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of the Haar wavelet
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Abstract. One might oL‘~in the impression, from the wavelet liter-
ature, that the class of orthogonal wavelets is divided into subclasses,
like compactly supported ones on one side, band-limited ones on the
other side. The main purpose of this work is to show that, in fact, the
class of low-pass filters associated with “reasonable” (in the localization
sense, not necessarily in the smooth sense) wavelets can be considered
to be an infinite dimensional manifold that is arcwise connected. In
particular, we show that any such wavelet can be connected in this way
to the Haar wavelet.

0. Introduction.

The aim of this paper is to show that, in some sense, any “local-
1zed”, or of “polynomial decrease” (see below) wavelet may be obtained
by a continuous deformation from the Haar function. The case of com-
pactly supported wavelets is due to P. G. Lemarié-Rieusset and G. Mal-
gouyres [6]. More precisely, we shall consider those wavelets which are
obtained from a multiresolution analysis (MRA). Let us recall that an
MRA is given by an increasing sequence {V;};ez of closed subspaces of
L?*(R), whose union is dense in L?(R). The space V4, is obtained from
V; by a dilation by 2; that is, f € Vj4; if and only if f(27'z) € V;. One
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also assumes that there exists a function ¢ such that {¢(z—k) : k € Z}
is an orthonormal basis of V5. This function ¢ is generaly called a
scaling function or a father wavelet.

From V4 C Vi, we have

(1) p(z) =2 crp(2r — k).

kez

That is to say, in terms of the Fourier transform,

) a(6) =mo()5(3).

with

(3) mg(€) = Z c e~ kE
ke€zZ

This 27-periodic function my is called the low-pass filter associated with
this MRA and satisfies vi:~ basic properties mg(0) = 1 and

(4) Imo(&)” + [mo(€ + ) =1.

It is then easy to see that one can construct a 2w-periodic function m,
such that

_ molé) my(§)
(5) u(€) = (mo(f +7) my(€+ 7"))

is an unitary matrix. The choice of m, is closely related to the construc-
tion of an orthonormal (or mother) wavelet: one can define 3 € L%(R)
by letting

o lvn

) 3o =m ) e),

in such a way that ¥;i(z) = 20/24p(2x + k) is an orthonormal basis of
L*(R).

Let us remark that the choice of m; is not unique. The fact
that U(&) is unitary implies that any other /; is given by m,(§) =
a(é)m,(€), where a is w-periodic with values of modulus 1. For exam-
ple, we can take m(€) = e*€ ma(€ + 7).
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The construction of an MRA, and the associated orthonormal wa-
velet basis, can also be done in terms of mg (if it satisfies appropriate
properties). We define » from mq by

(7) () = [ mo(27¢).

i=1

1. Daubechies used this equality to construct her compactly supported
wavelets. A characterization of the filters mo which generate an MRA
has been obtained by A. Cohen in [1] (see Theorem 1.2 below). The
basic question is: what property, in addition to (4), must mg satisfy to
give us an MRA.

In order to understand such characterizations, we make the follow-
ing remarks. Perhaps the “simplest” low-pass filter is the one associated
with the Haar system: mg(€) = (1 + €'¢)/2. Clearly, m(0) = 1 and
(4) is satisfied. Another simple function satisfying these properties is
mo(€) = (1 + €'3€)/2; but a simple calculation shows that (7), in this
X(=3.0] for which {¢(z — k) : k € Z} is not an
orthonormal system. It is n..~wn, for example that if mgy({) is never 0
in [—-m/3,7/3], then (3) does give us a scaling function that generates
a localized MRA. A. Cohen, in his thesis, shows that this is included
in a characterization of these low-pass filter that we announce in con-
dition 2.b) in Theorem 1.2 below. One of our aims is to show that if
we rephrase this condition, then the set of functions mgy may be seen
as consisting of a “manifold”.

More precisely, in this paper, we show that the set £ of the C*
filters my, is a “connected manifold” in the Frechet space C°°(T) of 27-
periodic functions, defined by the family of semi-norms ||D® f]|oo (o =
0,1,...). In particular, we construct a continuous path in £, connecting
any element of £ to the Haar filter (1+¢%¢)/2. This gives us a continuous
“deformation” between any mother wavelet ¥ with polynomial decay,
and the Haar wavelet h = Xjoa/2 ~ Xj2.1)° That is to say, we obtain

case, gives us, @ = (1/3)

a continuous function t ~— ¢, from [0, 1] to L*((1 + |z|)™dz) for any n,
such that i, is a wavelet, ¢ = h and 7 = .

1. Characterization of the low-pass filter.

We start with the following definitions:
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Definition 1.1. We say that ¢ has polynomial decay in L*(R) if
|z|Vo € L*(R) for all N € N, and that ¢ has ezponential decay of
order X in L*(R) if there exists A > 0 so that e**ls € L2(R).

Our main intercst is to study the existence of a scaling function
0, associated with a given low-pass filter mg, that generates a multi-
resolution analysis (MRA). We quote a result in [1]:

Theorem 1.2. Suppose p € L*(R) and mq, 2n-periodic, are related as
wn equalities (2) and (7). Then the following properties are equivalent:

1) The function ¢ is the scaling function of an MRA and has poly-
nomial decay in L*(R).

2) The function mq belongs to C*°(T) and satisfies
a) mg(0) =1 and |mo(£)2 + |mo(E+ )2 =1,
b) There ezists a finite union of closed bounded intervals K such
that 0 € IN°, 3 ez Xy (€ + 2km) = 1 almost everywhere and, for all
7 EN, £ € ,ue have .~~(277E) #0.

Using (7), mo(0) = 1 and mo € C*°(T), we observe that this last
inequality is equivalent to ¢(£) # 0 for all £ € K. Thus we can restate
this theorem by changing condition b) to

b’) There exists a finite union of closed bounded intervals I such
that 0 € K°, 3 1z X (€ + 2km) = 1 almost everywhere and, for all

EEK, o(§)#0.

Moreover, we add two further conclusions:

Theorem 1.3. With ¢ and mo related as above and satisfying one of
the equivalent properties of Theorem 1.2, we have:

1) The support of o is in [0, N] of and only if mg i3 ¢ trigonometric
polynomial of degree < N .

ii) The function v has ezponential decay in L*(R) if and only if
myg, regarded as a function of € (on the unit circle), eztends to a

holomorphic function on an annulus (i.e. a region lying between two
concentric circles centered at 0, including the unit circle).

Property 1) was proved by I. Daubechies in [2].



WAVELETS OBTAINED BY CONTINUOUS DEFORMATIONS OF THE HAAR WAVELET 5

Property ii) is implicit in the theory of wavelets. We shall present
an argument for completeness. Let us first assume that mg extends
to a holomorphic function on an annulus. By the Cauchy formula, we
have ”7770)Hoo < 1! M! for some constant M depending on the size of
the annulus (see [8]). From this we can deduce ||3(™ |, < n! M™. To

see this, we write
n) __ o—J
oM =3 27h,,
Jenn

where J = (j1,...,7n), 277 =271 ...277n and the h ; are obtained by
differenting the identity ¢(§) = H 2, mo(€£/27) (and replacmg mo(€/27)

by mé )(5/21) when j occurs ! times in the sequence ji,...,7,). Then,
for 0 <t < 1/VM, we have

¢ / ",,':'2”)199 e = [ (3 ) B
n=1

')2 2n]\4n
2(27 t < 0.

From this it is then easy to check that

We thus obtain an exponential decay of order A in L?(R), for ¢, when-
ever 0 < A< 1/VM.

On the other hand, when ¢ has such an exponential decay, we have
(from the definition of myg), for k > 0

o) = |5 [ 0(F) pla =) ds

%/ e (3) X 3(z + k) da

<

as well as a similar equality, for £ < 0. Thus, the sequence 7o(k) has
exponential decay |e**l7ig(k)| < A < oo since [ el |p(z)|2dz < 0.
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This implies that myg is the restriction to the unit circle of a holomorphic
function on an annulus about the origin.

2. A geometric interpretation.

We shall consider the Frechet space C*°(T) of 27-periodic functions
endowed with the topology generated by the semi-norms || F (")Hoo. We
also consider the space C°°(T/2) of all m-periodic functions endowed
with the same semi-norms. Let us define £ by

E={F € C™(T): F satisfies a) and b)}.
We shall show the following.
Theorem 2.1. The set € i3 a Frechet manifold in the sense that each

mo € £ has a neighborhood that is homeomorphic to a neighborhood of
0 wn C°°(T), where here 0 is the constant zero function.

To prove the theorc™ we define the set
F ={F € C®(T): F satisfies a)}.

We shall show that F is a manifold in this sense and that £ is an open
set in F.
Let mg € £, and let m; € C°°(T) be such that

_{ mo() my(€)
v = (m0(6+7r) m1(€+7f)>

is a unitary matrix. We shall use the elementary lemma:

Lemma 2.2. Any C% and 2w-periodic function F' may be written
uniquely

F= Gmo + Hml y
where G and H are C™ and w-periodic. Moreover F — (G H) is an
wsomorphism between C°°(T) and C°(T/2) x C*(T/2).

To prove the lemma, it is sufficient to remark that G and H are
given by

o (8)-ue (%)
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since U ™! has C* coefficients.

Moreover, U being unitary,
[E(OI + |F(E+m)* =GP + [H(E)I?,

so that condition a) for F' becomes
a’) G(0)=1,H(0)=0,|G]+|H]’=1.

From (4), we see that

H() -0 Fl+n)y—mo(l+m) )~

Hence, if F' is close to mg in C*°(T), then G is close to 1 and H
1s close to 0 in the topology we introduced. Then, to show that F
is a manifold, it is sufficient to show that a neighborhood of (1,0)
in F' = {(G,H) € C®(T/2) x C=(T/2) : (G,H) satisfies a’)} is
homeomorphic to a neighborhood of (0,0) in C°(T/2) x C*=(T/2) (that
1s homeomorphic to a neighborhood of 0 in C*°(T), by Lemma 2.2. We
can take the neighborhood given by ||[H||eoc < 1/2 and ||1 — G|oo < 1/2.
Then, clearly, G = €'4,/1 — [H|2, where 4 is C®, w-periodic with
values in [—-7/2,7/2], A(0) = 0, and the application (F,G) — (A, H)
is a continuous bijection. This shows that F is a manifold in the sense
we described above.

Let us prove that £ is an open set in . We have to prove that if
mg € & then for F close to mg, the scaling function @r which corre-
sponds to F satisfies a condition equivalent to b).

We shall use the following lemma that will be proved later.

Lemma 2.3. If F tends to mqy in F, then op tends to 4 uniformly on
compacts.

From b’), we have |3(£)] > C > 0 when { € K, since the latter is
compact and > is continuous. The fact that ¢ tends to ¢ uniformly
on I permits us to conclude that [or(€)] > C/2 on the same compact
set, for F' close enough to mg. This shows that £ is open in F.

Let us prove the last lemma now. In fact, we are going to prove a
more powerful property that we shall use later.
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Proposition 2.4. If F tends to mg in F, then op and its derivatives
tend uniformly to ¢ and its derivatives on compacts. Morcover if mg €
&, the convergence of F towards mg in € is equivalent to the convergence
of 2%pF toward ™y in L*(R) for each n.

A version of this proposition has been obtained, by a different
method, by P.G. Lemarié-Rieusset.

First, to prove the uniformn convergence on compacts, it is sufficient
to prove it on an interval [—a,a] on which |mg(€) — 1] < 1/2. We
see this since it gives us the convergence on [—2Na,2Nd] for cach N,
by using ¢r(§) = H]NL__I F(£/27) pr(€/2N). We can also assume that
[|F' —mglleo < 1/4, so that the logarithms in the sequel are well defined
and belong to C'*°.

Let us first prove that ¢ tends to ¢ uniformly on [—a, a]. We prove
this by showing ¢r/@ — 1 or log($F/@) — 0 uniformly on [—a, a]; that
is, using (7), we show

W‘(E) F(e/2)
S(F) Zl & mo(€/20)

as FF — mg when € € [—a, a]. But, by mean value theorem,

F(e/2) ) Il F' my
llog 7”0(5/‘”) T2 ZIZ] mg |’
Hence, we have
- (£/27) F'omy
l;‘% mo(ﬁ/’”)' “ e F T mol’

which tends to zero as |F — my||co and ||F’ — mgl|e tend to zero.

Let us now prove that (,5(1,:') — 3" uniformly on [—a, a], for n > 0.
It is equivalent to show that (d/d€)"(¢r/p) tends uniformly to 0 on
[—a, a] since ¢ is bounded away from zero on [—a, a]. Thus, we consider

oo

J=1

(lo F (")(f]) (logmo)(")(ég—j));

and, it is elementary to deduce that (log F){(™ —(log m)™ is uniformly
small on [—a, a] when ||[F(F) — 771&“[[00 is small for each k > 0, since our
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assumptions immply that the values assumed by F and mg, and their
derivatives, are appropriately restricted.

Let us show that if mg € £ then the convergence of ¢ to ¢ is in
L*(R) (remember that [|5r|*> = [|3]* = 27). Let K be a compact
such that [, |¢|*/27 > (1 — €)%, Then, if F is close enough to mq, so
that [, |[or—3)* < 2m<?, then [ [¢F|* > 27(1-2¢)%, and [, |4r|* <
2m(2¢)?. Finally, [|pr — @|* < 2m(4€)?.

Let us now prove the convergence in L% of the derivatives. We
claim that if my € F, then c,B(;) — ¢ weakly (in L%(R)) for any n.
Observe that it follows from the proof of Theorem 1.3.ii) that ”(,5(;)”2
is bounded uniformly when F' lies in a neighborhood of my. Hence,
there exists a subsequence that converges weakly. Clearly the only
possible limit is "), Since any sequence of F’s converging to mg has a

subsequence such that L,B(Ftl) converge weakly to $(™) our claim follows.

As @(IE"’) — 502" weakly and $p —  in L?(R), we have

~(2 = - =
/so%")cp —*/so(zn’so-

/zzn lor(z)|? dz — /:::2" lo(2)|? dz

/ P - / G2

Then let J be a compact set such that

[167P > @ - ey eI
J

Thus,

and

If F is close enough to mg so that
RO .
/J A

(since 35(;) converges uniformly to $(® on the compact set .J) and

NS = 13112 < eXlle ™2,

then

[10rza-2epieiE, [ PR <@er g,
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and
~(n) A (1 n
/ 65 — 3 < (5e)? 5P

Conversely, we now show that mg € £ and 2™0p — 2% in L*(R
) @ 1 s
for each n, implies F' — mg in C*°. We have

9) ﬁvo(k):—‘%/cp(g)@(x-i-k)d:c.

Since g p tends to ¢ uniformly on compacts, we can assume that o
also satisfies condition b’). Thus, by Theorem 1.2, equality (9) is also
true for F', and we have

L

|k|" (o (k) — F(k)) = /( ( 5oz + k) — pr (2 )99F(1?+k))
I foe 0 (¢3) - vr(D)) o

©
—_'— / ) (B(z + k) = ¢r(z + k) dz.

Let us majorize

“i‘n /saF(

For any € R,

) (P(z + k) — @r(z + k) dz

(VI

[k|™ <27 (Jz|™ + |k + z|™).

But
2n Z
/[a:|‘ {@p(;)lzdn: <C< o
and
/ lo(x + k) —pr(z + Ar)]2 dz — 0.
Thus,
/l»’fl"sﬂ‘ (2)((z + k) — gr(z + k) dz — 0.

Morcover,

/m ) dz < C < oo
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and
JIRRE
Thus,

[+l or (3) 6tz + ) = prle + k) dz — 0.
We majorize
E;l— /95(17 +k) (W(%) - Q(%)) dz
in the same way and we obtain
I[1E|" 1920 (k) = [E]" F(k)||oo — 0.

In particular, if n > 2, we obtain

[k %m0 (k) — [k 2 E(k) | < k|72 0(1).
Therefore,

Im§" = = FU oo < (2 1K77) o(1).

k€L

EXAMPLE. let Fy be the ~=t of polynomials with real coefficients of
degree N that belong to F; that is, m € Fy if and only if m({) =
ag + a1 + -+ + aneMé, the a;’s are real and m satisfles a). Let
En =ENFn.

Let us examine the example given in the end of the introduction
in these terms. For N = 3, F consists of those m satisfying

ne) = 1

P)
with b =1 —a — ¢, and a®> + ¢? = a + ¢. &; corresponds to the circle
{(a,¢): a®*+cF =a+c}\{(1,1)}.
If (1,1) were a point of this circle, the corresponding filter would be
m(€) = (1 + ¢*¢)/2 and the corresponding scaling function would be
e = (1/3) X[_a0)" but the latter has L?-norm 1/4/3 (# 1), thus, as
observed before, we would not obtain an MRA.

(a+be't 4+ ce?),

3. The deformation of wavelets associated with the class £.

Let us introduce a dense subset in F that will be useful to us:
let Fexp (respectively Eexpp) be the set for which (k) has exponential
decay. Then we have the following:
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Proposition 3.1. Fexp 3 dense in F.

To prove the proposition, we take mgy in F and sclect a sequence
of trigonometric polynomials P, which tends to mg in C*°(T).

We can assume that, for all integer n, P,(0) = 1 and P,(7) = 0.
Indeed, let mo(€) = ((1 + €%¢)/2) " Img(€). Since mg(n) = 0, 7o is well
defined and C*. Build a sequence of trigonometric polynomials P,
which tends to 77y. The sequence Po(€) = (1+€%)(Po(€)+1—P,(0))/2
tends to mg and satisfies the required properties.

Now |Pr(€)i2 + |Pu(€ + )% tends to 1 in C®(T). So (|Pa(€)| +
|P.(€ 4+ 7)]2)~1/2 is well defined for n big enough, and tends to 1 in
C™>(T). Finally we take

Pa(§)
[P (6)2 + |Pa(€ +m)[2)1/2

which belongs to F, and tends to my.

The only thing to prove is that F}, € F..,. By the argument that
establishes Theorem 1.3, part ii), it suffices to show that (|P.(¢)|® +
| P.(€47)|?)~Y/? extends to < holomorphic function on an annulus. But
| Pn(é)]? + | Pn(€ + )% is a trigonometric polynomial. There exists an
integer m such that e'™&(|P,(€)|? + |Pa(& + 7)|?) is a polynomial in e
which extends to a holomorphic function on C. We can then extend
| Pn(€)|? + |Pn(€ + m)|? to a holomorphic function f, on C\ {0}. And,
since there exists a neighborhood of the unit circle on which Re fa(z) >
1/2 for n big enough, fn '/% is also holomorphic on that neighborhood.

Finally, let us prove the following:
Theorem 3.2. F and £ are connected.

We shall prove that any mg in F can be joined to (1 +€'€)/2 by a
continuous path, and that this path can be chosen within £ if mg is in
E.

