/2) o 4B(n+1)

We would like to point out the idea. Divide the sum into two parts:
26n+1<|XQ_X|<L5n+1 and Z|XQ—X|2L5n+1- For the first term, use (21)
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and notice that if 0,4, is small then the numbers du,(Xqg/)/dN are
close to du,(X)/dN up to an error term. For the second term, when
n fixed, du,(X¢/)/dN are bounded uniformly in Q" # Q. For the
remaining part, apply (21) again and let L be big.

Now let us take

duy, _48(n
= {Q € Sntr N (XQ)‘ 48 +1)}
and
H - %TH‘]- \ I .

Let X € ¢@Q for some Q € Sy,41. Denote

du du d '
el il 20n ) @ )
X =GR+ Y GRKe) g L (0
Q ESnt1
Q'#Q
Then
Ay, 41 du,, X d 0

=JX)+ — — F X
by the definition of u, ;. If Q € I, then after making 9,41 small,

dun dun
J(X) = T (Xq)| < Cem M1 T (xg)|

dN -

IN
| =

_ dun
ne M (d— 1)‘ XQ)‘

by claim and by letting M large. So apply Corollary 5,

du,, p _ dun
| |5 0| dr(x) < 2 eQ)| T (Xo)|
QR
(23) du 1
< 6—351)/2/ — do(X),
0Q N
if 0,41 small again. When @ € II, write
J = 65;\7; (Xq)+ J1, where |J;] < C e~ M(d=1/2) o =4 (n+1)
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by claim. So apply Corollary 5 again,
dun—l—l p
SR (X)) der(X)
L%

( —2pB (—4B(n+1)p | (7 o~ 4B(n+1)p> 10Q)

< Cem P o).

(24)

IN

Combine (23) and (24). By induction, we have
duny1|P _ 3 / duy, |P _
< pB/2 C e~ (n+1)p
/WJ | <e an| T 2 le@
n ©Q QEV,41NII
QEV, NI

< AP (e7PP/2 4 0 A7P o3P+ 1)0) ompB(ntl)

< AP ePB(n+1) ,

if A is large and independent of n .

ProOOF OF THEOREM 1. Choose K,, and ¢,, such that
Z€Ei1Kn+1 e < Cy < +oo
and
d—1 sq !
—-p
2 Kt e < foi06
Then the (21) of Lemma 6 implies that

Z Vg, 11 — Vu,| < CZKTH-l 6,:_‘&1 e P < CCy < +o0

ie. U= Y uyis Ct up to Q. On the other hand, by the definition of
wand wp41,

{X € ¢Qu: u(X) # 0} < ZI{X € Qo+ Unt1(X) # un(X)}]

< Z S 1e(Bleg)casr 1(Q))]

n QES,4+1

d _
< 2517,-{(—1 Y (Org1 5n+1)d !

= ngn—f—l

< 80
= 1000 °




243

A REMARK ON GRADIENTS OF HARMONIC FUNCTIONS

In order to estimate the gradient term, we notice that if a point X €
©(Qp) is in some ¢Q,,’s with infinite many n, then we know by (20)
and the continuity of du/dN that du(X)/dN = 0. So again by (20)

and (18),
HX € ¢Qo: %(X) 7 0}‘ <D 19Va \ @Vas]

=> ) e

n QEPVL+1\¢pVy

_ _ Uy, |P
<N Kre P S / et
n QEPVui1\pV, 7 P9
diy, |P
<N KPP0 / n
_; i PVn d

<D ATKLT
d_

<0 1 ,

— 1000

by Lemma 7, this is because when @ € R, 11\, 41, there exists Q' € &,
such that Q' D Q but

du, |P
—2 > KP  emPPn
n+1
/LPQ dN

by definition. And so

du,, |P

K P o—pfn Zon
|()0Q| < n+1 € /;Q dN

Finally we get

X €0Qo: u(X) =0, Vu(X) = 0}| > 1= loQul > 0.

3. Proof of Theorem.

Casel: D is a bounded domain. Then we can assume (0,0) € 0D and
R41 is the tangent space of 9D at (0,0) and D C ]R‘i. So we may
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construct a domain Q = Q, = {(z,zq) : 4 > ¢(z)} where ¢ € Doy
and D C Q and 0D N9IQ D ¢Qy for some Qy = Qo(0, sg) with so > 0.
Then apply Theorem 1 to €2, we get a harmonic function U in €2 which
is C' up to Q such that

HX € pQo: U(X)=0,VU(X)=0}>0.
Now let u = U|p, then this is the desired u .

Case 2: D = R¢\ B for some bounded C* domain B. We assume
that (0,0) € B. Let T : X — X/|X|* be the Kelvin transformation
and B = R?|rp . Apply the result in Case 1 to B and get a harmonic
function U. Then u(X) = U(TX)/|X|%? is the desired function for
our domain D.

Case3: D is a general C1* domain. It is easy to find a domain B C D¢
such that B N D contains some “ball” on dD. Then by the Case 2,
there is a harmonic function U in R \ B which is C! up to 0B and
{X € “ball” : U =VU =0} > 0. Then this u(X) = U|p is needed.

SOME REMARKS. 1. The theorems are true for C'-Dini domains. The
proof follows our argumens with minor corrections.

2. It is not hard to see that for every e there exists a harmonic
function which is C*' up to the boundary and such that

0D\ {X € 0D : u(X)#0or Vu(X) #0}| <e.

3. We do not know if the theorem is true or not for Lipschitz
domains. In fact, our method does not work even for C! domains (and
even if we do not need the restriction u = 0).

4. We may also prove Lemma 4 by using the potential layer theory
as in [2]. But again this method does not work even for C!' domains.

Acknowledgments. [ would like to express my thanks to my teacher
and advisor, Proffesor T. Wolff, for bringing this problem to my atten-
tion as well as for explaining to me the idea in his paper [2].
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Uniqueness of positive
solutions of nonlinear

second order systems

Robert Dalmasso

Abstract. In this paper we discuss the uniqueness of positive solu-
tions of the nonlinear second order system —u” = g(v), —v" = f(u) in
(=R, R), u(£R) = v(£R) = 0 where f and g satisfy some appropriate
conditions. Our result applies, in particular, to g(v) = v, f(u) = u?,
p > 1, or f(u) = A+ auPt + -+ + agpuP* with p; > 1, a; > 0 for
j=1,....,kand 0 < X\ < p? where p; = 72/4R?.

Introduction.

In this paper we discuss the uniqueness of positive solutions (u,v) €
(C?[—R, R])? of the nonlinear second order system with homogeneous
Dirichlet data

—u"(t) = g(v(t)), —R<t<R,
(1.1) —v"(t) = f(u(t)), —R<t<R,
u(£R) =v(£R) =0,

where R > 0 is fixed and the functions f, g € C*(R) satisfy the following
assumptions

(Hy) 0<g(v)<vg'(v), for v>0,
(Hy) 0< fu) <uf'(u), for u>0.

247
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Of course (u,v) > 0 means that u >0 and v >0 on (-R, R).

It was proved by Troy [6] that v and v are symmetric about the
origin and that v’ < 0 and v" < 0 on (0, R). It should be noted that in
our situation the proof is considerably simpler. Moreover, by the Hopf
boundary lemma [5, p. 4] here we also have v/(R) < 0 and v'(R) < 0.
Therefore positive solutions of (1.1) can be treated as positive solutions
of

(v(t)) 0<t<R,
(U(t)) 0<t<R,

(1.2)

The existence of positive solutions of nonlinear elliptic systems was
examined by Clément, De Figueiredo and Mitidieri [1] in a bounded
convex domain of R™ when n > 2 and by Peletier and Van Der Vorst
[4] in a ball of R™ when n > 4. The question of the existence of positive
solutions of problem (1.2) will be discussed in the last section of this
paper.

Our main result is the following theorem.

Theorem 1.1. Let f,g € CY(R) satisfy (Hy) and (Hy). Let (u,v) €
(C?[—R, R])? be a positive solution of problem (1.1). Then (u,v) is
symmetric about the origin and is unique in the class of all positive
solutions in (C*[—R, R])?.

As a particular case of Theorem 1.1 we can state the following
corollary concerning fourth order equations.

Corollary 1.1. Let f € C*(R) satisfy (Hz). Let u € C*[—R, R] be a
positive solution of

(1.3) { ul(t) = f(u(t)), —R<t<R,
' u(+R) = u"(£R) = 0.

Then u is symmetric about the origin and is unique in the class of

all positive solutions in C*[—R, R] .

In our proofs we shall make an intensive use of the one dimensional
maximum principle and the related Hopf boundary lemma [5], which
we recall:
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Theorem A ([5, p. 2]). Suppose u € C%(a,b) N Cla,b] satisfies the
differential inequality

u' +g(x)u' >0, for a <x<b,

with g a bounded function. If u < M in (a,b) and if the mazimum M
of u is attained at an interior point of (a,b), then u= M .

Theorem B ([5, p. 4]). Suppose u € C%(a,b)NC*[a, b] is a nonconstant
function which satisfies the differential inequality v” + g(x)u’ > 0 in
(a,b) and suppose g is bounded on every closed subinterval of (a,b). If
the maximum of u occurs at x = a and g is bounded below at x = a,
then u'(a) < 0. If the mazimum occurs at x = b and g is bounded above
at x = b, then u'(b) > 0.

The outline of the paper is as follows. In Section 2 we introduce an
initial value problem and we establish some preliminary results. Theo-
rem 1.1 will be obtained as an immediate consequence of a crucial result
that we state and prove in Section 3 (Theorem 3.1). Finally in Section
4 we prove an existence result and we give some examples to illustrate
our theorem.

2. Preliminary results.

In order to prove our theorem we introduce the initial value prob-

lem
() =g, 20,
L) = fu),  t>0,
(21) u(0) = o, o/(0) = 0.

where a > 0 and § > 0 are parameters. Throughout this section
the functions f,g € C'(R) are only assumed to be nondecreasing on
[0, +00) and such that f(0) = g(0) = 0, f(s), g(s) > 0 for s > 0 and
limg 4 o0 g(8) = +00.

