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Bounds for capacities

in terms of asymmetry

Tilak Bhattacharya and Allen Weitsman

�� Introduction�

In ���� a study was initiated by R� Hall� W� Hayman� and A� Weits�
man relating the asymmetry of a set to various set parameters such as
the diameter� isoperimetric constant� and capacity� For a compact set
� in Rn � let V 	�
 denote the volume of �� and B	x� �
 the ball of radius
� centered at x and volume V 	�
� The asymmetry � � �	�
 is then
de�ned by

	�
 � � inf
x

V 	�nB	x� �


V 	�


� � �
n

s
V 	�


V 	B	�� 


�

In R� � we shall use A	�
 to denote the area of �� It is clear that � � �
when � is a ball�

Let Cap	�
 denote the logarithmic capacity of a set � in R� � In
��� it was shown that there exists an absolute constant K� such that

	��
 Cap	�
 � 	 �K� �	�

�


r
A	�


�
�

This was improved by W� Hansen and N� Nadirashvili in ��� where it
was shown that there exists an absolute constant K� such that

	��
 Cap	�
 � 	 �K� �	�

�


r
A	�


�
�

���
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The inequality 	��
 was conjectured by L� E� Fraenkel and� as noted
in ���� the exponent � in 	��
 is sharp� The proof in ��� relies on
an inequality between capacity and moment of inertia which had been
proved by P�olya and Szeg�o ��� p� ��� for connected sets� For general
sets� this inequality had remained open until Hansen and Nadirashvili�s
ingenious proof in ���� They also showed that� in 	��
� K� � ��� The
proofs in ��� are based on estimates for condensers�

In this work we shall prove an analogue of 	��
 for p �capacities of
condensers in the plane� The p �capacities have been studied extensively
in recent years� especially in connection with degenerate nonlinear el�
liptic partial di�erential equations ���� Since such capacities are very
hard to compute exactly 	cf� ��� p� ���
� we shall develop a perturba�
tive method to obtain approximations in terms of asymmetry�

A condenser � � �	����
 in R� consists of a compact set � and a
disjoint closed unbounded set ��� The p �capacity 	 � p � �
 of the
condenser is then

	��
 Capp	�
 � inf

ZZ
R�

jDujp dxdy �

the in�mum being taken over all functions u absolutely continuous in
R� � with u � � on � and u �  on ��� When p � �� the minimizer is
the harmonic function in R�n	� � ��
 having the prescribed boundary
values� For other values of p� the minimizer satis�es the �p �Laplace
equation�� namely� div	jDujp��Du
 � �� Although solutions to this
equation have only locally H�older continuous �rst derivatives ���� they
do retain a maximum principle� and the critical values are discrete in
R�n	����
 ���� Furthermore� u is analytic near points where Du �� �
	cf� �� p� ����
� We will consider p �capacities of condensers � �
�	����
 where A	�
 �  and A	R�n��
 � �� The main result of this
work is

Theorem �� Let  � p ��� There exist constants Kp depending only

on p� such that

	��
 Capp	�
 � 	 �Kp �	�

�
Capp	�

�
 �

where � is as above� and �� � �
�
B	�� �

p
�
� R�nB	�� ��p�
� �

The p �capacity of �� is given explicitly by

	��
 Capp	�
�
 �

� Z �

�

		t
 dt

���p
�
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where 		t
 � 	p	t
 � 	��t

p�����p��

In Section � we show that the exponent � in 	��
 is sharp�
The methods of this paper can be extended to cover condensers

whose inner and outer boundaries exhibit asymmetries� but at a cost
of much routine and tedious work� Also� 	��
 in case p � � can be
used to give 	��
� In Section � we outline this proof� Although it is
impossible� due to the intricacies of the proof� to give any meaningful
numerical bounds on the constants Kp in 	��
� with additional work
one could allow � and �� to vary in size� The in�uence on the constants
Kp will be discussed in Section �

In higher dimensions only partial results have been obtained relat�
ing capacities to asymmetry� Under the assumption of convexity on ��
if Cap	�
 denotes the Newtonian capacity of �� then in ��� the inequal�
ity corresponding to 	��
 with exponent n� on � was obtained� This
was improved by Hansen and Nadirashvili ���� ���� again for convex sets�
also replacing the asymmetry by the quantity

de	�
 �
R�	�


R	�

�  �

where R� is the outradius of � and R	�
 is the radius of the ball having
volume V 	�
� They proved that for small d � de	�
�

Cap	�


Cap	B	�� �


�
��
�  � A

d�

log �d
� n � � �

 � An d
�n����� � n � � �

where V 	B	�� �

 � V 	�
�
The main challenge which lies ahead is to determine the e�ect of

asymmetry on Newtonian capacity without the assumption of convexity�
Although � � de� and 	��
 is close to best possible for convex sets ���
p� ��� the quantity de has no relevance in the study of general �� This
stems from the fact that line segments have capacity � in Rn for n � ��
and so de can be depressed with negligible e�ect on the capacity� On
the other hand� the notion of asymmetry� which seems to have been
introduced in this context by Fraenkel� remains a natural measure of
distortion� It seems reasonable to us to conjecture that

	��

Cap	�


Cap	B	�� �


� 	 �Dn �

�


for constants Dn where again V 	B	�� �

 � V 	�
�
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In an unpublished work� Fraenkel has veri�ed 	��
 for starlike
regions close to a ball in R� � However� contrary to the remark attributed
to the second author in ���� no general bounds on Newtonian capacity
in terms of asymmetry appear to be known� It would be interesting to
obtain an inequality of the type 	��
 with some exponent on �� but
with no assumption of convexity on ��

There are two natural avenues of approach to this problem� The
�rst would be to prove an inequality for the moment of inertia I	�
 of
� about its centroid in terms of Cap	�
 as was done in R� by Hansen
and Nadirashvili� If one could prove the hypothetical inequality

	��
 Cap	�
n�� � 	n� �


n

I	�
 �

where 
n is the 	n�
�Hausdor� measure of the unit sphere� and where
we have normalized so that the capacity of a ball is its radius� then 	��

would follow easily from

I	�
 � I	B


	
 �

n� �

n�
��


�

where B is the ball of volume V 	�
� Inequality 	��
 is a natural ana�
logue of the inequality of Hansen and Nadirashvili in Rn �

Another possible approach is along the lines of the present paper�
especially in view of the recent results of Hall ��� which give the in�uence
of the asymmetry on the usual isoperimetric inequality� With this in
mind� the results of this paper� in particular the symmetrization method
introduced in Section � can be adapted to Rn for n � � as long as
p � �� The di culty arises in Section � where one needs to prove that
if the asymmetry is very small� most of � is a set whose boundary lies
between two very close concentric balls� The present argument relies
on the Bonnesen type inequalities 	���
�	���
� and it seems di cult to
extend this type of argument to higher dimensions�

In the case of p �capacities of condensers in Rn � n � �� nothing
seems to be known regarding an analogue of 	��
� even under the addi�
tional assumption of convexity� The problem is more di cult especially
because there are no known bounds on the sets of critical points� and
in particular whether or not such sets are of measure zero� Neverthe�
less� it seems likely that 	��
 will continue to hold� More precisely�
let Rn be such that V 	B	�� Rn

 � � � � �	���

�
 be a condenser
with V 	�
 � � and V 	Rnn��
 � �n� Let �� denote the condenser
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�	B	�� Rn
�R
nnB	�� �Rn

� Then we conjecture that there is a Kp � ��

depending only on p� such that

	��
 Capp	�
 � 	 �Kp �
�
 Capp	�

�
 �

We have divided our work as follows� In Section �� we state and
prove some preliminary results required in the proof of Theorem �
We also discuss our strategy for achieving the proof of Theorem � In
Section �� we introduce a new symmetrization technique� Based on
this� we prove a perturbation lemma for ��capacity in Section �� The
proof of Theorem  involves considering several independent cases and
is spread over sections ���� In Section �� we present an example to
prove the sharpness of the exponent � in 	��
� Section � contains a
proof of 	��
 based on the techniques developed in this paper� Finally�
in Section � we indicate how our result in 	��
 is modi�ed when the
ratio of the areas of the sets involved is di�erent from ��

As in ���� our proofs will rely in part on connections with the
isoperimetric inequality� These ideas have been useful in a number
of studies 	cf� ���� ���� ���� ���
�

�� Preliminary results�

We may assume that the sets we are working with are bounded by
a �nite number of recti�able curves� Let D be such a set and L	�D

denote the length of its boundary� Then it is proved in ��� Lemma ���
that

	��
 L	�D
� � ��
�
 �

�	D
�

�

�
A	D
 �

In proving 	��
� use was made of relations between the inradius Ri and
outradius Ro of D� Results of this type are collected in ���� In this
paper� we shall have occasion to use the fact ��� p� ���� that if D is
bounded by a recti�able Jordan curve� then

	���
 L	�D
� � �� A	D
 � ��	Ro � Ri

� �

	���
 Ro � 

��

�
L	�D
 �

p
L	�D
� � �� A	D


�
�
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and

	���
 Ri � 

��

�
L	�D
�

p
L	�D
� � �� A	D


�
�

Proposition ���� Suppose that D is a bounded open set and D �
��i	�Di� where the Di�s are pairwise disjoint components of D� labelled

such that A	D�
 � A	D�
 � � � � � If � �  � ��� and

A	D�
 � 	� 
A	D
 �

then

L	�D
� � �� 	 �
p

A	D
 �

Proof� We assume that the perimeter of each Di is �nite� Set xi �
A	Di
� i � � �� � � � � so that

P�
i	� xi � A	D
� and x� � x� � x� � � � � �

Also

	���
 x� � 	� 
A	D
 �

We �rst consider the case when x� �  A	D
� Employing the isoperi�
metric inequality� we have

L	�D
� �


L	�D�
 �

�X
i	�

L	�Di


��

� L	�D�

� �

�X
i	�

L	�Di

� � �L	�D�


�X
i	�

L	�Di


� ��
 �X
i	�

xi � �
p
x�

�X
i	�

p
xi

�

� ��
�
A	D
 � �

p
x�
� �X
i	�

xi
�����

� ��
�
A	D
 � �

p
x�	A	D
� x�


�
�

Recalling that  A	D
 � x� � 	 � 
A	D
� and using the fact that
x	� x
 for x 	 �� � � has as its minimum 	� 
� we have

L	�D
� � �� 	 �
p

A	D
 �
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Thus the statement of the proposition holds in this case�
We now consider the case when x� is small� i�e�� x� � A	D
� Then

 A	D
 � x� � x� � x� � � � � �
and

	���

X
i�	�

xi � 	� 
A	D
� for all � � � �� � � �

Clearly�

	���


L	�D
� �

� �X
i	�

L	�Di


��

�

� �X
i	�

L	�Di

� �

�X
j	�

L	�Dj

X
i�	j

L	�Di


�

� ��
�
A	D
 �

�X
j	�

p
xj
X
i �	j

p
xi

�
�

Setting �i � xi�x� � � and employing 	���
� we obtain

	���


�X
j	�

p
xj
X
i�	j

p
xi � x�

� �X
j	�

p
�j
X
i�	j

p
�i

�

� x�

� �X
j	�

�j
X
i�	j

�i

�

� 	� 
A	D
�

x�

� 	� 



A	D
 �

The proposition now follows easily in this second case by combining
	���
 and 	���
�

By taking the contrapositive of Proposition ��� we have

Proposition ���� Let D be a bounded open set such that� for some 
	� �  � ��
� L	�D
 satis�es

L	�D
� � �� 	 �
p

A	D
 �
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If D� is a component of D with the largest area� then

A	D�
 � 	� 
A	D
 �

Remark ���� The exponent �� appearing on  in the statement of
Proposition �� is sharp� To see this take D � D� � D�� where D�

and D� are two disjoint discs of radius
p
�  and

p
 respectively�

Take  � ��� Then A	D
 � �� and A	D�
 � 	 � 
A	D
� Clearly�
L	�D
� � ��	 � O	

p


A	D
� as  
 ��

For a condenser � with inner set � and outer set R�n��� if u is
the extremal extended to be zero on �� we write F 	t
 � fx ! u	x
 � tg
and A	t
 � A	F 	t

 	� � t � 
� We will often write � � �	�
 for
convenience�

Our proof of Theorem  will be broken down into two cases� In
Case � the asymmetry of � is propagated through a t interval for
the sets F 	t
� Here the proof follows the methods of ���� It is easy
to construct examples of sets � for which �	F 	t

 is dramatically less
than �	�
 for t arbitrarily close to zero� Case � is designed to cover
this possibility�

The plan in Case � is as follows� Since �	F 	T 

 is very small for
some T close to �� we �rst observe that this implies that most of F 	T 

is a set� which we later call F�� whose boundary is contained between
very close concentric circles� This is the essence of 	���
 below� By
using the symmetrization of Section �� we construct a new condenser
with comparable asymmetry and decreased p �capacity by suitably re�
distributing the portion of F� on each ray from the center x� of the
concentric circles� Using the new con�guration� we then obtain a lower
bound on the capacities stated in Lemma ���

In what follows� � and � will denote small positive constants which
do not depend on �� and which will be determined later� We assume

	���
 � � � � ������ � � ���� and � �
��

�
�

Case � For all t such that

	���
  � � � A	t
 �  � ��
we have

	��
 L	�F 	t

� � �� 	 � ���
A	t
 �
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Case �� There exists a value T such that

	���
  � � � A	T 
 �  � ��

and

	���
 L	�F 	T 

� � �� 	 � ���
A	T 
 �

By the result in ���� in Case � Du can vanish on at most a �nite
number of levels u � t in the interval speci�ed by 	���
� In Case
�� by making a slight adjustment� we may choose T such that Du is
nonvanishing on the boundary of F 	T 
� Thus we may take �F 	T 
 to
be analytic in the latter case�

�� A symmetrization technique�

We now present a new type of symmetrization which will be useful
in relating p �capacity to asymmetry� Let �� and F� be two bounded
open subsets of R� � We assume that i
 �� � F�� ii
 the origin � lies
in ��� and iii
 ��� and �F� are the unions of �nitely many Lipschitz
continuous curves� Let � �

p
A	��
�� and R �

p
A	F�
���

For each � 	 	��� ��� let J	�
 � frei� ! � � rg be the ray from the
origin making an angle � with the positive x�axis� For a given value of
�� let

J	�
 � �� � �r�� r�	�


�
j��
	r�j	�
� r�j��	�

 � r� � � �

the intervals being disjoint� We now introduce the parameters necessary
to give a redistribution of the area of �� relative to B	�� �
� Set

	��


s	�
 � supfr ! rei� 	 J	�
 � ��g�
t	�
 � inffr ! rei� 	 J	�
 � �F�g

� supfr ! ��� r
 � J	�
 � F�g�
"s	�
 � supfr ! rei� 	 J	�
 � ��� r � t	�
g�
"t	�
 � inffr ! rei� 	 J	�
 � �F�� r � s	�
g

� supfr ! �s	�
� r
 � J	�
 � F�g�
N � frei� 	 �� ! s	�
 � t	�
� r � "s	�
g�
E � f� ! J	�
 �N �� �g �
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Figure �� "s	�
 � s	�
 � t	�
 � "t	�
�

Figure �� "s	�
 � t	�
 � s	�
 � "t	�
 �Shaded Region in N �

Note that "s	�
 � s	�
 and "t	�
 � t	�
 with equality if and only if
s	�
 � t	�
�

We distinguish two possibilities in our redistribution of ���

Case A� Suppose �rst that "s	�
 � �� Then we de�ne �	�
 � � by

	���
 �	�
� �
X
j�K

r��j�� � r��j �
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where K � fj ! r�j�� � "s	�
g�

Case B� If "s	�
 � � we distinguish two subcases to de�ne �	�
 � � and
�	�
 � ��

i
 If � 	 J	�
 � ��� i�e�� r�m � � � r�m�� for some m� then

	���
 �	�
� � r��m�� �
X
j�L

r��j�� � r��j �

where L � fj ! r�m�� � r�j � r�j�� � "s	�
g� also let

	���
 �	�
� � �� � r��m �
X
j�M

r��j�� � r��j �

where M � fj ! r�j�� � r�mg�

ii
 If � �	 J	�
 � ��� we set

	���
 �	�
� � �� �
X
j�L�

r��j�� � r��j �

where L� � fj ! � � r�j � r�j�� � "s	�
g� and

	���
 �	�
� �
X
j�M �

r��j�� � r��j �

where M � � fj ! r�j�� � �g� It is useful to observe that �	�
 � � and
�	�
 � �� whenever "s	�
 � ��

For each � 	 	��� ��� let ���	�
 � J	�
 be de�ned by

���	�
 �

���
��
��� �	�
� � if "s	�
 � � �

��� �	�
� � 	�� �	�
� � if "s	�
 � � and �	�
 � � �

��� �	�
� � if "s	�
 � � and �	�
 � � �

De�ne ��� � �����	�
� by the de�nitions in 	��
�	���
� it is clear that i

A	��
 � A	���
 �A	N
 	see 	���

� ii
 if B	�� r
 � ��� then B	�� r
 �
���� and iii
 �

�
� � B	�� �
 is starlike with respect to the origin ��

Now suppose that � � R�i � � and Ri � Ro are such that #B	�� R
�
i


� ��� and #B	�� Ri
 � F� � #F� � B	�� Ro
� Then we conclude from
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	��
�	���
 that

	���


i
 R�i � �	�
 � "s	�
 � s	�
 � "t	�
 � Ro �

ii
 Ri � t	�
 � "t	�
 � Ro �

iii
 Ri � t	�
 � s	�
 � "t	�
 � Ro� � 	 E �

iv
 R�i � �	�
 � t	�
 � Ro �

v
 R�i � minf��Rig � maxf��Rig � R � Ro �

vi
 If "s	�
 � �� then �	�
 � �� and �	�
 � � �

Based on 	���
 we now make some easy observations� These will be use�
ful in Section � and Section �� Suppose that � � A	��nB	�� �

�A	��

� �� By consideration of ��nB	�� �
 we have

	���


� � ����
�
� � A	NnB	�� �



���

�

�

Z
f������g

�
�	�
� � ��

�
d� � ����� �

By consideration of �� � B	�� �
�

	���


� �

Z
f������g

	�� � �	�
�
 d� �

Z
f
s�����g

	�� � �	�
�
 d�

� ����
�
� �

A	N �B	�� �


���

�
�

Subtracting 	���
 from 	���
� we then have

	���
 � �

Z �

��
	�� � �	�
�
 d� �

Z
f
s�����g

	�� � �	�
�
 d� � �A	N
 �

and adding we obtain

	��


Z �

��
j�� � �	�
�j d� �

Z
f������g

	�	�
� � ��
 d�

�

Z
f������g

	�� � �	�
�
 d�

� ����
�
� �

A	N


���

�
�
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Also� let

	���


����
���

� �


��

Z
f
s�����g

	�� � �	�
�
 d� � � �

#� �


R�

Z �

��
	R� � t	�
�
 d� � � �

In the next section we will use this symmetrization technique to
deduce a perturbation result for ��capacity�

�� A perturbation lemma for ��capacity�

We will now prove a perturbation lemma based on the symmetriza�
tion introduced in Section �� As before� �� and F�� subsets of R

� � are
bounded open sets such that i
 �� � F�� ii
 the origin � lies in ��� and
iii
 ��� and �F� are the unions of �nitely many Lipschitz continuous
curves� Set � �

p
A	��
�� and R �

p
A	F�
��� Let � � R�i � � and

Ri � Ro be such that #B	�� R
�
i
 � ��� #B	�� Ri
 � F� � #F� � B	�� Ro
�

Suppose furthermore that

	��


i
 For a �xed �� � � � � ��� Ro	� �
 � Ri � R � Ro �

ii
 �� � R�i�Ro � Ri�Ro �  �
iii
 For � �  � ��� �� � 	��R
� � �	 � 
 �  �

By the de�nition in 	��
� if � � �	���R
�nF�
� then

I � Cap�	�
 � inf
w

Z
F�n��

jDuj� dx dy �

where� w is absolutely continuous and takes the value  on R�nF� and
� on ��� Let v denote the minimizer� Then it is harmonic in F�n��
and assumes the appropriate boundary values� Set

� �
A	�� nB	�� �



A	��

� � �

We prove
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Lemma ���� Let ��� F�� �� R�Ri� R
�
i� Ro� �� �� � and v be as described

above� Assume that 	��
 holds� Then for all su�ciently small �� we

have

I �

Z
F�n��

jDvj�dx dy � ��

log R��
�B� �

� �B� �
� �B� � � �

where B�� B� and B� are positive constants depending only on �

Proof� Throughout the proof we shall let C� with or without sub�
scripts� denote positive constants depending only on � and which need
not be the same at each occurrence� We employ the symmetrization
introduced in Section �� and use the same notations as in 	��
�	���
�
Then from 	���
 and 	��
� we may conclude that

	���


i
 � � "t	�
� s	�
 � �Ro � � 	 E �

ii
 	�e
� � 	��
� � minf�	�
��R�� �	�
��t	�
�g �
iii
 jR� � t	�
�j � � �R�

o �

iv
 � � � t	�
�Ro �  �

Now

	���


I �

Z
F�n��

�
v�r �



r�
v��

�
r dr d�

�
Z
F�n��

v�r r dr d�

�
Z �

��

�
inf

Z
J���	fF�n��g

z�rr dr
�
d� �

where the in�mum is taken over all z � z	r� �
 such that z �  on J	�
�
�F� and z � � on J	�
����� The minimizer #z satis�es the one variable
Euler equation 	r#z�
� � � in J	�
�fF�n #��g� We will now estimate I by
employing the symmetrization in Section � and obtaining a lower bound
for the inner integral on the right side of 	���
� We do this by �rst
solving for #z from the aforementioned o�d�e over the disjoint intervals
	"s	�
� t	�

 and 	s	�
� "t	�

� the latter occurring whenever s	�
 � t	�
�
Note that #z vanishes on the left end points of these intervals and takes
the value  on the right end points� Also see 	���
� Thus a lower bound
for I is obtained by calculating the inner integral for this function #z
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over the above mentioned intervals� Recalling the de�nition of E from
	��
� it follows from 	���
� 	����i

� and 	��
 that

	���


I �
Z �

��



log	t	�
�"s	�


d� �

Z
E



log	"t	�
�s	�


d�

�
Z �

��



log	t	�
��	�


d� �

Z
E



log	"t	�
�s	�


d� �

If the second integral� on the right hand side of 	���
� is larger than
��� log	R��
 then Lemma �� follows trivially from 	���iii

� Other�
wise� Z

E



log	"t	�
�s	�


d� � ��

log	R��

�

But� log	"t	�
�s	�

 � 	"t	�
�s	�
 � 
� so it then follows from 	����i

�
	���ii
�iii

 and 	����iii

 that

meas� E � C� � �

Note that C� depends only on � Since

N � frei� 	 �� ! s	�
 � t	�
� r � "s	�
g �

	���i

 then yields

	���
 A	N
 � C� �
�R�

o �

Now� from 	���
�

	���


I �
Z �

��



log	t	�
��	�


d�

� �

Z �

��

�
log	�	�
��t	�
�


d� �

To estimate 	���
 we observe that the function f	x
 � �� logx satis�es

	���


���
��
i
 f	x
 � � 	� � x � 
 �

ii
 f �	x
 � � 	� � x � 
 �

iii
 f ��	x
 � � 	�e� � x � 
 �
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We shall use 	���
 in the form

	���
 f	x
� f	#x
 � f	#x
 	x� #x
 � f ��	�

�

	x� #x
�

for some � 	 	x� #x
 or 	#x� x
� Then with #x � ���R�� it follows from
	��
� 	���
� 	���
� 	���
 and 	���
 that

	���


I � ��

log	R��

� �

Z �

��

� �
log	�	�
��t	�
�


�


log	���R�


�
d�

� � f �	���R�


Z �

��

��	�
�
t	�
�

� ��

R�

�
d�

� C�

Z �

��

�
�	�
�

t	�
�
� ��

R�

��

d� �

The positive absolute constant C� in 	���
 results from the fact that
	����ii

 implies that �	�
��t	�
� � �e��

Next we estimate the quantities

S �

Z �

��

��	�
�
t	�
�

� ��

R�

�
d� � #S �

Z �

��

�
�	�
�

t	�
�
� ��

R�

��

d� �

We may rewrite S as

S �

Z �

��

�
	�	�
����


� 

t	�
�
� 

R�

�
���

� 

t	�
�
� 

R�

�
�
�	�
� � ��

R�

�
d� �

By 	���
 and 	���


	���


Z �

��

�	�
� � ��

R�
d� �

���

R�
� �A	N


R�
� ��A	N


R�
�

Also� by 	��
� 	���ii
�iii

� 	����iii�iv

�

	��


����
Z �

��
	�	�
� � ��


�


t	�
�
� 

R�

�
d�

����
�
Z �

��
j�	�
� � ��j

���� 

t	�
�
� 

R�

���� d�
� C� �

R�

Z �

��
j�	�
� � ��j d�

� C� �

�
� �

A	N


���

�
�
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By 	���


	���


Z �

��

� 

t	�
�
� 

R�

�
d�

�

Z �

��

�R� � t	�
�

R�t	�
�
� R� � t	�
�

R�
�

#�

��R�

�
d�

�

Z �

��

� 	R� � t	�
�
�

R�t	�
�
�

#�

��R�

�
d�

� � �
Putting together 	���
� 	��
� and 	���
 we have

	���
 S �

Z �

��

��	�
�
t	�
�

� ��

R�

�
d� � ��A	N


R�
� C� �

�
� �

A	N


���

�
�

We now estimate #S� Observe that



�

�
�	�
�

R�
� ��

R�

��

�
�
�	�
�

R�
� �	�
�

t	�
�

��

�

�
�	�
�

t	�
�
� ��

R�

��

�

Integrating with respect to � and recalling 	����i

� 	���i
�ii

 and
	����ii

� we have

	���


Z �

��

�
�	�
�

R�
� �	�
�

t	�
�

��

d� � C �
� �

Using H�older�s inequality�Z
������

�
�	�
� � ��

�
d�

��

�
�Z �

��
j�	�
� � ��j d�

��

� ��
Z �

��
	�	�
� � ��
�d� �

so by 	���
 and 	���iii

�

	���



�

Z �

��

�
�	�
�

R�
� ��

R�

��

d� � C�

�
� � A	N


���

��

�

Putting together 	���
 and 	���
 we obtain

	���
 #S �

Z �

��

�
�	�
�

t	�
�
� ��

R�

��

d� � C� �
� � C� �

� � C��
A	N


���
�
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By virtue of 	��
 and 	���
� the positive constants C��C�� depend only
on � The estimates in 	���
� 	���
 and 	���
 in 	���
 then give

I � ��

log	R��

� B� �

� � B� �
� �B� � � �

where B�� B�� and B� are positive constants depending only on � This
concludes the proof of Lemma ���

A p �analogue of Lemma �� appears in Section ��

Remark ���� The constants B�� B� and B� appearing in the statement
of the Lemma ��� become absolute once a numerical value for  is
chosen� In our application of Lemma ��� a positive value for  will be
�xed once a positive value for �� appearing in 	���
�	���
� is chosen� In
particular� we may take  � ��� �� See 	�����x

�

In the next four sections� we will present the proof of Theorem
� based on the strategy outlined in Section �� The proof in Case 
appears in Section �� while the proof in Case � will be presented in
sections �� � and ��

�� Proof of 	���
 in Case ��

We will �rst prove Theorem  in the situation when asymmetry
propagates� that is� when 	���
 implies 	��
� It is easy to see that
A	t
 is continuous and increasing� If we set

	��
 s� � infft 	 ��� � ! A	t
 �  � �g
and

	���
 T� � supft 	 ��� � ! A	t
 �  � ��g �
then

	���
 A	s�
 � A	t
 � A	T�
 � t 	 �s�� T�� �
Recall from Section  that u is locally C�	
 � Hence an application of
the coarea formula ��� p� ���� yields� for almost everywhere t�

	���
 A�	t
 �
Z
�F �t�



jDuj d
 �
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The formula in 	���
 holds except for possibly a discrete set of t�s since
the set of critical points of u is discrete� We now prove

Lemma ���� Let  � p � �� If u is the extremal for the condenser

with inner set � and outer set R�n�� and T� is as in 	���
� then

	���


T� �
 Z

F �T��

jDujpdx dy
���p

�
�



 � C��

Z ����

�

		t
 dt

��p����p
�

where 		t
 � 	p	t
 � 	��t

p�����p�� � � �	�
� and C is a constant

which depends only on �� � and p�

Proof� By the coarea formula and 	���
 we have outside a discrete set
of t�s�

Z
�F �t�

 d
 �
 Z

�F �t�

jDujp��d

���p Z

�F �t�



jDuj d

��p����p

�

 Z
�F �t�

jDujp��d

���p

	A�	t

�p����p �

Using 	���
 and 	��
 it follows� for almost everywhere t with s� �
t � T� 	see 	��
�	���

�

	���
  �
 Z

�F �t�

jDujp��d

���p

	A�	t

�p����pp
�� 	 � ���
A	t


�
�

We now integrate 	���
 from s� to T�� An application of H�older�s in�
equality then yields

	���


T� � s��
Z T�

s�

Z
�F �t�

jDujp��d

���p

	A�	t

�p����pp
�� 	 � ���
A	t


�
dt

�
 Z T�

s�

�Z
�F �t�

jDujp��d

�
dt

���p

�
 Z T�

s�

A�	t

	�� 	 � ���
A	t

p���p���

dt

��p����p

�
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Thus� by the coarea formula and the formula for 	 as described in 	��
�
we have

	���


T� � s� �
 Z

F �T��nF �s��
jDujpdx dy

���p

�


p
 � ���

�Z ����

���

		t
 dt

��p����p�
�

Using the same procedure on 	�� s�
 and the usual isoperimetric in�
equality in place of 	��
� we see that

	���
 s� �
 Z

F �s��

jDujpdx dy
���p� Z ���

�

		t
 dt

��p����p
�

Adding 	���
 and 	���
 and applying the H�older inequality� we may
show that

T� �
 Z

F �T��

jDujpdx dy
���p

�
Z ���

�

		t
 dt�

�


 � ���

�p���p��� Z ����

���

		t
 dt

��p����p

�

 Z
F �T��

jDujpdx dy
���p

�

�
BBB��

�
�

�


 � ���

�p���p��� �
Z ����

���

		t
 dt

Z ����

�

		t
 dt

�
CCCA

�p����p

�
�Z ����

�

		t
 dt

��p����p
�

The inequality in the lemma now follows with an appropriate constant
C � C	�� �� p
�
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Proof of ����� in Case �� Using the usual isoperimetric inequality
and the above procedure� we may show that

	���


� T� �
 Z

F ���nF �T��
jDujpdx dy

���p

�
� Z �

����

		t
 dt

��p����p
�

We now add 	���
 and 	���
� and then use the H�older inequality to
deduce that

 �
 Z

F ���

jDujpdx dy
���p

�
�



 � C ��

Z ����

�

		t
 dt�

Z �

����

		t
 dt

��p����p

�

 Z
F ���

jDujpdx dy
���p

�
BB�� C��

 � C��

Z ����

�

		t
 dtZ �

�

		t
 dt

�
CCA

�p����p

�
� Z �

�

		t
 dt

��p����p
�

Noting 	��
 we easily obtain the statement of Theorem �

�� Geometry of the Sets in Case ��

Assume Case � holds� In this section we shall use 	���
 and
	���
 to construct a subcondenser whose inner set is close to a disc�
Lemma �� will then provide the necessary estimates for obtaining the
��capacity of the original condenser�

We may assume� as in ��� p� ��� that the components of � are
simply connected� so that by the maximum principle� the components
of the set F 	t
 for each t in 	�� �� are simply connected� Let F�	t
 be
one having largest area� and F�	t
 � F 	t
nF�	t
� We �rst show that it
su ces to assume that for some t such that

	��
 A	t
 �  � ��� �
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we have

	���
 A	F�	t

 � 	� ���
A	t


and

	���
 L	�F�	t


� � �� 	 � �
A	F�	t

 �

Let � � sup
�
t ! A	t
 �  � k��

�
� Suppose that 	���
 were false for all

t such that � � t � � � It follows from Proposition �� and 	���
 that

	���
 L	�F 	t

� � �� 	 �
p
���
A	t
 � � � t � � �

If� on the other hand� 	���
 holds but 	���
 does not� then instead of
	���
 we get

	���


L	�F 	t

� � L	�F�	t


�

� �� 	 � �
A	F�	t



� �� 	 � �
 	� ���
A	t


� �� 	 � ����
A	t
 �

Since the right hand side of 	���
 is greater than that of 	���
 for � �
���� we �nd that if 	���
 or 	���
 were to fail� then at least 	���
 would
hold�

If we were to repeat the steps in Lemma �� leading to 	���
 we
would get

	���


� �
 Z

F ��

jDujpdx dy
���p

�
�
� p

 � ����

Z �����

�

		t
 dt

��p����p�A �

Also� corresponding to 	���
 we would have

	���
 � � �
 Z

F ���nF ��
jDujpdx dy

���p� Z �

�����
		t
 dt

��p����p
�
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Adding 	���
 and 	���
 we would obtain

 �
 Z

F ���

jDujpdx dy
���p

�

�

�
�

�


 � ����

�p���p��� �
Z �����

�

		t
 dtZ �

�

		t
 dt

��p����p

�
� Z �

�

		t
 dt

��p����p
�

It is easy to see that 	��
 follows for an appropriate constant K �
K	�� �� p
�

Thus we may assume the existence of t � t� such that 	��
�	���

hold� Then F 	t�
 has a simply connected component F�	t�
 such that
	��
�	���
 become

	���
  � A	t�
 �  � ��� �

	���
 A	F�	t�

 � 	� ���
A	t�
 �

and

	���
 L	�F�	t�


� � �� 	 � �
A	F�	t�

 �

Now� with T as in 	���
 and 	���
� F�	T 
 is a component of F 	T 

having largest area and F�	T 
 � F 	T 
nF�	T 
� From 	���
 and 	���
�
T � t� and F 	T 
 contains F 	t�
� From 	���
 and Proposition ���� it
follows easily that

	��
 A	F�	T 

 � 	� ����
A	T 
 �

It is clear from 	��
 that A	F�	T 

 � ����A	T 
� From 	���
� 	���
�
	���
 and 	���
 it follows that F�	t�
 cannot be completely contained in
F�	T 
� Now� since F�	t�
 and F�	T 
 are both connected and F�	t�
 
F 	T 
� it follows that

	���
 F�	t�
  F�	T 
 and A	F�	T 

 � ����A	T 
 �
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Let �� � F�	T 
 � F 	t�
� Then the set F 	t�
n�� is contained in F�	T 
�
From 	���
 and 	���
 we have

A	F 	t�
n��
 � A	F�	T 

 � ����A	T 
 � � ���� � ��� �

Hence�

	���
 A	��
 � A	t�
� ��� � � ��� �

Based on 	���
�	��
 we now form an auxiliary condenser with some
observations on the geometry of the sets�

Now� by 	���
� �F�	T 
 lies between two circles Co � fx ! jx�xoj �
Rog and Ci � fx ! jx � xij � Rig� Ro � Ri� where by 	���
� 	���

and 	��
�

	���


Ro �Ri � 

�

p
L	�F�	T 

� � ��A	F�	T 



� 

�

p
L	�F 	T 

� � �� 	� ����
A	T 


� 

�

p
�� �	 � ���
� 	� ����
�A	T 


� �p�� �
In particular� the centers of Co and Ci satisfy

	���
 jxo � xij � �
p
� � �

Also� by 	���
� 	���
� 	���
� 	���
 and 	��
�

	���


Ro � 

��

�
L	�F�	T 

 �

p
L	�F�	T 

� � ��A	F�	T 



�
� 

��

�
L	�F 	T 

 �

p
L	�F 	T 

� � �� 	� ����
A	T 


�
�
r
A	T 


�

�p
 � ��� �

p
��� � ����

�
�
r
 � ��

�

�
 � �

p
��
�
�

Regarding the position of F�	t�
 in F�	T 
� we note that 	���
� 	���
�
	���
 and 	���
 imply that F�	t�
 contains a disc B	#x� #Ri
 where

	���


#Ri � 	�p�

p
� ���

r
A	t�


�

� 	� �p�

r
A	t�


�

� � �
p
�p

�
�
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Recalling that �� � F�	T 
 � F 	t�
 and comparing 	���
�	���
 we
conclude that

	���


���
��
i
 B	xo� Ro
 � F�	T 
 �

ii
 B	xo� Ro	� �

  F�	T 
 � � � ���
p
�� �

iii
 B	xo� R
�
i
  �� �

where

	���


r
A	F�	T 



�
� �p�� � Ri � Ro �

p
 � ��

 � �
p
��p

�
�

and

	����
 R�i � � #Ri � Ro � � ��� � � � 	 � ��

p
��p

�
�

By 	���
� 	��
� 	���
� and 	���


	���


���
��
i
 � ��� � A	��
 �  � ����

ii
 	� ����
A	T 
 � A	F�	T 

 � A	T 
 �

iii
  � � � A	T 
 �  � �� �

It follows from 	���
 and 	���
 that

	����
  � ��� � � A	F�	T 



A	��

�  � �� � �

If B	xo� �
 has the same area as �� and B	$x�
p
��
 is such that � �

A	�nB	$x�p��

� then by 	�
� 	���
 and 	���

A	��nB	xo� �

 � A	�nB	xo� �

�A	�n��


� A	�nB	xo� r


�A	B	xo� �
nB	xo� r

�A	�n��
	����


� A	�nB	$x� r


�A	B	xo� �
nB	xo� r

�A	�n��


� �� ��� � ���

�
�

�
�
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where r �
p
��� The third inequality follows from the de�nition of

�	�
� Thus� if

	����
 � �
A	��nB	xo� �



A	��

� � �

r
A	��


�
�

we have� from 	���
� 	����
 and 	���
 i
 that

	����
 � �
�

� 	 � ���

�

�

�
�

We set F� � F�	T 
 for convenience� and let u � up be the minimizer
for 	��
� Clearly�

	����


Z
F �T �

jDujpdx dy �
Z
F�n��

jDujpdx dy �

Also� since �F� and ��� are level sets for u� we may use u� renormalized�
as the extremal for the condenser having inner set �� 	closure of �
 and
outer set R�nF�� and in this way estimate the right hand side of 	����
�
For p � �� this will be done by using Lemma ��� while for p �� �� the
p �analogue 	see Section �
 will be used�

In fact� with u � t� on ��� and u � T on �F�� then

	����
 v �
u� t�
T � t�

is the minimizer forZ
F�n��

jDwjpdx dy� w �

�
 � on �F� �

� � on ��� �

Thus�

	����


inf
w

Z
F�n��

jDwjpdx dy �
Z
F�n��

jDvjpdx dy

�


	T � t�
p

Z
F�n��

jDujpdx dy �

Thus� with � � �	���R
�nF�
 as the subcondenser� the next step in the

proof of Theorem  is to obtain estimates for Capp	�
� To this end�
we �rst employ the symmetrization introduced in Section �� Setting
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� �
p
A	��
�� and R �

p
A	F�
��� and using the notations 	��
�

	���
� we conclude from 	���
� 	���
� 	���
� 	���
�	����
 that

	����


����������������������
���������������������

i
 if "s	�
 � � � then �	�
 � � and �	�
 � � �

ii
 R�i � �	�
 � Ro �

iii
 Ro	� �
 � Ri � R � Ro �

iv
 Ro	� �
 � t	�
 � Ro �

v
 R�i � � � R � Ro �

vi
 jR� � t	�
�j � � �R�
o �

vii
 � � "t	�
� s	�
 � �Ro � � 	 E �

viii
 �	�
 � s	�
 � "t	�
 � Ro �

ix
 R�i � �	�
 � t	�
 � Ro �

x

p
 � ��� � � R�� � p

 � �� � �

xi
 Ro	� �
 � t	�
 � s	�
 � "t	�
 � Ro � � 	 E �

In Section �� we will prove Theorem  when p � �� The details of
the proof� when p �� �� together with the p �analogue of Lemma �� will
be presented in Section ��

�� Proof of 	���
 for p � � in Case ��

We now prove Theorem � in Case �� when p � �� We specify
� � �� when p � ��

We now take a
 �� � ��	t�
� F� � F�	T 
� � �
p
A	��
��� and

R �
p
A	F�
��� and b
 R

�
i� Ri� Ro� � and v as in 	����
� 	���
� 	���
�

	���
 and 	����
� and c
 xo � � in 	���
� As in Remark ��� we take
 � ���� � � ����� 	see 	�����x


� These observations together with
	����
 imply that the hypotheses of Lemma �� are satis�ed� It is easily
seen from 	���
 and 	���
 that

	��



�
log

A	T 


� ���
� log R

�
�

We apply the conclusion of Lemma ��� together with 	����
�	����
�
	��
 and the de�nition of � in 	���
� to conclude that there are absolute
constants C and �� such that � � �� �Z

F �T �

jDuj�dx dy �
Z
F�n��

jDuj�dx dy
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� 	T � t�

�


��

log	A	T 
�	� ���



� B� �
� � B� �

� � B� � �

�
	���


� 	T � t�

�	 � C��


��

logA	T 

�

Henceforth� we take � � �� �
To estimate t� in 	���
 we recall that u � t� on �F 	t�
� with t� as

in 	���
 so that 	cf� ��� p� ��




t��

Z
F �t��

jDuj�dx dy � ��

logA	t�

�

that is�

	���
 t�� �


��
log	 � ���


Z
F �t��

jDuj�dx dy �

By Green�s theorem and the fact that u is harmonic�

	���


Z
F �t��

jDuj�dx dy � t�

Z
�F �t��

�u

�n
ds

� t�

Z
�F ���

�u

�n
ds

� t� Cap�	�
 �

Thus� from 	���
 and 	���
 we have�

	���
 t� � ���

��
Cap�	�
 !�M �

We now have two cases to examine� namely� i
 T � M � and ii
 T �M �
First we work out case i
� From 	���
�

	���


Z
F �T �

jDuj�dx dy � �� 	T �M
�

logA	T 

	 � C��
 �

We now use the usual isoperimetric inequality for T � t �  as was
done in 	���
 to obtain

� T �
 Z

F ���nF �T �
jDuj�dx dy

�����


��
log

�

A	T 


����

�
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This together with 	���
 and H�older�s inequality gives

	���


�� 	�M
� �
 Z

F ���

jDuj�dx dy
�

�
�
log

�

A	T 

�



 � C��
logA	T 


�

�

 Z
F ���

jDuj�dx dy
�

�
�
log �� C��

 � C��
logA	T 


�

�
 Z

F ���

jDuj�dx dy
�

�
�
� C��

 � C��
logA	T 


log �

�
log � �

Now setG � Cap�	�
�Cap�	�
�
� ThenG � � Recalling that Cap�	��


� ��� log �� 	���
� 	���
� and � � ��� yield

	�M
� � G

�
� C��

�

log ��

log �

�
�

This together with 	���
 gives

� ���G

log �
�
p
G 	� C���
 � G 	� C��

�
 �

Thus�

G � 

� C��� � ���� log �
�

For su ciently small � we then have

	���
 Cap�	�
 � 	 � C��
�
 Cap�	�

�
 �

We now examine case ii
� i�e� T �M � Observe that

Z
F ���

jDuj�dx dy � 

T

Z
F �T �

jDuj�dx dy �
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Now� from 	���
 we deduce that

T � ���

��



T

Z
F �T �

jDuj�dx dy �

which in turn implies�

	���
 T � �

r
�

��

 Z
F �T �

jDuj�dx dy
����

�

By employing a procedure� similar to the one used in deriving 	���
�
we again write

	���
 � T �
 Z

F ���nF �T �
jDuj�dx dy

�����


��
log

�
�

A	T 


�����

�

Adding 	���
 and 	���
� using 	���
 and � � ���� and applying
H�older�s inequality we have

	��


 �
 Z

F ���

jDuj�dx dy
����

�
�


��
log

�
�

A	T 


�
�
���

��

����

�

 Z
F ���

jDuj�dx dy
����

�
�
log �

��
�
���

��
� logA	T 


��

����

�
 Z

F ���

jDuj�dx dy
����

�
�
 �

���

log �
� log ��

log �

�����
log �

��

����

�

For su ciently small �� 	��
 then yields

��

log �
�
�
� log ��

� log �

� Z
F ���

jDuj�dx dy
�
�
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which implies 	��
 trivially� that is� with no dependence on �� Thus
we have shown that 	��
 holds when T � M and T �M � so the proof
of 	��
 is complete for p � ��

� Remarks on Case � for p �� ��

The procedure for obtaining the analogue of Lemma �� will now
follow for general p� with di�erent constants� much as was done in
Section �� Inequality 	���
 becomes

	��


I �

Z
F�n��

	v�r �


r�
v��


p�� r dr d�

�
Z �

��


inf

Z
J���	fF�n��g

jfrjp r dr
�
d� �

where f � f	r� �
 is absolutely continuous and f �  on J	�
 � �F�
and f � � on J	�
� ��� � We then use the solution to the one variable
Euler equation 	rjz�jp��z�
� � � and 	���
 becomes

	���
 I � jdjp��
� Z �

��

d�

jt	�
d � �	�
djp�� �
Z
E

d�

j"t	�
d � s	�
djp��
�
�

where d � 	p � �
�	p � 
� This follows from the observation that for
d �� � and �	�
 � "s	�
 � t	�
�

jt	�
d � �	�
djp�� � jt	�
d � "s	�
djp�� �

Our objective is to prove the analogue

	���
 I � jdjp�� ��

jRd � �djp�� 	 �K� �
� �K� �

� �K� � �


of Lemma ��� where the constants K�� K�� and K� now depend only
on p for small �� We �rst consider the case p � �� We write

	���


�


td � �d

�p��
�

�


Rd � �d

�p��

�
�
� 	R

d � td
� 	�d � �d


	Rd � �d


���p
�
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Now the condition 	���
 and 	����
 already imply that t�R and ��� are
close to � certainly



�
�

�

�
�

t

R
� � �

In addition� by 	���
� 	���
� 	����
� 	�����v

�	�����ix�x

� we also have

	���
 � �
td � �d

Rd � �d
� 


for some constant 
 � 
p � �� which depends only on p�

Let h	x
 � 	� x
��p� Then� h	�
 � � h�	x
 � 	p� 
	� x
�p�
and h��	x
 � p 	p � 
	 � x
�p�� which is positive and increasing for
�� � x � � Using these on the interval �� 
� 
� we �nd that

	���
 h	x
 �  � 	p� 
x� h��	� 


x�

�
� � 
 � x �  �

Combining 	���
� 	���
 and 	���
� we may then write

�


td � �d

�p��
�
�



Rd � �d

�p��

�
�
 � 	p� 


��
Rd � td � �d � �d

Rd � �d

�
	���


�
p

�

�p��

�
Rd � td � �d � �d

Rd � �d

����
�

In 	���
� we shall use the following four expansions with 	���
� First we
have

	���


Z �

��

Rd � td

Rd � �d
d� �

Rd

Rd � �d

Z �

��

�
�

��
t

R

���d���
d�

� d Rd

� 	Rd � �d


Z �

��

R� � t�

R�
d� � � �

The fact that the right hand side is nonnegative follows from 	���
�
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Also�

	���


Z �

��

�d � �d

Rd � �d
d� �

�d

Rd � �d

�
Z �

��

���
�

�

���d��
� 
�
d�

� d �d

� 	Rd � �d


Z �

��

�� � ��

��
d�

� ���dd
�
� d

�

�� �d

Rd � �d

�

�
Z �

��

�
�� � ��

��

��

d� �

andZ �

��

�
�d � �d

Rd � �d

��

d� �

�
�d

Rd � �d

��

�
Z �

��

���
�

�

���d��
� 
��

d�	��


� d� �d��
�

�d

Rd � �d

�� Z �

��

�
�� � ��

��

��

d� �

Similarly�

	���


Z �

��

�
Rd � td

Rd � �d

��

d� � d� �d��
�dRd

	Rd � �d
�

�
Z �

��

�
R� � t�

R�

��

d� �

Using 	���
 in 	���
 we obtain

I � dp��

	Rd � �d
p��

�
�
�� � 	p� 


�Z �

��

�
�d � �d

Rd � �d
�

Rd � td

Rd � �d

�
p

�

�p��

�
�d � �d

Rd � �d
�

Rd � td

Rd � �d

���
d�

��
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� dp��

	Rd � �d
p��

�
�
�� � 	p� 


�Z �

��

�
�d � �d

Rd � �d
�

Rd � td

Rd � �d

�
p

�

�p��

��
�d � �d

Rd � �d

��

�

�
Rd � td

Rd � �d

��

��
���� �d � �d

Rd � �d

����
����Rd � td

Rd � �d

����
��

d�

��
�

We now use the inequalities in 	���
�	���
 to estimate I� It follows that

	���
 I � dp��

	Rd � �d
p��
	�� � T� � T� � T� � T�
 �

where�

T� �
	p� 
 d
�

�d

Rd � �d

Z �

��

�R� � t�

R�
�
�� � ��

��

�
d� �

T� � 	p� 

�
p

�

�p��d��d��

�
�d

Rd � �d

�
� ���dd �� d

�

��

� �d

Rd � �d

Z �

��

�
�� � ��

��

��

d� �

T� � 	p� 
 p
�

�p��d��d��

�dRd

	Rd � �d
�

Z �

��

�
R� � t�

R�

��

d� �

and

T� � �p 	p� 

�p�� �dRd

	Rd � �d
�

Z �

��

����
��

�

�

���d��
� 
����

�
����
��

t

R

���d��
� 
���� d� �

Now� for some C� � �� T� � �C�A	N
��
� by 	���
 and 	���
� nd

T� � �� We may estimate T� by using� 	�����vi

� 	��
� and 	���
 to
obtain

jT�j � ��� p 	p� 

�p�� Rd�d

	Rd � �d
�
�

�
� �

A	N


���

�
�
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It is at this stage that we constrain our parameter � for each p �� �� We
now assume that � is su ciently small so that

	���
 T� � p 	p� 

�

d��d��
�p��
�

�d

Rd � �d

�� Z �

��

�
�� � ��

��

��

d� �

This is possible due to 	�����x

� Using these estimates in 	���
 along
with 	���
 we then obtain

	���


I � dp��

	Rd � �d
p��

�
�� � C�

�
� � A	N


���

��

� C��� � C�
A	N


��

�
�

Finally� we need an estimate for A	N
� We �rst make a preliminary
estimate using 	���
� 	���
� 	���
� and ignoring the second order term
in 	���
� Observe that from 	���
� j	�� � ��
���j � �� Using this and
	��
 in 	���
� 	���
 yields

	���


Z �

��

d�

jt	�
d � �	�
djp�� �
��

	Rd � �d
p��
	� C��
 �

If Z �

��

d�

jt	�
d � �	�
djp�� �
Z
E

d�

j"t	�
d � s	�
djp��

� ��

	Rd � �d
p��
	 � C� �
 �

then 	���
 follows trivially� Otherwise� from 	���
 we haveZ
E

d�

j"t	�
d � s	�
djp�� �
��

	Rd � �d
p��
C� � �

Using 	�����vii

 to estimate A	N
 as in Section �� we then obtain

	���
 A	N
 � C� �
p � R�

o �

Using 	���
 in 	���
 and �xing � so that 	���
 holds� we then obtain
	���
 with constants depending only on p�

A similar analysis can be carried out for  � p � ��
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Finally� we give the analogue of Section � for p �� �� Now�

	���


��jdjp��
jRd � �djp�� �

 Z A�F��

A����

		t
 dt

���p

�
 Z A�T �

�������
		t
 dt

���p

�
Z A�T �

�

		t
 dt

���p

	� C ��
�
 �

By 	���
 and 	���
� there exist constants C� and �� such that for
� � � � ��� we have

	���


Z
F �T �

jDujpdx dy �
Z
F�n��

jDujpdx dy

� ��jdjp��
jRd � �djp��
� 	T � t�


p	 �K� �
� �K� �

� �K� � �


� 	T � t�

p 	 � C��

�


�
Z A�T �

�

		t
 dt

���p

�

To estimate t� in 	���
� we recall that u � t� on �F 	t�
 with t� as in
	���
� so that



tp�

Z
F �t��

jDujpdx dy �
Z A�t��

�

		t
 dt

���p

�

Hence�

	����


tp� �
 Z

F �t��

jDujpdx dy
�Z �����

�

		t
 dt

�p��

� C� 	��
�
p��

Z
F �t��

jDujpdx dy �

By Green�s theorem�

	���


Z
F �t��

jDujpdx dy � t�

Z
�F �t��

jDujp�� �u

�n
ds � t�Capp	�
 �
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By 	����
 and 	���
�

	����
 t� � C� ��
� Capp	�


���p��� !�M � C� � C
���p���
� �

As in Section �� we distinguish two possibilities� namely� i
 T � M � and
ii
 T � M � Let us �rst assume that i
 holds� Thus for � � � � ���
	���
 yields

	����


Z
F �T �

jDujp � 	T �M
p 	 � C� �
�


Z A�T �

�

		t
 dt

���p

�

We may now use the usual isoperimetric inequality over the interval
	T� 
 to obtain

� T �
 Z

F ���nF �T �
jDujp

���p Z �

A�T �

		t
 dt

��p����p

�

This together with 	����
 and H�older�s inequality gives us

	�M
p �
Z

F ���

jDujpdx dy
�

�
�



 � C���

����p��� Z A�T �

�

		t
 dt�

Z �

A�T �

		t
 dt

�p��

�

�
���� �

��


 � C���

����p���
� 
�Z A�T �

�

		t
 dtZ �

�

		t
 dt

�
����
p��

	����


�
 Z

F ���

jDujpdx dy
��Z �

�

		t
 dt

�p��
�

Set Z to be the square bracket term on the right hand side of 	����
�
and take S � Capp	�
�Capp	�

�
� Then S � � and 	����
 says that
	�M
 � S��pZ��p� or by 	����
�

� C� ��
� S���p��� Capp	��
���p��� � S��p Z��p �
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Since S���p��� � S��p� it follows that

S���p��� � 

Z��p � C� ��� Capp	��
���p���
�

This in turn implies�

	����
 Capp	�
 �
�



Z��p � C� ��� Capp	��
���p���

�p��
Capp	�

�
 �

Since it is easy to see that Z � �C���
�� the result then follows from

	����
 for su ciently small ��
We next consider case ii
� i�e�� T �M � Now�

Z
F ���

jDujpdx dy � 

T

Z
F �T �

jDujpdx dy�

so that by 	����
�

T � C� ��
�




T

Z
F �T �

jDujpdx dy
����p���

�

Hence�

	����
 T � 	C� ��
�
�p����p

 Z
F �T �

jDujpdx dy
���p

�

We employ the usual isoperimetric inequality and the coarea formula
over the interval 	T� 
 	see Section �
 to obtain

� T �
 Z

F ���nF �T �
jDujpdx dy

���p Z �

A�T �

		t
 dt

��p����p

�

This together with 	����
� 	���
� and H�older�s inequality results in

 �
 Z

F ���

jDujpdx dy
�

C� ��
� �

Z �

A�T �

		t
 dt

�p��
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�
 Z

F ���

jDujpdx dy
��BBB� � C� ��

�Z �

�

		t
 dt

�

Z A�T �

�

		t
 dtZ �

�

		t
 dt

�
CCCA
p��

�
�Z �

�

		t
dt

�p��

�
 Z

F ���

jDujpdx dy
��BB� �

C� ��
� �

Z ���

�

		t
 dtZ �

�

		t
 dt

�
CCA
p��

�
�Z �

�

		t
 dt

�p��
�

which again gives the result for � su ciently small� Thus� the proof of
Theorem  is complete for p �� ��

�� Sharpness of the exponent ��

In this section we show that the condenser with elliptical inner set
of small eccentricity gives the proper order of magnitude for capacity
to show that the exponent � is sharp� Although there is no reason to
believe that this case gives the sharp constant Kp in Theorem � it is
convenient from the standpoint of calculations� On the other hand�
there is some delicacy in choosing the inner set� For example� putting
a small bump or a circle would result in an exponent of  instead of �
on ��

Let � be a small positive number� For each �� let E� denote the
closed domain bounded by the ellipse x � r�	��


��� cos �� y � r� sin ��
where r� � �	

p
� 	 � �
���
� Then A	E�
 � � Let �� denote the

condenser �	E��R
�nB	�� ��p�

� From ��� p� ������ we have that � �

�	E�
 � ���� � O	��
� as �
 �� In order to prove our claim� we note
from 	��
 and 	��
 that it is su cient to exhibit a function u� belonging
to the class of admissible functions for 	��
� with the property thatZZ

R�

jrujpdx dy � Capp	��
 �O	��
 as �
 � �

where �� is as in Theorem � This will then imply that

	��
 Capp	��
 � Capp	�
�
 �O	��
 as �
 � �
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Theorem �� Let � � �� be small� �� be the condenser whose inner set

is E� and outer set is R�nB	�� ��p�
� Then for each �xed p � � there
is a function u � u�	p with u � � on E� and u �  on R

�nB	�� ��p�
�
such that

	���


ZZ
R�

jrujpdx dy � Capp	��
 � O	��
 as �
 � �

Proof� We shall present details for p �� �� the case p � � is similar�
Set R � ��

p
� and � � �

p
�� Then r� � ��	 � �
���� By 	��
�

	���
 Capp	�
�
 �

��jdjp��
jRd � �djp�� �

where d � 	p� �
�	p� 
�
Let r� � be the polar coordinates� and de�ne u	r� �
 � u�	p	r� �
 as

	���
 u	r� �
 � � Rd � rd

Rd � rd� 	 � � cos� �
d��
�

in B	�� ��
p
�
nE�� u � � on E�� and u �  on R

�nB	�� ��p�
� Then u
is absolutely continuous� and in B	�� ��

p
�
nE��

	���
 jruj � jdj rd��
jRd � rd� 	 � � cos� �
d��j �O	��
 as �
 � �

Then� by 	���
�ZZ
R�

jrujpdx dy

� jdjp
Z ��

�

Z R

r�
p
��� cos� �

rp����p�

jRd � rd� 	 � � cos� �
d��jp r dr d�

� O	��


� jdjp��
Z ��

�

jRd � rd� 	 � � cos� �
d��j
jRd � rd� 	 � � cos� �
d��jp d�

	���


� O	��


� jdjp��
Z ��

�



jRd � rd� 	 � � cos� �
d��jp�� d�

� O	��
 �
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as �
 �� By the de�nition of r� and ��

jRd � rd� 	 � � cos� �
d��j �
�����Rd � �d

�
 � � cos� �p

 � �

�d�������
�

�����Rd � �d � �d


�

�
 � � cos� �p

 � �

�d�������� �	���


Set

h	�
 � �
�
 � � cos� �p

 � �

�d��
�

Now�

	���
 h	�
 � �d
�
	cos� � � 

�

 �� O	��
 as �
 � �

Thus� 	���
 and 	���
 imply� as �
 ��

jRd � rd� 	 � � cos� �
d��j��p � jRd � �dj��p
�
 �

�d h	�


	Rd � �d


���p
� jRd � �dj��p

�
� 	p� 
 �

d h	�


	Rd � �d


�
�O	��
	���


� jRd � �dj��p

�
�
 �

	p� 
 d �d 	cos� � � ��

� 	Rd � �d


�
�

�O	��
 �

Using 	���
 in 	���
� we have� as �
 ��

ZZ
R�

jrujpdx dy � jdjp��
jRd � �djp��

Z ��

�

 �
d 	p� 
 �d
� 	Rd � �d


�
cos� � � 

�

�
� d�

�O	��
 �

Since Z ��

�

�
cos� � � 

�

�
d� � � �

we obtain 	���
�
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��� Logarithmic Capacity�

We now outline the proof of 	��
� Let � be a compact subset of
the complex plane C with �� a �nite union of recti�able curves� Let
G	z
 denote Green�s function for "C n� with pole at �� extended to be
� on �� Then

	��
 � log Cap	�
 � lim
z
�

	G	z
� log jzj
 �

For � � �� let �� � fz ! G	z
 � �g� Then G	z
� � is Green�s function
for the complement of ��� Let �� be the condenser �	�� C n��
� The
de�nition of Cap	��
 is as given in 	��
 with p � �� In this instance�
the minimizer is harmonic and is given by G	z
��� For � � t � �� write
F 	t
 � fz ! G	z
 � tg� and A	t
 � A	F 	t

� We will assume throughout
that � is larger than some �� in order to ensure that A	��
 � �A	�
 �
�� We continue to assume that A	�
 � � In the event that A	�
 �� �
all areas may be scaled by �A	�
 to recover the result� We will apply
the coarea formula directly to G	z
� We take � � ��� in 	���
�	���

and begin with Case � Set s� � infft � � ! A	t
 � ��g and T� �
supft ! A	t
 � ���g� Inserting p � � and � � ��� in Lemma ��� we
obtain

Lemma ����� For � � ��� if T� is such that A	T�
 � ���� then

	���


ZZ
F �T��

jDGj�dx dy � �� T �
�

log ���
	 �D��

�
 �

where D� depends only on ��

We now proceed as in Section �� Applying the usual isoperimetric
inequality over the interval T� � t � �� we obtain

	�� T�

� � 

��
log

A	�


A	T�


ZZ
��nF �T��

jDGj�dx dy �

Combining this with 	���
 via H�older�s inequality� we see that

	���


ZZ
��

jDGj�dx dy � ����

log	A	�
	���
�D�������D����
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Since G	z
� log jzj is harmonic at �� it follows that with r � jzj�
�G��r � �r � o	�r�
 as r 
 �� By Green�s Theorem� we have as
r
��

	���


ZZ
��

jDGj�dx dy � �

Z
���

�G

�n
ds

� �

Z
jzj	r

�G

�r
ds

� � �� r

�


r
� o	



r�



�

 ��� �

It follows from 	��
 that for z 	 ���� jzj � Cap	�
e�	 � o	

�
so that

A	�
 � �
�
Cap	�
 e�

��
	 � o	

 as �
� �

This with 	���
 and 	���
� gives

��

�
� ��

log
�
� 	Cap	�
 e�
� 	 � o	

 	���
�D�������D����

� �
Thus�

Cap	�
 � 	���
D��
�������D��

���

r


�
�

The inequality in 	��
 now follows in Case �
We now discuss Case �� As in Section �� we may assume that

there is a t� � � such that 	���
�	���
 hold� Let F� � F�	T 
� �� �
F�	T 
�F 	t�
 as in Section � and let �c be the condenser �	��� C nF�
�
Since F� and �� are both level sets for G	z
� it follows that

	���


Cap	�c
 �

ZZ
F�n��

jDvj�dx dy

�


	T � t�
�

ZZ
F�n��

jDGj�dx dy �

where

v	z
 �
G	z
� t�
T � t�

�
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Using Lemma �� in 	���
 and choosing � � � � �� for some small ���
we may show that

	���


ZZ
F �T �

jDGj�dx dy � �� 	T � t�

�

logR��
	 �B��
 �

where B is an absolute constant� From 	����
 x
� R�� depends only on
�� As was done in Case � we apply the usual isoperimetric inequality
on T � t � �� and combine the result with 	���
 via H�older�s inequality
to obtain

	���
 �� 	�� t�

� � log	A	�
 	��
�B������B���


ZZ
��

jDGj�dx dy �

To estimate t�� observe that F 	t�
 is a level set of G	z
� and G	z
�t� is
harmonic in F 	t�
n�� Thus�

Cap 	�	�� C nF 	t�


 � 

t��

ZZ
F �t��n�

jDGj�dx dy � ��

logA	t�

�

Using the inequality 	���
 and an argument similar to that in 	���
 we
have

	���
 t�� �


��
log	 � ���


ZZ
F �t��

jDGj�dx dy � t�
�
log	 � ���
 �

Clearly then� t� � ���� Using 	���
� the estimate on A	�
 	see Case

 and the bound on t�� in 	���
� we have

�� 	�����
�����
�
log	�

�
Cap	�
e�

��
	�o	

 	��
�B�

���������

�
�

Simplifying the above�

Cap	�
 � e����
�

	��
B�
�������B����

r


�
�

Fixing � such that � � � � ��� we obtain 	��
�
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��� The constants Kp�

Let �	����
 be a condenser as in Section � and set � � A	R�n��

�A	�
� Let B	�� R
 and B	�� #R
 be discs such that A	B	�� R

 � A	�

and A	B	�� #R

 � A	R�n��
� Let �� � �	 #B	�� R
�R�nB	�� #R

 and set
d � 	p� �
�	p� 
� Then

Cap�	�
�
 � ��� log� �

and� for p �� ��

Capp	�
�
 �

��p�� jdjp��A	�
���p���
j�d�� � jp�� �

�� jdjp��
j #Rd � Rdjp�� �

In this section we will discuss how the constants Kp � Kp	�
 in 	��

behave as � varies� Note that we have taken � � � in Theorem �
Although determining the dependence on � involves only routine modi�
�cations of the proofs� this was avoided in the text since such considera�
tion involves carrying along additional parameters and the introduction
of numerous subcases� In what follows� "Kp represents positive constants
depending only on p� Our methods give the following!

i
  � p � ��

Kp �

���
��
"Kp 	�� 
��  � � � � �

"Kp 	independent of �
� � � � �

ii
 p � ��

K� �

���
��
"K� 	�� 
��  � � � � �

"K�� log� � � � � �

iii
 p � ��

Kp �

���
��
"Kp 	�� 
��  � � � � �

"Kp�j�d�� � j � � � � �
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An endpoint estimate for

some maximal operators

Daniel M� Oberlin

Suppose � is a �nite positive Borel measure on Rn � It is proved in
�DR� that if the Fourier transform of � satis�es a decay estimate

��� j	����j � Cj�j��

for some � � 
� then the maximal operator

��� Mf�x�  sup
k�Z

Z
Rn

jf�x� �ky�j d��y�

is bounded on Lp�Rn� for � � p � �� On the other hand� Theorem �
in �C�� states that if � is the Lebesgue measure �n�� on the unit sphere
�n�� in R

n � then ��� maps H��Rn� into L����Rn �� The purpose of this
paper is to adapt the method of �C�� to prove an H��L��� result for
��� requiring� in the spirit of �DR�� only a certain decay of 	��

Theorem� Suppose � is a �nite positive Borel measure on R
n with

support in ���� ��n� If

j	����j � Cj�j�n�� �

then ��� maps H��Rn � into L����Rn��

As indicated� our proof follows the method of proof of Theorem �
of �C��� Our view is that the interest of this paper lies as much in a

���
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demonstration of the �exibility of that method �see �C�� Remark �����
as in our result� Although many of the details di�er� the main novelty
here lies in the use of the auxiliary functions �N to handle the control
�see ���� of ����

� X
��Q��j�s

	Q aQ

�
� �j

����
�




The proof in �C�� used the curvature of the support of �n�� in the
analogous estimate� Our argument proceeds� albeit in the same spirit�
with no knowledge of � aside from the decay of 	�� But we pay by
requiring a higher rate of decay �	�n����� decays� as is well�known� like
j�j���n���� Still� there exist singular measures on R

n satisfying our
hypothesis� �This was proved in �I�M� for n  � � see Lemma � �K�
p� ���� for the extension from Fourier coe�cients to Fourier transform�
To get a singular measure � on Rn with j	����j  O�j�j�n���� let � be
the measure from �I�M� translated to have support in ����� and de�ne
the measure � on Rn by

Z
Rn

f d� 

Z �

�

Z
�n��

f�ry� d�n���y� r
�n�����d��r� 


Then asymptotic estimates for Bessel functions such as those in �SW�
Lemma ����� combine with the decay of 	� to give j	����j  O�j�j�n�����
It may be that our n�� can be replaced by smaller � � 
� thus yielding
a more satisfying endpoint analog of the result of �DR�� The referee has
pointed out that the paper �S� contains a point of similarity to the proof
of our theorem �in its use of the Fourier transform for the L� estimate�
and that ideas equivalent to some of those in �DR� are present in �C���
We begin with two lemmas�

Lemma �� For any � � 
 and any �nite collection of dyadic cubes

Q � R
n and associated positive scalars 	Q� there exists a collection S

of pairwise disjoint dyadic cubes S such that

a�
P
Q�S

	Q � �n� jSj � if S � S �

b�
P
jSj � ���

P
	Q �

c�
��� P

Q not contained
in any S

	Q jQj
��Q

���
�
� � �
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Proof� In the proof of Lemma ��� of �C��� simply replace � by �n and
interpret dyadic in the n�dimensional Euclidean sense �instead of the
parabolic sense in R���

Notation� If Q is a dyadic cube in Rn with side�length �j � write ��Q�
to stand for j� If � � Z� letR� be the collection of dyadic cubes Q � R

n

with ��Q�  �� Finally� if Q � R�� de�ne Q
�  Q� ����� ���n� Thus

Q� is the union of �n cubes in R��

Lemma �� �cf� �C�� Lemma ����� Suppose given the following� some

� � 
� a collection S of pairwise disjoint dyadic cubes S � R
n � a �nite

collection C of dyadic cubes Q � R
n such that each Q � C is contained

in some S  S�Q� � S� and for each Q � C a positive number 	Q�
Then there exist a measurable E � R

n and a function � � C � Z such

that

a� jEj � �n����
P

	Q �
P
jSj� �

b� Q� ���j� �j �n � E � if j � ��Q� and Q � C �

c� ��S�Q�� � ��Q� �Q � C� �

d� for � � Z any q � R��
P
Q�q

��Q���

	Q � � �n������

Proof� The proof is an adaptation of �and simpler than� that of
Lemma ��� in �C��� But we give the details for completeness and for
the convenience of the reader�

Let m  minf��Q�g� Find �� � Z such thatX
	Q � � �n�� � �� � maxf��Q�g 


The proof is a stopping time argument on the descending parameter �
and proceeds by dividing C into disjoint subcollections C� and C�� We
begin with �  �� � � and de�ne� for q � R��

���q� 
X
Q�q

	Q 


Say that q � R� is �selected at step �� if

���q� � � �n� 


Put into C� every Q such that Q � q for some q selected at step �� and
for such Q de�ne

��� ��Q�  maxf� � �� � � ��S�Q��g 
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Next� put into C� every Q � C 	 C� such that ��Q� � � � such a Q
will actually satisfy ��Q�  � � � � and for such Q de�ne

��� ��Q�  � � ��S�Q�� 


Note that ��� and ��� guarantee that �c� holds� Now replace � by �� �
and repeat the process with

���q� 
X
Q�q
Q��C�

	Q 
X
Q�q

Q��C��C�

	Q � q � R� 


�The last equality holds because Q � C� at the beginning of step �
implies ��Q� 
 � � ��� After the step �  m we will have C  C� � C�
and � de�ned on all of C� Next de�ne

E� 
�

q selected

q�� E� 
�

S�� E  E� �E� 


Then� since distinct selected q are disjoint�

jE�j � �n
X

q selected

�n��q� �
�n

�

X
q selected

���q��q� �
�n

�

X
	Q 


Now a� follows since jS�j  �njSj�
If ��Q�  � � ��S�Q�� and if j � ��Q�� then

Q� ���j � �j�n � S� � E� 


If ��Q� � � � ��S�Q��� then Q � q for some q selected at some step �
and ��Q�  � � ��q�� Thus if j � ��Q��

Q� ���j � �j�n � E� 


So b� is veri�ed�
Finally� if q � R� for � 
 �� � �� then d� is clear from the choice

of ��� So suppose � � �� � � and q � R�� Now

���q� � � �n�����

or else the q� � R��� that contains q would have been selected at stage
� � �� Since ��Q� � � implies that Q �� C� at the beginning of step ��

X
Q�q

��Q���

	Q � ���q� �
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and so d� is proved�

Now suppose � is a positive Borel probability measure supported
on ���� ��n and satisfying j	����j � Cj�j�n��� Let f � H��Rn� have the
form of a �nite sum

f 
X

	Q aQ �

where 	Q � 
 and aQ� supported in a cube Q� satis�es

kaQk� � jQj���

Z
Q

aQ  
 


As in �C��� a device of Garnett and Jones involving auxiliary dyadic
grids allows us to assume that each Q is dyadic� Fix � � 
 � It is
enough to show that

��� jfMf � ��gj �
C

�

X
	Q �

where C depends only on � and n�
Following �C��� let S be as in Lemma � and de�ne

b 
X
S�S

X
Q�S

	Q aQ � g  f � b 


Then kgk� � � from Lemma ��c� and so jMgj � � �because � has
mass ��� Thus ��� will follow from

jfMb � �gj �
C

�

X
	Q 


Now� with S as above and with C the collection of Q�s appearing in the
de�nition of b� let � and E be as in Lemma �� Since jEj � C���

P
	Q�

it is enough to prove

��� kMbk�L��Rn	E� � C�
X

	Q 


Let �j be the dilate of � de�ned by

h�� �ji 

Z
Rn

���jx� d��x�
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so that �j is supported in ���j � �j�n and

Mb�x�  sup
j�Z

jb � �j�x�j 


If Q � C� then� by Lemma ��b�� aQ � �j is supported in E unless
j 
 ��Q�� Thus if x �� E�

jMb�x�j� �
X
j

jb � �j�x�j
�


X
j

����
� X
��Q��j

	QaQ

�
� �j�x�

����
�


X
j

����
�X
s��

� X
��Q��j�s

	QaQ

�
� �j�x�

����
�




So� for x �� E

jMb�x�j �
�X
s��

�X
j

����
� X
��Q��j�s

	QaQ

�
� �j�x�

����
�����




Now ��� will follow from

����
�X

j

����
� X
��Q��j�s

	QaQ

�
� �j

����
���������

�

�

� C��s� ����s
X

	Q

and so from

���

����
� X
��Q��j�s

	QaQ

�
� �j

����
�

�

� C��s� ����s
X

��Q��j�s

	Q 


The proof of ��� requires another lemma�

Lemma �� For N  �� �� 
 
 
 � there exist functions �N � L��Rn � such

that

a� j 	�N ���j 
 �� � j�j��n���C � if j�j � N � � �
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b� j 	�N ���j � C j�j�n���

and if LN  �N � ��N � ��N �x�  �N ��x��� then

c� supp�LN � � ���� ��n�

d� jLN �x�� LN �y�j � C jx� yj�minfjxj� jyjg�

Proof� We will construct LN �rst and then �N � De�ne hN � C�Rn�
by

	hN ��� 

	
�

�

� � if j�j � � �

j�j�n � if � � j�j � N �


 � if j�j � N �

Choose a radial function � � C�C �Rn� such thatZ
�  � � supp��� � ���� ��n� 	� 
 
 


Now let LN  � hN � Clearly c� holds� It is easy to check that

	LN ��� 
 �� � j�j��n�C if j�j � N � � �


 � 	LN ��� � Cj�j�n if � � Rn 


So if �N is the inverse Fourier transform of �	LN ����� then a� and b�
hold� Since

jLN �x�� LN �y�j � j��x�� ��y�j jhN�x�j� ��y� jhN�x�� hN �y�j �

d� will follow from

��� jhN �x�j � C

�
log�

�
�

jxj

�
� �

�
�

and

� �

���� �

�jxj
hN �x�

���� � C

jxj
� jxj � � 


Now

hN �x� 

Z �

�

Z
P

n��

eirx
� d�n����� r
n��dr

�

Z N

�

Z
P

n��

eirx
� d�n�����
dr

r
�
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with the important contribution coming from the second integral� For
��� just use the well�known estimate

����
Z
P

n��

eirx
� d�n�����

���� � C

�� � rjxj��n�����



For � � note that

Z
P

n��

eirx
� d�n����� 

�Z
�

cos�jxjrs���s� ds �

for some � � L���
� ���� Now

���� ddt
Z N

�

Z �

�

cos�trs���s� ds
dr

r

���� 
����
Z �

�

Z N

�

sin�trs� s dr ��s� ds

����

�

Z �

�

����
Z Ns

s

sin�tu� du

������s� ds

�
C

jtj



Returning to ��� we have� because of our estimate on 	� combined with
Lemma ��a��

����
� X
��Q��j�s

	QaQ

�
� �j

����
�

�



Z
Rn

����
� X
��Q��j�s

	QaQ

��
���

����
�

j	���j��j�d�

� C

Z
Rn

����
� X
��Q��j�s

	QaQ

��
���

����
�

 lim inf
N

���� 	�N ��j��

����
�

d� 


Thus� letting �N�j�x�  ��nj�N ���jx�� ��� will follow from the esti�
mates� uniform in N �

��
�

����
� X
��Q��j�s

	QaQ

�
� �N�j

����
�

�

� C��s� ��
X

��Q��j�s

	Q 
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So �x N � j� and s and write � for �N � �j for �N�j � For q � Rj�s� let

Aq 
X

��Q��j�s
Q�q

	QaQ� 	q 
X

��Q��j�s
Q�q

	Q 


Then

����
� X
��Q��j�s

	QaQ

�
� �j

����
�

�

�
X

q�q��Rj�s

����hAq � �j � Aq� � �ji

����

�
X
q�

X
q��q���

�
X
q�

X
q��q�����

 I � II 


The inequality
kaQ � �jk� � C ��nj��

follows easily from Lemma ��b� and the well�known estimates

����	aQ���
���� � C j�j diam�Q� �

kaQk
�
� �

C

jQj



This leads� via Lemma ��d�� to

����

I � C ��nj
X
q�

	q�
X

q��q���

	q

� C ��nj
X
q�

	q�
X

Q��q���

��Q��j�s

	Q

� C ��nj
X
q�

	q�� �n�j�s���

 C� �n���s�
X

��Q��j�s

	Q 
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To estimate II� begin by �xing q� q �� Rj�s� with q � �q��  �� We
write

���� hAq � �j � Aq� � �ji 

Z
Aq�x�Aq� � Lj�x� dx �

where Lj�x�  �j � ��j�x�  ��njL���jx� and so� by Lemma ��d��

jLj�x�� Lj�y�j � C ��nj jx� yj�minfjxj� jyjg 


Now if ��Q�  j � s� Q � q� x � q� and y� � Q� then

aQ � Lj�x� 

Z
aQ�y�


Lj�x� y�� Lj�x� y��

�
dy 


Thus

jaQ � Lj�x�j �
C ��njdiam�Q�

d�x�Q�
�

C ��nj���Q�

d�x�Q�
�

C ���n���j�s

d�x�Q�
�

since ��Q� � ��S�Q�� � ��Q�  j�s by Lemma �� Also� if aQ�Lj�x� �

� then d�x�Q� � C �j �since Lj is supported in ���j � �j�n�� Thus

jaQ � Lj�x�j �
C ��s

d�x�Q�n



Now suppose x � q� If Q � q and ��Q�  j�s� then ��S�Q�� � ��Q� 
j � s  ��q�� Since S�Q� � q � �� S�Q� � q� Because q � �q��  ��
we must have d�x� S�Q�� 
 �j�s� Coupled with d�x� S�Q�� � d�x�Q� �
C �j if aQ � Lj�x� � 
� we estimate� for �xed q � Rs�j and x � q�

X
�q����q��

jAq� � Lj�x�j �
X

�q����q��

X
Q�q����Q��j�s

�j�s�d�x�S�Q���C�j

	QjaQ � Lj�x�j

� C
X

�q����q��

X
Q�q����Q��j�s

�j�s�d�x�S�Q���C�j

	Q
��s

d�x�Q�n

� C��s
X

�j�s�d�x�S��C�j

�

d�x� S�n

X
Q�S

��Q��j�s

	Q 
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By Lemma ��a� this last term is dominated by

C� ��s
X

�j�s�d�x�S��C�j

jSj

d�x� S�n
� C� ��s

Z C�j

�j�s

dr

r
� C� ��s�s� �� 


That is� if x � q� then

X
�q����q��

jAq� � Lj�x�j � C� ��s�s� ��� 


Thus� from �����

II �
X
q

Z
jAq�x�j

X
�q����q��

jAq� � Lj�x�j dx

� C� ��s�s� ��
X
q

	q  C� ��s�s� ��
X

��Q��j�s

	Q 


With ���� and ���� this gives ��
� and completes the proof of our the�
orem�
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Transform�ee en paquets

d�ondelettes des signaux

stationnaires� comportement

asymptotique des

densit�es spectrales

Lo��c Herv�e

R�esum�e� On consid�ere la transform�ee en paquets d�ondelettes
associ�ee �a un �ltre polynomial QMF� Soit X � fXngn�Z un signal
al�eatoire stationnaire �a densit�e spectrale f continue� On d�emontre que
les �n signaux	 g�en�er�es �a partir de X apr�es n it�erations de la trans

form�ee	 �convergent� vers des bruits blancs quand n��� Si f est
h�olderienne	 la vitesse de convergence est exponentielle�

Abstract� We consider quadrature mirror �lters	 and the asso

ciated wavelet packet transform� Let X � fXngn�Z be a stationary
signal which has a continuous spectral density	 f � We prove that the �n

signals	 obtained from X by n iterations of the transform	 �converge�
to white noises when n��� If f is holderian	 the convergence rate
is exponential�

���
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�� Enonc�e des r�esultats�

On d�esigne par �E� k�k�� l�espace des fonctions continues �
p�eriodi

ques muni de la norme uniforme	 et pour � ���� ��	 on note �E�� k � k��
le sous
espace des fonctions uniform�ement �
h�olderiennes	 avec

kfk� � kfk� m��f� �

o�u

m��f� � sup

� jf�y�� f�x�j
jy � xj� � x �� y

�
�

Soit H���� �
PN

k�� h
�
ke

�i�k� un polyn�ome trigonom�etrique tel que
H���� � � et

���
���H��

�

�
�
���� 

���H��
�

�


�

�
�
���� � � � pour tout � � ��� �� �

On suppose que les h�k sont des nombres r�eels	 et on d�e�nit h�k �
����k��h����k pour k � �N � �� � � � ���	 et

H���� �
��X

k��N��

h�ke
�i�k� � e��i��H���

�

�
� �

Notons que H���� � H���� � H������ � �	 H���� � H���� � H������
� �	 et que H� v�eri�e �egalement la relation ���� Un tel couple �H�� H��
est appel�e QMF �quadrature mirror �lters� ���	 ���� La m�ethode d�analy

se spectrale des signaux al�eatoires	 d�evelopp�ee dans ���	 consiste �a it�erer	
�a partir d�un processus al�eatoire initial X � �Xn�n�Z	 les deux op�erati

ons de �ltrage T� et T� d�e�nies par

�TjX�n �
p
�
X
k�Z

hjkX�n�k� j � �� �� n � Z �

o�u par convention h�k � � si k �� ��� N �	 et h�k � � si k �� ��N � ������
Cet algorithme	 qui en d�autres termes e�ectue la transform�ee en

paquets d�ondelettes de X ���	 fournit une famille arborescente de sig

naux stationnaires� apr�es n it�erations	 on dispose des �n processus
T�n � � �T��X	 o�u les �i d�ecrivent f�� �g�

On note � � f�� �gN� 	 u� � jH�j�	 u� � jH�j�	 et P�	 P� les
op�erateurs de transition d�e�nis sur E par

��� Pjf��� � uj�
�

�
� f�

�

�
�  uj�

�

�


�

�
� f�

�

�


�

�
� �
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ondelettes ���

o�u � � ��� ��	 j � �� �� On d�emontre dans ��� le r�esultat suivant

Th�eor�eme ����

i� Si X � �Xn�n�Z est un processus stationnaire du second or�

dre� les processus T�X et T�X sont �egalement stationnaires� Si X a

une densit�e spectrale f � alors P�f et P�f sont les densit�es spectrales

respectivement de T�X et T�X� et plus g�en�eralement chaque processus

T�n � � �T��X admet une densit�e spectrale �egale �a P�n � � �P��f �
ii� Soit Q� le nombre de z�eros de H�� On suppose que� pour tout

p � f�� � � � � Q�g� pour tout k � f�� � � � � �p � �g� il existe � � f�� � � � � pg�
tel que

��� H�

�
k ��

�p � �


�

�

�
�� � �

Si f � E� alors� pour presque tout � � ���� ��� � � � � �n� � � � � � � �au
sens de la probabilit�e produit �equiprobable sur ��� la suite de processus

�T�n � � �T��X�n�� �converge� vers un bruit blanc� c	est��a�dire �P�n � � �
P��f�n�� converge vers une constante c�f� �� quand n���

Le point i� r�esulte d�un calcul �el�ementaire	 et l�assertion ii� du
Th�eor�eme de Ionescu
Tulcea et Marinescu ��� et de la Loi des grands
nombres� Signalons que la condition ��� est exactement l�hypoth�ese sur
les cycles p�eriodiques invariants donn�ee dans ���� Dans ce travail	 sous
une hypoth�ese du m�eme type mais un peu plus forte que ���	 nous nous
proposons	 d�une part de g�en�eraliser la propri�et�e de convergence du ii�
�a tout � � �	 et d�autre part de prouver que la vitesse de convergence
est exponentielle quand f est h�olderienne�

Th�eor�eme ���� Soit Q le nombre de z�eros de H�H�� On suppose

que� pour tout p � f�� � � � � Qg� pour tout k � f�� � � � � �p � �g� il existe

� � f�� � � � � pg� tel que

��� H�

�
k ��

�p � �

�
H�

�
k ��

�p � �

�
�� � �

Soit X un processus stationnaire du second ordre admettant une den�

sit�e spectrale f continue� et soit � � ���� � � � � �n� � � � � � � quelconque�

Alors la mesure spectrale P�n � � �P��f du processus T�n � � �T��X con�

verge uniform�ement vers une constante c�f� �� quand n��� c	est�

�a�dire�

��� lim
n���

kP�n � � �P��f � c�f� ��k� � � �
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Th�eor�eme ��	� On conserve les hypoth�eses et notations du th�eor�eme

pr�ec�edent� Si f � E�� alors il existe deux constantes D 	 � et 
 � ��� ��
�ind�ependantes de f� telles que l	on ait� pour tout � � ���� � � � � �n� � � � �
� ��

��� kP�n � � �P��f � c�f� ��k� � D
nkfk� �

Remarques� a� La propri�et�e ��� montre que la suite d�op�erateurs
�P�n � � �P���n�� converge en norme dans E� avec une vitesse exponen

tielle� L��etude du comportement asymptotique des spectres discrets
dans l�arbre de �ltrage	 que nous n�abordons pas ici	 a �et�e trait�ee dans
���� Par ailleurs une �etude plus pr�ecise des it�er�ees de T� a �et�e faite dans
��� dans le cadre des �ltres polynomiaux non n�ecessairement QMF�

b� L�hypoth�ese ��� est une condition n�ecessaire et su�sante pour
que H� engendre une analyse multir�esolution	 et elle assure que la suite
fPn

� f� n 	 �g converge uniform�ement vers f��� pour tout f � E	 voir
���� Pour � � �	 on note �� la mesure de probabilit�e sur le tore d�e�nie
par Z

f d�� � c�f� �� � f � E �

Si � � ��� �� � � � �	 le r�esultat ci
dessus montre que �� � �� �masse de
Dirac en ��� Plus g�en�eralement	 si � est de la forme � � ���� � � � � �r� ��

�� � � � �	 on a �� �
P�r��

k�� u�r �k��� � � �u���k��r� ��k���r�� �
Cependant ce type de propri�et�e ne s��etend pas �a tous les �el�ements

de �� Plus pr�ecis�ement	 soient  la mesure produit �equiprobable sur
�	 D l�ensemble des points dyadiques de ��� ��	 et soit en�n A le sous

ensemble de � form�e des � tels que �w soit de la forme

�� �
X
a�D

�a��� �a �

o�u les �a��� sont des r�eels positifs tels que
P

a�D �a��� � �� Alors
�A� � �� En e�et	 on �etablit ais�ement par r�ecurrence que

Z �

�

f��� d� � ��n
X

���			��n�f���g

Z �

�

P�n � � �P��f��� d� �

pour tout f � E et pour tout n 	 �� D�o�u	 gr�ace au th�eor�eme de
convergence domin�ee sur ��� �	

Z �

�

f��� d� �

Z
�

c�f� �� d��� �



Transform�ee en paquets d
ondelettes ���

Donc	 pour tout bor�elien B	 on a m�B� �
R
�
���B� d���	 o�u m est la

mesure de Lebesgue sur ��� ��� Pour B � D	 on obtient � � m�D� 	
�A�� Donc �A� � ��

Signalons �egalement que	 si � � ��� �� � � � �	 alors �� est une mesure
continue� ���fxg� � � pour tout x � ��� ��� En e�et supposons que
���fxg� 	 �� On sait que �� est invariante sous l�action de P� et �	
o�u � est la transformation d�e�nie par �� � �� �modulo��	 voir � ��
On en d�eduit ais�ement que x est n�ecessairement un point �xe pour une
certaine puissance �p de �	 et que u���

kx� � � pour k � �� � � � � p	
ce qui contredit l�hypoth�ese ���� Donc ���fxg� � �� De m�eme	 si
� � ��� �� �� �� � � ��	 ou plus g�en�eralement si � est cyclique	 on peut
montrer que �� est une mesure continue�

c� Pour tout n 	 �	 l�application An d�e�nie par

f 
�� �P�n � � �P��f����			��n�f���g

est injective de E dans E�n � Il su�t de le v�eri�er pour n � �� �r	 pour
� �x�e	 on a t�P�f����� P�f����� � A��� t�f���� f��  �����	 o�u A���
est une matrice carr�ee d�ordre � qui s�exprime ais�ement �a l�aide de
u���� et u����	 et dont le d�eterminant est D��� � �u�����

� � �u�����
��

L�injectivit�e de A� r�esulte du fait que D a un nombre �ni de z�eros�
Par cons�equent si deux processus X et Y admettent des densit�es

spectrales fX et fY distinctes	 alors AnfX �� AnfY pour tout n 	 �	 et
en ce sens	 la transform�ee en ondelettes des signaux stationnaires fournit
un proc�ed�e d�analyse spectrale� Cependant	 la propri�et�e d�injectivit�e de
An peut se �d�egrader� quand n��� Plus pr�ecis�ement	 consid�erons
l�exemple du �ltre de Haar	 H���� � ��  e�i������ Un calcul simple
montre que	 pour f��� � sin ���	 on a P�f � f�� et P�f � �f��	 de
sorte que c �f� �� � � pour tout � � �� En d�autres termes	 l�application
f 
� c �f� �� associ�ee au �ltre de Haar n�est pas injective� Nous ne
sommes pas parvenus �a �etudier	 pour H� quelconque	 l�injectivit�e de
f 
� c �f� ���

La suite de ce papier est consacr�ee �a la d�emonstration des th�eor�e

mes ��� et ��� qui repose	 d�une part sur la positivit�e des op�erateurs
P�� P� et la notion de points p�eriodiques ���	 ��� ��etude dans E�	 et
d�autre part sur le Th�eor�eme de Ionescu
Tulcea et Marinescu et des
arguments de compacit�e ��etude dans E���
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�� D�emonstration du Th�eor�eme ����

Dans ce paragraphe	 nous nous proposons de d�emontrer le Th�eor�e

me ���� Pour simpli�er	 on notera	 pour tout n � N

� et tout � �
���� � � � � �n� � � � � � �	

!�
nf��� � P�n � � �P��f���� f � E� � � ��� �� �

Rappelons que u���� � u���  ����� Les op�erateurs P� et P� d�e�nis
par ��� sont born�es	 positifs sur E	 et v�eri�ent P�� � P�� � �	 o�u � est
la fonction identiquement �egale �a �� De m�eme chaque op�erateur !�

n est
positif	 born�e sur E	 et v�eri�e

!�
n� � �� k!�

nfk� � kfk�� pour tout f � E �

On d�e�nit	 pour k � N
� 	 Tk � vect fe��i��k����� � � � � e�i��k����g� No


tons que u� et u� appartiennent �a TN � Pour de simples raisons de
degr�e	 il est clair que	 si f est un polyn�ome trigonom�etrique	 alors les
fonctions !�

nf appartiennent �a TN pour n assez grand� De m�eme	 on
montre facilement que P�� P�	 et donc !�

n	 op�erent sur TN �
Soient S� et S� les applications d�e�nies par

Sj� �
� j

�
� � � ��� �� � j � �� � �

Pour � � ��� ��	 � � �	 et n � N
� 	 on note T�

n�� l�ensemble des points
�n � � ���� tels que �i � fS�� S�g et u�n����� � � �u����n � � ����� 	 ��
Compte
tenu des identit�es uj�����uj�������� � �	 l�ensemble T�

n��

n�est jamais vide� On notera �a� la partie enti�ere d�un r�eel a	 et � le
shift d�e�ni sur � par

�� � ����� � � � � �n� � � � � � ���� � � � � �n� � � � � �

La d�emonstration du Th�eor�eme ��� utilise les deux lemmes techniques
suivants�

Lemme ���� Soit h une fonction de E �a valeurs positives ou nulles�

et soient � � �� � � ��� ��� m� � � N
� � et en
n y � �� � � � ��� � T 
m�

��� �

Si !�
mh�y� 	 �� alors on a !�

��mh��� 	 ��
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Lemme ���� On note r � �log���N�����Q� Soit h une fonction

de TN �a valeurs positives ou nulles� mais non identiquement nulle� Il

existe � 	 � telle que

P�n � � �P��P�P�r � � �P��h��� 	 � � pour tous � � ��� �� � n 	 � �

�i� �i � f�� �g �

Preuve du Lemme ���� On montre ais�ement par r�ecurrence que

!�
mh��� �

X
���			��m�fS��S�g

u�m����� � � �u����m � � �����h��m � � ����� �

Comme y � T 
m�
��� 	 on a A � u�m��

����� � � �u�m��
��� � � � ���� 	 �� Le

Lemme ��� se d�eduit alors de l�in�egalit�e

!�
m��h���

	 A
X

�����			 ����m�fS��S�g

u�m�����y� � � �u������m � � �����y�h����m � � �����y�

� A !�
mh�y� �

Avant de donner la preuve du Lemme ���	 commen"cons par faire
quelques rappels sur la notion de points p�eriodiques ���	 ���	 et le lien
avec la condition ���� Pour p � N

� 	 on dit que � � ��� �� est un
point p 
p�eriodique s�il existe p �el�ements ��� � � � � �p de fS�� S�g tels que
�p � � ���� � �	 et si p est le plus petit entier pour lequel on a une
telle relation �de mani�ere �equivalente	 si �p� � � et �k� �� � pour
k � �� � � � � p� �	 o�u �x � �x mod ��� La famille f��� � � � � �pg v�eri�ant
la relation ci
dessus est unique	 et l�on note

C� � f�k � � ���� � k � �� � � � � pg �

Il est clair que les points p�eriodiques d�ordre inf�erieur ou �egal �a un
entier m	 m � N

� 	 sont de la forme k���p � ��	 o�u p � f�� � � � �mg et
k � f�� �� � � � � �p � �g� La condition ��� est �equivalente �a la suivante�
pour tout � ���� ��	 p 
p�eriodique	 � � p � Q	 il existe y � C�	 tel que

� � H��y�H��y� �� � �
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Pour � � ��� ��	 on noteA��f�n � � ���� � n 	 �� ��� � � � � �n�fS�� S�gg�
Nous aurons besoin des propri�et�es suivantes d�emontr�ees dans ����

Soit � � ��� ��� Si � est p�eriodique� alors un �et uniquement un� des
points S�� et S�� est p�eriodique� Si � n	est pas p�eriodique� les points

de A� sont distincts deux �a deux et ne sont pas p�eriodiques�

Preuve du Lemme ���� On note Z l�ensemble des z�eros de u�u�	 et
jEj le cardinal d�un ensemble quelconque E� Rappelons que jZj � Q�
Les op�erateurs Pi �etant positifs et tels que Pi� � �	 il su�t de prouver
qu�il existe � 	 � tel que l�on ait	 pour tous � � ��� ��	 ��� � � � � �r � f�� �g

��� P�P�r � � �P��h��� 	 � �

a� Soit r� � �log���N  ���  �� Si � est non p�eriodique et tel que
A� � Z � �	 alors !�

mh��� 	 �� pour tous m 	 r�� � � �� En e�et	
sinon on aurait h��m � � ����� � � pour chaque �m� � � � � �� � fS�� S�g	
ce qui est impossible car h admet au plus �N  � racines�

b� Soit r� � r�  Q� Si � est non p�eriodique	 alors !�
mh��� 	

�� pour tous m 	 r�� � � �� Pour prouver b�	 consid�erons les ensem

bles

AQ
� � f�k � � ���� � � � k � Q� �i � fS�� S�gg �

FQ
� � f�Q � � ���� � �i � fS�� S�gg �

On note p � jAQ
� � Zj� Soit �� � � quelconque� On a � � p � Q	 et

jFQ
� �T��

Q��j � �Q���Q��� � ��Q�p � �Q��Q�p� Pour prouver cette

in�egalit�e	 on peut par exemple repr�esenter l�ensemble AQ
� sous la forme

d�un arbre dyadique de racine � �admettant pour �ls ��� et ���  ���

� � � etc � � ��	 et remarquer que le nombre jFQ
� � T��

Q��j est d�autant plus
grand que les �el�ements de Z sont proches de � dans l�arbre� Il en
r�esulte que jT��

Q��j 	 �Q�p 	 Q � p� Les points de A� �etant distincts

deux �a deux	 on en d�eduit qu�il existe y � T��

Q�� tel que Ay � Z � ��

Rappelons que y est n�ecessairement non p�eriodique� Soient maintenant
m 	 � et � � � quelconques� il existe ym � T 
m�

Q�� non p�eriodique tel
que Aym �Z � �� Du a�	 il vient que !�

mh�ym� 	 � pour tout m 	 r�	
d�o�u	 d�apr�es le Lemme ���	 !�

m�Qh��� 	 �	 ce qui prouve b��

c� Soit r � r�  Q� Si � est p�eriodique	 � �� �	 alors !�
mh��� 	

�� pour tous m 	 r� � � �� D�emontrons tout d�abord que	 pour tout
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�� � �	 il existe un �el�ement y de T��

Q�� non p�eriodique� dans le cas
contraire	 en vertu des propri�et�es sur les points p�eriodiques rappel�ees
ci
dessus	 l�ensemble T��

Q�� serait en fait r�eduit �a un seul �el�ement qui en
outre appartiendrait �a C�	 d�o�u u��t�u��t� � � pour tout t � C�	 ce qui
contredit l�hypoth�ese � ��

Soit m � N
� � Il existe donc y � T 
m�

Q�� non p�eriodique	 de sorte
qu�on a	 pour tout m 	 r�	 !

�
mh�y� 	 � et donc d�apr�es le Lemme ���	

!�
m�Qh��� 	 �� Le point c� est prouv�e�

On a en particulier d�emontr�e que	 pour tout ��� � � � � �r� �r�� �
f�� �g et tout � �� �	 P�r��P�r � � �P��h��� 	 �� Remarquons que	 si
�r�� � �r � � � � � �� � � et �� � �	 alors !�

r��h��� � u���� � � �u����
u������h����� � h�����	 ce dernier terme pouvant �etre nul� Pour � � �	
il est donc n�ecessaire d�avoir �r�� � ��

d� �cas � � ��� On a P�P�r � � �P��h��� 	 �� pour tous ��� � � � � �r �
f�� �g� En e�et	 comme u���� � �	 on obtient

P�P�r � � �P��h���
�

X
���			��r���fS��S�g

u��
�

�
�u�r ���

�

�
� � � �u����r�� � � ���

�

�
�h��r�� � � ��� �

�
�

� P�r � � �P��h�
�

�
�

ce dernier terme �etant positif d�apr�es ce qui pr�ec�ede�
Notons que r est bien ind�ependant de la fonction h� Nous pou


vons maintenant prouver ���� Soient ��� � � � � �r � f�� �g� Il existe une
constante �����			��r� 	 � ne d�ependant que de ���� � � � � �r� telle que
P�P�r � � �P��h 	 �����			��r�� On en d�eduit ��� avec � � minf�����			��r� �
�i � f�� �gg�

D�emonstration du Th�eor�eme ���� Soit � � ��

�er cas� il existe k � N
� tel que �n � � pour tout n 	 k� Alors

!�
n � Pn�k

� !�
k � On d�eduit de l��etude des it�er�ees de P� faite dans ���

que	 pour tout f � E	 la suite f!�
nf � n 	 �g converge uniform�ement

vers la constante !�
k f����

�ieme cas� il existe une suite strictement croissante f��n�gn��
d�entiers positifs tels que ��n� � �� Commen"cons par supposer que

� f � TN � on peut choisir les ��n� tels que ��n�����n� 	 r�	
o�u r est l�entier d�e�ni dans le Lemme ���� Soit ��n� � ��n� � r � ��



��
 L� Herv�e

La famille f!�
��n�f � n 	 �g est born�ee dans l�espace TN qui est de

dimension �nie� On peut donc en extraire une sous
suite f!�
��n�f � n 	

�g convergeant uniform�ement vers une fonction g de TN �
Nous allons d�emontrer que g est identiquement �egale �a

c � inf
��	���


�g���� �

A cet e�et proc�edons par l�absurde et supposons qu�il existe � � ��� ��
tel que g��� 	 c� On a !�

��n��� � Rn!
�
��n� o�u

Rn � P���n��� � � �P���n��r��P���n��r��P���n��r � � �P���n��� �

Rappelons que par construction ���n��r�� � �� Le Lemme ��� appliqu�e
avec h � g � c assure l�existence d�une constante � 	 � telle que l�on
ait Rn�g � c� 	 �	 ou encore Rng 	 c  �	 pour tout n 	 �� Or
on a !�

��n���f � Rng � Rn�!
�
��n�f � g�	 d�o�u k!�

��n���f � Rngk� �
k!�

��n�f � gk�� La suite fRng � n 	 �g converge donc uniform�ement

vers g� Il en r�esulte que limn����inf��	���
Rng���� � c	 ce qui est
impossible d�apr�es l�in�egalit�e ci
dessus� Donc g � c� On conclut que
f!�

nf � n 	 �g converge uniform�ement vers c en remarquant que	 pour
tout m 	 ��n�	

k!�
mf � ck� � kP�m � � �P���n����!�

��n�f � c�k� � k!�
��n�f � ck� �

Passons au cas g�en�eral
� f � E � il existe une suite ffkgk�� de polyn�omes trigonom�etri


ques convergeant dans E vers f � Soit � 	 �� On a

k!�
q f �!�

p fk� � k!�
q f � !�

q fkk�  k!�
q fk � !�

p fkk�
 k!�

p fk � !�
p fk�

� � kfk � fk�  k!�
q fk �!�

p fkk� �

On �xe k assez grand pour que kfk � fk� � ���� On sait que	 pour
� assez grand	 !�

� fk � TN �car P� et P� contractent les degr�es�� On
d�eduit de ce qui pr�ec�ede que la suite f!�

nfk � n 	 �g converge dans
E	 et �nalement que f!�

nf � n 	 �g est une suite de Cauchy dans E�
Cette derni�ere suite converge donc vers une fonction h � E	 et on a en
particulier limn��� P��P���n���

� � �P��f� � P�h � h �car ��n� � ���
On conclut en utilisant le fait que	 sous l�hypoth�ese � � �qui assure que
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u� n�a pas de cycle p�eriodique invariant�	 les fonctions P�
invariantes
sont constantes	 voir ����

	� D�emonstration du Th�eor�eme ��	�

Nous conservons les notations et hypoth�eses pr�ec�edentes �voir d�e

but du Paragraphe ��	 et nous nous proposons de d�emontrer le Th�eor�e

me ���	 c�est
�a
dire l�in�egalit�e ��� pour tout f � E�� Pour simpli�er les
notations	 on suppose que � � � �la d�emonstration est identique pour
� � ��� �� quelconque�� Remarquons tout d�abord que P�� P�	 et donc
chaque !�

n 	 sont des op�erateurs born�es sur E�� Plus pr�ecis�ement	 on
d�emontre facilement l�existence de constantes C�R 	 � telles que l�on
ait	 pour j � �� � et tout f � E�	

�#� m��Pjf� � ���m��f�  Ckfk� �

���� kPjfk� � ���kfk�  Rkfk� �

On en d�eduit que	 pour tout � � �	

k!�
� fk� �

�

�
kfk�  �

�
R kfk� �

et plus g�en�eralement	 pour tout n � N� 	

���� k!�
nfk� � ��nkfk�  �R kfk� �

D�autre part	 pour tout f � E	 les suites fPn
� f � n 	 �g et fPn

� f �
n 	 �g convergent dans E� En vertu du Th�eor�eme de Ionescu
Tulcea
et Marinescu ���	 �#�	 la valeur propre � est l�unique valeur spectrale de
module � pour P� et P�	 et on obtient les d�ecompositions suivantes sur
E� �

Pour i � �� �� il existe une mesure de probabilit�e i� Pi�invariante
sur le tore� et un op�erateur Qi born�e sur E�� de rayon spectral stricte�

ment inf�erieur �a �� tels que

���� Pif �

Z
fdi Qi�f� � pour tout f � E� �
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avec� en outre� Qij � � et ij � j pour i� j � f�� �g �on a not�e i
l	op�erateur d�e
ni sur E� par i�f� �

R
fdi�� On en d�eduit que� pour

tout f � E��

����
!�
n�f� � ���f�  ��Q��f  � � � �nQ�n��

� � �Q��f

Q�n � � �Q��f �

La d�emonstration du Th�eor�eme ��� utilise les trois lemmes suivants�

Lemme 	��� Il existe une constante D 	 � telle que pour tous f �
E�� n � N� � ��� � � � � �n � f�� �g�

kQ�n � � �Q��fk� � D kfk� �

Lemme 	��� On a pour tout f � E� et tout ������ ��� � � � � �n� � � � ���
a� limn��� kQ�n � � �Q��fk� � � �

b� limn��� kQ�n � � �Q��fk� � � �

Lemme 	�	� Pour tout r�eel � 	 �� il existe M � N� tel que pour tous

f � E�� n 	M � ��� � � � � �n � f�� �g�
kQ�n � � �Q��fk� � � kfk� �

Commen"cons par admettre ces lemmes	 et donnons la

D�emonstration du Th�eor�eme ���� Soient � tel que � � � � �	 et
M l�entier du Lemme ��� correspondant �a �� Soient � � �	 et k � N�
qu�on �ecrit sous la forme k � qM  r	 o�u q � N et r � f�� � � � �M � �g�
Alors

kQ�k � � �Q��fk� � D�q kfk�
� D� ����M �k kfk� �

On pose 
 � ���M et Tkf � Q�k � � �Q��f � Utilisant ���� et le fait que	
pour g � E� et j � �� �	 kj�g�k� � jj�g�j � kgk� � kgk�	 on montre
ais�ement que

k!�
n�pf �!�

nfk� � kTnfk� 
n�pX
k�n

kTkfk�

� �D�
� n�pX
k�n


k
�
kfk� �
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On conclut gr�ace au crit�ere de Cauchy	 et au Th�eor�eme ��� qui permet
d�identi�er la limite �a une constante�

Preuve du Lemme ���� La d�emonstration de ce lemme est donn�ee
dans ���� Nous la reprenons ici car elle met en jeu une in�egalit�e impor

tante dont nous aurons besoin dans la suite� Gr�ace �a �#�	 ����	 et en�n
aux relations entre Qi et j 	 on obtient les majorations suivantes�

kQ�n � � �Q��fk� � kQ�nP�n��
� � �P��fk�

� kQ�nP�n��
� � �P��fk� m��P�n � � �P��f�

� � kfk�  ���m��P�n��
� � �P��f�  C kfk� �

et �nalement

����
kQ�n � � �Q��fk� � ��  C  C ���  � � � C ���n���� kfk�

 ��nm��f� �

Preuve du Lemme ���� a� On obtient gr�ace �a ����

�n��!
�
nf �

n��X
i��

�iQ�i��
� � �Q��f �

Rappelons que f!�
nfgn�� converge uniform�ement vers une constante

c�f� ��� On a en outre

k�n���!�
nf�� c�f� ��k� � k�n�� �!�

nf � c�f� ��� k�
� k!�

nf � c�f� ��k� �

d�o�u	 d�apr�es le Th�eor�eme ���	 limn��� k�n���!�
nf��c�f� ��k� � ��

On en d�eduit que fPn
i�� �iQ�i��

� � �Q��f � n 	 �g converge dans E
vers c�f� �� quand n��� On utilise �a nouveau ���� pour en d�eduire
le a� du lemme�

b� On pose an � m��Q�n � � �Q��f� et bn � kQ�n � � �Q��fk��
En vertu du a�	 il reste �a prouver que limn��� an � �� Or	 on a
ak � m��P�kQ�k��

� � �Q��f�	 d�o�u d�apr�es �#�	 ak � ���ak�� Cbk��	
et pour tout p 	 �	

an�p � ��pan  C �bn�p��  ���bn�p��  � � � ��p��bn� �

L�assertion b� r�esulte donc du point a� et du fait que la suite fangn��
est born�ee �cf� Lemme �����
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Preuve du Lemme ���� On note S� la sph�ere unit�e de E�� Par ailleurs
on d�e�nit sur � la distance d��� ��� �

P
k�� �

�kj�k � ��kj� Rappelons
que ��� d� est compact�

Nous proc�edons par l�absurde en supposant qu�il existe un r�eel
� 	 � pour lequel on a la propri�et�e suivante� pour tout n � N� 	 il existe
��n� 	 n� �

��n�
� � � � � � �

��n�
��n� � f�� �g	 f��n� � S�	 tels que

kQ
�
��n�

��n�

� � �Q
�
��n�
�

f��n�k� 	 � �

On pose ���n� � ��
��n�
� � � � � � �

��n�
��n�� �� �� � � � � � �� En vertu du Th�eor�e


me d�Ascoli et de la compacit�e de �	 il existe une suite d�entiers posi

tifs f��n�gn�� strictement croissante �extraite de f��n�gn��� telle que
f��n�gn�� converge vers � � �	 et telle que ff�n�gn�� converge dans
E vers f � E�	 avec kfk� � �� Posant

An � Q
�
��n�

��n�

� � �Q
�
��n�
�

�

on obtient

� � kAnf�n�k� � kAn�f�n� � f�k�  kAnfk� �

Nous allons d�emontrer que ces deux derniers termes ont une limite nulle
quand n��	 ce qui constituera bien une contradiction�

De ����	 il vient que

kAn�f�n� � f�k� � E kf�n� � fk�  ���n�m��f�n� � f� �

avec E � ��C  ��� En outre	 on a m��f�n� � f� � �	 d�o�u

lim
n���

kAn�f�n� � f�k� � � �

La convergence de f��n�gn�� vers � � ���� � � � � �n� � � � � entra�$ne qu�il
existe une suite fk�n�gn�� d�entiers positifs	 avec limn��� k�n� �

�	 telle que w
�n�
k � �k pour tout � � k � k�n�� Si k�n� 	 ��n�	

alors An � Q���n� � � �Q�� � Si k�n� � ��n�	 alors

An � Q
�
��n�

��n�

� � �Q
�
��n�

k�n���

�Q�k�n� � � �Q��� �

d�o�u kAnfk� � D kQ�k�n� � � �Q��fk� d�apr�es le Lemme ���� On d�eduit
du Lemme ����b� que limn��� kAnfk� � �	 ce qui ach�eve la d�emons

tration du Lemme ����
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Spectral factorization of

measurable rectangular matrix

functions and the vector�valued

Riemann problem

Marek Rakowski and Ilya Spitkovsky

Abstract� We de�ne spectral factorization in Lp �or a generalized
Wiener�Hopf factorization� of a measurable singular matrix function
on a simple closed recti�able contour �� Such factorization has the
same uniqueness properties as in the nonsingular case� We discuss ba�
sic properties of the vector valued Riemann problem whose coe�cient
takes singular values almost everywhere on �� In particular	 we intro�
duce defect numbers for this problem which agree with the usual defect
numbers in the case of a nonsingular coe�cient� Based on the Riemann
problem	 we obtain a necessary and su�cient condition for existence of
a spectral factorization in Lp �

�� Introduction�

Let � be a simple closed recti�able contour which is the posi�
tively oriented boundary of a �nitely connected region D�	 and let
D� 
 C�n�D� � ��� Let G and g be functions on �� The Riemann

problem consists in �nding functions �� and �� which are analytic
in D� and D�	 respectively	 and whose nontangential boundary limits

���
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satisfy equation

����� ���t� �G�t����t� 
 g�t� �

This problem is also called a Hilbert problem ��	 or a barrier problem

��	 in the literature� The name Hilbert problem originates in ��	 where
the homogeneous version of the problem was considered under the as�
sumptions that � is a smooth contour which is a boundary of a simply
connected region	 G is twice di�erentiable	 and the scalar functions ��
and �� are continuous up to ��

A classical solution of the Riemann problem in the case where �
is smooth and bounds a �nitely connected region	 G and g are H�older
continuous	 and G does not vanish	 is as follows� Assume � 
 ������
� � ���N where �� encloses ���� � ���N 	 and consider the homogeneous
problem

����� ���t� 
 �G�t����t� �

Suppose the change of argument of G�t� along the contour �i is ���i	
i 
 �� �� � � � � N � Assume � � D�	 and pick a point �i in the hole
bordered by �i �i 
 �� �� � � � � N�� Let

����� ��z� 
 �z � ���
���z � ���

�� � � � �z � �N �
�N �

let � 
 �� � �� � � � �� �N 	 and let

����� G��t� 
 �t����t�G�t� �

Then log G��t� is continuous on � and satis�es the H�older condition�
Consequently	 if

����� 	�z� 

�

��i

Z
�

log G��t�

t� z
dt

and 	��z� 
 	�z� for z � D� 	 	��t� � 	��t� 
 log G��t� � Hence
e���t� 
 e���t�G��t�	 and

����� 
��z� 

�

��z�
e��z� and 
��z� 
 z��e��z�

are functions whose nontangential limits to � are H�older continuous
and satisfy equation ������ Functions 
� and 
� can be used to obtain
solution of the nonhomogeneous problem�
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Equation ����� shows that the Riemann problem can be approached
through factorization of its coe�cient� Suppose we can �nd a factor�
ization

����� G�t� 
 G��t� ��t�G��t� �

where G��t� and ��G��t� are boundary values of functions analytic
in D� and continuous up to �	 G��t� and ��G��t� are boundary val�
ues of functions analytic in D� and continuous up to �	 and ��t� 

�t � t��

���t � t��
� for some points t� � D� and t� � D� and an

integer �� Then ����� is equivalent to

�����
���t�

G��t�
� ��t�G��t����t� 


g�t�

G��t�
�

The decomposition g�t��G��t� 
 g��t� � g��t�	 where g� �respectively
g�� is a boundary value of a function analytic in D� �respectively D��
and continuous up to �	 immediately yields all solutions of equation
������ We note that factorization ����� exists e�g� when G is H�older
continuous and does not vanish on � ���

The factorization approach applies naturally to more general ver�
sions of the Riemann problem considered in the literature� The problem
with G�t� a square nonsingular matrix valued function has been treated
in ��� Factorability of an essentially bounded nonsingular matrix func�
tion G and the Riemann problem in Lp were considered in ���� The
case where G is a measurable nonsingular matrix function and �� and
�� are in Lp��� has been treated in ��� �see also ���� Below	 we extend
some of the results presented in �� to the case where G takes singular
values� In particular	 we relate the properties of the Riemann problem
with a measurable singular matrix valued coe�cient with existence of
a factorization of the coe�cient�

Let G be a continuous nonsingular matrix valued function on a
simple closed recti�able contour �� A �left� standard factorization of G
relative to � is a factorization G 
 G��G� where G��z� and G��z�

��

are analytic in D� and continuous up to �	 G��z� and G��z�
�� are

analytic in D� and continuous up to �	 and

����� ��t� 


�
BBBB�

�
t� t�
t� t�

���
�

� � �

�

�
t� t�
t� t�

��n

�
CCCCA
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for integers �� � � � � � �n� This factorization is also called a Wiener�

Hopf factorization or a spectral factorization relative to �� The proper�
ties of a standard factorization relative to � are described in ���

Let Ep� �respectively Ep�� be the space of functions f analytic in
D� �respectively D�� such that f

R
�k
jf jpg is bounded for some sequence

of recti�able contours �k approaching � in D� �respectively D�� see
���� If the components of G��z� and G��z�

�� are in Ep� and Eq�	
where ��p � ��q 
 �	 the components of G��z� and G��z�

�� are in
Eq� and Ep�	 and � is given by �����	 G 
 G��G� is called a �left�
factorization in Lp ��� We note that factorization with a di�erent �
has been considered in ����

A function G may admit a left factorization in Lp although the
space of all g � Lp��� for which the problem ����� is solvable is not
closed� Suppose the contour � is such that the operator of singu�
lar integration �Sf��t� 
 ����i�

R
� f������ � t� d� on the space Lp���

is bounded� Suppose G and its multiplicative inverse are essentially
bounded	 and G 
 G��G� is a factorization in Lp� Then the set of
all g � Lp��� for which problem ����� is solvable is a closed subspace
of Lp��� if and only if the operator G�SG

��
� is bounded� If G and

G�� are bounded	 a factorization G 
 G��G
��
� in Lp with the op�

erator G�SG
��
� bounded is called in �� a generalized �left� standard

factorization relative to ��

The de�nition of a standard factorization relative to a contour has
been extended to the singular case in �� by requiring that G� have a
left �respectively G� a right� multiplicative inverse which is analytic in
D� �respectively in D�� and continuous up to the boundary	 and that
� be a square nonsingular diagonal matrix function as in ������ If G
is a rational matrix function	 a necessary and su�cient condition for
existence of a canonical standard factorization ��� 
 � � � 
 �k 
 ��	
together with realization formulas for the factors	 has been obtained in
���� Below	 we apply this idea to factorization in Lp of measurable
singular matrix valued functions� In addition to allowing functions to
take singular matrix values	 we make only general assumptions on con�
tours� We assume that the contour � is simple	 closed	 and recti�able�
We do not require that � be regular �� or Smirnov� Thus	 the operator
of singular integration on the space Lp��� is in general unbounded�

The paper is organized as follows� In Section � we indicate basic
properties of factorization in Lp of singular matrix functions� In Section
� we discuss the vector valued Riemann problem with singular matrix
valued coe�cient G� In Section � we relate the factorization of the
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coe�cient G with the Riemann problem�

�� Spectral factorization in Lp �

Below	 Lp with p � � will denote Lp��� �with respect to the
usual Lebesgue measure�� We will denote by Lp� and Lp� the closed
subspaces of Lp formed by nontangential boundary limits of functions
in Ep� and Ep�	 where Ep� are as de�ned above and E�� �respec�
tively E��� is the space of functions analytic and bounded in D� �re�
spectively D��� We will identify Lp� and Lp� with Ep� and Ep��
�Lp� will denote functions in Ep� which vanish at in�nity� If X �

fLp� Lp� � Lp��
�Lp�g	 we will denote by X

m�n the space of m � n ma�
trices over X� To simplify notation	 we will write Xn instead of X��n

or Xn���

De�nition ���� Let G be an m � n matrix valued function with mea�

surable entries and let p  �� By a �left� spectral factorization in Lp
relative to � we will understand a factorization

����� G 
 G��G� �

where

i� G� � Lm�kp� and there exists GL
� � Lk�mq�

�with q 
 p��p� ���

such that GL
��t�G��t� 
 I almost everywhere on ��

ii� G� � Lk�nq� and there exists GR
� � Ln�kp� such that G��t�G

R
��t�


I almost everywhere on ��
iii� the middle factor

����� ��t� 


�
BBBBBBBBB�

�
t� t�
t� t�

���
��

t� t�
t� t�

���
� � �

�

�
t� t�
t� t�

��k

�
CCCCCCCCCA

�

where t� is a point inside �� t� is a point outside �� and �� � �� �
� � � � �k are integers�

A right spectral factorization of G relative to � is a factorization

G 
 G��G� with � as above and G� � Lm�kp� and G� � Lk�nq�
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such that there exist functions GL
� � Lk�mq� and GR

� � Lk�np� for which

GL
��t�G��t� 
 I and G��t�G

R
��t� 
 I almost everywhere on ��

Note that if a function G admits a spectral factorization in Lp
relative to �	 then the rank of G is constant almost everywhere on ��
Also	 since � � Lk�k� 	 by H�older�s inequality G � Lm�n� � To simplify
notation	 we will assume � � D� and write

����� ��t� 


�
BB�
t�� �

t��
� � �

� t�k

�
CCA �

We show �rst that the integers ��� ��� � � � � �k are unique�

Theorem ���� Suppose � � p� � p� � 	 and let G����G�� and

G����G�� with

���t� 


�
BB�
t�

���
� �

t�
���
�

� � �

� t�
���
k

�
CCA

and

���t� 


�
BB�
t�

���
� �

t�
���
�

� � �

� t�
���
k

�
CCA

be spectral factorizations in Lp� and Lp� of a function G � Lm�n� rela�

tive to a contour �� Then �
���
j � �

���
j for j 
 �� �� � � � � k�

Proof� Let GR
�� � Ln�kp��

and GL
�� � Lk�mq�� be right and left multi�

plicative inverses of G�� and G��� Then

����� ��H� 
 H��� �

where H� 
 GL
��G�� � Lk�kp� and H� 
 G��G

R
�� � Lk�kp� with p 


�����q����p�� 
 �������p����p�� � �� Also	 G�� and G�� have the
same column span almost everywhere on �	 so H� takes nonsingular
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values almost everywhere on �� Similarly	 H� takes nonsingular values
almost everywhere on ��

It follows from ����� that

����� t�
���
i ��

���
j H��i� j� 
 H��i� j� �

Since Lp� 
 Lp� consists of constants	 H��i� j� 
 � if �
���
j  �

���
i and

H��i� j� is a polynomial of degree at most �
���
i ��

���
j otherwise� Suppose

�
���
r  �

���
r � Then	 for all j � r and i � r	 H��i� j� 
 � contradicting

nonsingularity of H� almost everywhere on ��

Corollary ���� The integers ��� ��� � � � � �k in ����� are unique�

The integers ��� ��� � � � � �k in ����� or ����� are called the indices of the
factorization	 and the sum of all indices is called the total index of the
factorization� If all the indices of the factorization are equal to �	 the
factorization is said to be canonical�

The proof of Theorem ��� actually gives the nonuniqueness of all
the factors in a spectral factorization�

Theorem ���� Suppose � � p� � p��

����� G���G��

is a spectral factorization in Lp� of a function G relative to a contour ��
and G admits spectral factorization in Lp� relative to � with the same

total index� Then

����� G���G��

is a spectral factorization in Lp� of G relative to � if and only if

����� G�� 
 G��H� and G�� 
 �
��H��

� �G��

where H� is a matrix polynomial such that detH� �� � and

i� H��i� j� 
 � if �i � �j �
ii� H��i� j� is a constant if �i 
 �j �
iii� deg H��i� j� � �i � �j if �i  �j �
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Proof� Suppose ����� is a spectral factorization in Lp� of G� In the
notation of the proof of Theorem ���	

����� H� 
 GL
��G��

whereH� is a matrix polynomial whose determinant is not equal to zero
identically and which satis�es properties i��iii�� In particular	 H� �
L��� Multiplying both sides of ����� by G�� we obtain

������ G��H� 
 G��G
L
��G�� �

Since G��G
L
�� is a projection onto the column span of G��	 and the

column spans of G�� and G�� coincide almost everywhere on �	

������ G���z�G
L
���z�G���z� 
 G���z�

for almost everywhere z � �� Since a function analytic in D� with
nontangential boundary values equal to � on a set of positive measure
is identically �	 equality ������ is valid inside � and

������ G��H� 
 G�� �

Hence

G���G�� 
 G���G�� 
 G��H��G�� 
 G����
��H��G��

and the second equality in ����� holds as well�
Suppose now ����� is a spectral factorization of G in Lp� relative to

� andH� with detH� �� � satis�es conditions i��iii� of the theorem	 and
G�� satisfy ������ Then detH� is a nonzero constant	 and H

��
� � L���

Also	 ���H�� is a matrix polynomial in ��z with a nonzero constant
determinant	 and ����H���

�� � L�� � Hence G�� � Lm�kp�� 	 G�� �

Lk�nq�� 	 and GR
��	 a right multiplicative inverse of G�	 is an element of

Lk�np�� � Suppose
�G��� �G�� is a factorization of G in Lp� relative to �

and �GL
�� � Lk�mq�� is a left multiplicative inverse of G�� Then

�GL
��G��� 
 � �G��G

R
�� �

or G�� 
 �G� where G� 
 �GL
��G�� � Lk�k�� and G� 
 �G��G

R
�� �

Lk�k�� � By the same argument as above	 G� is a unimodular ma�

trix polynomial and G�� has a left multiplicative inverse in Lk�mq�� �
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Since G���G�� 
 �G��� �G�� and the functions �	 �
��	 and G��� are

bounded	 G�� � Lk�nq��
� Thus	 ����� with G�� and G�� given by �����

is a spectral factorization of G in Lp� relative to ��

In particular	 Theorem ��� determines possible nonuniqueness of a
spectral factorization in Lp of a function G relative to �� It also has
the following corollary�

Corollary ��	� Suppose � � p� � p� and a matrix function G admits

spectral factorizations in Lp� and Lp� relative to � with the same total

index� Then

i� G admits a spectral factorization in Lp relative to � for every

p � p�� p���

ii� if p� � p�� p��� a spectral factorization in Lp� of G relative to

� is a spectral factorization in Lp for all p � p�� p���

A meromorphic matrix function W has a pole at a point � � C if
it has a nonzero coe�cient at a negative power of z � � in the Laurent
expansion at �� Equivalently	 W has a pole at � if at least one of
its entries has a pole at �� The function W has a zero at � if each
meromorphic multiplicative generalized inverse of W has a pole at ��
If the function W is analytic at �	 it has a zero at � if the rank of W �z�
drops at z 
 �� Every rational matrix function without poles or zeros
on � admits a spectral factorization relative to � with all the factors
rational �see �� for the discussion of the regular case	 that is	 the case
where the function is square and takes nonsingular values at all but a
�nite number of points� the argument in the nonregular case is similar��
Later	 we will need the following observation�

Proposition ��
� If G � Lm�n� admits a spectral factorization in

Lp relative to � and F and H are rational M �m and n � N matrix

functions analytic and with full column respectively row rank on �� then
the function FGH also admits a spectral factorization in Lp relative to

��

Proof� Let �G�
�� �G� be a spectral factorization in Lp relative to � of

the function G� Since F is a rational matrix function	 there is a �nite
set f��� ��� � � � � ��g  D� which contains all the poles and zeros of F in

D�� Pick � � f��� ��� � � � � ��g� After multiplying F �G� on the right by
a unimodular matrix polynomial in z��	 we can obtain a matrix func�
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tion whose columns have linearly independent leading coe�cients in the
Laurent expansion at �� Indeed	 suppose F �G� 
 � f� f� � � � fk �
and the leading coe�cients in the Laurent expansions at � of fi�s are
linearly dependent� Then we can replace say fi by

������ �fi�z� 
 fi�z��
nX
j��
j ��i

cj �z � ���jfj�z� �

with cj �s constants and 	j�s nonnegative integers such that �fi has a
pole at � of a smaller order	 or vanishes at � to a higher order	 than fi�
Since the columns of F are linearly independent over the �eld of scalar
rational functions	 for every function � analytic and nonzero at � the
order of the zero at � of the product F �G�� is bounded by the largest
partial multiplicity of the zero of F at �� Hence the �nite number of
operations as in ������ can provide a matrix function whose columns
have linearly independent leading coe�cients in the Laurent expansions
at �� It follows that there exists a square rational matrix function R�

whose determinant is not identically equal to zero and which has neither
poles nor zeros on � such that F �G�R� 
 bG� � Lm�kp� has full column

rank at all points z � D� and R
��
�
�GL
�F

�� � Lk�mq� �
Similarly	 there exists a square rational matrix function R� whose

determinant is not equal to zero identically and which does not have
poles or zeros on � such that R�

�G�H 
 bG� � Lk�nq� has a right multi�

plicative inverse in Ln�kp� � If bR�� bR� is a spectral factorization relative

to � of the rational matrix function R���
��R��� 	 � bG�

bR���� bR�
bG�� is a

spectral factorization in Lp relative to � of the function G�

We illustrate the concepts of this section with an example�

Example ��� Let � be the unit circle� Pick a branch of z��� on
C n ��	� ��	 and let

G�t� 


�
�t�����

�t����	

�
�

where the value of t��� is determined almost everywhere by the selected
branch� Let ��z� be a branch of �z � ����� which is analytic in C n

��	����	 and let  �z� be a branch of �z��z � ������ which is analytic
in C� n ��� ��	 such that

������ G�t� 


�
��t�
t��t�

�
� �t� � 
! G��t�G��t� �
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Let p  �� Then G� � L���
p� and G� � Lq�� Also	 G

��
� � Lp� and G�

has a left multiplicative inverse GL
��z� 
 ���z�

�� � � � L���
q� � Thus	

������ is a canonical spectral factorization of G in Lp relative to the
circle�

Suppose p � ��� ��� From ������	

������ G�t� 


�
B�

�

t� �
��t�

t

t� �
��t�

�
CA � t �� t� �

t
 �t�

�

! bG��t� � t � bG��t� �

Plainly	 bG� � L���
p� and bG� � Lq� � Also	 bG��� � Lp� and bG� has a

left multiplicative inverse bGL
��z� 
 � �z � �����z� � � � L���

q�
� Thus	

������ is a spectral factorization of G in Lp relative to the circle�
Suppose G admits a spectral factorization in L� relative to the cir�

cle� By Theorem ���	 the total index of the factorization is either � or ��
Then	 by Corollary ���	 either ������ or ������ is a spectral factorization

of G in L� relative to the circle� Since G� �� L���� and bG� �� L��	
this is a contradiction� Thus	 G admits a spectral factorization in Lp
relative to the circle if and only if p � ��� �� � ���	��

�� Vector�valued Riemann problem with singular coe�cient�

Suppose G is a measurable m � n matrix valued function on a
contour �	 and p  �� The vector�valued Riemann problem consists in
�nding for a given function g � Lmp a pair of functions ���� ��� with

�� � Lmp� and �� � �Lnp� such that

����� ���t� �G�t����t� 
 g�t� �

For brevity	 we will refer to this problem as the Riemann problem with
coe�cient G� The set of all functions g � Lmp for which the problem is
solvable is called the image of the problem� If the image of the Riemann
problem is closed	 the problem is said to be normally solvable� The set
of all solutions of the homogeneous problem is called the kernel of the
problem�

The dual problem consists in �nding for a given h � Lnq a pair of

functions �� � �Lnq� and �� � Lmq� such that

����� ���t� �GT �t����t� 
 h�t� �
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Here q is the conjugate exponent to p	 that is	 ��p���q 
 �� Similarly
as in the case where G takes nonsingular values almost everywhere on
� ��	 there is a connection between the Riemann problem and its dual�
Identify Lnq with the dual space of L

n
p through the map

hf� gi 

nX
j
�

Z
�

fj�t�gj�t� dt

for all f�t� 

Pn

j
� fj�t�ej � Lnp and all g�t� 

Pn

j
� gj�t�ej � Lnq � If
L  Lnp 	 the annihilator of L is the closed subspace of L

n
q

f g � Lnq ! hf� gi 
 �� for all f � Lg �

Proposition ���� The annihilator of the image of the Riemann prob�

lem with coe�cient G contains the space of ��� components of elements

in the kernel of its dual� If G � Lm�n� � the two spaces coincide�

Proof� Suppose �� � GT�� 
 � for some �� � �Lnq� and �� � Lmq��

Then �T�G 
 ��� � �Lnq�	 and hence

h��� ��� �G���i 
 h��� ��i � h��� ��i 
 � �

for all �� � Lmp� and �� � �Lp�� Thus	 �� annihilates the image of the
problem�

Suppose h�� �� � G��i 
 � for all �� � Lmp� and all �� � �Lnp�
such that G�� � Lmp � Then h�� ��i 
 � for all �� � Lmp� and