Let us first remark that, if we go back to the example discussed
in Section 2, we can clearly see that there exists such a continuous
path between ¢*¢(1 + €%€)/2 and (1 + €%¢)/2 (just follow the circle in-
dicated). Then, for any integer k, there exists a continuous path be-
tween e!(F+1€(1 4 ¢¥€)/2 and e'*é(1 + €%)/2, and consequently, be-
tween e*¢(1 + €%€)/2 and (1 + €'¢)/2. Thus, it suffices to join mq to
et*€(1 4 €'€)/2 for an appropriate integer k.
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We begin by constructing a path made up of trigonometric poly-
nomials (not necessarily in F).

Lemma 3.3. Let F' be a trigonometric polynomial of degree less than or
equal to N such that F(0) = 1 and F(7w) = 0. There ezists a continuous
map t — Fy from [0,1] to the space of trigonomeiric polynomials of
degree < N such that

1) Fl(O) = 1, Ft(w) :0, ZfO S t S 1,
2) Fi() = F(&),

) IR = (-0 (E5) (D) v emor.

Moreover, Fy(€) = %€ (1 + €%)/2 for an integer k.

We postpone the proof of this lemma and, using it, pass to the proof
of Theorem 3.2. In the general case, since F is a manifold, one can join
mg to a neighboring m belonging to the dense subset Fex, C F; thus,
we can assume that m € F., . If we examine the proof of Proposition
3.1, in fact, we observe that we can assume

(6
(F(OF + |F(E +m)|2)r/2

m(€) =

where F'is a trigonometric polynomial which satisfies F'(0) = 1, F(7) =
0 and |1 —|F(&)|?—|F(£+7)|?| < 1/2. We can then apply Lemma 3.3 to
F. We obtain a continuous function t ~— Fy with Fy(£) = e*¢(1+€'¢)/2
and Fj (&) = mo(€).
So let
Gi(€) = |F(&)* + |FE +m)*

We also have G¢(£) = 1—t+1 G(£), where G(£) = [F(E)? +|F(E+m)|?.
The path will join e**¢(1 + €%€)/2 to mg, via

t e F(6)(Ge(€)71? = @(6).

It remains for us to show that ¢t — &, is continuous from [0, 1] to C*°(T),
and that, for all ¢, &, belongs to F, or to £ if mg € £.

It is clear that @, is well defined and satisfies a) (by the arguments
in the proof of Proposition 3.1, we see that ®; is the restriction to the

.. . . . -1/2
unit circle of a holomorphic function on an annulus). Since t — G, /
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is continuous from [0,1] to the space of holomorphic functions on the
annulus (in the L° norm), it is continuous from [0, 1] to C*°(T). So
t — @, is continuous from [0, 1] to C*°(T) (and even maps into the class
of functions which extend to a holomorphic function on an annulus).

Finally, ®; belongs to &xp for all 0 < ¢t < 1 as ®; has no other
zero on the unit disc than the one at —1. So the path is in £, except,
perhaps, for its endpoint ®; which is my .

We have also proved

Proposition 3.4. Let i a wavelet that arises from an MRA with o
scaling function that has polynomaial decay. Then there ezists a con-
tinuous family of such wavelets, t — 1, t € [0,1], such that 1y = h,
Wy = 1, where h is the Haar wavelet.

Proposition 3.5. (P.G. Lemarié-Ricusset and G. Malgouyres [6]). Let
¥ a compactly supported wavelet that arises from an MRA. Then there
ezists a continuous family of such wavelets, t — by, t € [0,1], such that
Yo = N, ¥y =, where h i; the Haar wavelet.

Observe that if the scaling function has polynomial decay, so does
the wavelet ®. “Continuous” means that ¢ — %; is continuous from
[0,1] to L*((1 + |z])™ dz) for any n.

Finally, let us prove Lemma 3.3. In fact, we are going to show
a version of the lemma, where trigonometric polynomials have been
replaced by polynomials in z. It will be clear that Lemma 3.3 follows
from Lemma 3.6 using F;(£) = e é(1+¢)P,(e'¢)/2 for an appropriate
positive integer /.

Lemma 3.6. Let P be a polynomial in z € C of degree less than or
equal to N, such that P(2) = 1. There ezists a continuous map t — Py,
from [0,1] to the space of polynomials of degree < N such that

1) P(2)=1,#0<t<1,
2) Pi(z)=P(z),
3) [Pi2) =(1—t)+t|P(z)P, if || =1.

Moreover, there ezists an integer k such that Po(z) = 2F.
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_ We can assuine that P(0) # 0, otherwise P(z) = 21 P(z) with
P(0) # 0, and we can take P,(z) = 27 Py(z). Let

Q=) =" P(:) P(3),

and

Qiz)=1-1t)zN +tQ(z).
The map t — @, is obviously continuous, @,(2) = 1, @; = @ and
Qu(z) = zV. We shall introduce polynomials P, such that Q.(z) =
N P/(z) P,(1/z). These polynomials are constructed with the aid of
the zeros of the polynomials Q((z) by an argument very similar to that
used to establish the Lemma of Fejér-Riesz (see (3, p. 117]).

Lemma 3.7. Let 21, z22,...,2n be the zeros of P (possibly repeated with
their multiplicity) chosen so that zy,...,zx are the only zeros inside
the unit disc. Let zj = 1/zj_n for j = N +1,...,2N. Then there
ezist 2N continuous functions on (0,1] such that z1(t), z2(t), . .., zan(t)
are the 2N zeros of Q,, zj(t) = 1/z;_n(t) for j = N +1,...,2N,
and z1(t),. .., zk(t) are insiac *he unit disc while zg41(t),...,zn(t) are
outside the unit disc.

Let us remark that, since Q;(2) = 1 we must have z;(¢) # 1.
Assuming that Lemma 3.7 is proved, we can then define

Py =T[2250  oci<t
t(z)—]‘_‘[l—zi(t)’ SES S
=1
It is clear that Q.(z) = =N P,,(z)]st(l/z) and t — Py is continuous.
In order to obtain Lemma 3.6, it suffices to prove that P, — z* when
t — 0. But Q; — z" ast — 0; then, for t < 5, N of the z;(¢)’s are inside
a small disc {|z| < €},and the other NV (which are their reciprocals) are
outside the disc {|z| < 1/e}. That is to say, z1(¢),...,zk(t) tend to
0 while |zx41(t)],..., |z~ ()] tend to co. Thus the polynomials P;(z)
(each of degree < N) tend uniformly with the unit circle to z*. This
shows Lemma 3.6.

Hence, we just have to prove Lemma 3.7. Let us start by defining
z;(t) for t close to 1. Let zg be a zero of P with multiplicity ko .

First case: |z9| < 1. We can assume that z; = --- = zp, = zp.
1/Zp may or may not be a zero of P. In the first case, let kj > 1 be its
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multiplicity, and let zx41 = -+ = 2p44, = 1/Z9. We shall define z;(¢)
forje Jo={1,...,ke. N+k+1,...,N+k+kj}. We know that z, is
a zero of () with multiplicity ko + kj. In a neighborhood of zg, Q(z)/2"V
can also be written (z — z9)*t*o F(z), with F(z0) # 0, and Q,(z) has
ko + k{ distinct zeros which are solutions of

(10) 9;(73—) - ”‘l“t_l = (2 — z0) e F(2).

From this, we obtain

e27il(7)/(kotko) o (z — 29) a(z)‘l ,

where a(z)fotke = (—F(z))7, s = ((1 — t)/t)1/*otk) and j — I(j) is
a bijection between Jy and {1,...,ko + kg}. It is then easy to see that
we can define z;(t) so that ¢ — z;(t) is tangent at zo to the half-lines
s = 29 + a e2™H0)/(kotko) s where a = a(z).

When 1/z; is not a zero of P, we obtain the same result with kg
instead of k¢ + kj .

Second case: |zp| > 1. The previous reasoning applies and allows
us to define z;(t) for ¢ close to 1 and j such that |z;| # 1.

Thard case: |z9] = 1. This time, zg is a zero of @ with maltiplicity
Qko, and we can assume that zg = zp4; = -+ = Zktko = ZN+k+1 =
S+ = ZN4k4ko- Once again, the question is to define z;(t) for j € Jy =
{k+1,...,k+ko,N+k+1,...,N+k+ ko} so that |2;(t)] > 1 for
7 < N and |zj(t)] < 1for j > N. Again, the z;’s can be chosen tangent
to the half-lines s - 2o 4+ o €2™1(9)/2kos where a?f = —1/F(2) and !
is a bijection between Jg and {1,...,2ke}.

But the positivity of Q(z)/z" on the unit circle implies that (—1)*°
25'2"° F(zp) is positive; hence, we can take a = z¢ 8, where § > 0, if kg
is odd, and a = zp e!™/?%0 3 where § > 0, if ko is even. In both cases
half of the half-lines are outside the unit circle, the rest are inside. We
choose {(7) so that the half-line lies outside the unit circle if 7 < N,
while, for j > N, the half-line crosses the circle.

We can now finish the proof of Lemma 3.7. By continuity, z;(t) is
well defined as long as it is distinct from z(t) for [ # j. Otherwise let
¢ be such that zj, (t) — =z, zj,(t) = 20, ..., z;(t) = z0 when t — ¢,
€ > 0, while the other zeros stay outside a neighborhood of 2. That is
to say, Q. has at zg a zero with multiplicity |. Moreover zy, # 0 since
Q:(0) = £Q(0) of zg, we have, once again, Q.(z)/zN = (z — z)' F(z),
F(z9) # 0; thus, for t < g, Q«(2) = 0 if and only if (z — 2V F(z) =
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—(e—1t)/t. As before we obtain continuous functions zj, (¢)(2),..., z;(t)
defined for t < e, t close to ¢, and equal to zg at €.

REMARK. In the third case, we could just as well have chosen to
reverse the property of the half-lines. That is to say that, among
z1(t),...,zn(t), we can choose | of them in the unit circle, with k <
[ < k', where k is the number of zeros of P in the open unit circle, and
k' the number of zeros of P in the closed unit circle. This is a way of
interchanging 2* and z'.

REMARK. In this paper, we considered only the case of 0-regular MRA’s
as they have been defined by Y. Meyer in [7]. The question whether
r-regular MRA’s have the same property remains open.
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The spin of the

ground state of an atom

Charles L. Fefferman and Luis A. Seco

In this paper we address a question posed by M. and T. Hoffmann-
Ostenhof, which concerns the total spin of the ground state of an atom
or molecule. Each electro.s is given a value for spin, +1/2. The total
spin is the sumn of the individual spins.

For a neutral atom, say, of nuclear charge Z, if all Z electrons
have the same spin, then the total spin would be £Z/2. There is a
result of Lieb and Mattis [LM] where they show that in one dimension,
ground states have lowest possible total spin. Their result also holds for
a class of 3-dimensional systems which does not include the quantum
atom. A related result [AL] extends this result to positive temperature,
and also shows that for systems with certain parity constraints, spin
alignment is in fact favored at all temperatures. It is expected that,
for the atom. this is not the case, and there is a lot of spin-cancellation
among the different electrons. In rigorous mathematical terms, this can
be expressed in the form

total spin < CZ7, ~<1.

The goal of this paper is to prove such a bound. Unfortunately, we
do not have control over the constant C, which we only know to be
independent of Z.

For a solid, or a molecule with many nuclei, it is expected that the
total spin may get as large as the order of magnitude of the number of
particles (or perhaps nuclei), which would account for ferro-magnetism.

19
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It is also conjectured that for an atom, the order of magnitude of the
spin can be as large as Z /3 For non-interacting radial systems, with
degeneracy of the order of Z!/3, this is certainly possible. In fact,
Hund’s rule, well known in chemistry, states that this degeneracy is
resolved, after turning on the interaction, into making the spin as large
as possible, which agrees with the Z!/3 size of spin if one believes in
atomic shells. The study of spin is also of interest because it determines
qualitative properties of the wave functions (see [HHS]).

Throughout the paper, C will be used to denote any irrelevant large
constant, ¢ any irrelevant small constant, and Cy,Cy,...,c1,c¢2,..., will
denote carefuly chosen large and small constants respectively.

1. Definitions, background and theorem.

Consider the atomic hamiltonian

N

Z ~ 1
Han =3 (o i)+ S

i<j

=

and F(Z, N) its lowest eigenvalue when acting on the Hilbert Space

N
H= AL (R’ xZ,) .

i=1
The atomic ground-state energy is defined as

(Z) = i Z,N).
E(Z) = jnf B(Z,N)

It is a result of {Ru] and [Si] that E(Z, N), which is decreasing in N,
achieves the infimum at a finite V., which physically corresponds to
the largest number of electrons an atom can bind; by the HVZ theorem
(sec [CFHS]), the ground state of the atom, which we denote by ¥, is
then defined as the eigenfunction of H(Z, N.) with eigenvalue E(Z). It
was proved in [Zh], [Lil] and [Li2] that

i’

Throughout this paper we will consider any N between Z and N, (the
interesting cases corresponding, of course, to either N = Z or N = N,)
and ¥ will denote any ground state of Hz y with energy E(Z,N).
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As a consequence of Lieb’s bound for N, the trivial upper bound
for the total spin is Z.
Here, we will use
r=(r,o)

to denote the variable in R? x Z,, with » € R3 the space variable and
o = o(z) = %1/2 the spin variable. The total spin operator is now
given by
N
5= Z(IT(:E,') — O'I'(.’IJ,‘),

=1

where

ol(z) = { 10/2’ if o(z) = +1/2,

otherwise,

ol(z) = { 1/2, ifo(z)=-1/2,

0 otherwise.

Y

Basic to our strategy is the theory of atomic (spectral) asymptotics,
and some version of atomic electric neutrality, all well known, which we
now briefly review.

Associated to the atomic hamiltonian there is the Thomas-Fermi
energy ([Fe], [Th]), which equals ¢ . Z"/3 for an explicit negative con-

stant ¢ n and satisfies

(1) E(Z)=cqy 27 +0(2777%) | e>00,

which was proved in [LS]. We also have the Thomas-Fermi density p;?F ,
and the Thomas-Fermi potential VTZF , which satisfy the perfect scaling
conditions

VEM =20V (270) . A =25 (2"r),

for universal functions p(r) and V'(r), which satisfy the Thomas-Fermi
equations

pr) = 5 V), AV() =47 plr).
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Note that our definition of the Thomas-Fermi potential is the negative
of the usual one. We refer the reader to [Li] for a great exposition of
Thomas-Fermi theory. We also have the bound [Hi]

¢ S(x) < VZ (2) < CS(a), S(:t):min{% I_ll—}

}VVTZF(:E) < CS(z) 2|t

The expansion (1) can be continued into what is called the Scott asymp-
totics, namely

(3) E(Z)=¢ AL ZZ+0(ZZ-) e>0.

Crr

The Z? term is not semiclassical; its nature comes from the coulomb
singularities and is thercfore a genuine quantum effect. This was first
realized in [Sc], and proved rigorously (in the atomic case only) in [Hu],
[SW1], [SW2] and [SW? Its proof for molecules is in [IS].

A refincment of (3) is also known for atoms, and it has the form

- 1
@) B(Z)=cqp 277+ B+ ey 2P+ 0(2°P%) | e>0,

obtained in [Di] and [Sch], and proved rigorously in [FS1], [FS2], [FS3],
[FS4], [FS5], [FS6], [FST] and [FS8]. The corresponding molecular prob-
lem remains open, but the techniques in [IS] come very close to proving
a similar expression. The expansion in powers of Z almost surely ends
here (see [En], [CFS1] and [CFS2]).

Concerning the electronic neutrality problem, we only need the
following two facts, which can be found in [FS9] and [SSS]; they depend
on a number & > 0 which, after the accurate asymptotics in (4), or even
(3) with ¢ = 1/3, can be taken to be b = 2/3. They are expressed in
terms of the ground state density, which is defined as

pu(r) = py(r) + py(r),
N

ph(r) =41 (O(r, 3205 s2n)|* daa o day,

. 2
/)\11,(;-) = %A: /[ . |\p(,.‘~%;“2;... ;‘TN)I dzy --- dzy.
B X Do
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1. The main result in [FS9] and [SSS] is
(5.2) Vo= [ puirydr=240(227).
B3

2. The following is the content of estimate (A) or Lemma 2.1 in
[FS9], or Lemma 6 in [SSS]:

(5.b) < zZUB=0219x], ,

/ms pw(r)x(r)dr — /1;3 pZ(r) x(r)dr

where y is a positive function equal to 1 in a ball of radius at least
C Z72/3, 0 outside of its double, and bounded by 1

A common feature in both the asymptotic analysis and the neu-
trality problem is Lieb’s inequality which also plays a crucial role in our
analysis, and is by now part of the mathematical physics folkore ([Li];
see also [SW2], and for improvements [FS7], [Ba] and [GS]). We will
use 1t in the following precise form,

Theorem (Lieb). Assume ¢'(z1,...,2n), (Z < N <27) 18 such that
V|3 <C 27/,

Then, we have that

T
(Hz nh,b) > (H?(:i’v Y, 1h) — —// pTFl( )pTr ) zdy —C' 253,
T—Yy

where
[\7

Hy% = Z (_A”"' - VTZF(I")) '

=1

The proof of this result can be found in Lemma 2 in [SW2], which is
stated in a special case, but its proof shows exactly this. The role of this
inequality is that it reduces the analysis of systems with interaction to
a system without it. Technically, the problem reduces to an asymptotic
estimate for the sum of the negative eigenvalues of a fixed Schrédinger
operator in R? (see below). For convenience, given an operator H, we
denote the sum of its negatives eigenvalues bv sneg H. We denote by
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H$ the corresponding operator with Neumann boundary conditions on
Q.

The asymptotic estimates we need began with the work of Lieb and
Simon. Those estimates, more refined ones even, are now also part of
the folkore. We reproduce here a variant which suffices for our theorem.
This is essentially contained in [LS] and explicitly proven in [FS7]; we
include a version of the proof here for the convenience of the reader,
and to make this paper as self-contained as possible.

Lemma 1. If Q is a cube of side L, and I i3 a number larger than
100 L~2, we have that

sneg (—A — Ig’)‘% > ~-1—_5—i7r_2 K5/213 _CK?L? )

for a universal constant C. If K < M L™? we have trivially

sneg (—A — K)3 > -M'L72.

Proor. If K L? > 100,

2 2 2 2
sneg (=4 — I\’)]?l = Z (71' (Tll "*‘—L":Z + n3) _ ]‘»>
1r2(nf+n§+n§)sl\'L2
1'1,'20
1 x|? .
=2 / (!"—; —K) dx + O(K* L?) .

|2|<VRL/m

Lemma 2. Let W be any potential satisfying

W)~ Sy, VW) < CS@) el
(6)
S(x) = min {l—% , Il’l_4} )
Then,

1 , —
sneg (—=A =) 2 —z— / W(z)*/? dz — C 2%%/°,

where C only depends en the constants in (6).
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PRrOOF. We break up R? into cubes Qo, @, and Q', with the properties:
1. Qo is centered at the origin and has diameter dy = C; Z71.

2. The Q, are centered at z,, with C; Z71/10 < |z,| < ¢, and
have diameters d, which satisfy

(7) d, ~ STV (z,) |z, /2.