Below we prove some propositions which will be needed to state
and prove our crucial result: Theorem 3.1. In the following proposition
we establish the local existence and uniqueness of solutions of problem
(2.1).
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Proposition 2.1. For any a > 0, 8 > 0 there exists T > 0 such that
problem (2.1) on [0,T] has a unique solution (u,v) € (C%[0,T])?.

PRrROOF. Let o > 0 and g > 0 be given. Choose T' > 0 such that
T2%(#) <a and  Tf(a) < B

and consider the set of functions

<o(t)<pB

Z = {(u,v) € (C[0,T])* : % < u(t) < a and

VIR

for all ¢ e [O,T]} .

Clearly, Z is a bounded closed convex subset of the Banach space
(C[0,T])? endowed with the norm ||(u,v)|| = max{||u|/ec ,||v]|co }. De-
fine

L(u,v)(t) = (Oé—/0 (t—s)g(v(s))ds, [5’—/0 (t = s) f(u(s)) ds)

for t € [0,7] and (u,v) € Z. It is easily verified that L is a compact
operator mapping Z into itself, and so there exists (u,v) € Z such
that (u,v) = L(u,v) by the Schauder fixed point theorem. Clearly
(u,v) € (C?[0,T])? and (u,v) is a solution of (2.1) on [0,7]. Since f
and g are of class C'! the uniqueness follows.

In view of Proposition 2.1, for any «,3 > 0 problem (2.1) has
a unique local solution: let [0,7T}, g) denote the maximum interval of
existence of that solution (T, 3 = +00, possibly). Define

Pop={te€(0,Thp): ule,B,s)v(a,B,s) >0, for all se][0,t]}

where (u(a, 5, ), v(a, B, +)) is the solution of problem (2.1) in [0, Ty ).
Clearly P, p # @ .

Proposition 2.2. For any «, 3 > 0 we have

tag=supPopg<Thp.
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Proor. If not, there exist o > 0 and B8 > 0 such that sup P, g =
Ty p. Suppose first that T, 3 < +o0o. Noting v = u(a,, -) and
v =uv(a, [, -) we have

0<u<a on [0,T,z),
0<v<p on [0,Thp).

Since

(2.2) u'(t):—/og(v(s))ds and v’(t):—/o Fuls)) ds

for t € [0,T4,), we conclude that u, v, v’ and v’ are bounded on
[0,T, ) and we get a contradiction with the definition of T, 3. Now
assume that T, g = +00. Since u” < 0 on [0, +00) we deduce that

u'(t) <u/(1) <0, for all ¢ >1
from which we get
w(t) <wu(l)+4' (1) (t—1), forallt>1.

Thus we can find ¢ > 1 such that u(t) < 0 and we obtain a contradiction.

Proposition 2.3. For any o > 0 there exists a unique 3 > 0 such that
u(av B ta,ﬁ) = v(a, B ta,ﬁ) =0.

PrOOF. We first prove the uniqueness. Let o > 0 be fixed. Suppose
that there exist # > v > 0 such that u(e, 8,ta5) = v(a, B,ta ) =
u(e,v,ta,y) = v(a,v,tay) = 0. In order to simplify our notations,
we denote u(, ,1), v(on B,1), u(ayy,t) and vle,,1) by ut), v(t).
w(t) and z(t). Define b = min{t, g,tq,y}. Suppose that there exists
a € (0,b] such that v — z > 0 on [0,a) and (v — z)(a) = 0. Since
u''—w" = g(z)—g(v) and ¢ is nondecreasing on [0, +00), we deduce that
u”" —w"” <0 on [0,a]. Using the fact that (v —w)(0) = (v —w)’(0) =0,
Theorems A and B imply that v — w < 0 on [0,a]. Thus v" — 2" =
f(w) — f(u) > 0 on [0, a] since f is nondecreasing on [0, +o0c). We have
(v—2)(0) >0, (v—2)"(0) =0 and (v — z)(a) = 0. Therefore Theorems
A and B give a contradiction. Thus v — z > 0 on [0, b]. As before we
show that w — w < 0 on [0, b]. Since we have

(v—2)(b) = 0, iftag="1tan,
_Z(tcx,ﬁ) <0, ifto,p < by



252 R. DaLMASSO

necessarily b =t 4 < tog. Now (u— w)(b) = u(ta,) > 0 and we get

a contradiction. The case 0 < 3 < 7y can be handled in the same way.
Now we prove the existence. Suppose that there exists a > 0 such

that for any 8 > 0 u(w, 5,ta,8) > 0 or v(a, B,ta,g) > 0. Since « is fixed

we shall write ug , vg , tg and T} instead of u(c, 3, - ), v(a, B, - ), ta,s
and T, g . Define the following two sets

B={3>0: ug(tg) =0 and wvg(tg) >0},
C={B>0: ug(tg) >0 and wvg(tg) =0}.
Then we have
(2.3) (0,4+00) =B UC.

The proof of the proposition is completed by using the next lemma
which contradicts (2.3).

Lemma 2.1. B=C=0.
The proof follows readily from (2.3) and the next two lemmas.

Lemma 2.2.
i) Suppose B # &. Then there exists m > 0 such that m < inf B.
i) Suppose C # @&. Then there exists M > 0 such that M > sup C'.

Lemma 2.3. B and C are open.

PrOOF OoF LEMMA 2.2. We have
t

(2.4) ug(t) = a — / (t—s)g(vs(s))ds, 0<t<Tg,
0

and
t

25) o) =B [ (=) fupe)ds. 0<1<Ty.

i) Let f € B. (2.2) and (2.4) imply

(2.6) tg > <%>1/2
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and from (2.5) we get

(2.7) 8> [ty =) Flupls) ds.

Suppose that inf B = 0 and let (;) be a sequence in B decreasing to
zero. Then tg, — +o00 by (2.6). From (2.7) we deduce that

(2.8) @z[}%—@ﬂwﬁ»@

for j large. Using (2.2) and (2.4) we have

(2.9) ug, (1) 2 0 - 200

| R

for ¢t € [0,1] and j large. From (2.8) and (2.9) we get

Bj > c
for 7 large where ¢ > 0 is independent of j. This gives a contradiction.
ii) Suppose that supC = 400 and let (§;) be a sequence in C
increasing to +oo. By virtue of (2.2) we have

(2.10) 0 < ug,(t) < a, for ¢t €[0,t5,].

(2.5) and (2.10) imply that g, — +00 as j — +o00. Then we can assume
that tg, > 1 for all j and that

(2.11) flo) < By, for all j.
(2.2), (2.5), (2.10) and (2.11) imply

Bi

5 < wg, (t) < B, for ¢t € [0,1],

and using (2.4) we deduce that ug (1) < « — g(8;/2)/2. But then
ug, (1) < 0 for j large contradicting (2.10).

The proof of Lemma 2.3 depends on the following two lemmas.
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Lemma 2.4.

i) Suppose that B # @. Then for any § € B we have u’ﬁ <0 on
(0,tg] and ’v’ﬁ < 0 on (0,tg]. If in addition Ty < 4o, then for any
v > « (respectively, 0 > ) there exists t € (tg,Tp) (respectively, s €
(tg,1p)) such that |ug(t)| = v and [ug(r)| < v forr € [0, ] (respectively,
lvg(s)| =6 and |vg(r)| <& forr € ]0,s]).

ii) Suppose that C # @. Then for any € C we have u’ﬁ <0
on (0,2g] and vy < 0 on (0,tg]. If in addition Tg < +oo, then for any
v > « (respectively, 0 > ) there exists t € (tg,Tp) (respectively, s €
(tg, Tp)) such that |lug(t)| = v and |ug(r)| < v forr € [0,t] (respectively,
lvg(s)| =6 and |vg(r)| <& forr €]0,s]).

Lemma 2.5. Suppose that B # & and C' # &. Then for any f > 0
there exists n > 0 such that min{Tg, T} > max{tg,t,} for any v €

PROOF OF LEMMA 2.4. The first part of i) is clear. Now assume that
Tz < 4o0. If ug (respectively, vg) is bounded on [0,7p), then (2.5)
(respectively, (2.4)) and (2.2) imply that vg (vespectively, ug), uj and
v are also bounded on [0, Tg) contradicting the definition of Tj5 . Thus
ug and vg can not be bounded on [0,73) and the last part of i) follows
easily. ii) can be proved similarly.

PROOF OF LEMMA 2.5. Let (3 be a fixed positive number. (2.3) implies
that 3 € BUC. Let v > 0. In the same way v € B U C. From (2.4),
(2.5) using Gronwall’s inequality we obtain

max{|ug(t)—uy(t)|  Jog(t) — Uv(t)|}

(2.12) <16l <1+/0th(3) exp(/strh(r) dr) ds>

for ¢ € [0, min{7g, T }), where the function h is given by
a(t) = max { sup |f'(pug(t) + (1= p) uy(1))]
0<p<1

sup g/ (Coa(t) + (1= Q) vy (6))]}

0<¢<1

(2.13)

for ¢ € [0,min{73,T,}). Suppose that max{ts,t,} > min{1p,T}.
Then, by Proposition 2.2, min{73,7T,} < +oo. If min{73,7T,} = 1},
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then necessarily max{tg,t,} = t,. By Lemma 2.4 there exists ¢ €
(tg, Tp) such that |ug(t)] = 2a and |ug(s)] < 2« for s € [0,¢]. Since
0 < uy(s) <aand 0 < wy(s) <7 for s €[0,t] by Lemma 2.4, (2.12)
and (2.13) imply

(2.14) a < fug(t) —uy(t)] < c]f =7

where ¢ > 0 depends on «, 3,y and t € (tg,13); clearly ¢ is bounded
with respect to v when v is in a bounded set. If min{7g, 75} = T,
then necessarily max{tg,ty} = tg and the proof is the same but now
t € (t4,T). Since in this case Ty < tg we can choose in (2.14) the
same c as before. The lemma follows.