� 
! �� � Lmq�� If G � Lm�n� 	 G�� � Lmp for all �� � �Lnp� and

so GT�� annihilates �L
n
p�� That is	 G

T�� � �Lnq� and �� is the "�#
component of an element in the kernel of the dual problem�

If the coe�cient G of a Riemann problem takes almost everywhere
nonsingular values	 the defect numbers of the problem are the dimen�
sion �R of the kernel and the co�dimension �R of the closure of the
image of the problem� If G takes singular values	 both �R and �R are
generically in�nite� In view of Proposition ���	 �R can be de�ned as
the co�dimension of f�� � Lmq� ! ��G 
 �g in the annihilator of the
image of the problem� This de�nition discards the generic left kernel of
G�

A similar observation holds for the dual problem�
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Proposition ���� The annihilator of the image of the dual problem

contains the space of ��� components of elements in the kernel of the

problem� If G � Lm�n� � the two spaces coincide�

Suppose G takes nonsingular values almost everywhere on �� Then

f���� ��� � Lnq� � �Lnq� ! �� �GT�� 
 �g

�
 f�� � Lnq� ! G
T�� � �Lnq�g�����

�
 f�� � �Lnq� ! �� �GT�� 
 �� for some �� � Lnq�g �

Indeed	 if GT�� 
 �	 then �� 
 �� Hence the map ���� ���� �� is
a bijection from the �rst space in ����� to the third one� Plainly	 the
map ���� ��� � �� is a bijection from the �rst space in ����� to the
second one� If G takes singular values on �	 the same �� � �Lq� may
occur in several �in fact	 in�nitely many� elements in the kernel of the
dual problem� Thus	 the second congruence in ����� does not have to
be valid� More precisely	

f���� ��� � Lmq� � �Lnq� ! �� �GT�� 
 �g

�
 f�� � Lmq� ! G
T�� � �Lnq�g

�
 f�� � �Lnq� ! �� �GT�� 
 � for some �� � Lmq�g

�� f�� � Lmq� ! G
T�� 
 �g �

The space on the right hand side of the preceding direct sum represents
the generic kernel of GT � The dimension of the space on the left hand
side of this direct sum can be �nite when the generic kernel of GT is
in�nite dimensional� Similarly	

f���� ��� � Lmp� � �Lnp� ! �� �G�� 
 �g

�
 f�� � �Lnp� ! G�� � Lmp�g

�
 f�� � Lmp� ! �� �G�� 
 � for some �� � �Lnp�g

�� f�� � �Lnp� ! G�� 
 �g �

The direct summand on the right hand side of the last congruence can
be �nite dimensional although kerG is generically in�nite dimensional�

De�nition ���� The defect numbers of a Riemann problem with co�

e�cient G are the dimension �R of the space of " � # components of

elements in the kernel of the problem� and the co�dimension �R of

����� f�� � Lmq� ! G
T�� 
 �g
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in the annihilator of its image� If �R or �R is �nite� the di	erence

�R � �R is called the index of the problem� The defect numbers of the

dual problem are the dimension �D of the space of "� # components of

elements in the kernel of the dual problem� and the co�dimension �D of

����� f�� � �Lnp� ! G�� 
 �g

in the annihilator of the image of the dual problem� If �D or �D is

�nite� the di	erence �D � �D is called the index of the dual problem�

Note that if G takes nonsingular values almost everywhere on �	
the spaces ����� and ����� are trivial and De�nition ��� is equivalent to
the usual de�nition of defect numbers� Also note that ����� and �����
are closed subspaces of Lmq and �L

n
p � To see that ����� is closed	 suppose

� � Lnp is such that G� �
 �� Without loss of generality assume that G

consists of a single row� Let Gy�t� 
 G�t�� if G�t� 
 �	 and let

Gy�t� 

�

G�t�G�t��
G�t��

otherwise� Then Gy is a measurable matrix function whose values are
Moore�Penrose inverses of the values of G� We have

� 
 GyG�� �I �GyG�� 
! �� � ��

and k��kp  �� For any �� � Lnp such that G
�� 
 �	

k�� ��kp 
 k�� � ��� � ���kp � k��kp �

and it follows that f� � Lnp ! G� 
 �g is a closed subspace of L
n
p � Hence

�����	 the intersection of this space and �Lnp�	 is closed� The space �����
is closed by a similar argument�

The defect numbers of a Riemann problem and its dual are related
as follows�

Proposition ���� If �R� �R� �D� and �D are the defect numbers of a

Riemann problem and its dual� then

����� �R � �D and �D � �R �

Also� inequalities ����� are equalities if the indices of the problem and

its dual are �nite and opposite or if G � Lm�n� �
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Proof� The space of " � # components of elements in the kernel
of the Riemann problem is isomorphic to the quotient space of " � #
components of elements in the kernel of the problem modulo f�� �
�Lnp� ! G�� 
 � g� Hence	 by Proposition ���	 �R � �D with equality
if G � Lm�n� � Similarly	 by Proposition ���	 �D � �R with equality if
G � Lm�n� �

Suppose the indices of the problem and its dual are �nite and
opposite� Then

�R � �D 
 �R � �D �

Since by ����� �R � �D � � and �R � �D � �	 it follows that �R 
 �D
and �D 
 �R �

We discuss now the homogeneous Riemann problem in the case
where the coe�cient G admits a spectral factorization in Lp relative to
��

Proposition ��	� Suppose G��G� is a spectral factorization in Lp
relative to � of the coe�cient G of a Riemann problem� let GL

� � Lk�mq�

be a left multiplicative inverse of G�� and let GR
� � Ln�kp� be a right

multiplicative inverse of G�� Then

i� ���� ��� is a solution of the homogeneous problem ���G�� 
 �
if and only if

����� �� 
 G��� and �� 
 r� �GR
��

���� �

where �� is a vector function with jth�entry a polynomial of degree at

most �j � � if �j  � and zero if �j � �� and r� � �Lnp� is such that

Gr� 
 ��

ii� ���� ��� is a solution of the homogeneous dual problem �� �
GT�� 
 � if and only if

�� 
 GT
��� and �� 
 r� � �G

L
��

T����� �

where �� is a vector function with jth entry zero if �j � � and a

polynomial in z�� of degree at most ��j which vanishes at in�nity if

�j � �� and r� � Lmq� is such that GT r� 
 ��

Proof� We verify assertion i�� Suppose ���� ��� is a solution of the
homogeneous problem� Then

����� GL
��� 
 ��G��� 
! �� �
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Comparing both sides of the equality ����� we �nd out that �� is a
vector polynomial satisfying the degree requirements� We have

G�G
L
��� 
 G��� �

Since �� � im G� almost everywhere on �	 G�G
L
��� 
 �� and the

�rst equality in ����� holds� By �����	

����� G��� 
 ������ �

Since �GR
��

���� is a solution of equation G�x 
 ������ in �Lnp�	

r� !
 �� � GR
��

���� � �Lnp� is such that Gr� 
 �� Thus	 the second
equality in ����� holds�

Conversely	 suppose �� and �� satisfy ����� with appropriate r�
and ��� Then

�� �G�� 
 G��� �Gr� �G��� 
 � �

and ���� ��� is a solution of the homogeneous problem�

It follows from Proposition ��� that if the coe�cient G in a Rie�
mann problem admits a spectral factorization in Lp relative to �	 then
�R equals the sum of positive indices of the factorization	 and �D equals
the absolute value of the sum of negative indices of the factorization�
In fact	 a stronger statement is true�

Theorem ��
� Suppose the coe�cient G in a Riemann problem admits

a spectral factorization in Lp relative to � with indices ��� ��� � � � � �k�
Then

�R 
 �D 

X

f�i ! �i  �g

and

�D 
 �R 

X

f��i ! �i � �g �

Proof� We show that �D is the sum of the positive indices� the argu�
ment regarding �R is similar� Since �L

n
q� is contained in the image of

the dual problem	 the annihilator of the image of the dual problem is
a subspace of �Lnp�� Let G 
 G��G� with � as in ����� be a spectral
factorization in Lp relative to �	 let j be such that �j  � � �j��	 and
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let G�� G�� � � � � Gj be the �rst j columns of G
R
� � Ln�kp� � We show that

the elements of the set

������ ft�iGl�t� ! � � l � j� � � i � �lg

form a basis for a space which complements the space ����� in the an�
nihilator of the image of the dual problem� Since GR

��	� has linearly
independent columns	 the elements of the set ������ are linearly inde�
pendent� Using the factorization G 
 G��G�	 we can rewrite the
space ����� as

������ f�� � �Lnp� ! G��� 
 � g �

Since Gl�s are the columns of a right multiplicative inverse of G�	 the
span of the set ������ intersects trivially with the space ������� Now
members of the set ������ annihilate �Lnq� and

t�iG�t�Gl�t� � Lnp�� � � l � j� � � i � �l �

Hence the members of the set ������ annihilate the image of the dual
problem� Finally	 consider an arbitrary �� � �Lnp� that annihilates the
image of the dual problem� Choose f� in the linear span of ������ such

that �G���� � f���	� 
 ��� and let $�� 
 �� � f�� Then $�� � �Lnp�
and

������

Z
�

$���t�
TG��t�

T��t�G��t�
T���t� dt 
 �

for all �� � Lmq� such that G
T
��G

T
��� � Lnq � In particular	 ������ holds

whenever �� 
 �G
L
��

Tp with GL
� � Lk�mq� a left multiplicative inverse

of G� and p a vector polynomial� HenceZ
�

	
��t�G��t� $���t�


T
p�t� dt 
 �

for each vector polynomial p and �G� $� � Lk��� Since �G�
$�� � �Lk��	

it follows that �G� $�� 
 � and �� 
 f� � $�� where f� is in the span
of ������ and $�� is a member of the space �������

Corollary ��� If the coe�cient G of a Riemann problem admits a

spectral factorization in Lp relative to �� then the index of the problem�
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and the opposite of the index of the dual problem� are both equal to the

total index of the factorization�

In particular	 if G admits a spectral factorization in Lp	 the indices
of the Riemann problem and its dual are �nite and opposite�

�� Condition for existence of a spectral factorization�

We will need below the following lemma� If G is a meromorphic
matrix function de�ned on a connected domain D	 its rank is constant
at all but a countable number of points in D� This rank is usually called
the normal rank of G�

Lemma ���� Suppose � is a simple closed curve which forms a bound�

ary of a connected domain D�� let p  �� and suppose G � Lm�np

is formed by nontangential boundary values of a matrix function G�

meromorphic in D� with normal rank k� Then rankG 
 k almost

everywhere on ��

Proof� If k � min fm�ng	 let H�t� be any �k � �� � �k � �� sub�
matrix of G�t� and form H� from the corresponding entries of G� �
Then detH� � � implies detH�t� 
 � almost everywhere on �� Thus	
rankG�t� � k for almost everywhere t � ��

Choose a point z� � D� such that rankG��z�� 
 k	 and pick ma�
trices A � C k�m and B � C n�k such that rank �AG��z��B� 
 k� Then
AG��z�B is a meromorphic k�k matrix function and det �AG��z�B� ��
�� Hence det �AG�t�B� �
 � and consequently rankG�t� � k almost ev�
erywhere on �� Thus	 rankG 
 k almost everywhere on ��

One can formulate the following necessary and su�cient condition
for existence of a canonical spectral factorization in Lp of a function G
relative to � �cf� ��	 Theorem ���� and ���� Recall that if G admits
a spectral factorization relative to �	 then the rank of G is constant
almost everywhere on ��

Theorem ���� If G � Lm�n� with rankG 
 k almost everywhere on ��
the following are equivalent


i� there exist collections of linearly independent constant vectors

fa�� a�� � � � � akg and fb�� b�� � � � � bkg such that the image of the Riemann
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problem with coe�cient G contains ft��a�� t
��a�� � � � � t

��akg and the

image of the dual problem contains fb�� b�� � � � � bkg�
ii� the function G admits a canonical spectral factorization in Lp

relative to ��
Moreover� if the equivalent conditions i� and ii� are satis�ed� the image

of either of the problems contains all rational vector functions in its

closure�

Proof� Suppose �rst i� holds� Pick �j� � Em
p� and �j� � �En

p� such
that

����� �j��t� �G�t��j��t� 
 t��aj � j 
 �� �� � � � � k �

and let �� 
 ���� ��� � � � �k��� Then F �t� !
 tG�t����t� � Lm�kp�

and F ��� 
 �a� a� � � � ak�� Similarly	 pick �j� � Em
q� and �� � �En

q�

such that

����� �j��t� �GT �t��j��t� 
 bj � j 
 �� �� � � � � k �

and let  � 
 ���� ��� � � � �k��� Then H 
 GT � � En�k
q� and

H�	� 
 �b� b� � � � bk� �

Let S�t� 
 t T
��t�G�t����t�� Since

����� S�t� 
  T
��t�F �t� 
 HT �t��t���t���

S�t� � Lk�k�� 
 Lk�k�� � Thus	 S�t� 
 S is a constant� Also	 detS �

�� Indeed	 by Lemma ���	 F �t� has linearly independent columns for
almost everywhere t � �� Since rankG 
 k almost everywhere on �	 the
column spans of F and G are equal almost everywhere on �� Thus	 to
prove that S is nonsingular it su�ces to show rank � T

�G� 
 k almost
everywhere on �� But this follows from Lemma ��� and the fact that

�GT ���	� 
 H�	� 
 �b� b� � � � bk� �

Let
G��t� 
 F �t� � GL

��t� 
 S�� T
��t� �

G��t� 
 S��HT �t� � GR
��t� 
 t���t� �

Then G� � Lm�kp� 	 GL
� � Lk�mq� 	 G� � Lk�nq� 	 and GR

� � Ln�kp� � By
�����	

GL
��t�G��t� 
 I and G��t�G

R
��t� 
 I �
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By ����� and the de�nition of F 	

GL
��t�G�t�G

R
��t� 
 I

almost everywhere on �� Hence

GR
�G

L
�GGR

�G
L
� 
 GR

�G
L
� �

or G�GG� 
 G� where G� 
 GR
�G

L
�� Since rankG

� 
 rankG almost
everywhere on �	 GG�G 
 G �see �	 Theorem ������� cf� ��	 Lemma
���� �� Thus	

G�t� 
 G�t� t���t�S
�� T

��t�G�t� 
 G��t�G��t�

almost everywhere on � and it follows that G admits a canonical spec�
tral factorization in Lp relative to ��

Conversely	 suppose ii� holds and let G 
 G�G� be a canonical
factorization� Let GR

� � Ln�kp� be a right multiplicative inverse of G��

Then t��GR
��t� � �Ln�kp� 	 and

G�t� �t��GR
��t�� 
 t��G��t� 
 t��G���� � t���G��t��G����� �

Hence the columns of t��G���� are in the image of the problem� Sim�
ilarly	 if GL

� � Lm�kq� is a left multiplicative inverse of G�	 G
T �GL

��
T 


GT
� and so the columns of GT

��	� are in the image of the problem�
Thus	 ii� implies i� and the conditions are equivalent�

The argument from the last paragraph can be used in a more gen�
eral situation� Suppose G�G� is a canonical spectral factorization in
Lp relative to �� Let G

L
� � Lk�mq� and GR

� � Ln�kp� be one�sided multi�

plicative inverses of G� and G�	 and let r � �Lk�� be a rational vector

function� Then GR
�r � �Ln�kp� 	 and

G�GR
�r� 
 G�r

di�ers from a rational vector function by an element in Lmp�� Hence

Q�G�r�	 where Q is a canonical projection of Lmp� �� �L
m
p� onto �L

m
p�	 is

a rational vector function in the image of the problem� We claim that
any rational vector function in the intersection of �Lmp� and the closure

of the image of the problem arises in this way� Indeed	 let f� � �Lm��
be a rational vector function such that

����� f� �� fQ�G�r� ! r � �Lk�� is a rational vector functiong �
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We may assume f� has a single pole	 located at � � D�� Suppose the
leading coe�cient in the Laurent expansion of f� at � is contained in
the image of G����� Then after subtracting from f� an element in the
set on the right hand side of �����	 we obtain a strictly proper rational
vector function analytic in C nf�g with the pole at � of smaller order�
By induction	 there exists a strictly proper rational vector function with
the only pole at � whose leading coe�cient in the Laurent expansion
at � is not contained in the image of G����� Call this function again
f� �

Consider a problem

����� �� �G�� 
 g �

where �� � �Lnp� is such that G�� � Lmp and �� � Lm��� The image of
the problem ����� is contained in the image of the Riemann problem�
Since rational functions without poles on � are dense in Lp	 and the

projection P is bounded on L�� �� �L��	 L�� is dense in Lp�� Hence the
closures of the images of both problems coincide� Now

�I �G��t�G
L
��t��G�t� 


	
G��t��G��t�G

L
��t�G��t�



G��t� 
 �

almost everywhere on � and	 since I�G����G
L
���� is an m�m matrix

of rank m� k whose null space coincides with the image of G����	

�I �G��z�G
L
��z��f��z�

has a pole at z 
 �� Consequently	 there exists a function �� � L��m
��

such that �T�f� has a simple pole at � and
R
�
�T�g equals zero for all

functions g in the image of the problem ������ Let X be a subspace of
Lmp spanned by f� and the image of the problem ������ Then

x ��

Z
�

���t�
Tx�t� dt

is a continuous linear functional on the space X whose kernel contains
the image of the problem ����� and which has nonzero value at f�� By
the Hahn�Banach Theorem	 there exists a continuous linear functional
 on Lmp which annihilates the image of the problem ����� and such
that  �f�� �
 �� Hence f� is not in the closure of the image of the
problem ������
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In order to obtain a condition for existence of a spectral factoriza�
tion of a function G in a non�canonical case	 we will need the following
lemma�

Lemma ���� Suppose the defect numbers �R and �D of the Riemann

problem with coe�cient G and its dual are �nite and positive� Then

there exists a square rational matrix function H with a nonzero deter�

minant and without poles or zeros on � such that the Riemann problem

with coe�cient GH and its dual have the corresponding defect num�

bers smaller by �� Moreover� the Riemann problem with coe�cient G
�respectively its dual� contains all rational vectors functions in its clo�

sure if and only if the image of the Riemann problem with coe�cient

GH �respectively its dual� contains all rational vector functions in its

closure�

Proof� Pick �
�� 
�� � Lmp� �� �L
n
p� such that 
� �
 � and


� �G
� 
 � �

Then 
� �� f� � �Lnp� ! G� 
 �g and there exists a point z� � D� such
that 
��z�� is not a member of

����� span f���z�� ! �� � �Lnp� and G�� 
 �g �

After adding to 
 a linear combination of functions in f�� � �Lnp� !
G�� 
 �g	 and multiplying G on the right by a nonsingular constant
matrix	 we may assume 
��z�� 
 e� and

span f���z�� ! �� � �Lnp� and G�� 
 �g  span fe�� e�� � � � � eng �

As usual	 we assume � � D�� Let

H�z� 


�
BBB�
z � z�
z

�

�
� � �

� �

�
CCCA �

We show that the space of "�# components of the members of the
kernel of the problem

����� �� �GH�� 
 g
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has dimension one less than the corresponding number for the problem
with coe�cient G� First	 note that 
� is not a "�# component of a
member of the kernel of problem ������ Indeed	 suppose there exists
�� � �Lnp� such that 
� � GH�� 
 �	 and let f� 
 H�� � 
�� Then

f� � �Lnp�	 Gf� 
 �	 and

f��z�� �� span fe�� � � � � eng �

a contradiction� Secondly	 suppose ���� ��� is in the kernel of the
Riemann problem with coe�cient G� If ���z�� 
 ��� �� � � � � ��	 the
element ���� H

����� is in the kernel of the problem ������ If ���z�� 

��� �� � � � � �� with � �
 �	�


� �
�

�
��� H

��

�

� �

�

�
��

��

is contained in the kernel of the problem ������ Thus	 each "�# compo�
nent of a member of the kernel of the Riemann problem with coe�cient
G is a linear combination of 
� and a "�# component of a member of
the kernel of the problem ������ Finally	 if ���� ��� belongs to the ker�
nel of the problem �����	 ���� H��� satis�es the homogeneous Riemann
problem�

Consider now the problem dual to �����	

����� �� � �GH�
T�� 
 h �

After multiplying both sides of ����� by H��	 we obtain a new problem

����� H���� �GT�� 
 h� �� � �Lnq�� �� � Lmq�� and h � Lnq �

Let W be the image of the problem dual to the Riemann problem with
coe�cient G� Then the image of the problem ����� equalsW�span �z�
z��

��e�� Since Z
�


��z�
T �z � z��

��e� dz 
 ���i �

by Proposition ��� �z � z��
��e� �� clW� We have cl �W � span f�z �

z��e�g 
 clW � span f�z � z��e�g� Since multiplication by H is an
isomorphism Lnp � Lnp 	 it follows that the closure of the image of
problem ����� equals

������ H�clW��span fH�z��z�z��
��e�g 
 H�clW��span

�
�

z
e�

�
�
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Now the space f�� � �Lnp� ! G�� 
 �g has a �nite co�dimension �D in
the annihilator of W� Hence the co�dimension of the space

������ fH���� ! �� � �Lnp� and G�� 
 �g

in the annihilator of H�clW� equals �D� Consequently	 the co�dimen�
sion of the space ������ in the annihilator of ������ equals �D��� Since

f�� � �Lnp� ! GH�� 
 �g 
 fH���� ! �� � �Lnp� and G�� 
 �g �

the co�dimension of the closure of f�� � �Lnp� ! GH�� 
 �g in the
annihilator of the space ������ equals �D � ��

It remains to verify the assertion about the images� First	 note
that the images of the Riemann problems with coe�cients G and GH
coincide� Indeed	 since H �Lnp�  �Lnp�	 the image of the problem with
coe�cient GH is contained in the image of the problem with coe�cient
G� Since

�� �G�� 
 �� � �
� �GH�H����� � �
���

for any scalar �	 and for each �� � �Lnp there exists � such that

H����� � �
�� � �Lp�	 the image of the problem with coe�cient G is
contained in the image of the problem with coe�cient GH�

Suppose the image of the problem dual to the Riemann problem
with coe�cient G contains all rational vector functions in its closure	
and let a rational vector function f be a member of the set ������� Then
H���f�z�� z��e�� � clW	 so H

���f�z�� z��e�� � W and

f � H�W� � span fH�z��z � z��
��e�g �

Thus	 f is a member of the image of problem ������ Conversely	 suppose
the image of the problem ����� contains all rational vector functions
in its closure	 and let f � clW be a rational vector function� Then
Hf � H�clW�  H�clW � span fH�z��z � z��

��e�g	 so Hf � HW �
span fH�z��z � z��

��e�g� Thus	 f � W � span f�z � z��
��e�g� Since

�z � z��
��e� �� clW	 f � W�

In a similar way one can show the following dual version of Lemma
���� We omit the details of the proof�
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Lemma ���� Suppose the defect numbers �D and �R of the Riemann

problem with coe�cient G and its dual are �nite and positive� Then

there exists a square rational matrix function F with a nonzero deter�

minant and without poles or zeros on � such that the Riemann problem

with coe�cient FG and its dual have the corresponding defect numbers

smaller by �� Moreover� the image of the Riemann problem with co�

e�cient G �respectively its dual� contains all rational vector functions

in its closure if and only if the image of the problem with coe�cient

FG �respectively its dual� contains all rational vector functions in its

closure�

We can give now a necessary and su�cient condition for existence
of a spectral factorization in Lp of a summable singular matrix valued
function �cf� ��	 Theorem ������

Theorem ��	� If G � Lm�n� and rankG 
 k almost everywhere on ��
the following are equivalent


i� the indices of the Riemann problem with coe�cient G and its

dual are �nite and opposite� and the image of each of the problems

contains all rational vector functions in its closure�

ii� G admits a spectral factorization in Lp relative to ��

Proof� Suppose �rst i� holds� By Proposition ���	 �R 
 �D and
�D 
 �R� Applying Lemmas ��� and ��� a �nite number of times	 we
can �nd regular rational matrix functions F and H without poles or
zeros on � such that

�� the annihilator of the image of the Riemann problem with coef�

�cient bG 
 FGH coincides with f�� � Lmq� ! bGT�� 
 �g	

�� the annihilator of the image of the dual problem equals f�� �
�Lnp� ! bG�� 
 �g	

�� the image of either of the problems contains all rational vector
functions in its closure�

Let

%� 
 span f����� ! �� � Lmq� and bGT�� 
 �g �

Since rank bG 
 k almost everywhere on �	 by Lemma ��� dim %� �
m � k� Hence there exist linearly independent vectors fa�� a�� � � � � akg
such that �ai 
 � whenever � � %� and i 
 �� �� � � � � k� Suppose



��� M� Rakowski and I� Spitkovsky

�� � Lmq� and bGT�� 
 �� Then ���t�
T t��ai � Lq�	 and soZ

�

���t�
T t��ai dt 
 � � for i 
 �� �� � � � � k �

It follows that the set �
�

t
a��
�

t
a�� � � � �

�

t
ak

�

is in the closure of the image	 and hence in the image	 of the Riemann
problem with coe�cient bG�

Similarly	 let

%� 
 span f���	� ! �� � Lnp� and bG�� 
 �g
and pick linearly independent vectors fb�� b�� � � � � bkg such that ��bj 


�	 for j 
 �� �� � � � � k and all �� � %�� Suppose �� � �Lnp� is such thatbG�� 
 �� Then z���z�bj � �Lp� and henceZ
�

���t�bj dt 


Z
�

�t���t�bj� t
��dt 
 � �

for j 
 �� �� � � � � k� Thus	 the set fb�� b�� � � � � bkg is contained in the
closure of the image	 and consequently in the image	 of the problem dual
to the Riemann problem with coe�cient bG� Consequently	 by Theorem
���	 the function bG 
 FGH admits a canonical spectral factorization
in Lp relative to �� Hence	 by Proposition ��� the function G admits a
spectral factorization in Lp relative to ��

Conversely	 suppose ii� holds� By Theorem ���	 the indices of the
problem and its dual are �nite and opposite� Applying Lemmas ��� and
��� a �nite number of times	 we can �nd square rational matrix functions
F andH whose determinants are not equal to zero identically and which
have neither poles nor zeros on � such that the Riemann problem with
coe�cient FGH and the dual problem have defect numbers

�R 
 �R 
 �D 
 �D 
 � �

By Proposition ��� and Theorem ���	 the function FGH admits a
canonical spectral factorization in Lp relative to �� By Theorem ���	
the image of the Riemann problem with coe�cient FGH and the image
of the dual problem each contain all rational vector functions in their
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closures� By Lemmas ��� and ���	 the image of the Riemann problem
with coe�cient G �respectively image of the dual problem� contains all
rational vector functions in its closure�

We note that the part of condition i� in Theorem ��� involving
rational vector functions cannot be in general omitted� Indeed	 suppose
� is the unit circle	 p 
 �	 and let

G�t� 


�
t���

t	��

�

be as in Example ���� Since G admits a spectral factorization in Lp
for p in a deleted neighborhood of �	 by Theorem ��� the numbers �R
and �D are �nite when the problem is considered in Lp� or Lp� with
p� � � � p�� Since L�  Lp� and L���  Lp���p����	 �R and �D are
�nite when p 
 �� Since G � L�	 by Proposition ��� �R 
 �D and
�D 
 �R� Thus	 the indices of the problem and its dual are �nite
and opposite although G does not admit a spectral factorization in L�

relative to the circle�
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The boundary absolute

continuity of quasiconformal

mappings II

Juha Heinonen

Dedicated to Fred Gehring on his seventieth birthday

Abstract� In this paper a quite complete picture is given of the ab�
solute continuity on the boundary of a quasiconformal map B � � D�
where B � is the unit ��ball and D is a Jordan domain in R� with bound�
ary ��recti�able in the sense of geometric measure theory� Moreover�
examples are constructed� for each n � �� showing that quasiconformal
maps from the unit n�ball onto Jordan domains with boundary �n�	
�
recti�able need not have absolutely continuous boundary values�

�� Introduction�

Suppose that f is a quasiconformal homeomorphism of the open
unit ball B n of Rn onto a bounded domain D in Rn � Then f extends
homeomorphically to the boundary �B n if and only if D is bounded
by a topological �n � 	
�sphere �V	� p� �	� Should such an extension
exist� we denote it by f as well� and call D a Jordan domain or a
quasiconformal Jordan ball � Suppose now that the boundary of D has
�nite Hausdor� Hn���measure� We say that f is absolutely continu�

ous on the boundary if f carries sets of Hn���measure zero on �B n

to sets of Hn���measure zero on �D� If n � � and f is conformal�

���
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the boundary correspondence is absolutely continuous according to the
classical theorem of F� and M� Riesz �R� but if f is merely quasiconfor�
mal� it is well known� and �rst observed by Beurling and Ahlfors �BA�
that the boundary correspondence need not be absolutely continuous
even when f is a self�homeomorphism of a disk� The situation is quite
di�erent in higher dimensions� For instance� if f is a quasiconformal
self�homeomorphism of B n � the boundary map is a quasiconformal map
of Sn�� � �B n onto itself� and hence preserves sets of �n� 	
�measure
zero� provided n� 	 � �� It is therefore natural to ask what conditions
on �D are needed in order to have the absolute continuity of the bound�
ary map f � �B n � �D when n � �� For instance� is it su�cient that
�D be of �nite Hn���measure� In the present paper� which is a sequel
to �H� a rather complete solution to this problem will be provided in
dimension n � � in the case when the boundary of D is ��recti�able
in the sense of geometric measure theory� It will also be shown that a
direct analog of the F� and M� Riesz theorem is false for quasiconformal
mappings in all dimensions� For the record� we shall only be dealing
with the absolute continuity of the map f � �B n � �D� It still remains
widely open under what conditions the map f�� � �D � �B n is abso�
lutely continuous� Further open problems are listed in the end of the
paper in Section ��

Before proceeding� let us review the prior results in this area� So
assume that f is a quasiconformal mapping of B n onto a Jordan do�
main D whose boundary has �nite Hn���measure� and assume that
n � �� Gehring showed in �G� that the boundary correspondence
f � �B n � �D is absolutely continuous if f has a quasiconformal ex�
tension to a neighborhood of �B n � V�ais�al�a �V� arrived at the same
positive conclusion under the less restrictive assumption that f be qua�
sisymmetric on B

n
� �Recall that quasisymmetry is a global condition

as opposed to quasiconformality which is local� see ���	�
 below for the
de�nition of quasisymmetry�
 In �H it was shown that the answer is
likewise a�rmative if Hn���almost every point on �D is a �two sided
cone point�� and if n �� �� To make this supposition more precise� we
next �x some notation� Let L be a line in Rn through a point a and let
� � s � 	� Set

C�a� L� s
 � fx � Rn � dist�x� L
 � s ja� xjg �

The point a divides the line L into two pieces� which we shall call L�

and L�� The orientation of the line plays no role in our arguments� so
this choice is arbitrary� We write

C�a� L�� s
 � fx � Rn � dist�x� L�
 � s ja� xjg �
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and similarly for C�a� L�� s
� Thus C�a� L� s
 is the union of the two
in�nite open cones C�a� L�� s
 and C�a� L�� s
 with s determining the
angle opening� We also use the notation

C�a� r� L� s
 � C�a� L� s
� B�a� r
 �

C�a� r� L�� s
 � C�a� L�� s
 �B�a� r
 �

Here and throughout B�z� t
 will denote the open n�ball which is cen�
tered at z and has radius t � ��

We say that a set E � R
n has a double cone at a point a � E�

or that a is a double cone point of E� if there are L� s� and r� possibly
depending on a� such that E � C�a� r� L� s
 � ��

The following theorem was proved in �H�

Theorem ���� Suppose that n � �� �� �� � � � and that f is a quasicon�

formal mapping of B n onto a Jordan domain D� Let CD denote the

set of double cone points of �D� Then for any set A � CD we have

that Hn���A
 � � if and only if Hn���f
���A

 � �� In particular� if

Hn���almost every point of �D is a double cone point of �D� then the

boundary map f � �B n � �D is absolutely continuous�

It follows from Theorem 	�	 in particular that if �D admits a tan�
gent plane at Hn�� almost every point� then the boundary correspon�
dence of f is absolutely continuous� If f is quasisymmetric� it follows
from the results in �V� that �D admits tangents almost everywhere� if
it has �nite Hn�� measure� Hence Theorem 	�	 contains the aforemen�
tioned results of Gehring and V�ais�al�a in dimensions n �� �� The proof
in �H works in all dimensions n � � for mappings that are bi�Lipschitz
in the quasihyperbolic metric� by the aid of the Sullivan�Tukia�V�ais�al�a
approximation theorem the general quasiconformal case can be reduced
to this case in dimensions di�erent from four� Unfortunately� I have not
been able to dispense with this reduction� and consequently� there is no
proof of Theorem 	�	 in dimension n � � �see Added in Proof at the
end of the paper
�

Geometric measure theory has taught us that the right concept
of recti�ability is expressed in terms of �approximate tangents�� If
E � R

n � we say that an �n � 	
�plane V in R
n is an approximate

tangent plane for E at a if a is a point of Hn�� density of E and if

lim
r��

Hn���E �B�a� r
 n C�a� V� s



rn��
� � �
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for all � � s � 	� where

C�a� V� s
 � fx � Rn � dist�x� V 
 � s ja� xjg �

If such a plane V exists� it is unique and we denote it by apTan�E� a
�
Intuitively� apTan�E� a
 is a plane that approximates E near a except
for some leftover part which has zero Hn���density along each cone
with vertex at a and axis perpendicular to the plane apTan�E� a
�

In this paper we shall call a set �n�	
�recti�able �or sometimes sim�
ply recti�able if there is no danger of misunderstanding the dimension
of the set
 if it has �nite Hn���measure and if it admits an approximate
tangent plane at Hn���almost all of its points� We refer to �F and �M
for more information about recti�able sets� �Warning� the terminology
in both �F and �M is slightly di�erent�
 It su�ces to mention here that
a set E of �niteHn���measure in R

n is �n�	
�recti�able if and only if it
is contained in a countable union of Lipschitz images of Rn�� inside Rn �
Moreover� every set of �nite Hn���measure can be decomposed into a
recti�able and a purely unrecti�able part� the latter being a set whose
intersection with any recti�able set in Rn has zero Hn���measure�

Next� we say that a boundary point a of a domain D is an inner

cone point if there are L� s and r such that C�a� r� L�� s
 lies in D�
Moreover� we say that a is an inner tangent point of D if there is a line
L with the following property� for each s � 	 there is r � � such that
C�a� r� L�� s
 lies in D� In this case the half line L� can be called an
interior normal line to �D at a� Naturally� L� need not be unique�

The following theorem is the �rst main result of this paper�

Theorem ���� Suppose that f is a quasiconformal mapping of B �

onto a Jordan domain D with ��recti�able boundary� Then we have a

decomposition of �D into three disjoint sets�

�D � E� �E� �E� �

where E� has H��measure zero� E� consists of points of inner tangency

of D� and E� consists of points of ��density of R� nD� The Hausdor�

dimension of f���E�
 is zero� and for a set A � E� the preimage

f���A
 has H��measure zero if and only if A has H��measure zero�

In other words� if D is a Jordan domain in R� with ��recti�able
boundary and if f maps B � quasiconformally onto D� then� apart from
an H��null set� the boundary �D consists of the �good part�� where f
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and f�� both are absolutely continuous� and the �bad part�� which is
easily detected and which is responsible for the possible failure of the
absolute continuity of f j�B� � Thus the only way the absolute continuity
can fail for domains with recti�able boundary is to have a situation
where the bad part E� is non�empty and has positive H��measure� The
next theorem says that such situations can occur�

Theorem ���� For each n � � there is a Jordan domain D in R
n

such that D is quasiconformally equivalent to B n � that �D is �n � 	
�
recti�able� and the set

�	��
 E� � fa � �D � a is a point of n�density of Rn nDg

has positive Hn���measure� Moreover� the preimage f���E�
 under any
quasiconformal map f from B

n onto D has Hausdor� dimension zero�

Theorem 	�� answers negatively to an inquiry of Baernstein and
Manfredi �BM� p� ���� It also shows that Theorem 	�	 is quite sharp�
�Note that if �D has �nite Hn���measure and if it admits double cones
atHn���almost everywhere� then it is �n�	
�recti�able� see �M� Lemma
	��	�
� Of course� it is easy to construct Jordan domains with the
measure theoretic properties as in Theorem 	��� the nontrivial part is
to show that some of them can be mapped quasiconformally onto a ball�

The fact that f���E�
 has Hausdor� dimension zero in Theorems
	�� and 	�� is a recent result of Koskela and Rohde �KR� They prove�
among other things� that the preimage of the set E� as described in
�	��
 has zero Hausdor� dimension always� that is� in all dimensions
and for all quasiconformal mappings f � B n � D �with boundary values
properly interpreted if D is not Jordan
� In our situation� it would be
much easier to show that f���E�
 has Hn���measure zero� In fact� the
method described in this paper shows that one can construct a domain
D as in Theorem 	�� such that Hn���E�
 is positive and that f

���E�

has zero Hausdor� Hh�measure for any prescribed Hausdor� measure
function h� The construction of the domain is based on the ideas of
V�ais�al�a in �V�� where he constructed a quasiconformal Jordan ball
whose boundary has positive n�measure� The elaboration of V�ais�al�a�s
method presented here leads to a general �tree and pipeline� procedure
to build quasiconformal balls and may be of independent interest�

One may ask whether the assumption in Theorem 	�� that �D be
��recti�able can be relaxed to the assumption that H���D
 be �nite� I
do not know the answer� An example can be constructed to show that



��� J� Heinonen

the assumptions in Theorem 	�� cannot be relaxed to �D is Jordan and
�D has ���nite Hausdor� Hn���measure��

I conjecture that Theorem 	�� is true in all dimensions n � �� In
the present paper� the argument for Theorem 	�� relies in a crucial way
on the following local description of the boundary of a quasiconformal
Jordan ball �see Added in Proof at the end of the paper
�

Theorem ���� Suppose that D is a Jordan domain in R
� which is

homeomorphic to B � via a K�quasiconformal map� Then for each x � D
we have the estimate

�	��
 H��B�x� � dist�x� �D

 � �D
 � C�K
 dist�x� �D
� �

Theorem 	�� is interesting in its own right� It quanti�es the fact
that the boundary of a quasiconformal ball cannot have lower dimen�
sional parts protruding inwards� It has also led Jussi V�ais�al�a to make
general conjectures about isodiametric inequalities for sets that satisfy
certain connectivity conditions� see ���	
 below� I make the following
conjecture involving quasiconformal mappings�

���� Wall Conjecture for Quasiconformal Balls� If D is a domain

in R
n that is homeomorphic to B n via a K�quasiconformal map� then

for each x � D we have the estimate

�	��
 Hn���B�x� � dist�x� �D

 � �D
 � C�n�K
 dist�x� �D
n�� �

Note that the conjecture is true for n � � for quite trivial rea�
sons� namely� there is a big connected piece of the boundary inside
B�x� � dist�x� �D

� The conjecture is also true for n � 	� when prop�
erly interpreted� Despite some e�ort� I have not been able to prove
the conjecture for n � �� Assuming that it is true even in the weaker
form where the constant C�n�K
 in �	��
 is allowed to depend on D�
the proof for Theorem 	�� will work mutatis mutandis for all n � ��
Dimension n � � has to be excluded for the same reason it is excluded
in �H� at some point in the proof we need to resort to the fact that in
dimensions n �� � quasiconformal maps of B n � say� can be replaced by
locally bi�Lipschitz quasiconformal maps without changing the bound�
ary values�
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It follows from Theorem 	�� and standard capacity estimates that
every quasiconformal Jordan ball in R� is regular for the Dirichlet prob�
lem for the Laplacian� in fact� it is regular for the p�Laplace equation
for all p � 	� It is not true that an arbitrary Jordan domain in R� is
regular for the Laplacian as the well known Lebesgue�s spine demon�
strates� If the Wall Conjecture 	�� is true� then quasiconformal Jordan
balls are regular for the p�Laplacian in all dimensions and for all p � 	�
I thank Pekka Koskela for pointing out this application�

Finally� I wish to point out the recent interesting paper by Han�
son �Ha� where recti�ability �Hanson uses a weaker notion here
 of the
boundary of a quasiconformal Jordan ball is tied up with the behav�
ior of the average derivative af in the classical spirit� Recall that the
recti�ability of a Jordan curve � in the plane is equivalent to the mem�
bership of f � in the Hardy class H� for any conformal map f from the
unit disk onto the domain bounded by �� Hanson proves in �Ha that
among all quasiconformal Jordan balls D in Rn � n � �� that are also
so�called uniform domains� the �niteness of Hn����D
 is equivalent to
the membership of the average derivative af in a �Hardy space� H

n���
if f maps B n quasiconformally onto D� �We refer to �Ha for a precise
de�nition for these concepts�
 Many relations between af � recti�ability
and absolute continuity remain to be sorted out� In particular� it is
plausible that Hanson�s theorem indeed requires some extra assump�
tions on D� Hanson �Ha� ����
 p� 	���	�	 also advances a conjecture
about quasiconformal mappings that is similar to the wall conjecture
	��� It is not clear what the relationship between these two conjectures
are�

�� Outline of Proof for Theorem ����

In this section the main points in the proof for Theorem 	�� are
sketched for the expert�s convenience�

Assume that the Wall Conjecture 	�� is true� We know that Hn���
almost every point on �D has an approximate tangent plane� We let
E� be the exceptional set� and E� the set consisting of the points of
n�density of the complement of D� For the �rst part of the theorem�
it su�ces to show that each point in E� � �D n E� � E� is a point of
inner tangency for D� If this is not the case� there is a point a � E�

and a line L which is perpendicular to apTan��D� a
 and so oriented
that the cone C�a� r� L�� s
 intersects the boundary �D for arbitrarily
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small r � � and for some �xed s� By �	��
� to each Whitney cube of the
open set Dr � D � C�a� r� L�� s
 there corresponds a substantial piece
of the boundary lying in a cone C�a� r� L�� s�
 with somewhat bigger
opening s� � 	� Because a is not a point of density of Rn nD� the set
Dr is indeed nonempty and has n�measure comparable to r

n� Now the
boundary pieces are essentially disjoint� and their Hn���measures add
up to something which is comparable to rn��� This contradicts the fact
that �D admits an approximate tangent plane at a�

The second assertion of Theorem 	�� is an improvement to Theo�
rem 	�	 which says that f and f�� preserve sets of zero Hn���measure
on double cone points� The proof given in �H requires double cone
points� but� below in Section �� I give a sharpening of that argument
which only needs interior cones� in the presence of approximate tan�
gents� The technical argument of �H can be shortened somewhat� but
the basic idea is still the same� Suppose� for instance� that there is a
subset A of interior cone points of �D of positive Hn���measure such
that f���A
 has zero Hn���measure� After a standard reduction� we
may assume that A lies on the boundary of a bi�Lipschitz ball contained
in D� hence we may assume without loss of generality that A lies on the
boundary of a round ball B contained in D� Then we use the assump�
tion that n �� � and replace f by a locally bi�Lipschitz quasiconformal
homeomorphism F which agree with f on the boundary� The technical
point� as in �H� is to show that F���B
 � � is a uniform domain with
�nice� boundary in B n � the niceness is de�ned in terms of the following
Ahlfors�David regularity condition�

C��Rn�� 	 Hn���B�x�R
� ��
 	 CRn��

for each x � �� and � � R � diam�� This condition and known results
on quasisymmetric maps onto regular surfaces guarantee that F j�� is
absolutely continuous� contradicting the hypothesis� In establishing
this technical point� we use a Hayman�Wu type �spotting� technique
and a Carleson measure argument� the main di�erence from �H is that
now we have to make use of the approximate tangent planes in place of
the exterior cones� More details will follow in the next section�

�� Proof of Theorem ����

The ensuing proof works in all dimensions n � �� under right
assumptions� Thus� assume that f is a quasiconformal mapping from
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B
n onto a Jordan domain D with recti�able boundary� Also assume
that D satis�es �	��
 for some constant C� possibly depending on D�
By Theorem 	�� this is always true in dimension n � �� Then the
conclusion is that the boundary �D decomposes as in Theorem 	��
with f���E�
 having Hausdor� dimension zero� If in addition n �� ��
then the absolute continuity of f jf���E�� and f

��jE�
is also true as in

Theorem 	���
To begin the proof� let E� denote the set on �D where �D does not

admit approximate tangent planes� Then E� has Hn���measure zero�
We divide �D n E� into two subsets E� and E�� where E� consists of
the points of n�density of the complement of D in Rn � and E� is what
remains� Our �rst task will be to show that every point in E� is a point
of inner tangency for D�

���� Inner tangency of points in E��

Pick a point a � E�� Let L be the line through a which is perpen�
dicular to the approximate tangent plane for �D at a� Fix � � s � 	�
We need to show that there is r � � such that one of the two compo�
nents of the double cone C�a� r� L� s
 is contained in D� Because a is
not a point of n�density for the complement of D� and because �D has
�nite Hn���measure� we can assume� by making s larger if necessary
and by choosing an appropriate orientation for L� that

����
 lim sup
r��

Hn

�
C�a� r� L�� s
 �D

�

rn
� � �

Next� we suppose that

�D � C�a� r� L�� s
 �� �

for all r � � and then show that this leads to a contradiction with the
fact that

����
 lim
r��

Hn����D � C�a� r� L�� s�



rn��
� �

for all � � s� � 	�
To this end� let Dr � C�a� r� L�� s
�D and observe that Dr �� � by

����
� Suppose �rst that for each x � Dr the ball Bx� B�x� dist�x� �D


satis�es

����
 diamBx 	 � dist�Bx� a
 �
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where � � ��s
 � � is so small that ����
 implies

�Bx � C�a� �r� L�� �	  s
	�
 �

By standard covering theorems �see �M� Chapter �
� we can choose a
countable collection fBi � i � 	� �� � � �g of balls of the form Bx such
that

Dr �
�
i

�Bi

and that X
i



�Bi
�x
 	 C�n
 �

The latter condition simply says that no point in Rn belongs to more
than C�n
 balls of the form �Bi� Therefore� by assumption �	��
�

Hn����D � C�a� �r� L�� �	  s
	�

 � C��
X
i

Hn����D � �Bi


� C��
X
i

�diamBi

n��

� C��
�X

i

�diamBi

n
��n����n

� C���Hn�Dr


�n����n �

Because the constant C � 	 above is independent of r � �� we contra�
dict ����
 with the aid of ����
�

We may thus assume that

diamBx � � dist�Bx� a


for some x � Dr and Bx � B�x� dist�x� �D

� In this case a simple
geometric argument proves the existence of a point y � Dr and a ball
By � B�y� dist�y� �D

 that belongs to C�a� r� L�� s
 and satis�es both�

�By � C�a� �r� L�� �	  s
	�


and
C�� diamBy 	 dist�By� a
 	 C diamBy �

for some C � 	 depending only on n and s� Thus we deduce that� for
some r� � r�

Hn����D � C�a� �r�� L�� �	  s
	�

 � Hn����D � �By
 � C��r�
n��
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by assumption �	��
� Moreover� C � 	 is independent of r and r�� This
again contradicts ����
 and we have shown that a is a point of inner
tangency of D�

���� Absolute continuity in the inner tangency set E��

Recall that the fact that f���E�
 has Hausdor� dimension zero is
due to Koskela and Rohde �KR� To complete the proof of the theorem�
it thus remains to show that f and f�� are absolutely continuous in the
sets f���E�
 � �B n and E� � �D� The proof here has the same idea
as in �H� In that paper� however� the absolute continuity was proved
in the set of double cone points� and the existence of an exterior cone
was also essentially used there� In the present situation we only have an
interior cone to rely on� The supporting role of the exterior cone is taken
here by the approximate tangent plane� which exists at each point in
E�� This change forces us to make some technical modi�cations to the
proof in �H� It would be unreasonable to repeat here all the details of
�H� and I apologetically ask the reader to consult that paper whenever
necessary� The good news is that the most technical part of the proof
of �H� Lemma ��	 has now been simpli�ed somewhat�

Let us begin with the following lemma�

Lemma ���� Let a be a point in E� and denote by Ta the approximate

tangent plane apTan��D� a
� Then

lim sup
r��

inf
v�Ta�jv�aj	r

dist�v� �D


jv � aj
� � �

Proof� This lemma looks trivial but a little thinking shows that it
need not be true if we replace �D by an arbitrary �n � 	
�recti�able
set� In any event� the ensuing proof is quite easy�

Suppose on the contrary that there is � � � and a sequence of radii
�ri
� ri � � as i�
� such that

dist�v� �D


jv � aj
� � �

for all v � Ta with jv � aj � ri� Then the �ri�neighborhood Ui of the
�n��
�sphere �B�a� ri
�Ta does not meet �D� Because a is a point of
inner tangency of D� it follows that Ui � D for all large i� Let L� be the
interior normal line at a� perpendicular to Ta� Fix s so close to 	 that
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Ui meets C�a� L
�� s
 for all large i� and then choose ri � � so that the

cone C�a� ri� L
�� s
 is contained in D� Clearly C�a� ri� L

�� s
 cannot be
contained in D� for otherwise the connected open set Ui � C�a� ri� L� s

is contained in D for all large i and separates the point a from the part
of the boundary that lies outside B�a� ri
� Thus� for arbitrary small
ri � � we have that

C�a� ri� L
�� s
 � �D �� � �

Using assumption �	��
 on the thickness of the boundary� this leads to
a contradiction with an argument similar to that in the end of the proof
in ���	
� �Note� the analog of ���	
 in the present case is guaranteed by
the size of Ui�
 The lemma follows�

���� Reduction to a ball�

Suppose now that A � E� has positive Hn�� measure� We need
to show that f���A
 has positive Hn���measure as well� And this is in
fact all that needs to be shown in detail� for the case

A � E� and Hn���A
 � � implies Hn���f
���A

 � �

is treated similarly�
A standard measure theoretic trick guarantees that there is a sub�

set A� � A of positive Hn���measure which lies on the boundary of
a bounded starshaped subdomain �� � D� The domain �� can be
mapped onto a ball by a bi�Lipschitz self�map of Rn � Because bi�
Lipschitz maps preserve recti�ability and sets of positive Hausdor�
measure� we can assume� originally� that A lies on the boundary of
a ball B� contained in D� See �H� Proof of Theorem ��� for more
details here�

Next we form a Stolz domain � in B�� associated with A the usual
way� That is� � consists of all the open rays with one end point in B�	�
and the other in A� Then � is a bi�Lipschitz ball contained in D and
containing A on its boundary� �Note that the round ball B� already
satis�es these conditions and it would be nice if we could manage with
B� alone� It is the proof below in ���	�
 that needs a domain like �
which is safely inside B��
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��	� Bi
Lipschitz maps in the quasihyperbolic metric�

Now we use the assumption n �� �� The Sullivan�Tukia�V�ais�al�a
approximation theorem �TV�� ��	� provides us with a quasiconformal
map F � B n � D such that

���!
 kD�f�x
� F �x

 	 	

and that

���	�
 C��kD�F �x
� F �y

 	 kBn �x� y
 	 C kD�F �x
� F �y

 �

for all x and y in B n and for some C � C�n� f
 � 	� Here kG denotes
the quasihyperbolic metric in a domain G� de�ned by the metric density
dist�x� �G
��jdxj�

Condition ���!
 guarantees that f and F have the same boundary
values and ���	�
 says that F is bi�Lipschitz in the quasihyperbolic
metrics� We deduce that there is no loss of generality in assuming�
originally� that the mapping f satis�es ���	�
�

����� Regular surfaces and subinvariance�

Write g � f��� The main bulk of the proof consists of showing
that the boundary �g��
 is an Ahlfors�David �n� 	
�regular set� that
is� there is a constant C � 	 such that

���	�
 C��Rn�� 	 Hn���B�x�R
 � �g��

 	 CRn�� �

for all x � �g��
 and � � R � diam g��
�
Suppose for a moment that this has been accomplished� The proof

is then �nished as follows� The subinvariance principle for quasicon�
formal maps guarantees that gj� � �� g��
 is a quasisymmetric map�
which means that

���	�
 jx� yj 	 t jx� zj implies jg�x
� g�y
j 	 ��t
 jg�x
� g�z
j

for all points x� y� z � � and for some homeomorphism � � ���

 �
���

� �See �FHM� p� 	���	�	 and �V�� Theorem ���
� Clearly ���	�

will continue to hold for all points in the closure �� so that gj�� � ���
�� is quasisymmetric as well� Because �� is a bi�Lipschitz �n � 	
�
sphere and because �g��
 is �n�	
�regular in the sense of ���	�
� we can
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invoke known results about quasisymmetric maps in such situations to
conclude that Hn���E
 � � if and only if Hn���g�E

 � � for E � ���
�See �S� ��� or �H� ���
�

We conclude� therefore� that it remains to prove the regularity
���	�
 of �g��
�

����� Proof of regularity of �g��
�

We begin by making two more reductions� Fix � positive and
small� to be determined later� By Lemma ��� there is� for each a � A�
a positive number ra such that

���	�
 dist�vr� �D
 � � jvr � aj �

for some vr � Ta � �B�a� r
 and for all � � r 	 ra� Then

A �
��
j	�

fa � A � ra � 		jg �

and we may assume that there is � � � such that ra � � � � for all
a � A� We assume further that each point in A is a point of Hn���
density on �B� �recall that A lies in the smooth hypersurface �B� and
has positive Hn���measure
�

The left inequality in ���	�
 follows from the quasisymmetry of g
in �� by a result of V�ais�al�a �V�� ���� The right inequality in ���	�

follows by standard arguments using ���	�
 from the following lemma
�for the details� see �H� p� 	������
�

Lemma ����� Suppose that �xi
 is a hyperbolically separated sequence

of points on ��� this means that there is  � � such that

���	�
 B�xi�  dist�xi� �D

 � B�xj�  dist�xj� �D

 � �

whenever i �� j� Then there is C � 	 such that

���	�

X

g�xi��B

�	� jg�xi
j

n�� 	 C�diamB
n�� �

for all n�balls B centered on �B n �
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One should notice that in ���	�
 the constant C � 	 can� and
usually will� depend on everything else but on B�

Thus� �x a ball B� centered at some point on �B n � Henceforth C
will denote any positive constant that is independent of B and also of
index i� The goal is to �nd for each xi in g

���B
 � f�B � B n 
 its own
spot Si on �D such that the following three conditions hold�

���	!

X
i



Si
�x
 	 C �

that is� no point in Rn belongs to more that C spots Si �

�����
 g�Si
 � CB � �B n �

that is� the image of each spot Si will not land far from B under the
map g � and

����	
 �	� jg�xi
j

n�� 	 CHn���g�Si

 �

that is� the Hausdor� measure of the image g�Si
 � �Bn essentially
dominates the term �	� jg�xi
j


n�� of the sum in ���	�
�
It is clear that ���	�
 follows from ���	!
�����	
�
Before we start describing the spots Si with desired properties� we

make two observations�

����� Hyperbolic freedom�

There is never any harm in replacing any of the points xi by a
point "xi for which

�����
 kD�xi� "xi
 	 C �

because it is easily seen that �����
 implies

�����
 �	� jg�xi
j
 	 C �	� jg�"xi
j
 �

The replacement may cause us to diminish the value of  in ���	�
 a
little bit� but such adjustments are left to the reader�
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����� Generational gaps�

Upon dividing �xi
 into generations G� �

xi � G� if and only if dist�xi� �B�
 � ��
����� ���  � � � Z �

we can assume that

�����
 G� � � for � 	 C �

and that

�����
 G�i �� � �� G�j implies �i � �j or j�i � �j j � C �

Above� C should be thought of as a large constant� to be adjusted later�
Condition �����
 means that we only have to worry about those points
xi that lie near the boundary of B�� and �����
 says that we can assume
that there are large generational gaps� In short� we assume that G� is
nonempty only if � is positive and a constant multiple of a large integer�
We shall construct the spots Si in such a way that Si and Sj are disjoint
whenever they correspond to points in di�erent generations� and that
the �nite overlap condition ���	!
 holds for spots Si corresponding to
points from the same generation�

���	� Determining points zi�

We shall associate to each point xi in our sequence two more points�
wi and zi� of which the latter will play a more important role� To get
a mental picture�

xi � wi � �B� � zi � �D �

The point wi is simply the closest point to xi on �B�� and zi is a closest
point to wi on �D� Of course� it may happen that wi � zi� Before we
�x these� however� we need to make some adjustments to the sequence
�xi
 in the spirit of �����
�

Thus� pick a point xi� Let wi be the closest point to xi on �B��
and let ai be the closest point to xi on A� Because each point in A is
assumed to be a point of Hn�� �density� it is clear that the approximate
tangent plane Tai is also tangent to �B� at ai� By choosing the constant
C in �����
 large enough� we may assume that

����!
 dist�wi� Tai
 � � jwi � aij �
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where � � � is as in ���	�
�
Let w�i be the point where the ray emanating from the center of

B� and passing through xi meets Tai � and let

r�i � jai � w�ij �

Again� by making the constant C in �����
 large enough� we may assume
that r�i � � for all i� where � is de�ned just after ���	�
� Thus we can
�nd a point vi � Tai � �B�ai� r

�
i
 such that

dist�vi� �D
 � � jvi � aij �

Now let "xi be the point on the line segment from vi to the center
of B� such that

dist�"xi� �B�
 � dist�xi� �B�
 �

It is easy to see that
kD�xi� "xi
 	 C �

Therefore� by the discussion ����� we may assume� originally� that

dist�w�i� �D
 � � jw�i � aij

and hence that

dist�wi� �D
 	 jwi � w�ij � jw�i � aij 	 �� jwi � aij �

provided that C in �����
 is large enough� depending on �� Next� let zi
be a point on �D such that

jzi � wij � dist�wi� �D


and observe that

�����
 jzi � wij 	 �� jwi � aij �

At this point we could invoke the argument in �H� Main Lemma
��	 which applies in the present situation� The double cone condition
there was used only to guarantee the existence of the points zi satisfying
�����
� For the reader�s convenience� however� I shall sketch below a
somewhat di�erent and perhaps easier argument for the rest of the
proof�
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Towards this end� we require the following lemma which is proved
in �HK� ����

Lemma ����� Let x � D� There is a constant C � 	� depending only

on n and on the dilatation of f � such that

Hn��

�
g�B�x�C dist�x� �D

 � �D
 �#g�x�

�
�
	

�
Hn���#g�x�
 �

where #g�x� is the surface cap�

#g�x� � B�g�x
� ��	� jg�x
j

 � �B n �

Now �x � � � � 	 and let ui be the point �	� �
z�  �wi in B��
where z� is the center of B�� We have

dist�ui� �D
 	 jui � wij jwi � zij � �	� �
  �� jwi � aij �

By choosing � � �i such that

�	� �i
 � � dist�xi� �B�
 �

we �nd that

�����
 dist�ui� �D
 	 � dist�xi� �B�
  �� jwi � aij 	 	� � jwi � aij �

Finally� de�ne Si by

g�Si
 � g
�
B�ui� C dist�ui� �D

 � �D

�
�#g�ui� �

where C is as in Lemma ���	� We easily infer by choosing � � � small
enough� by observing the generational gap �����
� Lemma ���	� formula
�����
� and the geometry of � that this choice of Si will satisfy ���	!
�
����	
� Of course� we need to observe here that

kD�ui� xi
 	 C �

as well as the assumed hyperbolic separation ���	�
 of the points xi�
The details are left to the interested reader�

This completes the proof of Theorem 	���
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�� A class of quasiconformal balls � proof of Theorem ����

In this section I exhibit a general method to build quasiconformal
balls� As mentioned before� the method described below is essentially
due to V�ais�al�a who constructed a single interesting example in �V�� the
main idea of blowing up towers with moderate dilatation is of course
old and goes back to the early articles of Gehring and V�ais�al�a �GV� My
contribution is simply to axiomatize the construction done in �V�� and
then point out how one obtains this way examples that are relevant to
the boundary absolute continuity problem�

���� Admissible trees�

An admissible tree in Rn is a tree around which one can build a
quasiconformal ball� A precise de�nition follows shortly� In the ensuing
discussion� all line segments are assumed to be �nite and closed� We
shall work in R

n for any n bigger than one� although the Riemann
mapping theorem trivializes the discussion for n � ��

Let L� be a line segment in R
n and �x � � ��� �	�� Set J� �

fL�g� Suppose next that a �nite collection Ji of line segments has
been determined for all i � �� � � � � k� Let L � Jk be a line segment�
Attach a �nite number of line segments L�� � � � � Lp to L in such a way
that

	
 exactly one of the end points of each Li lies on L n fthe end
points of Lg�

�
 the angle between each Li and L is at least � � � �

�
 all line segments Li are mutually disjoint and none of them
meets any line segment from J� � � � � � Jk except their parent L at one
end point�

We further stipulate that all the children of all line segments from
Jk as described above are mutually disjoint� they form the collection
Jk���

We call the set

T� � T �
��
k	�

Jk

an admissible tree with branching angle � if it is a bounded set� con�
structed by the above rules 	
��
� and has the additional property that
each line segment L from T retains a positive distance �depending on
L
 to all other line segments from T � save its immediate family �that
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is� its parent and children
� more formally�

����
 dist�L� T n fthe parent of L and the children of Lg
 � �

for each L � T � We understand that L� has no parent and that there
can be childless line segments�

Next� denote by FT the set of all points that lie �behind in�nitely
many branches�� More precisely� x is in FT if x is a cluster point of
in�nitely many line segments from T �

Theorem ���� Given an admissible tree T� � T in R
n � there is a

domain D in R
n such that

����
 T � D �

that

����
 FT � �D �

and that D is quasiconformally equivalent to B n by a K�quasiconformal

map with K depending only on n and ��
Even more can be said�

Theorem ���� Given any admissible tree T� � T in Rn � any continu�

ous nondecreasing function h � ��� 	
 � ��� 	
� h�t
 � � as t � �� and
any � � �� there is a domain D in R

n satisfying ����
 and ����
� and
there is a quasiconformal map f from B

n onto D such that

����
 Hh�f
���FT 

 � �

and that

����
 Hn����D n FT 
 � � �

Moreover� one can choose f such that its dilatation depends only on n
and ��

Above� Hh denotes the Hausdor� measure obtained from the mea�
sure function h� see �F� ��	��

Accepting Theorems ��� and ���� it is easy to construct examples
as in Theorem 	��� For instance� one can take a totally disconnected
compact set F in Rn�� with positive Hn���measure� and then form an
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admissible tree having branches in the upper half space Rn� � fx � Rn �
xn � �g such that the end points of these branches capture each point
in F � It follows from the construction below that the boundary of the
associated domain D is a recti�able �n � 	
�sphere� and that one can
arrange each point on F to be a point of n�density for the complement
of D�

Many other interesting examples of quasiconformal balls can be
exhibited by the aid of the above theorems� For instance� the exis�
tence of quasiconformal Jordan balls with boundary having positive
n�measure is ascertained by the existence of pertinent admissible trees�
V�ais�al�a�s goal in �V� was exactly to construct one such domain� V�ais�al�a
was partly motivated by the following consequence of his construction�
there are mappings in the Sobolev spaceW ��n

loc �R
n �Rn
 that do not pre�

serve sets of n�measure zero� Theorem ��� can be used to show that
mappings in W ��n can blow up quite a miniscule set to a set of positive
n�measure� This is done by �folding� a mapping promised in Theorem
���� cf� �Re� �V�� p� ���� For a general discussion on this topic� see
�MM�

We shall only prove Theorem ���� It should be clear how the details
need to be changed in order to achieve Theorem ���� Overall� we shall
rely on the carefully detailed argument in �V��

��� Tower maps�

For h � � de�ne the straight tower

T �h
 � # � �B
n��

� ��� h
 � R
n �

where # � ��en
B
n��

is the join of �en � ��� � � � � ���	
 and the
closed unit ball of Rn�� � If � � ��� �	�� a leaning tower T �h� �
 is
obtained from the straight tower T �h
 by keeping the base # �xed and

tilting the upper part B
n��

� ��� h so that it makes angle � with the

hyperplane Rn�� � We call # the basement � and B
n��

the �oor � of the
tower T �h� �
� The terms wall and roof of T �h� �
 are selfexplanatory
when we make the convention that both these sets consist only of points
where �T �h� �
 is smooth� i�e� we ignore the corners�

A tower map is a quasiconformal map

���	�
 g � #� T �h� �


such that g is the identity on the part of �# that does not include

B
n��

� Strictly speaking� g is quasiconformal only in the interior of the
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basement #� but it extends so as to map # homeomorphically onto
T �h� �
�

The existence of such a map is clear� what is crucial is that it can be
chosen so that its dilatation only depends on n and ��� if � � �� � ��
In particular � and this is the main point � the dilatation does not
depend on the height h of the �leaning
 tower T �h� �
� Moreover� we
can choose g such that it is a di�eomorphism at every point in the
preimage of the wall of the tower� For an explicit construction of the
map g� see �V�� Section ��

����� Flattening of walls and germs of similarity�

Suppose that a leaning tower T �h� �
 is given and that fa�� � � � � apg
is a �nite subset of the wall of T �h� �
� One can modify both the tower
and the tower map in ���	�
 so that it becomes a similarity in small

neighborhoods of the points a�i � g���ai
 � B
n��

� This is done as
follows� First one $attens out a small piece of the slightly curved wall
surface near each point ai� This does not cost much in terms of the
dilatation� Then� using the language of V�ais�al�a� one can plant a germ

of similarity on g near each point a�i� This means that one can modify
the map g so that it becomes a similarity �in particular� conformal
 in
a neighborhood of a�i� Moreover� the planting can be done in such a
way that the cost in dilatation only depends on n and the dilatation of
the original map� that is� on n and � only in our case�

In sum� we can assume that given a tower as above and a �nite
number of points on its wall� we have a tower map

���	�
 g � #� T ��h� �
 �

where the new tower T ��h� �
 is being slightly $attened around the
given points� �We could call T ��h� �
 a tilted pajupilli �
 Moreover� g
is a similarity near those points and its dilatation only depends on n
and a lower bound for the tilt angle of the tower� On the part of the
boundary of the basement that lies in the lower half space� the map g
is still the identity�

The planting procedure is being described in detail in �V�� Section
��
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����� Proof of Theorem ����

Once we have the tower map ���	�
 at our disposal� it is rather clear
how to continue the proof� Suppose that we are given an admissible
tree T� � T � First we map the unit ball under a quasiconformal map
f� onto a thin cylinder C� about T� such that the height of the cylinder
is the length of T� and that T� is its axis� The dilatation of f� only
depends on n� and not on the height� We choose the cylinder C� so
thin that all the children of L� in J� stick out of it a good proportion
of their length� and that all the other descendants remain at a positive
distance from L�� this is possible by ����
� We reiterate that C� can be
made as thin as we please with no extra cost at the dilatation of f��
Consequently� the surface area of C� can be made as small as we please�
this observation is needed for Theorem ����

Next� at the points ai� where the children Li of L� leave the cylinder
C�� we $atten the wall of L� and assume� as we may by the discussion
in ��		� that f��� is a similarity in a neighborhood Ui of each point ai�
We place small similarity copies #i of # in all those neighborhoods Ui
such that the origin in # corresponds to ai in #i� Usually the child Li
leaves the cylinder C� in a tilt� and we place a thin leaning tower on
each #i such that Li is the axis of the tower and that the other end
point of Li lies on the roof of the tower� Any such tower is a similarity
copy of a tower of the form T �h� �
 described above in ��!� We choose
these towers so thin that they do not meet other descendants but their
immediate children� again this is possible by ����
�

Each base #i can be mapped quasiconformally onto the leaning
tower above it� For this we use the tower map g in ���	�
 and ap�
propriate similarities� By declaring each such map to be the identity
elsewhere in C�� we get a map

f� � B
n � C� �

where C� is C� plus all the new towers placed above each #i� The map
f� is simply f� followed by all those little tower maps� Because f� was
a similarity on f��� �Ui
� and because the bases #i are located in Ui� the
dilatation of f� only depends on n and �� In other words� we did not
increase the dilatation by this composition because the only nontrivial
contribution came from where f� was conformal�

Now we continue in a similar fashion� The walls of all the little
towers in C� are $attened near the points where the children �the grand�
children of T�
 leave C�� and f� is modi�ed so as to become a similarity
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near those points� This modi�cation increases the dilatation but there
is no accumulation because the increase only occurs at places where f�
was conformal� Then we blow up new �possibly leaning
 towers from
those newly created similarity neighborhoods� Thus the dilatation of
the map f� � B

n � C� will not grow� where� naturally� f� is f� followed
by the new even littler tower maps� declared to be the identity outside
the bases� and C� is the union of C� and the new towers�

The �nal map f is the limit of the maps f�� f�� f�� � � � constructed
in this manner� Its dilatation in B n only depends on n and �� and it
maps B

n
onto D� where D is the interior of the union C��C��C��� � � � If

the tree is properly arranged� f will be a homeomorphism of the closed
unit ball onto D� It is also clear by construction that the set FT lies on
the boundary of D� and that we can always arrange the boundary �D
minus� possibly� the set FT � to be of �nite Hausdor� Hn���measure�

This completes the proof of Theorem ����

�� Proof of the Wall Conjecture in dimension n � ��

Soon after Jussi V�ais�al�a heard about the Wall Conjecture� he de�
vised a simple argument in dimension n � � which also proves the
following more general theorem�

Theorem ���� �V�ais�al�a� �V�
 Suppose that G is an open set in R
n �

n � �� such that %H��Rn � f
g n G
 � � and that Rn n G satis�es the

condition c�LLC�� Then

H�

�
B�x� � dist�x� �G

 � �G

�
�

�

	� c
�dist�x� �G

�

for each x � G�

In the theorem� %H� denotes the �rst %Cech cohomology group with
integer coe�cients� The c�LLC� condition means that for every x in
R
n n G and r � � points in �Rn n G
 n B�x� r
 can be joined in �Rn n

G
 nB�x� r	c
� where c � 	 is a constant independent of x and r�
If D is a �K�
quasiconformal Jordan ball in R

� � then %H��R� �
f
g n D
 � � by Alexander duality� and R� n D is c�LLC� for some
c � 	 depending only on K by a theorem of Gehring and V�ais�al�a �GV�
The letters LLC stand for linear local connectivity � It is also true� and
proved by Gehring and V�ais�al�a �GV� that R� nD satis�es the following
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c�LLC� condition� which is dual to c�LLC�� for every x � R
n n G and

r � � points in �Rn nG
�B�x� r
 can be joined in �Rn nG
 �B�x� cr
�
Therefore� Theorem 	�� follows from V�ais�al�a�s Theorem ��	�

I shall next sketch another proof for Theorem 	��� but the reader
should bear in mind that it is not as elegant as V�ais�al�a�s argument and
it will not generalize so as to cover Theorem ��	� But even this proof
as such has nothing to do with quasiconformal maps� we shall only
employ the LLC condition for the complement� In Problem � below in
Section � we formulate a general conjecture along the lines �quantitative
topological conditions imply mass bounds�� This type of results have
recently been popular in Riemannian geometry� see �GP�

Proof of Theorem ���� We can normalize the situation so that
x � � and dist�x� �D
 � 	� It is an easy exercise to check that it is
enough to �nd constants C� � C��K
 � � and C� � C��K
 � � such
that

����
 H��B��� C�
 � �D
 � C� �

Next we invoke a lemma which is due to Gehring �G	� Lemma 	�
In the lemma� we denote by K� the decomposition of R

� into closed
cubes with vertices in Z�� then write Ks � sK� for s � �� and denote
by K�

s the 	�skeleton of Ks�

Lemma ���� Suppose that a compact set A in R
� satis�es

����
 H��A
 �
s�

��
� 	

for some s � �� Then some translate A� y � fa� y � a � Ag� y � R� �
does not meet the 	�skeleton K�

s �

Now choose the constant C� � � in ����
 very large and s � � very
small �both depending on the constant c in the linear local connectivity
condition� hence on K only
 and assume that ����
 holds for A � �D �
B��� C�
� Then the part of the �translated
 	�skeleton K�

s that lies
in B��� C�
 does not meet R

� n D� because it does not meet �D� it
is connected� and it meets D near the point �� This will lead to a
contradiction as follows� One �rst selects a curve �� in R

� n D that
joins some point w on �D with jwj � 	 to a point in �B��� C�
� Then�
by using the LLC� condition� one selects another curve �� joining the
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same points in R� n D� but in such a way that the union � � �� � ��
will link one of the polygonal circles forming the �translated
 	�skeleton
K�
s � Although at the �rst glance it seems clear that such a curve ��

exists� the selection is not totally trivial� it can be done however�

This linking contradicts the fact that any circle in D is contractible
in the complement of �� because � lies in R� nD� The theorem follows�

�� Open problems�

Problem �� Prove Theorem 	�	 in all dimensions n � �� This can be
accomplished if the next question admits a positive answer� Similarly�
in that case one can replace double cone points with inner cone points�

Problem �� Suppose that F is a compact set in Rn � n � �� and that
� � F � ��F 
 is a quasisymmetric embedding of F into Rn � Is it true
that the n�measure of ��F 
 is zero if the n�measure of F is zero�

The proof in �H of Theorem 	�	 would not only work in all dimen�
sions n � � but it would also tremendously simplify� should the answer
to this question be yes� In particular� no Sullivan theory of Lipschitz
approximations is needed� Note that the answer to the question is no
if n � 	�

Quasisymmetric maps are de�ned in ���	�
� and their basic theory
can be found in �TV	� �V��

Problem �� What version� if any� of Theorem 	�� remains true if
we only assume that �D be of �nite H��measure� By using the tree
construction amended by a certain bubble blowing procedure� it is not
hard to construct a quasiconformal Jordan domainD in Rn � n � �� such
that the boundary �D has a purely unrecti�able piece of positiveHn���
measure that transforms onto a set of Hausdor� dimension zero under
a quasiconformal map f � D � B

n � and that the complement Rn n D
has no points of n�density on �D� However� I have only been able to
construct D in such a way that its boundary has ���nite Hausdor�
Hn���measure�

Problem �� Let f be a quasiconformal map of B n onto a Jordan
domain D in Rn � n � �� and suppose that the boundary of D has �nite
Hn���measure� When is f

�� � �D � �B n absolutely continuous� The
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best known result to the author is the case when �D is �n� 	
�regular
as de�ned in ���	�
� Then f is not only absolutely continuous� but it
induces a measure that is A� related to Hn��� This result is essentially
due to Gehring� �See �S� ��� or �H� ���
� From the point of view of
boundary behavior� regularity is a strong assumption� It does not cover�
for instance� maps that can be extended to global quasiconformal maps
of Rn �

Problem �� Prove the Wall Conjecture in all dimensions� Related to
this� Jussi V�ais�al�a has proposed the following generalized Wall Conjec�

ture� abbreviated WC�n� p
� for all integers n � � and 	 	 p 	 n � ��
Suppose that G is a homologically trivial open set in Rn � n � �� and
suppose that Rn �f
gnG is inner �k� c
�joinable for all � 	 k 	 p� 	�
Then the conjecture WC�n� p
 states that

���	
 Hp��

�
B�x� � dist�x� �G

 � �G

�
� C�c� n
 dist�x� �G
p��

for x � G� The notion of inner joinability was introduced by V�ais�al�a in
�V�� where we refer the reader for a precise de�nition� It su�ces to say
here that the inner ��� c
�joinability is precisely the c�LLC� condition�
Thus V�ais�al�a�s Theorem ��	 implies that WC�n� 	
 is true� It is also
not hard to see that WC�n� �
 is true� note that in this case the second
requirement about joinability becomes empty� while the �rst require�
ment about G being homologically trivial implies the connectivity of
the complement of G�

All other cases of WC�n� p
 are open� The wall conjecture as stated
in �	��
 would follow from WC�n� n� �
� because V�ais�al�a has shown in
�V� that the complement of a quasiconformal ball is �k� c
�joinable for
all � 	 k 	 n� ��
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Added in Proof� After this paper was submitted� two relevant de�
velopments took place� First� Semmes �Semmes� Quasisymmetry� mea�
sure and a question of Heinonen� this issue
 solved Problem � above�
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its consequences are discussed in �Heinonen� A Theorem of Semmes
and boundary absolute continuity in all dimensions� this issue
� In par�
ticular� Problem 	 is now solved as well� Second� V�ais�al�a �The Wall
Conjecture on Domains in Euclidean Spaces� Preprint� University of
Helsinki� 	!!�
 solved the generalized Wall Conjecture as in Problem
� above� As a joint consequence of the results of Semmes and V�ais�al�a�
Theorem 	�� is true in all dimensions n � �� verifying the conjecture
made on page � before Theorem 	��� Namely� assuming the Wall Con�
jecture� the case n �� � is already proved in the present paper� and the
case n � � can be handled by the aid of the aforementioned result of
Semmes as in �Heinonen� this issue
�
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Quasisymmetry� measure and

a question of Heinonen

Stephen Semmes

Abstract� In this paper we resolve in the a�rmative a question of
Heinonen on the absolute continuity of quasisymmetric mappings de�
�ned on subsets of Euclidean spaces� The main ingredients in the proof
are extension results for quasisymmetric mappings and metric doubling
measures�

�� Introduction�

If F is a subset of Rn and g � F � R
n is a mapping� then we

say that g is quasisymmetric if it is not constant and if there exists a
homeomorphism � � �	��
 � �	��
 such that

����
 jx� yj � t jx� zj implies jg�x
� g�y
j � ��t
 jg�x
� g�z
j �

whenever x� y� z � F � We shall sometimes say that g is ��quasisymme�
tric to be explicit� or we shall refer to � as the function that governs the

quasisymmetry of g when we want to be speci�c but not explicit�
This condition is a little bit hard to digest at �rst� but it means

that the mapping approximately preserves relative distances� even if it
may distort distances in an unbounded manner� In other words� if x is a
lot closer to y than to z� then the corresponding property for g�x
� g�y
�
and g�z
 should also hold� even though the distances themselves may
change dramatically� For instance� the mapping de�ned by g�x
  ax

���
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is ��quasisymmetric with ��t
 � t for all positive numbers a� but this
mapping distorts distances strongly when a is very large or very small�

See �TV� for basic facts about quasisymmetric mappings�
In the case of mappings de�ned on all of Rn the quasisymmetry

condition is equivalent to the more famous quasiconformal condition�
which is an in�nitesimal version of the same idea� It turns out that
quasisymmetric mappings on R

n send sets of measure zero to sets of
measure zero when n � �� see �V��� This is not true when n  ��
because of an example in �BA��

Problem ���� �Juha Heinonen�
 If F is a compact subset of Rn � n � ��
and g � F � R

n is quasisymmetric� is it true that g�F 
 has Lebesgue

measure zero if F has Lebesgue measure zero �

We shall see that the answer is yes� The proof will not give a new
approach to the result for global quasisymmetric mappings� instead
it will work by reducing to a method of Gehring �G� for the global
case� Note however that quasisymmetric maps de�ned on subsets of
R
n need not extend to global quasisymmetric mappings� so that the

most obvious path to reducing to the global case is not available to us�
It will be more convenient to use the following reformulation of this

problem�

Theorem ���� Let F be a compact subset of Rn � n � �� and suppose

that g � F � R
n is quasisymmetric� Then g�F 
 has positive Lebesgue

measure if F has positive Lebesgue measure�

Let us check that this resolves Problem ����

Lemma ���� If g � F � R
n is quasisymmetric� then g�� � g�F 
 � R

n

makes sense and is quasisymmetric�

This is well�known and easy� but let us go quickly through the
proof for the sake of completeness� Our mapping g is injective if it is
quasisymmetric� so that its inverse is well�de�ned� From ����
 we have
that

����
 ��t
 jg�x
� g�z
j � jg�x
� g�y
j implies t jx� zj � jx� yj�

One can sort this out to see that g�� is quasisymmetric� but with ��t

replaced by �������t

��� This proves the lemma�
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To see that Theorem ��� implies a positive answer to Problem ���
one need only switch from g to g�� using the lemma�

In order to prove Theorem ��� we shall make some modi�cations
to g and F � It would be simpler if we could just extend g to a mapping
on all of Rn � but this is not possible in general� Our plan will be to
replace g with a map which lives on a thick set� and then to show that
the pull�back of Lebesgue measure under this mapping behaves well�

The modi�cations of g will proceed in steps� Basically we want to
progressively thicken the domain F of g� We begin with a de�nition�

De�nition ���� Let F�� F be subsets of Rn � with F� � F � We shall

say that F� is a serious subset of F if there exists a constant C � 	 so

that if x � F� and 	 � t � diamF�� then there is a point y � F such

that

����
 C�� t � jx� yj � t �

We say that F is serious if it is serious as a subset of itself�

This is a mild nondegeneracy condition which forbids isolated is�
lands in a quantitative and uniform way� This is useful for the quasisym�
metry condition ����
� which provides information only about relative

distances�
The property of a set being serious has been considered before

under various names �unknown to the author until it was too late
 such
as �uniformly perfect� and �homogeneously dense�� and it is a special
case of the thickness conditions discussed in �VVW�� It may be that the
relative property for subsets was not considered before�

We are going to be working with serious sets� and it would be nice
if we could �nd a serious set of positive measure inside any given set of
positive measure� Unfortunately this turns out not to be true� Pertti
Mattila tells me that there are counterexamples� The following simple
observation will su�ce for our purposes�

Lemma ��	� Let F be a compact subset of Rn with positive measure�

Then for each � � 	 there is a compact subset F� of F such that F� is

a serious subset of F and jF�j � jF j � � �

We do not give bounds on the seriousness constant here�
To prove this we use points of density and Egoro��s theorem� From

Lebesgue�s theorem we know that almost every element of F is a point
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of density of F � That is�

lim
j��

jF � B�x� ��j
j
jB�x� ��j
j  �

for almost all x � F � Let � � 	 be given� By Egoro��s theorem
we can �nd a measurable subset F� of F on which we have uniform
convergence for this limit and jF�j � jF j � � � We can take F� to be
compact because we can always replace it� if necessary� with a compact
subset with almost the same measure�

Uniform convergence implies that there is a 	 � 	 such that

����

jF �B�x� ��j
j
jB�x� ��j
j 	 �

�

when x � F� and 	 � ��j � 	� It is not hard to see that this implies
that F� is a serious subset of F � but with a horrible constant which
depends on 	� �At scales �ner than 	 the constant is bounded� In other
words� we could control the seriousness constant if we were willing to
give up control on the measure�
 This proves Lemma ����

Of course ����
 is much stronger than seriousness� but seriousness
is a more natural condition for most of what we shall do�

Given a quasisymmetric mapping de�ned on some set we would
like to modify it to get a mapping which is de�ned on a thicker set�
The next result will be the �rst step of such a process� and then we
shall go another step afterwards�

Proposition ���
� Suppose that F is a closed subset of Rn � that g �
F � R

n is quasisymmetric� and that F� is a closed serious subset of

F � Then we can �nd a serious closed set F � in R
n which contains

F� �but need not be contained in F 
 and a quasisymmetric mapping

g� � F � � R
n such that g�  g on F�� The seriousness constant

for F � and the function �� which controls the quasisymmetry of g�

are controlled in terms of the dimension� the seriousness constant for

�F�� F 
� and the function � that controls the quasisymmetry of g�

The point here is that F � is serious as a set unto itself� not as a
subset of something else�

Before stating the next thickening result we need another de�ni�
tion�
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De�nition ����� A closed set E of Rn is said to be a strong set if there

is a constant C � 	 so that for each x � RnnE there is a y � E such

that

�����
 jx� yj � C dist �x�E


and

�����
 dist �y�RnnE
 	 C�� dist �x�E
 �

In other words� a strong set is always approximately at least as big
as its complement�

Proposition ����� Suppose that F is a serious closed subset of Rn

and that g � F � R
n is quasisymmetric� Then there is a strong set

S � R
n such that S 
 F and g admits an extension to a quasisymmetric

mapping G � S � R
n � The strongness constant for S and the function

which governs the quasisymmetry of G can be chosen to depend only

on the function that governs the quasisymmetry of g� the seriousness

constant for F � and the dimension n�

We shall need to know that the image is a strong set� and there is
a general result to this e�ect�

Proposition ����� If G � S � R
n is quasisymmetric and S is a strong

subset of Rn � then so is G�S
� with a constant that depends only on

the dimension� the strongness constant for S� and the function which

governs the quasisymmetry of G�

It may not be clear that these statements re�ect progress� but the
they do� and this is manifested in part by the following fact� which says
that strong sets are large measure�theoretically�

Proposition ����� If S is a strong subset of Rn � then there is a

constant C � 	 so that

�����
 jS � B�x� r
j 	 C�� rn �

for all x � S and r � 	� C depends only on the dimension and the

strongness constant of S�
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Here jAj denotes the Lebesgue measure of a set A�
The next point is to convert from mappings to measures� We begin

with some de�nitions�

De�nition ���	� Let E be a closed subset of Rn � and let 
 be a

Borel measure with support equal to E�

a
 We say that 
 is doubling on E if there is a constant C � 	 so

that

�����
 
�B�x� �r

 � C 
�B�x� r

 �

for all x � E and 	 � r � diamE�

b
 De�ne 	�x� y
  	��x� y
 for x� y � E by

����	
 	�x� y
 
�

�B�x� jx� yj
 �B�y� jx� yj

���n �

We say that 
 is a metric doubling measure on E if 
 is doubling on E
and if there is a true metric d�x� y
 on E �i�e�� a symmetric nonnegative

function which vanishes exactly on the diagonal and which satis�es the

triangle inequality� and a constant C � 	 such that

�����
 C�� d�x� y
 � 	�x� y
 � C d�x� y
 �

for all x� y � E�

These are good classes of measures for studying quasisymmetric
mappings� The notion of metric doubling measures comes from �DS��
in a slightly di�erent form� see also �S���

Proposition ����� If G � S � R
n is quasisymmetric and S is a strong

subset of Rn � then the measure 
 on Rn de�ned by 
�A
  jG�A � S
j
is a metric doubling measure on S� with constants that depend only on

n� the strongness constant for S� and the function which governs the

quasisymmetry of G�

This is exactly the measure that we are interested in for Theorem
���� The question now is what more we can say about it�

Proposition ����� If S is a strong subset of Rn and 
 is a metric

doubling measure on S� then there is a metric doubling measure � on

R
n which agrees with 
 on subsets of S� The metric doubling constants
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for � are controlled in terms of the corresponding constants for 
� the
strongness constant for S� and the dimension n�

This is what we want because of the following absolute continuity
result�

Theorem ����� If 
 is a metric doubling measure on Rn and n � ��
then 
 and Lebesgue measure are absolutely continuous with respect to

each other�

This result was basically proved by Gehring �G�� He did not state it
this way� but his argument gives this result with little extra e�ort� This
extension of Gehring�s result was observed in �DS�� See Proposition ���
of �S�� for a detailed argument for this form of the result�

If 
 is a metric doubling measure on Rn � n � �� then the density
of 
 is an �A� weight�� which gives a uniform and scale�invariant ver�
sion of absolute continuity� In other words Theorem ���� comes with
quantitative estimates�

The original point of Gehring�s argument was to get information
about the jacobian of a global quasisymmetric mapping on Rn � We are
doing roughly the same thing here� except that we are exploiting some
�exibility in metric doubling measures that quasisymmetric mappings
do not enjoy� Speci�cally� in Proposition ���� we have an extension
result which does not have a counterpart for quasisymmetric mappings�
There are no topological obstructions to building extensions of metric
doubling measures�

Not all metric doubling measures on R
n arise from global qua�

sisymmetric mappings in the manner described above� See �S�� for
counterexamples�

Let us now summarize some of the main conclusions of these propo�
sitions�

Theorem ����� Suppose that F is a closed subset of Rn � that g � F �
R
n is quasisymmetric� and that F� is a closed serious subset of F � Then

there is a metric doubling measure � on Rn such that ��A
  jg�A
j for
all Borel subsets of F�� In particular jg�A
j  	 if and only if jAj  	
when A � F�� by Theorem ����� The metric doubling constants for �
depend only on n� the seriousness constant for �F�� F 
� and the function

which governs the quasisymmetry of g�
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Indeed� under these conditions we can use Proposition ���	 to ex�
tend the restriction of g to F� to a quasisymmetric mapping on a serious
set� and then we can use Proposition ���� to extend to a strong set� This
permits us to reduce to the case where F� is a strong set� We then use
Propositions ���� and ���� to get a metric doubling measure� �rst on the
strong set� and then on all of Rn � This proves Theorem ����� modulo
the previous propositions�

Theorem ��� is an immediate consequence of Lemma ��� and The�
orem ����� Thus we need only prove the various propositions� They
are slightly messy� but all pretty straightforward� and largely implicit
in the literature� if not explicitly stated in the form that we need� For
the sake of readability we shall often provide more detail than needed
for experts in the area� and we shall sometimes treat issues with bare
hands instead of sending the reader to the literature for lemmata�

Related papers concerning quasisymmetric mappings include �TV��
�V��� and �V���

Although Propositions ���	 and ���� look very similar� they really
aren�t� in the sense that Proposition ���	 is much closer to the de�ni�
tions� whereas the proof of Proposition ���� relies on the structure of
Euclidean space�

�� The proof of Proposition ���
�

This is quite straightforward� We are going to take F�� take a
reasonably dense but scattered subset of FnF�� replace g by something
simple on little disks centered at points in this scattered subset� and
that will do the job� Our �rst task is to �nd this reasonably dense but
scattered subset� We shall employ this well�known construction again
in the next section�

Lemma ���� Let E be a closed subset of Rn � and let H be a subset of

R
nnE� Then we can �nd a subset I of H such that

����
 for every x � H there is a point u � I such that

jx� uj � �

�
dist �x�E
 �

and

����
 for every y� z � I we have that jy � zj 	 �

�
dist �y� E
 �



Quasisymmetry� measure� and a question of Heinonen ��	

Thus I is reasonably dense in H and also reasonably scattered�

Let E and H be given� and let I be a maximal subset of H which
satis�es ����
� It is not hard to �nd such a maximal subset� For in�
stance� one can write RnnE as the increasing union of compact sets
Kj � one can build sets Ij recursively by taking Ij�� to be the maximal
subset of H �Kj�� which satis�es ����
 and contains Ij � and then take
I to be the union of the Ij �s� In each compact part the maximal subset
has to be �nite� which makes it easier to verify its existence� and then
the pieces nest together properly to give maximality for the union�

Thus we can take I to be a maximal subset of H which satis�es
����
� Let x � H be given� Either x � I already� or it is not� in which
case I � fxg will not satisfy ����
� This means that there is a point
u � I such that

����
 either jx� uj � �

�
dist �x�E
 or jx� uj � �

�
dist �u�E
 �

In the �rst case we get ����
 directly� In the second case we compute
that

����
 dist �u�E
 � jx� uj� dist �x�E
 � �

�
dist �u�E
 � dist �x�E


to conclude that dist �u�E
 � � dist �x�E
��� and hence that ����
 holds�
This proves Lemma ����

Lemma ���� Let E�H� and I be as in Lemma ���� and set B�x
 
B�x� �	��dist �x�E

 when x � I� If x � I and y � �B�x
� then

����

�

�	
dist �x�E
 � dist �y� E
 � ��

�	
dist �x�E
 �

If x� z � I and x  z then

����
 �B�x
 � �B�z
  � �

Indeed� if x � I and y � �B�x
� then

����
 jdist �y� E
� dist �x�E
j � �	��dist �x�E
 �
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This implies ����
�
Now suppose that x� z � I and x  z� but that ����
 fails to hold�

so that there is a point y in the intersection� Then

����	
 jx� zj � jx� yj� jy � zj � �

�	
dist �x�E
 �

�

�	
dist �z� E


and

�����
 dist �z� E
 � �	

�
dist �y� E
 � ��

�
dist �x�E
 �

because of ����
 �applied to both x and z
� Combining these we get
that

�����
 jx� zj � �

�
dist �x�E
�

in contradiction to ����
� This proves ����
� and the lemma follows�
Let us now prove Proposition ���	� Let g� F � F� be as given there�

and apply Lemma ��� with E  F� and H  FnF�� We get a subset I
of F �

De�ne F � by

�����
 F �  F� �
� �
x�I

B�x

�
�

where B�x
 is as in Lemma ���� with E  F�� We shall de�ne g� a
little later� Let us �rst verify some simple properties of F ��

Lemma ����� F � is closed�

Let fzjg be a sequence of points in F � which converges to some
point z � Rn � We have to show that z � F �� If there is a subsequence
of fzjg which is contained in F�� then z � F�� and z � F �� If fzjg has
a subsequence which is contained in any one of the B�x
�s� then z lies
in the same B�x
� and hence in F �� The remaining possibility is that
there is a subsequence of fzjg such that each term lies in a di�erent
B�x
� Since fzjg converges and hence is bounded� we must have that
the elements of this subsequence accumulate on F�� because of the way
that we de�ned the B�x
�s� In this case we conclude that z � F� and
hence z � F �� This proves the lemma�
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Lemma ����� diamF � � � diamF �

If p � F �� then either p � F� � F � or p � B�x
 for some x � I� In
the latter case we have that

�����
 dist �p� F 
 � jp� xj � �	��dist �x� F�
 � �	��diamF �

since x � F � This implies the desired bound for diamF ��

Lemma ����� For each point x � F there is a point u � F � such that

jx� uj � dist �x� F�
���

This is trivial� Either x � F�� in which case we take u  x� or not�
in which case we take u � I as in ����
 �with E  F�
� This gives the
lemma�

Lemma ���	� F � is serious�

Let p � F � and 	 � t � diamF � be given� and let us try to �nd a
point q � F � with

�����
 C�� t � jp� qj � C t

for a suitable constant C� We may as well assume that t � diamF �
since otherwise we can use Lemma ���� to reduce the problem to the
de�nition of diamF ��

Suppose �rst that p � F�� The we can use the assumption that F� is
a serious subset of F to �nd a point x � F such that C�� t � jp�xj � t�
Lemma ���� provides a point u � F � such that jx�uj � dist �x� F�
�� �
jp� xj��� Thus jp� uj � jp� xj� jx� uj � � t� which gives the upper
bound in �����
 �with q  u
� For the lower bound we have that

����	
 jp� xj � jp� uj� ju� xj � jp� uj� �

�
jx� pj �

and hence jp� xj�� � jp� uj� This gives the lower bound in �����
�
Now suppose that p � B�z
 for some z � I� If t � dist �z� F�
� then

we can �nd the required q inside B�z
� If t � dist �z� F�
� then let y be
a point in F� such that jy � zj  dist �z� F�
� Choose x � F so that
C�� t � jy�xj � t� as we can do because of the seriousness of F� inside
of F � Let u � F � be associated to x as in Lemma ����� Then

�����


jp� uj � jp� zj� jz � yj� jy � xj� jx� uj
� t � t � t � dist �x� F�


� � t� jx� yj � � t �
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This gives the upper bound that we want for �����
 �with q  u
� For
the lower bound we observe that

�����


jy � xj � jp� uj� jp� yj� jx� uj
� jp� uj� �jp� zj� jz � yj
 �

�

�
dist �x� F�


� jp� uj� dist �z� F�
 � dist �z� F�
 �
�

�
jx� yj

� jp� uj� � dist �z� F�
 �
�

�
jx� yj �

Thus C�� t � jy� xj � � jp� uj� � dist �z� F�
� If t is much larger that
dist �z� F�
 then this implies the lower bound in �����
� If not� then
again we simply take a suitable q in B�z
� This proves Lemma �����

Let us now de�ne g� � F � � R
n � Of course we set g�  g on F��

and we de�ne g� on each B�x
 as follows� Given x � I choose a point
��x
 � F� so that

�����
 jx� ��x
j  dist �x� F�
 �

De�ne g� on B�x
 by

�����
 g��w
  g�x
 � a
jg�x
� g���x

j
jx� ��x
j �w � x
 �

for all w � B�x
� Here a is a small positive number to be chosen in the
next lemma� Thus on the ball B�x
 we have taken g� to be a similarity
with the same value as g at the center and whose distortion ratio is
approximately the same as that of g at that location and scale�

Let �x
� x � I� denote the ball which is the image of B�x
 under
g�� Thus

�����
 �x
  B�g�x
� �	�� a jg�x
� g���x

j
�

by the de�nition of g� and B�x
 �in Lemma ���
�
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Lemma ����� If a is small enough� depending only on the function

which governs the quasisymmetry of g� then the balls � �x
� x � I� are
pairwise disjoint and each is disjoint from g��F�
  g�F�
�

This is just a question of the quasisymmetry condition� Suppose
that y� z � I� y  z� Using ����
 we get that jy � ��y
j � � jy � zj�
and similarly we have that jz � ��z
j � � jy � zj� Quasisymmetry then
implies that

�����
 jg�y
� g���y

j� jg�z
� g���z

j � C jg�y
� g�z
j �

This implies that � �y
 and � �z
 are disjoint if a is small enough�
Now suppose that x � I and w � F�� We want to show that

g�w
 �� � �x
� We have that jx � ��x
j  dist �x� F�
 � jx � wj� by
de�nition of ��x
� and so

�����
 jg�x
� g���x

j � C jg�x
� g�w
j �

by quasisymmetry� This implies that g�w
 �� � �x
 if a is small enough�
This proves Lemma ����� Fix now a choice of a as above� depending

only on the function that governs the quasisymmetry of g�
It remains to prove that g� is quasisymmetric� The argument for

this has some generality� and we shall need it again later� and so we
formulate it in more general terms than required for the present cir�
cumstances�

Lemma ���� Let A be a closed subset of Rn � and let fBigi�I and

figi�I be collections of closed balls in Rn � Set A�  A �Si�I Bi and

let A� denote the union of A and the set of centers of the balls Bi� i � I�
Suppose that H � A� � R

n has the property that the restriction of

H to A� is quasisymmetric� that H�Bi
  i for each i � I� and that the

restriction of H to each Bi is a quasisymmetric mapping with a function

governing the quasisymmetry that can be taken to be independent of i�
Suppose also that the balls �Bi� i � I� are pairwise disjoint and are

disjoint from A� that the balls � i� i � I� are pairwise disjoint and

disjoint from H�A
� and that there is a constant C � 	 so that

����	�a
 C�� dist �Bi� A
 � radiusBi � dist �Bi� A
�

and

����	�b
 C�� dist �i� H�A

 � radius i � dist �i� H�A
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for all i � I� �Note that the upper bounds follow from the disjointness

of the �Bi�s from A� the � i�s from H�A
�

Then H � A� � R

n is quasisymmetric� with bounds which depend

only on a uniform choice of a function which governs the quasisymmetry

of the various restrictions of H mentioned above� and on the constants

in ����	
�

If we can prove this lemma then we get that g� is quasisymmetric�
because our balls have the correct disjointness properties and satisfy
the analogue of ����	
 �by their de�nitions
� because the restrictions
of g� to the various B�x
�s are trivially quasisymmetric� with uniform
bounds� and because the restriction of g� to A�  F� � I agrees with g
and hence is quasisymmetric�

Thus Proposition ���	 will follow once we prove Lemma �����
Beware of the small changes in notation from the previous situation

to the lemma� B�x
 to Bi� etc�
The lemma is a straightforward but unpleasant exercise� a matter

of checking cases� Let A�H� etc� be as above�
Let us �rst record a small observation�

Sublemma ����� Suppose that p� q � Bi and w � A�nBi� Then

�����
 C�� jq � wj � jp� wj � C jq � wj �

�����
 C�� jH�q
�H�w
j � jH�p
�H�w
j � C jH�q
�H�w
j �

�����
 jp� wj 	 C��diamBi

and

�����
 jH�p
�H�w
j 	 C��diami �

for a suitable constant C�

This follows from the our assumptions� which ensure that �Bi is
disjoint from A�nBi� and that � i is disjoint from H�A�nBi
�

Suppose that we are given x� y� z � A� and t � 	 which satisfy
jx� yj � t jx� zj� We want to show that jH�x
�H�y
j � ��t
 jH�x
�
H�z
j for some ��t
 which tends to 	 when t� 	 and which is bounded
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on �nite intervals� �See Lemma ���� below for a small technical point
here�


If x� y� z all lie in A�� or all lie in some Bi� then we get the desired
bound from our hypotheses�

If no two of x� y� z lie in the same Bi� then we can reduce to the
previous case where x� y� z all lie in A�� by using Sublemma ���� to
switch from a point in some Bi to the center of Bi � That is� such
a change will not a�ect any of the distances involved by more than
a bounded factor� �Remember that A� consists exactly of A and the
various centers of the Bi�s�


Thus we may assume that exactly two of x� y� z lie in some Bi� and
that the remaining point lies in A�nBi�

We may as well assume that x is one of the two points that lies in
Bi� For if it is not� then we can use Sublemma ���� to reduce to the
case where y and z are both equal to the center of Bi� and where x
either lies in A or is the center of some other Bj� Again these changes
will not a�ect the relevant distances by more than a bounded factor�
After these changes all three points would lie in A�� which is already
covered by our assumptions�

Thus we may assume that x lies in Bi� and that exactly one of
y and z do too� We may also assume that the remaining point lies
in A�� because Sublemma ���� again permits us to make the substitu�
tion without a�ecting the quantities involved by more than a bounded
factor�

In order to deal with this remaining situation we make another
small observation�

Sublemma ����� For each i � I let ci denote the center of Bi� and

choose �i � A such that jci � �ij  dist �ci� A
� Then

�����
 C��diamBi � jci � �ij � C diamBi

and

�����
 C��diami � jH�ci
�H��i
j � C diami

for each i and a suitable constant C�

The bounds �����
 follow from ����	
 and the de�nitions of ci and
�i� �See also Sublemma �����
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As for �����
� notice that jH�ci
�H��i
j is comparable in size to
dist �H�ci
� H�A

� because of quasisymmetry and the fact that jci �
�ij  dist �ci� A
� This implies �����
� because of ����	
 again�

This proves Sublemma �����

Let us come back to our original problem of the quasisymmetry of
H� We have our three points x� y� z with jx � yj � t jx � zj� and we
want to prove something like jH�x
�H�y
j � ��t
 jH�x
�H�z
j� We
have already reduced to the case where x and exactly one of y and z
lies in some Bi� and where the remaining point lies in A�nBi�

This last situation is slightly obnoxious because it is really a com�
bination of two cases� For the sake of explanation suppose that it is y
which lies in Bi� Then we could have that jx � yj is very small com�
pared to the radius of Bi� and that dist �z� Bi
 is large compared to the
radius of Bi� In order to establish quasisymmetry we should show that
such a circumstance leads to something similar in the image� It is more
convenient however to do this in two steps� �rst to compare jx�yj with
the radius of Bi and make a similar comparison in the image� and then
to compare dist �z� Bi
 with the radius of Bi and to make a similar com�
parison in the image� Our �nal estimate will be obtained as a product
of estimates from these two parts�

Assume �rst that y � Bi� so that z � A�nBi� Set

�����


r 
jx� yj
jci � �ij � s 

jci � �ij
jx� zj �

R 
jH�x
�H�y
j
jH�ci
�H��i
j � S 

jH�ci
�H��i
j
jH�x
�H�z
j �

By assumption we have that rs � t� and we want to bound RS by a
function of t which tends to 	 as t� 	�

Sublemma ���
� r� s� R� S � C for some constant C�

For r and R this follows from Sublemma ���� and the fact that
x� y � Bi� H�x
� H�y
 � i� For s and S we observe that z �� Bi�
H�z
 �� i� so that Sublemma ���� can be applied� With this obser�
vation the bounds for s and S follow from Sublemma ���� also� This
proves Sublemma ���	�

Since r s � t we get that one of r and s is � p
t� Our quasisym�

metry hypotheses imply that the corresponding R or S is bounded by
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a good function of
p
t� �For r we have to use �����
 to get to the qua�

sisymmetry of H on Bi�
 We conclude that RS is bounded by a good
function of

p
t� since they are each bounded separately� This is the

bound that we need�

Assume now that z � Bi� so that y � A�nBi� De�ne r� s� R� S as
above� Again we have r s � t by assumption� and we want to control
RS�

Sublemma ����� r� s� R� S 	 C�� for some constant C�

This is practically the same as Sublemma ���	� but with the roles
of y and z reversed�

In this case we can conclude that each of r and s is bounded by a
constant multiple of t� Our quasisymmetry hypotheses then imply that
each of R and S is bounded by a function of t� and so the product is
too�

This completes the proof of Lemma ����� Note that we have not
given the most e�cient estimates in the argument�

For the record� let us mention a small lemma which we have used
implicitly�

Lemma ����� Suppose that � � �	��
 � �	��
 satis�es ��	
  	� ��t

is continuous at 	� and � is bounded on bounded sets� Then there is a

homeomorphism � � �	��
 � �	��
 such that ��t
 � ��t
 for all t�

Indeed� following V�ais�al�a we set ��t
  t � sup��s��t ��t
 when
t  �n� n � Z� and use a�ne interpolation to de�ne � on the rest�
�Thanks to Alestalo for pointing out the author�s stupidity for the �rst
version�


�� The proof of Proposition �����

The argument will parallel the proof of Proposition ���	 in the
previous section� except for one piece of information that we shall have
to obtain for ourselves�

Let g and F be given� as in Proposition ����� Let I be as in Lemma
���� applied with E  F and H  R

nnF � Let B�x
� x � I� be de�ned
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as in Lemma ��� �with E  F 
� De�ne the set S by

����
 S  F �
� �
x�I

B�x

�
�

as in �����
�
In the next two lemmas we give basic properties of S� At this

stage we do not use the assumption that F is serious� only that it is
closed� The seriousness will not be used until we start to work with our
quasisymmetric mapping�

Lemma ���� S is closed�

This is the same as Lemma ����� with only cosmetic changes�

Lemma ���� S is a strong set�

Let x � R
nnS be given� as in De�nition ����� Thus x � R

nnF �
The point is that x must be reasonably close to B�u
 for some u � I�
but it is helpful to distinguish between the cases where x is very close to
some B�u
 or never too close� Actually our threshold will be su�ciently
generous that the latter never happens�

Suppose �rst that

����
 dist �x� S
 � �

�
dist �x� F 
 �

Choose z � S so that jx�zj  dist �x� S
� Then z �� F � and so z � B�u

for some u � I� Because jx� zj � dist �x� F 
�� we get that

����

�

�
dist �x� F 
 � dist �z� F 
 � �

�
dist �x� F 
 �

This means that dist �z� F 
 is comparable in size to the radius of B�u
�
because of ����
 in Lemma ��� and the de�nition of B�u
� Since jx�zj 
dist �x� S
 and z � B�u
 it is easy to see that we can �nd a point y of
the type required in De�nition ����� inside B�u
 �and not just in S
�

Now suppose that

����
 dist �x� S
 �
�

�
dist �x� F 
 �
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In fact this cannot happen� Indeed� apply Lemma ��� to get a point
u � I such that jx� uj � dist �x� F 
��� as in ����
� Then

����
 dist �x� S
 � jx� uj � �

�
dist �x� F 
 � dist �x� S
 �

a contradiction�
This completes the proof of Lemma ����

To prove Proposition ���� we need to build a quasisymmetric ex�
tension G of g� We would like to do this in the same way as in Section �
�around �����

� but in the present situation we have the problem that g
is not yet de�ned at the elements of I� The main point of the argument
that follows will be to extend g quasisymmetrically to I� Once we do
that we can proceed as in Section � �using Lemma ����
�

The elements of I basically represent holes in F � large puddles of
its complement� We need to show that these holes correspond to holes
in the complement of g�F 
 in a reasonable manner� The next couple of
lemmas will enable us to do that�

Lemma ��	� Let a homeomorphism � � �	��
 � �	��
 and a dimen	

sion n be given� For each � � 	 there exist 	 � 	 and R � �� depending
on �� �� and n� with the following properties� Let E be a subset of Rn

and h � E � R
n be an �	quasisymmetric mapping which satisfy the

normalizations

����
 	� u � E and h�	
  	� h�u
  u�

where u  ��� 	� � � � � 	
� Suppose that E is 		thick in B�	� R
� in the

sense that

����	
 dist �x�E
 � 	 whenever x � B�	� R
�

Then h�E � B�	� R

 is �	thick in B�	� �
� so that

�����
 dist �z� h�E

 � � whenever z � B�	� �
�

This is a weaker version of �V�� Theorem ����� weaker by dint of
having estimates which depend on the dimension and which are ob�
tained through very nonconstructive means� For the reader�s conve�
nience we include a proof by compactness which is mentioned in the
introduction of �V�� �and attributed to Tukia
�
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Suppose that Lemma ��� is not true� Then there exist �� n� and
� as above� a sequence fEkg of subsets of Rn � and a sequence fhkg
of ��quasisymmetric mappings from Ek into Rn � such that fEkg and
fhkg satisfy the analogues of the normalizations ����
� each Ek is ��k�
thick inside B�	� k
� but each hk�Ek �B�	� k

 fails to be ��thick inside
B�	� �
�

Claim ����� There is a sequence of integers kj and an �	quasisym	

metric mapping H � Rn � R
n such that the hkj �s converge to H 
uni	

formly on compact sets� in the sense that

�����
 lim
j��

sup
x�B�Ekj

jhkj �x
�H�x
j  	 �

for every ball B in Rn �

This is pretty standard� but let us be careful�
The �rst step is to show that we have equicontinuity of the hk�s

on compact sets� That is� for each ball B there exists a function �B �
�	��
 � �	��
 such that �B�	
  	� �B is continuous at 	� �B is
bounded on �nite intervals� and

�����
 jhk�x
� hk�y
j � �B�jx� yj
 �
for all x� y � B � Ek and all k� This follows from the uniform qua�
sisymmetry hypotheses and the normalizations�

Once we have this equicontinuity condition we can conclude that
there is continuous mapping H � Rn � R

n and a subsequence fhkjg
of fhkg which converges to h in the sense of �����
� This is not hard
to prove� using an Arzela�Ascoli argument� Here is one way to do it
from scratch� Let fpmg be a countable dense subset of Rn � For each
pm choose a sequence of points fpm�kg�k�� such that pm�k � Ek for each
k and jpm�k � pmj � ��k when pm � B�	� k
� We can do this because
of our thickness hypotheses� Next choose the subsequence fhkjg of
fhkg in such a way that limj�� hkj �pm�kj 
 exists for each m� and call
the result H�pm
� We can �nd such a subsequence because of the usual
Cantor diagonalization argument� We are also using our normalizations
and the equicontinuity property �����
 to know that fhk�pm�k
gk is a
bounded sequence for each m� Once one has fhkjg with this property
it is not hard to show that H must have a continuous extension to all
of Rn � and that we have convergence in the sense of �����
� using the
equicontinuity property �����
�
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It is easy to derive the ��quasisymmetry of H from the correspond�
ing property of the hk�s�

This completes the proof of Claim �����

Let us now �nish the proof of Lemma ���� Let H be as in the
claim� The main point now is that H must be surjective� H�Rn 
  R

n �
This is well�known �a consequence of invariance of domain and the
connectedness of Rn � One does not really need H to be quasisymmetric
here� it is enough for H to be proper
� On the other hand we are
assuming that hk�Ek
 fails to be ��thick inside B�	� �
 for each k� It is
not hard to derive a contradiction to this assumption� Indeed� let k be
large� to be chosen soon� and suppose that zk � B�	� �
 satis�es

�����
 dist �zk� hk�Ek �B�	� k


 	 � �

Because H is a surjection there is a point xk � Rn such that H�xk
  zk�
In fact we have that xk � B�	� L
 for some large L and all k� because H
is ��quasisymmetric� and because zk � B�	� �
 for all k� In particular
we have that xk � B�	� k
 for large enough k� For su�ciently large k
we can �nd a point yk � Ek � B�	� L � �
 such that jxk � ykj � ��k�
because of the thickness property� If k is large and among the kj�s then

�����

jzk � hk�yk
j  jH�xk
� hk�yk
j

� jH�xk
�H�yk
j� jH�yk
� hk�yk
j � � �

because of the uniform continuity of H on B�	� L� �
 and the uniform
convergence �����
� This contradicts �����
� and Lemma ��� follows�

For our purposes the following reformulation of Lemma ��� will be
more convenient�

Lemma ����� Let a homeomorphism � � �	��
 � �	��
� a dimension

n� and a number A � � be given� Suppose that X is a subset of Rn

and that f � X � R
n is �	quasisymmetric� Suppose also that we have

x� y � X� x  y� and z � RnnX such that

�����
 jz � xj � jx� yj and dist �z�X
 	 A�� jx� yj �

Then there is a point w � Rnnf�X
 such that

������a
 jw � f�x
j �M jf�x
� f�y
j
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and

������b
 dist �w� f�X

 	M�� jf�x
� f�y
j �
where M � 	 depends on �� n� and A� but not on anything else�

Roughly speaking� this says that holes in the complement of X
correspond under f to holes in the complement of f�X
 in a nice way�

This is an easy consequence of Lemma ���� We may as well assume
that x  	� y  u  ��� 	� � � � � 	
� f�	
  	� and f�u
  u� because we
can reduce to that case using a�ne similarities� We apply Lemma ���
with h  f�� and E  f�X
� �Lemma ��� is relevant here�
 More
precisely� we argue by contradiction� Suppose that there is no point w
as in �����
� so that E  f�X
 is ��M �thick in B�	�M
� If M is large
enough� then we can apply Lemma ��� to conclude that h�E
  X is
��thick in B�	� �
 with �  ����A
� for instance� This contradicts our
assumption �����
� and Lemma ���� follows�

Let us return now to our earlier story of F� g� and I� We want
to take points in I and associate to them points in the complement of
g�F 
�

Let us decompose I into I� � I�� where I�  fu � I � dist �u� F 
 �
b diamFg� I�  fu � I � dist �u� F 
 � b diamFg� and b � �	� �
 is
a small constant that will be chosen in a moment� I� is the more
interesting one� I� can be handled practically without thinking� We
shall concern ourselves with only I� for the time being� Note that
I  I� and I�  � when F is unbounded�

Given u � I�� choose points ��u
� ��u
 � F such that

����	

ju� ��u
j  dist �u� F 
�

dist �u� F 
 � j��u
� ��u
j � C dist �u� F 
 �

To get ��u
 we are using our assumption that F is serious� It is here
that we choose the constant b� once and for all� depending only on
the seriousness constant of F  we can �nd such a ��u
 so long as
dist �u� F 
 � b diamF and b is small enough� These points ��u
� ��u

are not unique or canonical or anything like that� we simply choose
them without worrying about it�

Lemma ����� For each u � I� there is a point ��u
 � Rnng�F 
 such

that

�����
 j��u
� g���u

j � C jg���u

� g���u

j
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and

�����
 dist ���u
� g�F 

 	 C�� jg���u

� g���u

j

for a suitable constant C � 	�

This follows from Lemma ����� applied with f  g� X  F � x 
��u
� y  ��u
� z  u� and with ��u
 taken to be w�

For u � I� we can behave more stupidly�

Lemma ����� For each u � I� we can �nd a point ��u
 � R
nng�F 


such that

�����
 dist ���u
� g�F 

 
diam g�F 


diamF
dist �u� F 
 �

Keep in mind that dist �u� F 
 	 b diamF this time� This means
that there really is no point in choosing something like ��u
� an element
of F closest to u� because they are all about the same� It is just a
question of the distance to F �

The lemma is easy to prove� and we leave it as an exercise� For
instance one can �nd a closed half�space which contains F and which
touches F at the boundary� and then choose ��u
 on the ray which
emanates from that point in the direction orthogonal to the hyperplane
and away from F �

Thus we have now chosen points ��u
 � R
nng�F 
 for all u � I�

We need to modify them slightly to keep them from getting too close
to each other�

Lemma ����� For each u � I we can �nd a point ��u
 � R
nng�F 


with the following properties�

i
 If u � I�� then

�����
 j��u
� g���u

j � C jg���u

� g���u

j

and

�����
 dist ���u
� g�F 

 	 C�� jg���u

� g���u

j �
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ii
 If u � I�� then

�����

C��

diam g�F 


diamF
dist �u� F 
 � dist ���u
� g�F 



� C
diam g�F 


diamF
dist �u� F 
 �

iii
 There is a number c � �	� ���	
 such that the balls

�u
  B���u
� c dist ���u
� g�F 


 � u � I �

have disjoint doubles�

The constants C and c depend only on n� the seriousness constant

for F � and the function which governs the quasisymmetry of g�

To prove this we basically want to take the ��u
�s to be the same
as the ��u
�s� but with some small perturbation to get the disjointness
condition iii
� This will require a small coding argument� and �rst we
need to control some multiplicities�

Sublemma ���
� For each u � I there are at most a bounded number

of v � I with

�����
 j��v
� ��u
j � �

�
dist ���u
� g�F 

 �

To prove this we need the following�

Claim ����� If u� v � I satisfy �����
� then

�����
 ju� vj � C dist �u� F 


and

�����
 C��dist �u� F 
 � dist �v� F 
 � C dist �u� F 


for a suitable constant C�

Let u� v � I be given� with u and v satisfying �����
� Notice that
�����
 implies that

�����

�

�
dist ���u
� g�F 

 � dist ���v
� g�F 

 � �

�
dist ���u
� g�F 

 �
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Suppose �rst that u� v � I�� In this case we can get �����
 from
�����
 and �����
� This implies �����
 immediately� because dist �u� F 

	 b diamF �

Now suppose that exactly one of u and v lies in I�� let us say v�
From �����
 we get that

�����
 dist ���v
� g�F 

 	 b diam g�F 
�

On the other hand we have that

�����
 dist ���u
� g�F 

 � C diam g�F 


because of �����
� Using �����
 we conclude that

������a
 C��diam g�F 
 � dist ���u
� g�F 



and

������b
 dist ���v
� g�F 

 � C diam g�F 
�

Going back to �����
 we get that

�����
 C��diamF � dist �v� F 
 � C diamF �

Let us check that

����	
 C��diamF � dist �u� F 
 � C diamF �

The upper bound is automatic� because u � I�� the lower bound is
the interesting one� It follows from ������a

� Lemma ����� and the
quasisymmetry of g on F �

These last two estimates imply �����
� and �����
 follows since
dist �u� F 
 is bounded from below by a constant times diamF � �This
would also be true if we switched the roles of u and v� and immediately
so� since we were assuming that v � I��


We are left with the case where both u and v lie in I�� Set R�x
 
jg���x

� g���x

j for x  u� v� Then

�����
 C��R�x
 � dist ���x
� g�F 

 � C R�x


when x  u� v� because of Lemma ����� Thus

�����
 C��R�u
 � R�v
 � C R�u
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by �����
� On the other hand j��x
� g���x

j � C R�x
 when x  u� v�
because of �����
� and this implies that j��x
 � g���x

j � C R�x
 for
x  u� v too� Using our assumption �����
 we get that all the points
g���u

� g���v

� g���u

� and g���v

 have mutual distance bounded by
C R�u
� and also by C R�v
� Quasisymmetry then applies to say that
the points ��u
� ��v
� ��u
� ��v
 all have mutual distances bounded by
C j��u
� ��u
j� and by C j��v
� ��v
j� In particular

�����
 C�� j��v
� ��v
j � j��u
� ��u
j � C j��v
� ��v
j �

This implies �����
� because of ����	
� We also get �����
 from these
bounds on the mutual distances and ����	
� This proves Claim �����

Now let us derive Sublemma ���	 from the claim� Fix u � I�
and let I�u
 denote the set of v � I for which �����
 holds� Thus
�����
 and �����
 hold for all v � I�u
� Consider the collection of balls
B�v
� v � I�u
� where B�v
 is as in Lemma ���� These balls all have
approximately the same radius as B�u
� because of �����
� and they are
all contained in the ball kB�u
� where k is a large constant� because of
�����
 and �����
� They are also disjoint� because of Lemma ���� This
implies a bound on their total number� and Sublemma ���	 follows�

Let us return now to the proof of Lemma �����

Sublemma ����� If the constant c � 	 is chosen small enough� then

for each u � I we can �nd a point ��u
 � Rnng�F 
 such that

�����
 j��u
� ��u
j � �	��dist ���u
� g�F 



and property iii
 of Lemma �����
 holds�

To do this we arrange the points in I as a sequence fujg�j��� in
which each element of I appears exactly once� and we choose ��uj
 for
one j after another� More precisely we want to choose these points so
that for each j we have that �����
 holds for u  ui� i  �� � � � � j� and�
if the balls �u
 are as de�ned in Lemma �����iii
� then for each j we
have that

�����
 � �ui
 � � �uk
  � when � � i � k � j �

If we can do this for each j then we shall be �nished�
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Set ��u�
  ��u�
� This satis�es all the requirements for j  �
trivially�

Suppose that ��ui
 has been chosen for i � j in accordance with
the requirements stated above� and let us try to choose ��uj
� Of course
the disjointness property �����
 is the thing that we have to keep our
eyes on� and it is only an issue for i � j� k  j�

Consider �rst an i � j such that

�����
 j��ui
� ��uj
j 	 �

�
dist ���uj
� g�F 

 �

We are assuming that we chose ��ui
 so that �����
 holds� If we are
also careful to choose ��uj
 so that �����
 holds� then �����
 will ensure
that the disjointness property �����
 will hold �with k  j
 as soon as
c is small enough� This is not hard to check� using also a computation
like �����
�

The interesting issue is to deal with the i�s such that �����
 fails�
so that

�����
 j��ui
� ��uj
j � �

�
dist ���uj
� g�F 

 �

The point is that Sublemma ���	 ensures that there are at most a
bounded number of such i�s� If c is chosen small enough then we can
choose ��uj
 so that �����
 holds and so that �����
 holds for these
dangerous i�s� This is not hard to see� the point is that we have only to
avoid a bounded number of points in a given ball� and we can then get
a c which is bounded from below in a way that depends on our bound
on the number of bad points� This is slightly vague� but the reader is
probably happier �lling in the details rather than reading them�

Thus one can choose ��uj
 so as to have the required properties�
We can repeat this inde�nitely to do this for all the uj �s� and Sublemma
���� follows from this� as noted above�

Let us now �nish the proof of Lemma ����� We take ��u
 to be as
provided in Sublemma ����� so that we have property iii
 of Lemma ����
already� There remains the problem of verifying properties i
 and ii
 of
Lemma ����� We want to derive them from �����
 and the corresponding
properties of ��u
� Notice �rst that �����
 implies that

�����

�

�
dist ���u
� g�F 

 � dist ���u
� g�F 

 � � dist ���u
� g�F 

 �
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as one can easily check� From here we get �����
 when u � I�� using
also the equality �����
 for ��u
� Similarly �����
 holds when u � I��
because of �����
 and �����
� while �����
 follows from �����
� �����
�
and the fact that

����	

C�� jg���u

� g���u

j � dist ���u
� g�F 



� C jg���u

� g���u

j
�which itself comes from combining �����
 and �����

�

This completes the proof of Lemma �����

De�ne h � F � I � R
n by

�����
 h 

�
g onF�

� on I�

We want to show that this mapping is quasisymmetric� This is not
di�cult but neither is it pleasant� We begin with small observations�

Lemma ����� If p� q � F � I� p  q� then

�����
 jp� qj 	 �

�

�
dist �p� F 
 � dist �q� F 


�
�

This follows easily from ����
�

At the moment ��u
 and ��u
 are de�ned only for u � I�� We
extend them to u � F simply by taking ��u
  ��u
  u when u � F �

Lemma ����� Let x� z � F � I� be given� and suppose that u is either

x� ��x
� or ��x
� and that w is either z� ��z
� or ��z
� Then

�����
 ju� wj � C jx� zj �
where C depends only on the seriousness constant of F �

This is an easy consequence of Lemma ���� and ����	
�

Lemma ����� If x and z are distinct elements of F � I� then
�����
 jh�x
� h�z
j 	 C�� �dist �h�x
� g�F 

 � dist �h�z
� g�F 


 �

where C depends only on the dimension n� the seriousness constant of

F � and the function that governs the quasisymmetry of g�
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Indeed� if either x or z lies in F then this is a tautology� If both x
and z lie in I� then this follows from Lemma �����iii
�

Lemma ���	� Let x� z � F � I� be given� and suppose that u is either

x� ��x
� or ��x
� and that w is either z� ��z
� or ��z
� Then

�����
 jh�u
� h�w
j � C jh�x
� h�z
j �

This constant depends only on the dimension n� the seriousness con	

stant of F � and the function that governs the quasisymmetry of g�

Let us check that

����	
 dist �h�p
� g�F 

 � jh�p
� h�q
j � C dist �h�p
� g�F 



when p � F �I� and q is either ��p
 or ��p
� This is trivial when p � F �
all the relevant quantities vanish� and so we need only consider p � I��
The �rst inequality follows from the fact that q � F by de�nitions� The
second inequality follows from �����
 and �����
� �Think �rst about
q  ��p
 and then q  ��p
� Remember that h�p
  ��p
� by �����
�

Thus ����	
 is true�

The bound �����
 follows now from Lemma ���� and ����	
� This
proves Lemma �����

Lemma ����� Let x� z � F � I� be given� We can choose x� �
f��x
� ��x
g and z� � f��z
� ��z
g so that

�����
 jx� � z�j 	 jx� zj
��

�

Note that the reverse inequality is provided by Lemma �����
For the proof we follow a suggestion from the Unknown Finn� Let

us check �rst that if u � F � I� and v � Rn is arbitrary� then

�����
 ju� vj � � �j��u
� vj� j��u
� vj
 �

We have that

�����
 j��u
� vj� j��u
� vj 	 j��u
� ��u
j 	 dist �u� F 
 �
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by ����	
� If ju � vj � � dist �u� F 
 then we get �����
 from �����
� If
ju� vj � � dist �u� F 
 then

ju� vj � ju� ��u
j� j��u
� vj
 dist �u� F 
 � j��u
� vj
� ju� vj�� � j��u
� vj �

and so ju� vj � � j��u
� vj� Thus �����
 holds in this case too�
From �����
 �applied twice
 we conclude that if u� v � F � I�� then

�����

ju� vj � � �j��u
� ��v
j� j��u
� ��v
j

� j��u
� ��v
j� j��u
� ��v
j
 �
Lemma ���� follows from this�

Lemma ����� Let x� y� z � F � I� and t � 	 be given� with x  y and

jx� yj � t jx� zj� Then
�����
 dist �h�x
� g�F 

 � C ��C t
 jh�x
� h�z
j �
where � is the function that governs the quasisymmetry of g� and where

C depends only on n� the seriousness constant of F � and ��

This lemma is trivial when x � F � and so we assume that x � I��
Lemma ���� permits us to convert our hypothesis into

�����
 dist �x� F 
 � � t jx� zj �
Let x�� z� be as in Lemma ����� We can convert �����
 into

�����
 jx� � qj � C t jx� � z�j

for q  ��x
� ��x
� This follows from �����
� using �����
 and ����	
�
All these points x�� z�� q lie in F � on which h equals g� and so we can
use the quasisymmetry of g to get

����	
 jh�x�
� h�q
j � ��C t
 jh�x�
� h�z�
j

for q  ��x
� ��x
� where � is the function that governs the quasisym�
metry of g� Because x� is one of ��x
� ��x
� we can take q to be the
other one� and we get

�����
 jh���x

� h���x

j � ��C t
 jh�x�
� h�z�
j �
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Lemma �����i
 permits us to replace this with

�����
 dist �h�x
� g�F 

 � C ��C t
 jh�x�
� h�z�
j �

Using Lemma ���� we get that

�����
 dist �h�x
� g�F 

 � C ��C t
 jh�x
� h�z
j �

This proves Lemma �����

Lemma ����� The restriction of h to F � I� is quasisymmetric� with

the quasisymmetry governed by the function C ��C t
� where � is the

function that governs the quasisymmetry of g� and where C depends

only on the dimension n� the seriousness constant of F � and ��

Let x� y� z � F � I�� t � 	� be given� such that

�����
 jx� yj � t jx� zj �

We want to show that

�����
 jh�x
� h�y
j � C ��C t
 jh�x
� h�z
j �

where C and � are as above� We may as well assume that y  x�
Let x�� z� be associated to x� z as in Lemma ����� Then �����


implies that jx� yj � C t jx� � z�j� by �����
� Therefore

�����
 jx� � qj � C t jx� � z�j

for each of q  ��y
� ��y
� because of Lemma ���� �applied to x and y
�
Because x�� z�� ��y
� ��y
 all lie in F � and because h equals g on F � we
conclude that

�����
 jh�x�
� h�q
j � ��C t
 jh�x�
� h�z�
j

for each of q  ��y
� ��y
� where � is the function that governs the
quasisymmetry of g� Lemma ���� permits us to convert this into

�����
 jh�x�
� h�q
j � C ��C t
 jh�x
� h�z
j �

for each of q  ��y
� ��y
�
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Lemma ���� implies that

����	
 dist �h�x
� g�F 

 � C ��C t
 jh�x
� h�z
j �

From ����	
 �with p  x� q  x�
 we have that jh�x
 � h�x�
j �
C dist �h�x
� g�F 

� Combining these estimates with �����
 we get that

�����
 jh�x
� h�q
j � C ��C t
 jh�x
� h�z
j �

for each of q  ��y
� ��y
�
In particular we have that

�����
 jh���y

� h���y

j � C ��C t
 jh�x
� h�z
j �

and hence

�����
 jh�y
� h���y

j � C ��C t
 jh�x
� h�z
j

by �����
� Combining this with �����
 �with q  ��y

 we get that

�����
 jh�x
� h�y
j � C ��C t
 jh�x
� h�z
j �

This proves the lemma�
Our next main goal is to prove the following�

Lemma ��	�� h � F � I � R
n is quasisymmetric� with bounds that

depend only on the dimension n� the seriousness constant of F � and the

function that governs the quasisymmetry of g�

In order to prove this we may as well assume that

�����
 diamF  diam g�F 
  � �

because we can always make rescalings on the domain and image with�
out altering our assumptions� This assumption will be in force through�
out the proof of Lemma �����

In the following the constants C are permitted to depend only on
the dimension n� the seriousness constant of F � and the function that
governs the quasisymmetry of g�

The reader might wish to review the de�nitions of I� and I�� which
are given shortly before ����	
� In particular they imply that

�����
 diam �F � I�
 � � �
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Using this and Lemma �����i
 we get that

�����
 diamh�F � I�
 � C �

Sublemma ��	� If p � F � I and q � I�� then

����	
 C�� jp� qj � jh�p
� h�q
j � C jp� qj �

We may as well assume that p  q�
Let us prove the upper bound �rst� We can do it crudely� starting

with

�����


jh�p
� h�q
j � dist �h�p
� g�F 

 � diam g�F 


� dist �h�q
� g�F 



 dist �h�p
� g�F 

 � � � dist �h�q
� g�F 

 �

On the other hand we have that

�����

jp� qj 	 �

�
�dist �p� F 
 � dist �q� F 



	 C���dist �p� F 
 � dist �q� F 
 � �
 �

The �rst inequality comes from Lemma ����� while the second follows
from our assumption that q � I�� From �����
 we get that

�����
 dist �h�q
� g�F 

 � C dist �q� F 
 �

If p � I� we have the analogous inequality for p instead of q� and then
the upper bound in ����	
 follows from �����
 and �����
� If p � F � I��
then dist �h�p
� g�F 

 � C by �����
� and the upper bound in ����	

again follows from �����
 and �����
� This proves the upper bound in
����	
�

Let us now prove the lower bound� Lemma ���� implies that

�����
 jh�p
� h�q
j 	 C�� �dist �h�p
� g�F 

 � dist �h�q
� g�F 


 �

Using �����
 we get that

�����
 dist �h�q
� g�F 

 	 C��dist �q� F 
 	 C�� �dist �q� F 
 � �
 �
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We are also employing the assumption that q � I� to get the last
inequality� If p � I�� then we get the analogue of �����
 for p as well�
and then

�����
 jh�p
� h�q
j 	 C�� �dist �q� F 
 � � � dist �p� F 

 �

This implies the lower bound in ����	
� using also �����
� If p � F � I��
then we have