3. The Q, are centered at z,/, with |z,/| > ¢/, and have diameter
d,» which satisfy

- 1
(S) 10 S I.’l‘,,ll S d,,l S 1—(% |:'L‘,,l| .

Let us check that R? can be broken into such cubes. We begin with
a simple geometric observation: if Q(r) denotes the cube of diameter
r centered at 0, then Q(3r) — Q(r) may be decomposed into cubes
of diameter r. It follows that Q(3r) — Q(r) may be decomposed into
subcubes of diameter between s/3 and s, for any given s < r.

Now let rp = C; Z71 3% for k > 0, and break up R? into Q(ro) =
Qo, and Q(7r4+1) — Q(ri) for k > 0. For k > 0 such that r, < ¢ we
break up Q(rr+1) — Q(rx) into cubes Q, of diameter

—1/4
d o . Z —4 ! 1/2
~ 8 = | min ;,rk e

which is possible since s < 7.

For k > 0 such that rp > ¢, we break up Q(ri4+1)—Q(rk) into cubes
Q.+ of diameter between r1/3 - 10 and 10~* r. One checks easily that
the resulting decomposition into cubes satisfies 1, 2 and 3 above.

Note that, by (8), the number of @, with centers in a spherical
shell of radii R and 2R, is not more than a fixed large constant and
therefore,

(9) number {Q, : Ry < |x,| < Ry} < C log(R2/R1),
when R; > R;. In preparation to use Lemma 1, we denote

w,, = 1) LV N
wy = max (2),
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and we note that, when z € Q,,
W3/2(z) —w,%?| < Cw,%?* |W(z) = W(z,)]
< Cw,*?d, max VIV (z)]
wis 0y OS@ ST @) e Sz 27
sing (7

< C8Y4(z,) |z, |72,

This implies that

< C8H(,) lau |72 &3

w,%? d8 -/ W5/2(z)dz

(10)
<C S¥4(z)|z|" V% dx .
= /, ( )‘ I

For Qg, we have that

Qo
sneg (=4 — W(a))§* 2 sneg (‘A - gﬁz)
N
Qo
=Z? sneg <—A — |_f—|) ,
N

where Qg is the cube Qq dilated by Z, which is therefore of diameter
C; and makes the sneg term above independent of Z.
After this, we turn to sneg’s by writing

sneg (—A—W(x)) > sneg (~A—W(2))F* + ) sneg (~A—W(z))F’
+ ) sneg (—A—W(m))?\:"'
(11) > —C:Zz+aneg(—A—wu)f\%”
+ 3 sneg <V—A~W(:c>>f%"'
>-cz+ Y (wilPdl - Culd)

+ 3 sneg (~A-W ()" .
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For the @,/, we use the trivial part of Lemma 1 to obtain

aneg (-A - I'V(m))]?,”' >-C Zdw‘z

(12) D D S

n=~1 2n<|z,/|<2n H2

>-C.

For the @,, we have
w?d* <8z, |2, |7 Q.| < c/ S (z)|z|"V? de .
QI’
Putting this, with (10) and (12) into (11), we obtain

sneg (—-A —W(z)) > —

W/2(z)dz
1571'2 [JI/QV ( )

- c/ S¥4(z) |z|7 % dz — C
R3

S 1
- 1572

/ W/2(z)dz — C Z2"3/°,
R3

as we claimed.
We are now ready to state and prove our main result:

Theorem 3. If ¥ is the ground state for Hz n for Z < N < N, then
we have

(ST, W) <CZ7, ~y<1.
PRrROOF. Let 6 > 0 be a small number to be chosen later, and consider

a positive function y, bounded by 1 and as smooth as possible, such

that
1, if |r| < 27348,
XV= 00 i ) > 22717346

For a real number p in the range

(13) | < 1 27,
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consider the hamiltonian given by
H,=Hzn+2p2'°S,,

where
N

Sy =>_x(ri) (o7 (z:) = ol(z1))

=1
and denote by E,(Z) the corresponding ground state energy. Note that
S= SX + SI‘X .
We will study S, first using H,; later, S,_, will be casily dominated
using (5.).
We define the Thomas-Fermi approximation to F,,

7/3
£2) = 15 [ (Vo) +uxz*m)Y?

+ (V(r) = px(20 )3 ) dr

__// pTF|(1)—prg§(F(y) e dy.

which plays the following role:

Proposition 4. There i3 a constant C such that
1
E (2)>E.(2)-CZ™3=, ¢ = 5
uniformly for all |u| < ¢; Z74°.

REMARK. Although the corresponding upper bound is most probably
also true, we will have no need for it here, and we ignore the issue.

PRrROOF. Note first that our assumption (13) on p implies that

(14) |ul 2472 x(2) <

l\'llH

(.1:) for all .

Indeed, this is clear for |x| < Z~!/3, and is also obvious for |z| >
2 Z~1/3+8 For the other x, we have that |u| Z*/3 y(z) < ¢; Z4/374¢,
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whereas i{’xu) > elz|™ > ¢ 243~ and (14) then follows by taking
c; small cnough. Estimate (14) in turn implies that

VEZ(z)<VE

V2 (2).

RV
ol w

(15)

In preparation to use Lieb’s inequality, we compute the kinetic energy
of a ground state ¥, for E,, (or elements of a sequence with energy
converging to E,) with a virial argument as follows: define

I\:E("/J) = ”vd)”g ’ PE("/)) = <VCoulomb¢a¢) s
with

] Nz 1
Veoulomb (21, ... ZN) = — Z ,——i + Z "—-T—- ,
ol L o I 75|

and denote the approximate ground-state sequence by ¥, . We denote
their densities by p, -
For A > 0, denote

VA (21, nen) = A2 0, (A a,. ., Aaw),

and note that

f(’\) = (Hu\ll;},kv \Ilz,A')
= A2KE(T,4) + APE(¥,4)

+u Z4/3/,\/(z\"l;z:) (P}l,k(:‘;) - ptk('z:)) dz ,
1s a smooth function which satisfies
lim f(A)=0,  lim f(})=oo.

Also, using ¥ as trial function for H, and taking k large enough, we
sce that
FA)S S E(Z)+¢ 27378,

(SR

By (1), the right hand side is negative for all Z larger than a certain
constant depending on ¢;. Therefore f attains its minimum at some
0 < A < oo and, maybe by changing our sequence ¥, . to another whose
energy converges faster to the ground state energy, we can rescale the



30 Cu. L. FEFFERMAN AND L. A. SEcO

U,k so that the minimum of f is attained at A = 1 and thus f'(1) = 0.
This means that

2KE (0) + PE(Wp) < 206l 27 [ V(2] fal pu, 4 (2) do
<cz'3.
Using ¥, as trial function for Hz n, we see that
KE (¥, 1)+ PE(¥, ) > -CZ"/3.
Altogether, we conclude that
KE(¥,,)<CZ/3.
In view of Lieb’s inequality, it is then quite obvious that
E, > sneg (-—A - ‘./Z + uZ43 x) + sneg (—A - VTZF A x)

__//pTF )PTF(y) e

|z -yl

Set
V() = VE (2) - 4 2 x(a),

and recall (2) and (15) which, with the equally trivial bound
pZiB3 Ux(2)| < C |78,
show that W satisfies (6). Lemma 2 then proves our result.

Now, we consider the following lemma:

Lemma 5. &,, as a function of u, s concave, and there is a constant
C such that

Cv—l Z7/3 < |£IL(Z)| < Cz7/3 , < CZ7/3+6,

9%*E,(2)
ou?

uniformly for all || < ¢) Z7%°.
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PROOF. After checking that (15) settles the first bounds in the state-
ment of the lemma, a calculation gives

2 4
2Bl <czn | ((V(z)+ux<z-*’:c>>”2
Iz B2

+ (V(z) —px(Z‘éx))l/2> x?(Z7%z) dz

<Ccz'? / V() dz
|s1<2 28
<Ccz? / |z|~% dz
|z|<2 28
S Cz7/3+5 .
After this, we simply observe that £(Z) = cpp Z7/3 (again, see

[Li]), and note that £,(Z) is an even function of y to conclude that, for
p in our range, we must have

%€,
op?
2 Crp Z'3 —C Pz

2

<

2
E(Z) 2 cqpp Z? - E sup
u

which implies
(16) Eu2) 2 cpp Z71F—Cp2z73¥ — ¢ Z73e

On the other hand, if we denote by ¥ any ground state of the atom,
we use it as a trial function to conclude that

E Z2)< E(Z)+2uZ%%(S,¥,0).

If we now use as trial function the same ¥, but with spins reversed, we
obtain

E 2)< E(Z)-2p2'3(S,0,0).
Altogether, we obtain
Bu(2) < E(Z) = 21u| 2*/° (S, ¥, )] .

Since
E(Z)=cy 2" +0(2%),
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we conclude that
E(Z)<cpp 2" = 2\u| 2% (S, T, 0)| + O(2?) .

Putting this together with (16), we obtain

S, 9, ¥
WS cezspp oz, gz,
If we choose now
%:”l =0 VA )
we obtain
(17) |(S\\I/,\Il>| < 6-2—36 +CZ—51+46.
7 S

Finally, we have
(18) (S T <N = [ pur)x(r)dr.

Since

IZ—/-/)%F(T)X(T)(IT <CzZ'%,

we use (5.b) with b = 2/3 to conclude that

’N — /pq;(r)x(r)dr <|Z - N¢j+ C z173 4 ¢ zW/3+8)/2

<CZ 4 Cz\3 4 o zUR2
By (18), we conclude that
[(S1-, T, )| < C 27 + C 2" 738 4 ¢ ZB/3+/2

With ¢; = 1/6, we choose 6 = 1/42 here and in (17) to conclude
Theorem 3 with v = 13/14.

Our proof of theorem 3 with v = 13/14 was kept simple because
we used a form of spectral asymptotics in Lemma 2 which is not very
involved. If we used the sharper version given by Theorem 6 below, and
the sharper atomic energy asymptotics in (4), then we would obtain,
with the same arguments, a bound with v = 5/7. But we would also
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drive the careful reader into the pain and suffering involved in reading
the contents of [F'S 2-8], which contains the proof of Theorem 6 below
and (4). It is interesting to point out that the bound such analysis would
vield, v = 5/7, is the same as the bound we know for electric neutrality.
And this is not because spin neutrality used electric neutrality: if we
imposed elcctric neutrality to our atoms, by studying Hz z instead, we
would obtain the same exponent.

We end by stating the theorem, proved in [FS5], which we men-
tioned above. Our potential W is easily checked to satisfy hypothesis

(1), (2) and (3) below.

Theorem 6. Suppose W(r) 1s defined on (0,00) and satisfies the

following conditions:

d [s4

— Wi(r
(1) () we

forallT € (0,00), a >0,

(2) (5) (w0 -vam)| <esmr.

"
forallr € (0,00), a =0,1,2, with cg > 0 determined by the Co in (1),

o @) (a-Zem)zerrn

for all 7 € (0,2Z273/5%2¢) o > 0, with cZ*/* < Ey < CZ*/3 ond
0<e<10712.
Set Q equal to the positive root of (L + 1) = max, 5o r2 W(r),

o (14 1)\ 2
m = l/ (I’V(T) - ( t )) dr
T Jo T +

<CoS(r)r™7,

<Il<L .
1 [ I(1+1)\'/? (t=t=®
o = ——/ (T’V(r) - 5 ) dr
T Jo r +
Then,
7 1 175/3 z?
sneg (—A + W(lz|)) = “T547 | W () dx + 5
! 120121 AW/ |2
- 57 L, WMl AW ) ds

2l +
+ ) 7:, %4 (¢1) + Exror,

Z8/25+10e £l
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with |Error| < C' Z8/5+2:107° 4n4 u(t) denotes the fractional part of t.
The constant C' depends only on Cq, co, C and € in (1), (2) and (3).
Furthermore, the last sum is easily seen to be bounded by C Z3/3.
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Correspondances géodésiques

entre les surfaces euclidiennes
a singularités coniques

Mohammed Mostefa Mesmoudi

Abstract. A.J. Mont~sinos has shown that a geodesic correspondence
between two complete Riemannian manifolds with transitive topological
geodesic flow is a homothety. In this paper we prove a similar result for
a conformal geodesic correspondence between two singular flat surfaces
with conical singularities and negative concentrated curvature.

Résumé. A. J. Montesinos a montré qu’une correspondance géodési-
que entre deux variétés riemanniennes complétes a flot géodésique topo-
logiquement transitif est une homothétie. Dans le méme esprit, nous
montrons dans cet article qu'une correspondance géodésique conforme
entre deux surfaces euclidiennes a singularités coniques avec des cour-
bures concentrées négatives est une homothétie.

Introduction.

Une correspondance géodésique entre deux surfaces M et M', mu-
nies de deux métriques riemanniennes a singularités possible g et ¢’
respectivement, est un difféomorphisme f : M — M' qui envoie les
géodésiques (non paramétrées) de (A, g) sur celles de (AM',g"'). Dans
[Mon], Montesinos démontre le théoréme suivant: Si (M,g) est une
variété riemannienne de dimension n > 1, complete, a flot géodésique

7
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topologiquement transitif alors toute correspondance géodésique f :
(M,g) — (M',g¢"), ou (M’ g") est une variété riemannienne de di-
mension n > 1, est une homothétie (c’est-a-dire il existe une constante
c telle que ¢'(dfv,dfw) = cg(v,w) pour tous v et w du fibré tangent
TM).

Dans [Bon], F. Bonahon conjecture que tout homéomorphisme en-
tre deux surfaces, munies de deux métriques riemanniennes a courbure
strictement négative, qui envoie les géodésiques de la premiére surface
sur les géodésiques de la deuxieme surface est une homothétie. Dans
le méme contexte, on démontre dans cet article que toute correspon-
dance géodésique conforme entre deux structures plates singuliéres est
une homothétie.

Définition. Soit M une surface sans bord. Une métrique plate sin-
guliére 1 sur M est une métriqgue riemannienne sur M \ Singp , ou
Sing p est un sous-ensemble discret de points de M, vérifiant les deus
conditions suivantes:

1. En dehors des points de Sing u, la métrigue u est localement
wsoméirique d la métr‘que euclidienne sur le plan.

2. Pour chaque point p de Singp , il eziste un voisinage V, de p
et deuz nombres réels 8, # 21 et € > 0 tels que V, soit 1soméirique au
céne d’angle conique 8, défini par:

{(r,t): 0<r<e,t eR/(6,Z)}/(0,0)~(0,17)

muni de la métrique ds® = dr? + r?dt?. Le point p est appelé une
singularité de pu et le nombre 6, Uangle conique de la singularité p.

On étend cette définition d'une facon naturelle & une surface a
bord. Un voisinage d'un point régulier sur le bord est isométrique a un
voisinage d'un point sur le bord d’un demi-plan euclidien. Les singu-
larités sur le bord sont des points anguleux dont ’angle correspondant
est différent de 7. Lorsque A est compacte, 'ensemble Sing u est fini.

Un segment géodésique dont l'intérieur ne contient pas de singu-
larités est un segment euclidien. Un segment géodésique g dont I'une
des extrémités est une singularité d’angle conique supérieur a 27 peut se
prolonger au voisinage de cette singularité en une infinité de segments
géodésiques tel que chacun des deux angles bordés par g et chacun de
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ces prolongés est supérieur a , [fig.1].

Figure 1

Proposition 1. Sur une surface M simplement conneze munie d’une
méirique plate singuliére dont l'angle conique de chaque singularité est
supéricur 4 2w, chaque courbe qui est localement géodésique est une
géodésique globale.

DEMONSTRATION. Rappelons d’abord que la caractéristique d’Euler
d’une surface compacts munie d'une métrique plate singuliére vérifie la
formule de Gauss-Bonneu (voir par exemple [Tro]) suivante

27 x(M) = }: (2r — 6,) + Z (m—86,),

s€Sing pNint M s€Sing uNIM

ou 6, désigne I'angle conique d'une singularité s appartenant a l'inté-
rieur de M dans la premiére somme et sur le bord de M dans la seconde.
Soit g une courbe localement géodésique sur M. Supposons qu’il existe
deux points a et b de ¢ tels que le chemin le plus court ab qui les joint
n’est pas inclus dans g. désignons par S le segment de g d’extrémités a
et b. Le segment S borde avec ab au moins un disque polygonal. Soit
D un tel disque. Ce disque a au plus deux sommets s; et sy d’angles
(a I'intérieur de D) inférieurs strictement a 7. La formule de Gauss-
Bonnet appliquée & D donne

o1 = Yo @er-6,) + > (m—06,)+ (21 —6,, —6,,)

$€Sing p Nint D s€Sing u—{s1,32}N8D

ce qui implique

O, + 65, = Z (2r —8,) + Z (r —8,) <0.

s€Sing pNint D s€Sing p—{s1,32} N3D
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Ceci est évidemment impossible. Par conséquent, ab colncide avec S.
Le corollaire suivant est immédiat.

Corollaire 1. Sur une surface munie d’une métrigue plate singuliére
dont Uangle conique de chaque singularité est supérieur @ 27, tout seg-
ment géodésique est unique dans sa classe d’homotopie relative.

Par la suite, on suppose que M et M’ sont deux surfaces compactes
sans bord de méme genre g > 1 et que p; et p; sont deux métriques
plates définies respectivement sur M et M', singuliéres si g > 1 et telles
que tous les angles coniques des singularités sont supérieurs a 27 . Pour
chaque singularité s d’angle conique 6,, le nombre 27 — 6, est appelé
courbure concentrée de p; (ou py) en s. Ainsi on suppose que toutes
les courbures concentrées sont négatives.

Proposition 2. L’inverse d’une correspondance géodésique est une
correspondance géodésique. De plus, si f : (M, py) — (M, p2) est une
correspondance géoiisique, Iimage de tout point singulier de (M, p;)
est un point singulier aans (M', ps).

DEMONSTRATION: Soit a un arc géodésique dans (M', p2). Si f~!(a)
n’est pas géodésique, l'image par f d’un segment géodésique a’ ho-
motope & f~(a) & extrémités fixes est un segment géodésique dans
(M', p2) homotope au segment a a extrémités fixes. Ceci est en contra-
diction avec le Corollaire 1.

Un segment géodésique a dont I'une des extrémités est une singu-
larité s peut se prolonger en une infinité des segements géodésiques |[fig.
1]. Les images de ces segments par f sont des segments géodésiques
qui prolongent f(a)en f(s). Le point f(s) est alors une singularité. La
proposition est démontrée.

Proposition 3. §i s est une singularité de p; ayant un angle conique
85, alors f(s) est une singularité de py ayant le méme angle conique 8, .

Pour démontrer cette proposition on a besoin de deux lemmes.

Lemme 1. L’image par f d’un secteur basé en s d’angle ™ est un secteur
basé en f(s) d’angle 7.