PrROOF OF LEMMA 2.3. 1) Suppose that B is not open. (2.3) implies
that there exists § € B and a sequence {(3;} in C such that 5; — ( and
tg, — T € [0,+00]. By Lemma 2.5 we can assume that min{Tp,Tp, } >
max{tg,tg, } for all j and so T' < T . We first show that 7' < +oo.
If not, we can assume that {5, > tg for all j by Proposition 2.2. Let
t €10,tg]. Using Lemma 2.4 we get

/Ot(t —5) g(vg,(s)) ds < g(ﬂ;) £2 |

Choose t € (0, ¢g] such that g(3;)t?/2 < a/2 for all j. Then using again
Lemma 2.4 and the fact that

t
us, ()=~ [ (6= ) glon, () ds
we obtain ug, (s) > a/2 for s € [0,t] and for all j. Since
tg;
8= [ty = 5) Flu, () s
t
- , d
> / (ts, — ) f(ug, () ds

ORCE)

for all j we reach a contradiction. Now suppose that 7' < Tjz. Then
from (2.12), (2.13) and Lemma 2.4 we get

(2.15) |Uﬁ(tﬁj) — Up; (tﬁj)| <c |BJ - B, for all j,
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where c is a positive constant independent of j. Since vg, (tg;) = 0 for
all j, (2.15) implies that vg(T") = 0. Therefore T' > tg. We can assume
that tg, > (T'+tg)/2 for all j. Let t € [tg,T). Again we can assume
that {5, >t for all j. By Lemma 2.4 we have for all j

0 <ug,(s) <a, for s€0,¢],
and
0 <wg,(s) < By, for s€10,¢].

Then (2.12) and (2.13) give for s € [0, ¢

(2.16) ug(s) —ug, ()| < clB; —pI,  forallj,

where ¢ is a positive constant independent of j. Let s = tg in (2.16), we
get
ug, (tg) — 0 when j — 400.

Since ug, (t) < ug, (tg) we obtain
(2.17) ug, (t) =0 when j — 4o00.

From (2.16) with s = ¢ and (2.17) we deduce that ug(t) = 0. Since
t € [tp,T) is arbitrary we obtain a contradiction by using Lemma 2.4.
Thus T' = Tz. Then necessarily Tz < +o00. By Lemma 2.4 we can find
s € (tg,1p) such that |vg(s)| =20 and |vg(r)| < 23 for r € [0,s]. We
can assume that tg, > s and 3/2 < 3; < 33/2 for all j. Then from
(2.12), (2.13) and Lemma 2.4 we obtain

§|Uﬂ(3)_vﬁj(3)|gc|ﬁ1_ﬁ|v for all j,

RSN

where c¢ is a positive constant independent of j. Clearly this is impossi-
ble.

2) Suppose that C is not open. (2.3) implies that there exists € C'
and a sequence (3;) in B such that 8; — 8 and tg, — T € [0, +o00]. By
Lemma 2.5 we can assume that min{7}, T, } > max{tg,tg,} for all j
and so T' < Tp. As in 1) we can show that T < +0o0. Now suppose that
T < Tp. Then from (2.12), (2.13) and Lemma 2.4 we get

(2.18) |U’ﬁ(tﬁj) — Ug, (tﬁj)| <c |BJ - B, for all j,
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where ¢ is a positive constant independent of j. Since ug, (tg;) = 0 for
all j, (2.18) implies that ug(T") = 0. Therefore T' > tz. We can assume
that tg, > (T'+tg)/2 for all j. Let t € [tg,T). Again we can assume
that tg, >t for all j. By Lemma 2.4 we have for all j

0 <ug,(s) <, for s€0,t],
and

0 <wg,(s) < B, for s€[0,t].
Then (2.12) and (2.13) give for s € [0, ¢
(2.19) lvg(s) —wvg, (s)| < c|B; — B, for all j,

where ¢ is a positive constant independent of j. Let s = tg in (2.19), we
get
vg, (tg) = 0 when j — +o00.

Since vg, (t) < vg, (tg) we obtain
(2.20) vg, (1) =0 when j — 4o00.

From (2.19) with s = ¢t and (2.20) we deduce that vg(t) = 0. Since
t € [tp,T) is arbitrary we obtain a contradiction by using Lemma 2.4.
Thus T' = T. Then necessarily Tz < +00. By Lemma 2.4 we can find
t € (tg,13) such that |ug(t)] = 2« and |ug(r)| < 2« for r € [0,t]. We
can assume that tg, >t for all j. Then from (2.12), (2.13) and Lemma
2.4 we obtain

a < Jug(t) —ug, (t)| < clB; — 8], for all 7,

where ¢ is a positive constant independent of j. Clearly this is impossi-
ble. The proof of the lemma is complete.

Now we introduce
t t
Ft) = / f(s)ds  and  G(t) = / o(s) ds.
0 0
The following lemma will be needed in the next section.

Lemma 2.6. For any a > 0, > 0 we have
(2.21) W'(a, B, 1) v' (e, B, 1)+ F (u(, B, 1)) +G(v(a, B, 1)) = F(a)+G ()
fort€[0,T,3) .

The proof is obvious.
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3. Proof of Theorem 1.1.

We keep the notations introduced in Section 2. Clearly Theorem
1.1 is an immediate consequence of the following result.

Theorem 3.1. Let f,g € CY(R) satisfy (Hy) and (Hz). Then for
any o > 0 there exists a unique (f(a),t(a)) € (0,400) x (0,400)
such that u(c, B(a), t(a)) = v(a, B(),t(a)) = 0 and u(a, B(a),t) > 0,
v(a, B(a),t) > 0 fort € [0,t(a)). Moreover () is a strictly increasing
function of o and t(«) is a strictly decreasing function of «.

PROOF. Let a > 0 be fixed. Since f and g verify the hypotheses used
in Section 2 the existence and uniqueness of (5(«), t(«)) satisfying the
conditions of the theorem are given by Proposition 2.3. Unfortunately
the proof of the last part of the theorem is rather long. For a > 0,
(> 0 define

0 0
pla,fit) = 5= (@ Bi0),  plaBit) = o= (o, B,1),
and 5 9
plas ) = o (0 Bit), Xl fot) = 55 (0 B 1),
for t € [0,T%,8)- Then ¢, 9, p and x satisfy the linearized equations
©"(t) = g'(v(t) ¥(t) 0<t<Tap,
(3.1) w”(t) f'(u(t) o(t) , 0<t<Tap,
p(0) =1, (0) = ¢'(0) = 9'(0) = 0,
and
—p"(t) = g'(v(t)) x(1),, 0<t<Tup,
(3.2) —x"(t) = f'(u(t) p(t), 0<t<Tup,
x(0) =1, p(0) =p'(0) = x'(0) =0

We first prove the following lemma.

Lemma 3.1. We have ¢’ > 0 (respectively, x' > 0) on (0,tq 8] and
Y < 0 (respectively, p' < 0) on (0,tqps] -
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PrOOF. We have ¢"(0) = —f'(a) < 0 (respectively, p”(0) = —¢'(8) <
0). Then ¢ < 0 (respectively, p < 0) in (0, 7] for some 7 > 0. Since the
proof is the same in both cases we only prove that ¢’ > 0 and ¢’ < 0
on (0,tq g]. By what we have just seen we can define

to =sup{t € (0,4 8] : o <0 on (0,¢]}.

Since

o) = - / g'(v(s)) P (s) ds

- / £ (u(s)) o(s) ds

we deduce that ¢’ > 0 and 9" < 0 on (0, ty]. Therefore ¢(t)1(to) < 0
and necessarily tg =t g -

Now let D = {(«,3,¢) : >0, #>0, and t € [0,T4p3)}. Itis
well-known that D is open in (0, 4+00) x (0,400) X [0, +00). Consider
the map H : D — R? defined by

H(a, p,t) = (u(a, B,t),v(c, 5,1)) .
Then H € C'(D,R?) and

and

(3.3) H(a, p(a),t(a)) =0, for a>0.
Since by Theorems A and B we have
(3.4) u' (o, B(a),t) <0 and v'(a, B(),t) <0
for ¢ € (0,¢()], using Lemma 3.1 we get
det Dy, H (v, 8(0), H)) = (p0' = x ') (@, Bla0) £(0)) > 0.

Therefore by the implicit function theorem o — (8(«),t(c)) is a C!
map for a > 0. Differentiating (3.3) with respect to o we get

(o, B(a),t(a)) + p(a, B(a), t(a)) 5(a)
(35) + u’(a,ﬂ(a),t(a)) (a) =0
and
(3.6) (e, Bla), He)) + x(o, Ba), H(e) B ()

+0'(a, Ba), t(@)) t'(e) = 0
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for o > 0. Since

B (o) = (det Dig ) H(ev, B(ar), () " (v’ — o v') (o, Blev), H(ev))

we deduce from (3.4) and Lemma 3.1 that §'(«) > 0. Define

X(avt) = Qp(av 6(04)7 t) + p(a,ﬁ(a),t) ﬁ/(a)

and
Y(a,t) = P(a, B(@),t) + x(o, B(a),t) B'(@) -

The proof of the theorem is completed by using (3.4), (3.5) and the
next lemma.

Lemma 3.2. There exists ty € (0,t(a)) (respectively, so € (0,t(cx)))
such that X (a,t) > 0 fort € [0,tg) (respectively, Y (a,t) > 0 fort €
[0, 50)) and X (a,t) < 0 fort € (to,t(c)] (respectively, Y (a,t) < 0 for
t € (so,t()]).

PROOF. In order to simplify our notations, we denote X («,t), Y (a,t),
u(a, f(a),t) and v(a, B(a),t) by X(t), Y(t), u(t) and v(t). We have

g ( (t) ’ 0<t< Ta,ﬁ(a) ’
(3.7) —Y"(t) = f'(u , 0<t<Typa)s
X(0)=1,X'(0) = 0,Y(0) = B(a) >0,Y"(0) = 0.

Lemma 3.3. X >0 on [0,t(«)] if and only if Y >0 on [0,t(c)].

PROOF. Suppose that X > 0 on [0,¢(«)]. From (3.4), (3.5) and (3.6)
we get Y (t(c)) > 0. Then Theorem A implies that Y > 0 on [0, ¢(«)].
The converse can be proved in the same way.