�����

jh�p
� h�q
j 	 C�� �dist �q� F 
 � �


	 C�� �dist �q� F 
 � diam �F � I�

 �

by �����
� This implies the lower bound in ����	
 in this case�
This proves Sublemma �����

Let us come back now to the proof of Lemma ����� Let x� y� z �
F � I and t � 	 be given� with

�����
 jx� yj � t jx� zj �

We want to show that

�����
 jh�x
� h�y
j � ��t
 jh�x
� h�z
j �

where � � �	��
 � �	��
 vanishes at the origin� is continuous at the
origin� and is bounded on bounded sets� �Lemma ���� is relevant here�


If all three of x� y� z lie in F � I� then we can use Lemma ���� to
get the required estimate�

If x � I� then we have that

����		
 jh�x
� h�y
j � C t jh�x
� h�z
j �

because of Sublemma ����� Thus we may assume that

����	�
 x � F � I� �

If both y and z lie in I�� then we get ����		
 again from Sublemma
����� If they both lie in F � I� then all three points lie there and we
are back to a case that we know� Thus we may require that

����	�
 exactly one of y and z lies in F � I� �
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Let us pause for a small observation�

Sublemma ���
�� If p � F � I� and q � I�� then jp� qj 	 C���

Indeed� in this case � jp � qj 	 dist �q� F 
� by Lemma ����� and
Sublemma ���	� follows from the assumption that q � I��

Let us come back now to the task of proving an estimate like �����

under the conditions �����
� ����	�
� and ����	�
� Assume �rst that
y � I�� In this case we have

����	�
 jx� yj 	 C���

by Sublemma ���	�� This implies that diamF � C t jx� zj� and so the
quasisymmetry of h on F � I� �Lemma ����
 implies that

����	�
 �  diam g�F 
 � C ��C t
 jh�x
� h�z
j �

where � is the function that controls the quasisymmetry of g� On the
other hand

����	�
 jh�x
� h�y
j � C jx� yj �

by Sublemma ����� and so

����	�


jh�x
� h�y
j � C t jx� zj
� C t diam �F � I�

� C t � C t ��C t
 jh�x
� h�z
j

by �����
 and ����	�
� This is the kind of estimate that we want�
Assume now that z � I�� so that x� y � F � I�� Notice that

����	�
 jx� zj 	 C��

and

����	�
 C�� jx� zj � jh�x
� h�z
j � C jx� zj

by Sublemmas ���	� and ����� Our assumption �����
 implies that
either

�����	
 jx� yj �
p
t
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or

������
 � �
p
t jx� zj �

Assume �rst that ������
 holds� Then we have that

������


jh�x
� h�y
j � diamh�F � I�

� C

� C
p
t jx� zj

� C
p
t jh�x
� h�z
j �

by ����	�
� This estimate does the job for this case� So suppose now
that �����	
 holds� In this case we have that

������
 jh�x
� h�y
j � ��
p
t


for a certain function � on �	��
 which vanishes at the origin� is con�
tinuous at the origin� and is bounded� Indeed� we have x� y � F � I� in
the present situation� and so ������
 follows from the quasisymmetry of
h on F � I� and �����
� �����
� Using ����	�
 and ����	�
 we get that

������
 jh�x
� h�y
j � C ��
p
t
 jh�x
� h�z
j �

which does the job in this case�
This completes the proof of Lemma �����

Note that we have not tried to give sharp estimates here� it was
more interesting to just get it over with�

Let us now �nish the proof of Proposition ����� Let S be as in
����
� and let us de�ne a mapping G on S� We set G  g on F � and if
x � I we set

������
 G�p
  h�x
 �
c dist �h�x
� g�F 



�	��dist �x� F 

�p� x
 for p � B�x
 �

Here c is chosen as in Lemma �����iii
 the ratio in ������
 is simply the
ratio between the radius of the ball �x
 de�ned in Lemma �����iii
 and
the radius of the ball B�x
 which is used in ����
� In fact G maps the
center of B�x
 to the center ��x
  h�x
 of �x
� by de�nitions� and so
we get that G�B�x

  �x
 for all x � I�
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We want to say that G � S � R
n is quasisymmetric with a suitable

bound� We apply Lemma ����� with A  F � H  G� and with the
balls Bi and i taken to be the B�x
�s and �x
�s� with the obvious
changes in notation� We have to check that the hypotheses of Lemma
���� hold in this case� The requirement that �the restriction of H
to A� is quasisymmetric� is satis�ed in this case because of Lemma
����� We just checked that H maps the Bi�s onto the i�s� and the
restriction of H to each Bi is a similarity� and hence quasisymmetric
with uniform bounds� We know from Lemma ��� that the doubles of the
Bi�s are disjoint� and they are disjoint from A  F by their de�nition�
Similarly the i�s have disjoint doubles because of Lemma �����iii
� and
the doubles are disjoint from H�A
  g�F 
 by their de�nition� The
bounds ����	
 also follow from the de�nitions of the Bi�s and i�s� Thus
the hypotheses of Lemma ���� are satis�ed in this case� and we conclude
that H � A� � R

n is quasisymmetric� which is the same as saying that
G � S � R

n is quasisymmetric� Of course we also get the correct
bounds�

This completes the proof of Proposition �����

�� The proof of Proposition �����

Let us address �rst a preliminary point�

Proposition ���� If F is a serious subset of Rn and g � F � R
n

is quasisymmetric� then g�F 
 is also serious� with a constant which

depends only on the seriousness constant of F and the function that

governs the quasisymmetry of g�

This is less amusing than Proposition ����� because it is really
a fact about �quasi�
 metric spaces rather than subsets of Euclidean
spaces�

Let x � F be given� For each 	 � t � diamF choose a point
y�t
 � F so that

����
 C��� t � jx� y�t
j � t �

where C� is the seriousness constant of F �

Claim ���� There is a constant C � 	 so that for each 	 � s �
diam g�F 
 we can �nd a 	 � t � diamF such that

����
 C�� s � jg�x
� g�y�t

j � C s �
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To prove the claim we use a continuity argument� We have that

����
 C��diam g�F 
 � jg�x
� g�y�t

j � C diam g�F 


when t � diam �F 
�� and diamF ��� because of ����
 and quasisym�
metry� and

����
 lim
t��

jg�x
� g�y�t

j  �

when diamF  �� The continuity of g implies that

����
 lim
t��

jg�x
� g�y�t

j  	 �

We also have that

����
 C�� jg�x
� g�y�t

j � jg�x
� g�y�t��

j � C jg�x
� g�y�t

j

when 	 � t � diamF � by quasisymmetry� The claim follows from these
three observations�

Proposition ��� follows easily from Claim ����

Now let us prove Proposition �����
Let S be a strong subset of Rn and let G � S � R

n be quasisym�
metric� We want to show that G�S
 is strong� with bounds� We know
from Proposition ��� that G�S
 is serious� Of course S is unbounded�
since it is strong� and so G�S
 is also unbounded� G�S
 is also closed�
since S is�

Let x � RnnG�S
 be given� Choose x� � G�S
 so that dist �x�G�S


 jx� x�j� and choose x� � G�S
 so that

����
 C�� jx� � x�j � jx� x�j � jx� � x�j �

We can do this because G�S
 is serious and unbounded�
We can apply Lemma ���� �with X  G�S
� f  G�� �remember

Lemma ���
� x  x�� y  x�� and z  x
 to get a point w � RnnS such
that

����	
 jw �G���x�
j � C jG���x�
�G���x�
j

and

�����
 dist �w� S
 	 C��jG���x�
�G���x�
j �
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Our assumption that S is strong implies the existence of a point v � S
such that

�����
 jw � vj � C dist �w� S


and

�����
 dist �v�RnnS
 	 C��dist �w� S
 �

Let us rephrase �����
 as

�����
 B�v� C��dist �w� S

 � S �

Set y  G�v
� We want to show that

�����
 jx� yj � C dist �x�G�S



and

�����
 dist �y�RnnG�S

 	 C��dist �x�G�S

 �

We shall derive these from �����
 and �����
 using the quasisymmetry
of G�

From ����	
 and �����
 we have that

�����

C�� jG���x�
�G���x�
j � dist �w� S


� C jG���x�
�G���x�
j �

Combining �����
 and ����	
 we get that

�����
 jv �G���x�
j � C jG���x�
�G���x�
j �

Since G is quasisymmetric we conclude that

�����
 jy � x�j � C jx� � x�j �

Using ����
 we can convert this into

����	
 jy � xj � C jx� x�j �

This implies �����
� because of our choice of x��
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It remains to prove �����
� which we can rewrite as

�����
 B�y� C��dist �x�G�S


 � G�S
 �

Of course the point is to use �����
� Let B denote the ball on the left
side of �����
� Because of invariance of domain we have that G�B
 is
an open subset of Rn which contains y�

Claim ����� dist �y�G�Bn�B��


 	 C��dist �x�G�S

 �

To see this we want to show that

�����
 dist �y�G�Bn�B��


 	 C�� jx� � x�j �

To prove this we use the quasisymmetry of G� Let z � Bn�B��
 be
given� Then

�����
 C�� jG���x�
�G���x�
j � jz � vj � C jG���x�
�G���x�
j �

because of �����
� This implies that

�����
 jz � vj 	 C�� jv �G���xi
j � i  	� � �

by �����
� Using this and quasisymmetry it is not hard to show that

�����
 jG�z
� yj 	 C�� jx� � x�j �

�Remember that y  G�v
�
 With �����
 in hand we get �����
 imme�
diately� and Claim ���� follows from ����
 and our choice of x��

Let us now use the claim to derive �����
� Let p � R
nnG�B
 be

chosen so that jp � yj is as small as possible� We can do this because
G�B
 is an open subset of Rn � and we also get that jp�yj � 	� Set pt 
y� t �p�y
 for 	 � t � �� so that each pt lies in G�B
� For t su�ciently
close to � we must have that pt � G�Bn�B��

 for if this were not the
case� then p would lie in G�B��
� in contradiction to our choice of p
�lying outside G�B

� Thus pt � G�Bn�B��

 for t su�ciently close to
�� and we conclude from Claim ���� that jp � yj 	 C��dist �x�G�S

�
This proves �����
�

Thus we have proved that G�S
 is a strong set� and Proposition
���� follows�
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�� The proof of Proposition �����

Let S be a strong subset of Rn � and let us try to prove �����
� It
su�ces to show that there is a constant k � � so that

����
 jS �B�p� k r
j 	 k�� jB�p� r
nSj

for all p � S and r � 	�
Let p � S and r � 	 be given� and let us apply Lemma ��� with

E  S and H  B�p� r
nS� Lemma ��� produces a subset I of H with
the properties listed there� From ����
 we get that

����
 jB�p� r
nSj � C
X
x�I

�dist �x� S

n�

Given x � I choose ��x
 � S so that

����
 jx� ��x
j � C dist �x� S


and

����
 dist ���x
�RnnS
 	 C��dist �x� S
 �

We can do this because S is strong� Note that these inequalities imply
that

����
 C��dist �x� S
 � dist ���x
�RnnS
 � C dist �x� S
 �

Given x � I� set

����
 �x
  B���x
� dist ���x
�RnnS
��
 �

From ����
 and ����
 we have that

����
 jB�p� r
nSj � C
X
x�I

j�x
j �

We want to use this to prove ����
�

Lemma ��	� For each x � I there are at most a bounded number of

z � I such that �x
 intersects �z
�



�
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Suppose that x� z � I satisfy �x
 � �z
  �� Then

����
 j��x
� ��z
j � �

�

�
dist ���x
�RnnS
 � dist ���z
�RnnS


�
�

This implies that

����	

�

�
dist ���x
�RnnS
 � dist ���z
�RnnS
 � � dist ���x
�RnnS
 �

Using ����
 we conclude that

�����
 C��dist �x� S
 � dist �z� S
 � C dist �x� S
 �

We also get that

�����
 jx� zj � C dist �x� S
 �

because of ����
� ����
� ����
� and �����
�
Let I�x
 denote the set of z � I such that �x
 � �z
  �� From

����
 and �����
 we obtain that

�����
 jy � zj 	 C��dist �x� S
 when y� z � I�x
� y  z �

It is easy to see that I�x
 can have only a bounded number of
elements� using �����
 and �����
� This proves the lemma�

Lemma ��� permits us to convert ����
 into

�����
 jB�p� r
nSj � C
��� �
x�I

�x

��� �

Let us check that

�����

�
x�I

�x
 � B�p� C r
 � S �

We have �x
 � S from the de�nition ����
� We also know that its
radius is bounded by C dist �x� S
� and this is at most C jx � pj � C r
for x � I� The inclusion �����
 follows easily from these observations�
and the fact that I � B�p� r
 by de�nitions�

Combining �����
 with �����
 we get ����
� This completes the
proof of Proposition �����
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�� The proof of Proposition �����

The proof of Proposition ���� is a straightforward consequence of
the previous results and the de�nitions� but let us be slightly careful�
Let S be a strong subset of Rn and let G � S � R

n be quasisymmetric�
as in the proposition� De�ne the measure � on Rn by ��A
  jA�G�S
j�
Note that G�S
 is a strong subset of Rn � because of Proposition �����
Thus

����
 C�� rn � ��B�x� r

 � C rn

for some constant C and all x � G�S
� r � 	� by Proposition ����� Of
course � has support equal to G�S
�

De�ne the measure 
 on R
n by 
�A
  jG�A � S
j� as in the

statement of Proposition ����� Thus 
 is a measure with support equal
to S which is obtained by pulling back � using the homeomorphism G�

That 
 is doubling on S� as in De�nition ���� a
� is easy to check�
using ����
 and the quasisymmetry of G� The point is that if we are
given x � S and r � 	� then we can �nd a ball B  B�G�x
� t
 such
that G�B�x� r
 � S
 
 B � G�S
 and G�B�x� � r
 � S
 � kB � G�S
�
where k is a constant that does not depend on x or r�

To see that 
 is a metric doubling measure on S� as in De�nition
�����b
� it su�ces to show that

����
 C�� jG�x
�G�y
j � 	�x� y
 � C jG�x
�G�y
j

for some C and all x� y � S� where 	�x� y
 is as in ����	
� This is
su�cient because d�x� y
  jG�x
 � G�y
j is obviously a metric on S�
To get these bounds the main point is that

����


B�G�x
� C�� jG�x
�G�y
j
 �G�S


� G�B�x� jx� yj
 � S


� B�G�x
� C jG�x
�G�y
j
 �G�S
 �

These inclusions follow from the quasisymmetry of G� Once we have
them ����
 follows easily from the de�nition ����	
 of 	�x� y
 and the
estimate ����
�

This completes the proof of Proposition �����
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�� The proof of Proposition �����

Let S be a strong subset of Rn � and let 
 be a metric doubling
measure on S� We want to �nd a metric doubling measure � on all of
R
n which equals 
 on S�

Let fQigi�I be a Whitney decomposition of RnnS� Thus the Qi�s
are closed cubes with disjoint interiors whose union is all of RnnS and
which satisfy

����
 diamQi � dist �Qi� S
 � � diamQi �

as in �St� Theorem �� p� �����
We shall use this Whitney decomposition to de�ne �� we shall

de�ne it in a simple way on each Qi and then combine the pieces� In
order to de�ne � on the Qi�s we need to look at 
 inside S� and we need
to use our assumption that S is a strong set�

For each i � I choose qi � Qi so that

����
 dist �qi� S
  dist �Qi� S
 �

Using the fact that S is a strong set we can �nd a cousin for each qi
inside S� namely a point pi such that

����
 jpi � qij � C dist �qi� S


and

����
 dist �pi�R
nnS
 	 C��dist �qi� S
 �

These inequalities imply easily that

����
 C��dist �qi� S
 � dist �pi�R
nnS
 � C dist �qi� S
 �

Given i � I set

����
 i  B�pi� dist �pi�R
nnS
��
 �

De�ne � by

����
 ��A
  
�A � S
 �
X
i�I


�i


jQij jA �Qij �
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We want to show that this is a metric doubling measure on Rn �
�It is not hard to see that ����
 is the right way to de�ne �� There

are various ways to package this extension� but basically there is only
one reasonable way to do it� and this is it�


The proof that � is a metric doubling measure is pretty straight�
forward� a matter of checking that certain things follow from certain
other things� We begin with some small technical observations� The
constants C that appear below are allowed to depend only on the di�
mension n� the metric doubling constants for 
� and the strongness
constant for S�

Lemma ��	� If Qi is a Whitney cube and dist �x�Qi
 � diam �Qi
��	�
then

����

�

�	
diamQi � dist �x� S
 � � diamQi �

This is an immediate consequence of ����
�

Lemma ���
� If two Whitney cubes Qi and Qj satisfy dist �Qi� Qj
 �
diam �Qi
��	� then

�����

�

�	
diamQi � diamQj � � diamQi �

This follows from ����
 and Lemma ����

Lemma ����� If two Whitney cubes Qi and Qj satisfy dist �Qi� Qj
 �
diam �Qi
��	� then

�����
 C�� 
�i
 � 
�j
 � C 
�i
 �

If Qi and Qj are as above� then

�����
 jpi � pj j � C diamQi �

by ����
� ����
� and �����
� Also the radii of both i and j are com�
parable to diamQi� because of ����
 and ����
� Thus we conclude that
i is contained in some bounded multiple of j � and vice�versa� The
doubling condition then yields �����
�
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Lemmma ����� For each i � I there is only a bounded number of

j � I such that i intersects j �

This is very similar to Lemma ���� If i � j  �� then one can
show that the radii of i and j are the same to within a factor of ��
for the same reason as in ����	
� This implies that

�����
 C��diamQi � diamQj � C diamQi

for some constant C� Next i � j  � implies that jpi � pj j �
C diamQi� because of ����
� ����
� and ����
� Using ����
 we get that

�����
 dist �Qi� Qj
 � C diamQi �

If we �x i� then there can be only a bounded number of j�s for which
�����
 and �����
 are valid� because the Qj �s have disjoint interiors�
Lemma ���� follows from this�

Lemma ���	� 
�B�x� r

 � ��B�x� r

 � C 
�B�x� r

 whenever x � S
and r � 	�

Let x � S and r � 	 be given� The �rst inequality is trivial� For
the second it su�ces to show that

�����
 ��B�x� r
nS
 � k 
�B�x� k r



for some constant k� since 
 is doubling on S�
Set J  fi � I � Qi � B�x� r
  �g� Then

����	
 ��B�x� r
nS
 �
X
i�J


�i
 �

by the de�nition ����
 of �� Lemma ���� permits us to convert this into

�����
 ��B�x� r
nS
 � C 
�
�
i�J

i
 �

Thus we are reduced to proving that

�����

�
i�J

i � S �B�x�C r
 �
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Of course the i�s are all contained in S� by their de�nition� and so it
is just a question of showing that i � B�x�C r
 for all i � J � If i � J �
then dist �Qi� S
 � dist �Qi� x
 � r� Hence diamQi � r� by ����
� and
so jpi � xj � C r� by ����
 and ����
� We also get that the radius of i
is bounded by C r� by ����
 and ����
� Therefore i � B�x�C r
� and
�����
 follows� Of course �����
 follows from �����
 and �����
� and so
the proof of Lemma ���� is complete�

Lemma ����� � is a doubling measure on Rn �

Let x � Rn and r � 	 be given� We want to prove that

�����
 ��B�x� �r

 � C ��B�x� r

 �

If x � S� then this follows from Lemma ���� and the doubling
condition for 
� Thus we may assume that x � RnnS�

Suppose that r 	 � dist �x� S
� Pick a point z � S such that jx �
zj  dist �x� S
� Then

�����
 ��B�x� r

 	 ��B�z� r��

 �

Since z � S we can use the preceding case to conclude that

�����
 ��B�z� r��

 	 C����B�z� �r

 �

Clearly B�z� �r
 
 B�x� �r
� and so we get �����
 in this case�
Now suppose that r � �	��dist �x� S
� Fix a Whitney cube Qi such

that x � Qi� Then dist �x� S
 � � diamQi� by Lemma ���� and therefore
every element z of B�x� �r
 satis�es dist �z�Qi
 � � r � diam �Qi
��	�
This means that if j � I and Qj intersects B�x� �r
� then C��
�i
 �

�j
 � C
�i
� by Lemma ����� For this set of j�s !let us call it J!
we also have that jQj j is comparable to jQij� because of Lemma ���	�
Of course B�x� �r
 does not intersect S in this case� and so we get

��B�x� �r

 
X
j�J


�j


jQj j jB�x� �r
 �Qj j

� C
X
j�J


�i


jQij jB�x� �r
 �Qj j

 C

�i


jQij jB�x� �r
j
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� C

�i


jQij jB�x� r
j�����


 C
X
j�J


�i


jQij jB�x� r
 �Qj j

� C
X
j�J


�j


jQj j jB�x� r
 �Qj j

 ��B�x� r

 �

�In brief� � is comparable in size to 
�i
�jQij times Lebesgue measure
on B�x� �r
� We shall use this again in the proof of Lemma ���� below�

Thus we have �����
 under these circumstances as well�

We are left with the case where �	��dist �x� S
 � r � � dist �x� S
�
Again choose i � I so that x � Qi� and observe that

�����
 ��B�x� r

 	 
�i


jQij jB�x� r
 �Qij 	 C�� 
�i
 �

This uses Lemma ��� too� In this case there is a constant k � � such
that

�����
 k i 
 B�x� �r
�

Indeed� the radius of i is comparable to diamQi� and hence to r� by
Lemma ���� and the distance from x to i is bounded by C diamQi �
C r� by ����
� ����
� and ����
� The inclusion �����
 follows from these
facts� The doubling condition for 
 together with Lemma ���� implies
that

����	
 
�i
 	 C�� 
�k i
 	 C�� ��k i
 	 C�� ��B�x� �r

 �

Thus we get �����
 from combining �����
 and ����	
�
This completes the proof of Lemma �����

Remark ����� For the proof of Lemma ���� we did not need to know
that 
 is a metric doubling measure on S� In other words� if S is a
strong set and 
 is doubling on S� and if we de�ne � as above� then �
is a doubling measure on Rn �

It remains to prove that � is a metric doubling measure� Let
	��x� y
 be de�ned for x� y � S as in ����	
� and let 	��x� y
 be de�
�ned for all x� y � Rn in the analogous manner� Our assumption that
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 be a metric doubling measure on R
n means that there is a metric

d��x� y
 on S such that

�����
 C�� d��x� y
 � 	��x� y
 � C d��x� y
 �

for all x� y � S�
There is a simple compatibility property between 	��x� y
 and

	��x� y
� which is given by the following�

Lemma ����� 	��x� y
 � 	��x� y
 � C 	��x� y
 for all x� y � S�

This is an easy consequence of Lemma ���� and the de�nitions�

We shall prove that � is a metric doubling measure using the fol�
lowing criterion�

Lemma ����� In order to show that � is a metric doubling measure

on Rn it su�ces to show that there is a constant C� so that

�����
 	��x�� xk
 � C�

k��X
i��

	��xi� xi��
 �

for any �nite sequence fxigki�� of points in Rn � k 	 �� �Of course C�

is not permitted to depend on k�


This is Lemma ��� in �S��� It is proved by taking d�x� y
 to be the

in�mum of
Pk��

i�� 	��xi� xi��
 over all �nite sequence fxigki�� of points
in Rn � k 	 �� which connect x to y� The inequality �����
 follows then
from �����
� and d�x� y
 is a metric because the triangle inequality is
built into its de�nition�

Note that the su�cient condition of the lemma is also necessary�
The proof that � satis�es this criterion is not di�cult but neither

is it so lovely� We begin with some minor technical observations�

Lemma ����� 	��x� y
 is a quasimetric� i�e�� there is a constant C � 	
so that

�����
 	��x� z
 � C �	��x� y
 � 	��y� z

 �

for all x� y� z � Rn �
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This is a straightforward consequence of the doubling property for
��

Lemma ���	� De�ne B�p
 for p � Rn by B�p
  B�p� �	��dist �p� S

�
�Thus B�p
  fpg when p � S�
 Then there is a number �  ��p
 and

a constant C such that

�����
 C�� � jx� yj � 	��x� y
 � C � jx� yj �
for all x� y � B�p
�

Indeed� let p be given as above� and assume that p �� S� since
otherwise the lemma is trivial� Choose i � I so that p � Qi� The same
sort of argument as used in the paragraph containing �����
 yields

����	
 C��

�i


jQij jAj � ��A
 � C

�i


jQij jAj

when A � �	B�p
� Once we have this we get �����
 from the de�nition

of 	��x� y
� with �  �
�i
�jQij
��n� This proves Lemma �����

In Lemma ���� we do not have any control over the number �� but
we do not care� Once we know that 	��x� y
 is comparable to a multiple
of the Euclidean metric on B�p
 we have the information that we need�
�All we really need to know is that it is comparable to some metric
there�


Let us now start to prove that � is a metric doubling measure� Let
a �nite sequence fxigki�� of points in Rn be given� as in Lemma �����
and let us try to prove �����
�

Lemma ����� We can �nd a subsequence fyigji�� of fxigki�� �i�e�� the
yi�s are taken from the xi�s� with no repetitions� and the ordering is

preserved
 with the following properties

y�  x� � yj  xk ������


there exists � � l � j such that yi�� �� B�yi
�����


when � � i � l and yi � B�yl
 when i 	 l �

j��X
i��

	��yi� yi��
 � C
k��X
i��

	��xi� xi��
 ������
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This is pretty easy to prove� Let us �rst choose some integers
��m
 as follows� Set ���
  �� If xi � B�x�
 for all i � � then we stop�
otherwise we choose ���
 to be the smallest i � � such that xi �� B�x�
�
If ���
� � � � � ��m
 have been chosen already then we proceed as follows�
If xi � B�x��m	
 for all i � ��m
 then we stop� Otherwise we choose
��m� �
 to be the smallest integer i � ��m
 such that xi �� B�x��m	
�
Of course we are always restricting ourselves to i � k here�

Let l denote the largest value of m for which ��m
 is de�ned� Set
yi  x��i	 when � � i � l and set yl�i  x��l	�i for as long as this
make sense� More precisely� we do nothing for the second de�nition if
��l
  k� and otherwise we use it for � � i � k���l
� This de�nes our
subsequence fyigji��� with j  l � k � ��l
�

It is not hard to check that �����
 holds� by construction� We also
have �����
 automatically from our construction�

Let us check �����
� It su�ces to show that

�����
 	��yi� yi��
 � C

��i��	��X
m���i	

	��xm� xm��


when i � l� Keep in mind that yi  x��i	 and yi��  x��i��	 here� We
may as well assume that ��i� �
 � ��i
 � �� otherwise �����
 is trivial�
By construction we have that xm � B�x��i	
 when ��i
 � m � ��m��
�
From Lemma ���� we conclude that

�����
 	��x��i	� x��i��	��
 � C

��i��	��X
m���i	

	��xm� xm��
 �

That is� Lemma ���� permits us to get back to the triangle inequality
for the Euclidean metric in this case� On the other hand we have that

�����

	��x��i	� x��i��	
 � C

�
	��x��i	� x��i��	��


� 	��x��i��	��� x��i��	

�

by Lemma ����� Combining this with �����
 yields �����
� The estimate
�����
 follows from �����
�

Of course it is very important here that these constants C do not
depend on k or l or the xi�s� etc�

This completes the proof of Lemma �����
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We let fyigji�� and l be as in Lemma ���� from now on� In order
to prove �����
 it su�ces to show that

�����
 	��y�� yj
 � C

j��X
i��

	��yi� yi��
 �

This assertion follows from �����
 and �����
�

Lemma ���� In order to prove �����
 we may assume that l � �� and
it su�ces to show that

����	
 	��y�� yl
 � C
l��X
i��

	��yi� yi��
 �

The point here is that we have replaced the j in �����
 with l� In
particular we may as well assume that l � j� otherwise there is nothing
to do�

To prove the lemma we observe that

�����
 	��yl� yj
 � C

j��X
i�l

	��yi� yi��
 �

Indeed� we have that yi � B�yl
 when i 	 l� because of �����
� and so
�����
 follows from Lemma ����� Once we have �����
 we see that �����

is automatic when l  �� and that �����
 would follow when l � � if we
had ����	
� because of Lemma ����� This proves Lemma �����

Thus we assume from now on that l � �� and we want to prove
����	
�

Choose zi � S� � � i � l� so that

�����
 jzi � yij  dist �yi� S


for each i� Thus zi  yi when yi � S�

Lemma ����� 	��zi� yi
 � 	��zi��� yi��
 � C 	��yi� yi��
 for � � i � l�

Indeed� we know from �����
 that yi�� �� B�yi
� whence jyi���yij 	
�	��dist �yi� S
� This implies that jyi�� � yij 	 �	�
dist �yi��� S
� as
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one can check� �If jyi�� � yij � �	�
dist �yi��� S
� then dist �yi� S
 �
� dist �yi��� S
� etc�
 Once we have these inequalities it is not hard
to derive Lemma ���� from the de�nition of 	��x� y
 and the doubling
property for ��

Lemma ����� 	��z�� zl
 � C
l��X
i��

	��yi� yi��
 �

Indeed� Lemma ���� implies that

�����

l��X
i��

	��zi� zi��
 � C
l��X
i��

	��yi� yi��
 �

Here is where we use our hypothesis that 
 is a metric doubling measure�
Because the zi�s lie in S we have that 	��zi� zi��
 � 	��zi� zi��
 for each
i� as in Lemma ����� Thus

�����

l��X
i��

	��zi� zi��
 �
l��X
i��

	��zi� zi��
 �

The metric doubling condition for 
 �see �����

 implies that

�����
 	��z�� zl
 � C

l��X
i��

	��zi� zi��
 �

Combining these inequalities we get

�����
 	��z�� zl
 � C
l��X
i��

	��yi� yi��
 �

This implies Lemma ����� because of Lemma �����

Lemma ���� 	��y�� yl
 � C
l��X
i��

	��yi� yi��
 �

This follows from Lemmas ����� ����� and �����

Lemma ���� asserts the validity of ����	
� Lemma ���� implies that
�����
 holds� and we saw already that �����
 implies that �����
 is true�
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Thus we have proved that � satis�es the criterion for being a metric
doubling measure in Lemma �����

This completes the proof of Proposition �����

Acknowledgements� I am grateful to Guy David� Juha Heinonen�
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A theorem of Semmes

and the boundary absolute

continuity in all dimensions

Juha Heinonen

Abstract� We use a recent theorem of Semmes to resolve some ques�
tions about the boundary absolute continuity of quasiconformal maps
in space�

In �S��� Semmes proves that the quasisymmetric image of any set in
R
d � d � �� of d�measure zero is again of d�measure zero� More formally�

if F � R
d � d � �� and if h 	 F � R

d is a quasisymmetric embedding�
then

Hd
F � �  if and only if Hd
h
F �� �  �

Here and hereafter� Hp denotes the p�dimensional Hausdor� measure
for some positive integer p� Recall that an embedding h 	 F � R

d is
quasisymmetric if there is a homeomorphism � 	 ���� � ���� so
that

jx� aj � tjx� bj implies jh
x�� h
a�j � �
t�jh
x�� h
b�j �

for all x� a� b � F � Semmes�s theorem has important consequences for
the problem of boundary absolute continuity of quasiconformal maps
in space� as will be explained in this note� In particular� we shall give
a positive answer to Problem � in �H�� Section ��� and thereby improve
upon the main result in �H���

���
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First we require some de�nitions� Suppose that A � X � R
n � We

say that A is linearly locally connected in X if there is a constant C � �
so that� for all a � A and r � �

�� points in A �B
a� r� can be joined in X � B
a� Cr�� and

�� points in A nB
a� r� can be joined in X nB
a� r�C��

Here joining means joining by a continuum� B
z� t� is an open
n�ball with center z and radius t� and bar denotes the closure� The
importance of the concept of linear local connectivity in the quasicon�
formal mapping theory was observed by Gehring in the sixties 
in the
nonrelative form� where A � X��

A metric space Y is said to be a bi�Lipschitz p�ball if there is a
bi�Lipschitz homeomorphism � of the open unit ball B p of Rp onto Y �
A metric space E is said to be contained in a bi�Lipschitz p�ball Y if
there is an isometric embedding i 	 E � Y �

Finally� recall 
from geometric measure theory� that a subset of Rn

is p�recti�able if it is contained in a countable union of Lipschitz images
of Rp plus a set of Hp�measure zero� a set is purely p�unrecti�able if it
contains no p�recti�able subset of positive and �nite Hp�measure�

Theorem �� Suppose that f is a quasiconformal mapping of B n onto

a domain D � R
n � n � �� and that A � D is bounded� pathwise

connected� and linearly locally connected in D� If E � A � �D is such

that Hn��
E� �  and Hn��
f
��
E�� � � then there is no bi�Lipschitz


n����ball containing E� If E � A��D is such that Hn��
f
��
E�� �

� then E is purely 
n� ���unrecti�able�

The meaning of f��
E� will be explained in the proof below� note
that a priori f�� is not de�ned on A � �D� Also note that the second
assertion is non�vacuous only if E has positive� possibly in�nite 
n����
measure�

Theorem � says� in particular� that if n � �� then a quasiconformal
homeomorphism f 	 B n � D preserves the null sets of Hausdor� 
n����
measure on the part of the boundary �D that both lies on a bi�Lipschitz

n � ���ball and can be touched from inside of D by a nice subset A�
Notice� however� that we do not require that A meet the boundary in
rectilinear cones� or anything like it� in principle� A can be a fractal
object wildly twisting and spiraling when approaching �D�

The �rst assertion in Theorem � is reminiscent of the Bishop�Jones
theorem �BJ�� which claims that if f is a conformal map of B � into the
complex plane that maps 
via its radial extension� a subset E � �B �
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of positive length onto a set f
E� of zero length� then f
E� cannot
lie on a recti�able curve� It is well�known that Theorem � is false for
quasiconformal maps in dimension n � ��

Proof� The proof is simply a combination of Semmes�s aforementioned
theorem �S�� and the generalized subinvariance principle �H�� Theorem
����� It follows from �H�� ���� that

f�� 	 A �� f��
A�

is a quasisymmetric map� and hence extends to a quasisymmetric map

f�� 	 A �� f��
A� �

We understand f��
E� � f��
A� precisely as the image of a set E �
A� �D under this extension� which is uniquely determined by f � Note
that the inverse of a quasisymmetric map is quasisymmetric as well� so
we have a quasisymmetric map


�� 
f����� 	 f��
A� �� A �

A couple of remarks need to be made here� The domains D and D� in
�H�� ���� are assumed to be bounded� but this is a redundant assumption
which was unfortunately made in �H��� if we only assume that A is
bounded� the same proof works verbatim� Also� the assumptions on
A in �H�� ���� are slightly di�erently phrased� but easily seen to be
equivalent to the assumptions of Theorem � above�

Suppose now that E � A � �D satis�es Hn��
E� � � Suppose
also that � 	 B n�� � Y is a bi�Lipschitz homeomorphism such that Y
contains E� and let i 	 E � Y be an isometric embedding� Then the
quasisymmetric embedding

h � ��� 	 i 	 
f����� 	 f��
E� �� R
n��

maps the set f��
E� � �B n into R
n�� � Here 
f����� is the map given

in 
��� Because n � � � �� we can apply Semmes�s result to the map
h� 
The fact that the set f��
E� lies on a smooth 
n� ���dimensional
surface �Bn instead of Rn�� makes of course no di�erence here�� The
conclusion Hn��
f

��
E�� �  then follows upon observing that bi�
Lipschitz maps preserve the null sets of every Hausdor� measure Hp�
This proves the �rst assertion of the theorem�
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The proof of the second assertion follows similarly� We need a
theorem about Lipschitz maps 
see �F� �������	 if h 	 B p � R

n � � �
p � n� is Lipschitz such that the image h
B p� has positive p�measure�
then there is a subset in h
B p� of positive p�measure on which h has a
Lipschitz inverse� The rest is de�nition and Semmes�s theorem� This
completes the proof of Theorem ��

A point w lying on the boundary of a domain D in R
n is said to

be an interior cone point of D if� for some ball B � D� the cone

wB � f	w � 
x 	 x � B � 	� 
 �  � with 	� 
 � �g

lies in D 
 fwg� Note that the height and the opening of the cone is
allowed to depend on w� Denote by ICD the subset of �D consisting of
all the interior cone points of D�

Theorem �� Suppose that f is a quasiconformal mapping of B n onto

a domain D � R
n � n � �� Then� for any set E � ICD� we have that

Hn��
E� �  if and only if Hn��
 �f
��
E�� � � where �f denotes the

radial extension of f which exists outside a set of n�capacity zero� hence

of Hausdor� dimension zero� on �B n �

Remarks �� a� The fact that �f
z� � limr�� f
rz� exists for z � �B n

outside an exceptional set of zero n�capacity is well known� Moreover�
an easy application of the quasiconformal Lindel�of�s theorem shows
that� for each w � ICD� there is a point z � �B n such that �f
z� � w�

b� A weaker version of Theorem � where ICD is replaced by the
set of boundary points admitting both an exterior and interior cone�
was proved in �H�� in dimensions n � �� n �� �� Again� the theorem is
false in dimension n � ��

Proof� Suppose that E � ICD with Hn��
E� � � It follows by
standard arguments 
cf� �H�� Proof of Theorem ����� that there is a
subset in E of positive Hn�� measure that lies on the boundary of a bi�
Lipschitz n�ball A contained in D� 
The set A is a union of cones of the
form wB� w � E� where B has rational radius and rational coordinates
for its center�� Because A is a bi�Lipschitz ball� it is linearly locally
connected and its boundary is a union of two bi�Lipschitz 
n� ���balls�
It thus follows from Theorem � that Hn��
 �f

��
E�� � � A similar
argument shows that Hn��
 �f

��
E�� �  if Hn��
E� �  for E � ICD�
The theorem follows�
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Theorem � is interesting� and new� already in the case when A � D�
which is equivalent to f being quasisymmetric in all of B n � A suf�
�cient 
but not necessary� condition for this occurrence is that f be
quasiconformally �at � i�e� f extends to a quasiconformal homeomor�
phism R

n � R
n � What is more� Semmes�s result brings some new light

into the absolute continuity properties of quasisymmetric embeddings
of lower dimensional sets into R

n � For completeness� we record the
following theorem�

Theorem �� Suppose that E � R
p and that f 	 E � R

n is

a quasisymmetric embedding� where � � p � n� If Hp
E� �  and

Hp
f
E�� � � then there is no bi�Lipschitz p�ball containing f
E�� If

Hp
E� � � then f
E� is purely p�unrecti�able�

Proof� The �rst assertion is an immediate corollary of Semmes�s
theorem� the second assertion likewise reduces to it upon invoking �F�
������ as in the proof of Theorem ��

Remarks �� a� Gehring �G� 
quasiconformally �at case� and V�ais�al�a
�V� 
the general case� proved that if f is a quasisymmetric embedding
of an open set G � R

p into R
n � where � � p � n� and if the p�measure

of f
G� is �nite� then f is absolutely continuous� that is� Hp
f
E�� � 
if Hp
E� �  for E � G� It is not known� even if f is quasiconformally
�at� whether f�� is absolutely continuous in this case�

b� Stephen Semmes raised the interesting question whether it is
always the case that the quasisymmetric image inside Rn of a set E �
R
p of positive p�measure has positive p�measure� Here � � p � n� No

counterexamples are known to me� and the only positive results that are
known assume that the map is de�ned in a neighborhood of E whose
image is an Ahlfors�David p�regular set� cf� �S�� ����� �H�� ����� In
contrast to the equidimensional case required in �S��� the case p � n
is not symmetric any more in that a set E � R

p of zero p�measure
may easily transform to a set of positive p�measure� or to a set of lower
dimension� under a quasisymmetric embedding f 	 E � R

n � in fact�
it is well known that this can happen for a global quasiconformal self
map f of Rn � The point in Semmes�s question is that E has positive
measure in top dimension� One may also wonder what happens if the
range space Rn is replaced by an arbitrary metric space�

c� A question similar to the one in b� arises in the study of the
boundary behavior of a quasiconformal map f 	 B n � R

n � Thinking of
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f being de�ned capacity almost everywhere on �B n 
cf� Remark ��a���
one may ask how small can the set f
E� be for E � �B n of positive

n����measure� To this e�ect� it was shown in �HK� that the Hausdor�
dimension of f
E� is at least 
�K������n�� if f is K�quasiconformal� It
is possible that� for n � �� the Hausdor� dimension of f
E� has a lower
bound that does not depend on K� and it is possible that this bound
be n � �� If the latter is true� we would have an analog of Makarov�s
theorem for quasiconformal maps in space�

One is tempted to approach this problem by trying to embed f
E�
into Rn�� by a bi�Lipschitz map� if the dimension of f
E� is low� Then
Semmes�s result would give a contradiction� However� such attempts are
futile� as there are countable sets in R

� that do not admit bi�Lipschitz
embeddings into R� � For example� one can take the three�fold Cartesian
product of the sequence f�� ���� ���� � � �g� 
I learned this example from
Jouni Luukkainen��

d� One could replace throughout the text a bi�Lipschitz p�ball Y
by a quasisymmetric p�ball Y that has the additional property that
all quasisymmetric homeomorphisms h 	 B p � Y preserve null sets
of Hausdor� p�measure� The family of such spaces Y is known to be
strictly larger than the family of bi�Lipschitz balls 
see �S��� �S���� but
whether or not a given space is in this family is quite di�cult to check�
This is of course true for bi�Lipschitz balls as well� I simply chose to
formulate the theorems in this paper in terms of the latter�

Acknowledgements� I thank Stephen Semmes and the referee for
some useful remarks�
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Analysis on Lie groups

Nick Th� Varopoulos

Dedicated to the memory of my mother

�� Introduction�

���� Statement of the theorems�

In what follows G will denote a real connected Lie group and � �
�Pn

j��X
�
j � X� will denote some subelliptic left invariant Laplacian

�cf� ���	
 This� for us here� will mean that X�� X�� � � � � Xn are left
invariant �elds on G �i�e� Xfg � �Xf	g� fg�x	 � f�gx		 and that
X�� � � � � Xn are generators of the Lie algebra of G �i�e� together with
all their successive brackets they span the Lie algebra of G �cf� ��		

I shall denote by dg � d�g the left Haar measure of G and by drg �
d��g��	 � m�g	 d�g the right Haar measure and by m�g	 � mG�g	 the
modular function


We can then construct Tt � e�t� �t � �	 the Heat di�usion semi�
group and �t�g	 the corresponding Heat di�usion kernel that is de�ned
by

Ttf�x	 �

Z
G

f�y	�t�y
��x	 dy � t � �� x � G� f � C�

� �G	 �

When X� � � we say that � � �� is driftless
 A driftless Laplacian ��

is formally self adjoint with respect to drg
 It follows that the modi�ed
Laplacian �� � m�����m

���� is formally self adjoint with respect to
dg
 It is then more convenient to consider the modi�ed semigroup
�Tt � m���e�t��m���� and it is very easy to see �cf� ���	 that the

���
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L��G� drg	 � L��G� drg	 norm of the operator Tt � e�t�� �which is
the same as the L��G� dg	 � L��G� dg	 norm of �Tt	 satis�es

kTtk��� � e��t �

where � is the spectral gap of �� de�ned by�

� � inf

�Z
G

jrf j� drg �

Z
G

f� drg � �

�
�

where jrf j� �
Pn

j�� jXjf j�

In Chapter � of this paper we shall give an algebraic classi�cation

of g� the Lie algebra of G� into two classes� the B�algebras and the
NB�algebras
 We say of course that G is a B� �respectively NB�	 group
if g is a B� �respectively NB�	 algebra
 We shall refer the reader to
Chapter � for the precise de�nition that is algebraically very natural
but fairly long to explain
 In general terms one considers the minimal
parabolic subgroups P �cf� ��� for the de�nition of these subgroups
when G is semisimple
 Here we extend the notion to general Lie groups
by considering �maximal amenable subgroups� or rather a special class
of such subgroups	
 One then considers the corresponding dynamical
system Ad�P 	 and the classi�cation amounts to the �hyperbolicity� or
not of that system
 If we denote� here and throughout� by e � G the
neutral element of G we have

Theorem A� Let G be a Lie group as above and let �� be a driftless

Laplacian� let further �t � C��G	� � � � be the corresponding heat

di�usion kernel and spectral gap respectively� Then

A�	 If we assume that G is a B�group then there exists C� c��
c� � � such that

��
�	
C�� exp ��� t� c� t

���	 � �t�e	

� C exp ��� t� c� t
���	 � t � � �

A�	 If we assume that G is an NB�group then there exists C � ��
� � � such that

��
	 C��t��e��t � �t�e	 � C t��e��t � t � � �
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By the standard local Harnack estimate �cf� ���� ���	 we can of
course replace �t�e	 by �t�g	 �g � G	 but then the constant C � C�g	 �
� depends on g


Observe that the upper estimate ��
	 with � � � is very easy �cf�
���	
 The proof that the same index � � � can be used for both the
upper and the lower estimate in A�	 is very technical
 This will be
done elsewhere
 Here we shall show that some � � � exists for which
the lower estimate in ��
	 holds


Another way to write the Heat di�usion semigroup is Ttf � f � �t
where d�t�g	 � �t�g	 drg is a probability measure on G that in addition
has a number of properties that quali�es it to be a �Gaussian� �Gs in
short�	 measure on G in a sense that we shall make precise in Chapter
�
 For any bounded measure � on G� I shall denote by k�k��� the
L��G� drg	 � L��G� drg	 norm of the operator f � f � �
 We have
then

Theorem B� Let G be a B�group as above and let � � P�G	 be a

Gs�probability measure on G� Then there exists c � � such that for all

	 � C�
� �G	 we have

��
�	 h	� ��ni � O
�
k�nk��� e

�cn���
�
�

The above clearly �cf� ���	 contains the upper estimates of ��
�	

It is easy to see that in the estimate ��
�	 we can replace k�nk���

by 
��	n where 
��	 � �� the spectral radious of � �i�e� the spectral
radious of the operator f � f ��	
 The above theorem also holds if we
replace the Gs�measure � � P�G	 by some measure that is compactly
supported and has continuous �or even just L�	 density
 The proof is
but an easy modi�cation of the one given in this paper and is if anything
easier
 The details will however not be given here
 Observe �nally that
for symmetric measures we can easily adapt our methods to give lower
estimates in Theorem B that are in the same spirit as Theorem A


���� Guide to the paper�

Chapter � is pure algebra and it presents some independent inter�
est
 Chapter  analyzes the geometry of Lie groups and it shows how
the spectral gap can be �isolated� from the rest of the decay of the
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Heat kernel
 Both the above sections are basic and are likely to play
an important role in further developments
 Chapter � is technical and
is only one among many possible approachs to carry out the details of
the proof of the upper estimates
 The proof of the upper estimate is
completed in chapter � where a fair amount of global structure theory
of Lie group is needed
 Observe however that for these upper estimates
one needs chapter  only up to Section 
� and one needs very little al�
gebra �essentially only the de�nitions of B�groups	
 A good way for the
reader to start with this paper seems to me therefore to go streight for
that upper estimate in chapter � and refer back to chapter �� chapter
 as needed
 For the upper estimate one also needs Section B in the
appendix


Almost all of the algebra and the more intricate parts of chapter
 are only needed for the lower estimates
 In the proof of the lower
estimate of ��
	 one more �rather unexpected	 di�culty arises
 The
proof as I give it here is considerably easier if � is elliptic
 The com�
plications that arise when � is only subelliptic are quite formidable

This distinction disappears in the alternative� much more sophisticate
�at the potential theoretic level	� approach that will be used to show
that the same � can be used for the upper and lower estimate at ��
	

This approach will be presented elsewhere
 My advise to the reader is
therefore to ignore that di�culty and pretend� at least in a �rst reading�
that � is elliptic


The role of the appendix is crucial since it contains all the proba�
bility and potential theory that is needed in the rest of the paper
 The
appendix can �and should	 be studied independently� and it has its own
independent �guide to the reader� where I explain in particular what is
needed for what
 Whether it was a good idea to separate the material
in this way is of course debatable
 One thing is certain� this paper is
very long and putting the appendix apart made my life a little easier


Chapter OV� An overview�

The aim of this chapter �which properly speaking is not part of the
paper since it was written after the rest of the writting was completed	
is to give to the reader an overview of the subject that is developed in
this paper as well as in some of my previous work in the area


The material is presented here in general terms and with an em�
phasis on ideas and on the �intuitive picture�
 The price that one pays
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for this is in the precision or even in the accuracy in the presentation
 I
warn the reader that many assertions made in this chapter are� as such�
incorrect
 The �deviation� from what is actually correct however can
be controled and one can say that the aim of this work is to make these
ideas into real mathematics


The only thing that a non expert needs for the reading of this
chapter is the de�nition of a semidirect product A i B of two groups
�cf� ���	 and to have some idea of what a random walk and brownian
motion is �cf� ����	
 In reading the �rst two sections of this chapter
the reader could also pro�t from ����� ���� �in ���� some explanation is
o�ered for the missing page in ����	


OV��� The ax � b group�

Let G be the �only non abelian	 two dimensional Lie group of a�ne
transformations on R� 
 � x �� ax � b �x � R	 with � � a � e� � R��
and �� b � R
 This group is the semidirect product R i R�� since


�
� � x ��� a�a� x � b� a� � b� �

where the action of R�� on R is b �� ba

Let us now consider two probability distributions �� � P�R�� 	�

� � P�R	 and let � � �� �� be the �product� measure that we obtain
on G by putting � on R and �� on R�� 


The beginning of the present work was when several years ago I
observed that one could represent the random walk on G generated
by � �alternatively the convolution powers ��n	 in a very simple and
managable way
 This idea I shall explain in this section


Let �gn � �xn� s
�
n	 � G � n � �� be the paths of that random walks

which formally is de�ned by P �gn�� � dx � gn � y� � d��y��x	
 By
projecting G � R�� we see that s�n � x�� 	 	 	x�n performs a �multiplica�
tive	 random walk on R�� �
� R	 with transition probability ��
 The
motion of xn � R does not� on the other hand� obey a simple stochastic
law and there lies the di�culty of the problem


The key observation is that once we ��x� �i�e� condition in formal
probabilistic terms	 the path  � �s��� s

�
�� � � � 	 of the random walk on R��

then the motion x�� x�� 	 	 	 � R also becomes Markovian
 The Markov
process that we thus obtain is time inhomogeneous and we have

P �xn�� � dx �� xn � y � � � d�n �x� y	 �
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where �n is the measure on R that is obtained from � after the dilatation
x �� s�nx �x � R	


This idea� simple though it is� goes a long way
 Let us for simplicity
make the assumption that � � N ��� �	 is a normal �i�e� Gaussian	
variable �mean zero and covariance �	
 Then �n � N ��� s�n	
 From this
we can easily estimate the return probability of our random walk

p�n	 � P
�
gn � ��b�� b��i �a��� � a�� � G

�
for some �xed � � b� � R� a� � R�� 
 The �rst step is to estimate the
return probability of the conditioned random walk �i�e� �xed 	 and
this is clearly

�OV
�	 �s�� � s�� � 	 	 	� s�n	���� 

�Z n

�

eb�s	 ds

	����
�

where �b�s	 � R � s � �	 denotes standard Brownian motion
 The
reason why we take eb�s	 is that � �� e� is the standard homomorphism
between the additive R and R�� 
 We then clearly have to take the
expectation of the expression �OV
�	 demanding in addition that b�n	
returns to � i�e� we have the estimate

�OV
	 p�t	 
 E


�Z t

�

eb�s	 ds

	����
� b�t	 � ���� ��

�
�

Brownian functionals as this� have become a big industry these days
and are being considered by several authors under the glamorous and
sexy label of �Financial Mathematics�
 This is as good a name as any
for the �avour of the month� I am sure� but all we need is

p�t	 
 t���� � t�� �

Instead of considering a random walk on G we can take an analytic
point of view
 We should consider then X� X� two invariant unit �elds
along the one parameters subgroups R and R�� of G and � � �X��X�

�
the corresponding invariant Laplacian
 If �t�g	 denotes the kernel on
G of the heat semigroup e�t� generated by � we have

�t�g	 
 p�t	 
 t���� � t�� �

The task that lies ahead is twofold�
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�	 to show that the above geometric construction generalizes to an
arbitrary Lie group�

	 to estimate the corresponding Brownian functionals thus ob�
tained


Both the above tasks are quite formidable at the technical level

In the rest of this chapter� I shall try as much as possible to clarify the
general picture


OV��� The barrier problem for random walks�

In this section I shall swich back to standard random walk

Sn � X� � 	 	 	� Xn � R �

where Xj are i�i�d� Bernoulli �i�e� P�Xj � �� � ��	 variables
 The
issue in �OV
	 is of course to estimate

p��n	 � E

�� nX
j��

eSj
	�A

� Sn � �


�

So that
p��n	 � E

�
e�AMn � Sn � �

� 
 n���� �

where Mn � sup��j�n Sj �recall that Sj 
� �Sj	
 The above asymp�
totic is obtained because the expectation can be explicitely computed

Indeed there exist standard formulas for the probabilities �cf� ����	

P
�
Mn � � � Sn � �

�
� P

�
Sj � � � j � n lies below the barrier � � Sn � �

�
�

We can now use the �maximal oscilation�

osc �t	 � sup
��t��t��t

jb�t�	� b�t�	j � jt� � t�j � � �

which is a very �small� variable �and in particular k exp�osc �t		kL� �
O�t		� and H�older inequality and we obtain at once that the actual
brownian functional �OV
	 �and not just the random walk functional	
satis�es

p�n	 � O
�
n�����	

�
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for all � � �

We see� in particular� that it is easy to estimate our �OV
	 func�

tional �up to an ��
 This phenomenon recurs all the time during the
whole theory� i�e� the functionals that occur are straight forward to es�
timate �up to an ��
 On the other hand to obtain the exact asymptotics
becomes rather involved


OV��� A generalization�

The next obvious generalization of the ax � b group is the group
Rn i R where the action of R on Rn is given by x � e�x �� � R�
x � Rn	
 The analysis that we made for ax� b extends �verbatum� to
this group
 What we have to estimate is the functional

E

��Z t

�

eb�s	 ds

	�n��
� b�t	 � ���� ��


�

which� as we already saw is also 
 t���� �or at least O�t����		
 We can
push this generalization a step further and consider the group

�OV
�	 G � Rn i Ra � V i A �

where for simplicity �and since the essential aspects of the problem do
not change by this assumption	 we shall assume that the action of A on
V is semisimple with real roots� i�e� that it is given by � � A� GL�V 	
where there exists L�� � � � � Ln � A� �the dual space	 linear functions�
that are normally referred to as �roots�� such that

���	 �

�
� eL��
	 �


 
 


� eLn�
	

�
A � � � A � Ra �

By the same analysis it is then very easy to see that the return proba�
bility of the corresponding random walk can be estimated by

�OV
�	

p�t	 � E

��Z t

�

eL�
b�s	� ds

	����

	 	 	
�Z t

�

eLn
b�s	� ds

	����
� jb�s	j � �


�
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where now �b�s	 � ba�s	 � A � Ra � s � �	 is the a�dimensional stan�
dard brownian motion
 I do not know whether the functional �OV
�	
will help any one make a lot of money with Asian options at the Chicago
Exchange
 What I do know is that estimates of functionals like this are
not easy to get
 What we obtain is that �as t��	

p�t	 
 t�� or p�t	 
 e�ct
���

and that it all depends on the geometry of the roots L�� � � � � Ln � A�

There are two types of geometries that we need to consider in this
context
 The �rst is the linear geometry i�e� the invariants under
GL�A	
 This allows us to make the following basic classi�cation
 We
distinguish �rst the case when the origin �� � A�	 lies in the convex
combination of the roots L�� � � � � Ln
 We say then that the roots satisfy
the C�condition
 And then the NC�case �non�C	 which is the opposite
situation when all the roots lie strictly on one side of a hyperplane in

A�
 In the C�case we have p�t	 
 e�ct
���



To give a glims of what is happening� let us consider the func�

tional �OV
�	 under the C�condition for Brownian motion and for the
Bernoulli random walk of Section OV
 �i�e� n � � a � �� and the
roots are� L� � ��� L� � ��	
 We have then

E

��Z t

�

eb�s	 ds

	�����Z t

�

e�b�s	 ds
	����


 E

�� nX
j��

eSj
	����� nX

j��

e�Sj
	����

� E

� nX
j��

ejSj j
	����

� E

�
exp

�
��


sup

��j�n
jSjj

	

� E
�
e�mn

�
�

and it is well known and easy to see that with m�t	 � �sup��s�t jb�s	j	�
we have

E
�
e�m�t	

� 
 e�c t
���

�

In the NC�situation the Euclidean geometry �i�e� the O�a�R	 � O�A	
invariants	 of A� becomes relevant and we have p�t	 
 t��
 The expo�
nent � depends on the �geometry� of the cone

� �
�
x � Ra � Lj�x	 � �� j � �� � � � � k

� � A 
� Ra �
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where L�� � � � � Lk are the non zero roots
 Observe incidentally that the
NC�condition is equivalent to the fact that � �� �
 When all the roots
are � one should set � � A
 This geometry� of course� is considered
with respect to the Euclidean structure on A
 At this point we should
go back to the de�nitions of �OV
�	 and observe that a Euclidean struc�
ture has to be given on A � Ra � if brownian motion is to be de�ned

The question arises what that Euclidean structure is and how is it de�
termined from the group G in �OV
�	
 The answer to this question is
simple� we project the measure � � P�G	 that controls our random
walk on A � Ra and take its covariance matrix
 This determines the
Euclidean structure


This Euclidean structure is� with hindsight� very natural
 It came
to me however as a big surprise
 First of all this Euclidean structure
depends on the random walk on G and not just on G
 Therefore t��

depends on the measure � and� in general� the � varies continously

with � and can be any large enough real value �e�g� � � ��
p
� � �

p
	


This contradicts the intuition that we all had in the subject �cf� ����
����	 that lead us to believe that � had to be a ���integer
 It is worth
noting that in Ph
 Bougerol s work ����� a natural scalar product does
exist in A� where G � NAK is the Iwasawa decomposition of some
semisimple group G
 It is given by the Killing form and it gives rise
to corresponding � s that are ���integer
 Contrary to what was said�
that scalar product and the corresponding � is then independent of
the particular measure
 This contradiction with what was said above
is� however� only apparent
 Indeed� for a semisimple group G we have
� � P�G	 and not � � P�NA	
 The role of the Killing scalar product is
important in our theory also
 The cone � in �OV
!	 should be thought
as a generalization of the Weyl chamber of the semisimple theory and
the � � ��Z is related with the symmetries of the Weyl group
 This
aspect of the theory will not be examined in this paper
 The other case
when � � ��Z is� of course� when G is a unimodular NC�group
 For
these groups we have �L�� L�� � � � � Lk	 � � since unimodularity amounts

to
Pk

j�� Lj � �
 It follows that � � A and therefore � is independent
of �
 This unimodular theory was developed with di�erent methods in
���


For the same reasons as in Section OV
� the functional �OV
�	
is intimately connected with the following �conical barrier� problem

Let x � � �cf� �OV
!		 be �xed� the problem is then to obtain the
asymptotics as t�� of

p��t	 � Px
�
ba�s	 � �� � � s � t

�
�
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The answer is that there exists some � � ���	 � � such that p��t	 

t��� �t � �	
 The proof of this already takes some doing �cf� ����	


Remark� We can bring out the qualitative di�erence between the C�
and NC�geometry at the probabilistic level in the following manner

Consider the region

�� � �x � Ra � Li�x	 � �� � i � �� � � � � �

which is a �polyhedron�
 This polyhedron is bounded �respectively
unbounded	 under the C� �respectively NC�	 condition and what is
relevant in both cases is

p��t	 � P��b�s	 � �� � � � s � t� �

The point is that while p��t	 behaves polynomially when �� is un�
bounded� in the case when �� is bounded we have

p��t	 
 P �jb�s	j � � � � � s � t� �

which� by the scaling properties of brownian motion b�s	 � Ra � is easily
seen to have an exponential behaviour �as t��	
 This is the underly�
ing reason for the di�erence in behaviour of the Heat kernel under the
two geometries


OV��� The amenability of the group�

The analysis that we gave in the previous section extends to all
amenable groups
 Indeed the model for such a group is a soluble group
P � N i A � N i Ra where now N is a general nilpotent group and
not just a vector space V � Rn 
 The root analysis of the action of A on
N can be carried out as before and the corresponding brownian func�
tionals can be estimated
 The details give rise to considerable technical
di�culties �cf� ����� ����	 but not fundamentally new ideas are involved


New ideas are needed to deal with non amenable �e�g� semisimple	
groups
 It is these ideas that are developed in this paper
 The �rst
hint of how to go about this is supplied by what was already done

The point is that it is not quite exact that we can model a general
amenable group by P � NiA as above
 The correct model is more like
G � PiK where P is the soluble radical and K is a compact semisimple
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Levi factor
 These groups can thus be thought as a P �principal bundle
with a compact base space G�P � K
 This model generalizes to any
connected Lie group G� we can �nd P � G a soluble subgroup such
that the homogeneous space G�P is compact
 If G is semisimple and
G � NAK is the Isawawa decomposition we take P � NA
 In general
we take for P any �Borel� subgroup �here I deviate slightly from the
standard terminology	
 It thus turns out that the correct setting for
our theory is to view G as the total space of a P �principal bundle with
P soluble and G�P compact
 There exists then N � P a nilpotent
normal subgroup such that P�N 
� Ra � A� and if we quotient G by
the action of N we obtain X an Ra �principal bundle
 Such a bundle is�
topologicaly� trivial� i�e� X 
� Ra �K �cf� ���	
 Observe also that X is
a genuine �ber bundle and that it does not admit� in general� a natural
group structure


In this �ber bundle representation of G the Laplacian � on G is
identi�ed with a P �invariant di�erential operator on the total space
of the bundle
 It is in this identi�cation that the factor e��t� where
� is the spectral gap of �� appears explicitely in the heat di�usion
semigroup e�t�
 It is futile to try to give an intuitive and yet convincing
description of how this comes about
 But �grosso modo� what happens
is that on the �ber bundle G � P � K �the product is a Borelian
trivialization of the bundle	 we have to consider both the measures
dlr�dk and drr�dk for left and right Haar measure dl� dr
 This brings
out the modular function m�x	 � drx�dlx and then� somehow� the
action of � on m brings out the spectral gap
 A similar phenomenom
occurs in the construction of the principal series in the representation
theory of the semisimple group G � NAK
 The fact that P is amenable
also plays a role here
 In the present formalism one should think of
G � NX where X � Ra �K is the generalization of A � Ra 
 As for
the brownian motion on A it is replaced by the Ra �invariant di�usion
on X that is generated on X by D� the image of � by G� G�N � X


The root analysis of the �action of X on N� can be carried out and
the region � � �Li � �� i � �� � � � � � X can be de�ned as in �OV
!	

One can introduce the analogous brownian functionals and use these
functionals to estimate the heat di�usion kernel as before


The �nal step that remains is to analyze the second order di�eren�
tial operator D on X and the corresponding �brownian motion� that
it generates
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OV��� The Laplacian of an Ra 	principal bundle�

Let X � Ra � K or X � Za �K some �trivial	 principal bundle
with compact base K� and let T be some Markovian operator on X
that is invariant by the action of Ra or Za
 For instance� we could be
looking at the markovian semigroup Tt � e�tD on X � Ra �K as in
Section OV
�
 Observe that D can be expressed in local coordinates as
follows

�OV
�	

D �
X

aij�k	
��

�xi�xj
�
X

bi�k	
�

�xi

�
X

ci��k	
��

�xi�k�
� D

�
k�

�

�k

	
�

where D�k� ���k	 only involves the local coordinates �k�� � � � � kj� � � � 	 of
k � K and �x�� � � � � xa	 are the �global	 coordinates of Ra 


I shall denote by

�OV
�	 z�n	 � �zR�n	� zK�n		 � Ra �K � X � n � �� � � � � �

the paths of the Markov process generated by T 

The simplest non trivial example of the above set up is clearly

X � Z � f�� �g �i�e� when K � f�� �g	 is the two point space	
 T
is the determined by L � �L�i� j	� i� j � �� �	 some  �  markovian
matrix and by four probability measures �i�j � P�Z	 �i� j � �� 	
 The
Markov chain �OV
�	 can then be determined as follows
 First the
motion of the K�coordinate zK�n	 is a time homogeneous Markov chain
with transition matrix L
 As for the �ber coordinate zR�n	 it moves
accordingly to the law

P
�
zR�n � �	 � � � �� z�n	 � ��� i	� zK�n � �	 � j

�
� �i�j�� � � �	 �

for �� � � � Z� i� j � �� �
 In other words� if we condition the base point
at time n to be i and at time n�� to be j� then the nth step on Z is the
same as for a random walk with measure �i�j
 Just as in Section OV
��
therefore� if we condition on the path zK��	� zK��	� 	 	 	 � K� the motion
zR�n	 becomes a time inhomogeneous random walk on Z
 It is clear�
of course� that the above description of the process generalizes when
K � f�� �� � � � � n� �g has n�points or when K is an arbitrary compact
space
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A typical problem that we shall consider for the above process
is the following barrier problem� Find the asymptotic behaviour �as
n��	 of

Pz��	�����	
�
zR�j	 � �� � � � j � n

�
�

or more generally when X � Ra � K and when � � X is a connical
domain as in �OV
!	 and x � �� �nd the correct asymptotics of

�OV
�	 p��n	 � Px
�
zR�j	 � � � � � j � n

�
�

The above connical �and �twisted� in the bundle	 barrier problem is
di�cult
 Not surprisingly the �rst step consists in �nding T the �limit
operator� on Ra 
 That operator determines a Markov chain on Ra

�z�n	 � Ra � n � �� � � � � 	 that suitably approximates the motion of
zR�n	 of our process for large times


The construction of T is not trivial
 For instance� when T is given
by Tt � e�tD with D as in �OV
�	 then the approximating semigroup

is T t � e�tD with

D �
X

aij
��

�xi�xj
�
X

bi
�

�xi
�

but it is not� in general� true that the coe�cients aij �
R
K
aij�k	 d��k	

are the average of the corresponding coe�cients of D with respect to�
say� the equilibrium measure � � P�K	 of the zK�n	
 Finding the above
limit operator is a problem from Homogenization Theory �cf� ��"�	

Once we have determined the limit operator we proceed to show that�
when we are in the NC�case �and � �� �	� the correct assymptotics in
�OV
�	 are

p��t	 
 t�� �

where � � �� is the index that corresponds to the cone � and the
Euclidean structure determined by D as in Section OV
�
 If we are in

the C�case �i�e� if � � �	 we obtain� as expected� that p��t	 
 e�ct
���



The details of the above procedure will not be given in this paper


Only a crude �rst approximation is given in the Appendix
 The full
solution will be given in a second instalment of this work


Solving the above problems is interesting and rewarding because�
among other things� they throw new light to classical homogenization
theory
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�� Algebraic considerations�

���� Complex soluble algebras and their roots�

In this section we shall denote by q a �nite dimensional complex
soluble Lie algebra �cf� �!�� ���� ���	 and by n � q its nilradical
 We
shall denote by np � �� � � �n� n�n� � � �n� the pth commutator� p � �� � � � � �
and by kp � np�np�� the corresponding factors
 I shall further denote
by W � k�� V � q�n and by k � k� � k� � 	 	 	 � k is the corresponding
graded Lie algebra where� for the canonical multiplication� we have of
course �kj � ki� � ki�j 


The adjoint action of q

adx � q� q � ad �x	y � �x� y� � x� y � q �

induces canonically the following actions

��
�
�	 adx � np � np � p � � � x � q �

��
�
	 adx � kp � kp � p � � � adx � k� k � x � q �

It is also clear that the action ��
�
	 vanishes if x � n
 It follows
therefore that we also have the following natural actions

��
�
�	 ad v � kp � kp � ad v � k� k � v � V � q�n �

and in particular

��
�
�	 ad v � W �W � v � V �

V is an abelian Lie algebra� therefore the action ��
�
�	 admits the
standard root space decomposition

W � W� � 	 	 	 �Ws ���
�
!	