CORRESPONDANCES GEODESIQUES ENTRE LES SURFACES EUCLIDIENNES 41

DEMONSTRATION. Soit a un segment géodésique sur (M, p;) dont s
est I'une des extrémités. Le segment a se prolonge au point s en
une infinité de géodésiques (un faisceau de géodésiques) bornées par
deux géodésiques a; et ap qui font avec a un angle 7 [fig.1 ou 2]. Ces
géodésiques s’envoient par f en des géodésiques de (M’ py) ayant toutes
le segment f(a) en commun. Par conséquent, les angles que fait f(a)
avec f(a;) et f(ay) sont tous supérieurs a w. S’il existe une géodésique
g dans (M', py) prolongeant f(a) au point f(s) et n’appartenant pas
a l'image du faisceau de géodésiques borné par a; et ap alors, d’apres
la proposition précédente, f~!(g) est une géodésique sur (M, p1) pro-
longeant a et n’appartenant pas au faisceau borné par ¢; et a;. Ceci
est évidemiment impossible. Par conséquent, les angles au point f(s)
entre f(a) et f(a) et entre f(a) et f(az) sont égaux a n. L'image d'un
secteur d’angle 7 est alors un secteur d’angle .

Figure 2

Lemme 2. Si l’angle conique 6, de s est compris entre km et (k4 1),
pour un certain entier naturel k, alors l'angle conique O,y de f(s) est
aussi compris entre kw et (k4 1)w.

DEMONSTRATION: Supposons que 8, = kn+a avec 0 < a < m. Tracons
un secteur basé en s d’angle o délimité par deux segments géodésiques
notés ag et ar. Subdivisons le secteur restant en k secteurs chacun
d’angle m. Chaque secteur est délimité par deux segments géodésiques
notés a; et a;y1, l'indice 7 varie entre 0 et k [fig. 3]. Supposons que
B(s) est strictement inférieur & kx. Supposons enfin que (m — 1) <
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0f(s) < mm avec m < k. Le lemme précédent entraine que 'image des
(m — 1) premiers secteurs basés en s et délimités par les segments ag
et a,,—) est un secteur basés en f(s) d’angle (m — 1)7 et délimité par
flao) et f(am—1). Les secteurs restants basés en s s’envoient tous sur
un secteur basé en f(s) d’angle inférieur a 7 qui ne peut pas contenir de
géodésicues passant par f(s), voir les parties hachurées de la Figure 3.
Ceci est évidemment impossible et par conséquent 67,y > kr. Puisque
I'image inverse de I’application f est une correspondance géodésique, le
méme raisonnement entraine que si f54) est supérieur a (k + 1)7 alors
O5-1(f(s)) = b5 est aussi supérieur a (k+ 1)7. Ce qui n’est pas possible.
D’ou 'on déduit le lemme.

flay)
]
a /9
A~ gf(am_,)
Ifis)
fizw)

O<a<m 0<p<m

Figure 3

DEMONSTRATION DE LA PROPOSITION. Si I'angle conique 6, est un
multiple de 7, le Lemme 2 implique que 8,y = 6, . Supposons main-
tenant que 6, n’est pas un multiple de 7 et que l'on a Oy > 6, et
(k—1)m < 8, < km pour un certain entier naturel k. Cet encadrement
entraine, d’aprés ce qui précede, que l'on a (k — 1)m < Oy, < kn.
Notons pour simplifier « = km — 6, et § = kr — 67(,). Puisque I'image
de 8, par f est Op, et f préserve les angles multiples de 7, en chaque
singularité, I'iinage de tout secteur d’angle a est un secteur d’angle 3.
Notons ceci par f(a) = 3. Par conséquent, I'image de deux secteurs
voisins d’angle o chacun sont deux secteurs voisins d’angle 3 chacun,
d’ot f(2a) = 23. Par récurrence, on montre que f(na) = nf pour tout
entier naturel n. L’inégalité 8y > 6, implique que B < «. Puisque
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a — 3 est différent de zéro, la différence na —nf tend vers 'infini quand
n croit. Soit n' le premier entier naturel tel que :

n'a=mr+d et nB=mr+p,

ouméeN, 7<a et 0<B <.

Puisque f(na) = nf et f(nm) = nw quel que soit 'entier naturel n,
on a f(a') = f'. Ceci est impossible car le secteur d’angle o' contient
des géodésiques passant par son sommet s, tandis que le secteur image
d’angle 4’ ne contient pas de géodésiques passant par son sommet f(s)
[fig. 4]. Par conséquent, on obtient #,) < 6.

Puisque f~! est une correspondance géodésique, la méme méthode
appliquée & f~! donne 'inégalité 5(5) > 67-1(s(5))=s- D’ol1 I'on déduit
la proposition.

Corollaire 2. Soient s un point singulier de la métrique p; et 8, l'angle
conique en s. Supposons que 8, est rationnellement indépendant de .
L’image par f de tout secteur d’ouverture o' basé en s est un secteur
d’ouverture o' basé en j’s). Autrement dit, f respecte les angles en s.

DEMONSTRATION. Supposons que #, = km + a pour un certain entier
naturel £ et 0 < a < w. Un simple calcul montre que I'angle a est
rationnellement indépendant avec 6,. Un résultat de topelogie implique
que les multiples relatifs de o modulo 6, forment un ensemble dense
dans l'intervalle [0, §,]. D’apres la proposition précédente, on a f(na) =
na pour tout entier n. Chaque angle a’ peut étre approché par une
suite de multiples de @ modulo 6, . L’image de cette suite par f est
elle méme. Par conséquent, elle tends vers a'. Ainsi f(a') = a'.

Les deux corollaires suivants sont immédiats.

Corollaire 3. L%mage par [ d’un cylindre euclidien sur (M, p,) est
un cylindre ewclidien sur (M, p2).

Corollaire 4. Si {sy,...,s¢} est Uensemble des singularités de p;,
alors Uensemble des singularités de p, est ezactement {f(s1),..., f(sk)}
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et, pour chaque 1 € {1,...,k}, le point singulier f(s;) a le méme angle
conique que s; .

g ’ f @ )
oA+ _
/
S r
—» f6) <
g est une géodésique passant pars f (g) n'est pas une géodésique
Figure 4.

Théoréme. Soient M et M' deuz surfaces compactes sans bord de
méme genre g > 1. Soient p; et py deuz métriques plates singuliéres
définies respectivement sur M et M’ telles que tous les angles coniques
des singularités des aouz métriques sont strictement supérieure 4 2m.
Toute correspondance geodésique conforme f : (M, py) — (M', p2) est
une homothétie.

DEMONSTRATION. Remarquons d’abord que I’hypothése du théoréme
entralne que dans le cas ¢ = 1 les métriques plates p; et p, ne sont
pas singulieres. Notons p, la métrique réciproque de p, par f. Les
métriques 5, et pz sont isométriques. Ce qui implique que 7, est une
métrique plate singuliére sur M. Puisque f est conforme, la métrique p,
est conforme a p; (dans le sens ou il existe une fonction positive h telle
que p, = hp;y) et a les mémes géodésiques (non paramétrées) que p;.
D’apreés le corollaire précédent, si Al est de genre g > 1 alors p; et p, ont
les mémes points singuliers avec les mémes angles coniques respectifs.
Comme les métriques p;, p, sont conformes et ont mémes singularités
avec les mémes angles coniques respectifs (quand g > 1), alors, d’apres
le Théoréme de Troyanov [Tro| de classification des surfaces euclidiennes
a singularités coniques, la fonction h est une constante ¢. On a alors,
Py = c¢pr . 1l en résulte que I'application f est une homothétie.

REMARQUE. La condition du théoréeme demandant que p; et 5, soient
conformes est essentielle au moins en genre 1. Dans ce cas si la cor-
respondance géodésique n’est pas conforme, le théoréme est faux. En
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effet, un tore 7" muni des deux métriques plates p; = da? + dy? et
p2 = da? + 2dy* admet Didentité coinme correspondance géodésique
alors que les métriques p; et p, ne sont pas proportionnelles.
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suggestions sur ce travail.
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The range of

Toeplitz operators

on the ball

Boris Korenblum and John E. M¢Carthy

0. Introduction.

Let By be the unit ball in C¢, S, be the boundary of By, and g4 be
normalized Lebesgue measure on S;. The Hardy space H?(Bj,) is the
closure in L%(S4,04) of the analytic polynomials. The space H*(By)
of bounded functions in H?(By) is precisely the space of functions that
are radial limits (o4-almost everywhere) of bounded analytic functions

on By. Let P denote the orthogonal projection from L%(S4,04) onto

H?*(By). If mis in H®(By), the co-analytic Toeplitz operator ng(B")

is defined by
2
T,;I (Bd)f = Pmf.
The purpose of this paper is to study the common range of all the
2

co-analytic Toeplitz operators T (B4) |

For the case d = 1, it was shown in [2] that a function f is in the

2

range of every non-zero co-analytic Toeplitz operator Tg (B1) if and
only if the Taylor coefficients of f at zero satisfy

f(n) = O(e™=V™)

for some ¢ > 0. It was also shown that, for the case d > 1, if the Taylor
coefficients of some f in H?(By) satisfy

f(a) = Ol

47
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for some ¢ > 0, then the function f will be in the range of every non-zero
co-analytic Toeplitz operator on H%(By). It was asked if this sufficient
condition were also necessary. Qur main theorem answers this question
in the negative:

Theorem 1. Let f(z1,...,24) = fi(z1) = Yooepan2y, let ¢ > 0, and

suppose that a,, = O(e‘c"l/z“) for some ¢ > 0. Then f 1s in the range
2
of the Toeplitz operator T,g (Ba) for every non-zero m in H>®(By).

The exponent n'/2%¢ is not optimal -using results of [3] it can be
improved to \/n logn. We do not know what necessary and sufficient
conditions are for a function to be in the range of every non-zero co-
analytic Toeplitz operator.

In dimension d = 1, Szegd’s theorem [9] states that a necessary
and sufficient condition for a positive bounded function g on the circle
to be the modulus of a non-zero function in H*°(B) is

(0.1) / log(g)doq > —c0.
Sa

For d > 1, condition (0.1) is necessary and sufficient for g to be the
modulus of a function in the larger Nevanlinna class N(By), consisting
of those holomorphic functions f on the ball for which

T(.1) = sup [ log* If(rO)]dou(¢) < o0

o<r<1Js,
[7, Theorem 10.11). It is no longer sufficient, however, for g to be the
modulus of a bounded analytic function, because the function

¢+ ess sup |m(e?¢)]
—n<6<m

must be lower semi-continuous on Sy if m is in H*®(By) [7]. In [T,
Theorem 12.5], Rudin proves that if ¢ is log-integrable, and there exists
some non-zero f in H*®(B,) with ¢ > |f| almost everywhere and g¢/|f|
lower semi-continuous, then there does exist m in H*°(By) with g = |m|
almost everywhere. We show

Theorem 2. Let d > 2. There is a non-negative continuous function
g on Sq, with de log(g)doq > —oo, aund which vanishes at only one
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point, but such that for no non-zero function m in H*(By) is |m| <g¢
almost everywhere with respect to oy .

This answers Question 15 of [7] in the negative.

When the original version of this paper was circulated in preprint
form (see the announcement in [1]), H. Alexander (private communi-
cation) produced a very simple constructive example of a function g
satisfying the conclusion of Theorem 2, obviating the complicated con-
struction in our proof. However, as we think our construction may be
of some use in solving the problem of characterising exactly which func-
tions are moduli of H*°(B) functions, we elected to retain the proof
of Theorem 2 in this paper.

1. Preliminary Lemmata.

We need to know explicitly the projection from L2?(By) onto
H?(DBy). Let a = (ay,...,®q) be a multi-index and ¢ = (z;,...,24) a
point in CY. The function ¢* then maps ( to zj"* ---z§*. The notation
la| stands for a1 + -+ + aq4, and a! = a;! -+ - aq!.

Lemma 1.1.

. s _ (d-1)a!
(1.2) S, (°(Pdog = bap ———————-———(d “Th e

Moreover, iof Py2(p,) denotes the projection from L?(04) onto H%*(B,),
then

Prapolzs? - 123z

(1.3) 0, if 1<y,
(d=14i—j)ilas! - aq!
(i*_j)!((l—1+i+a'2+---+a’d)!

I

27, i iz

PRrROOF. Formula (1.2) is proved in [6]. The expression on the left-hand
side of (1.3) is orthogonal to every monomial except z;~’; taking inner
products gives the constant.
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We need to consider co-analytic Toeplitz operators on different
spaces. If u is a compactly supported measure on C?, let P%(u) denote
the closure of the polynomials in L?(y), and let Pp2(,) denote the or-
thogonal projection from L?(u) onto P2(u). If m is a bounded analytic
function on the support of u, the co-analytic Toeplitz operator T,;I:z(”)
is defined by

p? -
T Wf = Ppa,y mf.

When p is o4, the space P?(u) is the Hardy space H%(B,), and we
recover our original definition.

In order to transfer information about co-analytic Toeplitz oper-
ators with the same symbol on different spaces, we use the following
lemma, whose proof is immediate:

Lemma 1.4. Let H be a Hilbert space of holomorphic functions on By
in which the monomials are mutually orthogonal. Let m(zy,...,24) =

> pend bsCP. Then

o B
5 TH ¢ = Ba_ ——C— .
(1-5) NI > ba-s 1P,

BLla

This lemma also allows us to define Toeplitz operators with an un-
bounded conjugate analytic symbol. The formal definition (1.5) defines
an upper triangular operator, with respect to the orthonormal basis
of normalized monomials. It therefore has a domain which contains all
the polynomials; we extend its domain to include all functions on which
T , thought of as a formal operator on the power series, gives a power
series whose coefficients are the Taylor coefficients of some function in

H.

Lemma 1.6. Let g be in the Nevanlinna class N(By), with ¢(0) # 0,
and 1 < a < 2. Then

/ (log™ |g])*dA < I¥,
B,

where IV 1s some constant depending only on T(g,1), |9(0)| and «.
PrROOF. The proof is in two parts. First we prove it for g zero-free,

then we prove it for ¢ a Blaschke product. As logg is the sum of the
logarithms of two such terms, this suffices.
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a) Suppose g has no zeroes in By, and without loss of generality
assume ||g|loc < 1. Then there is a singular measure p, such that, for
any 0 < r < 1,

- i L[ i i
log ™ lg(re®)| = 5= [ Pros () log™ lo(*)] 6 + da()
T Jo
where P,is(e'?) is the Poisson kernel. Therefore

/ (log™ |g(re!®Y)* r dr df
B

2m
0

= Alr(lr/::lg(/ P,-e-'a(eiq))(log_ Ig(ei¢)|d¢ +dl4.3(¢)))u
2 1 27 o N
< (/0 ([)7 (lr‘/0 de(P,,e;g(eié))u)l/ (log™ Ig(eié)l(l¢+(l/ta(¢)))

by Minkowski’s inequality. As the L*(A) norm of the Poisson kernel
for a fixed boundary point is at most (8/(2 — a))!/%, we get

(i 8 ~__)°
/Bl(log lg(re™)P% rdrdf < 57— (1oglg(0)|) '

b) Suppose now g is a Blaschke product with zero-set {w,}. Then

([ noglate) aac) ™

(L7) =(, (él"gl}z‘%’f ) aa) "
< 2 (,/B, (log 12—:%1—:15 )ucl.—’i(z))l/a.
Now let us estimate
o=

The terms for |w,| < 1/2 are dominated by T(g,1) + log™ |g(0)|, by
Jensen’s formula. For convenience, assume w is positive, and make the
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change of variables ¢ = re'® = (2 — w)/(1 — wz). Then

1—wz|\© .
/};1 (log p— ) dA(z)
1 e (1—w?)?
= — It - —_—rar
(1.8) 7r</B, (log-) e 7 r 49

_ ! e 1+ (rw)?
_v2(].—--‘w2)2‘/0A (IOg;) mrdr'

Break the integral (1.8) into two pieces: from 0 to 1/e, where the
integrand is bounded by some constant C; independent of w, and from
1/e to 1. For the latter integral, use the inequality log(1/r) < 2(1—wr).
One gets that (1.8) is bounded by C3 (1-w)*/(2—a), where C2 depends
on neither w nor a. So (1.7) is dominated by (C3 /(2 —-a))l/Cr S o(1—
|w,]), and Jensen’s formula again means we can dominate everything
by a constant depending on «, log|g(0)| and T'(g,1).

Let A™" consist of all holomorphic functions m in the unit disk
that satisfy [m(z)| = O((1 — |z|)™"). The space A% is H>®(B;).

Lemma 1.9. Let f be in A™" for some n, and 0 < a < 2. Then

/ (log™ | f])¥dA < .
B,

ProoF. We can assume that f(0) # 0. As f need not be in N(B)
we cannot apply Lemma 1.6 directly; but f is in the Nevanlinna class
of certain smaller domains that touch the boundary of B; at only one
point, and we shall average over these.

Fix p strictly between 1 and 2/, let a = ap < 2,let ¢ =p/(p—1)
and let N > ¢q. Let D; be a smoothly bounded convex domain inside
the disk, containing {z : |z|] < 1/2}, whose closure touches the unit
circle only at 1, and which has a high degree of tangency at 1: let the
boundary of D; be {p(8)e'® : —7 < § < 7}, and assume 1 —p(6§) ~ |9|V.
For any other point ¢ = e'® on the boundary of the unit disk, let
D( = eieo.D] .

Let ¢ be the Riemann map of D¢ onto B; that takes 0 to 0 and
¢ to (. As the boundary of D, is smooth, it follows from the Kellog-
Warschawski theorem (see e.g. [5]) that i¢ and its derivatives extend
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continuously to the closure of D¢, so distances before and after the

conformal mapping are comparable.

o If » <1/N, then f is in H"(D;), and sup;eg, ||f 0 uﬁrC_l”Hr < oo.
s

/ (log” |f1)2dA < C,  forall .
D .

eil

Integrating with respect to 6 and changing the order of integration
yields

/ (log™ |f(re®)2 (1 = r)N rdrdg < .
By

Now
/ (log™ |f])” dA
By

s(/,;(log‘ l.f|)°"(1—r)”/NdA>1/p( (1-r)-q/NdA)""<oo.

By

Let yt,, be the measure on the unit disk given by du,(z) = 7~1(1—
|z|2)* dA(z), and let H, be P?(u,). It is routine to verify that in H,
the monomials are mutually orthogonal, and

B i -
Ho = (k+1) - (k+n+1)

The space H, is the usual Bergman space for the disk. The following
lemma is proved in [3] (in fact a slightly sharper form is proved). We
include the following proof, which is sufficient for our purposes, for
completeness:

Lemma 1.10. Let n > 0, and m be a function in A™", not identically
zero. Suppose f(z) = Y po, arz® where a = O(e“c""/H‘) for some ¢
and c greater than 0. Then for any s > 2n there exists g in H, such
that THeg = f.

PRrROOF. First, observe that f = T,Zf’g for some g if and only if there is
a constant C such that for all polynomials p

(p, Flm.| < Cﬂ/lplzlml'2 du, .
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So 1t is sufficient to prove that

. 1
!g(’“"p(k)(k-f-1)--'(k+s+1)l <C /‘1)[2|m|zdus~

This in turn will follow from the Banach-Steinhaus theorem if we can
show that for any function A in P?(|m|?pu,),

(1.11) h(k) = Ok

Now Stoll showed in [8] that if & satisfies
/ (log* |R])* dA < oo
B,

for some a > 0 then A(k) = O(e°?/(2+e)) We can assume ¢ is small,
and take o = (2 — 4¢)/(1 + 2¢). As his in P?(|m|?u,), h(z)m(z) (1 —
[22)%/? := k(z) is in L?(dA), and

log™ |h| < log™t [k] +log™ (1 — |2[*)*/?| +log™ |m].