Now suppose that X > 0 on [0, #(«)]. By Lemma 3.3 we also have
Y >0 on [0,t(a)]. Then using (H;), (Hz) and (3.4) we obtain

t(a) t(a)
0</0 (f’(u,)u—f(u,))X:/O o X — Y

t(a)
— (V' X)(H()) + (WY)(t(e)) + /0 v X" — 'Y

t(a)
= (" X)(t(e)) + (u'Y) (t()) +/ (g(v) —g'(v)v) Y <0

0
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and we reach a contradiction. In the same way Y can not remain
nonnegative on [0,¢(«)]. Thus we can define ¢, (respectively, sg) to be
the first zero of X (respectively, Y) on (0,¢(«)). Moreover there exist
x € (to,t(a)) and y € (sp,t(c)) such that X(z) < 0 and Y (y) < 0. We
shall prove that X < 0 on (to,t(a)] and Y < 0 on (sg,t(a)] and this
will complete the proof of Lemma 3.2. Suppose the contrary, then we
have the following lemma.

Lemma 3.4. There exist s1,t; € (max{so,to},t(a)] such that X < 0
on (to,t1), X(t1) =0,Y < 0 on (so,s1) and Y (s1) = 0. Moreover if
t = min{sy,t1}, then we have X'(t) >0 and Y'(t) > 0.

Admitting the lemma for the moment, we show that we reach a
contradiction. Differentiating (2.21) with respect to « and [ respec-
tively and taking the value at («, B(«),t) with t € [0, T}, g(a)) We get

o' v +u' Y+ g(v) Y+ fu) o = fla)

and
p'v +u' X+ g(v) x + f(u) p = g(B(a))
for t € [0, Ty g(a)), from which we deduce

(3.8) X' +Y'u +g(v)Y + f(u) X = f(a) + 5/(e) g(B(ax)) > 0

for t € [0,T, g(a))- Using (3.4), Lemma 3.4 and (3.8) for t = min{s;,#}
we see that the left hand side in (3.8) is negative and we get a contra-
diction.

In order to prove Lemma 3.4 we need

Lemma 3.5. X (t) < 0 on (to, t(@)] if and only if Y () < 0 on (so, t()].

PROOF. Suppose that X (t) < 0 on (to,t(c)]. Then from (3.4), (3.5)
and (3.6) we get Y (t(aw)) < 0. Suppose that ty < s¢9. Then Theorem
A implies that Y < 0 on (so,t(«)]. Now if ¢y > sg, Theorems A and
B imply that Y' < 0 on (0,%]. Thus ¥ < 0 on (sp,%o]. Then using
Theorem A we get Y < 0 on [tg, t(«)]. The converse can be proved in
the same way.

ProOOF OF LEMMA 3.4. Recall that our assumption is that X can
not remain negative on (¢o, t(«)] or that ¥ can not remain negative on

(s0, 1(@)] -
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Case 1. sp = top. By Theorems A and B we have X'(tp) <
0 and Y'(tp) < 0. Our assumption and Lemma 3.5 imply that there
exist s1,t1 € (to,t()] such that X < 0 on (tg,%1),X(t1) =0,Y <0
on (tg,s1) and Y(s;) = 0. If s; = ¢t; Theorems A and B imply that
X'(t1) > 0 and Y'(¢t;) > 0. If s; > ¢; Theorems A and B imply that
X" > 0 on [t1,s1]. Therefore Y < 0 on (¢1,s1]. Since Y (¢1) < 0 and
Y (s1) = 0 Theorems A and B imply that Y'(¢1) > 0. In the same way
if s7 < t; we show that X'(s1) > 0 and Y'(s1) > 0.

Case 2. sg < tp . By Theorems A and B we have Y’ < 0 on (0, to].
Our assumption and Lemma 3.5 imply that there exists s; € (¢, t(a)]
such that Y < 0 on (sp,s1) and Y(s1) = 0. Let d € (to,s1) be such
that Y (d) = ming <s<s, Y (s). Since Y (d) = — f'(u(d)) X (d) we obtain
X(d) < 0. Then Theorems A and B imply that X'(t9) < 0. By virtue
of Lemma 3.5 there exists t; € (to,t()] such that X < 0 on (¢p,¢;) and
X(t1) = 0. Then we conclude as in Case 1.

Case 3. sp >ty . The proof is analogous to that given in Case 2.

The proof is complete.

4. An existence result and examples.

We begin this section with an existence result concerning positive
solutions of problem (1.2).

The method we use to prove the existence of a positive solution
of problem (1.2) consists of first obtaining a priori estimates on the
positive solutions and then applying well-known properties of compact
mapping taking a cone in a Banach space into itself (see [3]).

We denote by pu the first eigenvalue of the operator —d?/dxz? on
(=R, R) with Dirichlet boundary conditions and ¢ is the positive eigen-
function corresponding to p1 (1 = 72/4R? and ¢1(t) = C cos(nt/2R)
where C > 0 is a constant).

Theorem 4.1. Let f,g € C(R) satisfy the following hypotheses

(Hs) f(s),9(s)>0,  for s>0,

M) tminf L 5 050, it 2 > 550 and ab> 2,
s—+o0 8 s—too §

(Hs)  limsup I(5) <c¢, limsup 9() <d and cd<p3.

s—0 s s—0 s
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Then problem (1.2) possesses at least one positive solution (u,v) €
(C2[0, R])*.

Proor. We first prove that there exists M > 0 such that
(4.1) Julloo <M and  lvflc <M

for all positive solutions (u,v) € (C?[0, R])? of (1.2). By (Hy), there
exist K; > 0 for j = 1,2 such that

fls)>as— Ky, for s >0,

and
g(s) > bs— Ky for s> 0.

Now let (u,v) € (C?[0, R])? be a positive solution of (1.2). Then, C
denoting a generic positive constant, we have

R R R
u?/ SOIUdt:_Nl/ w’l’dt:—m/ ru” dt
0 0 0
R R
=u1/ wlg(v)dtzbul/ prvdt —C
0 0
R R
:—b/ v<p'1'dt—C:—b/ prv"dt — C
0 0
R R
:b/ wlf(u)dt—Czab/ prudt —C.
0 0

From (4.2) we deduce that

R R
/soludtgc, /cpwdtgc,
0 0
(4.3) » R
[ erswarsc ma [Cpgmasc,

0 0

where C' is again a generic positive constant. Now we have

R R
(4.4)  u(t)= /0 G(t,s) g(v(s)) ds and v(t)= /0 G(t,s) f(u(s)) ds
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for t € [0, R], where G(t, s) denotes the Green’s function of the operator
—d?/dx? on (—R, R) with Dirichlet boundary conditions. Since

.9 R—t, 0<s<t<R,
G(t,s) =
R—s, 0<t<s<R,

we have

(4.5) 0<G(t,s)<R-s, for 0<t,s<R.

We also have

(4.6) c1(R—5) <pi1(s) <ca(R—s), for s €0, R],

for some positive constants ¢;, j = 1,2. From (4.3)-(4.6) we easily get
u(t) < C and o(t) <C for tel0,R],

where C is a positive constant and (4.1) is proved.

Now we can establish the existence of a positive solution of problem
(1.2) by using Proposition 2.1 and Remark 2.1 of [3]. The arguments are
by now well-known. However, in order that the paper be self contained,
we provide details here (see [1], [2] or [4] for similar detailed proofs).

Let X denote the Banach space (C[0, R])? endowed with the norm
|(u, v)|| = max{||u||co, ||V]|cc }- Define the cone

C={(u,v) € X: (u,v) >0}.
For ((u,v),x) € C x [0, +00) we define
F((U,U),.T)(t) = (Fl((uvv)vx)(t)vFZ((uvv)vx)(t)) ) for ¢ € [OvR] )

where
Fl((u,v),x)(t):/ G(t,s) g(v(s)+ x)ds,

R
Ey((u,0),2)(t) = i G(t,s) fu(s) + x) ds

and
®(u,v) = F((u,v),0).
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By (Hs), F maps C x [0, +00) into C. Since G is continuous, it is well-
known that F'is compact. (Hs) and (Hs) imply that f(0) = ¢(0) =0,
hence ®(0) = 0. Now the following properties hold:

i) (u,v) # 0 P(u,v) for all # € [0,1] and (u,v) € C such that
||(u, v)|| = r for sufficiently small > 0. Indeed by (Hs) we can choose
r > 0 such that f(s) < cs and g(s) < ds for 0 < s < r. Now suppose
that there exist 6 € [0,1] and (u,v) € C such that (u,v) = 0 ®(u,v)
with [|(u,v)|| = r. Then

—u”(t) =0g(v(t)), 0<t<R,
—0"(t) =0 f(u(t), O0<I<R,
u(R) =v(R) =4'(0) =2'(0) =0.

I
>

By Theorem A, u,v > 0 on [0, R). We have

R R R
u%/ prudt = —ul/ upy dt = —ul/ pru” dt
0 0 0

R R
:m9/ solg(v)dtﬁdm/ prvdt
0 0

R R
= — / U(p'l'dt:—d/ o1 0" dt
0 0

R R
= d9/ o1 f(u)dt < cd/ prudt
0 0
and we reach a contradiction because the integrals are nonzero.
ii) By (Hy), there exists xp > 0 such that
f(s+z)>a(s+x)>as
and
g(s+xz)>b(s+x)>bs, for s >0, 2 >x9>0.

Then using the same arguments as in the proof of (4.1) and Theorem
A, we can show that F'((u,v),x) # (u,v) for all (u,v) € C and = > x.

iii) Now we note that the constant in (4.1) can be chosen inde-
pendently of the parameter x € [0,z for each fixed z¢ € (0,+00) if
we consider positive solutions of (1.2) for the family of nonlinearities
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fz(t) = f(t+z), g(t) = g(t + ), t > 0. Thus we can find a constant
R > r such that F((u,v),z) # (u,v) for all z € [0,z0] and (u,v) € C
with |[(u,v)|| = R.