Wj � fx �W � �ad v � �j�v		Nx � � � v � V g � j � �� � � � � � s �

where �j � V �
C

� HomC �V � C � are the distinct roots of the action ��i ��
�j � i �� j� cf� �!�	 and the integer N in ��
�
!	 is large enough� say
N � dim W � ��
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The actual roots ��� � � � �s can of course also be de�ned by the
property that for every j � �� � � � � s there exists � ��  � W such that

��j�v	� ad v	 � � � v � V �

Analogous root space decompositions exist for the action ��
�
�	 so that
we have for instance

kj � W
�j	
� � 	 	 	 �W �j	

sj
� j � �� � � � � �

where the root space W
�j	
r has the root �

�j	
r and

W �j	
r �

X
�Wi� �Wi� � � � � �Wij � �

where the summation extends over all indices for which �
�j	
r � �i� �

	 	 	 � �ij and where in this paper I shall adopt once and for all the
following notation

�X�Y� � � � � Z� � �� � � ��X�Y � � � � �� Z�

for a higher commutator

Because of the above situation� as is customary� we shall sometimes

say that

��
�
�	 ��� ��� � � � � �s

are the simple roots of the adjoint action and

��
�
�	 ��j	r � �i� � 	 	 	� �ij � j � �� � � � � r � �� � � � � sj �

are the multiple roots
 It is important in what follows to examine
more closely the above roots and to give what amounts to alternative
de�nitions of the above notions


Since q is soluble� the action ��
�
�	 �for p � �	 can be simultane�
ously triangulated �cf� �!�� ���	
 In other words we can choose a basis
of n with respect to which the action ��
�
�	 takes the form

��
�
�	 adx �

�
B�
���x	 �


 
 


� �t�x	

�
CA �
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In ��
�
�	 �j � HomC �q� C � � q�
C

are complex linear functionals on q

that vanish identically on n and can thus be identi�ed with elements of
V �
C



By the standard Jordan�H�older theorem on composition series ���

we see then that up to a di�erent order the ��� � � � � �t � V �
C

are exactly

the roots �
�j	
r in ��
�
�	


The third de�nition of the roots is less elementary
 Let h � q

be some Cartan subalgebra of q �cf� �!�� ���	 or more generally just
some nilpotent subalgebra of q that has the additional property �Cartan
subalgebras have that property �cf� ���		�

��
�
"	 n � h � q �

We can then consider the root space decomposition

n � n� � n� � 	 	 	 � n�

of the ad�action of h on n where as before

��
�
��	 nj � fy � n � �adx� �j�x		Ny � �� for all x � hg

�cf� �!�	 with �j � h�
C

� HomC �h� C � as before
 The important thing
here is that

�ni� nj� � nk �

where �i � �j � �k �cf� �!�	 and that� since the �j  s vanish identically
on h � n� we can identify these � s to elements of �h�h � n	�

C
� V �

C

because of ��
�
"	

Therefore ��� � � � � �� can be identi�ed with elements of V �

C
� and by

the same composition series arguments �applied to the action of h on
n	 we can identify the ��� � � � � �� �up to a new order	 with the roots
��
�
�	


���� Real soluble algebras and their roots�

In this section I shall denote by q a �nite dimensional real soluble
Lie algebra and by n � q its nilradical
 I shall �x h some Cartan
subalgebra �or more generally some nilpotent subalgebra that satis�es
��
�
"		 and I shall denote by qc � q� C � nc � n � C and hc � h� C

the corresponding complexi�ed algebras
 It is then well known that nc
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is the nilradical of qc �it is also true� but irrelevant for us here� that hc
is a Cartan subalgebra of qc if h is a Cartan subalgebra of q	
 Let us
also follow the same notations as in Section �
� and denote by

V � q�n � W � n��n� n� �

which are real vector spaces
 We then have canonical identi�cations

Vc � V � C � qc�nc � W � C � nc��nc� nc� �

Relative to the complex algebra qc the roots ��
�
�	 can then be iden�
ti�ed with �I denote by t and not by s the number of these roots here	

��

�	 ��� � � � � �t � HomR�V � C �

that are de�ned by the property that there exists � ��  �W � C such
that

��j�x	� adx	 � � � for all x � V �

At this stage it is important to introduce a notation that we shall
adopt throughout
 The real algebra q induces a �real structure� �i�e� a
�complex conjugation�� cf� �"�� ����	 in the complex algebra qc � q� C 

I shall consider the complex subalgebras �or even complex subspaces	 of
qc that respect to the above real structure �i�e� are stable by the above
complex conjugation	
 I shall reserve the su�x c to indicate by ac � qc
these subalgebras
 This means that ac � a � C for some subalgebra
a � q
 Such subspaces will be called real


The considerations of Section �
� apply to qc and the subalgebra
hc
 The important thing is to �build� in the de�nition of the roots the
above real structure
 The key de�nition needed to do that is that of
the real simple roots or simply the real roots when confusion does not
arise


These are L�� � � � � Ls � V ��� the real dual of V 	 which are the
distinct non zero real parts of the roots ��� � � � � �t of ��

�	 i�e�

L�v	 � Re��v	 � v � V �

We can of course consider the graded algebra

kc �
M
p

�nc	
p��nc	

p��
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and the corresponding action of Vc on kc
 The �multiple� real roots can
thus be de�ned in the obvious way and these are �nite linear combina�
tions with positive integer coe�cients of the Lj  s

��

	 L�j	
r � Li� � Li� � 	 	 	� Li� �� �

�with the i s not necessarily all distinct	

Let us denote by

L �

� sX
j��

�jLj � �j � ��
sX

j��

�j � �

�
� V �

the convex hull in V � of the real roots with the understanding that
L � � if

��

�	 fL�� L�� � � � � Lsg � � �

De
nition� We shall say that the algebra q is a C�algebra if � � L�
otherwise �if � �� L	 we shall say that q is an NC�algebra�

Algebras for which ��

�	 holds are called R�algebras �cf� ����	

R�algebras are in particular NC�algebras
 It should �nally be observed
that in the above de�nition nothing changes �i�e� we obtain the same
classi�cation of C�� NC�algebras	 if we replace L by L the corresponding
convex hull in V � of the �multiple� real roots ��

	 which are just the

non zero real parts Re�
�j	
r of the �multiple	 roots �

�j	
r in ��
�
�	


Let us recall that quite generally we say that the Lie algebra g is
unimodular if

trace �adx	 � � � x � g �

It follows at once that if q as above is unimodular and satis�es the
NC�condition then ��

�	 holds and q is an R�algebra


���� The structure of soluble NC	algebras�

In this section n� h � q will be as in Section �

 All the notations
of Section �
 will be preserved and we shall consider the root space
decomposition

��
�
�	 nc � n
�c	
� � 	 	 	 � n

�c	
�
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of nc under the ad�action of hc
 In this decomposition ��
�
�	 if � � �

is a root as in ��
�
��	 we denote by n
�c	
� the root space corresponding

to that root
 When � � � is a root then the space n
�c	
� is a real space

and we have
n
�c	
� � ��n�	c �

where �n� � n
 Observe also that hc � nc � n
�c	
� and therefore that

��
�
	 n � h � �n�

when � � � is not a root we shall abusively set �n� � �


The other root spaces n
�c	
j are of course not necessarily real
 We

shall therefore partition all the roots ��� � � � � �� into disjoint subsets by
the equivalence relation

��
�
�	 �i 
 �j if and only if Re�i � Re�j

and block together the corresponding subspaces
 We obtain thus a
direct decomposition

��
�
�	 n � n� � n� � 	 	 	 � nk �

where �ni	c � n
�c	
i�
� 	 	 	 � n

�c	
i�

with �i� � � � � � �i� the roots in the equiv�
alence class Re�i� � Re�i� � 	 	 	 � Re�i� � Li 


In the notations of ��
�
�	 we shall �abusively	 assume that n� may
be � f�g and will always correspond to the equivalence class Re � � �

We have of course

��
�
!	 �n� � n� � �ni� h� � ni � i � �� �� � � � � k �

Finally for any two i� j � �� �� � � � � k we have

��
�
�	 �ni� nj � � np �

where in the equivalence class of the roots of np the real part is the
sum of the two corresponding real parts �cf� �!�	
 The following impor�
tant proposition immediately follows from ��
�
	� ��
�
!	� ��
�
�	 and
��
�
"	


Proposition� If we assume that q is an NC�algebra then nR � n� �
	 	 	 � nk is an ideal in q and qR � n� � h is a subalgebra such that
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nR � qR � f�g and q � nR � qR� In other words we have a semidirect

product decomposition

��
�
�	 q � nR i qR �

Furthermore� we have

��
�
�	 �nj � qR� � nj � j � �� � � � � k �

It is clear that qR is a soluble R�algebra �i�e� it satis�es ��

�		

Observe that quite generally if two ideals j�� j� � q have the property

��
�
"	 q�ji is an R�algebra

then the ideal j� � j� has the same property
 Indeed q�j� � j� can be
identi�ed to a subalgebra of q�j��q�j� which is an R�algebra
 It follows
in particular that the ideal nR � q can be given an intrinsic character�
ization and is the smallest ideal j that has the property ��
�
"	
 It is in
particular independent of the choice of h


We shall �nally need to examine more closely the action ��
�
�	

The algebra qR is soluble
 For every �xed j we can therefore chose a
basis over C on �nj	c � nj �R C in such a way that with respect to that
basis we have

adx �

�
B�
���x	 �


 
 


� �tj �x	

�
CA � x � qR �

where the �k s vanish identically on n � h since adx is a nilpotent
tranformation for x � n � h
 The �k s can thus be identi�ed with
elements of �h�h � n	�

C
� HomR�h�h � n� C � � �q�n	�

C
and can thus be

identi�ed with the elements of the equivalence class of the roots � of
��
�
�	 that have a �xed non zero real part


���� A general Lie algebra and the Levi decomposition�

In this section I shall consider a general �nite dimensional real Lie
algebra g and I shall denote by n � q � g its radical and its nilradical
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�cf� �!�� ���	
 We can then �nd s � g a semisimple subalgebra �with the
convention that s could be � f�g	 such that

��
�
�	 g � qi s �

This is of course the standard Levi decomposition and s is called a Levi
subalgebra of g �cf� �!�� ���� ���	
 The following lemma was �rst proved
and successfully exploited by G
 Alexopoulos ���
 The proof I give
below is di�erent

Lemma �Alexopoulos ���	
 We can �nd h� � q a nilpotent subalgebra

such that

��
�
	 q � n � h� � �s� h�� � f�g �

Proof� By H
 Weyl s theorem �cf� �!�� ���	 on the semisimplicity of a
representation of any semisimple algebra� we can �nd l � q a subspace
such that q � n� l and such that �s� l� � l
 But since �g� q� � n �cf� ���	
we have �s� l� � �
 This means that

l � q� � fx � q � �s� x� � �g �

where q� is a subalgebra of q
 If follows in particular that t� � q��q� �
n � q�q � n
 If we set h� � q� to be some Cartan subalgebra of q� we
see therefore that all the conditions of the lemma are veri�ed because
the canonical image of h� in t� is t� �cf� ���	


The subalgebra h� is not in general a Cartan subalgebra of q but
what the lemma says is that it satis�es the condition ��
�
"	
 It follows
therefore that we can make all the constructions of Section �
� starting
from the algebra h�
 Using this we shall extend our previous de�nition
to general algebras


De
nition� Let q � g be as above� We shall say that g is a C�
�respectively NC�	 algebra if q is�

It follows that if with the above de�nition g is an NC�algebra then
we can de�ne the ideal nR � q and decompose q � nR i qR where qR
is de�ned as in proposition of Section �
� and depends on the choice
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of h� �as we already pointed out nR does not depend on that choice	

The fact that �h�� s� � f�g implies that in the decomposition ��
�
�	 all

the subspaces n
�c	
j are stable by the ad�action of s
 Therefore it follows

�with the notations of Section �
�	 that �n� and all the subspaces nj in
��
�
�	 are stable by the ad�action of s

��
�
�	 ��n�� s� � �n� � �nj � s� � nj � j � �� �� � � � � s �

We obtain thus the semidirect product decomposition

g � nR i �qR i s	 �

Observe �nally that when s is of compact type and therefore qR i s

is an R�algebra then nR can be characterized as before as the smallest
ideal j � g for which g�j is an R�algebra
 A �nal observation is in order

We have

��
�
�	 qR i s � �n� � h�	i s

and n� � qRis is an ideal by ��
�
�	 and we can consider the projection

��
�
!	 � � qR i s� �qR i s	�n� � �h��h� � n�	� s � ��qR i s	

i�e� s and h��h� � n� commute in ��qR i s	
 This is because �g� q� � n

�cf� ���	 and ��
�
	� ��
�
�	


���� A lemma from linear algebra�

In this section I shall consider

Mj � Dj � Tj �Mn�n�C 	 � j � �� � � � � s �

A �nite number of complex invertible matrices where Dj � Diag �d
�j	
� �

� � � � d
�j	
n 	 is assumed diagonal with diagonal entrees d

�j	
i �� � and Tj �

�t
�j	
���	n����� is assumed upper triangular i�e� we assume that t

�j	
��� � �

�j � �� � � � � s� � � �	
 I shall set

max
��j�s

fkMjk� kM��
j kg � eu � u � � �
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where k 	 k indicates the operator norm of the matrix �with respect to
the canonical hermitian scalar product

P
ziui on C n	
 I shall also set

�j � max
��i�n

jd�j	i j � ���� 	 	 	 �s � e� � � � R �

�For our applications �cf� ��
�
!	� ��
�
�		 we are in fact going to have

�j � jd�j	i j� i � �� � � � � 	
What will be proved in this section is that there exists C some

numerical constant such that

��
!
�	 kM� 	 	 	Msk � Cnsnexp �Cnu � �	 �

First of all we shall reduce the proof of ��
!
�	 to the special case �j � ��
j � �� � � � � s where ��
!
�	 reduces to

��
!
	 kM� 	 	 	Msk � CnsneCnu �

Indeed we clearly have ��nj � jd�j	� 	 	 	d�j	n j�� � det �M��
j 	 � enu


Therefore ���j � eu and since trivially �j � eu the new matrix �Mj �

���j Mj satisfy k �Mjk� k �M��
j k � e�u
 The ��j that correspond to these

new matrices clearly satisfy ��j � � and we are in the special case
 The
estimate ��
!
	 for these new matrices immediately implies the general
result ��
!
�	
 It remains to give a proof of ��
!
	
 Let us develop the
product

��
!
�	
sY

j��

�Dj � Tj	 �
X

	k���
k����s

A
�	�	
� 	 	 	A�	s	

s �

where A
���	
j � Dj � A

���	
j � Tj � j � �� � � � � � s


It is clear furthermore that every term of the form A
�	�	
� 	 	 	A�	s	

s

is � if among the �j  s we can �nd at least n � � ���	 s
 It follows that
in the summation of the right hand side of ��
!
�	 there are at most sn

non zero terms and since we clearly have kA�		
j k �  eCu our estimate

��
!
	 follows

In words what the estimate ��
!
�	 says is the following� the norm

of kM� 	 	 	Msk which has the obvious exponential bound esu can in fact
be estimated by �� 	 	 	 �s �this in general does grow exponentially in s
but it does so in a special way�	 multiplied by a polynomial in s




Analysis on Lie groups 	��

���� The geometric interpretation of the lemma for soluble Lie
groups�

In this section we shall consider Q a real soluble connected Lie
group �that is not assumed to be simply connected	 and let

��
�
�	 � � Q� GLn�R	

a n�dimensional real representation of Q
 I shall denote by q the Lie
algebra of Q and by

��
�
	 d� � q� g�n�R	 � EndR�Rn 	

the corresponding representation
 The above representations can then
be complexi�ed and a basis over C can be chosen on C n in such a way
that d��x	 �x � q	 is upper triangular

��
�
�	 d��x	 �

�
B�
���x	 �


 
 


� �n�x	

�
CA � m �Mn�n�C 	 � x � q �

The �i s are of course elements of HomR�q� C 	
 If g � Exp �x	 � Q
where

Exp � q� Q

is the standard exponential mapping from the Lie algebra q in the group
Q �this exponential mapping is not in general �onto�	 we have

��g	 � expm � M

�

�
B�

#��g	 �

 
 


� #n�g	

�
CA � GLn�C 	 � g � Exp�q	 �

where #j�g	 � e
j�x	 and

j#j�g	j � eLj�g	 � eRe 
j�x	� g � Exp �x	� x � q �

It follows �since Exp�q	 generates Q	 that ��g	 can be simultaneously
triangulated for all g � Q and that g � #j�g	 is a global homomorphism
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Q� C � � C nf�g �with the multiplicative structure	
 This also de�nes
a group homomorphism

��
�
�	 Q� R � g �� Lj�g	 �

What the estimate ��
!
�	 says in this context is that if g�� � � � � gs � Q
are such that jgjj � u� j � �� � � � � s �cf� ��� and Section �
� for the
de�nition of jgj � jg��j	 and if L� � L� � 	 	 	 � L and

L�g� 	 	 	 gs	 � � � � � R �

then

��
�
!	 k��g� 	 	 	 gs	k � Cnsnexp �Cnu � �	 �

Let us illustrate the above considerations further in terms of NC�alge�
bras
 Let us assume that q is a real NC�algebra and let

q � nR i qR

be the decomposition ��
�
�	 that corresponds to some choice of h � q
 I
shall denote by Q the simply connected real Lie group that corresponds
to the algebra q
 The analytic subgroup NR � Q that corresponds to
the ideal nR is clearly closed and simply connected �cf� ���	
 We can also
construct �ad hoc� QR the simply connected Lie group whose algebra is
qR
 The group QR acts canonically �as a group of automorphisms	 on
NR
 Indeed for � � QR a small enough neighbourhood of the identity
we de�ne that action by the obvious inner automorphism
 The simple
connectedness of QR does the rest
 We can de�ne thus the semidirect
product NR i QR and the simple connectedness of G implies that we
can identify

Q � NR iQR

and that QR can be identi�ed to the analytic subgroup of Q that cor�
responds to the subalgebra qR
 QR is thus a closed subgroup


We can apply our previous considerations to the representations
��
�
�	� ��
�
	

��
�
�	

�
� � Ad � QR � GL�nR	 �

d� � ad � qR � g��nR	 �

�recall that Ad g � dIgje� Igx � g��xg� g� x � G� cf� ���	
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Let us now consider N� � QR the closed subgroup that corresponds
to the ideal n� � qR � n� � h
 For the above example ��
�
�	 the
elements d��x	 �x � n�	 are nilpotent transformations and therefore
all the �j s of ��
�
�	 vanish identically on n�
 It follows that the Lj  s
de�ne in ��
�
�	 factor through � � QR � QR�N� and can be considered
as group homomorphisms

Lj � Q�N 
� QR�N� � R �

where now N � Q is the nilradical of Q
 The results in Section �
! give
then here the following estimate�

Let g�� � � � � gs � QR � Q and let assume that jgjj � u �j � �� � � � � s	
�observe that j jQ and j jQR

are equivalent cf� Chapter �	 and that
Lk���g� 	 	 	 gs	� � �� k � �� � � � � n
 Then

��
�
�	 kAd�g� 	 	 	 gs	jnRk � Cnsnexp�Cnu � �	 �

The condition L� � L� � 	 	 	 � that was needed for the validity of ��
�
!	�
is here guaranteed by ��
�
�	
 Indeed it is on each nj � �j � �� � � � � k	
separately� that we apply our Lemma


Let now q�� � � � � qs � QR be as before and let us assume that�
jqj j � u� j � �� � � � � s� Lk���q� 	 	 	 qi		 � �� i � �� � � � � s��� k � �� � � � � n

Let further

B�r	 � fn � N � jnjN � rg
denote the r�ball in N 
 We then clearly have

��
�
�	
B � B�r	q�B�r	q� 	 	 	B�r	qs

� �B�r	B�r	q�B�r	q�q� 	 	 	B�r	q�			qs��	 q� 	 	 	 qs �

where as usual for any group G we set gh � hgh�� �g� h � G	
 It
follows therefore from ��
�
�	 and ��
�
�	 �cf� ����	 that

��
�
"	 B � B�R	q� 	 	 	 qs �

where R � r Cnsn��exp�Cnu � �	
 The estimate ��
�
"	 implies in
particular that

jnjN � C exp�CjnjG	� n � N � Q �

A fact that as we shall point out in Section �
� holds in general
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In the spirit of Section �
� the above considerations extend to a
general Lie group G that it is not necessarily soluble
 No use of this
will be made in this paper but since this construction is important in an
other related problem �cf� ����	 I shall brie�y outline this generalization

If we denote by g the Lie algebra of the simply connected group G and if
g is assumed to be an NC�algebra then we can decompose as in Section
�
� g � nR i �qR i s	 and this gives the obvious semidirect product
decomposition of the simply connected group G associated to g

G � NR i �QR i S	 �

where S is semisimple and simply connected
 The lemma of Section �
!
gives then the following�

Let g�� � � � � gs � QR i S and let us assume that S is compact
�in other words we are assuming that G is amenable which was the
hypothesis in ����	 let further

jgjj � u � j � �� � � � � s �

Lk � ��g� 	 	 	gi	 � � � k � �� � � � � i � �� � � � � � s� � �

where now � is the composition �cf� ���	

QR i S � �QR i S	�N�

� �QR�N�	� S � QR�N�


� Q�N 
� Rd �

The conclusion of the above hypothesis is then that the estimate ��
�
�	
holds
 The details will be left to the reader


Remark� Implicit in the considerations of this section is the de�nition
of the �roots� for a general �not necessarily simply connected	 soluble
Lie group G
 Indeed we have as above

Ad � Q� GL�nc	 �

where n � q is the nilradical of the Lie algebra q of Q
 From the above
we see that we can simultaneously triangulate Ad so that

Ad�q	 �

�
B�

#��q	 �

 
 


� #n�q	

�
CA � q � Q �

where #j � Q � C � � C nf�g is a group homomorphism �C � has of
course the multiplicative group structure	
 The above de�nes uniquely
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�j � Q � R and �j � Q � T � R �mod �	� �j � �� � � � � n	 two group
homomorphisms such that #j�q	 � exp��j�q	 � i �j�q		 where clearly

�j�Exp �x		 � Lj�x	 � x � q �

Using easy standard considerations �involving determinants	 we can
express the modular function

��
�
��	 m�q	 �
drq

d�q
� exp

� nX
j��

�j�q	

	
�

One sees in particular that G is unimodular if and only if tr�adq�x		 � �
�x � q	


Finally just as before if Q�N 
� V � T where N is the nilradical of
Q with V 
� Rm and T 
� Tk then the �roots� �j are de�ned on V �i�e�
�jjN � �	


���� Non amenable Lie algebras�

In this section I shall consider g a �nite dimensional real Lie algebra
and I shall denote by n � q � g its radical and nilradical
 The algebra
g�q is then semisimple or zero
 Let us recall the following standard

De
nition� We say that g is amenable if g�q is of compact type or

zero� Otherwise we say that g is non amenable�

Quite generally the Lie algebra g can be written

g � qi s �

where s is some Levi subalgebra �cf� ���	 and where of course s 
� g�q

When s �� � we shall apply the Iwasawa decomposition on s �cf� �"��
����� ����	

s � nS � a � k �

where nS is nilpotent and a is abelian and normalizes nS so that nS � a

is a soluble algebra
 As for k it is never � and it is the Lie algebra of
some compact group
 If g is amenable we have nS � a � �
 Since s

normalizes q it is clear that

r � q � nS � a � g
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is a soluble subalgebra of g which I shall call an Iwasawa radical of g

The de�nition of r is not �unique�
 In general several Iwasawa radicals
exist in g
 When g is amenable q is the only Iwasawa radical
 Finally
when s � � and g � q is soluble we shall agree to say that the Iwasawa
radical of g is r � q � g


We can give now the following basic

De
nition� We shall say that g as above is a B�algebra �respectively
NB�algebra	 if some Iwasawa radical of g is a C�algebra �respectively
NC�algebra	�

It is not obvious that a non amenable algebra cannot be both a B
and an NB�algebra at the same time
 But of course as we shall see this
cannot be the case and the above de�nition gives a genuine classi�cation
on Lie algebras


What is well known �but anything but trivial	 is that if g is semi�
simple of non compact type then it is an NB�algebra
 This follows from
the classi�cation theorems that give the complete description of the
reduced roots �i�e� the roots of the action of a on nS	


Let now q � q� � q� be the direct product two soluble algebras�
and let n � n� � n� be the nilradical
 It is clear that the set of real
roots L of q can be identi�ed with the set �L��f�g	� �f�g�L�	 � V �

where Li � V �
i � �qi�ni	

�� i � �� � are the real roots of qi �i � �� 	
and V � V� � V� � q�n
 From this it follows that q is an NC�algebra if
and only if both q� and q� are


Let now gi� i � �� � be two general Lie algebras and let g � g��g�

It is then clear that r � g is an Iwasawa radical of g if and only if
r � r� � r� where ri is an Iwasawa radical of gi �i � �� 	
 From this
it follows that �even without knowing that the above de�nition gives a
classi�cation	 that g is an NB�algebra if and only if g� and g� are both
NB�algebras


By the above de�nition� if g is amenable then g is a B�algebra
�respectively NB�algebra	 if and only if its radical q � g is a C�algebra
�respectively NC�algebra	
 We also have

Proposition� Let g be an arbitrary real Lie algebra� let q � g be its

radical� Let us assume that q is a C�algebra� Then g is a B�algebra�

Let us also state formally the classifying property of our de�nition
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Classi
cation� Let g be an arbitrary real Lie algebra� then g cannot

be simultaneously a B� and an NB�algebra�

The above classi�cation is indirectly an automatic consequence of
the main theorem of this paper
 A direct algebraic proof can also be
given
 That algebraic proof does not seem to be very relevant for the
rest of this paper and will therefore be deferred until the end of this
chapter
 The rest of this section will be devoted to the proof of the
proposition


Before I give the proof of the proposition� I shall have to examine
more closely the Iwasawa radicals of the Lie algebra g
 Let

r � q � nS � a � g

be such an Iwasawa radical where I shall assume throughout in this
section that g�q �� � and let us denote by n � n � nS 
 We have then

Lemma� n is the nilradical of r�

Proof� I shall denote by nr � r the nilradical of r and I shall prove
�rst that

��
�
�	 n � nr �

To prove ��
�
�	 observe �rst that n is the nilradical of g and therefore
clearly n � nr
 We have on the other hand

��
�
	 nS � �nS � a� nS � a� �

This holds by the structure theory of semisimple algebras and the con�
struction of the Iwasawa decompositions �cf� �"�� ���� Proposition !
���	

The conclusion is that

��
�
�	 nS � �nS � a� nS � a� � �r� r� � nr �

where the last inclusion holds because r is soluble �cf� ���	
 ��
�
�	
follows


Now nr � q is a nil�ideal of q therefore nr � q � n �� the nilradical
of q	
 It follows therefore from ��
�
�	 that

��
�
�	 nr � q � n �
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Let us now consider the projection

� � r� r�q � nS � a �

From general considerations it follows that ��nr	 is a nilpotent ideal of
r�q and that therefore it lies inside the nilradical of r�q � nS � a
 That
nilradical is exactly nS by ��
�
	 and the fact that� for all � �� x �
�nS � a	nnS� �x� �x� �� � � �x� nS � � � � � �� �
 The conclusion is that

��nr	 � nS

and if we combine this with ��
�
�	 we deduce that

nr � n � nS � n

our lemma follows


From the above lemma we see that we have the identi�cation

��
�
!	 r�nr � �q�n	 � a � V

Let us now complexify nc � n� C � nc � n� C and consider

W � nc��nc� nc� �W � nc��nc� nc� �

The natural �induced by ad�	 action of V on W that was considered in
Section �
 stabilizes W 
 Let us consider the root space decomposition

W � W� � 	 	 	 �Wm

with respect to the above action of q�n �� V 	 on W 
 ��� � � � � �m �
HomR�q�n� C 	 are the corresponding roots
 The important thing to
observe is that �since q�n and a commute in V �	 each root space Wj is
stable by the action of a �� V 	 and admits thus its proper root space
decomposition

��
�
�	 Wj � W
�j	
� � 	 	 	 �W �j	

mj

under that action
 The corresponding roots are ��� � � � � �mj
� HomR

�a� C �� �strictly speaking we need also a �j� index and we should denote

these roots by �
�j	
i � �i � i � �� � � � � �mj	� and we have

��
�
�	

mjX
i��

�i � �� j � �� � � � �m �
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To see ��
�
�	 observe that the ad�action of q�n on W and the ad�action
of s on W commute �since �s� q� � �g� q� � n� cf� ���	
 It follows that
the natural ad�action of a on Wj extends to a representation of the
semisimple Lie algebra s on Wj 
 The trace of such a representation is
zero and ��
�
�	 follows


The very de�nition of ��
�
!	 implies that

�adx� �j�x		N � � � �ad y � �s�y		N � � �

where x � q�n� y � a�  � W
�j	
s �for N large enough	
 Since the action

of q�n and of a commute it follows that

W �
mX
j��

mjX
s��

W �j	
s

is a root space decomposition of W under the action of V � �q�n	 � a�
and that the corresponding roots are

�j�s � V � x � y ��� �j�x	 � �s�y	 � x � q�n� y � a �

��
�
�	 implies therefore that

��
�
�	

mjX
s��

�j�s�x � y	 � mj�j�x	 � j � �� � � � �m� x � q�n� y � a �

Let us now� as in our proposition� make the assumption that q is a
C�algebra and that there exists a non trivial representation of zero

��
�
"	 � �
mX
j��

�j Re �j�x	 � x � q�n �

But ��
�
�	 and ��
�
"	 give then a non trivial representation of zero

��
�
��	 � �
mX
j��

�j
mj

mjX
s��

Re�j�s�v	 � v � V �

The �nal step that is needed to complete proof of our proposition is
that the �j�s s can be identi�ed to a subset of the roots of r �in the
sense of Section �
�	 i�e� referring to the action of r�nr on W 
 This
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is of course easy by the obvious composition series argument and our
proposition follows


Observe that the converse of the above proposition does not hold

Indeed if s is semisimple if q is an R�algebra and if the semidirect
product g � qi s is not direct then g is in general a B�algebra
 Indeed
the trace of the action of s on q is zero


��� Unimodular Lie algebras�

Let us recall that a �nite dimensional Lie algebra g is called uni�
modular if

tr�adgx	 � �� x � g �

It follows at once that a unimodular Lie algebra that is in addition
amenable is an NB�algebra if and only if it is an R�algebra
 In this
section we shall prove the following

Proposition� Let g be a unimodular Lie algebra� Then either g is a

B�algebra or g is the direct product g � g�� s where g� is an R�algebra

and s is either � or semisimple�

The proof will be done in several steps
 We shall assume that g

is not soluble and �x once and for all g � q i s and s � nS � a � k a
Levi decomposition of g and an Iwasawa decomposition of s
 We shall
assume as we may that s is not compact
 We have then

Lemma� Let g� q� nS� a be as above and let us assume that �q� nS�a� �
f�g� Then g can be written as a direct product g � g� � s� where g� is

an R�algebra and s� is either semisimple or f�g�

Proof� Indeed

I � fx � s � �q� x� � �g � s

is an ideal in s and since nS � a � I it follows that s � I � �s where �s is
either f�g or a compact semisimple algebra
 It su�ces therefore to set
g� � qi �s and s� � I and our lemma follows


Lemma� Let g� q� nS� a be as above and let us assume that �n� nS �
a� � f�g where n � q is as before the nilradical of g� We have then

�q� nS � a� � f�g�
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Proof� The semisimple algebra s acts by ad on q and stabilizes the
subspace n
 By H
 Weyl s theorem therefore �cf� �!�� ���	 we can �nd
a direct complement q � n � l such that �s� l� � l
 Since on the other
hand we also have �s� q� � n it follows that �s� l� � f�g and therefore for
all x � s� �x� q� � �x� n� and our lemma follows


Let us now consider the ad�action of r on n � n � nS � nr the
nilradical of r �cf� Section �
�	
 It clearly stabilizes n and� r being
soluble� a basis can be chosen on nc for which the adjoint action takes
the form

adnc�x	 �

�
B�
���x	 �


 
 


� �p�x	

�
CA � x � r �

since adn�x	 is nilpotent for every x � n it follows that we can identify
each �j � HomR�V � C � where as in ��
�
!	 V � r�n � �q�n	 � a
 We
have then

Lemma�

i	 All the �j above are real valued on a� i�e�

�j�x	 � R � j � �� � � � � p� x � a �

ii	 The trace is zero on a� i�e�

tr �adnx	 �

pX
j��

�j�x	 � � � x � a �

iii	 If we assume that �n� nS � a� �� f�g� then there exists a j �� �
j � p	� say j � �� for which ���x	 �� � for some x � a�

We shall defer the proof of the lemma until later and complete the
proof of the proposition� assuming as we may because of our �rst two
lemmas� that �n� nS � a� �� f�g


The unimodularity of g implies the unimodularity of the algebra q

which says that

tr
�
adn�x	

�
�

pX
j��

�j�x	 � � � x � q�n �
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Part ii	 of our previous lemma implies therefore that

��
�
�	 tr
�
adn�x	

�
�

pX
j��

�j�x	 � � � x � V � q�n � a �

Since on the other hand by i	 and iii	 of our previous lemma and our
hypothesis we have Re�� � L� �� �� ��
�
�	 says that r is a C�algebra

By de�nition therefore g is a B�algebra and the proof of our proposition
is complete
 �As in the end of Section �
� we have to use a standard
composition series argument to verify that the non zero among the
Re�j  s can be identi�ed to real roots of r	


It remains to give the proof of the last lemma


Proof of ii	
 This uses the same argument as in Section �
�
 Indeed
the action of a on n extends to an action of s on n i�e� to a representation
of a semisimple algebra and therefore has trace equal to zero


To see parts i	 and iii	 of the lemma we start from the following
construction�

Let g be some real semisimple algebra and let u � g be some real
subalgebra that is a semisimple algebra of compact type
 Let further

� � g ��� gln�C 	

a real algebra homomorphism
 Then there exists h	� 	i some Hermitian
product on C n that is invariant under u� i�e�

��
�
	 h��x	z�� z�i� hz�� ��x	z�i � � � x � u� z�� z� � C n �

The proof of this is of course very easy
 Indeed let G be the simply
connected semisimple group that corresponds to g and let U � G be
the �compact	 subgroup that corresponds to u
 � induces then

� � U �� GLn�C 	

and� since for any non singular matrix M � Mn�n�C 	 hz� uiM �
hMz�Mui is a new Hermitian product on C n � the Hermitian product

hhz� uii �

Z
U

h��x	z� ��x	ui dx
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is invariant under the action of U 
 Taking the di�erential we obtain
��
�
	


The above observation has to be combined with the fact that for
the Iwasawa decomposition s � nS � a � k if we complexify sc we can
write sc � k� � p� in such a way that u � k� � i p� is a compact real
semisimple subalgebra of the �underlying	 real algebra sc� and we can
do so in such a way that a � p�
 This fact is of course anything but
obvious but in some sense it is the very basis of the construction of the
Iwasawa decomposition �cf� �"�� ����	


This being said� we see� that if we let g in ��
�
	 to be the un�
derlying real algebra of sc� there exists h	� 	i some Hermitian product
on C n for which all the matrices ��x	 �x � i p�	 are skew�Hermitian

All the matrices ��x	 �x � a � p�	 are therefore Hermitian
 It follows
that all the matrices ��x	 �x � a	 have real eigenvalues and if all the
eigenvalues of ��x	 are zero then ��x	 � �


If we apply this last observation to the representation of s� C on
n� C induced by the adjoint action of s on n the assertions i	 and iii	
of the lemma follows


I shall �nish this section with an example that shows that unimod�
ularity is essential for the above proposition to hold
 I shall consider
the �dimensional group of �a�ne motions� which is the Lie group

��
�
�	 G � R� i �R � SL��R		 � �R� i R	 i SL��R	 �

where R acts on R� by dilatation �i�e� x �� e�x� x � R� � � � R	
and SL��R	 acts on R� by the natural action �of course R and SL��R	
commute in ��
�
�		
 The third term in ��
�
�	 is of course a Levi
decomposition of G and G is not unimodular since the radical Q �
R� iR is not unimodular
 It is clear of course that g the Lie algebra of
G is not of the form g� � s as in our proposition
 The above algebra g

however is an NB�algebra and therefore� by the classi�cation in Section
�
�� it is not a B�algebra


Indeed with the �standard� Iwasawa decomposition of SL��R	 and
the corresponding Iwasawa radical r obtained by the Levi decomposition
��
�
�	 we have� with our previous notations�

r�n � V � R � a 
� R� �

Here a 
� R is the a component of the Iwasawa decomposition of SL��R	
and R 
� R 
� q�n
 The action of R on R� is of course given by
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dilatation
 This means that the two roots ��� �� of q �in the sense of
sections �
� and �
	 are real and ���x	 � ���x	 �� � if � �� x � R
 The
algebra r is therefore an NC�algebra and our assertion follows


���� The uniqueness of the Iwasawa radical and an intrinsic
de
nition�

In this section I shall prove the following

Proposition� Let g be a real Lie algebra and let r�� r� two Iwasawa

radicals of g� Then there exists � � Int �g	 such that ��r�	 � r��

This proposition is not essential for the rest of this paper but it
does help to give an intrinsic status to the notions introduced in the pre�
vious sections
 The proof is an inmediate consequence of the following
sequence of well known� but highly non trivial� facts�

�	 Let g � q i s� � q i s� be two Levi decompositions of g then
there exists � � g� g an inner automorphism of g such that ��s�	 � s�
�cf� ��� Theorem �
��
�	


Let now si � ki�pi� i � ��  be Cartan decomposition of the above
two semisimple algebras
 By composing� if necessary� the automorphism
� � Int�g	 by an appropiate element of Int�si	 we can then assume in
addition the following fact �cf� �"� Theorem �
� of the �rst edition	�

	 The inner automorphism � is such that

��k�	 � k� � ��p�	 � p� �

Let now ai � pi� i � ��  be a maximal abelian subalgebra and let

si � ki � ai � ni� i � ��  �

the Iwasawa decompositions that correspond to these choices of ai and
to some choice of $i

� � a�i �� HomR�ai�R		 the positive restricted roots
on ai �i�e� the �nitely many choices of the corresponding Weyl cham�
bers	
 By the standard facts concerning the Iwasawa decomposition we
see therefore that we can further compose the � � Int�g	 by an ap�
propiate element in Int�ki	 and guarantee the following additional fact
�cf� ���� Section !
�� and Corollary !
���	�
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�	 The inner automorphism � � Int�g	 is such that

��k�	 � k� � ��a�	 � a� � ��n�	 � n� �

The �nal conclusion clearly is that ��r�	 � r� and this proves our
proposition


I shall �nish up this section by giving� without proofs� what amo�
unts to an alternative� more intrinsic� but less manageable� de�nition
of the Iwasawa radical
 Let g be an arbitrary real Lie algebra and
let l � g be a amenable subalgebra� such that for some Lie group G
that corresponds to g� l corresponds to a closed subgroup L such that
G � L 	K where K is a compact subgroup
 We can then show that l is
a C� �respectively NC�	 algebra if and only if g is a B� �respectively NB�
	 algebra
 This� among other things is a consequence of the analytic
theory developed in this paper
 The Iwasawa radical clearly has the
above property
 Other examples of such subalgebras are l � ��� �a
minimal boundary subalgebra of g�q	 with � � g � g�q the canonical
map and the standard terminology of semi�simple groups �cf� ���	

Such subalgebras will be called minimal boundary subalgebras of g


We have in particular �the proof will be left as an exercise for the
reader	 the following

Proposition� All the minimal boundary subalgebras of g are conjugate

�under� int�g		 in g� The algebra g is a B�algebra if the minimal bound�

ary subalgebras are C�algebras �i�e� if their radicals are C�algebras� cf�
����	


Presented like this the B�NB classi�cation becomes �subordinate�
to the C�NC classi�cation of the amenable algebras
 �Philosophically�
what the theorems of this paper say is that for non amenable groups
the principal term e��t of the heat kernel �t comes from the �spectral
gap� and that the error term e�t�t�g	 is controlled by the geometry of
the minimal boundary subgroups
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�� Basic geometric structure�

���� The Haar measure�

Let G be a locally compact group and let Z � K � G� R � G be
closed subgroups such that G � RK and K�Z is compact and Z � G
central
 Quite generally we shall denote throughout by dh � d�h and by
drh the left and the right Haar measures of the locally compact group
H
 Among the above groups K is unimodular and dk � drk � d�k


The example to keep in mind is the Iwasawa decomposition of a
connected real semisimple group S � NAK where R � NA and Z is
the discrete center of S
 More generally when G is a simply connected
real Lie group then we can write G � QiS where Q is the radical and
S � NAK is a semisimple simply connected Levi subgroup
 We can
set G � RK with R � Q i NA
 Indeed if Z�K	 � K is the discrete
center of S then it is well known and easy to prove �cf� ��!� for a proof	
that there exists Z � Z�K	 of �nite index �i�e� �Z�K	 � Z� � ��	
such that Z is central in G �when q is the Lie algebra of Q this here
amounts to saying that Ad�Z	jq � identity	
 We have

Lemma� Let G� R� K� Z be as above and assume that R �K � feg�
Then Z

G

f�g	 d�g �

Z
R�K

f�rk	 d�r dk

for an appropiate normalization of the Haar measures�

Remark� In the above lemma we can relax the conditions that K�Z is
compact and Z is central and impose instead the unique condition that
the modular function m�g	 on G satis�es m�k	 � � for all k � K
 One
can also refer to ��!� �
!
�� or to �"�� �!� Chapter �� Section � number
"� for analogous and more general results


Proof� There exists a unique %�r� k	 � � �r � R� k � K	 such thatZ
G

f�g	 d�g �

Z
R�K

%�r� k	f�rk	 d�r dk �

% is just the Jacobian of the mapping R�K � G ��r� k	 � rk	

The uniqueness of the above % and the left invariance of d�g implies

that
%�r�r� k	 � %�r� k	 � %��k	 � r� r� � R� k � K
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with a new function %� � � on K
 If we use the right action g �� gk
�k � K	 on d�g we see that it sends d�g to m�k	d�g where m�		 is the
modular function on G
 By our hypothesis m�k	 � � and therefore
%��kk�	 � %��k	 �k� k� � K	 and %� is a constant


We shall introduce now a basic notation that will be used through�
out this paper


i	 R will denote some locally compact group assigned with its dr �
d�r and drr measure
 In practice R will always be a Lie group and more
often than not a soluble Lie group


ii	 K will be some C� manifold asigned with some C� non van�
ishing measure dk
 More generally K could be an abstract measure
space


iii	 For any measure �dr on R we shall consider the measure �dx �
�dr� dk on X � R�K �the product space rather than group product	

We shall denote� in particular

dx � d�x � d�r � dk � drx � drr � dk �

iv	 More often than not I shall assume that there exists Z some
discrete group acting �discretely	 on K stabilizing dk and such that
K�Z is a C� manifold


v	 For our applications K as in iv	 will be a locally compact �more
often than not a Lie	 group and dk will be the Haar measure� Z � K
will then be some discrete central subgroup


vi	 We shall say that we are in the �group case� X � G if G is a
locally compact group �more often than not a connected Lie group	 and
if R� K are closed subgroups such that R �K � feg and such that the
conditions of the above lemma are veri�ed
 We set then X � R � K
which we identify as a measure space� or even as a C��manifold� with
G


The above construction admits a number of useful generalizations
which although not essential for us are worth noting
 For instance� in
practice we can often write a connected Lie group in the form G � RK
where R is closed �but not necessarily connected	 and K is an analytic
subgroup �but not neccesarily closed	 and such that Z � R � K is a
�closed	 discrete central subgroup of G
 The general Levi decomposition
of G is of the above form
 We can then identify Z to a closed central
subgroup of the Lie group K �for its intrinsic analytic structure	 and
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consider the projection � � K � K�Z if $ � K is some Borel section of
� �i�e� � is ����	 from $ onto K�Z	� we shall denote by �
	 � ��� 
 �
$ � G� 
 � K�Z
 We can then identify G with R � K�Z by the
mapping

�
�
�	 �r� 
	 �� r�
	 � g �

For the above section it is clear that

�
�
�	 � r�
�	�
�	 � �
��� 	 � �r�
�	
�� �

where r� �r � Z
 From these relations it immediately follows that the
proof of the above lemma generalizes and that the above identi�cation
identi�es d�r � dK�Z
 with d�g provided of course that mG�k	 � �
�k � K	


���� The left invariant operators�

X will be here as in Section 
� and we shall examine positive
R�left invariant operators on X

�

�	

�
T � C�

� �X	 �� C��X	 � Tf � � � for all f � � �

T �fr	 � �Tf	r � fr�r�� k	 � f�rr�� k	 � r� r� � R� k � K �

Let �h�k � M�R	 �h� k � K	 be a family of positive measure �more
often than not I shall assume that they are bounded measures	 and let
L�h� dk	 be some positive �kernel� on K �e�g� L�h� dk	 � L�h� k	 dk
where L�h� k	 � � but of course more general kernels could be consid�
ered	
 An invariant operator as in �

�	 can then be de�ned by the
formula

Tf�r� h	 �

Z
K

L�h� dk	�f�	� k	 � �h�k	�r	

�

Z
K

L�h� dk	

Z
R

f�rr��� � k	 d�h�k�r�	 � f � � �

provided that L and the � s satisfy the appropiate smoothness condi�
tions
 If in particular f � 	� �� 	 � C��R	� � � C��K	 we have

Tf�r� h	 �

Z
L�h� dk	�	 � �h�k�r		��k	 �
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Motivated by this we shall introduce the notation

�

	 Lf�h	 �

Z
K

L�h� dk	f�k	 � f � C��K	 �

�

�	 T � L� f��g � L�h� dk	� f��h�kg �
The representation �

�	 of T is clearly not unique �e�g� replace
L � ��h	L� �h�k � ����h	�h�k	
 We shall say that the representa�
tion �

�	 is normal if �h�k � P�R	 is a probability measure for each
h� k � K
 It is clear that under obvious �and reasonable	 conditions
a positive R�left invariant operator admits a unique normal represen�
tation as in �

�	
 To see the uniqueness observe that for a normal
representation we have

�

�	 Lf � g� f � C�
� �k	 if and only if T �f � �	 � g � �

with ��r	 � � �r � R	
 For normal representations it follows in par�
ticular from �

�	 that T is markovian �respectively sub�markovian	
i�e� that T� � � �respectively T� � �	 if and only if L is markovian
�respectively sub�markovian	


Let �nally �Tj j � �� � � � � 	 be a sequence of positive R�left invari�
ant operators on X as above
 We can then de�ne the R�left invariant
�time inhomogeneous in general	 Markov chain �xn � X n � �� � � � � 	
by the condition that Tj j � � �� � � � are the transition operators

Tjf�x	 �

Z
P�xj � dy �� xj�� � x� f�y	 �

���� The group case and the convolution operators�

We shall consider here G a locally compact group and d��g	 �
	�g	 dg � ��g	m�g	 dg �g � G	 some positive measure where m is the
modular function
 Let T be the corresponding convolution operator

�
�
�	 Tf�g	 � f ���g	 �

Z
G

f�gg��� 	 d��g�	 �

Z
G

f�gg��� 		�g�	 dg� �

In this section we shall also assume that we are in the group case
X � G � RK as in vi	 of Section 
�� and we shall analyze the R�
left invariant operator T on X
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We shall adopt the notation

g � rk � gi � riki � i � �� � r� ri � R � k� ki � K �

and by the Lemma in Section 
� we have

Tf�rk	 �

ZZ
R�K

f�rkk��� r��� 		�r�k�	 dr�dk� �

Let us �x k � K and consider the ����	 correspondence �r�� k�	 �
�r�� k�	 given by

�
�
	 g � r�k� � k��� r�k � dg � dr�dk� � J�r�� k�� k	 dr�dk� �

where J� 	 � 	 � k	 is of course the Jacobian
 We have thus

�
�
�	 Tf�rk	 �

ZZ
R�K

f�rr��� k�		�k��� r�k	 J�r�� k�� k	 dr� dk� �

We have

Lemma� The Jacobian J�r� k�� k	 � J�r	 is independent of k� k� � K
and

�
�
�	 J�r	 �
mR�r	

mG�r	
� r � R �

where mR� 	 	 is the modular function of R amd mG� 	 	 is the modular

function of G�

Proof� By the unimodularity of K we have �with obvious notations	

dk � dk�� � d�k�k
��	 � d�k��k�	 � k�� k� � K �

This and the de�nition �
�
	 imply that J�r� k�k
�� kk�	 � J�r� k�� k	

for all k� k�� k�� k� � K �it is only a matter of testing
R
f�g	 dg �R

f�k��� r�k	J�r�� k�k	 dr�dk� on fh� 	 	 � f�h 		 and on fh� 	 	 � f�	h		

The �rst part of the lemma follows and �
�
	 takes the form

�
�
!	 dg � dr� dk� � J�r�	 dr� dk� � g � r�k� � k��� r�k �

Observe now that since drg � dg��� drr � dr��� dk � dk�� the lemma
of Section 
� implies that with the parametrization g � kr �k � K�



Analysis on Lie groups 	��

r � R	 we have drg � drrdk which together with �
�
!	 allows us to
conclude that

drg � dk� d
rr� � dk�mR�r�	 dr�

� mG�g	 dg � mG�g	 J�r�	 dr� dk� � g � k��� r�k

�
�
�	 follows


If we use the above lemma in �
�
�	 we �nally obtain

�
�
�	

�����������
����������

Tf�rk	 �

ZZ
f�rr��� k�	M�r�� k�� k	 dr�dk� �

M�r� k�� k	 � 	�k��� rk	
mR�r	

mG�r	

� ��k��� rk	mR�r	 � r � R� k� k� � K �

Tf�rk	 �

ZZ
f�rr��� k�	��k��� r�k	 drr� dk� �

The K�bi�invariant case deserves special attention
 We say that the
operator �
�
�	 is K�bi�invariant if �Tf	k � Tfk �k � K� fk�g	 �
f�gk		
 Clearly this is the case if and only if the inner automorphism Ik �
G� G� Ik � g � k��gk stabilizes the measure �
 By our hypothesis dg
is also stable by the action of Ik
 Therefore it follows that ��kxk��	 �
��x	 and we can write �
�
�	 in the form

�
�
�	

Tf�rk	 �

ZZ
f�rr��� k��� k	��r�k�	 d

rr� dk�

�

ZZ
f�rr��� k�	��kk��� r�	 d

rr� dk� �

i�e� as a convolution on the product group R�K

The point of a K�bi�invariant operator in the above context is

that it can be identi�ed with an operator on the homogeneous space
G�K � fgK � g � Gg
 We can then identify G�K with R and since
left translation by elements of R clearly commutes with the projection
G � G�K 
� R the operator thus obtained on R is a convolution
operator

�
�
�	 f ��� f � �� � f � C��R	 �



	�� N� Th� Varopoulos

where �� � M�R	
 From �
�
�	 we see that we have in fact d���r	 �
�	�r	 drr with

�
�
"	 �	�r	 �

Z
K

	�rk	 dk � r � R �

The above two formulas �
�
�	 and �
�
"	 are not used in this paper but
have the merit of putting the above notions in the correct �perspective�
and are relevant in the �semisimple theory� which will be developed
elsewhere


���� The composition� the adjoint� k 	 kp�p norms� amenability
and the �local� estimate�

Let us consider

Ti � Li�h� dk	� f���i	h�kg � i � �� � � � � �

a sequence of R�left invariant operators on X as in Section 

 It is
clear then that

�
�
�	
T� � 	 	 	 � Tn �

Z
k�
K

	 	 	
Z
kn��
K

L��h� dk�	 	 	 	Ln�kn��� dk	

� f�����	h�k�
� 	 	 	 � ��n	kn���k

	g

with obvious notations
 To simply notations let L�h� dk	 � L�h� k	 dk
and let

�
�
	 T � L�h� k	 dk � f��h�kg

as in �

�� Section 
	
 Let then T � be the formal adjoint operator
with respect to drx � drr � dk then clearly

T � � L��h� k	 dk � f���h�kg �

where L��h� k	 � L�k� h	 and ��h�k � &�k�h where for any measure � on

R we adopt throughout the notation d&��g	 � d��g��	 �i�e� &� is the
image of � under the mapping g �� g�� on R	
 This follows trivially
from the fact that the formal adjoint with respect to drr of the operator
f �� f � �� f � C��R	� � � M�R	 is f �� f � &�
 If the representation
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�
�
	 is normal it follows that the operator T is self adjoint with
respect to drx � drr � dk if and only if

�
�
�	 L�h� k	 � L�k� h	 � &�h�k � �k�h �

Let now �dx � �dr � dk be some measure on X de�ned as in Section

� it is then clear from �
�
�	 that the Lp�X� �dx	 � Lq�X� �dx	 norm
can be controlled by the ��k��k� � 	 	 	�kn���kn � Lp�R� �dr	 � Lq�R� �dr	
convolution norm� i�e�

kT��	 	 	�Tnkp�q � kL��	 	 	�Lnkp�q sup
k�			kn

k��k��k��	 	 	��kn���knkp�q �

where L�� � � � � Ln� L� � 	 	 	 � Ln are the corresponding operators on K
as in Section 

 If the representations �
�
	 are all normal and if
�dr � drr� �dx � drx this means that

kT� � 	 	 	 � Tnkp�p � kL� � 	 	 	 � Lnkp�p �

kTnkp�p � kLnkp�p � � � p � �� �

we also have the following basic

Lemma� If R is amenable� the above inequality is actually an equality

i�e�

kT� � 	 	 	 � Tnkp�p � kL� � 	 	 	 � Lnkp�p � � � p � �� �

Proof� Since �everything is positive� it su�ces to show that there
exist � � fm� gm � C�

� �R	 �m � �	 such that

�
�
�	 kfmkp � � � kgmkq � � � m � � �
�

p
�

�

q
� � �

�
�
!	 hfm � �k��k� � 	 	 	 � �kn���kn � gmiL��Rdrr	 ��
m��

�

and that the limit in �
�
!	 uniform when kj � C �� K �j � �� � � � � n	
and C is a compact subset
 In fact� to avoid unnecessary complications
in this proof we shall make an additional hypothesis that will always
be veri�ed for us� We shall assume that for all � � � exists C � R such
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that �h�k�R
C	 � � �h� k � K	
 Otherwise the next few lignes have to
be �handled with care��

If we denote by � � �
��	
k��k�

� 	 	 	 � ��n	kn���kn
we see that

hf � �� giL��Rdrr	 �

Z
g�x	 drx

Z
f�xy��	 d��y	

�

Z �Z
f�xy��	 g�x	 drx

	
d��y	

�

Z �Z
�f�yx��	 g�x	 drx

	
d��y	 � h �f

�
r g� �i �

where �f�x	 � f�x��	 and where the de�ntion of the right convolution
�
r of two functions is �given� by the last equality
 �
�
�	� �
�
!	 will
therefore follow if we can choose fm� gm � C�

� that satisfy �
�
�	 and
such that

�
�
�	 �fm
�
r gm ��

m��
� uniformly on compacta �

The well informed reader recognizes here one of the many consequences
and de�nitions of the amenability �cf� ���� where it is proved in its dual
form kfkp� kgkq � � where the k k are taken with respect to the left
measure dr� and fm � �gm � �
 Observe also that one way to avoid the
uniformity hypothesis on the measures �h�k is to impose some kind of
monotonicity on the limit �
�
�		


A very important conclusion can be drawn from the above consid�
eration
 Let us start from the assumption that for some � � ��n	 �

n�� �

and for every �xed 	� � � C�
� �R	 we have

sup
k���kn

h	 � ���	k��k�
� 	 	 	 � ��n	kn���kn

� �iL��Rdrr	 � O���n		 �

It then follows that for �xed F � 	��	�� ' � ������ 	�� �� � C�
� �R	�

	�� �� � C�
� �K	 we have

hTnF�'i � O���n	 kLnk���	 �

where for simplicity we assume that T� � T� � 	 	 	 � T 
 It follows that
if R is amenable we have the local estimate

�
�
�	 hTnF�'i � O���n	 kTnk���	 �
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One �nal remark is in order
 Let ��r	 � � be an arbitrary continuous
positive function and T� � ����T����� the corresponding conjugated
operator
 It is clear that Tn� � ����Tn����� and that the  �  norm
of T� with respect to �dx � �dr � dk is the same as the  �  norm of
T with respect to ��� �dx � ���� �dr	� dk
 The local estimate is on the
other hand invariant by that conjugation since the � is absorbed in the
compactly supported F and '
 In other words for arbitrary � as above
we have

hTnF�'i � O���n	 kTnkL���drx	�L���drx		

and in particular� with � � mR � the modular function of R� we have

hTnF�'i � O���n	 kTnkL��dx	�L��dx		 �

The proof of the upper estimate of our main theorem hindges on this
observation


Let us now suppose that the density L�h� k	 of the operator L is
continuous and strictly positive and that the operator L � L��K	 �
L��K	 is compact
 In the above estimate we can then replace kTk���

by kTksp the spectral radius of T �since kAksp � lim kAnk��n we clearly
have kTksp � kLksp	


The reason why we can do this is because the operator L admits
then � � 	� � L��K	 a positive eigenfunction �cf� ����	 and in the
previous argument we can set 	� � �� � 	�


Indeed assume for simplicity that K is compact then any eigen�
function of L is continuous and if 	 � C�K	 is such an eigenfunction
with maximal �in modulus	 eigenvalue then

Lj	j � jL	j � Lj	j � �� � �	jL	j for all � � � �

i�e� the inequality Lj	j � ����	jL	j does not hold for any � � � �indeed
if we assume� as we may� that the eigenvalue in question has modulus
�� such an inequality would give kLnk � �� � �	n which contradicts the
fact that kLksp � �	


Therefore there exists k� � K such that Lj	j�k�	 � jL	�k�	j
 But
this �because L � �	 implies that 	 � ei�j	j �for some �xed � � R	

We have therefore Lj	j � kLkspj	j and from this it follows that 	� �
j	j � �
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���� Semigroup of operators�

In this section I shall examine

�
!
�	 Tt � Lt�h� dk	� f���t	h�kg � t � � �

a semigroup of positive R�left invariant operators on X� i�e� we assume
that Tt � Ts � Tt�s
 We shall assume that the representation �
!
�	 is
normal� by �

�	 it then follows that Lt � Ls � Lt�s �cf� Section 
	
is also a semigroup and that if Tt is symmetric with respect to drr�dk
then Tt � �� i�e� is a positive Hilbert space operator with respect to
that measure
 Clearly also Tt is �sub	markovian if and only if Lt is
�sub	markovian


Example� Tt � e�tA where A is a R�left invariant di�erential operator
on X
 To write down A we can �x once and for all left invariant �elds
on R� Y�� Y�� � � � and local coordinates �k�� k�� � � � 	 on K
 It follows
that Yj and ���ki commute and that we can write

�
!
	 A �
X

aijZiZj �
X

aiZi � a �

where each Zi is either one of the Yj  s or one of the ���kj s and fur�
thermore each coe�cient aij � ai� a is independent of r � R �but may
depend on k � K	
 The �projected� operator B on K is then obtained
by retaining only the terms of �
!
	 for which no Yj �eld appears and
we have Lt � e�tB 
 Observe that in the group case Tt is a �K�bi�
invariant� semigroup if A is a K�bi�invariant and that this implies that
B is K�right invariant on K
 If we are in a group case X � G we can�
for instance� take

�
!
�	 A �
X

bijXiXj � X� � b �

where the b s are constant with �bij	 � � and X�� X�� � � � are left in�
variant vector �elds on G
 Such an operator can clearly be rewritten

�
!
�	 � �
nX
i��

X�
i � X� � b

as in Section � �for a di�erent� of course� choice of invariant �elds
X�� X�� � � � 	
 When b � �� � is a markovian generator on G and is
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formally selfadjoint with respect to drg if X� � �
 But even if X� � ��
� is not in general formally selfadjoint with respect to drr � dk and
therefore the corresponding operators e�tB are markovian but not sym�
metric
 There is another important property that B inherits from A

First of all if A is elliptic �i�e� if the matrix �aij	 is positive de�nite	 the
operator B is also elliptic
 Let us assume more generally that the �elds
X�� � � � � Xn in �
!
�	 generate the Lie algebra of G
 The projected
operator B can then be written

�
!
!	 B �
nX
i��

�X�
j � �X� � �b �

where �Xj is the corresponding projected �eld on K
 Of course� even

if we are in the group case� �Xj need not be in general a K�invariant
�eld in any sense whatsoever� but it is certainly true that B is on K a
H�ormander operator in the sense that at every point k � K the �elds
�X�� � � � � �Xn span together with all their successive brackets the tangent

space

Let us now go back to the general semigroup and let us assume that

Tt is symmetric with respect to drx and that therefore Lt is symmetric
with respect to dk �both Tt and Lt are therefore positive operators in
the Hilbert space sense	
 I shall further make the following assumption�
A� �respectively A�	� there exists 	� � �� �� � � such that

Lt	� � e���t	� �respectively Lt	� � e���t	�	 �

We shall presently elaborate on that condition but �rst we shall draw
the consequences of A and A�
 Under the above conditions we shall
consider the semigroups

�
!
�	 (Tt � e��t	��� Tt	� � (Lt � e��t	��� Lt	� �

where in �
!
�	 	� is identi�ed with an R�left invariant function on
X which satis�es Tt	� � e���t	� �respectively Tt	� � e���t	�	 on
X
 The semigroups �
!
�	 are therefore markovian �respectively sub�

markovian	 (Lt is symmetric with respect to the measure (dk � 	��dk

and (Tt is symmetric with respect to the measure drr � (dk

Let us now go back to the assumption A �and A�	 and give natural

examples under which it is veri�ed
 Let us �rst suppose that we are
in the group case that K is compact and that Tt � e�t� with � as in
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�
!
�	
 To simplify matters let us also assume that Lt is symmetric with
respect to dk �dk here is some smooth non vanishing measure that need
not be the Haar measure of K	
 The H�ormander condition on �
!
�	
implies that the operators Lt are in the trace�class on L��K� dk	
 This
is because the kernel Lt�h� k	 is C� and thus Hilbert�Schmidt �and
Lt�� � Lt�� � Lt	
 We have therefore

Lt �
�X
j��

e��jt	j�h		j�k	 �

where �� � �� � 	 	 	 with
P�

j�� e
��jt �� �t � �	� and 	j � C�

R
�K	�

k	jk� � �� j � �� �� � � � � 

By the positivity of the operators involved we have Ltj	�j � jLt	�j

� e���tj	�j
 Also� since kLtk��� � e���t� we have kLtj	�jk�
� e���tk	�k� and therefore Ltj	�j � e���tj	�j
 It follows that we
can renumber the eigenfunctions 	�� 	�� � � � in such a way that � �
	� � C��K	


The next step is to show that 	� never vanishes 	� � � �k � K	
and that therefore the condition �A	 is veri�ed
 This of course is an
immediate consequence of the eigenvalue property

Lt	��h	 �

Z
Lt�h� k		��k	 dk � e���t	��h	

and of the more general fact that for any non identically zero � � 	 �
C��K	 we have

�
!
�	 Lt	�h	 � � � h � K �

To see this we observe that Lt � e�t�B��	e�t� for any � � � and B
as in �
!
!	
 B � �� on the other hand� for � � � large� generates a
�hypoelliptic� di�usion
 This means that the kernel et�Lt�h� k	 never
vanishes for t � � �cf� ���	� �
!
�	 follows


The above situation can be generalized as follows
 We shall drop
the assumption that K is compact but assume that there exists ) some
discrete group that acts discontinuously on K and in such a way that
K�) is compact
 We shall also assume that Tt the semigroup �
!
�	 is
stable by the natural )�action and induces thus a corresponding R�left
invariant semigroup on X�) � R�K�)
 If we assume that the corre�
sponding semigroup Lt on K�) has all the above properties �so that the
existence of 	� on K�) with the required properties is guaranteed	 then
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we can de�ne the analogous 	� on K by taking on K the corresponding
)�automorphic function
 We see in particular that the assumption A is
veri�ed in our group case vi	 of Section 
�


���� The symmetric Laplacian in the group case�

Let us suppose that we are in the group case G � X � R �K as
in Section 
� vi	 and that � � �PX�

j � Tt � e�t� is as in Section

�
�
 The modi�ed semigroup �Tt � m
���
G Ttm

����
G is then symmetric with

respect to d�g � d�r � dk and therefore

�
�
�	 &Tt � m
����
R

�Ttm
���
R � �mG�mR	���e�t��mG�mR	����

is symmetric on X with respect to drx � drr � dk as was needed for
the considerations of Section 
! to go through
 Observe that when
K � feg� mR � mG and &Tt � Tt


In this section I shall make a number of explicit computations
related to the above semigroup
 Let G be a simply connected Lie group
and let G � Q i S� S � NAK� R � QNA� Z � K have the same
meaning as in Section 
� so as to have the identi�cation G � R �K

It is clear that mG�k	 � � �k � K	 �and more generally mGjS � �	 so
it su�ces to analyse mR and mGjR
 Since Q is a normal subgroup of
G we have mGjQ � mRjQ � mQ so that mG�mRjQ � �
 Since S is
semisimple and mGjS � � it follows that

�mG�mR	����x	 � m
����
R �x	 � x � AN �

Now since all the automorphisms induced on Q by inner automorphisms
by elements of S are unimodular �S being semisimple	 we have �cf� �!�	

mR�x	 � mAN �x	 � x � AN �

So with the obvious abuse of notation we have

�mG�mR	��� � m
����
AN �

where G � �Q i AN	K
 For the semisimple group S the quantity
mAN is a very familiar creature mAN � e�� where � � �

P
�j	� is the

���sum of the roots �cf� �"�	
 In particular it only depends on the
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A�coordinate
 The �moral� is that the conjugating factor in �
�
�	 is
an �old friend�


To obtain the symmetric markovian semigroup (Tt on G then we
de�ne as in Section 
! the Z�automorphic function on K� 	� and ��
the corresponding eigenvalue which is then given by e���t � k &Ttk���

on L��X� drx	 �cf� Section 
�	
 But clearly also e���t � k �Ttk��� on
L��G� dg	 and �� � � is just the spectral gap �cf� Section �
�	 of �

The semigroup

�
�
	 (Tt � e�t	���
&Tt	� � e�t	��� �mG�mR	���e�t��mG�mR	����	�

is thus markovian and symmetric with respect to drr�	��dk � drr� (dk


Let now (�t�x�� x�	 be the kernel of the semigroup (Tt with respect

to dr � (dk we shall show then that we have

�
�
�	

(��t�e� e	 � e��t
Z
G

�t�g	�t�g
��	 dg

� e��t
Z
�t�k

��r��	�t�rk	 dr dk �

where �t�y
��x	 is the convolution kernel of Tt � e�t� with respect

to dg
 Indeed quite generally if kt��� �	 is the kernel with respect
to d of a general semigroup Kt on L���� d	 where ��� d	 is some

measure space then k
��	
t ��� �	 the kernel of the conjugated semigroup

�Kt�
�� with respect to d �where ��	 �� � is some non zero function	

is k
��	
t ��� �	 � kt��� �	����	����		
 This in particular implies

k
��	
t ��� �	 k

��	
t ��� �	 � kt��� �	 kt��� �	 � t � � �

Similarly the kernel of Kt with respect to a new measure ��	 d is

k
h�i
t ��� �	 �

�

���	
kt��� �	 �

If we apply these observations in our context where � � 	�� is bounded
from above and below we deduce that

�
�
�	 C���t�x	�t�x
��	 � e���t (�t�e� x	 (�t�x� e	 � C �t�x	�t�x

��	 �

�
�
�	 follows then from

(��t�e� e	 �

Z
X

(�t�e� x	 (�t�x� e	 dr (dk �
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Observe now that the symmetry of (Tt with respect to drr � (dk implies
that

(�t�x� x�	m
��
R �r�	 � (�t�x�� x	m��

R �r	 � x � �r� k	� x� � �r�� k�	 �

and therefore also

�
�
!	 P �t	 �

Z
(�t�e� x	 (�t�x� e	 d

rr (dk �

Z
(��t �e� x	 dr d(k �

From �
�
�	 it follows also that

�
�
�	 C��P �t	 � e��t
Z
�t�rk	�t�k

��r��	 drr (dk � C P �t	 �

We shall now show that for large t � � both (��t�e� e	 and P �t	 are
�comparable� with the quantity

�
�
�	 Q�t	 � e��t
Z
�t�r	�t�r

��	 dr � e��t
Z
�t�r	�t�r

��	 drr

in the sense that

Lemma� If K is compact� there exists C � � such that

C��Q�t� �	 � (��t�e� e	 � C Q�t� �	 � t � �� �

C��Q�t� �	 � P �t	 � C Q�t � �	 � t � �� �

It follows in particular that

�
�
�	

C��
Z

(��t���e� x	 dr (dk � (��t�e� e	

� C

Z
(��t���e� x	 dr d(k � t � � �

Proof� If K is compact by the standard local Harnack estimate �cf�
���� ���	 it follows that

C���t�����gk�	 � �t�g	 � C �t�����gk�	 � t � �� g � G� k�� k� � K�

where C � � is independent of t� g and k�� k�
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Combining these with the fact that

�t�g
��	 � �t�g	mG�g	 � g � G �

We deduce that

�
�
"	 C���t���k�gk�	 � �t�g	 � C �t���k�gk�	 �

for t � ��� g � G� ki � K� � � i � �
 If K is compact the integrals
in both �
�
�	 and �
�
�	 are comparable �in the above sense	 withR
�t�r	�t�r

��	 dr and our lemma follows
 If K is not compact we shall
choose K� some relatively compact fundamental domain of the covering
map K � K�Z so that

K �
�
z
Z

zK� � z�K� � z�K� � � � z�� z� � Z� z� �� z� �

What replaces �
�
"	 is then the estimate

C���t���zk�gk�	 � �t�zg	 � C �t���zk�gk�	 � t � � �

where z � Z is central in G
 The above argument therefore works
provided that in �
�
�	 we now set

Q�t	 � e��t
Z
R

X
z
Z

�t�zr	�t�z
��r��	 dr

� e��t
Z
R

X
z
Z

�t�zr	�t�z
��r��	 drr �

We conclude therefore that �
�
�	 is valid in full generality


In all the above considerations we used the measure (dk � 	��dk on

K and the corresponding measure (dk � drr � (dk on X with respect
to which the semigroup (Tt in �
�
	 is symmetric
 It turns out that if

we invoque a result of J
 Moser ���� we can in fact replace (dk by the
Haar measure dk
 J
 Moser s result says that when K is compact and
orientable there exists a di�eomorphism � � K � K that takes the
measure (dk to dk
 If we use this di�eomorphism and conjugate (Tt with
� � identity�� on X i�e� �f � �	 �� � (Ttf	 � � �for all f � C�

� �X		
we obtain a new semigroup that I shall still denote by (Tt which is
markovian and symmetric with respect to drr� dk
 The same thing of
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course holds in the general case �i�e� K is not compact	 provided that
we can lift the di�eomorphism from the compact manifold K�Z on K

This di�eomorphism lifts automatically when K is simply connected


We shall �nish this section with a probabilistic interpretation of
the lower estimates in the Theorem A
 Towards that we shall consider
� � fx�t	 � X� t � �g the path space of the di�usion on X generated
by the semigroup (Tt
 In other words

(Ttf�x	 �

Z
Px�x�t	 � dy� f�y	 � f � C�

� �X	 �

Pe�x�t	 � A� �

Z
x��r�k	
A

(�t�e� x	 dr � (dk �

If we bare in mind that c��dk � (dk � c dk and combine this with our
main estimate �
�
�	 we see that

�
�
��	 P�x�t	 � A� � C �(�t�e� e		
����dx�measure �A		��� �

The dx � dr� dk measure of A � G � R�K is of course the left Haar
measure on G
 If we use however the involution � � �r� k	 � �r��� k	 we

see from the symmetry of (Tt with respect to drr� (dk that if A is of the
form A � B �K �B � R	 then

P�x�t	 � A� � P�x�t	 � A��

and since � interchanges the two measures drr� (dk and dr� (dk we see
�nally that in �
�
��	� if we so wish� we can replace the dx�measure by

any of the measures drr�dk� drr� (dk� d�r� (dk
 The estimate �
�
��	
allows us to formulate the following criterion


Criterion� Let us assume that for all n � �� � � � � we can �nd a set

Xn � Bn �K � X �Bn � R	 such that

i	 measure �Xn	 � C nC � n � �� � � � �

ii	 P�x�n	 � Xn� � C��n�C � n � �� � � � �

where C � � and �measure� stands for any of the above measures�

Then there exists C � � such that �t� the convolution kernel of e�t��
satis�es

�t�e	 � C��t�Ce��t � t � � �
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The standard local Harnack principle �cf� ���	 has to be used of
course here to �ll in the gaps between the integer values t � �� � � � � 


We shall also need �for the lower estimate in Theorem A�	 a mod�
i�ed version of the above criterion� If Xn is as above but instead of i	
and ii	 we can only assert that

i 	 measure �Xn	 � C ecn
���

ii 	 P�x�n	 � Xn� � c��e�cn
���

� n � �� � � � �

Then we can conclude instead that

�t�e	 � C��e�ct
���

e��t �

���� The projection of the in
nitesimal generator�

In this section I shall preserve all our previous notations and as�
sume that N � R is some closed normal subgroup
 We can de�ne then
� � X � R�K � X�N � R�N�K the quotient spaces by the induced
left action by N and if T � L�f��h�kg is a positive left invariant on X
as in Section 
� the above projection induces TX�N � L� f�&���	h�kg
a positive left invariant operator on X�N �&���	 denotes here the image
of the measure � by �	


It is clear then that if T is self adjoint with respect to the measure
drr� dk then TX�N is self adjoint with respect to drR�Nr� dk �We can

use the criterion �
�
�	 to see this	

We shall now give an important example of the above situation


We shall assume that R is a simply connected soluble Lie group and
that N is the nilradical so that R�N 
� Rn 
 The right measure on R�N
is then the Lebesgue measure dx
 We shall further assume that we are
in the group case and that the left invariant operators considered are
the (Tt de�ned in Section 
� which will be self adjoint with respect to
drr � dk where dk is now assumed to be the Haar measure on K �cf�

end of Section 
�	
 We clearly have (Tt � e�t �A where (A is a sum of
squares �with drift	 operator that satis�es the H�ormander condition

We shall project as explained above and obtain (Tt � e�tD a symmetric
�with respect to dx � dk	 markovian semigroup on X�N � Rn � K
and we shall analyze more closely D the generator that is a subelliptic
di�erential operator
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Let x�� � � � � xn be the standard coordinates on Rn and let X�� � � � �
Xs be a basis of right invariant �elds on K
 It is then clear by the
Rn �left invariance that

�
�
�	 �D � DR � M � P � DK �

where

�
�
	 DR �
nX

i�j��

aij�k	
��

�xi�xj
�

where �aij�k		 is a symmetric non negative matrix� k � K


�
�
�	 M � 
nX
i��

sX
���

b��i�k	X�
�

�xi
� P �

nX
i��

�i�k	
�

�xi
�

and where DK can be identi�ed with the canonical �projected operator�
on K
 That operator is self adjoint subelliptic and can thus be written
in the form

�
�
�	 DK �
sX

�����

X� �����k	X� �

where ������k		 is a symmetric non negative matrix
 The constant term
is zero because D is a markovian generator
 What is also clear is that
DR in �
�
	 is uniformily elliptic on Rn i�e� that

�
�
!	 �aij�k		 � ��I

for some �� � � provided that the original operator � on G and there�
fore D on Rn �K is actually elliptic


The formal self adjointness of D with respect to dx � dk implies
that

�i�k	 �
sX

���

X�b��i�k	 � i � �� � � � � � n �

and therefore that

�
�
�	

Z
K

�i�k	 dk � � �
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This is equivalent to the �formal� statement hD�xi � �	� �i � �

Of course D is K�bi�invariant if and only if all its coe�cients are

constant
 This is the only reason why we choose the �elds X�� � � � � Xs

to be right invariant rather than left invariant
 If we use the canonical
projection Rn �K � Rn and project D we obtain then DR on Rn 
 It
follows in particular that then DR is elliptic as soon as D is subelliptic


Let us �nally examine the convolution kernel
 Let us go back to
the original semigroup e�t�f � f ��t with d�t�g	 � �t�g	 drg then the
corresponding left invariant operator on R�K is �cf� �
�
�		

�
�
�	
Ttf�rk	 �

ZZ
f�rr��� k�	�t�k

��
� r�k	 drr� dk� �

Tt � e�t� � L�h� dk	� f��h�kg �

But then clearly with �M � 	��k	�mR�r	�mG�r		��� � 	�M we obtain

�M��Tt �M � 	��� �h		��k	L�h� dk	� f�M���h�kg �

which means that

(Ttf�rk	 � e�t	��� �k	

ZZ
	��� �h	 f�rr��� h	�t�h

��r�k	

	m���
G �r�	m

���
R �r�	 dr� (dh �

Observe also that� with our previous notations� when N � R is the
nilradical of R and R�N � Rn if we project the operator �
�
�	 on
Rn �K we obtain

Ttf�x� k	 �

ZZ
f�x� x�� k�	

�Z
N

�t�k
��
� nx�k	 dn

	
dx� dk� �

��� Left invariant Markov chains and the semidirect product
decomposition�

We shall consider here fxn � X � n � �� � � � �g a left invariant
Markov chain as in Section 
 and assume that R � N i H is a
semidirect product with N � R a normal subgroup as in Section 
�

We can identify here X�N � R�N � K with Y � H � K and X �
N � Y 
 Let us denote by � � X � Y the canonical projection and by
Y � fyn � ��xn	 � Y � n � �� � � � �g the corresponding left invariant
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chain on Y 
 With the above identi�cations we set xn � �zn� yn	 �zn �
N� yn � Y� n � �� � � � 	
 We shall examine closely the process

Z � fzn � N � n � �� � � � �g �

The process Z is not in general markovian but if we condition on the
paths �y�� y�� � � � 	 of Y Z becomes a Markov chain
 This is a very
important fact for us and we shall analyse it here in detail


To help the reader see what is happening� let us �rst look at the
special case when N � R� Y � K
 If we use a normal representation

�
�
�	 Tj � Lj�h� dk	� f���j	h�kg

of the transition operator� we see that conditionally on �k�� k�� � � � 	
�kj � K	 being �xed� the process fzn � R � n � �g is the Markov
chain on R with transition operators

f ��� f � ��j	kj���kj
� j � � �� � � �

It is this idea that we generalize when R � N iH
 The key fact here
is that any probability measure � on R can be disintegrated

� �

Z
H

�x d��x	 � � � P�H	� �x � P�xN	� x � H �

For simplicity again let us assume that K � feg is the one point set
�this is the basic case treated in ���� and it will help the reader at this
point to consult that references	
 The transition operator are then

Tj � ���j	

for probability measures on R

��j	 �

Z
H

��j	y d��j	�y	 �

The measures �
�j	
y can �for every �xed y � H	 be identi�ed to �

�j	
y �

P�N	 by zy � z �z � N	 and since now xn � znyn we easily see that
with a �xed �y�� y�� � � � 	 the process fz�� z�� � � �g is a Markov chain on
N with transition operators

f ��� f � �j �
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where �� � �y� and �j � ��
�j	
yj 	y�			yj�� �j � 	 with the notation �x

�� � P�R	 x � R	 for the image of � by the inner automorphism g ��
xgx��
 An alternative way of viewing the above situation is to observe
that if we consider arbitrary measures �j � M�N	 �j � �� � � � � n	 and
place then on the cosets Nyj by the identi�cation z � zyj then the
convolution �in R	 of these measures �that are placed on the cosets	
lies in the coset y�y� 	 	 	 yn and corresponds to the measure �� � �y�� �
�y�y�� � 	 	 	 � �y�			yn��n where now the convolution is taken in N 


The above two special cases �K � feg and N � R	 can now be put
in the general context� we identify X � R�K � N � Y � N �H �K
so that xn � �rn� kn	 � �zn� hn� kn	� yn � �hn� kn	 � Y and with �xed
�y�� y�� � � � 	 we disintegrate

�kj���kj �

Z
H

�
�j	
h d��j	�h	 �

�z�� z�� � � � 	 is then a Markov chain on N with transition operators

f ��� f � ��
�j	
hj

	h�			hj�� � j � � � � �

���� Bi	invariant operators revisited�

Nothing in this section is very new but I felt that it was appropiate
to close this chapter by making the connection with know and standard
ideas related to K�bi�invariant operators on semisimple groups


Let G be some Lie group that can be written G � R 	K� R�K �
feg for two closed subgroups with Z � K as in Section 
� so that
mGjK � �
 I shall consider on G a di�erential operator � without
constant term �i�e� �� � �	 that is G�left invariant K�right invariant
and is in particular formally self adjoint and positive with respect to
right measure drg
 What we want is �somehow� to identify � with an

operator on R
 To do this we �rst conjugate � to �� � m
���
G �m

����
G to

make it formally self adjoint with respect to dg � d�g
 This of course
creates a constant term ��� � C which in general is not zero
 Let us
consider D � ��� C which is now a G�left� K�right invariant operator
without constant term that is formally self invariant with respect to
dg
 From now onwards we shall consider operators D that have the
above properties
 When G � NAK is semisimple D� the classical K�
bi�invariant Laplacian� has the above properties
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Quite generally an operator on G that has the above properties can
be identi�ed with a G�invariant operator on the homogeneous space
G�K � fgK� g � Gg �When G � NAK is semisimple G�K is the
symmetric space and the most important example of the above situation
is that of the Laplace�Beltrami operator on G�K	
 The homogeneous
space G�K can be identi�ed with R� we obtain thus an identi�cation
of D with an operator DG�K on G�K and DR on R
 DR is clearly R�
left invariant has no constant term and since the G�invariant measure
on G�K �which always exists since mGjK � � � mK	 can be identi�ed
with the left Haar measure of R� DR is formally self adjoint with respect
to dr � d�r �indeed DG�K is clearly formally self adjoint with respect
to the invariant measure on G�K	
 It follows therefore that

DR � m
���
R

�
�
X

X�
j � CR

�
m
����
R �

where X�� � � � � Xn are left invariant �elds on R
 The only issue here is
to determine the constant CR
 To do this let �D be the spectral gap of
operator DG�K on G�K
 The operator DR��D has then zero spectral

gap on L��R� dr	 and therefore �DR � �PX�
j �CR��D has zero spec�

tral gap on L��R� drr	
 If we assume� as is the case in all the interesting
examples� that R is soluble� and therefore amenable� the spectral gap
of �PX�

j � which is a markovian generator is �
 It follows that the

spectral gap of �DR is CR � �D and that CR � �D
 The conclusion is

that DG�K � �D can be identi�ed with m
���
R ��PX�

j 	m
����
R 


An alternative way to compute CR is to observe that mR is mul�
tiplicative and therefore that XjmR � �jmR ��j � R� j � �� � � � � 	
Xjm

�
R � ��jm

�
R� �

P
X�
j 	m�

R � ��
P

��jm
�
R and that therefore the

constant term of m
���
R ��PX�

j 	m
����
R is ��P��j	��
 This gives� in

view of the fact that DR has no constant term� that

CR �
�

�

X
��j �

�

�
�� �

In the case of the Laplace�Beltrami operator on a symmetric space the
above considerations amount to the standard way of computing the
spectral gap in terms of the roots
 Observe �nally that by an easy
calculation we have

DRm
�
R � ������� ��� ��	�	m� �

This shows that m
���
R � �� is an eigenfunction of DR with DR�� �

�D�� i�e� that �� is the �ground state� of the Laplace�Beltrami oper�
ator
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Let now G be an arbitrary real Lie group and let K � G be an
arbitrary compact subgroup or more generally a subgroup K that con�
tains Z � K a central subgroup such that K�Z is compact
 It is
then very easy to see that K�Z acts by inner automorphism �I �k � x�
kxk�� k � *k � K�Z	 on G
 It follows that if � is an arbitrary on G
then �� �

R
K�Z

dI �k��	 d *k is K�bi�invariant


A similar analysis can be done for K�bi�invariant convolution op�
erators f �� f � � on G �i�e� when � is stable by the action of Ik�
k � K	


Finally when G � R 	K as in Section 
� the above considerations
show that for K�bi�invariant Laplacians and K�bi�invariant convolution
operators both Theorem A and Theorem B reduce to the analogous
theorems on R
 When R is soluble and the spectral gap is zero these
results have been proved in ����


�� Gaussian measures on groups�

���� Elementary facts on the geometry of groups�

Let G be a connected real Lie group and let X�� � � � � Xk be left in�
variant �elds that satisfy the H�ormander condition
 These �elds de�ne
therefore a left invariant distance d�	� 		 on G� cf� ���
 We shall always
denote by jgjG � jgj � d�e� g	
 The thing to remember is that �at
in�nity� j jG only depends on G and is independent of the particular
choice of the �elds X�� � � � � Xk
 More precisely for every e � � Nhd of
the identity and for a new choice X�

� � � � � � X
�
s of �elds as above we have

C��jgjold � jgjnew � Cjgjold� g � Gn� �

It is clear of course that jhgj � jhj � d�h� hg	 � jhj � jgj and that
jg��j � d�e� g��	 � d�g� gg��	 � jgj
 It follows in particular that
j jhgj � jgj j � jhj� j jghj � jgj j � jhj �g� h � G	 and therefore also that
j jh�gh�j � jgj j � jh�j� jh�j �g� h�� h� � G	


We shall also denote by

B�r	 � BG�r	 � fg � G � jgj � rg

the corresponding r�ball

Let now H � G be some closed subgroup and let mH denote either

the left or the right Haar measure of H
 There exists c � � then such
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that

��
�
�	 mHfh � H � jhjG � rg � ecr � r � � �

Observe that the above set Hr � fh � H � jhj � rg is not �equivalent�
with the BH�r	 the r�ball in H
 Observe also that since the involution
h � h�� �h � H	 interchanges the left and right Haar measure on H
the statement ��
�
�	 need only be proved for the right measure mH 

The proof of ��
�
�	 is easy
 Indeed the left distance on G induces
j 	 jG�H a distance of the homogeneous space fHg � g � Gg and if for
every *g � G�H with j *gjG�H � r we �x as we may some g � *g with
jgj � j *gj we clearly have

��
�
	
�
j �gj�r

Hrg � BG��r	 �

It is clear also that we can �disintegrate� mG � mH �mG�H for some
appropiate C��non vanishing measure on G�H so that ��
�
	 gives

mH�Hr	 	mG�H�BG�H�r		 � mG�BG��r		

with obvious notations
 mG�H is the Haar measure of G�H if H is
normal but in general it does not have to be G�invariant
 What however
always holds is that mG�H�BG�H�r		 � �� � � �r � �	 and ��
�
�	
follows from the well known and obvious fact �cf� ����	 that

��
�
�	 ��r	 � mG�BG�r		 � C ecr � r � � �

What is clear also is that for any closed analytic subgroup H � G we
have jhjG � CjhjH �h � H	 the best estimate the other way around is
�cf� ����� ����� ����	

��
�
�	 jhjH � C exp�c jhjG	 � h � H �

The proof of ��
�
�	 is non trivial
 If G is algebraic ��
�
�	 follows
from general considerations �cf� ����	
 If G is simply connected soluble
and H � N is in the nilradical ��
�
�	 was proved in ���� �cf� also
Section �
�	
 This is the only case that will be needed in this paper

In the special case when we can write G � H 	 K where K b G is
a compact subset we have jhjH � jhjG �h � H	
 �This is because
for any h� h� � H we can �nd h � h�� � � � � hn � h� � H such that
dG�hj � hj��	 � C� n � Cd�h� h�		
 When G � H 	 K where K is a
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closed group that contains Z � K a discrete central �in G	 subgroup
such that K�Z is compact �as in Section 
�	 and H�Z � f�g� we again
have jhjH � jhjG� provided that the image of H in G�Z is closed
 Indeed
if we denote by � � G� G�Z � H 	 �K�Z	 the canonical projection we
have from the above remark jhjH � jhjG�Z but quite generally we also
have j��g	jG�Z � jgjG �g � G	 and our result follows


Observe �nally that the above remark together with the structure
theorems of Lie groups allows us to reduce the proof of ��
�
�	 to the
case when G is soluble
 That reduction is however non trivial �cf�
Section �
� and ����	
 For a soluble group G which we can further
assume to be simply connected� the proof of ��
�
�	 is done by the
use of the �exponential coordinates of the second kind�
 One �rst
proves that when the group G of ��� Theorem �
��
��� is nilpotent�
then the coordinates �t�� � � � � tm	 of g � G are O�jgjN	� this is easily
done by induction
 We shall then choose the basis X�� � � � � Xm in ���
Theorem �
��
��� in such a way that X�� � � � � Xn �for some n � m	 is
a basis of the nilradical
 A simple use of the above special case and
the results of ���� show then that� in general� the coordinates satisfy
j�t�� � � � � tm	j � O�exp �cjgj		
 From this and the proof of Theorem
�
��
� in ��� our assertion ��
�
�	 follows
 The details will be left for
the reader


���� Functions and measures on a group�

Let G be some real connected Lie group and let 	�g	 � C��G	

We shall say that 	 is an Ex�function �Ex� for �Exponential�	 if there
exists C � � such that

C��exp��Cjgj	 � 	�g	 � C exp�Cjgj	 � g � G �

and if for any sequence of left invariant �elds X�� � � � � Xk� � � � there exist
Ck� �Ck � � �k � �	 such that

��

�	 jX�X� 	 	 	Xk 	�g	j � �Ck exp�Ck jgj	 � g � G �

Similarly we shall say that 	 is a Gs�function �Gs for �Gaussian�	 if
there exist C�� �C� � � such that

��

	 �C� exp��C� jgj�	 � 	�g	 � �C� exp��C� jgj�	 � g � G �
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and for any sequence X�� � � � � Xk� � � � there exist Ck� �Ck � � �k � �	
such that

��

�	 jX� 	 	 	Xk 	�g	j � �Ck exp��Ck jgj�	 � g � G �

We shall sometimes say that 	 is a strict Gs�function if for any � � �
in the above estimates we can choose

C� �
�

� �
� Ck �

�

� � �
�

and where �C���	� �Ck��	 depend on � � �
 In the rest of this section we
shall examine closely the above notations


First of all it is clear that if m��m� � Ex �i�e� are Ex�functions	
if 	�� 	� � Gs �i�e� are Gs�functions	 if ��� �� � R� n�� n� � �� � � � � �
m��

� m��
� � Ex� 	n�� 	n�� � Gs� m	 � Gs


Typically any positive character �e�g� the modular function mG	
is an Ex�function
 More generally when �mij	 � M � G� GLn�R	 is a
group homomorphism then each matrix coe�cient mij is O�exp�Cjgj		
and satis�es ��

�	 �This is because mij�gx	 �

P
mi��g	m�j �x	 and

the �elds Xk are left invariant	

It follows in particular that if

��

�	 d� � 	dg � � drg

is a positive measure on G then 	 � Gs if and only if � � Gs
 A
measure � as in ��

�	 with 	 � Gs will be called a Gs�measure


Let now Y be a right invariant �eld
 It is clear then that Y �g	 �
Tg�G	 �i�e� the value of the �eld at g � G	 coincides with X�g	 the
value at g of the left invariant �eld X for which X�e	 � Ad gY �e		

The upshot is that Y �g	 � M�g	�X�� � � � � Xn	T where M�g	 � GLn�R	
is as above and �X�� � � � � Xn	 is a basis of left�invariant �elds
 From
this and our previous remarks we see that in the above de�nition of Ex
or Gs�functions we can replace left invariant �elds by right invariant
�elds
 If we use the notations

&f�g	 � f�g��	 � fh�g	 � f�gh	 � fh�g	 � f�hg	 � g� h � G �

The above considerations show that &	 � Ex �respectively &	 � Gs	 if
and only if 	 � Ex �respectively 	 � Gs	
 Also if 	 � Ex �respectively
	 � Gs	 and k � G then 	k� 	k � Ex �respectively � Gs	 and that this
is so uniformly �i�e� with uniform constant	 as k � K b G runs through
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the compact subsets of G
 I shall leave the reader with the task to work
out which of the above observation extend to strict Gs�functions and
which do not


We shall �nally need to extend the above notations to the product
space X � R � K as in Section 
�
 We shall say that 	 � C��X	
is an Ex� �respectively Gs�	 function on X if and only if the functions
	k�r	 � 	�r� k	 are Ex� �respectively Gs�	 functions uniformly in k � K
�i�e� with uniform constants	


A typical example of a Gs�function on R � K is supplied by the
convolution operator in Section 
� where the convolution measure d� �
	�g	 dg is Gs
 The formula �
�
�	 for M�r� k�� k	 and our previous
remarks show that M�r� k�� k	 is Gs on R uniformly in k� k� provided
that K is compact or more generally� uniformly when k��� k � K� b K
where K� is some compact subset of K
 Indeed mR�r	 � Ex on R and
��g	 � 	�k��� gk	m��

G �g	 � Gs on G
 To show that �jR and therefore
M is Gs on R it su�ces therefore to use Section �
� and the fact that
when K is compact we have

��

!	 C��jrjG � jrjR � C jrjG � r � R� jrjG � C �

Due to the fact that Z is a central subgroup� the estimate ��

!	 also
holds when K is not compact �cf� end of Section �
�	 provided that
k��� k � K�


Another notion that will be used is that of a Gs R�left invariant
positive operator T on X � R�K as in Section 

 We shall write

T � L�h� dk	� f��h�kg
in normal form as in Section 
 and we shall say that T is Gs on X if the
measures �h�k � Gs on R uniformly in h� k � K
 It follows that when
K is compact then the operator T that corresponds to a convolution
operator on G by a Gs measure is Gs in the above sense


���� Subgroups and quotients�

Let H � G be as in Section �
� �or at least some closed analytic
subgroup for which ��
�
�	 is known to hold	� and let 	 � Gs on G
 I
shall consider the restricted function �	 � 	jH � C��H	 by Section �
�
it is clear that

��
�
�	
�	�h	 � �C� exp ��C� log��jhj� �		 �

jX� 	 	 	Xk �	�h	j � Ck exp ��Ck log��jhj� �		 � h � H �
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In general however �	 is not a Gs�function
 Let us now assume through�
out this section that H is normal and let � � G� G�H be the canonical
projection �For the applications that we have in mind H 
� Rn � the dis�
tinction that we make below of d�h and drh is therefore inessential	
 Let
m � G�H be an Ex�function on G�H� then m � � is an Ex�function on
G
 The analogous statement is in general false for Gs�functions
 Quite
generally for any � � 	 � C��G	 we shall de�ne �possibly � ��	

��
�
	

	��g	 � 	�� *g	 �

Z
H

	�gh	 d�h �

	r� *g	 �

Z
	�hg	 drh � g � *g � gH � G�H �

We have � &		� � �	r	
�
 In what follows it su�ces therefore to examine

one of the two transforms 	 � 	� or 	 � 	r
 We shall need the
following

Lemma� Let H � G be as above� Then for every c � � � � there exists

C � C�c� �	 such that

��
�
�	

Z
exp ��c jghj�G	 d�h � C exp ���c� �	 j *gj�G�H	 �

for all g � G� g � *g � G�H�

Proof� By Section �
� it is clear that we can estimate the above
integral by Z �

j �gj
exp ��c j�j� � C � � C j *gj	 d� �

Indeed by ��
�
�	 it is only matter of splitting the integral along the
intersection of gH with the shells fx � G � jxjG � d�g � G
 The
lemma follows


In the above lemma we can replace jghjG and d�h by jhgjG and drh
and the same conclusion holds �indeed we pass from one to the other by
the involution x� x�� in G	
 With the above notations let us assume
that 	 � Gs and that X�� X�� � � � � Xk are left invariant �elds and let us
denote

	
�k	
� �g	 � �jX� 	 	 	Xk 	�g	j	� � 	�k	r �g	 � �jX� 	 	 	Xk 	�g	j	r �
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It is clear from the lemma that

��
�
�	 	
�k	
� � *g	 � 	�k	r � *g	 � �Ck exp ��Ck j *gj�	 � *g � G�H �

However it is also true that

��
�
!	 	�� *g	 � 	r� *g	 � �C� exp ��C� j *gj�	 � *g � G�H �

Indeed for �xed *g � G let g � *g be chosen so that jgjG � j *gjG�H � �
and since with h � H� jhjH � � we have �cf� Section �
�	

j jghjG � jgjG j � j jhgjG � jgjG j � � �

��
�
!	 follows by restricting the integration in ��
�
	 to the ball jhj � �

Let now X and Y be a left invariant and a right invariant �eld

respectively on G and let *X� *Y the corresponding projected �elds on
G�H
 It is evident �from the de�nition Xf�g	 � lim�f�getX	�f�g			�t�
Y f�g	 � 	 	 	 	 that

*X	r� *g	 �

Z
H

�X		�hg	 drh �

*Y 	�� *g	 �

Z
�Y 		�gh	 d�h �

The analogous expressions for the �multiple derivatives� *X�
*X� 	 	 	 *Xk	r

also hold
 If we use this remark together with ��
�
�	� ��
�
�	� ��
�
!	 we
coclude that 	r� 	� are both Gs�functions and that furthermore they
are strict Gs�functions� for the quotient metric� if 	 is


It is clear that the above considerations generalize to Gs�functions
on X � R � K where for each 	 � C��X	 and H � R a closed
normal subgroup the corresponding functions 	r� 	� � C��R�H �K	
are de�ned in the obvious way for every slice 	�	� k	 separetly


We shall now consider more closely the restriction of Gs�function
on a subgroup or more generally on a coset gH
 Motivated by ��
�
�	
we shall say quite generally that for any Lie group H� f � C��H	 is
an Sp�function �superpolynomial	 with constants c�C�� C�� 	 	 	 � � if

��
�
�	 jX� 	 	 	Xkf�h	j � Ck exp ��c log��jhj��		 � h � H� k � � �

It is thus clear that the restriction to H � G of a Gs�function on H is
Sp on H
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More generally let f � Gs on G and let us de�ne

fg�h	 �
�Z

H

f�gh	 d�h
���

f�gh	 � g � G� h � H �

�One should observe that for all our applications H will be in fact uni�
modular and drh � d�h
 More generally by choosing a global analytic
section of G� G�H� which always exists in the simply connected case�
we can �nd an Ex�function on G that allows us to pass from the drh
measure to the d�h measure
 We shall have no use of this fact how�
ever and therefore we shall not elaborate further	
 Just as before if
X�� � � � � Xk are left invariant �elds on H� which can be identi�ed to left
invariant �elds on G� we clearly have

�X� 	 	 	Xkf	g�h	 � X� 	 	 	Xk�fg	�h	 � g � G� h � H �

and if f � Gs on G by ��
�
!	 we haveZ
f�gh	 d�h � C exp ��C j *gj�	 �

The upshot of the above consideration is that

��
�
�	
jX� 	 	 	Xk�fg	�h	j � exp �C�jgj�G � C�jghj�G	

� exp �c�jgj�G � c�jhj�G	 �

If we combine this with ��
�
�	 we conclude that for every g � G the
function fg � C��H	 is an Sp�function with a constant c � � in ��
�
�	
that only depends on f and where

Ck � Ck�g	 � �Ck exp �ckjgj�	 � k � �� �� � � �

The constants c� �Ck� ck � � clearly only depend on the constants of the
de�nition ��

	���

�	� and the estimates ��
�
�	 are uniform for a
family of functions f that are uniformly Gs on G


���� Mass escape at in
nity of the convolution product�

Let �j � P�G	 �j � �� � � � � 	 be a sequence of probability measures
on G that are Gs�measures uniformly in j � �� � � � � If we bare in mind
��
�
�	 we see that this implies that

�jfg � G � jgj � Rg � C exp ��cR�	 � R � �� j � �� � � � � �
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where C� c � � are independent of R � � and j � �� � � � � If we take
the convolution products ��n	 � �� � 	 	 	 � �n we deduce

��n	fg � G � jgj � Rg �
nX
j��

�jfg � G � jgj � R�ng

� C n exp ��c �R�n	�	 � R � �� n � �� � � � �

We have in particular

�nfg � G � jgj � n��	g � C exp ��c n�		 � n � �� � � � � � � � � �

Similarly we can consider probability measures d�j�g	 � fj�g	 dg �
P�G	 where fj � Sp� j � �� � � � � and where for simplicity we shall
assume that G is unimodular
 More precisely we shall demand that
there exist c � �� C�� C�� 	 	 	 � � such that

fj�g	 � Cj exp ��c log��jgj� �		 � j � �� � � � � � g � G �

We shall assume further that G is a group of polynomial growth i�e�

that

��r	 � Haar measure of BG�r	 � C �r � �	A � r � � �

It then follows that

�jfg � G � jgj � Rg � C Cj exp ��c log��R � �		 �

for j � �� � � � � � R � �� and therefore� as before� the convolution prod�
uct ��n	 � �� � 	 	 	 � �n satis�es

��n	fg � G � jgj � Rg � C

� nX
j��

Cj

	
exp ��c log��R�n� �		 �

for R � �� n � �� � � � � � with R � n��	 we have in particular

��n	fg � G � jgj � n��	g � C sup
��j�n

Cj exp ��c log� n	 �

where C� c � � are independent of n
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���� The Heat kernel�

Let �� � �PX�
j be a driftless subelliptic Laplacian and let �t�g	

be the corresponding convolution kernel as in Section �
 For every �xed
t � � the function �t�g	 is then a Gs�function on G �cf� ���	
 In fact
���g	 is a strict Gs�function
 The strict upper estimate is contained
in ���
 The strict lower estimate is �implicitely	 contained in ��"� �es�
pecially Section 
�� ��"� II	
 Since we shall be able to complete the
proofs of our theorems without the strict estimates� we shall not give
the details here


Let now � � �Pn
j��X

�
j � X� be a general subelliptic Laplacian

�i�e� X� need not be zero	
 The convolution kernel �t is again� for
every �xed t � �� a Gs�function
 The proof of the upper estimate
has been written out in a much more general context in ���
 For an
alternative simple proof� �cf� Section A
�	
 The lower estimate when
X� �

P
�iXi �

P
�ij �Xi� Xj� is an easy consequence of the scaled

Harnack estimate �cf� also ���	
 For a general drift however this lower
Gaussian estimate is di�cult to prove �cf� Section A
�	


From the above and the considerations at the end of Section �
 we
see that T the left invariant operators on R�K that corresponds to the
semigroup Tt � e�t� on G as in sections 
!� 
�� 
� are Gs�operators
when K is compact
 This statement remains true in general� even when
K is not compact� but this statement is not trivial to prove
 Since we
shall be able to do without this general case we shall not give this proof
here


�� Upper estimates�

���� Gaussian measures on a special class of groups�

In this section we shall consider a real Lie group G and H � G
a closed normal subgroup that satisfy the following conditions� H 
�
Rn and G�H 
� V � S where V 
� Rm and S is compact
 We shall
summarize this information in the exact sequence

��
�
�	 � �� H 
� Rn �� G ��
p

G�H 
� V � S 
� Rm � S �� � �

The above situation is not as special as it looks
 Indeed let G be simply
connected group and let N � Q � G be its radical and nilradical
 Let
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further �N�N � the analytic subgroup that corresponds to �n� n� where
n � g is the nilradical of the Lie algebra of G
 Then the group G �
G��N�N � satis�es the above conditions ��
�
�	 with H � N��N�N ��
V � Q�N and S � G�Q
 S is a semisimple group
 When G is soluble
we have S � feg
 When G is amenable �e�g� when g is an R�algebra	
then S is compact
 Observe that if we assume in addition that g is an
algebraic algebra �i�e� that it is the Lie algebra of some algebraic Lie
group	 in the above situation we have G��N�N � � G � H i �V � S	
�cf� ���	 and if G � Q is soluble we have Q��N�N � � H i V 


The basic thing to observe is that under the condition ��
�
�	 the
group G�H �
� Rm � S	 can be made to act naturally on H so as to
have

��
�
	 � � G�H �� GL�H	 �

This is of course true in general �and trivially so	 when G 
� H iG�H
�e�g� G simply connected and H � Q� the radical of G	 but here
the action ��
�
	 is obtained from inner automorphisms because H is
abelian
 Indeed for x � G�H we choose some g � G such that p�g	 � x
and then the action h� g��hg is independent of the particular choice
of g


The Lie algebra of V and H will be identi�ed with V and H re�
spectively and we shall consider

��
�
�	 d� � V �� gl�H	 �

We shall also consider the roots of the action ��
�
�	 which are � �
HomR�V � C � and are de�ned by

�d��v	� ��v		w � � � v � V �

and some � �� w � H�RC 
 The corresponding root spaces U� � H�RC

are de�ned accordingly

I shall de�ned then L�� L�� � � � � Lp all the distinct real parts �L �

Re�	 of these roots �contrary to what was done in Chapter � the zero
real part is also admitted here	
 If then Hj � H is de�ned by the fact
that Hj � C �

P
U� for all the � s such that Re� � Lj we obtain

H � H�� 	 	 	�Hp a decomposition of H as a direct sum of subspaces

All the subspaces Hj are stable by the representation ��
�
	 and are
such that if G�H � *g � �v� s	 �v � V � s � S	 we have

��
�
�	 det��j� *g		 � edjLj�v	 �
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where dj � dimHj and �j � �jHj �This is because the determinant is
real and its modulus is clearly given by ��
�
�		
 Observe also that in the
relevant cases S is compact or semisimple and therefore det��s	 � ��
s � S
 All the above facts are consequences of elementary linear algebra
and will thus be left for the reader


It is of course clear that if G satis�es ��
�
�	 then we can represent

��
�
!	 � �

pX
j��

�jLj � �j � � �

non trivially �i�e� not all �jLj � � in the above sum	 if and only if g is
a C�algebra


Proposition� Let G be a real Lie group that satis�es the conditions

������	 and let us assume that the Lie algebra g satis�es the C�condition�
Let �j � P�G	� j � �� � � � � be a sequence of probability measures and

let us assume that �j � Gs on G uniformly in j �i�e� with constants

that are independent of j	� Let further ��n	 � �� � 	 	 	 � �n be the

corresponding convolution products�

Then there exists c � � such that for every f � C�
� we have

��
�
�	 h��n	� fi � O�e�cn
���

	 � n � � �

In fact we have d��n	�g	 � 	�n	�g	 dg where 	�n	 � C��G	 �and
even 	�n	 � Gs on G but this is irrelevant	 and �morally� what the
estimate ��
�
!	 actually says is

	�n	�g	 � O�e�cn
���

	 � g � G �

The proof of ��
�
�	 will be given in Section �
!


���� The Fourier transform�

G � H and all other notations will be as in Section �
�
 We shall
consider d��g	 � 	�g	 dg a Gs�probability measure on G and de�ne

� �g�h	 �

�Z
H

	�gh	 dh

	��
	�gh	 � h � H� g � *g � G�H �
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the above function will be identi�ed with a function � �g�x	 � C��Rn	
uniquely de�ned up to translation 	 �� 	 � � on Rn �� � Rn	
 The
modulus of the Fourier transform

f �g��	 � j(� �g��	j

is therefore uniquely de�ned
 For the sequence of measures given in
the proposition of Section �
� we shall consider d�j�g	 � 	j�g	 dg

�j � �� � � � � 	 and the corresponding fg��	 � fj� �g��	 � j(�g��	j �for
typographical reasons we shall drop the j � �� � � � and the �dot� above
the g	
 We shall need the following

Lemma� Let (H � (H� � 	 	 	 � (Hp be the dual decomposition of H �

H� � 	 	 	 �Hp

� Rn and let � � ���� � � � � �p	 � (H� �i � (Hi� i � �� � � � � p

be the corresponding coordinates� Then �uniformly in j � �� � � � � 	 we

can �nd functions f
��	
g � � � � � f

�p	
g � �g � G�H	 �i�e� these functions are

independent of j � �� � � � � 	 that satisfy

fg��	 � f ��	g ���	 	 	 	f �p	g ��p	 � g � G�H� � � ���� � � � � �p	 � (H �

��

�	 � � f �i	g � � �

Z
�Hi

f �i	g ��	 d� � Cecjgj
�

�

for all g � G�H� i � �� � � � � � p�

Proof� It is clear that � � fg��	 � � �for all j � �� � � � 	 and we shall
presently show that for all N � � there exists C� c � � such that �again
for j � �� � � � 	

��

	 fg��	 � C ecjgj
� j�j�N � � � (H� g � G�H �

Let N be so large that there exist � � f �i	��i	 � �� i � �� � � � � � p such
that

minf�� j�j�Ng � f ��	���	 	 	 	f �p	��p	 � � � ���� � � � � �p	 � (H �

Z
�Hi

f �i	��	 d� � �� � i � �� � � � � � p �
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We can for instance take f �i	��	 � minf�� j�j��dg where d �
P

di and
N � pd
 Then by rescaling we have

minf�� Cecjgj�j�j�Ng � f ��	�Ce�cjgj
�

��	 	 	 	
�with a di�erent C and c	 and our lemma follows with f

�i	
g ��	 �

f �i	�Ce�cjgj
�

�	

The estimate ��

	 is clearly implied by

��

�	

Z ���� �k

�xi� 	 	 	�xik
�g�x	 dx

���� � C ecjgj
�

�

g � G�H uniformly in j� with k � �� � � � �and C � Ck� c � ck	

To prove ��

�	 let X�� � � � � Xs be a basis of left invariant �elds on
G
 It is clear then� by induction on k� that ��k��xi� 	 	 	�xik		�gx	
�x � H 
� Rn � g � G	 is a linear combination of expressions of the
form �Xj� 	 	 	Xjr		�gx	 �x � H� g � G	 our estimate ��

�	 therefore
follows from results in Section �
�


The above proof shows in fact that if the original 	 is a strict Gs�
function on G then in ��

�	 �and therefore in ��

	 and in ��

�		
we can choose c � � � � arbitrary small provided that the C � Ck
of ��

�	 �and the other corresponding C s in ��

	 and ��

�		 are
made to depend on � � �
 When we are considering several 	j �j � �	
the above strict�Gs property can of course to be made uniform in j


���� The disintegration of the kernel�

In this section I shall follows closely ���� I� Section ��
 I shall
consider H � G as in Section �
� with H 
� Ra �notice that to avoid a
possible confusion with notations that I followed� I have changed here
the dimensions of H into a � dimH � a and not n as in the previous
sections	 and shall assume that V 
� Rm is a vector subgroup and S is
compact
 I shall disintegrate �j for j � �� � � � �

�j �

Z
G�H

�
�j	
�g d&�j� *g	 �

where �
�j	
�g are probability measures on the �bers gH � *g � G�H �all

the other notations are as before	
 From this it clearly follows that

��
�
�	 ��n	 �

Z
G�H

	 	 	
Z
G�H

�g� � 	 	 	 � �gn d&���g�	 	 	 	d&�n�gn	 �
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where the � indicates convolution in G
 I shall now identify� as I may�
�g with a measure on H �by H � gH up to translation on H	� and�
for any � � P�H	 and g � G�H� I shall denote by �g � P�H	 the
image of � by the action � � G�H � Aut�H	 on H �induced by inner
automorphisms as in Section �
�	
 It is clear then that the integrand of
��
�
�	 which� up to translation� can be identi�ed to a measure on the
coset *g� 	 	 	 *gn � G� can also be identi�ed up to translation with

��g�� � � � � gn	 � �s�g� � �s�g� � 	 	 	 � �sngn � P�H	 �

where sj � g� 	 	 	 gj � G�H and where the convolution product is now
taken in H
 �This identi�cation is now done for the �right product�
identi�cation H � Hsn	
 Now the measures ��g�� � � � � gn	 can be iden�
ti�ed to a L��H	 functions of H and� since convolution goes by Fourier
transforms to pointwise product� we have

��
�
	 k��g�� � � � � gn	k� �
Z
�H

fg����s�	
��	 	 	 	fgn���sn	��	 d� �

Note that� to simplify notations I have dropped throughout from the
� s and the f  s the j � �� � � � � coming from �j 
 To estimate the

integral in ��
�
	 I shall �rst use the decomposition (H � (H��	 	 	� (Hp

coming from Lj � Re� �j � �� � � � � p	 the real parts of the roots of the
representation � � G�H � GL�H	 as in Section �
�
 For the above
decomposition and with the obvious notation � � ���� � � � � �p	 � (H� I
shall apply the Lemma of Section �
 and estimate

jfg��	j � f ��	g ���	 	 	 	 f �p	g ��p	 � g � G�H �

This estimate will be inserted in the integrand of ��
�
	
 It follows that
the right hand side of ��
�
	 can be estimated by

inf

Z
�H

f ��	gj�
���sj�	

���	 f ��	gj�
���sj�	

���	 	 	 	 f �p	gjp
���sjp	��p	 d� �

where the in�mum is taken over all choices � � ji � n �i � �� � � � � p	

The integral under the above inf splits in (H� � 	 	 	 � (Hp and each
integral

R
�Hj

can be explicitely computed by a change of variable whose

determinant is known by ��
�
�	

Let us introduce the following notation sj � �bj� 
j	� gj � �Xj� �
j	

� V � S� �j � �� � � � � n	 and for each g � �u� 
	 � G�H let us observe
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that jgjG�H � jujV � the norm in V �provided that jgj � �	 let us
further denote by

��
�
�	 An�Li	 � inf
��j�n

exp �c jXjj� � diLi�bj		 �

With these notations if we combine all the above estimates we obtain

��
�
�	 k��g�� � � � � gn	k� � CAn�L�	 	 	 	An�Lp	 �

���� The probabilistic estimate�

All the notations introduced up to now will be preserved
 The Xj �
V 
� Rm �j � �� � � � � 	 in the de�nition of An�Li	 will be independent
�not necessarily equidistributed	 random variables such that the corre�
sponding density functions P�Xj � dx� � �j�x	 dx are Gs�functions on
Rn uniformly in j � �� � � � � 
 We have then bt � X� � 	 	 	 � Xt
 In
Section B of the appendix we shall prove the estimate

��
�
�	 E �An�L�	 	 	 	An�Lp		 � O�exp ��c n���		

for some c � � provided that the real roots L�� � � � � Lp satisfy the
C�condition �cf� ��
�
!		
 This estimate was proved in ���� when all
the Xj s are equidistributed centered Gaussian variables �so that bt �
b�t	 � X� � 	 	 	�Xt � Rm is brownian motion	 and when the constant
c � � appearing in the de�nition of An�Li	 �cf� ��
�
�		 is small enough

Here again� if we are prepared to use the fact that for a driftless Lapla�
cian the heat kernel on G is a strict Gs�function� we can suppose that
the c � � in ��
�
�	 is as small as we like
 In the appendix however we
shall prove ��
�
�	 without that restriction


���� The proof of the Proposition of Section ����

All our previous notations are preserved
 Let � � 	 � C�
� �G	 and

let

sup
g
G

Z
H

	�hg	 dh � C� �
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�I implicitely use here the right identi�cation H � Hg �	
 Then the
basic formula ��
�
�	 that expresses ��n	 as a barycenter of measures
sitting in the various cosets Hg gives

h��n	� 	i � C�

Z
k��g�� � � � � gn	k� d&���g�	 	 	 	d&�n�gn	 �

where by Section �
� &�j � P�G�H	 �j � �� � � � 	 are Gs�measures on
G�H �uniformly in j	
 Since G�H � V �S� we can project &�j on V by
the canonical G�H � V and obtain a sequence of probability measures
��x	 dx �j � �� � � � � 	 on Rm that are uniformly Gs on Rm 
 A sequence
Xj � Rm �j � �� � � � � 	 of independent random variables can then be
de�ned by P�Xj � dx� � �j�x	 dx
 The corresponding An�Li	 can thus
be constructed and because of ��
�
�	 we clearly have

��
!
�	

Z
k��g�� � � � � gn	k� d&���g�	 	 	 	d&�n�gn	

� C E �An�L�	 	 	 	An�Lp		 �

The estimate ��
�
�	 follows from ��
�
�	 and ��
!
�	


���� The Proposition for an arbitrary soluble group�

In this section I shall prove the following

Proposition� Let Q be a connected soluble group that satis�es the C�
condition� Let �j � Gs�Q	 � P�Q	 �j � �� � � � � 	 uniformly in j and let

�n � �� � 	 	 	 � �n� There exists then c � � such that

h��n	� fi � O�exp��c n���		 � f � C�
� �Q	 �

We shall need the following

Lemma� Let G be an arbitrary connected real Lie group and let K � G
be some closed subgroup�

i	 If the conclusion of the proposition is valid for G�K then it is

also valid for G�
ii	 Conversely if we assume that K is compact and assume that the

conclusion of the proposition is valid for G it is also valid for G�K�
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The proof of the lemma is evident and will be left to the reader


The �rst step in the proof of the proposition is to reduce the proof
to the case when the center of q is �
 To see this let z � q and let more
generally z � z� � z� � 	 	 	 � zj � 	 	 	 � q be de�ned inductively by
zj � ���j �the center of q�zj��	 where �j � q � q�zj�� is the canonical
projection
 Then clearly p � � zj �in fact zk�� � zk for some k	 is
a nilpotent ideal and p � n and� by its construction� q�p has trivial
center
 An easy composition series argument on q shows that q�p is a
C�algebra


Let Zj � Q be the analytic subgroup that corresponds to zj 
 One
easily sees by induction that these are closed subgroups
 Indeed quite
generally if Z is the analytic subgroup that corresponds to the cen�
ter of the algebra Z is closed for Z� its closure� is connected and the
subalgebra z that corresponds to Z is central
 To make the required
reduction therefore it su�ces to consider P the analytic subgroup that
corresponds to p and to consider Q�P 
 Our reduction then follows from
the lemma


Let now � � �Q� Q be the universal covering map and let �N � �Q
be the nilradical
 Our hypothesis that the center of q is trivial implies
then that

��
�
�	 Ker � � �N � feg �

Indeed + � �N �Ker � is a discrete central subgroup of �Q and therefore
+ � ZN � the center of �N which can be identi�ed with a vector space
ZN 
� Rc �c � �	
 The Ad action induces Ad � �Q � GL�ZN 	 and if
we denote by VZ � ZN the vector subspace generated by + we have
Ad�Q	jVZ � Id
 This means that VZ � q is central and therefore
VZ � f�g by our hypothesis
 ��
�
�	 follows


To �nish the proof it su�ces to make one further reduction
 Indeed
let �N � �Q� N � Q be the corresponding closed nilradicals� i�e� the
analytic subgroups that correspond to the nilradical n � q
 By ��
�
�	
the mapping �N � �N � N is then ����	� continuous and onto
 It
therefore is a homeomorphism
 N is therefore simply connected and
therefore N� � N � the analytic subgroups that correspond to �n� n�� is
closed
 By our lemma we can reduce the proof of our proposition to the
group Q�N� � G
 This new group satis�es ��
�
�	 with H � N�N�


�
�N� �N�


� Ra �by �
�
�	
 Indeed G�H 
� Q�N is a homomorphic image
of �Q� �N 
� Rd and has therefore the required form G�H 
� Rm � Tb �
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Rm �S as in ��
�
�	
 The condition ��
�
!	 is clearly veri�ed by the C�
condition on our original group and the proof of our proposition follows
from the lemma and the proposition in Section �
�


The above proof gives �for free�� so to speak� something slightly
stronger
 What it shows is that the conclusion of the proposition also
holds for any amenable group �i�e� when g�q � s is a compact semisim�
ple algebra	
 This proposition can therefore be viewed as a general�
ization of the results of ����
 Indeed let G be such a group and let Q�
S � G be the radical and some Levi subgroup respectively
 Then since
S is compact we can form the canonical semidirect product and the
canonical covering map � � Q i S � �G � G which is now an isogeny
�i�e� Ker� is a �nite subgroup	
 By our lemma again� it su�ces to
prove the proposition for the group �G
 For the group �G � Qi S if we
repeate our previous argument we reduce the proof to the case where
Rn 
� N � H � �G and �G�N � Q�N � S � Rm � S �cf� ����	
 This
completes the proof


���� General Lie groups�

The key to the proof of Theorem B for a general connected real
Lie group is to show that with the machinery that we have developed
we can give a proof of that theorem for groups of the form G � Qi S
where Q is soluble and connected and where S is semisimple
 Indeed
for such a G� as we already pointed out �cf� Section 
�	� there exists
Z � S a discrete subgroup that is central in G and of �nite index in
the center of S
 Let G� � G�Z � Qi S� � Q i �S�Z	
 Then G� is a
similar group but has the additional property that the center of S� is
�nite
 We can therefore write G� � QNAK � RK where NAK � S�
is the Iwasawa decomposition of S�� K is compact and R is soluble


The proof of Theorem B for the group G� is contained in Section

�
 Indeed if we identify f �� f � � with an R�left invariant operator
on X � R�K we see that we have our theorem as long as we can show
that �
�
�	 in Section 
� holds with ��n	 � exp��c n���	
 But modulo
Section �
! this is exactly what was proved in Section �
�


To complete the proof of Theorem B for the group G we shall use
the following general observation
 Let quite generally � � G � G� be
some covering map between two arbitrary Lie groups and let d��g	 �
��g	 dg be some Gs�probability measure on G
 Let the corresponding
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image measure be �� � &���	 � P�G�	
 �� as we saw in Section �� is a
Gs�measure on G� and can be written

��
�
�	

d���g�	 � ���g�	 dg�

���g�	 �
X

z
Ker�
��gz	 � g� � gKer� � G� �

The obvious observation is that if Theorem B holds for �� on G� then it
also holds for � on G
 This is because of the amenability of Ker � � G�
which implies that if we denote by k 	 k��� the f �� f � 	 convolution
norms on L��G� drg	 and L��G�� d

rg�	 we have

��
�
	 k�k��� � k��k��� �

��
�
	 is very well known
 Observe also that Section 
� in fact contains
a proof ��
�
	


Let now G be an arbitrary connected real Lie group not necessarilly
of the form QiS and let Q � G be its radical let further S � G be some
Levi subgroup that is an analytic but not necessarily closed subgroup
of G
 It is clear that Q � S is a closed subgroup of Q and a central
subgroup of S �Indeed Q�S is a normal and discrete subgroup of S for
the intrinsic Lie topology of S	
 As already pointed out twice before
there exists then Z� � Q�S a discrete central subgroup of G that is of
�nite index in Q � S
 We shall quotient by Z� and obtain G� � G�Z�

This group has a Levi decomposition G� � Q�S� as before with the
additional property that Q��S� is �nite
 By what was said just above�
if we can prove our theorem for G� then we also have it for G


Using the canonical action of S� on Q� we can then construct the
semidirect product �G � Q� i S� where the kernel of the canonical
projection �G� G� is �nite
 Since we already know that the Theorem
holds for �G and since the summation in ��
�
�	 is �nite� it follows that
the Theorem holds also for G� �here we make essential use of the fact
that Theorem can be stated equivalently either as ��n	�e	 � O�	 	 	 	 or
��n	�g	 � O�	 	 	 	 for any g � G	
 The proof of Theorem B is complete


��� The Iwasawa radical revisited�

It is interesting to observe that the techniques of the previous sec�
tion prove the following
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Proposition� Let G be a connected real Lie group� Then R � G� the
analytic subgroup that corresponds to r � q � nS � a � g� an Iwasawa

radical of the Lie algebra �cf� Chapter �	� is closed�

Indeed let Q � G the �closed	 radical of G and let $ � G some
analytic �but not necessarily closed	 Levi subgroup
 Let $ � NAK
be some Iwasawa decomposition of $
 Then Z� � Q � $ � $ is a
discrete �for the intrinsic Lie�group topology of $	 central subgroup
of $ therefore Z� � Z�$	 � K where Z�$	 is the center of $
 It
follows in particular that Q � AN � feg
 Let us form Qi $ � �G the
semidirect product and let � � �G � G be the canonical covering map

Let � � �G� $ be the canonical projection so that

��Ker �	 � Z� �

The subgroup R � QAN � G is the image by � of the subgroup
�R � Qi AN � �G
 Clearly

��
�
�	 �R �Ker � � feg

and to show that R is closed it su�ces to show that if kn � Ker �
�n � �	 is a a sequence that satis�es d �G�kn� �R	 � � then kn � e
for all n � n� large enough
 The proof of this is easy
 Indeed we
have d����kn	� AN	 � � and therefore �since ��kn	 � Z�$	 which is
a discrete subgroup of $	 ��kn	 � e� n � n�
 Our assertion therefore
follows from ��
�
�	 and the fact that Ker� � Q


We shall say that the subgroup R � G is an Iwasawa radical of G

As we already pointed out for an arbitrary group G we can �nd Z � G
some central discrete subgroup such that G� � G�Z is such that Q�

its radical and $� some Levi subgroup have a �nite intersection �i�e�
jQ� � $�j � ��	
 By quotienning further by Z� � G� another central
discrete subgroup we can obtain G� � G��Z� � Q�$� where Q� is the
radical of G� and $� is semisimple with �nite center
 But then clearly
G� � RK where R is an Iwasawa radical and K is a compact subgroup
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�� The proof of the Theorem �NB� and the lower estimates�

���� The proof of Theorem A� for a special class of groups�

In this section G will be a real Lie group that can be written in
the form G � R 	K where the closed subgroup R is a simply connected
soluble NC�group and K is a compact subgroup such that R � K �
feg
 We shall identify G with X � R �K as in Section 
� and then
decompose

R � N iQ

as in sections �
���
� where N is a simply connected nilpotent subgroup
and Q is a simply connected R�group
 I shall furthermore systematically
use the following notation for the �coordinates� in X

�!
�	 x � �r� k	 � �n� q� k	 �

for x � X � G� r � R� n � N � q � Q� k � K
 I shall �x � � �PX�
j

some driftless Laplacian on G and � � � will denote the corresponding
spectral gap
 On the space X� I shall consider the semigroup (Tt de�ned
in Section 
� and denote by � � fx�t	 � X � t � �g the path space of
the corresponding di�usion
 For that path space we shall show that the
criterion at the end of Section 
� holds
 This will complete the proof
of theorem for the above group
 We shall adopt the following notation

�!
	 x�s	 � rsks � G �

�!
�	 rs � ���� 	 	 	�s � R � s � �� �j � R� j � �� � � � � � s �

where we use group multiplication in both �!
	 and �!
�	� but where�
unless K � feg� the ��� ��� 	 	 	 � R are not independent random vari�
ables
 As we pointed out in Section 
� however if we �x k� � �kj	

�
j�� �

K� �some path in K	 and condition with respect to that path the vari�
ables ��� ��� � � � become independent with uniformly Gaussian densities
on R �cf� sections �
 and �
!	
 It follows that under that condition
r�� r�� � � � becomes a time inhomogeneous random walk on R


The following events A�� � � � � B�� 	 	 	 � � will now be considered

�!
�	 As � �j�jjG � C log s � j � �� � � � � � s� � s � �� � � � � �
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where C � � will be chosen appropiately at the end
 By the above �uni�
form in j	 Gaussian estimate on the variables �j we have the following
estimate on the conditional expectations �uniformly in k�	

P�
As��k
�� � exp��c log� s	 � s � �� � � � � �

where 
 stands as usual� for complement
 Therefore we have

P�
As� � exp��c log� s	 �

Observe that with the notations of �!
�	 on the event As we have �cf�
�
�
�	

jqj jQ � c log s� jnj jN � C exp�c log s	 � CsC � �j � �nj� qj	 �

for j � �� � � � � � s
 Let now

�!
!	 Bs � �Lk�q� 	 	 	 qj	 � C � j � �� � � � � s � k � �� � � � � n� �

Here C � � and L�� � � � � Ln are the real roots attached to the semidirect
product N i Q as de�ned in Section �
�
 The basic fact that follows
from Section D in the appendix �cf� D
	 is that

P�Bs� � c s�C � s � �� � � � � �

for appropiate constants C� c � �
 When the operator � is elliptic the
analogous even stronger statement �with the continuous time parame�
ter	 is a consequence of A��	 which was proved with considerably less
cost in Section A of the appendix


Let us now de�ne the set

Xs � fx � �n� q� k	 � X � jnjN � CsC � jqjQ � CsCg �

It is then clear from the above and from Section �
� that

As �Bs � �s � �x�s	 � Xs�

and therefore that P�x�s	 � Xs� � c sC 

On the other hand we clearly have

drr � dk�measure�Xs� � CsC
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and therefore our criterion of Section 
� is veri�ed and we are done

The following remark is worth making
 We have used here the fact

that in our criterion we can use indiscriminately either the drr� dk or
the d�r � dk measure to measure the set Xs
 There is a very simply
way to avoid this
 Towards that let us de�ne

Cs � �jx�s	j � C log s� �

then clearly by the Gaussian estimate on the Heat kernel on G

P�
Cs� � C exp��c log� s	

and
jmG�x	��j � jmR�x	��j � CsC � jxj � C log s �

This means that if we replace Xs by Xs � �x � X� jxjG � C log s� and
�s by As � Bs � Cs we obtain a new Xs that satisfy the criterion as
before and that furthermore on these new sets Xs the two measures
drr � dk and d�r � dk are equivalent up to a constant that grows at
most polynomically in s
 Because of this it follows that it does not
matter which of the two measures we consider


���� General NB	groups�

From the above special case I shall deduce here the lower estimate
��
	 of Theorem A for a general group
 Let G be an arbitrary real NB�
Lie group and let �G� G be the simply connected cover of G
 It clearly
is enough to prove the NB�theorem for �G for then by the standard
local Harnack principle the theorem also holds for G
 We have that
�G � QiS where Q is the radical �simply connected	 and S is a simply
connected semisimple group
 By considering S � NA �K the Iwasawa
decomposition of S we can write then �G � R �K with R � QNA but
where �K is not necessarily compact
 By general considerations however
�cf� ��!�	 there exists Z � �K a discrete central �in �G	 subgroup such
that K � �K�Z is compact
 We have �G�Z � RK and therefore the
lower estimate in ��
	 holds for the group �G�Z
 We shall now show
how one deduces from this the same lower estimate for �G and therefore
also for G