The first two terms on the right are clearly integrable to the a'* power,
and so is the third by Lemma 1.9; therefore h satisfies (1.11) as desired.

We want to be able to restrict functions in the ball to planes and
factor out zeros without losing control of the size of the function; the
next lemma allows us to do this.

Lemma 1.12. Let m be holomorphic on By and satisfy
|m.(31,.-. L) S CA=V]aP+. =)0
Suppose also that
m(zy,...,24) = z5ma(21,...,24) + zfi‘H m3(z1,....24),
where my and msz are analytic. Let
my(2y,...,2d=1) = Ma(21,...,24-1,0).
Then
Imy(z1,- . zac)] S (B FC (1= ]z 2+ .- Jzam [2)70FD.




THE RANGE OF TOEPLITZ OPERATORS ON THE BALL 55

PRrOOF. Let (21,...,24-1) be in By—;, and let

1
e= (1= VP + o+ zaal).

Then the polydisk centered at (zy,...,24-1,0) with multi-radius (e, ...,
¢) is contained in (1 —¢) By. Integrating on the distinguished boundary
of the polydisk we get

Imi(z1,...,2d=1)] = |ma(z1,. .., 24-1,0)]

=| / m(C1,---,Ca) < C
(

Cé — gstt :
314y 3d=1,0)+eT?

2. Common Range of T} .

We can now prove that a function that depends on only one variable

2
is in the range of every T.,g (Ba) i its Taylor coefficients decay like

L1/ 24
e~ck .

Theorem 1. Let f(z1,...,24) = f1(21) = Ynep @n2l, let € > 0, and
suppose that a, = O(e‘“‘”“z) for some ¢ > 0. Then f i3 in the range

2
of the Toeplitz operator T,g (Ba) for every non-zero m in H*®(By).

ProOF. For d = 1, this is proved (without the ¢) in [2], so assume
d > 2. Fix m in H*°(By);

Let
S ={(i2,...,1q) : for some iy, b; i, #0}.

Define
te = inf{iq: for some 7a,...,70-1, (i2,...,24-1,24) € S},
and define t; inductively by

tr = inf{ig : for some i2,...,7k—1, (i2,...,0k=1,2k,tkt1,---,td) € S}.
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Let n=1ty + - -4 14.
Cuse a) n = 0. Then the function

my(z1) = m(z1,0,...,0)

is not identically zero, and is in H*°(B,;). By Lemma 1.1,

B i (t—j+1)---(t—j+d-1) ;
m Zb]() .0 (?+1)'(l+d""1) “1 .

So by Lemma 1.4, if one can solve the equation

P Ha-

(2.1) Ti! 91 = f

for some g¢; in Hy_q, then g(z1,...,24) = g1(z1) solves

H*(B
T! 4) f,

m

and, by equation (1.2), ||9lln2B,) = V(d—=1)! |lg1]ln,., < co. By
Lemma (1.10), equation (2.1) has a solution.
Case b) n > 0. One can decompose m as

m(z1,...,2d) =z;’---3;'i mae(z1,...,24) + ma(z1,...,24);

L+l
where each term in the expansion of m3 is divisible by some z; vt

Applying Lemma 1.12 inductively, m;(z) = m3(2,0,...,0) is in A "
and by the choice of tq,...,t4, it is not identically zero. Consider the
function

oo

fz)=) a(k+d)(k+d+1)--(k+dn+1)z*
k=0

As d > 2, we can apply Lemma 1.10 with s = dn, so there is
oc
=S (k+1)(k+2) - (k+dn+1)2*

in Hy,, with

. v ’H n
(22) Tm,d g2 = f'Z .
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Define g by

1
921 zd) =y 5 3y

10t
oo
S k1) (k+2) - (k+n+d—1)2F.
k=0
The function ¢ is in H2(B,1) because

||f/|!";12(}3,1) = 1, ,Z| P(k4+1)---(k+n+d-1)

1—1
g ‘ Zl"f (k+1)---(k+dn+1)

(d 1!
:to! tq ||| OHH(d ”n<00.
Moreover - ) (B
Tm Yg=T st ..-d«m f
is a function of z; onlv it 1s, in fact, f. For if TH (B‘) = Zf;o erzr,
and m;(z) = 3 5o, crz¥, then taking the inner product with =] we get
(d-1)! H*(Ba) . _j
Grn-G+d-n = T oAl
(2.3) = (m:é""w m1 2]) (B,)

=(d-1)! Z’yk Ck—j -
k=3

Taking the inner product with z7 in equation (2.2), we get

1 H :
T:Himgy, 27
o Grd-ps = U e
(2.4) = (g2, m127 )2y,

oo
= Z’)’k Chk—j -
k=j

Comparing equations (2.3) and (2.4). we see that T,f (B")g f, as
desired.
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3. Boundary moduli.

Define F, ,, by

1 — |w|?
(3.1) Few(z) =exp (CW) :

We need the following two results. The first was proved by Drewnowski;
a proof is given in [4, Lemma 3.2].

Lemma 3.2 (Drewnowski).

lim sup / log(l+ |cFewl|)dog = 0.
c=0 weByJsy

The second result, due to Nawrocki, estimates the growth of the
Taylor coefficients of Fi ,, . We are interested in w = re; = (r,0,...,0);
in this case all the Taylor coefficients of F ,., are positive, and the
following follows easily from the proof of [4, Lemma 3.3]:

Lemma 3.3 (Nawrocki). For each ¢ > 0 there ezists ¢ > 0 such that

- 4/ (d+1)

d—1+1)
=140 b 0,06 > 0.

(d— 1)

inf sup
i€l g<r<1

We can now use our knowledge of the common range of co-analytic
Toeplitz operators to prove:

Theorem 2. Let d > 2. There 1s a continuous non-negative function
g on Sy, vanishing only at the point e;, and satisfying -[Sd log(g)doy >
—oc. with the property that the only function m in H*(By) with jm| < g
almost cverywhere with respect to o4 1s the zero function.

Proor. Let .
Vn-——{CGSdi IC—CMZ;}-

By Lemma 3.3, for any sequence ¢, tending to zero, one can choose 1,
and 7, such that

(3.4) Fo e (in.0,...,0) > cieu,.w’
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(because 4/7 < d/(d+ 1)). Moreover, by passing to a subsequence, one
can assume that

_ N 1
(3'0) Su'l) Cn |FCn.Tn€1(Q)[ S :)—:7- ’
CEVR =
because ¢ € V,, implies that

1
|1 - <C)rﬂel>| Z M

21

and that
log(1 + |cy Fe, ryey|) dog <

J 54 an
by Lemma 3.2. Define g by
1
g(C) = oo ‘
1 + Z IC" FC,,,T,,El (C)l2

n=1

Tt follows from (3.5) that ¢ is continuous and vanishes only at e; . More-
over

/ loggdog = ——/ log 1+ Z len Feprnen | ) dog
JSq Sa

n=1

> — / log H(1+IC11 Fc,,,rne1|)2 doa
Sq

n=1

=—2 Z / 108 1 + IC7' Cn, n€1 l) (]CTd > -2.

Now suppose there is a non-zero m in H*(Bg) with |m| < ¢ almost
everywhere. Then cach of the functions ¢, Fe, r,e,, being analytic in
the ball of radius 1/r,, 1s In I)2(|771120'); moreover they are all of norm
less than one in this space, because

/ |C” F(Tn €y ’2 inll?‘ ([U S / IC’”‘ Fcnvrnel Iz gz da’ <1.
Saq Sa
Let -
47 (k+d-1)! k
florseoeza = Soemtr7 Gbd L

EST
P (d —1)'k!
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By Theorem 1, there is a function h in H?(By) with
TH By _ 5
It follows that the linear map
T:ip—=(p, flusy

defined a priori on the polynomials, extends by continuity to a bounded
linear map on P2(|m|%s), as

IT(p)| = [{p, P(mh))| = l/Pm I—ldffd‘ < 2oy 1PNl P2(mi20) -

Moreover, each function ¢, F, r.e, is uniformly approximated on Sy by
the partial sums of its Taylor serics; hence

~ T
cnFe, rrei(K)e K

™8

(3.6) D(cn Feprpey) =
k

0

But all the terms on the right-hand side of (3.6) are positive, and the !
term is at least n by equation (3.4). This contradicts the boundedness

of I.

References.

[1] Korenblum, B. 1., M®Carthy, J. E., Non-attainable boundary values for
H*™ functions. Eztracta Math. 8 (1993), 138-141.

[2] M¢Carthy, J. E., Common range of co-analytic Toeplitz operators. J.
Amer. Math. Soc. 3 (1990), 793-799.

[3] M¢Carthy, J. E., Coefficient estiinates on weighted Bergman spaces.
Duke Math. J. 76 (1994), 751-760.

[1] Nawrocki, M.. Linear functionals on the Smirnov class of the unit ball
in C". Ann. Acad. Sci. Fenn. 14 (1989), 369-379.

[5]) Pommerenke. Ch., Boundary behaviour of conformal maps. Springer-
Verlag, 1992.

[6] Rudin, W., FPunction Theory in the unit ball of C™. Springer-Verlag,
1980.

[7] Rudin, W., New constructions of functions holomorphic in the unit ball
of C*. C.B.M.S. 63. Amer. Math. Soc., 1986.



THE RANGE OF TOEPLITZ OPERATORS ON THE BALL 61

[]] Stoll. Al.. Alean growth and Taylor coeflicients of some topological alge-
bras of analytic functions. Ann. Polon. Math. 35 (1977), 139-158.
[9] Szegs, G., Uber die Randwerten ciner analytischen Funktionen. Math.

Ann. 84 (1921), 232-244.

Recibido: 6 de noviembre de 1.994
Rewmsado: 2 de marzo de 1.995

Boris Korenblum
State University of New York
Albany, New York 12222, U.S.A.

John E. M¢Carthy*

Washington University

St. Louis, Missouri 63130, U.S.A.
mccarthy@math.wustl.edu

Partially supported by the National Science Foundation grant DMS 9296099



REVISTA MATEMATICA IBEROAMERICANA
Vor. 12, N.° 1, 1996

Generalized Fock spaces,
interpolation, multipliers,

circle geometry
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Abstract. By a (generalized) Fock space we understand a Hilbert
space of entire analytic functions in the complex plane C which are
square integrable with respect to a weight of the type e~?(*)| where
Q(z) is a quadratic form such that tr @ > 0. Each such space is in a
natural way associated with an (oriented) circle C in C. We consider
the problem of interpolation between two Fock spaces. If Cy and C;
are the corresponding circles, one is led to consider the pencil of circles
generated by Cy and C;. If H is the one parameter Lie group of Moebius
transformations leaving invariant the circles in the pencil, we consider
its complexification H®, which permutes these circles and with the aid
of which we can construet the “Calderdn curve” giving the complex
interpolation. Similarly, real interpolation leads to a multiplier problem
for the transformation that diagonalizes all the operators in H€. It turns
out that the result is rather sensitive to the nature of the pencil, and we
obtain nearly complete results for elliptic and parabolic pencils only.
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Introduction.

In this paper we shall understand by a generalized Fock space a
Hilbert space of entire analytic functions in the complex plane C which
are squarc integrable with respect to a weight of the type e “2(*) where
@ is a real quadratic form such that tr @ > 0.

Such a quadratic form can be written as

Q(z) = k|z|* — Re(l2?),

where & 1s a positive number (k> 0) and [ is a complex number. Indeed,
putting = = « 4 1y, we have

Q(z)=(k=Rel)2> + (k+Rel)y* +2(Iml) 2y,

so that there are enough parameters to describe the most general real
quadratic form. Moreover, we have

Q= (k=Rel)+ (k+Rel) =2k >0,

while

det @ = (k — Rel)(k+ Rel) = (Im)? = k* — |I|*.

Thus, our spaces are labelled by pairs (k,[) and shall henceforth
be denoted by Fi . If f € Fiy gy its norm || f]|, ;) will be defined by

|2 ¢ =Kt RS g (2

2
WAl Ge,ny =

where we have written dm(z) = dr dy (Euclidean measure). The cor-
responding inner product will be written (f, f1)xp if f, f1 € Fleyp -

More generally, for 0 < p < oo we let F( kD) be the space of en-
tire analytic functions f such that (with the usual interpretation as a
supremum if p = o0)

.1/2 N .
1l = / (1 lemMEN+RAD/2YT () < oo
s

i

for p > 1 the expression ||f||(,\ ));p 15 @ norm and we have a Banach
- space; if p < 11t is a quasi-norm and we have a quasi-Banach space.
(In Section 4 we shall also briefly say a few words about (generalized)
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Orlicz-Fock spaces F(q;_ 5y -) Most of the time we shall however take
p=2.

Exasmprr 1. In the paper [6] two special cases were considered:

. I ~12
Flo)y=:Fr - wecight e k=l
. 92

Fir =Gy - weighte 2ky
there the normalization was a slightly different one.

It will also be convenient to consider a certain limiting case of the
spaces F{y 1), namely the case | = ket k — oo. To fix the ideas take
first § = 0. Then formally

Li/2 o g2 1 e
Tﬁ|f(:)|‘e 2ky cl.rdy——»——ﬁ/ |f(z)]? de.

This 1s because

L1/ 2ky? 1
) — 4 Di . .
— e | y — Wer (v) (Dirac measure)

Thus we are led to the space L?(R) of square integrable (non-analytic!)
functions on the real line R equipped with the measure dz/\/7. In
the same way, for general  we obtain the space L?(e™*°R) of square
integrable functions on the line e7¥/2R. We shall, alternatively, denote
this space by S¢ (Schrédinger space). Its exact significance will be made
more clear later on (see Example 1 in Section 1). We remark however
right away that it should be viewed not primarily as a Lebesgue space,
but as the completion in the metric in question of a space of certain
analvtic functions. The spaces Sy have also a nice interpretation in
terms of the heat equation (cf. [9]). but this point of view will not be
pursued lere.

The space F' := F(; oy will be called the standard Fock space and
its norm will be written |[ - [ = - [, o, -

In [6], among other things, the question of interpolation of the two
scales of spaces F} and G}, was raised.

1) Regarding complex interpolation the following result was estab-
g g I g
lished:
(FLo Flle = FIY (GRS, Gl = G2
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where in both cases pg is given by

1 1-6 6
— =+ —, 0<f<1,
Pe Po Pi

while kg is in the former case a weighted geometric mean of kg and &q:
. _ 1-6,6
ke = ko "k}

and in the latter case the corresponding weighted harmonic mean:

1-6 6

1_
]\'9 - A‘O ]‘Tl )

2) What real interpolation concerns only a reduction to a multiplier
problem was indicated in the case of the scale F} (with p fixed, k
variable).

This curious simultaneous occurence of both the geometric and the
harmonic mean in essentialy the same context, already recorded in [6],
has rised our curiosity. It is one of the objects of this paper to clarify
this point and it is for this reason that it was decided that it is necessary
to put oneself on the level of the generalized Fock spaces. At the same
time we shall also settle the issue of real interpolation, at least in the
two cases just indicated.!

It turns out that the subject is intimately connected with classi-
cal end 19th century higher geometry (German: “hohere Geometrie”),
especially circle geometry. Namely, each space F( ;) is in a natural
way associated with a certain circle C yy (or, perhaps rather, a disk
D¢k.1y)- And the problem of interpolation between two spaces Fg, 1,)
and Fy, ;) leads one to consider the pencil of circles generated by
Clko 1) an1d Ci, 1,y - There are basically three different types of pen-
cils which we have decided to term elliptic, parabolic and hyperbolic.
We have been able to settle most of our question in the elliptic and,
to some extent, in the parabolic case but in the hyperbolic case some
uncxpected difficulties turn up so in this case our results are so far less
complete.

Eventually we would like to extend the theory developed in the
present paper to the case of several variables. We expect that the role

1 . . .
As we shall see, the occurence of these special means is, however, a delusion to

some extent!
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played by the unit disk here will be taken over by a bounded symmetric
domain of tube type, in the first instance one of type III. But this has
to wait for the future ...

The plan of the paper is as follows. In Section 1 we set the founda-
tions for the theory of generalized Fock spaces. In particular, we begin
to uncover the geometric and the group theoretic aspects of the matter.
In an appendix to Section 1 we discuss of the possiblity of assigning
spaces not only to proper disks (not containing the point at infintity)
but also to arbitrary disks on the Riemann sphere S?. In the next two
sections the interpolation theory of generalized Fock spaces will be de-
veloped, complex interpolation in Section 2 and real interpolation in
Section 3. The short Section 4 contains some auxiliary results not di-
rectly related to the main theme of the paper. The theorems, lemmas
ete. are numbered independently in each section.

1. Gauss-Weierstrass functions and Shale-Weil operators.
Segal bundle.

We shall study our generalized Fock spaces F(; ;) with the aid of

the family of functions e, ,
Cacl(z) = el0Hen)/2,

where a and c are arbitrary complex numbers. In [9]? these functions
were rcferred to as Gauss- Wererstrass functions; other names current
in the literature are: coherent states, Gabor wavelets etc. In our theory
they serve as “atoms”.

From [9] we take over the following formula:

2 Reac? 2 —
(1) leael? = exp (REE LY (1 oy

1— |af?

or in polarized form

d? +bc* -

E%Hd -
2 ac, €bd) = exp | —2————) (1 —ab)'/?,
(2) (€ac, €ba) e\P( 1o )( ab)

2 We would like to turn the reader’s attention to the circumstance that there is,

regretfully, an abundance of misprints in [9]; this is most unfortunate as this reference

was meant to be “a small compendium of useful formulae connected with ... Fock space”.
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the proper interpretation of these formulae being that e,. € F if and
only if |a| < 1. In particular, the system of functions {e,.}, with |a| < 1,
ceC,istotal in F.

Next we perform a reduction to standard form. We rewrite the
norm in our space Fi y as follows:

122 1 4 -2 /oL
(3) Il ey = 1™ Pllnoy = “7:17—4 f(ﬁ'fz’) ¢! /2"“ ‘
In other words, we have a unitary map
ViiFgy — F

. 1 z 2 /9]
(4) f(2y o =7 F () €7

that is,

(e =IVEl, Hfe€Fury.