Thus we may apply Proposition 2.1 and Remark 2.1 stated in [3]
to conclude that ® has a nontrivial fixed point (u,v) € C. Theorem
A and the properties of the Green’s function imply that any nontrivial
fixed point of ® in C yields a positive solution of (1.2) in (C?[0, R])?.
The proof of the theorem is complete.

REMARK. Note that, for the a priori estimates, condition (Hs) is not
needed. We need it merely to insure that the maps ® and F' are cone-
preserving.

We conclude this section with some examples to which our theo-
rems apply.

a) We first consider problem (1.3) where g(v) = v. When f(u) =
Z?zlajupi for u > 0 withp; >1anda; >0forj=1,...,kand k > 1
or f(u) =u"/(1+u®) for u > 0 with r—1 > s > 0, Theorem 4.1 implies
the existence of a positive solution of (1.3) and Corollary 1.1 gives the
uniqueness.

b) For problem (1.1) we can take f as in a) and g of the same type
as f. Then the existence of a positive solution of (1.1) follows from
Theorem 4.1 and the uniqueness is given by Theorem 1.1.

c) Take
flw)=Au+u? and g(v)=pv+v?, u,v >0,

with p,qg > 1, A\, > 0 and Ap < p2. By Theorem 4.1 there exists a
positive solution of (1.1). Then Theorem 1.1 gives the uniqueness.

This is an example of a perturbed linear system. Consider the
linear eigenvalue problem

—u”" =Xy, in (-R,R),
o =\ u, in (—R,R),
(4.7) oo n (R, )
u>0, v>0, in (-R,R),

u(£R) =v(£R) =0.

The next lemma is a particular case of a result proved by Van Der
Vorst [7] (see also [2] for an extension of this result).
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Lemma 4.1. Problem (4.7) has a solution if and only if

Aj >0, for j=1,2, and A Ao = i .

The solution is given by u = c1 91 , v = co 1 where ¢1 > 0 is an
arbitrary constant and co = c1 (A1 /A2)Y?.

Clearly the above lemma shows that conditions (H;) and (Hsy) are

sharp.

References.

[1]

Clément, P. H., De Figueiredo, D. and Mitidieri, E., Positive solutions of
semilinear elliptic systems. Comm. Partial Diff. Equations 17 (1992),
923-940.

Dalmasso, R., Positive solutions of nonlinear elliptic systems. Ann.
Polonici Math. LVIII (1993), 201-212.

De Figueiredo, D., Lions, P. L. and Nussbaum, R. D., A priori estimates
and existence of positive solutions of semilinear elliptic equations. J.
Math. Pures et Appl. 61 (1982), 41-63.

Peletier, L. A. and Van Der Vorst, R. C. A. M., Existence and nonex-
istence of positive solutions of nonlinear elliptic systems and the bihar-
monic equation. J. Diff. Int. Equations 5 (1992), 747-767.

Protter, M. and Weinberger, H., Maximum principles in differential
equations. Prentice Hall, 1967.

Troy, W. C., Symmetry properties in systems of semilinear elliptic equa-
tions. J. Differential Equations 42 (1981), 400-413.

Van Der Vorst, R. C. A. M., Variational identities and applications to
differential systems. Arch. Rational Mech. Anal. 116 (1991), 375-398.

Recibido: 10 de julio de 1.993

Robert Dalmasso
Laboratoire LMC-IMAG
Equipe EDP-Tour IRMA-B.P. 53

F-38041 Grenoble Cedex 9, FRANCE
Robert.Dalmasso@imag.fr



REVISTA MATEMATICA IBEROAMERICANA
VoL. 11, N.° 2, 1995

L’ multipliers and

their H 1—L1 estimates

on the Heisenberg group

Chin-Cheng Lin

Abstract. We give a Hormander-type sufficient condition on an oper-
ator-valued function M that implies the LP-boundedness result for the
operator T,, defined by (T,,f) = Mf on the (2n + 1)-dimensional
Heisenberg group H". Here “°” denotes the Fourier transform on H"
defined in terms of the Fock representations. We also show the H!-
L' boundedness of T,,, ||T,, fllzx < C||fl|g:, for H* under the same
hypotheses of LP-boundedness.

1. Introduction.

Let f — f be the Fourier transform, f — f the inverse Fourier
transform, and m a bounded measurable function on R". We say that
m is a multiplier for LP(R™), 1 < p < 400, if f € L? N LP implies (mf)
is in LP and satisfies

[mf) ], < Collfllee

with €}, independent of f. The multiplier theorem was originally due
to Hormander [H] on R":

269
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Theorem (Multiplier theorem for LP(R™)). Let m be a function in
CFR™\ {0}), k > n/2. Assume that m € L™(R") and

sup R2lol-n / |D*m(z)|? dr < 400
R>0
R<|z|<2R

for all differential monomials D of order |a| < k. Then the multiplier
operator mapping f into (mf) is bounded on LP(R"), 1 < p < oo.

There are two general methods of proving multiplier theorems.
The first one follows Hormander’s process [H| and works mostly on the
Fourier transform side. The second one applies the theory developed by
Coifman and Weiss [CW1] of constructing a well-behaved approximate
identity and working mostly on the group. DeMichele and Mauceri
[DMM] applied Coifman and Weiss’ theory to extend the LP multiplier
theorem to the three-dimensional Heisenberg group H. Here we follow
the same machinery as in [DMM], and extend to the more general case
of the (2n + 1)-dimensional Heisenberg group H".

Theorem 1 (Multiplier theorem for LP(H™)). Let M be an operator-
valued function with each entry in C*(R\{0}), k > 4 [(n+5)/4], where
[-] denotes the greatest integer function. Also assume

sup [|M(A)]| < +oo,
A#£0

+o0
sup RdegP—"—l/ APMWITRW||] | A" dA < +o0,
> —00

for every monomial P with deg P < 4[(n + 5)/4], where Ap is a

difference-differential operator, fIR()\) a projection operator to a part
of main diagonal (both operators will be defined in the next section).
Then M is a multiplier of LP(H™), 1 < p < oo, and is of weak type

(1,1).
We also show the H!-L! boundedness of T, as follows.

Theorem 2. Suppose M satisfies the same hypotheses as Theorem 1.
Then T,, maps H'(H") boundedly into L*(H"). Moreover, there exists
a constant C' > 0, independent of f, such that |T,, fl|lLr < C||f||lgr for
all f € HY(H").
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In Section 2 we review some basic tools of harmonic analysis on H".
In Section 3 we prove the LP(H™) multiplier theorem, and in Section 4
we show the H!-L! estimate. Finally, we mention that C' will be used
to denote a constant which may vary from line to line.

This paper is a part of author’s Ph. D. dissertation. I would like to
express my gratitude to my advisor, John A. Gosselin, for his invaluable
guidance and support. I also thank the referee for his suggestion about
the proof of Lemma 2.

2. Preliminaries.

Most results in this section were given in [DMM] for the three-
dimensional Heisenberg group H. We extend those to H" and give
more detailed proofs here.

H" is the Lie group with underlying manifold R x C" and multi-
plication defined by

(t,2)(t",2")=(t+t +2Im(z-2'),z+ 7),

n
where 2-2' = ) z;2; . The Heisenberg Lie algebra h of the left-invariant
j=1
vector fields on H™ is generated by

0
T=—
ot’
0 0
7z = V.
J 8zj+m38t’
A 0 0 j=1,2,...,n,

= o — 1% o7,

I 823' I ot
and the only non-zero commutations are

[Z;,Z;] = —2iT, j=1,2,...,n.

The Haar measure on H" coincides with the Lebesgue measure dV on
R x C*. H" is endowed with a family of dilations {0, : 7 > 0} defined
by 0,(t,z) = (r?t,rz). We say a function f on H" is homogeneous of
degree d if f o6, = r?f for every r > 0. Furthermore, we define the
homogeneous norm of (t, z) € H*, denoted by |(t, 2)|, to be (£2+|z|*)/4.
The norm is homogeneous of degree 1. For simplification of notation,
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sometimes we use z = (¢, z) to denote a point of H", rz = 4,(t,2) =
(r?t,rz) a dilation of z, and |z| = (2 + |2|*)!/* a homogeneous norm
on H™. Guivarch [Gu] has shown that the triangle inequality |zy| <
|z| + |y, x,y € H", holds. Moreover, using polar coordinates, we have
(cf- [FS, Corollary 1.16])

(1) / |$|cx dr = ¢ (bcx—|—2n+2 o acx—|—2n—|—2)
o+ 2n+ 2 ’
a<|z|<b

for a # —2n — 2, 0 < a < b < 400, where C' is an absolute constant.
The convolution of two functions f,g € L(H™") is defined as usual,

D@ = [ sl iwdi= | o) fe 0 dy.

n

Let S(H") and S'(H™) denote the Schwartz space of rapidly decreasing
smooth functions and space of tempered distributions, respectively.

It was observed by Stone, von Neumann, and Weyl in the early
1930’s that the irreducible unitary representations of H™ split into two
classes. The representations which are trivial on the center Z = {(¢,0) :
t € R} of H* are just the usual one-dimensional representations of
C* 2 H"/Z lifted to H". Since these representations form a set of
measure zero in the decomposition of L?(H" ), we will not consider them
further. The representations which are nontrivial on Z are classified by
a parameter A € R* (= R\ {0}) and may be described as follows. For
A > 0, let H) be the Bargmann space

Hy = {F holomorphic on C" :

17 = (2

™

) /(C F(QP e M ag < oo}

Then H, is a Hilbert space and the monomials

(22)"!
a!

e, a:(al,a2,...,an)ENn

Fa,A(O =

(N=NU{0}), form an orthonormal basis for H, , where

al = (aq!) (ag!) -+ (ay!), o =a1+as+ -+ ay ,
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and
Ca: ]C-XI élz_._CTOLln .

For A € R*, the representation Il acts on H,y| by

oIAH2A(C2— 212 /2) F(-2), for A >0,

I\ (¢, 2)F(C) =
(62 () { eM=2ACE /D (¢ — 2), for A< 0.