We start with the following de�nition
 Let G be a compactly gen�
erated locally compact group and let H � G be a closed compactly
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generated subgroup �e�g� G a real Lie group and H � ) some discrete
subgroup	
 As we already pointed out in Section �
� for any h � H the
two distances jhjH and jhjG are not in general equivalent �we use here
the more general notion of j 	 jH valid for non connected groups� cf�
���	
 We shall say that H is a O�distortion subgroup if for all � � H
neighbourhood of e � H� there exists C � � such that

C��jhjG � jhjH � CjhjG � h � Hn� �

The important thing to observe is that the central subgroup Z � S �
�G � QiS considered above is a O�distortion subgroup of �G
 This fact
is easy to prove and the details were outlined in ��!�
 The fact that
in the lower estimate ��
	 we can pass from �G�Z to �G is therefore a
consequence of the following

Lemma� Let � � &G � G be a covering map and let ) � Ker� � &G
be a O�distortion �nitely generated subgroup� Let us further consider

�� � �PX�
j some driftless sublaplacian on G which can be identi�ed

with a sublaplacian on &G� Let �t�g	� &�t�g	 be the corresponding Heat

di�usion kernels and let � � �� be the corresponding spectral gap as in

Section � �cf� �����		� We have

�!
�	 �t�e	 �
X

�
Ker�
&�t��	 � t � � �

and there exists C � � such that

�!
�	 �t�e	 � C &�
���
t �e	 e��t��tC � t � � �

The reader could observe that ) is automatically �nitely generated but
this point is here irrelevant


Proof� ) � &G is a central subgroup it follows therefore that &�t��	 is a
positive de�nite function on ) and therefore &�t��	 � &�t�e	� � � )
 We
clearly also have mG��	 � �� � � )
 By ���� Chapter "� Section ��	 and
the O�distortion property we also have

&�t��	 � C e��t exp
�
�j�j

�

c t

�
� � � )� t � � �

for some C � �� and therefore also

&�t��	 � C &�
���
t �e	 e��t�� exp

�
�j�j

�

c t

�
� � � )� t � � �
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for a di�erent c� C � �
 If we apply the summation �!
�	� which is
trivial to prove �cf� ��
�
�		� our estimate �!
�	 follows


Remark� An adaptation of the above method� with the use of
the i 	� ii 	 version of the criterion in Section 
�� gives the proof of the
lower estimate in Theorem A�	
 What changes is the geometry and the
�section� that is used �cf� ���� II�	


If we use the global structure theorem for �not necessarily simply
connected	 NC�groups from ���� III� we can adapt the method of Section
!
� to general NB�groups
 The Section !
 becomes then redundant


Appendix�

Guide to the appendix�

For the upper estimate of Theorem A�	 and for Theorem B one
only needs Section B of this appendix
 My advise to the reader in a
�rst reading is to go straight for Section B and simply refer back for
the notations


Sections A
� and A
� su�ce for the lower estimate of Theorem A�	
in the case when � is an elliptic operator
 In my mind this should be
the next thing that the reader should study
 To do this one should also
study �or at least believe	 Section C
 Section C is elementary calculus
but a certain amount of ingenuity is already needed
 The estimate A�	
in Section A
� is needed for the lower estimate of Theorem A�	
 Had it
not been for the non elliptic Laplacians � we would stop there and then

The discrete formulation and the discretisation presented in Section D
and Section E are only needed to cope with this subelliptic �but not
elliptic	 situation� and Section F stands towards Section D what Section
C stoud for Section A
�
 More explicitely for the �non elliptic	 lower
estimate of Theorem A� one needs the �rst half of Section F� Section
E
 and Section D
� �i�e� D�	 for p � ��	
 The property D��	 can
be used as an alternative to A�	 for the proof of the lower estimate of
Theorems A�	


Both Section D and Section F are non trivial �in fact they are�
technically� quite di�cult	 and they present an independent interest

I intend to come back in the future to the problems involved in sec�
tions D and F and examine them systematically for their own sake

The reader who is not particularly interested in these problems should
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simply not waste time and energy in these sections
 Indeed an alter�
native approach �more sophisticated� but technically simpler	 to the
subelliptic Laplacians will be given in a second instalment of this work


A� The continuous time di�usion�

A��� Statement of the results�

We shall consider here the space X � Rn �K where K is a some
compact C��manifold assigned with some smooth non vanishing mea�
sure dk
 On X we shall further consider D some subelliptic formally
self adjoint �with respect to dx � dz�dk where dz is Lebesgue measure
on Rn	 second order operator with constant term D� � �
 D will be
assumed invariant under the left action of Rn �cf� Section 
�	
 To
simplify notations �and since this is the only case that we shall use	 we
shall further assume here that K is some compact group and dk is the
Haar measure
 The general case when K is an arbitrary C��manifold
can be treated with identical methods


Let us denote by e � ��� �� � � � � �	 � Rn and by C� � fz � Rn �
hz� ei � jzj cos�g �� � � � ��	 the corresponding conical region
 Let
us further denote by C��� � C� � �e �� � �	 the above conical region
translated backwards so as to contain the origin � � C��� 


We shall now consider the continuous time di�usion on X

� � fx�t	 � �z�t	� k�t		 � X � Rn �K � t � �g

controlled by the di�erential operator D
 I shall denote as usual by Px
�x � X	 the corresponding probability measure on � with Px�x��	 �
x� � �
 We shall show that for any � � � � �� and � � � there exists
c � � such that

�A
�	 P��x�s	 � C��� �K � � � s � t� � t�c � t � c �

i�e� the di�usion stays in the conical region �polynomially long�

We shall also show that there exist C � � such that

�A
	

P��jx�s	j �M � � � s � t� � C�� exp
�
�C t

M�

�
� t�M � � �

where for x � �z� k	 � Rn �K we denote jxj � jzj
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Let us observe straight away that M � t��� in �A
	 gives

P��jx�s	j � t��� � � � s � t� � C�� exp��C t���	 � t � � �

A��� The di�erential operator D�

In this section we shall consider the operators �D � DR � M �
P �DK on X � Rn �K as in sections 
� and A
� and preserve all the
notations introduced there


Let U�x	 � C���	 �� � Rn � open	 and let �j�k	 � C��K	�
�j � �� � � � � n	 be arbitrary
 I shall denote by F �x� k	 � U�x� �
���k	� � � � � xn � �n�k		
 We have then

DKF �
nX
j��

DK��j	
�U

�xj
�

nX
i�j��

� sX
�����

�����X��i	�X��j	
� ��U

�xi�xj
�

MF � 
nX

i�j��

� sX
���

b��iX��j

� ��U

�xi�xj
�

PF �
nX
j��

�j
�U

�xj
�

By �
�
�	 it then follows �this is standard Fredholm theory cf� ����
���� ��"� when D is elliptic and the result easily generalizes to subelliptic
operators	 that for j � �� � � � � � n we can choose �j � C��K	 so that

DK��j � cj	 � �j � � � �c�� � � � � cn	 � Rn �

With that choice of the � s we have therefore �DF � �LU	�x � �	
where

L �
nX

i�j��

Rij�k	
��

�xi�xj
�

Ri�j � ai�j �
sX

�����

����c��ic��j � 
sX

���

b��ic��j � i� j � �� � � � � n �
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where c��i � X��i �i � �� � � � � n� � � �� � � � � s	
 Let us use standard
matrix notations and set A � �aij	 � Mn�n� B � �b��i	 � Ms�n�
) � �����	 �Ms�s
 The characteristic form of �D then is

�A
�
�	 a �

�
A BT

B )

	
�Mn�s�n�s

and the caracteristic form of L is

�A
�
	 F �a�C	 � A� CT)C � BTC � CTB �

where C � �c��i	 � Ms�n
 �T stands for the matrix transposition
operator	


The matrix a in �A
�
�	 is non negative �cf� Section 
�	
 This
implies that F �a�C	 � � and therefore in particular if we assume that
a � �I for some � � � �this is the order relation of symmetric matri�
ces	 we also have F � �I
 The proof of these facts is elementary linear
algebra
 Indeed assume �rst that A� ) are the identity matrices then
a � � implies that ,Ta, � � �,T � ��T � �T 	� � � Rn � � � Rs	 i�e�

�T� � �TBT� � �TB� � �T� � �� setting � � �B� we obtain the
required result �T�� �TBTB� � �
 In general� by standard perturba�
tion� we can assume that A� ) are invertible
 We set then C � )����D
and obtain

F � A�BT)��B � �DT � BT)����	�D � )����B	 �

This means that it su�ces to show that A � BT)��B � �
 Towards
that by conjugating LTaL with

L �

�
A���� �

� )����

	

we can reduce the problem to the case where A and ) are the identity
matrices which is the special case that has just been treated


In terms of our di�erential operators the above says that L is a
second order operator on Rn with positive characteristic and that L
is uniformly elliptic on Rn if D is uniformly elliptic on X
 It is an
unfortunate fact that we cannot replace ellipticity by subellipticity in
the above statement �example� n � �� K � T� D � ����x� � ������
 cos � ����x��� then ������� � � sin � and therefore ����� �  cos �
� c��	 and L � sin� � ����x�	
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One important consequence of the above transformation where we
set U�x	 � xi �i � �� � � � � n	� the n coordinate functions� is that the
process

y�t	 � z�t	 � ��k�t		 � Rn

is a vector valued martingale
 Equivalently this says that for any linear
function U�x	 �

P
ujxj and any C � Rn the function F � U�x �

��k	 � C	 is D�harmonic on X

It is in general impossible to construct explicitely any other D�

harmonic function on X
 When D is elliptic however it is very easy to
give an explicit construction of an important family of D�subharmonic
functions F i�e� functions that satisfy

�A
�
�	 DF �x	 � � �

More precisely let � � � be small and let �C � C� �K be the conical
region in X as de�ned in Section A
�
 Then a subharmonic function
F as in �A
�
�	 can be constructed to have the following additional
properties�

F � Ck�X	 for some �suitably high	 k � � � F � � �

�A
�
�	 F � � on Xn �C � F �� � on �C �

�A
�
!	

F �x	 � O�jxjA	 for some A � � �

F ��e� eK	 ��� as ��� �

eK � identity in K �

The construction of F is easy
 Indeed we start with Fr�k � Ck����Rn	
as in Section C and for an appropiate choice of �� k we set U�x	 � F��k in
our previous construction
 It is clear then that if we choose appropiately
the constants C � �C�� � � � � Cn	 � Rn the function

�A
�
�	 F �x� k	 � U�x� � �� � C�� � � � � xn � �n � Cn	

has all the required properties
 The role of the constants C is simply to
translate the value of the argument �on �C� �K	 outside �C� where
U is � �
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A��� The proof of �A����

All our notations will be preserved
 We shall �rst prove the follow�
ing

Lemma� There exist C� c � � such that

Pe� max
��s�t

jz�s	j � C t� � e�ct � t � � �

In fact for our purposes we only need the following weaker state�
ment

�A

�	 Pe� max
��s�t

jz�s	j � c t� � O�t�A	 � t � � �

for any A � �
 The proof of the lemma is easy
 Let us de�ne T� � � �
T� � 	 	 	 a sequence of stopping times by

Tj�� � infft � Tj � jz�t	� z�Tj	j � �g �

For every j � �� yj�t	 � y�t � Tj	 � y�Tj	� �t � �	� with y�t	 as in
Section A
�� is then a martingale and it is easy to verify that Sj�t	� the
S�function of this martingale� satis�es �cf� ��� Section !�	

E �exp��S�
j �t � �j		��TTj 	 � C � �j � Tj�� � Tj � t � �� j � � �

for � � � small enough
 Since clearly by the stochastic integral rep�
resentation of that martingale we have c�t � S�

j �t	 � c�t �� � t � �j�
j � � and some c�� c� � �	 it follows that there exists c � � such that

P�Tj�� � Tj � �j � ���TTj � � O�e�c�	 � E ��j 	 � c � � �

One can then use Bernstein s inequality for the sum of independent
random variables �cf� ��	 which works in this more general context
and deduces that

Pe� max
��s�t

jz�s	j � c n� � P��� � 	 	 	� �n � t� � n 
 t �

has the correct bound
 This proves the lemma
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One can also prove �A

�	 directly using the Doob maximal the�
orem on the martingale y�s	 �s � �	 constructed in Section A
�
 This
however requires the estimate ky�s	kp � O�s���	 �for p �large enough	

This �nal estimate is a consequence of the Gaussian decay

P�jz�s	j �M � � O
�

exp
�
�c M

�

s

��

which although correct is not trivial to prove ��"�
 The subellipticity of
D is needed for that estimate to hold
 In our context the above Gaussian
estimate can also be picked up by the corresponding Gaussian estimate
on the original group G �cf� ���	


Finally� for yet another approach to prove �A

�	 one can use
S�t	 the S�function of the martingale y�t	
 Using the It(o �stochastic
integral	 approach of the construction of the di�usion x�t	 �t � �	 one
sees inmediately that kS�t	k� � O�t���	
 The only complication here is
of course the fact that X is not RM but a manifold and the construction
has to be done in �patches�� cf� ���
 The estimate �A

�	 follows again
by the standard martingale inequality kSkp � kmax kp �cf� ���	
 The
advantage of this approach is that again no subellipticity is used


Let now �C � and F �x	� x � X� be as in A
� and satisfy the conditions
�A
�
�	��A
�
!	
 We shall start di�usion at O � ��e� eK	 � C�K some
large � � � and denote

CR � �C � �a � jxj � R� � Rn � � � �R � infft � x�t	 � �CR�Kg �

The standard submartingale property of the process fF �x�t		 � t � �g
implies then that

�A

�	 F �O	 � EfF �x��	�g � C� � P�jx��	j � R�RC �

where the C� � � is independent of R and comes from the fact that
x�t	 could exist at some small x��	 on which F �x��		 � �
 If we choose
� � � large enough however we are going to have F �O	 � C� and
therefore

�A

!	 P�jx��	j � R� � cR�C � R � � �

Our lemma on the other hand implies

�A

�	 P�� � R � jx��	j � cR� � O�R�A	
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for all A � �
 If we put �A

�	 and �A

!	 together we conclude that

P�� � R� � cR�C � R � � �

This clearly implies �A
�	


A��� The proof of �A����

The estimate �A
	 can easily be transformed to a standard ��rst

eigenvalue� estimate
 Indeed let us consider the operator D on the
M�ball of X

XM � fx � �z� k	 � jzj �Mg
with Dirichlet boundary conditions �i�e� we �kill� the di�usion at the
boundary	 and let � � � be the �rst eigenvalue and � � � � C��XM 	�
k�k� � � the corresponding eigenfunction
 Then clearly

�A
�
�	 ke�tD�k� � h�� e�tD�i � e�t�
Z
XM

� dx �

Using standard methods we shall presently see that

�A
�
	

Z
� dx � c � � � � � CM���

It follows thus that for each t � � there exists some x� � XM such that

Q�x�� t	 � Px� �jx�s	j �M � � � s � t�

� C exp
�
�c t

M�

�
� t � � �

By the left action of Rn on X we can assume that x� � ��� k�	 � K

To show that we can assume that x� � � we can use the parabolic
Harnack estimates that are veri�ed by Q�x� t	 �these use the subellip�
ticity of D	
 Otherwise �without the use of the above Harnack	 we have
automatically from �A
�
�	

sup
x�
K

Px� �jx�s	j �M � � � s � t� � C exp
�
�c t

M�

�
� M� t � � �

The estimate � � CM�� in �A
�
	 is easy enough and is an immediate
consequence of the fact that the function

	�z� k	 � �M � jzj	� � �z� k	 � X �
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appropiately smoothed for jzj near � and M satis�es

k	k�� �Mn��� �D	�		 �Mn�

The �rst estimate in �A
�
	 is a tri�e more subtle �but also very stan�
dard	
 The subellipticity of D implies �cf� ���	 that

�A
�
�	 kfkp � C��Df� f	��� � kfk�� � f � C�
� �X	 �

for some p � 
 The estimate �A
�
�	 applied to � implies �since M � �	
that k�kp � Ck�k� which by standard convexity gives the required
estimate
 A less sophisticated method to see that

R
� � C is to combine

directly the fact k�k� � � with the Harnack estimate
 Subellipticity is
again essential for this approach �if

R
� 
 �� k�k� � � then there exists

x� � XM such that ��x�	 � � also by standard elliptic estimates we
may suppose that distfx�� �XMg � c� � �
 Harnack applies on � and
does the rest	


A��� Gaussian estimates for a Laplacian with a drift�

The Gaussian estimate for the heat kernel of a Laplacian with a
drift term � � �PX�

j �X� is not quite standard and we shall outline
the proof here
 The upper estimates are contained in ��� but here the
proof does not need the rather di�cult technology of ��� and this proof
is already implicit in ��"�I�
 Indeed if u�t� x	 is a solution of ���t� �
then v�t� x	 � u�t� xetX�	 is a solution of the �time dependent	 evolution
equation

�

�t
�
X

�Ad�etX�	Xj	
� � � �

Let fTs�t � � � s � tg be the corresponding time inhomogeneous semi�
group �"� and let 	 � C� be such that jrr	j � � where rr denotes
the gradient of some �xed left invariant Riemmanian structure on G

By the standard argument �cf� ��"�I�	 we then see that

ke�� Tt�s e���k��� � exp��c �t� s	��	 �

To give the proof of the upper Gaussian estimate of the corresponding
Heat kernel �and of all its derivatives	 we simply use the local Har�
nack principle just as in ��"�I���
 One should simply observe that the
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canonical distance on G induced by the �elds X�� � � � � Xn and the above
Riemmanian distance are �equivalent� at in�nity


It is of independent interest to observe that the following maximal
Gaussian estimate also holds �and we do not need subellipticity for this
estimate	

Pt��	 � P� max
��s�t

jz�s	j � �� � C exp��c ���t	 � � � t � �� ��t � � �

and that there here exists an alternative more direct proof of this fact

This proof relies on a standard Laplace transform argument �cf� ���	
and the estimate Pt��	 � c e�c�t �t � �	 which is equivalent to

�A
�
�	 P�T � inf�s � jz�s	j � �� � t� � c e�c�t� t � � �

This last estimate is non trivial
 The only way I know how to prove it
is by considering in local coordinates the semimartingale expression of
t����z�s � t � T 	� �s � �	 for �xed t � �
 It is easy to see then that
the S�function of that semimartingale satis�es kSk� � C
 This implies
�well known� we time change the martingale part of the semimartingale
and make it brownian motion	 that the maximal function

M� � t���� sup
��s�t

jz�s � T 	j

satis�es k exp���M�	�	k� � C and our estimate �A
�
�	 follows from
the fact that on the set �T � t� we have M� � t���


The proof of the lower Gaussian estimate �unless the drift is of
special form� cf� ��"�	 is as far as I can tell considerably more di�cult
to prove
 The pivot of the proof is the estimate

�A
�
	 Px�d�z�t	� y	 � ������ � C exp��c
t
	 �

for � � t � �� x� y � G� ����� � d�x� y	 � ����
 This estimate for
a Laplacian with a drift is essentially the Varadhan�Ventcel�Freidlin
large deviations estimates for the Heat kernel �cf� ����	
 The details
are rather formidable to write out
 This has been done in ��"� II� �esp

Section �
�	
 In that reference the drift had a special form but the proof
given there works for a general drift
 From �A
�
	 the lower Gaussian
estimate follows by standard methods �e�g� ��"�II�� Section 
�	
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B� The large deviation estimate�

In this section we shall preserve all the notations of Section �
�
and we shall prove the estimate ��
�
�	
 The proof is done in two steps

The �rst step consists in modifying

�B
�	 �A�Li	 � inf
��j�n

exp��diLi�bj		

where we set b� � � and in showing that

�B
	 E � �An�L�	 	 	 	 �An�Lp		 � O�exp��c n���		 �

The second step consists in deducing ��
�
�	 from �B
	

To simplify notations I shall also assume throughout that di � �

�i � �� � � � � p	
 At any rate in both ��
�
�	 and �B
�	 we can also absorb
the di with the Li and consider �Li � diLi instead

Proof of the step �� By the C�condition we can �x � � � � � i� �
	 	 	 � i� � p and �s � � �� � s � �	 such that

�sLis �� �� � � s � � �
�X

s��

�sLis � � �

It is then clear from the geometry of the situation that there exists
C � �

jLi��x	j � C
�X

s��

L�
is

�x	� x � V �

therefore since

�An�L�	 	 	 	 �An�Lp	 � exp�� sup
��j�s

�X
s��

L�
is

�bj		

we conclude that �B
	 will follow as soon as we can prove that for any
a � � we have

�B
�	 E
�

exp��a sup
��j�n

jLi��bj	j	
�

� O�e�c n
���

	 �

where c � �

Observe now that Uk � Li��Xk	 � R� �k � �� � � � � 	 is a sequence

of real random variables and that the density functions �k of these
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variables P �Uk � dx� � �k�x	 dx clearly are Gs�functions on R �by
Chapter �	 uniformly in j � �� � � � � 
 Our estimate �B
�	 is thus a
consequence of the following lemma

Lemma �� Let U�� U�� � � � be a arbitrary sequence of independent ran�

dom variables that satis�es the above condition� Let Sn � U� � 	 	 	�Un
and Vn � sup��j�n jSj j� Then for every a � � there exists c � � such

that

�B
�	 E �e�aVn 	 � O�e�cn
���

	 �

Lemma �� Let U�� U�� � � � be as in Lemma �� Then there exists � � �
and an integer n� such that

P �jU� � U� � 	 	 	� Un�m� j � m� � �� � � m � �� � � � � �

Lemma � follows from Lemma 
 Indeed from Lemma  it is clear
that

P �Vp n�m� � m� � ��� �	p � m� p � �� � � � � �

and therefore that

P �Vn � m� � C exp
�
�c n

m�

�
� n�m � �� � � � � �

and �B
�	 follows by integration


Proof of Lemma �� Let 	k��	 � (�k��	� � � R� denote the char�
acteristic function of the variable Uk� k � �� � � � � 
 The uniform lower
estimate of the Gs�condition �k�x	 � C exp��cx�	 implies that �k�x	 �
�G�x	 � �� � �	 ��k�x	� where G�x	 is a Gaussian distribution and ��k
some other probability distribution and there exist thus � � � � ��
c � � such that

�B
!	 j	k��	j � � exp��c ��	 � �� � � k � �� � � � � �

Now again the uniform Gs�condition on the �j  s implies that 	k �
C��R	 uniformly in k and therefore since

	k��	 � �� j	k��	j � � � � �� � �
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it follows that there exists c � � such that

�B
�	 j	k��	j � �� c j�j� � j�j � c� k � �� � � � � �

Putting �B
!	 and �B
�	 together we conclude that there exists c� � � �
such that

j	k��	j �
�

�� � if j�j � � �

e�cj
j
�

if j�j � � �
k � �� � � � �

Let now

� � �� (� � C��R	 � L��R	� (���	 �

Z
eix
��x	 dx �

Then for any m � �� � � � � � r � � we have

�B
�	

Z
�� � 	 	 	 � �m��x	�

� x

rm

�
dx

� r m

Z
�	� 	 	 		m�	��	 (��r m �	 d�

� r m

Z
e�cm

�
� (��rm�	 d� � ��� �	m
�

���	

�
Z
e�c


��r (���	 d� � ��� �	m
�

���	

� c
p
r (���	 � ��� �	m

�

���	 � �� � �

where the last estimate holds if r is small enough and m large enough

For an appropiate choice of � we have ��x	 � �� jxj � � and thus �B
�	
gives

P �jU� � 	 	 	� Um� j � r m� � �� �

and Lemma  follows


Proof of step �� Let us �x N � � �to be chosen later	 and denote
I� � f�N � �� �N � � � � � � �� � �	Ng � N� � � �� �� � � � � 
 Let Y� �
infj
I� jXjj and let j� � I� be the �rst integer j � I� for which jXjj �
Y�
 Let us further de�ne

Bn�Li	 � inf
��N�n�N

exp�c Y �
� � Li�bj�		 �

Cn�Li	 � inf
��N�n�N

exp��Li�bj�		 �
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�n � sup
��N�n��N

�X
k
I�

jXkj
	
� �n � sup

��N�n��N
�Y�	 �

It is then clear that

�B
�	 An�N �Li	 � Bn�Li	 � Cn�Li	 e
c
�n �

�B
"	 Cn�Li	 � �An�Li	 e
C�n �

provided that C � � is large enough

By the independence and the Gaussian decay of the variables in�

volved� we see on the other hand that

P

�X
k
I�

jXkj � �


� C exp��c ��	 � � � �� � � � � �

P ��n � �� � C n exp��c ��	 �
where C� c are independent of n� � � �� � � � � � �but may depend on N	
and that

P �Y� � �� � C� exp��c�N ��	 � � � �� � � � � �

P ��n � �� � C�n exp��c�N ��	 �

where C�� c� are independent of n� ��N � �� � � � � 
 It follows in partic�
ular that

�B
��	 kec�nkp � O�n��p	 � � � p � �� �

and that for every given k � � and � � p � �� there exists an N � �
large enough for which

�B
��	 kek
�nkp � O�n��p	 �

The proof of the step  is then a consequence of �B
	� �B
�	� �B
"	�
�B
��	� �B
��	 and a simple use of H�older s inequality
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C� The conical function and the Hessian�

Let e � ��� �� � � � � �	 � Rn and let r � jxj� let 	� � � be the
latitude with respect to the north pole e and �	�� � � � � 	n��	 be an
appropiate set of local coordinates on Sn�� �the n�  sphere	� so that
�r� �� 	�� � � � � 	n��	 are a set of �polar� coordinates on Rn 


We shall now �x some small � � �� and de�ne a function F � F��k
on Rn 
 First of all F � � if hx� ei � jxj cos �� i�e� F � � outside
the region C� �cf� Section A
�	 with � � ��
 Next we require that
F �x	 � r�u��	 for x �� � for some large � � �� � � � � and � � u��	 �
Ck
 The function u��	� � � � � � will have the following properties
u��	 � � for ��� � � � ��� u��	 � � for �� � � � � �for some small �	
and u��	 � �j�j � j��j	k for j j�j � j��j j small where k � � �� � � � is an
appropiate even integer
 In this section we shall analyze the Hessian
H��k � Hess�F 	 � �hi�j	


Quite generally let us denote by S the set of symmetric real n� n
matrices and by P � S the cone of non negative matrices
 Let � �
���� � � � � �n	 � Rn � we shall denote by �� � � ��i�j	 � P
 It is clear that
any s � S can be written

�C
�	 s �
kX

j��

��j �
�
j � ��j �

nX
i�k��

��i �
�
i � ��i �

where ��j � � are the characteristic roots and ��j �j � �� � � � � 	 are the
corresponding orthonormal set of eigenvectors
 We shall �nally de�ne
the scalar product in S

hS��	� S��	i �
X
i�j

S
��	
ij S

��	
ij � S�k	 � �S

�k	
ij 	 � S �

The following two notations will be needed

Pa � fp � �pij	 � P � a
X

j�jj� �
X

pij�i�j � a��
X

j�j j�
for all ���� � � � � �n	 � Rng � a � � �

Sa � fs � S � hp� si � � for all p � Pa���g � a � � �

The connection between the above two de�nitions is described in the
following elementary
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Lemma� Let s � S and a � �� Then s � Sa if and only if we can write

s in �C
�	 with

�C
	
X

��j � a
�X

��j
�
�

Proof� Indeed p � Pa��� if and only if in �C
�	 it can be written

�C
�	 p �
X

�j�j � �j

with a���� � �j � a��� and �j � Rn some orthonormal basis
 If we
bare in mind that h���� ���i � h�� �i� for the standard scalar product
on Rn we see that with s as in �C
�	 and p as in �C
�	 we have

�C
�	 hs� pi �
X
j��

��j ��h��j � ��i� �
X
j��

��j ��h��j � ��i��

We clearly also have

�C
!	
X
�

h�� ��i� � k�k�� � � � Rn �

From �C
�	 and �C
!	 it follows that hs� pi � � if �C
	 is veri�ed
 This
gives the �rst half of the lemma
 To see the opposite direction for s � S
as in �C
�	 it su�ces to test the condition hs� pi � � on the matrix

p �
X
j

a������j � ��j �
X
j

a�����j � ��j � Pa��� �

The signi�cance for us of the above notions lies in the following

Lemma� Let a � � be given� Then there exists k� � k��a	 such that for

all k � k� there exists u��	� satisfying the conditions of the de�nition

of F��k� and ��� ���a� u	 � � such that

H��k � Hess �r�u��		 � Sa � � � �� �

at every point of Rn �

The �rst step is to observe that we have

r �
� �

�x�
� � � � �

�

�xn

�
� A

� �

�r
�

�

r

�

�	�
� � � � �

�

r

�

�	n��

�
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valid for r � � and j����j � j��j� and �	�� � � � � 	n��	 in some appropi�
ate patch of local coordinates of Sn��
 The matrix A � �aij�			 has
C� coe�cients that only depend on �	�� � � � � 	n��	 and is independent
of r
 For every p � P and the corresponding di�erential operator P we
have therefore

PF � hp�H��ki

�
X

pij
��F

�xi�xj

� s
��F

�r�
� 

�

r

n��X
i��

si
��F

�r�	i
�

�

r�

n��X
i�j��

si�j
��F

�	i�	j
� �

�

r

�F

�r

�
�

r�

n��X
i��

�
�F

�	i
�

where the coe�cients are C� and where the matrix �sij � i� j � ��� ��
�� � � � � n� 	 � � is positive de�nite �with s����� � s� s���i � si	
 For
F � r�u it follows that

�C
�	
r���PF � ��� � �	su � �s�u

� � s���u
�� � ��u � ��u

�

� ���s � O����		u � ��s� � O����		u� � s���u
�� �

Therefore for our special choice of u��	 and � close to �� �j�j � j��j	 we
have

�C
�	

r���PF � ���� � ��	
k�s� O����		

� k��� � ��	
k���s� � O����		

� k�k � �	�� � ��	
k��s��� �

Given a � � it follows that the discriminant in �C
�	

D � k��s� � O����		� � k�k � �	s����s � O����		

is strictly negative for all

j� � ��j � �� � � � �� � k � k� � p � Pa��� �

where �� � ���a	� k � k��a	 only depend on a

Let us �x some k � k� and some u��	 that satis�es the conditions

of the de�nition of F �for that k	
 Once u has been �xed� it follows
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from �C
�	 that there exists �� � ���u	 � �� �that depends on u	 such
that PF � � for all j�� ��j � �� and � � ��
 This completes the proof
of the lemma


D� The random walk and the martingale�

D��� Statement of the results�

Let Sj � X� � 	 	 	 � Xj � Rn denote an n�dimensional random
walk where the variables Xj are independent and centered �E �Xj 	 � ��
j � �� � � � 	� but not necessarily identically distribuited� and where there
exists a � � such that each covariance matrix satis�es

�D
�
�	 fE �X�
j X

�
j 	gn����� � Pa � j � � �

�here we use the notations of Section C and Xj � �X�
j � � � � � X

n
j 	 are the

coordinates	
 We shall also assume that for some  � p � �� we have

�D
�
	 kXjkp � C � j � �� � � � � �

We shall generalize the above setup and consider a vector valued mar�
tingale

fj � d� � 	 	 	� dj � Rn � j � �� � � � � f� � � �

The conditions we shall impose on the martingale di�erences will be a
natural generalization of �D
�
�	 and �D
�
	

E �d�j d
�
j ��Tj��	 � Pa � E �jdj jp��Tj��	 � C � j � �� � � � �

where T� � T� � 	 	 	 are the 
��elds of the martingale
 Let �fj � j � �	
be a martingale as above we shall then show that if p �  there exists
C� c � � such that

�D
�	 P � sup
��j�n

jfjj �M � � c exp
�
�C n

M�

�
� n�M � C �

We shall also show that �if p � p� large enough	 for any � � � � � and
� � � large enough there exists � � � such that

�D
	 P �fj � C��� � � � j � m� � m�
 � m � � �
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where C��� is as in Section A
�

Both the above estimates are very easy to prove when n �

dimension � �
 For n � �� �D
	 is well known
 We can take p � ��� �
� arbitrary then� and we do not need the extra covariance condition

To see this we shall consider uj � F �fj	 where F �x	 � �� x � ��� and
F �x	 � x � �� x � �� which is a submartingale and then apply the
�optional stopping time theorem� on fj�T where T � inffj � fj � ��g


The proof of D
� for n � � is not very much harder
 We set
T � inffj � jfjj � Mg and compose f�j � fj�T with the function
FM �x	 � F �x�M	 where F � C�� � � F � �� F �x	 � � for jxj � ��
F �x	 � � for jxj � ��� F �x	 � � for jxj � � and F �x	 � C��� jxj	��
for �� jxj � ����
 Using the Taylor series of F � it is easy to verify that
�cf� Section D
 for details� in fact this veri�cation is entirely trivial if
jdkj � �	

E �FM �f�n	��Tn��� � e�cM
��

FM �f�n��	 � n � � �

If we iterate this for n� n� �� � � � we see that �D
�	 follows at once

Both �D
�	 and �D
	 are false in higher dimensions without the

covariance condition in �D
�
�	
 It is clear why �D
	 brakes down� it
su�ces in the random walk Sj � X� � 	 	 	� Xj to consider �singular�
variables Xj � hyperplane perpendicular to the axis of C�
 To see why
�D
�	 brake down when n �  we start with rj � �rj � �	 � R� � where
rj � � are Rademacher variables� and consider Tj � SO� so that the
last vector �� R�	 in the following summation

fj � r� � T��r�	 � T��r�	 � 	 	 	� Tj���rj	

is orthogonal in R� to the sum of the �rst j � � terms
 The rotations
Tj can clearly be made Tj���measurable
 We obtain thus a martingale
transform �cf� ���	 that satis�es jfjj �

p
j


Remark� It is clear that the �rst condition �D
�
�	 is equivalent to

a
X

j��j� � E
���� nX

���

��d
�
j

������Tj��� � a��
X

j��j� �

Therefore when the dj  s admit conditional densities

�D
�
�	 P �dj � dy��Tj��� � d�j���y	 � j � �� � � � � �

the condition �D
�
�	 is equivalent to

�D
�
�	
�Z

y�y� d�j���y	
�n
�����

� Pa � j � �� � � � �
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D��� A general notion of subharmonicity� the Taylor series
and the proof of �D����

We shall consider

���	x � P �Rn	� x � Rn � � � A � some index set �

a family of centered �i�e�
R
Rn

yi d�
��	
x �y	 � �� x � Rn � � � A� i �

�� � � � � n	 probability measures and F � � some upper semicontinuous
function on Rn 
 Let further R � Rn be some open domain
 We shall
then say that F is subharmonic in R with respect to the above family
if

�D
�
�	 F �x	 � F � ��x �x	 � x � R� � � A �

For simplicity in what follow we shall drop the index � � A and consider
only the case when A reduces to the one point set


The interest for us of the above de�nition lies in the following
considerations
 We shall consider the family of measures �D
�
�	
 These
measures in our applications will be given by d�x�y	 � p�y� x	 dy where
the p s are as in Section E
 We shall furthermore �x F and R as above
that satisfy �D
�
�	 and de�ne further

� � inffn � fn �� Rg
the �rst exit time of the process fn � y�n	 de�ned in Section E
 What
is important for us is then the following

Lemma� Let F�R� � be as above� Then the process un � F �fn�� 	 is a

submartingale�

In our applications the martingale fn will be one of the two mar�
tingales y�n	 or y�Tn	 of Section E and then we deduce that for any
starting probability of the di�usion �x�t	� t � �	 in Section A the process
un � F �fn�� 	 is a submartingale


The proof of this lemma is straight forward and was given in ����
II� Section ��� it will therefore be omitted


We shall now explain a general procedure that allows us to analyze
the convolution F � �� � �	 for any � � P �Rn	 with

R
x d��x	 � �


Towards that we shall use the Taylor development at x � Rn and write

F � ��� �	�x	 � 
X
i�j

Z
��� t	Fi�j�x � ty	 yiyj d��y	 dt �
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where Fi�j � ��F��xi�xj � we assume here that F is su�ciently di�er�
entiable and that all the above integrals �y � Rn � � � t � �	 converge
absolutely


We shall modify the above expression as follows


X
i�j

Z
���t	Fi�j�x�ty	

yi
jyj

yj
jyj d��y	dt � 

X
i�j

Z
Fi�j�x�y	

yi
jyj

yj
jyj d��y	

where d��y	 � jyj�d��y	 and d� is the image of the measure �� �
t	dt�d� by the mapping �t� y	 � ty
 We shall assume throughout thatR jyj�d��y	 � �� so that � is a bounded measure
 Quite generally for
any measure � � P �Rn 	 and any matrix �hij	 � H we shall introduce
the notation

�-H�x	 �

Z
hij�x � y	

yi
jyj

yj
jyj d��y	 �

With the above notation we have therefore

F � ��� �	�x	 � �-Hess�F 	�x	 �

where Hess�F 	 � �Fij	 denotes the Hessian matrix of F 

For the new measure � we can no longer assert that it is centered

and its baricenter � �
R
x d� may not be �
 Indeed this is not in general

true even for the measure �
 Let us make the additional hypothesis that

E��	 �
�Z

xixj d��x	 � i� j � �� � � � � n
�
�Pa �

Z
jxj���d��x	 � C �

for some C� � � �� a � �
 It is then easy to see that there exist
� � �� � and R� � such that

�D
�
	 �fx � jx� x�j � R� �g � � for all x� � Rn � jx�j � R �

Furthermore R� � only depend on C� �� a
 This means that the measures
�x��R � �fjx�x�j�R�	g� � � �jx�j � R	 all satisfy k�x��Rk � �
 It

follows also that the measures �x��R that we can associate to �x��R by
the same procedure satisfy k�x��Rk � ��
 In other words� the property
�D
�
	 is �inherited� by � and can be used as a substitute of � � �

This point will be used at the end of Section F below


Let us now give the proof of �D
	 and to make the argument
that follows clearer let us assume �rst that � � P �Rn	 as above is
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compactly supported and that its moment matrix satis�es E��	 �
�
R
xixj d��x	 � i� j � �� � � � � n	 � Pa for some a � �
 The condition

that we have imposed on the moment matrix is then equivalent to the
fact that there exists � � � such that for any �n� �	�dimensional sub�
space H � Rn we have

�D
�
�	 �fx � dist�x�H	 � �g � � �

Since supp� is compact it is easy to see that the measure � that corre�
sponds to the above � has the same property �D
�
�	 and therefore it
follows that the corresponding moment matrix

�D
�
�	 E��	 �
�Z

xixj d��x	 � i� j � �� � � � � n
�
� Pb

for some b � �

We shall apply the above considerations to the function F �x	 �

F��k�x	 of Section C
 By the proposition of Section F and �D
�
�	 we
deduce that for any � as above and jxj appropiately large we have

F � �� � �	�x	 � � �

and our lemma applies
 An easy adaptation of the argument �A

�	�
�A

!	� �A

�	 completes then the proof of the assertion �D
	 for the
case p � �� in �D
�
	


There are several ways of getting rid of the compactness of the
support in �D
�
�	 since we shall not need optimal results� let us proceed
as follows� Suppose as above that E��	 � Pa and that supp� � fjxj �
Rg� R� �
 It is easy to see �e�g� by scaling	 that E��	 � Pb where b 

R� �if a is �xed	
 Let then � be an arbitrary measure that is assumed
to admit a high enough moment EN �

R jxjNd� � �� �N � �	 and
let us denote by �R � �fjxj�Rg�� the part of � at �� and by �R the

measure that corresponds to �R we have then E��R	 � O�R��	 for an
arbitrary large � �provided that N is high enough	
 We can therefore
correct the contribution of � coming from �R � �fjxj�Rg� by O�R��	

and obtain that E��	 � Pb with b�� 
 R�� � O�R��	
 For R large
enough we obtain thus again �D
�
�	 for some b that only depends on
a�N and EN 
 Working out the exact value of N is not so hard and that
exact value of N is not so large either


The proof of �D
	 for general values of p � �� in �D
�
	 can
then be completed as before except that we now have to use the second
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half of Section F
 For our applications however the case p � �� is not
essential
 Indeed if we use the martingale y�Tn	 constructed in Sec�
tion E
 then the supports of all the measures involved are �uniformly	
compact and p � ��


D��� The radial function and the proof of �D��� �The case
p � �� in �D�������

Let � � 	 � CN �Rn	 be radial decreasing �i�e� 	�x	 � 	�r	�
r � jxj and N is su�ciently large	 and such that 	 � � if jxj � ��
and 	 � � if jxj � �� 	 � � if jxj � �
 Let us further assume that
	�x	 � �� � r	� for ��� � r � � and � � �� �� � � � some appropiately
large even integer
 The above function is clearly not convex �if n � 
it is not even convex in some Nhd of the unit sphere r � �	
 Let
Hess�		 � ���	��xi�xj	 be the corresponding Hessian matrix
 This
matrix can easily be diagonalized and an easy calculation shows that
for jxj 
 � we have

Hess	 � ��� � �	��� r	����� �� c ���� r	����j � �j �

where ��x	 is the unit vector along the radius Ox and �j�x	 �j �
�� � � � � n � �	 are an orthonormal complement of ��x	 �tangent to the
sphere fy � jyj � jxjg


The crucial fact in the structure of the above Hessian is that for
each r� � � if we add some appropiately large multiple of 	 we obtain
a positive matrix

Hess	 � C 	 I � � � jxj � r� �

By scaling therefore 	M �		 � 	�	�M	 �M � �	 we obtain

Hess	M � CM��	MI � � � jxj � M r� �

If we use the second order Taylor development of 	M we obtain there�
fore that

	M � ��� �	�x	 � �CM��
Z
	M �x � y	 d��y	 � jxj � M r� �

where � and � are as in Section �D
�	 and are compactly supported
since p � ��� and � satis�es ��D
�
�	 of Section D
��
 Then � and �
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also satisfy �D
�
�	 and since 	M �r	 is decreasing it follows that there
exist M�� c� � � such that

�D

�	 	M�����	�x	 � �c�M��	M �x	 � M �M� � jxj � M r� �

The next observation is that for all a � � there exists � such that if
��r� � � then Hess	 � Sa� jxj � r� therefore also Hess	M � Sa �M �
�� jxj � r�M	
 In informal terms this says that� near the boundary� 	
�looks more and more like a convex function�
 In fact by an elementary
calculation� that is best carried out by drawing a few pictures� we see
that �D

�	 holds �with c� � �	 for jxj � r�M provided that � � r�
is small enough and M large enough
 The �nal conclusion is therefore
that �D

�	 holds for all x � Rn 


From the estimate �D

�	 we deduce that there exist M�� c � �
such that

�D

	 	M � ��x	 � e�cM
��

	M �x	 � x � Rn � M �M� �

To �nish the proof of �D
�	 let us set T � inffj � fj �Mg� f�j � fj�T
and let us apply �D

	 with � � �j�x as in �D
�
�	
 We obtain

E �	M �f�j 	��Fj��� � e�cM
��

	M �f�j��	

which by iteration gives

�D

�	 E �	M �f�n	� � e�cn�M
�

� n � �� M �M� �

From �D

�	 �D
�	 follows at once
 It has thus been shown that �D
�	
holds if p � �� in �D
�
	
 The above argument can be adapted to
deal with p � ��� the proof will be omitted since this is not essential
for us


E� Discretising the continuous time martingale�

E��� The deterministic discretisation t � �� � � � � �

We shall preserve all the notations of Section A and recall �Section
A
�	 that y�t	 � z�t	 � ��k�t		 � C � Rn is a continuous time martin�
gale
 It follows in particular that fj � y�j	 �j � �	 is a discrete time
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martingale �unlike Section D
� f� � C which is not necessarily �	 our
purpose is to examine

P �fj � fj�� � dy��f� � x�� � � � � fj�� � xj��� � pj�y�x	 dy �

for x � �x�� � � � � xj��	� y � Rn 
 To be formally correct the above
probability density is only de�ned x almost surely and is a measure
d�x�y	
 The above abusive notation will be justi�ed by what follows

What is clear by the martingale property is thatZ

y d�x�y	 � � � j � �� �� � � � � x � Rn �

We shall show then that there exist C�C� � � such that we have �uni�
formly in x	

�E
�
�	 C��
� exp��Cjyj�	 � pj�y� x	 � C� exp

�
�jyj

�

C

�
� y � Rn �

It is essentially this estimate that justi�es our previous abusive notation

It is clear that it su�ces to prove the same Gaussian estimates for
the ��ner� conditional probabilities with respect to the �elds Tj �
T fz�t	 � t � j��g
 By the Markov property we must therefore consider
the conditional properties

P �fj � fj�� � dy���z�j � �	� k�j � �		 � x� � �pj�y�x	 dy �

for y � Rn � x � �z� k	 � X � Rn �K
 These new Gaussian estimates
can be deduced from the Gaussian estimates for the di�usion kernel
qt�x�� x�	� �t � �� xi � �zi� ki	 � X� i � �� 	 of the di�usion � �cf�
Section A
�	

�E
�
	 C��
� exp��Cjz� � z�j�	 � q��x�� x�	 � C� exp

�
�jz� � z�j�

C

�
�

To deduce �E
�
�	 from �E
�
	 one simply �integrates� along the �bers

Fy � f�z� k	 � X � z � ��k	 � yg �

The upper Gaussian estimate �E
�
	 is perfectly standard and follows
from the more general �C��manifold	 upper Gaussian estimates for
subelliptic operators and the intrinsic distance that they induce �cf�
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���	
 The lower estimates makes essential use of the left invariance of D
and the corresponding scaled �for �small balls� but spacially uniform	
Harnack estimate
 The argument is an easy adaptation of ��"�
 Al�
ternatively� if the reader is not prepared to either believe or verify for
himself the above argument� he could refer to ��� where the above lower
estimate is explicitely proved for Lie groups G and left invariant opera�
tors
 The di�usion � that we will be considering is non other than the
di�usion that in Section  is induced on R � K by the corresponding
di�usion in our original group G
 The lower Gaussian estimate �E
�
	
can then easily be picked up by the corresponding estimate in that
group
 The veri�cation will be left to the reader


The reader should also observe that the above lower Gaussian esti�
mate is not essential for us here
 Indeed the reason that we need these
estimates is that we have to show that the above martingale fj � y�j	
satis�es the conditions of Section D
�
 For this it su�ces to have the up�
per Gaussian estimate �E
�
�	 which guarantees the moment condition
�D
�
	 and a much weaker lower estimate of the form

�pj�y� x	 � � � jyj � � �

for some � � �
 This is guaranteed by the uniform Harnack estimate
on X for the operator D


E��� The optional time discretisation�

There is an alternative way to discretise the time parameter of the
martingale y�t	� �t � �	
 Let T� � � and

T� � infft�jz�t	� z��	j � Cg � Tj � infft�jz�t	� z�Tj��	j � Cg �

for j � � �� � � � � and some large C � �
 We can set then fj � y�Tj	�
�j � �� � � � � 	 which is now a martingale as in Section D
� with the
additional property that the martingale di�erences dj � fj�fj�� � L�

are uniformly bounded
 For this new martingale we shall de�ne again

P �fj � fj�� � dy��x�Tj��	 � �z�Tj��	� k�Tj��		 � x� � d��x�y	 �

for j � �� � � � � � x � X � Rn �K� and

P �fj � fj�� � dy��f� � x�� � � � � fj�� � xj��� � d�x�y	 �
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for j � �� � � � � � x�� 	 	 	 � Rn � and we shall show that the measures
�x satisfy the covariance condition of Section D
� uniformly in j � �
and x � Rn 
 For this it clearly su�ces to prove the corresponding
covariance condition �D
�
�	 for the measures ��x
 To see this fact one
simply has to understand what a subelliptic di�usion means
 The best
way to analyze this situation is to work with the �trajectories� of the
di�usion � �cf� Section A
�	


Indeed if x� y � + � X where + is some open set of X then

P��x�Tj���t	�+� � � t � t�� dist�x�Tj���t�	� y	����x�Tj��	 � x�

� Px�x�t	 � +� � � t � t�� dist�x�t�	� y	 � �� � �

for any t� and � � �
 This is a basic consequence of the subellipticity of
the operator D and follows from the smoothness of the heat di�usion
kernel and elementary �if lenghty and tedious	 considerations that will
be left for reader


For �xed x and j therefore� by appropiately chosing t� and y we see
that measure �x�dy	 charges positively �and in and uniform fashion with
respect to x and j	 a whole family of small discs around x
 Furthermore
there are enough of these discs on every direction as we go away from
x to guarantee the covariance condition �D
�
�	 for ��x
 The details will
be left to the reader


F� The geometry of the Hessian�

F��� Dimension � n � �

To see clearly what is involved we shall �rst consider the case of
R� �i�e� n � dimension � 	
 We shall preserve all the notations of
the previous sections and translate the ��variable �now of course the
polar coordinates are �x� y	 � �r� �	 � R�	 by �� � � so that the x�axis
becomes one of the two edges of the wedge C�� and fx � �� y � �g �
fr � �� � � �g


For these coordinates we have

�

�x
� cos �

�

�r
� sin �

�

r

�

��
�
�

�y
� sin �

�

�r
� cos �

�

r

�

��
�

For � 
 � �� � �	 and F � F��k as in Section C we obtain by a straight
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forward calculation that

HessF � r����k��
�

���� �k� � ����

�k� � ���� k� � ��k � � � k	�� � ����

	

� r����k��H �
�F
�
�	

where each coe�cient of the matrix H has to be multiplied in addition
by a factor � � � O���	 � O���k	 � O�k��	� and in the considerations
where H is used we shall assume throughout that � � � � �� � ��
� � k� � � ��k


For a � that it is not close to � and F � r�u��	 we also have the
following expression of the Hessian

�F
�
	
HessF � � �� � �	 r���u��	

�
cos� � cos � sin �

cos � sin � sin� �

	
� � �� � �	 r���u��	 �H �

where every coe�cient of the matrix �H has to be multiplied by a factor
of the form �� � O����		 with a O�		 that depends of course on the
particular chice of u


Let now quite generally K � �ki�j�x		 � S� x � Rn � denote an
arbitrary matrix and let � � � denote some non negative measure on
Rn 
 We shall use then the same notation as in Section D
�

��-K	�x	 �
X
i�j

Z
kij�x� z	

zi
jzj

zj
jzj d��z	 �

where we shall assume that all the above integrals converge absolutely

I shall denote

Eij �

Z
xixj d��x	 �

We have then

Proposition� Let � be as above and let us assume that E � �Eij	 � Pb
for some b � � and that � is a probability measure supported in the unit

ball� supp� � fx � Rn � jxj � �g� Then there exists a choice of �� k
and some r� � � such that

�F
�
�	 ��-HessF��k	�x	 � � � x � Rn � jxj � r� �
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The proof is elementary but lenghty
 Before we give the proof we
shall explicitely state the three basic properties of HessF that make
the things work
 The proof of this properties will be left to the reader


a	 Using the notation of Section C
� we shall diagonalize the matrix
H at every z � R�

H � ��e� � e� � ��e� � e� �

where �e�� e�	 is an orthonormal basis of R� and where �� � �� pro�
vided that � � � � �� for �� small enough and k� ��k are large enough

Furthermore by direct computations or by the considerations of Section
C we see that for all a � � there exists t�� k� such that �� � aj��j for
��k � t�� k � k�


b	 Let us assume that � and k are �xed� then �i�z	 and ei�z	 are
continuous functions of �
 By the uniform continuity and the fact that
� � y�jzj we see therefore that for all � � � there exists r� � r���� �� k	
such that

j�i�z�	��i�z�	j � � � jei�z�	�ei�z�	j � � � jz��z�j � ��� jzij � r� �

c	 Let us again �x � and k
 Near � � � we have

�F
�
�	 �-HessF��k � �-r����k��Hj��� � Error �

Let A � � be �xed for z� � �x�� y�	 with jy�j � A and x� large
enough
 We have

��-r����k��Hj���	�z�	 � k�
Z
r����k��

y�

jzj� d��z	

� x����k� �c� � O���x�		 �

where c� � �
 To prove that c� �� � we use already the hypothesis
E � Pb
 By an easy calculation on the other hand one sees that the
�error� in �F
�
�	 is O�x����k� 	 because all but the k� terms ofH involve
higher powers of �


The conclusion is that for �xed �� k and A we can �nd B � � such
that our estimate �F
�
�	 holds in the region

RA�B � fz � �x� y	 � x � B� y � Ag �
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What is furthermore important about the region RA�B is that �again
with �� k �xed	 for any � � � we can �nd A and r� large enough so that
the co�factor of H in �F
�
�	 	 � 	�z	 � r����k�� satis�es

�� � � 	�z�	

	�z�	
� � � � � jz� � z�j � � � jz�j � r�� z� �� RA�r� �

In other words that cofactor varies as slowly as we like outside the
regions RA�B for large jzj


We shall now procede with the proof of the proposition
 Because
of c	 above� it remains to prove �F
�
�	 in the region outside RA� r�

With the notations already introduced we have then

�-HessF��k�z�	 �

Z
��z�� z	 d��z � z�	 �

where

��z�� z	 � 	�z	
�
���z	

D
e��z	�

z � z�
jz � z�j

E�
� ���z	

D
e��z	�

z � z�
jz � z�j

E��
and where z� lies in the region � � � � ��


For any � � � let us denote

B	�z�	 � fz � jz � z�j � �� jhe��z�	� z � z�ij � �jz � z�jg
so that B� is the unit ball centered at z�
 Let us now �x � � �� we can
then �nd t�� k� so that

���z	
D
e��z�	�

z � z�
jz � z�j

E�
� ����� j���z	j

D
e��z�	�

z � z�
jz � z�j

E�
�

for ��k � t�� k � k�� z � B	 
 Observe that here the argument z has
been frozen to z � z� in ei�		
 We shall �x k � k� and will not change
it anymore
 Using b	 for every � � ���k�	 we can �nd r� � r���	 such
that

���z	
D
e��z	�

z � z�
jz � z�j

E�
� ���� j���z�	j

D
e��z

�	�
z� � z�
jz� � z�j

E�
�

for � � ��� jz � z�j � ��� jzj � r���	� z � B	 
 Using c	 and the slow
variation of 	 outside RA� r� we see that there exists A � � such that
for all � � �� large enough there exists r���	 � � such that

�F
�
!	

	�z	���z	
D
e��z	�

z � z�
jz � z�j

E�
� ��� 	�z�	 j���z�	j

D
e��z

�	�
z� � z�
jz� � z�j

E�
�
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for jz � z�j � ��� z � �x� y	 � R� � jzj � r���	� jyj � A� z � B	 
 At this
point one should remember that we are working close to the edge of C�
i�e� in a range � � � � �� for some small ��
 The estimate �F
�
!	 will
now be used in conjunction with the fact that because of our hypothesis
E � Pb� for � � � small enough� we have ��B�nB		 � ����� �cf� Section
D
�	
 If we integrate �F
�
!	 against d��z � z�	 d��z� � z�	 we obtain
that for all � � �� there exists r� � r���	 such that

�F
�
�	 �-HessF��k � ����	�z�	���z�	
D
e��z�	�

z� � z�
jz� � z�j

E�
�

for � � ��� zi � �xi� yi	 � R� � i � �� �� jz� � z�j � �� z� � B��
jzij � r���	� yi � A� ��
 In particular �F
�
�	 holds for z� � z� which
together with c	 shows that for k � k� and every � � �� there exists
r� � r���	 such that

�F
�
�	 �-HessF��k��z	 � � � � � ��� � � � � ��� jzj � r���	 �

To �nish the proof of the proposition� since k � k� has been �xed� we
shall complete the de�nition of u��	 in F��k � r�u��	 and use the for�
mula �F
�
	 for the Hessian
 Using that formula and the same method
�this method now applies much easier
 Indeed we do not have the edge�
where the co�factor �k�� vanishes� to worry about�	 we �nally see again
that there exists �� � � such that for all � � �� there exists r� � r���	
such that

�-HessF��k��z	 � � � � � ��� �� � j�j � �� � ��� jzj � r���	 �

If we combine this �F
�
�	 we see that we have a proof of the proposition


The rest of this section will be devoted to the proof of the propo�
sition when the support of � is not compact under some additional
conditions
 This is interesting on its own right but is not essential for
the rest of the paper
 We start by extracting as much as possible from
our previous argument


Let �i�z	� i � ��  be the two eigenvalues of HessF��k with j��j � j��j
�when � � � � �� with our previous notations we have of course �i �
r����k���i� i � �� 	
 By analizing our previous argument we see that
if supp� � �jxj � �� for some �xed �� then we can �nd k�� ��� c� � �
such that for all � � �� there exists r� � r���	 such that

�F
�
�	
�-F��k��z	 � c�

Z
���z � x	 d��x	

� c�kHessF��k�k � ��z	 � jzj � r���	 �
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What is important is to analyze the dependence of c� on the parameters
of the construction
 Following the construction through and preserving
the same notations we see that if � and b are kept �xed then we can
set c� � C��b� �	��
 This � � � �which is assumed small	 is the � that
was used in the de�nition of B	�z�	


The important aspect of the estimate �F
�
�	 is that it is �scale
invariant�
 First of all it is clear that nothing changes if we replace F��k
by CF��k some constant multiple of F��k
 Because of the homogeneity
of F it follows that we can replace � by any �� where �� is the image of
the measure � by the dilatation � � x �� �x in R� 
 Clearly the dilatation
� replaces � by �� and b by maxf��� ���g b
 It follows in particular that
we cannot shrink a large � to � without at the same time having b go
to �


The dependence of c� on b� for �xed say � � �� must therefore be
examined
 That dependence is of course picked up by the condition
��B�nB		 � �����
 This gives � 
 b���� and by the above dilatation
argument we conclude that for �xed b � �� c� 
 ���
 More explicitely
if b is �xed� we can choose k�� ��� c such that for all � � �� and all � � �
there exists r� � r���� �	 such that

�F
�
"	

�-HessF��k��z	 � c

�

Z
���z � x	 d��x	

�
c

�

Z
kHessF��k��z � x	k d��x	 �

for � � P �jxj � ��� E��	 � Pb� jzj � r���� �	
 The only thing that
really counts in �F
�
"	 is that the dependence of the co�factor of the
integrals is polynomial in �
 A co�factor of the form c���� would have
been just as good for our purposes


With the help of �F
�
"	 we shall generalise our proposition to
measure that are not compactly supported
 To do this we have to go
back to Section D
� and to start from some � � P �Rn	 such thatZ

jxjNd��x	 � ��

and such that

� �

Z
x d��x	 � � �

�Z
xixj d��x	 � i� j � �� � � � � n

�
� Pc �

for some large N large enough and some c � �
 We shall next consider
the measure � that corresponds to � as in Section D
�
 It is for that
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measure � that we shall need to generalize our proposition and prove
that

�F
�
��	 ��-HessF��k�	�x	 � � � x � Rn � jxj � r� �

This new measure � also satis�esZ
jxjNd��x	 � �� �

E �
�Z

xixj d��x	 � i� j � �� � � � � n
�
� Pb �

for some N as large as we like and some b � � �but does not necessarily
satisfy � �

R
x d��x	 � �	


The next step is to examine kHessF��kk as obtained from the two
formulas �F
�
�	� �F
�
	
 An easy calculation gives

C��k
�r����k�����r����k	 � kHessF��kk � C��k

�r����k�����r����k	

valid in the ���C� cone �� � � � ��	 that is closest to the edge � � �

It follows that in that region if we use cartesian coordinates we have

�F
�
��	
kHessF��kk 
 k��x��kyk�� � x�k��y��k��	

� ���x��k��yk � x�ky��k��	 �

If we combine the two �� subregions of C� we see that if we denote by
� � ��z	 � dist�z� �C�	 we obtain the estimate

�F
�
�	
kHessF��kk 
 k��x��k�k�� � x�k�����k��	

� ���x��k���k � x�k���k��	 �

valid in the whole C�
 Let us consider the functions �A�B�z	 � xA�B

�z � C�	 and ��z	 � � �z �� C�	 where �A�B	 takes the four possible
values that appear in the right hand side of �F
�
�	
 To prove �F
�
��	
it will su�ce to show that any of the above four functions �A�B � ���k
has the following property� There exist C�� C� � � that do not depend
on � �but may depend on k	 such that for all � � � there exists u���	 � �
such that

�F
�
��	

Z
jzj��

���k�u�z	 d��z	 �
�C�

�

���� Z
jzj�C�

���k�u�z	 d��z	 �



��� N� Th� Varopoulos

for � � �� juj � u���	� � � �� u � C� 
 Indeed once we have �F
�
��	 we
shall truncate � at �jzj � ��
 If we use �F
�
"	 and the same correcting
argument as at the end of Section D
� we see that �F
�
��	 follows


Let us �x R� � � �� let us assume that � satis�es �D
�
	 and let
us denote

m��k�u	 � sup
xjx�uj�R

finf
z

����k�z	 � jx� zj � R� ��g �

It is clear from �D
�
	 that for an appropiate C� � � we have then

m��k�u	 � C�

Z
jzj�C�

���k�u � z	 d��z	 �

�F
�
��	 will therefore follow as soon as we can show thatZ
jzj��

���k�u � z	 d��z	 �
�C�

�

����
m��k�u	

with �� u and � as in �F
�
��	
 The only thing� of course� that really has
to be veri�ed in the above estimate is that the constant C� is uniform
in �
 By the structure of the above functions � it is clear also that we
can �x A� R � � and distinguish the following two cases


Case �
 distance�u� �C�	 � A
 One then simply has to verify thatZ
jzj��

���k�u � z	 d��z	 �
�C�

�

����
���k�u	 �

Case 
 distance�u� �C�	 � A


Observe �nally that we are essentially dealing with two types of
functions

� � rn�a� r�a�n �

where the notations and a� n � � are as in �F
�
�	 and that the es�
timates obtained must be uniform in n
 Clearly also because of the
symmetry about the axis of C� of the above functions we may suppose
that u lies in the half of C� that is closest to � � �
 We can then
substitute in the integrand the following two functions �� �that up to a
multiplicative constant� dominate �	

���z	 � yaxn� �� � x�ayn� z � �x� y	 � C� � f� � � � ��g
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and �� is assumed to be � � outside C�

For these new functions� and an appropiate choice of R� � and A

as above� the veri�cation that we have to make in Case  reduces to

�F
�
��	

Z
jzj�

����k�u � z	 d��z	 �
�C�

�

����
����k��x�A		 �

for u � �x� y	� juj � �� � � y � A
 Finally if � � Argu � ��� i�e� if
u lies in the half of C� closest to the x�axis� it is easy to see that it
su�ces to make the above veri�cations with a modi�ed �� given by

���z	 �

�
yaxn� x�ayn� z � �x� y	� y � �� x � � �

� � otherwise �

Four inequalities have to be veri�ed �uniformly in n	 and I can see no
other way than to just compute
 Or rather let the reader compute
for himself
 At this point life can be made considerably simpler if we
impose the following stronger condition on �

d��z	 � CN �� � jxj	�N �� � jyj	�Ndz for all N � � �

This condition if applied to �F
�
��	 �splits� with respect to the two
variables x and y and the calculations simplify since they now reduce to
the calculation of � dimensional integrals
 Given that for all our appli�
cations the above stronger condition on � actually holds the veri�cation
under this stronger condition is �good enough�
 The details will be left
to the interested reader


F��� An alternative approach and higher dimensions�

For the dimension n �  the method that I developed in Section
F
� is unduly complicated
 Indeed in the case n �  it is much easier
�and also throws additional light to the problem	 to procede di�erently


I shall brie�y outline here this alternative method
 We shall only
examine what happens close to the boundary �C�� because for � away
from �� everything is much easier
 We shall therefore use the formula
�F
�
�	
 If we denote by HessF � �aij	i�j���� the coe�cients of that
Hessian it is very easy to verify that for any �� � � there exist k�� ��� ��
�all depending on ��	 such that

�� � ��	a��a�� � a��� � � � ��� k � k�� � � � � �� �
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The key to this alternative method is to show that under appropiate
conditions on the measure ��z	� we can �make up� for the factor �����	
and guarantee that the matrix B � �bij	i�j����

b�� �

Z
a���z	 cos� � d��z	 �

b�� �

Z
a���z	 cos � sin � d��z	 �

b�� �

Z
a���z	 sin� � d��z	 �

satis�es b��b�� � b���
 The matrix B is therefore positive de�nite and
our proposition follows


The details of the above method are easy to carry out
 At any
rate they are much easier than what was done in Section F
�
 The
reason why I presented the proof for n �  in Section F
� as I did was
because the method of Section F
� generalizes in a more or less obvious
way �although the computations are somewhat tedious to carry out	 to
higher dimensions
 I shall not write the proof down for n � � here

Indeed in a future publication the whole problem will be reexamined
from a more general point of view


F��� A 
nal remark�

The proofs given in this section of the appendix are very technical�
to say the least
 All this work seems to be incompressible if we wish to
consider convolution operators with an arbitrary Gs�measure � � P �G	
as in Theorem B
 If however we only wish to develop the necessary
tools for the lower estimate of A�	 then a completely di�erent approach
�that is more sophisticated and deep but technically much easier	 can
be used


This approach will be developed at great lenght elsewhere I shall
give however here the basic principles
 It relies on the following two
facts�

�	 There exists u � � some non zero function on X that is contin�
uous� vanishes outside C �K� and satis�es Du � � in C �K


The existence of such a positive �harmonic� function relies on non
trivial ideas from potential theory �A
 Ancona ��� and L
 Carleson ����
are the key references	 which we have to adapt in our context
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	 A function u that satis�es the above conditions is automatically
unbounded and of polynomial growth


The proof of 	 is �lighter� than that of �	 but does rely on a
scaled Harnack principle which� for large balls� can only be obtained by
the Moser iterative process �cf� ����	
 At any rate all the details will
eventually be presented in a separate paper
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