The inverse map reads

V_l B F(k,l)

(5) f(:) — kl/-i f(k]/zz) 6-“122/2 ]

Using (3) in conjunction with (1) we can formally give an expression
for the norm of a Gauss-Weierstrass function in the space Fg i) :

(a+ne |
Re (-——————~—-—) o | 2, ~1/2
- 2 /2 k2 k la + 1|
(m”“”“”*k"“p< TR )O“‘?TJ :
k2
Indeed. with the above notation we have
T 1 H 0y H
V€ac = 777 Elatl)/k.ck=1/2 leaclik,y = IVeacll

so, using (1) and (4), (6) readily follows. (The reader will have no
difficulty in writing down the corresponding polarized identity.) The
interpretation of (6) is the following:

€ac € Fixy ifandonlyif |a+1<k.
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Thus, to the space Fiy ;) there corresponds the disk Dy 1y with radius
k and center at the point —I, Dy = {a : la + 1] < k}. We denote
by Cx1) the circle which constitutes the boundary of Dy j, that is,
Cion={a:la+l] =k} Weput D= Do) and C =C(, ), unit disk
and unit circle respectively. A total system of functions in this case is
{€ac}, with a € Dt ). c € C.
EXAMPLE 1. In [6] the following instances of this are found:

e to the space Fj there corresponds the disk Dy o={a: |a| < k},

e to the space G there corresponds the disk Dy r={a: la+ k| < k}.

To this we may now add:

e to the space Sy there corresponds the halfplane
Py = {a:Reae ¥ < 0} (a generalized disk).

We see that Sy has the interpretation as the closure of the functions
{€qc} with a € Py, ¢ € Cin a suitable metric.

EXAMPLE 2. As another application of formula (6) let us record the
following formula for the reproducing kernel in the space Fiy gy :

K(z,w) = k!/? e~ a2k

If k= 1,1 = 0 it reduces, of course, to the well-known expression for
the reproducing kernel in the standard Fock space F:
K(z,w)=¢e";
see e.g. [6, formula (7.2)] with @ = 0 and n = 1. The reproducing
kernel will not play any réle in our discussion.
Returning to the general discusion, let us note that the intersection
of two Fock spaces Fi, 1) and Fi, ;) is non-nil,

Flro 1o) N Fiiy 1) # {0},

provided the corresponding disks have non-empty intersection,

Dipatix N Deg, 4y # 9.
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This is follows from the fact that eqe € Figq,10) V Flk,.1y) if @« € Do N Dy,
ceC3?

Next, we put into play the Shale- Weil operators. Let G = Sp(2,C)
the group of complex 2 x 2 matrices g = (5 g) with aé — By = 1. To
such a matrix ¢ we associate an integral operator

_ B/? Az? + 2Bz + Cw? lwl?
(7) Tyf(2) = /exp( ‘)w ad )f(w)e 1l dm(w),
C F4
where 5 )
P _ 2 -2
A= 5 B 5 C 5

We proceed somewhat informally. We think of T, as being defined on
a suitable (preferably dense) subspace of our standard Fock space F
and, for the time being (¢f. Remark 1 below), we let Ty go undefined if
6 = 0. In addition, due to the ambiguity in the definition of the square
root B/2 T, is actually determined only up to sign +.

In [9] the following statement was proved:

T, is unitary of and only if g 1s a psewdo-unitary matriz, v.e.

g € G=SU(1,1);

we consider the previous group G€ as the complexification of the group
G. It was also shown in [9] that the composition of two such operators

Ty, and T,,, if it makes sense, is again an operator of the same type;
indeed, one has T, Ty, = £T, ,,. In other words, we have a unitary

representation of a suitable double cover of G = SU(1,1) = Sp(2,R)
(the symplectic group), viz. the metaplectic group G= Mp(2,R). It is
the ambiguity in the definition of the square root that forces us to pass
to a cover. A typical element of G is given by a pair §, an element
g = (9 H ) of G plus a determination of the squarc root of 6, the
composition heing defined as follows: If we have a second element §',
then the composition §" = §'g is found exploiting the identity

\/(_5—’7=\/1+%90\/§\/5.

As the referee has pointed out to us, it is likely that, conversely, F(*o-'o)np(kx.lx);é

3

{0} implies D(xy,14)0 Dk, ,1,)7#@, but we do not know how to prove such a result. We
are indepted to him for several other precious remarks as well.
Added in proof (Nov. 95). This question has now been affirmatively settled by the

authors.
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We use the fact that, as |y'/6'| < 1, one can define a — (1+(y'/6')a)'/?
as an analytic function in the unit disk D(1,0) taking the value 1 at
the origin.

This representation is known in the literature under various names:
oscillator, harmonic, Bargmann-Segal, Shale-Weil, etc. representation.
One speaks also, referring to the operators Ty, of the oscillator group.
If one restricts attention to matrices g with the property that the cor-
responding Moebius transformation a — ga = (aa + f8)/(ya + ) maps
the unit disk D(0,1) into itself, not onto, then one obtains instead the
oscillator semi-group (cf. [5], [10]).

Another formula, in [9] established for the group G, is

. 1 v c?
(8)  Tyeac(z) = Gat i exp ( - m) €ga,c/(va+6)(Z),

which is easy to verify at least on the formal level.

REMARK 1. Note that, in contradistinction to (7) above, this for-
mula (8) makes sense even if § = 0. Thus (8) may serve as a definition
of T, in this case; we view then T} as a linear operator on the linear hull
of the family of functions {ea.}. We must only make sure that ga # oo
or that ya + 6 # 0.

Using (1) we find from this

, 1 1 ) vt
ITocacll® = = g exp Reya-}-&)
(9) —\2, P
Rega( ) +
e ya+$6 lva + 6|? 12\ —1/2
exp ( 1= [gaf? (1 —|gal”) .

EXAMPLE 3. Let ¢ = (§ §), so that § = a~!. Then T,f(z) =
o'/? f(az)eP? for a general function f, while

Tyeac(z) = o' P eaatpyys, c6(2) -

Let us write a = k~1/2, 8 = k~1/2], so that 6§ = k!/2. (The correspond-
ing Moebius transformation is thus a — (a + [)/k.) Then we see that

: k=17 g1 :
V=T, withg= (", .2 ) Thatis, we have ||f|| = [T, f| for
feFun.
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The above suggests to consider in general Hilbert spaces with a
norm of the type ||T, f|| for some ¢ € G¢, where || - || stands for the
standard Fock norm in our standard Fock space F'.

In this direction we can establish the following basic result.

Theorem 1. Let g be an element of G¢ such that g~}(D) = D
(in particular, one has oo & g~'(D)). Here D = Dy ) is the unit
disk. Then Tg‘l(F) = Fk,). Moreover, we have || f|| ,, = [Ty f|| for
fe F(k’” . ’

REMARK 2. The transformations g occurring in the statement give an
element of G°\G, that is, a residue class modulo G in G€.

The proof of this theorem which will be based on the following two
lemmata may be of independent interest.

Lemma 1 (generalized Lagrange identity). Let g = (§ ’3) be a matriz
in G¢ such that the inverse image of the unit disk D 1is the disk Dy py.
Then

1 E2—a+1?

—_ 2 f—
(10) 1~ lgaf? = g ——
Moreover, one has
1 af — 6
11 k= . s L
) o — P o ~ P

Lemma 2. Let the matriz g and the parameters k and | be as in Lemma
1. Then the following identity holds

(12) (@a+B)k—(va+8)(a+l) =~k —|a+1?).

REMARK 3. If ¢(D) = D, i.e. if g € G, then we get from Lemma 1 the
well-known identity

(13) 1—|gaf’> = et iR (1-lal®),
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often used in function theory; in [9] it was called Lagrange identity. (The
reason for this choice of name is the following: let us put ourselves in
the case of the fundamental symmetry of D interchanging an arbitrary
point b € D and the origin 0, that is, the mapping a — (b—a)/(1 —ab).
Then (10) becomes

1~ abf? = b —af? = (1~ o) (1 - b").

Introducing homogeneous coordinates (writing a = a;/ag, etc.), this
gives
laobo — a1b1|* = (lao|* — |as|*) (lbo|* = |B:[*).

This is the expression of the norm of a bivector in the pseudo-Hermitean
metric |ag|? — |a1|%.) In the same way from Lemma 2 we obtain the
usual condition for a complex unimodular matrix to be in G, viz. @ =4,

B=1.

ProoF oF LEMMA 1. After having chased a denominator we perform
the following chain of transformations:

lya+ 6]* — |aa + B> = |7/* |a|* + 2 Revba + |6]°
— (Jaf? |a* + 2 Reafa + |B]?)

- _ 2 _ 2 C_Vﬁ _ '76 z
= ~(laf* = ") o+ o5 ]
21 4 168 =8P
+ (16~ 182 + o)

The last term in the last expression can be rewritten as

68— 56 _ |of? 3P + B " — 2 ReatB3
la]? —|y]* |af? — ||?

_Jad =By 1

a2 =2 el =y

61> — 181° +

where we in the last step used aé — fy = 1. Taking now (10) as
" definition of the numbers k and [, we formally arrive at formula (11). It
is however readily seen from this equality that these parameters must
have the desired significance.
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PROOF OF LEMMA 2. Step 1. First we observe that if (12) holds for a
matrix g, unimodular or not, then it holds for any multiple ¢ - g, where
teR. _

Step 2. Reduction to the case k =1, = 0. Put a; = (a + k)/k. Then
lgal < 1 if and only if |a;| < 1, while (12) can be written

__  B-la 6 —lyy _
(aal + ; ) - (7al+ A 7)611 =7(1—[a1|2).
But this is nothing but (12) for ¢; = ('.’; 5; ), where 8, = (8 — la)/k,
8y = (6 — ly)/k, and this matrix represents the transformation a; — b,
where b = ga. Clearly det g, = aé; — f1v = 1/k € R. By Step 1 the
same equality holds then also for the corresponding unimodular matrix.

Step 3. The case k = 1, I = 0. In this case, as is we have already

noted (see Remark 1) that in this case &@ = 6, § = . So then (12) is
equivalent to the absolutely trivial relation

(6a+7) = (ya+8)a=~(1~la’).

Next we proceed to the proof of the Theorem 1.

PROOF OF THEOREM 1. Let g be a matrix such that g=!(D) = D .
It suffices to show that

(14) “Tgeacll = Heac”(k[ ) for a € D(k,l) y € € C.
D)
For then we have by polarization
(Tyeac, Tgepa) = (€ac,€bd) (k1) > for a,b € D1y, c,d€C,

whence, by considering linear combinations of Gauss-Weierstrass func-
tions and applying a density argument (the Gauss-Weierstrass functions
form a total set), it follows that [T}, f|| = || f||;, for all f € Fi ).

Now we verify (14). To this end we must do some transformations
in formula (9) showing that it reduces to (6).

First, we observe that the two exponent free factors combine in
view of (10) in Lemma 1 to a factor

B2 (- |a+z|2)—1/2_

T k2
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Next, we look at the exponential factors. Using Lemma 1 once
more we see that the coefficient of |c|? in the exponent becomes

1

la+1?
1-—3

b

as it should. Similarly, formula (2) in Lemma 2 helps us to bring the
c?-term into the right shape. Indeed, we find (this is what stands after
the sign Re after we have combined the two exponential factors)

e ga ct
ve+6  1—|gal* (ya+6)?
2 ,
=(— LA aatp )02
ve+é  (I—|gaf?)lya+é]*(va+6)

_—(¥ —la+1?)+aat Bk ,
(ya+8) (k2 —Ja+ 1)
a-+1 9

which is precisely what is desired (see (6)). (In [9] the corresponding
computations were done when g € G.)

Let us also indicate an alternative less direct approach. Although
it is apparently shorter than our previous proof, we prefer the form
because of its constructive flavor involving also the beautiful identities
in Lemma 1 and Lemma 2, which, as we have hinted at, may well be of
independent interest.

ALTERNATIVE PROOF OF THEOREM 1. We begin by noting that the
unitary map V in (4) obviously corresponds to the standard affine map
go : Dxyy — D given by goa = (a + 1)/k, 1.e. V = Ty, . It follows
that if g is any element of G® such that ¢7!'(D) = D then we
have ¢ = hgg for some h € G (a pseudo-unitary matrix). But then
T, = £T4T,, = £T,V. As T} is a unitary map on the Hilbert space
F, this again implies that

1T fIl = ITwV L= IV A= [ fllx,py »

where we in the last step used (4).
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Theorem 1 has an obvious generalization to the spaces FP, p > 1.

Corollary. Let g be as in Theorern 1. Let p > 1. Then again
T, (Fr) = Fl. 1) Moreover, we have the norm equivalence 1Al ny.p =

”T!If”p f(lT‘ f € F(pk,l) .

PROOF. In [9] it was shown that the group G° acts on the spaces F? (for
the case p < 1 see Section 4). Therefore the previous (alternative) proof
of Theorem 1 extends to the present situation without any changes.

Appendix to Section 1. Non-existence of a certain bundle.*

Now we have settled our main question (see the above Theorem 1)
but only in the auxiliary assumption that the inverse image of the unit
disk under g does not contain the point at infinity, co. It is a legitimate
question whether it might be possible to free oneself of this assumption.
In this appendix we give a brief discussion of this issue. However, it is
mainly a negative experience.

First we recall that there are on the Riemann sphere 52 three kinds
of (generalized) disks:

1) proper disks;

2) halfplanes (limiting case of a disk);

3) exteriors of proper disk.

Alternatively, we could speak of oriented (generalized) circles: if
an oriented circle is given, we pick up the disk that is to its “left”. Thus
there is a 1:1 correspondence

disks «—— oriented circles.

The question is thus whether it is possible to associate in a natural
way to a generalized disk D on S? a “Fock space” §p, extending the
previous correspondence D ) +— Fix ). Introducing the notation 91
for the manifold of disks (oriented circles) this would yield a bundle
of Fock spaces § over 9, say. (Let us remark that in previous work

1 A reader who is only interested in analysis questions (interpolation, multipliers)
can safely omit this appendix. The senior author would like to thank Johan Rade for an
illuminating discussion helping to clarifying some questions connected with the topology

of the Lie groups G, G and G°.
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one of us has already encountered several occurences of vector bundles
(of infinite rank) over complex manifolds: the Fock bundle [11] and the
Fischer bundle [12]; here we have a manifold 9 which is not complex.)
However, this secems to be a chimera: the bundle § does not exist. Let
us indicate why this is so.

Let us fix the disk D. Then D can be mapped conformally onto
the unit disk D(0,1) but not in a unique way. Any such map comes
from a certain element g of the group G¢, for reference, let us call it a
frame. It is natural to try to define the fiber §p as a kind of pullback
of the standard Fock space F' = F{y ). More exactly, given any two
frames coming from group elements ¢ and g; we can write ¢g; = ug
with u € G and one is then led to consider two functions f; and f in
F as representatives of one and the same element of Fp if fi = T f.
However, by the above T, is defined only up to sign £, which seems to
be an unsurmountable difficulty and so our approach breaks down. It
is only when we restrict ourselves to suitable open subsets of DT that
we can make it work, for instance, when we consider the subset of all
disks avoiding one point, say, the point at infinity, but then we are back
in the situation considered already in Section 1.

A possible way out would be to count elements of F' modulo sign
but this would then essentially lead to a projective bundle, not a vector
bundle, but this is not exactly what we desire.

One can give the above somewhat heuristic considerations also a
somewhat more rigorous formulation using the language of principal
bundles and their associated bundles, which we now indicate very quick-
ly.> Let us denote by R the manifold of all frames. Of course, we have
the trivial identification R =~ G°. Moreover, we can identify 9 with
a certain space of cosets of G¢, M ~ G\GC. It follows that ;R can be
viewed as a principal bundle over M with G as structure group. If V
is a any vector space on which G acts (a representation space), there
is an assoclated vector bundle U on which G acts. In our case we
would like to take V' = F but the trouble is that its double cover the
metaplectic G acts on F, not G itself. There seems to be no way out
of this dilemma. This is connected with the fact that while G admits
a double cover, its complexification G¢ does not. This again depends
on the following facts: On the one hand, as G¢ as a topological space

We are now adressing ourselves to those readers who are familiar we the rudiments
of this theory (see e.g. the book [8]). Notice that in the conventional treatment the
structure group usually acts from the right, while in our formulation we have a group

action (of the group G) from the left.
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is simply connected its fundamental group is trivial, 71(G¢) = 1, while,
on the other hand, G is contractible to a circle S and thus has the
fundamental group m (G) = Z.

2. Complex interpolation. Circle geometry.

Now we begin to interpolate. In this Section we shall deal with
complex interpolation exclusively, thus relegating real interpolation to
Section 3.

Our objective is to determine the complex interpolation spaces
between two given Fock spaces Fy, ;) and Fx, ;). Assuming that
their intersection is not nil, F(x, 1o) N F(x, 1,) # {0}, we shall show that
the interpolation space [F(x,.10), F(k, 1,)]6 again is a certain Fock space
Fliy 1oy - Indeed, if Ciyy 10 and Cyy, 4, are the circles corresponding to
the spaces F(i, 1) and Fg, 1,), then the circle Cx, 1,) corresponding
to F(z, 1,) belongs to the pencil of circles generated by the two given
circles C(ko,lo) and C(kl,ll) .

First we recall some general facts about complex interpolation (for
details, consult the excellent book Bergh-Lofstrom [2]).

Consider quite generally any Banach couple (Aq, A1), t.e. Ap and
A; are two Banach spaces (over C) both continuously imbedded in a
Hausdorff topological vector space A. An element a in the linear hull
Ag + A; of Ag and A, in A is said to be in the complex interpolation
space [Ag, A1]s, where 0 < 6 < 1, if, informally speaking, there is a
complex curve through a connecting Ag and A;. More exactly, we
require that there exists a holomorphic function f(({), where ( = £ +1in
is a complex variable, defined in the strip 0 < Re{ < 1 with values in
Ap + A; such that a = f(#) and such that its boundary values satisfy
f(in) € Ao, f(1+1n) € A;. In addition, some growth conditions must
be satisfied, and we have not told in what sense the boundary values
are taken, but we shall not enter into such technicalities here.

Next, let us specialize to the case when

Ay = E = a given Banach space,
A; = D(A) = the domain of a closed

unbounded operator A acting in E.

Then one expects that, in suitable assumptions, one has [E, D(A)]g =
D(A?), where A% stands for the suitably defined 6-th power of A. For
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instance, it suffices that imaginary powers A'" make sense and satisfy
a suitable growth estimate, e.g. ||A'|| < C (1 + |p|)™ or even ||A*]| <
Cel"l', 1 < 1, will do and certainly [A']| = 1 (isometry). Then the
canonical quasi-optimal choice of the function in the above construction
is f(¢) = A®Ce, where ¢ is an element of the space E. In particular,
the following situation is allowed: E = a Hilbert space, A = a positive
self-adjoint operator in E.

In the Fock case there is a natural choice for the operators A€,
namely A¢ = T, , where the transformations g; form a certain complex
one parameter subgroup of G¢ leaving invariant the pencil generated by
the given circles Cx, 1,) and Cx, 1,) . Before making this more precise
let us review some basic facts about circle geometry (classical references
for “higher geometry” are Klein [7] and Blaschke [1]°).