A straightforward calculation shows that II)(¢,z) is unitary and its
adjoint operator IIy(t,2)* = [Ix(—t, —z). For f € LY(H"), A\ € R*, set

f\) = . F(t, 2)T\(t, 2) dV

where the integral is defined in the weak sense, and the operator f())
is called the Fourier transform of f. It follows immediately from the
definition that for f,g € L'(H")

and

~ [+ D) ta(e) do

= (g% f)(N).
For (A\,m,a) € R* x Z" x N", we use the notations

m; = max{m;, 0}, = —min{m;,0},

m+:(+ + —l—)

m;
My, Moy ey, My ) m-

=(mi,my,...,m, ),
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and define the partial isometry W7*(A) on H 5 by

WA Fgx = (=)™ 16yt g Faim- x> for A>0),

and for negative A by

Thus {W™(A) : m € Z" a € N'} is an orthonormal basis for the
Hilbert-Schmidt operators on H,y|, and W has the matrix expression
Wit @Wir - -@ Witr if we view Fi A(C) as Fiy A(C1) @ Fo, A (C2) ®
-+ ®@Fq, A(Cn), where ® means tensor product, W[ corresponds to the
infinite dimensional matrix whose (o, m;+a;)-entry is (—1)" and zero
everywhere else for m; > 0, (a; —m;, a;)-entry is 1 and zero everywhere
else for m; < 0, and F,, A(¢;) corresponds to the infinite dimensional
vector whose «;-th components is 1 and all other components are zero.
(Note: all entries and components here are counted from the 0-th posi-
tion.) For each ¢, the matrix form of W[ is

[0 7+«0-th row
1 +—a;-th row
m
(=1)m 7 for m; > 0,
M0 7 <+0-th row
S for m; < 0.
]_/ < (a;—m;)-th row
Proposition [G]. If f € L' N L2(H") is of the form
F(t,2)= D fmlts |21, |z]) @mOrtotmabn) g — 2] e

mezZ"™

then
FO) = D" Re(Am,a) W),

mez"
aeN"
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where

Ri(A,m, o) = fm(t,|z1|,...,|zn|)e“‘t
(2) H"

A2 2 f?) -l 2 A |2l
and lg?” 1s the Laguerre function.

NoOTE. For a poly-radial function f(¢,z) = f(¢t,|z1],-..,|2n|), the sum-
mation ZmEZ" in the above proposition contains only the term with

m = 0. Hence f()) is poly-diagonal.

~

Recall (6,f) (€) = r=" f(r~1¢) on R*, where 8, f(z) = f(rz). If
we define

Jrlt,2) = r= CHFO2 7200 ) e >0,

on H", from identity (2) and a change of variables we have a similar
relationship between Fourier coefficients Ry, (X, m, ) and R¢ (X, m, «)
as follows:

(3) Ry, (A, a) = Ry (VA m, o).

We also have [—z'xjf(a:)]A(&) = 8jf(£) on R". More generally if
P(x) = P(x1,x2,...,%,) is a polynomial on R™ and the differential op-
erator D* = 97" 057 - - - 0% is defined as usual, then [P(—ix) f(a:)]A(é“) =
P(D)f(£). Let P be a polynomial in t, zj, Z; on H". Define the

difference-differential operator Ap acting on the Fourier transform of
f € LN L?>(H") by

Ap (Z R (A, m, ) WZ}(A)) = 3" Rpp(Am, ) W)

m,o m,o

Let {e; : 1 < j < n} be the standard basis of Z"™. We have the following
explicit expressions for Ag, A, , and A, .

BufO) == 5 3 (5 RO ) WY

)
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_ % SN Vas(ay + Iml) Ry(Am, @ — ) WI(A)

m,x j=1

+ 33 o+ e + g+ 1)

m,x j=1

RN m,a+e;) W (A);

Az f(N) FZ‘/a9+mJRf)‘m ej, ) Wi (A)

2

FZ\/% LRs(A,m —ej,a+e;) WIH(A),

2[A|
if m; > 1;
A, f(N) = MZWRf)\m ej, ) W)
ﬁWZfWAm%—@WW,
if m; <0;
Az f(N) WZWRJC)\WL—{—GJ, o) W™(N)
erRMmm, a—e;) W),
if m; > 0;
Az f(N) = mzm&xmm, @) Wi (\)
mz\/a]in/\m-l—e],a-l—e])W (A,
if m; < -—1.

Using these formulas, we obtain similar results for polynomials
and extend the operators Ap as formal difference-differential operators
acting on operators which are of type

=Y B\, m,a) WI(A).
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We establish the formula for A, . The others are proved similarly by
using the recurrence relations and differential properties of {I'}. We
use identity (2) and write

AL, f(N) ZRZf)\ma)W (\)

= Z/H (23] framey €N A 20 [) - - 1571 (2 |2 251%)
A2 A fzaP) AV W)
The recurrence relations for Laguerre functions tell us
V2IAl |z 172 A 2517
m;— m 1
=V +myly? H2 N 125)%) = ey + Ly (217 1%1%) 5
if m; > 1, and
V2IAl |z 172 A 2517
m —m +1
=V —my +1IgM 2N [27) — ag 127 (21 1z)7),

Thus, we have

/\

f mZme)\m €5, )W ()‘)
Z\/er)\m €J,O!+€J)W ()‘)7

2|)\

for m; > 1, and

AZJf()‘) FZ\/ —mj+ LR (A m —ej, ) Wir(A)

2

ﬁWZfWAm%—@WW,

for m; < 0.
This proves the formula for A, . Similarly, applying the same
techniques we can obtain the formulas for Az and A .



278 C. LN

Denoting ||A[j%, = tr(A*A), the square of the Hilbert-Schmidt
norm of A, we have the following Plancherel formula

2n—1 +oo 9 .
3= 25 [ IO, Arax. rertnzie).
By this we can extend the Fourier transform as an isometry from L?(H")
onto the Hilbert space of the operator-valued functions A — A(A),
A € R*, satisfying

i) A(M) is a Hilbert-Schmidt operator on #y, for almost every
A e R,

ii) (A(MN)P, Q) is a measurable function of A, for every polynomial
P,Q) on C",

7.[-n—i—l

2n—1 “+oo .
i) [|All3 = / [A) g A" dA < +o0.
Definition. A left invariant multiplier of LP(H"), 1 < p < o0, is an
operator-valued function M : A — M(\), A € R*, such that

a) for every A € R*, M(A) is a bounded operator on Hy ,
b) the operator T, defined by

A~

(T, )N =M fN.  fel'nLrH"),

extends to a bounded operator on LP(H™).

From the Plancherel formula iii) above it follows immediately that
M is aleft L?(H") multiplier if and only if supy_ [|M(A)] < +00. We
also remark that everything we say for left multipliers may be trans-
lated for right multipliers similarly defined, because the group H" is
unimodular. .

On R" we have (0;f) (§) = ié’jf(ﬁ). On H™ we have the following
analogues: for A > 0,

~

(Zif) (M) F(C)
= —2XAf(\) G F(Q)
0
1 0
:—\/ﬁf()\) {11®"'®Ij_1® vz 0 ®Ij+1®'”}F(C)

v 0
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and
(Z; ) (V) F(C)
~ o OF
= f) == (¢
3 5¢ )
0 1 -
0 vz
— VIO (L& 0L 0 Vi enae - }F(Q,
0
where I, kK = 1,2,3,..., is the infinite dimensional identity matrix;

for A < 0, we switch the formulas for Z; and Z;. For all A € R\ {0},

A~

(Tf) (A\) = —iAf(A). Thus, for A > 0, we can consider the correspond-
ing multiplier of the differential operators Z;, Z;, T to be

0
1 0
—‘/2)\{I1®"'®Ij—1® v2 0 ®Ij+1®"'}v
v3 0
01 .
0 v2
\/2)\{]1®---®Ij_1® 0 \/§. ®Ij+1®"'},
0 .

and
—iAML® L1 @lj11® -},
respectively. To prove these formulas we consider the case n = 1, A > 0,

and the formula for Z only; for all other cases the following proof can
be easily carried over. By definition

A~ ~ A~

(ZF) (A) = (0-1) (N) +i(20:f) (A)

and integration by parts yields

A~ ~

(20:f) (A) F(Q) = =i A (2f) (A) F(C) -
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We have . . .
(Zf)(A) = (0:0) N+ AZf) ().
Furthermore,

F) (CF(©Q) = / f M@l (¢ _ 2y F(¢ - 2)dV
=CFNFEQ) - EH N FE),

/f8 (TI\F)d
= 2XCfNF (C)+A(2f)A(>\)F(C)
=21 f(N) (CFQ) = AEF) (V) F(Q).
Hence,

(ZF) N F) =—-2Xf(\) (CF(Q)-

As for the matrix form, we recall that

(2)\)(1/2
Va!

is an orthonormal basis for H, , and write

Fax(Q) = ¢

ao

00 aq
:ZaaFa)\(C)E ay | aq € C.

a=0 .

Then

— Z Ay CFa,A(g)
a=0

— \/% Z Va+1ag Foy1.2(€)
a=0

0
ao

_ \/50,1
\% 2A \/50,2
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0
1 1 0
= v F(O).
V2A V3 0

On H"™ the sub-Laplacian is the differential operator Ly defined by

1 —
Lo=-2> (2;Z;+2,;Z;) .
7j=1

The above calculations can be used to compute Lo. We apply the
matrix expressions of Z; and Z; to get

Lo = =5 SAZNZLW) + LW Z (W)

=Y {he oL
j=1

1 0

2 1
|)\|( 34 + 2 >®1j+1®"'}

3

n 3

:Z{[1®...®[j_l®|)\| 57 ®Ij+1®"'}
j=1

= Z (2]a] +n) N WS -

. . . . + ~
We now introduce the partition of the identity I = > ;77  TIlkg,
R > 0, where Il is the spectral projection of Ly corresponding to
the multiplier

I, (\) = > Wa ().

s<(2|lal+n) [A[<V2s

Then the LP(H™) multiplier theorem can be stated in the following way.
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Theorem 1 (Multiplier theorem for LP(H"™)). Let M be an operator-
valued function with each entry in C*(R\ {0}), k > 4[(n+5)/4], where
[-] denotes the greatest integer function. Also assume

(4) sup ||[M(N)]| < 400,
A#£0
+oo R
(5) sup Rdegp—"—lf H[APM(A)]HR(A)H; A" d\ < 400,

for every monomial P with deg P < 4[(n+ 5)/4]. Then M is a multi-
plier of LP(H™), 1 < p < 00, and is of weak type (1,1).