The equation of a (generalized) circle C on the Riemann sphere S?
can be written

(1) Aaa+2ReBa+C =0

(or equivalently Aad + Ba + Ba + C = 0), where A and C are real
numbers, while B is a complex quantity. Thus (1) means one of the
following: a genuine (real) circle; in a limiting case, a line (a circle
through the point at infinity); a point circle; an imaginary circle. We
see that each circle C gives a triple ¢ = (4, B,C) determined up to
a non-zero real multiple. Note that such a triple consists of two real
and one complex numbers; alternatively, splitting B into its real and
imaginary parts, we could likewise have spoken of a quadruple of real
numbers, thus a point in R*. (Sometimes it is also convenient to put
é = (A,B,B,C).) A pencil of circles is a one parameter of family of
circles of the form

(A0+tA1)a(_L+2Re(Bo+tB1)&+(Co+tCl)=0, tER

We say that the pencil is generated by the circles Cy and C; correspond-
ing to the triples ¢o = (Ao, Bo,Co) and ¢; = (A1,B1,Cy). It is the
sign of the discriminant D = AC — |B|? that determines the geometric
meaning of the equation (1): assuming that A # 0

if D < 0 it 1s a real circle;

if D =0 it is a point circle;

6 The former book was actually edited by Blaschke.
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if D > 0 it is an imaginary circle.

The assignment C +— (A, B, C) thus defines a mapping from the space
of all (generalized) circles to real projective space PR? equipped with a
distinguished quadric

Q : (¢a¢)=D =‘4C- |B|2 =0»
corresponding to a quadratic form in R* of signature + — — — (or index

of inertia (1, 3)).
We can thus set up a small dictionary.

space of circles projective space PR>

point circle point on Q

circle point not on @

pencil of circles line

the group G*¢ the Lorentz group SO(1, 3)

We can apply the insights gained above to describe the structure
of pencils of circles. There are essentially three cases depending on the
mutual position of the corresponding line in PR® and the quadric Q.
This is depicted in the figure on this page.

@® @ ©C

hyperbolic parabolic elliptic
(time-like) (light-like) (space-like)

Thus in the former case the circles go through two real points, in the
middle case they are tangent at a real point and in the last case they
go through two imaginary points (and do not meet in the real).

It is clear that the spaces F}. correspond to an elliptic situation (the
concentric circles |a| < k), while the spaces G correspond to a parabolic
situation (the circles |a + k| < k tangent to the imaginary axes at
the origin). This ezplains, in particular, their different interpolational
behavior (see Introduction).
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REMARK 1. Note also that a pencil of circles contains in general a
unique line called its power line. The exception is when we have a
pencil of circles through the point at infinity. Then all elements of the
pencil are lines, of course.

REMARK 2. Notice also that there is a duality for pencils of circles.
The dual pencil consists of all circles orthogonal to the circles of the
given pencil. This duality interchanges elliptic and hyperbolic, respects
parabolic.

Now we discuss the subgroup of G¢ which preserves a given pencil
of circles. Let Cy and C; a pair of generating circles and denote by H
the group of transformations leaving each of them invariant. Then we
have the following lemma, which is the key to our discussion of complex
interpolation of Fock spaces in general.

Lemma 1. Let H® be the complezification of the group H. Then H®
preserves the pencil (that is, the transformations in H® map each circle
in the pencil onto another circle of the same pencil -we say that they
permute the circles in the pencil).

PROOF. It can be shown (inspection!) that the group H is a one
dimensional Lie group, hence commutative. So, using the exponential
mapping, its element can be written in the form g¢, where ¢ is a real pa-
rameter (£ € R). Similarly the transformations in the complexification
H¢ will be written g¢, where ( is a complex parameter (¢ = {+1in € C).
To fix the ideas, let us assume that we are in the hyperbolic case, denot-
ing the points through which the circles go by p and q. (The other two
cases are dealt with in a similar fashion.) Thus we have two equations
of the type g¢p = p and g¢q = ¢ (£ € R). Then it is manifest that they
remain true also after passing to the complexification (with £ replaced
by ¢). In other words, we have g.p = p and geq = ¢ (( = +1in € C).
So if C is any circle passing through p and ¢, then its image g¢(C) under
g¢ 1s a circle which still passes through p and ¢ and so belongs to the
given pencil; but in general it is not the same circle (g¢(C) # C).

Let us look at the three cases (hyperbolic, parabolic and elliptic)
separately.

1. Elliptic case. Making a preliminary conformal transformation
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we may pass to the normal form when it is question of concentric circles
about the origin. The group H fixing any two of these circles, and thus
all of them, consists of the maps g, = e*’a -rotation about the origin.
Complexifying we get the transformations g¢ca = (a, where we have
put ¢ = re' -rotations followed by dilation. (Note that here we made
a passage from additive language to multiplicative language.)

2. Parabolic case. Now we may assume that we are dealing with
straight lines parallel to the real axis -this is a pencil of degenerate
circles. (In the case corresponding to the spaces G this can be achieved
by applying the Bargmann transformation whereby Fock space G gets
replaced by the Schrédinger space Sp; see Introduction.) The maps in
H consist of translations a — a + 3 with 3 real. Complexifying yields
the corresponding transformations with # complex. Note that in this
limiting case the full group preserving the pencil is the 3-dimensional
“(aa + B)-group” with a # 0 real, f complex.®

3. Hyperbolic case. As normal form we may use the straight lines
through the origin. Then the transformations preserving the pencil are
formally the same as in Case 1, a — (a, the difference being that it
is when we take the variable ( real that we get the maps that leave
invariant each element of the pencil (a degenerate circle).

REMARK 3. We note that H is compact precisely in the elliptic case.

Next we turn to the problem of the analytic description of the
group H or H¢. Recall that if ¢ = (A, B, C) is the triple corresponding
to a circle C, we have already introduced the metric form

(2) (¢,¢) = AC — |B|*.

If we have one more circle C' corresponding to the triple ¢' =(A', B', C"),
we obtain by polarization the inner product

(2) (4,4) = % (AC'+ CA')—Re BB'.

EXAMPLE 1. A point circle can be identfied to the triple ¢,=(1,—a,|a|?).
Then (1) can, in view of (2'), be written as

(6,¢0) =0.

8 Since the letter ais occupied by the variable, we cannot speak of the (az+b)-group!
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We can also rewrite our previous formula for norm of the function e,
(see Section 1) as

Ileacllfk,:)
a b a -
(Re( (q;;) >02> — (—(¢, $))'/? |C|2) (6, ba) >—1/2
—(¢, $a) (—(¢,9)) ,

= exp

which perhaps looks more convincing; here ¢ = (1,1, |I|?, —k?).

Let us now fix a pencil of circles. To determine the corresponding
group H, the latter being one dimensional and hence commutative, it
suffices to determine its infinitesimal generator X (forming a basis for
the Lie algebra l) of H). This is essentially an exercise in linear algebra.

The image of the pencil under the circle-to-point map C — ¢ =
(A, B, C) is, by what we have said, a line L in PR*. Let ¢o =(4q, Bo, Co)
and ¢; = (A1, B;,C1) be on L. We seek a linear map X on R* which
vanishes on the span of the vectors ¢¢ and ¢;, and is skew-Hermitean
with respect to the metric (¢, ¢). Clearly, X is the inverse image of X.

It is easily seen that X is given by the the condition

A' B' B'C'
ABBC
Ao By BoCo
A, B, B,C,

= (¢',X¢), where ¢' =(A',B',C") (and i® = —1).

1
Expanding the determinant and comparing with (2') shows that
A BB ABC BBC

—3:’3(-4»]3,6')?—’77 - ‘40301:70 » |[AoBoCo |, 301:3000
AlB]B] AlBlC'l BIBICI

Putting ¢* = ¢ = (A*,B*,C*), we can write this, expanding the
3 x 3 determinants also, as

. By By Ay By le By | - )
A =i - 014 0B B+0),
?< 'Bl B, +|Al B, A, B
) By, G 40 Gy Ay By —)
3y ! Br=if - 4- B+0+ B),
3) ’( B G ‘.4, Cy A B
B, C Bo Col. |By B
C*=i<0+ Bo 0 _ | Bo 0 o Bo C).
B] C] Bl Cl B] Bl
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That 1s, we have, in matrix form,

| Bo By Ao f?o 4o By 0

B, B, 4, B A, B
v o |Bo Co| |40 Co Ao By
@) X=tf -1 ¢ 4 G O 14 B
0 1:30 Co| _|Boe Co By By
Bl Cl B] Cl Bl Bl

EXAMPLE 2 (The case of concentric circles). We can take ¢q = (1,0, 1),
¢1 = (1,0,2). Then A* = C* = 0, B* = B. This corresponds to the
circle transformations B +— €'Y B, again induced by the point trans-
formations z ~ ez (votations about the origin). This we know, of
course.

The map X is an element of the Lie algebra s0(1,3). Now we seek
the corresponding element X in g¢ = s((2,C).

First we work on the group level. Let g = (3 g) be in G°. Then
a circle C corresponding to the quadruple ¢ = (4, B, B, C) is mapped
into a circle C* corresponding to the quadruple ¢ = (4*, B*, B*,C*),
where

A* = Aaa + Bya + Bay + Cv7,
B* = ABa + Béa + BBy + Cé7,
C* = ABB + B6B+ BBE+ C66.

Thus the point transformation ¢ induces the circle transformation

Il

Il

aa Yo oy vy
. [ Ba sa By &%
9= aB 43 ab ~8
BB 68 pB6 66

Passing to the infinitesimal (algebra) level we see that to the matrix

X = (‘; g) €5(2,C)

there corresponds the matrix

2 Rea & o 0
. o B —itlma 0 5
(5) X = 3 0 ilma - €s50(1,3).
0 B B —-2Rea
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(Here we use a + § = 0, corresponding to aé — vy = 1.)
Now we compare the general formula (4) to (3). This gives in our

case
Ay Co| _|Bo Bo 'BO Co
A] Cvl Bl Bl - B1 C]
(6) X = _ _
.40 Bg ‘40 CO BU BO
'Al B |4 G| T B B

This is the sought infinitesimal generator of the Lie algebra §.
We may summarize the preceding discussion as follows.

Lemma 2. The Lie group H fizing the two circles Cy and Cy cor-
responding to the triple ¢9 = (Ao, Bo,Co) and ¢y = (A1,B1,C1) 1s
generated by the matriz given by formula (6).

Let us give another example.

EXAMPLE 3. Consider the hyperbolic pencil of circles through the
points 1 and —1. These circles correspond to the parameters £ =
V1+m2, | = im with m real. We may take ¢ = (1,0,—1) (unit
circle), ¢; = (0,7, 0) (real axis). Then (6) readily gives

= (2.

Thus integrating we get the transformations

o = (cosh( sinh() .

sinh( cosh(

Each of the maps g. preserves, if ¢ is real, any of the circles of the
pencil. If we let ¢ assume complex values, we obtain transformations
that permute the circles. If ¢ is purely imaginary, ( = in, then the
image of the unit circle corresponds to

. sin2
=sec2n, =1 1

7 k= =1 tan2 =tan2n).
(™) cos 2y cos 2y LA, (m = tan21)

In particular, for n = m/4 the unit circle is mapped onto the real axis
(Cayley transformation).
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Now that we have a rather complete picture of the transformations
permuting the circles of a given pencil, that is, of the complexification
H¢ of the group H of transformations fixing any two of them, it is
possible also to answer the initial question of complex interpolation of
two given spaces F(x, 1) and F(y, ;) corresponding to any two circles
Co = Clky,1o) and C; = C(4, 1,) in the pencil.

We let Dy = D(g,,1,) and Dy = Dy, 1,) be the corresponding disks
(the disks bounding the circles and not containing the point at infinity).
We assume that we have

(8) DoﬂDl#Q.

As was already recorded in Section 1, this implies that Fix, 1) N Fk,,1,)
# {0}. Changing somewhat the notation we may assume that the maps
Gin (n € R) in H€ leave Cy and C; invariant. We may also assume that
91(Cy) = Co. (This amounts to normalizing the group parameter.)

Lemma 3. It is possible to choose g; such that g;(D,) = Dy .

PRrooOF. By inspection. Expect in the hyperbolic case this is automatic.
In the latter case we first choose g; to be minimal, that is, g;(C;) = Co
but g¢(Cy) # Co for 0 < £ < 1. Then either g;(D;) = Dy or else
g1(Dy) = Dy, where Dy is the complementary disk Dy = S?\Dy. In this
case the group generated by g; must be compact. (On the other hand,
the one generated by g¢; equals H and is not compact c¢f. Remark 3.)
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Therefore it must be periodic. If 7 is the period, we can now achieve
91(D1) = Dy replacing if necessary g; by g1/2-r .

Corollary. It follows that Tg, (F(k, 1,)) = F(ko,1,) ond in particular that
1
“f“(kl,l,) = 1Ty, flli, for f € Fiay 1,y -

For 6§ € (0,1) let now the circle Cg be chosen in such a way that
g9(Cg) = Cy. We let further Dy be the disk corresponding to the cir-
cle Cq.

Lemma 4. We have co ¢ g¢(D;), 6 € (0,1). In particular, we have
96(Dg) = Do .

PROOF. By a continuity argument. The elliptic and parabolic cases
are quite obvious, because then the circles Cy lie all between Cy and
Ci. So let us again look at the hyperbolic case. In this case it is
clear that the relation gg(Dy) = Dy holds true at least for 6 close to
0. If the assertion were not true, then it is easy to see that for some
particular value 6y € (0,1) the corresponding circle Cy, degenerates
and becomes a line, the power line of our pencil (see Remark 3). But
at that moment the corresponding disk degenerates into a halfplane.
Continuing the parameter 6 beyond the value 6, it is now easy to arrive
at a contradiction, namely that g;(D;) = Do, where again Do stands
for the complementary disc.

We can now announce the following result.

Theorem 1. Let F(y, 1) and Fi, 1) be the generalized Fock spaces
corresponding to the circles Ci, i1,y and Cik, 1,). If Do and Dy be the
corresponding disks, we assume that (8) holds true. Let g¢ be the one
paramneter group of conformal maps as defined above in the course of
the discussion of Lemma 2 and 3. (In particular thus gi1(D;) = Do.)
For 0 < 6 < 1 define the circle Cix, 1,) by 96(Co 1)) = Clio,to)- Then
we have the isometry

(9) [Flko o) Fhr11)]6 = Flk o) » 0<f<1.

PROOF. This follows from the general facts about complex interpola-
tion which we recalled in the beginning of this section. In particular,
the role of the operators AS is now played by the maps Ty, , as follows
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readily from Section 1, Theorem 1. The crucial thing is that for purely
imaginary values of ¢ these are unitary maps in Fig, 1), |Ty;, || = 1 for
n € R. So there is really nothing to prove.

in

EXAMPLE 4. It is clear that Theorem 1 contains as special cases the
results from [6] for p = 2 with the spaces Fj and G} which were recalled
in the Introduction. These are elliptic and parabolic cases respectively.
A concrete example in a hyperbolic situation can easily be constructed
at the hand of Example 3 ultra. Let us fix attention to the circles in
the hyperbolic pencil there which lie in the upper halfplane, that is, if
k > 1is, as usual, the radius then the second parameter ! is determined
by [ =1v/1 — k% (with the positive sign of the square root). We are thus
lead to consider the family of spaces Ej of entire analytic functions f
with the metric

.1/2 \ ,
I£11? = i;r-'/(;e—kl" “2VI=EST 1) 2 dm(z).

In agreement with our previous notation (¢f. Introduction) we have
in particular E} = F} = F (our standard Foch space) and Ey, = G;.
Thus this connects the spaces F; and G;. We conclude that we have
the interpolation formula

[Ek07Ek1]9=Ekg ) 0<0<1,

where kg is obtained from kg and k; according to the following rule:
if we write ko = sec2ny and k; = sec2n; then kg = sec2p with n =
(1 —=8)no+ 6 .

REMARK 5. The recepee for computing the “mean” of the parameters
kg and k; is thus rather complicated in this case. That the rule has such
a simple form in the case of the families F (geometric mean) and Gi
(harmonic mean) is rather exceptional. In particular, the homogeneity
is accounted for by the fact that the corresponding pencils are dilation
invariant then. The phenomenon we initially set out to clarify in this
paper has turned to be an exception!

So far we have only dealt with Hilbert spaces, that is, the problem
of complex interpolation of the scale of generalized Fock spaces Fiy 1.
Now we pass to the corresponding problem for the Banach spaces F; (”k’ )
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(1 < p < 00). On a formal basis we expect that the obvious analogue
of (9), viz. the interpolation formula,

(10) I

(korto) Flhi))e = Fliy 1y » - 0<0 <1,

to be true, perhaps not isometrically but at least up to an equivalence of
norm. (For simplicity we keep the parameter p fixed taking pp = p1 =p
and interpolate only k and [; how to treat the case py # p; is indicated
in [6].) The main difficulty is again to estimate the operator norm of
Ty, this time in the space F(};co,lo) . It turns out that the different cases
(elliptic, etc.) behave differently.

Let us first look at the elliptic case. Putting into play the map
V=V: F(pko,lo) — FP, which by Section 1 is an isometry (only the
case p = 2 was worked out there), we can reduce to the case when
C(ko,lo) 1s the unit circle C(; o). We recall from [9], Section 8, that the
metaplectic group G acts continuously on the spaces F?, but this action
is not isometric if p # 2. Indeed the operators T,, g € G, admit in F?
the following norm estimate:

(11) ITll, = 18] /22721,

In the present elliptic case the one parameter group g¢;, is compact (cf.
Remark 3). Therefore it follows from (11) that we have || Ty, ~ C.
So we are in business. We get thus back the result for the spaces Ff
([6, Theorem 9.3, the case pg = p;]).

REMARK 6. In this situation we could have used instead of Vy another
more cleverly chosen Shale-Weil transformation reducing ourselves to
the case when C(y, 1,) is a concentric circle C(x gy . Then we are back in
the set up of [6].

Next, let us look look at the parabolic situation. It is then readily
seen that the matrices g;, are conjugated to the matrices

13

1+ :

ol

-—l:—z' 1—2

by a fixed matrix. It follows then from (11) that now || T}, ||, = (1+|7))™
for some number m, that is, we have power-like growth. We are again in
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business and have, in particular, essentially recovered the corresponding
result for the spaces G} ([6, formula 11.6, the case pg = p;]).

Finally, we turn to the hyperbolic situation. From Example 3 it is
seen that now the gi, are conjugated to the matrices

- _ ([ coshn sinhp
9 = \ sinhn coshn )

But according to (11) this gives exponential growth of the norm and
we must conclude that the general theory is not applicable. The dif-
ferent cases thus behave essentially differently. We may summarize the
preceding discussion as follows.

Theorem 2. We return to the set up of Theorem 1, replacing every-
where the space Fir 1y by F(pk s P 2 1. Then we have the interpolation

formula (10)
(10) {F(pko,[o)» -F(pkl'h)]ﬂ = F(Pkg,lg) ’ 0<é<l1 y

which is an isomorphism (equality up to equivalence of norm), provided
the pencil generated by the circles Cx, 1) and Cig, 1,y 18 either elliptic
or parabolic. If however this pencil is hyperbolic the natural approach
fails and we do not know whether (10) is true or not.

3. Real interpolation. Multipliers.

Now we turn to real interpolation. The problem is thus to de-
scribe the real interpolation spaces between two given space F{’ko lo)

and F{h.h) .
in general (and we refer again to [2] for details).