3. Proof of the LP(H") multiplier theorem.
We follow [DMM] fairly closely. According to [CW1, Theorem

3.1], to establish the multiplier theorem it suffices to construct a well-
behaved approximate identity {¢, : r > 0} satisfying

(6) /H T, e ()| (1+ (@)) dr < C, 0<r<+4o0,

for some € > 0 and C' > 0, where
4 42 - 2\
bo=r—dp  and  plo)=lalt =+ (315
j=1

Note that [CW1, Theorem 3.1] adopts |z|?"*2 rather than |z|*. How-
ever, if we check their proof carefully, we find that the inequality (6) also
implies the LP(H") boundedness of T',, due to Lemma 3 and Lemma 4
below.

Since we assume supy g [|[M(A)|| < +o0, by Plancherel formula,

the homogeneity of ¢,.(z) = r~+1)/2¢, (r=1/42) (see Lemma 1 below),
and changing variables, we have

(7) / T,y (2))?de < Cr~ D2 0 < r < 400.
Hn

If we can also obtain

(8) / T, 1y ()2 p(x)2[(n+5)/4] dz < C r2ln+5)/4=(n+1)/2
Hr



LP MULTIPLIERS AND THEIR H'-L' gsTiMaTES 283
for 0 < r < +o0, then we claim both inequalities (7) and (8) imply (6),

and hence the multiplier theorem for L?(H™) follows. To see this we
choose 0 < e < [(n+5)/4] — (n+ 1)/4. Then by (8) and (1)

[ 1T @) pla) do

p(z)>r
1/2 1/2
S( / [Ty o () )04 dw) < / p()2e 2 +0)/4] d:r>
p(:n)>r p($)>7"

< O plnt5)/4=(n+1)/4 pe=[(n+5)/4]+(n+1)/4
=Cre.

This implies

[ 1T @) s

p(z)>r
< <p(Z>lTM¢T(m)| (@)edagyz (p(ZJTMwT(x)I (p(x))edxyﬂ
sc( / |Ter<x)|da:)l/2-

p(z)>r

Combining this and the previous inequality, we obtain

) [ @i (4 (22) ) <0,

p(z)>r

On the other hand, from (7) we have

/|Ter(x)|da:§< /m«)l/z( /|TM¢T(:1:)|2da:>1/2§C.

p(z)<r p(z)<r p(z)<r
Thus
(10) /|TM¢T(x)|(1+(@)E) de < 2 /|TM¢,,(3;)|dxgc.

p(z)<r p(z)<r
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Combining (9) and (10) establishes the claim. Therefore, we only have
to prove the inequality (8) to establish the multiplier theorem.

Compare with the construction in [DMM]. The construction of the
approximate identity is contained in the following.

Lemma 1. Let ¢1 € S(H™) be the poly-radial function with Fourier
coefficients

Rp, (M, 0,0) =exp{—(2|a| +n)* A}, AER*, aecN' .
Define
br(t, ) = r~ (P2 g, (r_l/zt,r_l/4z) , r>0.

Then Ry, (X, 0,a) = exp{—r?(2|a| + n)* M} and satisfies, for some
n >0,

i) / o0t 2)] (1+ p(ijz))"dv <c,

ii) . ¢ (t,2)dV =1,
i) ¢ x5 = b5 x ¢,
) [ 162002 — (e 2) v < € (L)
V) r(t,2) = dr(—t, —2).
PROOF. The identity (3) gives
Ry, (A, 0,a) = Ry, (VTA,0,a) = exp{—12(2|a| + n)* A*}.

By the homogeneity of ¢, and a change of variables, we have

/Hn |60 (£, 2))| (1 + p(t’z))"dv = [ 1612 (14 p(t,2))" AV < +oo

r
for all n > 0, since ¢; € S(H™). This proves i). Since (2(0) = 1 and
exp{(—7%(2 |a| + n)t X'} = Ry, (A, 0,)
= bp(t, |21], . - ., |20]) €M

Hnr
oy 2 A [2]?) -, (21A] [2nl?) dV
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Letting A — 0 and applying the Lebesgue dominated convergence theo-
rem, we have ii). Properties iii) and v) follow from the facts that ¢, ()
is poly-diagonal and b (A = qgr(—)\). To prove iv) it suffices to prove it
for » = 1 by the homogeneity of ¢, and changing variables. Let L € b
be the normalized generator of the one parameter subgroup through
(0,20)~!. Then the fundamental theorem of calculus gives

Hr |1((t,2)(0, 20) ") = $1(t, 2)| AV

|zo]
g//o L ((t, ) exp(sL))| dsdV

= |z0] | Loallx
= p(0,20)* | L1,

which proves iv) for to = 0. For the general case, we write

(to,20) = (to, (20)1,-- -, (20)n) € H"
and let

hoj = (0,0,...,0,(20);,0,...,0),

i
hij = (0,0,...,0,m\/%,0,...,0),

1
haj = (0,0,...,0,m\/%,0,...,0),

where each hgj, (K =0,1,2), (j = 1,2,...,5n), has its only non-zero
entry in the zj-component. By a straightforward calculation we have

t
(to,Zo) = H( 0,0,...,0,(,20)]',0,...,0)

J:
[1 hojhajhajhy; hy) ., if to <0,

=1

{ [T hojhajhaihi; hyy . if to >0,
=1

Thus we can express ¢1((t,2)(fo,20) ') — ¢1(¢, 2) as a sum of 5n dif-
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ferences

P1 ((tv Z) (tOv ZO)_l) - ¢1(t7 Z)

= ¢1(xx122 - T5n) — P1(2)

= ¢51($5E1$2 e '375n) - ¢51($5E1$2 i '$5n—1)
+ ¢1(ZE$1ZE2 e '$5n—1) - ¢1(ZE$1ZE2 o '$5n—2)
+ ¢r(rr179 - T50—2) — P1(TT1T2 - T5p_3)

+ ¢1(zz1) — P1(T)

for which each z; (= h; or h,;jl, k=0,1,2), 5 =1,2,...,5n, has t-
component zero, and apply the result just established to complete the
proof of iv).

Lemma 2. For every homogeneous polynomial P in H" with 1 <
deg P < 4[(n+5)/4], one has

sup{‘Rpwr()\,m, cv)‘2 :meZ", R<(2lal+n)\ < \/ER}

< CP T(l—n)/2+2[(n+5)/4] Rl—n+4 [(n+5)/4]—deg P fP (TR2),

(11)

for 0 <r < +oo, where f, € L*(Ry). Moreover,

Ry, (A, 0,0))|

(12) < Co(r(2|a|+n)2)\2)2, for 7(2|a]+n)2A2 <1,
- 1, for r(2]al+n)? A% >1.

Because the proof of Lemma 2 is messy, it will be postponed to
the appendix. That will enable the reader to follow the paper without
getting lost. We now let k = [(n+5)/4], p(t, 2)k = (t2+|z|*)ln+2)/4 By
the Plancherel formula, the inequality (8) is equivalent to the following
inequality:

—+o00
(13) / Z\Rkaer(/\,m,a)\2|/\|"d,\gcr2k—(n+1>/27

m,a

for 0 < r < 4+o00. Assume we can express p(t, z)¥ as a linear combina-
tion of products of powers of 27, 27, z; — 25, z; — 25, 6(¢', 2'), o(t', 2"),
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5((1 2)(t, 2') ), 6((E 2)(t, 2') 1), and (¥, 2'), where 8(t, 2) = L +i]2?
and each term is homogeneous of degree 4k. (We use ) to denote this
linear combination.) Then we have a Leibniz formula for the operator

Apk [M Z C AP ]@br( )
(14) + Y L Ag,MW)] [Ar,wr(N)]

for some homogeneous polynomials P;, QQ;, R; with deg P; = degQ; +
deg R; = 4k, and constants Cj, CJ’-. To see this we check some of terms

in 3, for instance [p(¢/, 2')]* and i (2 —z;-)4k_3(5((t, 2)(t',2)~1). Write
M(X) = f(X) for some f and ¢, = g. Then

A [MON) (V)] = Api[(f + 9) V] = [0(f % 9)T (V)

and
(S  9)(t 2)
— / (A T2, gt ) V()

: {Crp(t', ") + Co 2 (27 — ) 36 ((t, 2) (', ) ) + -+ }

() ()T gt 2) avi(E, )
= Cl Al(t,Z) + 02 Az(t,z) + - N

where
Ai(t, 2) = / p(t', 2V F((t,2)(t, )Y g, 2") dV (H, 2')
= (f * pkg)(tv Z) .
Thus A R . A
Ar(N) = () (0°9) (\) = M(A)[A e (V)] -
Also
A2 (t, Z)

:/nz;-(zj—z;-)%_?’é((t, 2) ', )Y F((t2) (2T g, 2 dV(E, 2)
= (Qf x Rg)(t,2),
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where Q(t,2) = (z;)*736(t, z) and R(t,2) = z; . Thus,
A(0) = (QF) (V) (Rg) (V) = [Ag, M (V)] [Ar,$r (V)]

and the same process can be carried over to the other terms of 2 We

now show that p(t,2)* can be expressed as the linear combination >_ .
We note that

plt,z) —p(t', 2') = (t —t)2 +2t'(t — t')
F(Slal-X15P)
+2 (P (X1l - X 15P).

Since

2 2
> Ll =17
2 2 - s = 2

+ Z(|Zj_ L2 = 20257 + (25— 25) 2 + (25— 75) 25 + 2 12]%)
is a linear combination of products of powers of 27, 2}, z; — 2}, Z; — ;.
Thus p(t, z) is a linear combination of products of powers of ¢, t — ¢/,
25, 25y 2j — 25, Zj — Zj, and p(t', 2) with homogeneous degree 4 in each
term. Also

This gives p(t, 2)¥ = 2 as a linear combination of products of powers of
2, Zhy 25— 2, Bj— 25, 0(t, 27), 0 (', 2'), 6((t, 2) (¢, 2}~ 1), (¢, 2) (¢, 2')~1)
and p(t’, z’), in which each term is homogeneous of degree 4k .

By the Leibniz formula (14) we write

+o00 )
‘/_ Z‘Rkaqur()\,m,a)‘ |)\|nd)\



LP MULTIPLIERS AND THEIR H'-L' ESTIMATES 289

400 R 9
— [l AnB ) I, A ar

+o0 . )
S [ lAn M2, I ax

finite ¥ —

(15) gC(

“+o00

> HmQjMun[ARJ¢T<A>]\|1SMm)

Recall that {W™(\) : m € Z", o € N'} is an orthonormal basis for
the Hilbert-Schmidt operators on H |, and

M,(A) = >, Wa(h).

s<(2]al+n)|A|<V2s

If P is a homogeneous polynomial with degree 4k, then

+o0 R 9
1= [ flarM, W], 1A A

2
A" dA
HS

+00
:/_oo [P MO Ry, (1, 0,0) T2, 1/2()] |

JEL

+o0 R
- Z/ H[APM()‘)] H21/2r—1/2()‘)“is ‘Rwr()\, O,Oz)‘2 |AI™ dA
JEZY T

=3y

j<0  3>0

=I'+1",
where the coefficients R, (A, 0, o) satisfy
21/2p=12 < (2|a|+n) |\ < V220272,
For j < 0, we have r'/2(2 |a| + n) |A| < V2 27/2 <1, s0

Ry, (A, 0,a)] < C(r(2]a] + n)2/\2)2 < C 2%+
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by (12). For j > 0, we get r*/2(2]a| + n)|A| > 29/2 > 1, and hence
from (12)
Ry, (X,0,0)| < 1.

The basic assumption (5) on the multiplier now implies

“+oo
I' < 0224f+4/ H[APM(,\)]ﬂ2j/2r,1/2()\)\\; IA|™ dA
3<0 e
<O 2t () pm1/2) Ak
J<0

—C T2k—(n—|—1)/2 7

I < Z/ [1ARM )] Tl 2,12 (V)2 A" dA

i>07—

S CZ 2,7/2 T‘_1/2)1+n_4k
j20
_ (2= (n+1)/2
For n fixed, there are at most a finite number (depending only on n)
of terms of the form I. This proves (13) for the first sum of (15). Next

consider two homogeneous polynomials ), R with deg () + deg R = 4k,
deg R > 1, and

+oo . 9
1= [ aeMO)Bad I, A" A

+o0
= /_ Z_ AQMMIWa W[ | [Rep, (A mg @) A" dA

since zﬁr(/\) is a poly-diagonal matrix and each of {As, A, Az }0 4
maps a poly-diagonal matrix into a pseudo-poly-diagonal matrix (i.e.
the one in which each factor has its only non-zero entries on one sub or
super diagonal), Agt),(\) is pseudo-poly-diagonal and hence

ArRy, (A, m,a) =0 except for some m,, € Z".
Using (11), (5), and the orthonormality of {WZ*(A)}, we have

+oo
J_Z/ [AgM (N)] Ly ( )His\RRwr(A,mR,a)‘2|)\|”d)\
JEL”
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< ZCR p(1=n)/2+2k (2j/2)1—n+4k—degR fR(2j,r)

JEZ
“+o0
- f I[AQM )] Ty 2 [} A" dA
< Zcr(l—n)/2+2k (2j/2)1—n+4k—degR fR(2j,r) (2j/2) 1+n—degQ
JEZ
— CT(I_n)/2+2k_1 Z 2j r fR (2] T‘)

JEL
~ Cp(I=m)/242k=1) ¢ 1)y

=C T2k—(n—|—1)/2 )

There are only finitely many terms of the form J, so the inequality (13)
for the second sum in (15) is proved. This establishes the multiplier
theorem for LP(H").

4. H-L' estimate.

In Theorem 1, the multiplier theorem is valid for LP, p > 1. For
p = 1 we only have a weak-type estimate, so in this section we are
trying to extend to another sense of strong type ||T,, fllz: < C||flla:-
Here H' is the Hardy space on H" defined either in terms of maximal
functions or in terms of an atomic decomposition [FS]. When p > 1, L?
and H? are essentially the same.

REMARK. We have in fact proved that ||T,, f||lg» < C||f||me for 0 <
p < 1. The proof is more complicated than the one here and requires
the theory of molecules (¢f. [TW]). The details of this proof will appear
elsewhere.

Specifically, we define a (1,2,0)-atom as an L*-function f having
support in a ball B, = {z € H" : |z| < R} and satisfying

1/2

Ifll2 < |B.|™ and 8 flz) do =

It is obvious that ||f]|; <1 for any (1,2,0)-atom f.
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Theorem (Atomic decomposition of H') [FS, Chapter 3]. Any f
in H* can be represented as a linear combination of (1,2,0)-atoms
=272 fi, N €C, where the f; are (1,2,0)-atoms and the sum
converges in H'. Moreover,

| f|| g =~ inf { Z |Aql : Z)\i fi is a decomposition

=1 =1

of f into (1,2,0)—at0m8}.

Let {¢, : r > 0} be the approximate identity in Section 3. It is
easy to check that {¢,. x ¢, : ¥ > 0} is also an approximate identity and
satisfies the same properties i)-v) of Lemma 1. Therefore,

Po-i x py-i x [ = f in LP

and

f= "}gnoo Z(%*i*l * g—i—1 — Py—i * ¢52*i) *f+drxdr*f
i=0

= lim Y ik (foi o)k fhdrrdixf  inLP.
1=0

Since we only concern the tail terms in the approach ¢o-i ¥ pg—ix f — f,
we may assume ¢ = 1. Thus if [ f(z)dz =0, ¢1xp1 % f=0.
In the proof of Theorem 1, we have shown

(6) /JTWA@NH(@)E)MSC, for all 7> 0.

Let n and ¢ be the constants in Lemma 1 and (6), respectively. Setting

¢r = ¢r+¢r/2 y A = er*qﬁr ’ K, = — Z;Zo ag-i, and 0 = miﬂ{na 6}7
we now have the following two lemmas.

Lemma 3.

) [ @)@’ i<,
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PrROOF. Lemma 1.i) and inequality (6) give the uniform boundedness
of HQSTHI and ||T,,%.||1. Applying the triangle inequality, we have

p(x)° < Cs (p(y)° + ply~"2)°)

and then

| la@lp@?de < [ [ 10001167 9 @) dedy
< Ca[3r ], [ T}l o(w)*

+Cs Tl | 190(a)]| ple)’ de

<Crl.

The last inequality is given by Lemma 1.i) and (6) again. The inequality
b) is an easy consequence of Lemma 1.iv).

Lemma 4. Suppose M satisfies the same hypotheses as Theorem 1.
Then there exist constants Cy and Csy, independent of m and y , such
that

|Km(xy_1) — Kp(2)|dx < Cy
p(x)>C1p(y)

for all y € H* and for allm > 0.

PROOF. For i € ZT, Lemma 3.a) shows

/ |ag-i(2)] da < % / ‘GQ—i(x)‘p(aj)d dx < @)

p(z)>A p(z)>X
Therefore, choosing C; > 16, we have

|ag-i(zy™") — ap-i(a)| da

p(z)>C1p(y)

< / |ag—i(zy~")| do + / |az-i(z)| d

p(z)>C1p(y) p(z)>C1p(y)
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< |as-i ()| dx + / |as-i(z)| d
p(zy)>Cip(y) p(z)>C1p(y)
< / |az-i(2)| do + / |az-i(2)| du
p(z)>Csp(y) p(z)>C1p(y)
o

= @)
since 16 (p(z) + p(y)) > p(zy) > C1 p(y) implies

C: - 16

plz) > —

p(y) = Csp(y).

The above inequality and Lemma 3.b) get

laz-i(zy™") — az-i(2)| do < C min { (2° p(y))(s #} .

(27 p(y))°
p(z)>C1p(y)
Taking the summation of these inequalities, we obtain
| K (zy™) — K ()| da
p(z)>C1p(y)
< Z / ‘az—i(xy_l) - (lg—i(l’)‘ dx
=0 p(@)>Crpy)
. 5 1
ST DRNCY)(RRCHND piee
o . (27 p(y))
i<—log, p(y) i>—logy p(y)
C C

< .
_25—1+1—2_5

The proof is thus complete.
Now we are ready to prove the H-L! estimate of T, .

Theorem 2. Suppose M satisfies the same hypotheses as Theorem 1.
Then T,, maps H'(H") boundedly into L*(H"). Moreover, there exists
a constant C' > 0, independent of f, such that |T,, fl|lLr < C||f||lgr for
all f € HY(H") .
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PROOF. By the atomic decomposition of H', it suffices to show
T, fll: <C, for any (1,2,0)-atom f.

Given a (1,2,0)-atom f with supp f C {z € H" : |z| < R}, then || f||2 <
CR™™ 'and [ f(z)dz =0. The L?-boundedness of T, implies

TMf:Tr}EIIOO;—Tszi*¢2i*f=mli_1;nooKm*f in L7,

Thus there exists a subsequence {mn;}, such that
T,f= lim Ky, xf almost everywhere.
j—00

Let Cq, C5 be the constants in Lemma 4. Then

| mseld

|w|>C11/4R
< lim inf / | K, * f(x)|d
j—00
lz|>Cl/*R
< lim inf / ‘ / (Km, (zy~1) — K, (z)) f(y) dy| da
j—00

lz|>C}/*R |YISRE

gliminf/|f(y)|dy / | Ko, (2y™ ") — Ky, (2)| da

J—o0
lylsk 2>y

< Ca [l

<Cy.

On the other hand the Schwartz inequ