If (Ap, A;) is any Banach couple, one begins by defining the K-
functional: for any element a in the sum Ay + A; and any t with

0 < t < oo one puts?

First we recall some salient facts about real interpolation

K(t,a) = inf{||ao]| o, +tllaalla, }

8 If X is any Banach space, we use a subsript X to designate the corresponding norm,

thus writing |[-[| -
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where the infimum extends over all decompositions of a of the form
a = ag + a; with ag € Ag, a; € A;. One says that a belongs to the
K-space (Ag,A1)g,q, where 0 < § < 1 and 0 < ¢ < oo, if and only if

deff [ . _g.- dt\1/e
lallag ([ K@@y F) " < o0
0

if ¢ = oo the left hand side of the inequality is interpreted as a supre-
mum.’ In order to obtain a concrete representation of the K-spaces
one has to compute the K -functional, at least approximately.

If we are in the situation of an “operator pair” (E,D(A)) (see
Section 2), it is natural to try to exploit the functional or spectral
calculus associated with the operator A in question. More specifically,
in some situations one can prove that one has an estimate of the type

©n K(t,a) ~ lp(tA)al

with a suitable scalar function . (In particular, the couple (E, D(A))
is thus “quasi-linearizable” in a certain technical sense.) Then one has

@ e By = ([ e eenasr §)" <o

Let us look at some special cases.

1) In the Hilbert case (viz. E = a Hilbert space, A a positive self-
adjoint operator acting in E; c¢f. Section 2), there are plenty of such
functions: any function ¢ defined on (0, 00) such that ¢(A) = min(1, X)
will do. With the aid of this one can prove that in case ¢ = 1/2 indeed
holds (E,D(A))g1/2 = D(A%), up to equivalence of norm. (Indeed,
there is now a canonical choice for the function ¢: p(A) = (1+A72)7%;
with this choice one has even an isometry, provide the I-functional is
replaced by what is known as the K,-functional.) Thus, in this case,
and in general only in this case, the two approaches -real and complex
interpolation- produce the same result.

2) In the general case, it is natural to try to exploit the resolvent
R(t) = (1 +tA)™! (¢t > 0). If one has the estimate |R(t)|| < C, with
C independent of ¢, it is not very hard to show that (1) is fulfilled with

9 In the literature there is a J-functional and J-spaces, but these need not bother us

here.
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©(A) = A/(1 + A); operators A with this property are called positive.!°
Thus (2) in this case means that

@) @€ DW= ([ IROMale F)" <00

3) If A is the generator of a semi-group of operators, it is again
natural to use instead the semi-group of operators G(t) = e'A. If one
has ||G(t)|| < C, with C independent of ¢, one speaks of a bounded
semi-group and in this case one has the following result:

K(t,a) = uéi; IG(s)a —a||g .

Although this is formally weaker than (1), it is nevertheless sufficient
for establishing the desired analogue of (2), viz.

() aeEDWhg = ([ ¢ I6wa-dler )" <oo.

Let us mention that if A is the generator of a bounded semi-group of
operators, then A is positive.

REMARK 1. Above we have summarized some classical results due to
Lions, Grisvard, and others. Besides [2] we can also refer to the books
Butzer-Behrens (3], Triebel [16]. Case 3) will not be used here, but we
have now made mention of this case anyhow. (Perhaps somebody in
the future might want to use semigroups in the Fock context ... )

After this long digression let us return to our generalized Fock
spaces for good. More specifically, we are addressing ourselves to the
problem of quasi-linearizability. The case p = 2 is essentially trivial,
because as we have seen in 1) wltra in the Hilbert space case in general
we can, in principle, even obtain an exact result. Therefore we proceed
directly to the case of general p. (The problem of interpolation between
two Fock spaces with different p’s seems to be very hard; at least, it is
not likely that one has a quasi-linearizable couple in that case.) So we
are given two spaces F, ., and Fg, |\ with F{  NFG | # {0}, as-
suming also that the corresponding disks have non-empty intersection,
D(kq,10) N Dk, 1) # D- There is a natural candidate for the operator A,

10 por Hilbert spaces the two notions of positivity coincide.
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namely the operator Ty = T}, constructed in Section 2. So the problem
becomes to decide when operator Ty is positive in the above sense, that
iz, when the operators (1 4 ¢73)7! are uniformly bounded. Again this
1s basically a multiplier problem in the natural basis provided by the
spectral theorem (if p = 2) for which T} comes in diagonal form. The
nature of its solution depends on the type of the corresponding pencil
of circle. Therefore we shall proceed by case by case study.

1. Elliptic case. Making a preliminary conformal mapping (see
Section 1), one can put oneself in the situation of the two spaces FP =
FP = (”1'0) and Ff = F(”k,o), where we can assume, with no loss of
generality, that k > 1. In this case we have T1 f(z) = f(k~1/22) (¢f.
Section 1, Corollary to Theorem 1). It will be expedient to write § =
k=12, so that 0 < é < 1. In particular, we have then T} : 2™ + §™ z™,
so a basis in which T3 is in diagonal form is provided by the monomials
{z"} (n # 0). Moreover, we have as a consequence R(t) : z" ~— (1 +
t6™)~1z™. This suggests to look quite generally at multiplier transforms
on the space FP.

Given a bounded function w(n) defined on the set N of non-negative
integers, N = {0,1,2,...}, we define an operator R,, by setting

oo
R,f(2) = z w(n)apz"
n=0
whenever f € FP has the expansion
oo
f(z)= z anz".
n=0
it follows that R, maps each basis vector z™ into a multiple of itself,
R, : z" = w(n) z". We are interested in the boundedness of R, on F?.
First we establish an easy transference result which reduces the study
of R, to the study of Fourier multipliers.
Let us define the operator R, on L? (T), where T is the unit circle
parametrized by arc length 8, by
[ o]
R,f(8) = Z w(n)a,e™?
n=0

whenever f € LP(T) has the Fourier expansion

f(z)= Z ane’™?.

n=0
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Proposition 1. The operator R, 1s bounded on FP whenever R, is
bounded on LP = LP(T).

PROOF. We have
(o) 27
LiResr e 2 ame) = [ [T R ety ds e ar
C
0oo 0~ 2
=/ | R fr(-)IIE e™PT /2 rdr,
0

where we have written f,(8) = f(re*). If we assume that R,, : L? — LP
is bounded, then

2]

§ : anrnetn0
n=0

do.

~ 27
RS2 < C /
0
It therefore follows that

[ IRet@P e am(z) < © [ 15 7P ().
C C

We can now prove the following theorem; we assume now that w

is defined for all £ > 0.

Proposition 2. Let w a bounded function on (0,00) such that

(o}
JAGESES
Then for 1 < p < oo the multiplier R, is bounded on FP.

PROOF. In view of the previous Proposition 1 it is enough to show that
R, is bounded on LP, 1 < p < co. Again, using another transference
result between multipliers for the Fourier series and multipliers for the
Fourier transform (see [14, Chapter VII, Theorem 3.8]) it is enough to
show that the operator

Suf(z) = / "€ w(€) F(€) de

— 00

is bounded on L?(R). But this follows from the Marcinkiewicz mul-
tiplier theorem (cf. [4, Proposition 4.1]) under the above hypothesis
onw.
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REMARK 2. The proof of the Marcinkiewicz multiplier theorem actually
gives a bound for the norm of R, on F?. In fact,

IR, < (nwuw + [ 1w'(s>|da> I, 1<p<oo.

In applications one encounters multipliers of the form w.({) =
e(t(€)), t > 0, where ¥ is a positive monotone function. If we as-
sume that ¢ is bounded and that f0°° |¢'(€)] d€ < oo, then the operator
R, will be bounded on F? with a bound independent of ¢, ¢ > 0. In-
deed, as wi(€) = @'(t9(€)) t¥'(€) we have w0 + [ W'(€)|dE < C
with C independent of ¢, so that Proposition 2 is applicable (see Re-
mark 1). In particular, taking ¢(¢) = 6¢, where 0 < § < 1, we see that
the operators

oo

(3) Rif(z) =Y an(1+t8") 7" 2"

n=0

are uniformly bounded on F?, 1 < p < oco. In view of the general
remarks in the beginning of this Section we have thus established the
following theorem, which thus in particular settles in part a question
left over in [6].

Theorem 1. Let1 < p < 00, 0 < ¢ < 0o. Then the operators R; as
defined in (3) (with § = k~1/%) are uniformly bounded in F? = FP and
for f € FP = F? 4+ F? we have

> dt\1/q
fe Moy = ([ @ IRAlry F) " <.

REMARK 3. Thus the pair (F?, FT) is quasi-linearizable in the technical
sense.

There remain the cases p = 1, p < 1 and p = co. Here we shall
only consider the former case. It is not hard to see that for each ¢t > 0
the operator R; is bounded on F!. But unfortunately they are not
uniformly bounded. This indicates that it is very unlikely that the
Banach couple (F, F}) is quasi-linearizable, again indicating that no
result of the type of (2) can be true in this case. For reference, we state
the result as a theorem.
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Theorem 2. The operators R, are not uniformly bounded on F1.

The proof is by contradiction, but as it is rather long we prefer to
split it up into several steps in the form Propositions 3-5 below. Let us
begin by explaining the basic underlying idea.

Suppose that the operators Ry are uniformly bounded on F*'. Tak-
ing f(z) = eg,c(z) = e°* (c € C) and noting that

/ [co,c(z)} e"lZP/Z dm(z) - e|c|7/2 :

Cc

we see that one must have the estimate

) [ 1Rea e dmz) < €l
(o

(As the functions serve as “atoms” in the space F!, one sees that,
conversely, (4) implies uniform boundedness; ¢f. [6, Theorem 8.1.])
In what follows we shall show that (4) cannot hold true, proving the
theorem. In doing this we may as well assume that ¢ is a positive

number.

Let us set
2 " 1
(5) f(z,t,é)—;;?m, t>0, 0<é<1.

We wish thus to test the hypothesis
(6) /|f(cz,t,5)|e-l=f’/2 dm(z) < C e /?
C

for ¢ > 0 and C independent of ¢ and c.

First we replace f(z,t,6) by chain of simpler functions ending up
with the function j(z,t,4) in formula (13) below and then proceed to
the study of that function. Our first intermediary result is thus the
following.

Proposition 3. If inequality (6) holds with f(cz,t,6), then it holds with
f(cz,t,8) replaced by j(cz,t,6).
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Proor. Performing a Mellin transformation with respect to ¢ gives the
representation

' 1 frhice 4=A 26>
2 .

Cico  SINTA

for A =+ iy, 0 <y < 1. It follows from (7) that

co

(2 1.8) - flott gy = — [ S(plnD) -
(8)  flzt,8) = f(z,t7,6) /_w 2] o g,

3

where we also have moved the path of integration to the left so that it
passes through the origin. (Note that the identity (8) is a special case
of a more general formula stated in [13].) The essential feature of the

right hand member of (8) is the factor **” " for which

(9) / Ie“&—‘“ | e~ ll/2 dm(z) =2n e /2,
C

Introducing the “c-norm” of an entire function f by

11l = /C \F(c2)| !/ dm(z)

(in the notation of the Introduction it is up to a factor just the norm in
the space Fll/ﬁ), we see that the right hand side of (8) is a superposition

of functions all having the c-norm equal to e’/2, Now, t is going to
be large so the term f(z,t!,§) can easily be seen to satisfy (6). Thus
the right hand member of (8) is essentially a representation of f(z,t,6).
Due to rapid convergence at infinity of the integral in (8) we can pass
to the function

A -
sin(plnt) i
t,8) = —— € ' d
(10) g(z7 3 ) /A Sinhﬂ'l.t e ,'l

with A fixed > 0. This again may be replaced by
A :
h(z,t,8) = / sin(plnt) zs-iv g,
—-A K

B /Alll(1/5) sin(ulnt/In(1/8)) .o
—Aln(1/6) # a

(11)
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where in the last equality we have made the change of variable py —
p/1In(1/6). Choosing A so that Aln(1/6) = 7 we get

(12) h(z,t,6) = /" sin(ulnt: In(1/6)) .ein i

Finally, we pass to the function

(13) i(2,6,8) = /_ Sin("slii(tl/l};gl/é)) e dy.

It is easy to estimate the error thereby committed but we shall not enter
into details. Thus, testing (6) for f(2,t,0) is completely equivalent to
testing it for j(z,t,0).

Next we establish the following result.

Proposition 4. Let ¢ be a bounded radial function in C : p(2) =
S p(k)e 8. Then one has the identity

jez,ty, 5)(,0(2) e~/ dm(z)

(14) N c n
=(2n)° ) = 2"°(5 +1) ¢(-n),

where logt,, = (N +1/2)log(1/6).

PROOF. For every bounded function ¢ we clearly have

/«; i(z,t,6)p(z) /% dm2)
_ (/wsin(}llnt/ln(l/a)) dp) (Aecze‘”¢(z)e_|:|2/2 dm(z)).

- sin(pe/2)

(15)

Setting z = re'®, writing

(e ]

o(2) = p(re®) = 3 B(n,r)em,

n=—0oo
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(for our purposes we may without loss of generality assume that this is
a finite sum) and using the expansion

. > c" > cn
tu . . .
ec¥e’t = § : ' 2™ einH — ' rm em@ e:np.’
n. n.
n=0 n=0

we see that the inner integral in (15) equals
c" < 2
(16) ZWZ —e'"“/ G(—n,r)r*e " 2rdr.
0

Now choose ¢ =t in (15) so that Int/In(1/6) = N + 1/2, where N is

a positive integer at our disposal. Using the well-known identity

N
sin(N +1/2)u
142 COSNYU = ——F———"—""— |
’; # sin(p/2)
we get inserting (16) into (15)

/@ j(erty6) o(2) eI/ dm(z)

(17) N n oo .
=(27r)zzm/o G(—n,r)rte " /2rdr.
n=0

Specializing to the case p(e'?), that is, ¢(n) = @(n,r) independent
of r, we get

oo co
/ @(—n,r)r" e"2/2rdr = @(—n)/ rte 2 dr
0 0 -
= @(—n)/ (25)"% e ds
r2=2s 0

co
- L,S(——Tl) Qn/Z/ Sn/? e~ ds
0

= ¢(-n)2"/* (3 +1).

Summing up we obtain in this case in view of (17) the desired formula,
viz. (14).
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Finally, we prove the following result.

Proposition 5. There ezist trigonometric polynomials ¢ = o, of
7

degree N uniformly bounded in z and N, such thai
(18) /j(cz,tN,é')cp[\,(z)c_lzi?'/z dm(z) > C e log iV,
c ! '

where C > 0.

Proor. We choose ¢ as a pure cosine series, t.e. B(n) = @(—n):

(19) c,c=a0+2Zc,, cosné .

n=1
Even more, we shall take ¢ to be the Fejér function

_ cosé cos 26 cos N¢

ev =gy g taw—gt t T
cos(N +1)8  cos(N + 2)0 cos ZNG
1 2 2N -1’

(20)

cf. [15, p. 416, 13.41], where it is proved that supe |¢ (2} £ C. Com-
paring (19) and (20) we see that

- R 1
¢n(0)=0, 299N(n)=~‘--2'-ﬁ"_'“’('57:‘—:‘f5, (1<n<N),

t.e. (18) becomes

/ ilez,ty, 6)pp(2) e dm(z)
. A
(21)

By Stirling’s formula we have

Fz+1) = (%)I\/?.—vr_:z—t(l+o(1)), as T -+ co.
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For large n we therefore get

n n\n/2 n
n - (X or = .
DE+1)=(5) (/25 (L+o(1);

nl=T(n+1) = ()" Vamm (1+0(1)),

so that

Ty

Hence, for n large,

I(% +1)2"/? (%)"/2 v exn/2 1
— (1+0(1)) = (-7-;) 'ﬁ (1+0(1)).

c?e

c* _n n/2 1
(22) —T(z+1)2"/ = (-n—) —5 (1+o1).

For N > M both large we now get by (21) and (22) (if we use
1+0(1) 2 1/2)

/j(cz,tN,b')cpN(z)e"Mz/zdm(z)
C

(23) 1 L e\ ™? 1
2o 3 (F)

Now, take c as a large positive integer and choose N = ¢2, M = 2 —c
in (23). Then the sum in the right hand side of (23) becomes

2
XN:...z CZ ce n/Z___._l___
n 2¢2 —(2n-1)

n=M n=c?—¢

2 .
B Xc: Ze (c*=3)/2 1
n=c?—j 4 cz2—j 27 +1
0<j<e I=0

. (*=i/2
— zc:e(cﬁ_j)/g (1 +_J_._> =N/ 1
7=0 - ¢?—J 12j+1

~eil?
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- 1 2
2C’e°/2z - >Cef?loge,
pr 2)+1

proving (18).

It is clear that from Proposition 4 we get a contradiction to the
hypothesis (6) (or (4)). Thereby we have proved also Theorem 3.

Next we treat the parabolic case. As this case is rather parallel to
the elliptic one, we shall not be so detailed.

2. Parabolic case. We can again put ourselves in a model situation,
namely, when we have the two spaces GP = G} = F(”1 ;) and Gh =

Fliy»
k(> 1), whatever we like). Thus this situation corresponds to the pencil
of circles tangent to the imaginary axis at the origin. We have to put
the corresponding operators Ty, on diagonal form. To this end we first
take p = 2 so that we are dealing with Hilbert spaces. (As usual, we
then drop the superscript p in the notation for the spaces.) Then we

have the norms

where we without loss of generality can assume that k£ < 1 (or

191 = 15 e am(),
I = [ AP €™ dm(z).
Introducing the Fourier transform

foy = / e f(z)dz,

— 0o

then the right hand sides of the previous formulae become
RN 2
c [ IFE e,
c/ IF( X /2kdx.

From here it is readily seen that

e ST = ) XD,
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In terms of Moebius transformations thizs corresponds to the fol-
lowing. First it is seen that to f(z) — f())e*"/* there corresponds the

map
a+2 1 1

ar— b=

2a a 2

(It is the correspondence a +— 1/a that accounts for the Fourier trans-
form; as before (see Section 1) the symbol a is used the designate a
generic point of C.) This gives the isomorphism G = Sy (Schrodinger
space). In the same way, to f(z) fA(A)e’\z/4k there corresponds the
map

a+ 2k 1
2ka o2k

Elimination of a between the two equations yields

a

REMARK 3. Note that in particular this implies that for 6 € (0,1)

lgell%: = /C F(R)2 2 dm(z),

where 1/kg = 1—6+6/k. This is the result from [JPR], which we wrote
down already in the Introduction (see also Theorem 2 in Section 2).
From (24) we see now that our question is about the multiplier

1
1+ teQ/k—12/2

Imitating what we have done already in the elliptic case (this Section
infra, we associate, quite generally, with any suitable locally integrable
function Q(A) on the real line R a multiplier transform Pq (it is the
analogue of the previous R,,) defined on the space G? by the formula

Paf()) = Q\) f(N).

We denote by Pq the same transformation when consider on the
Lebesgue space L,(R). Then we have the following analogue of Propo-
sition 1.
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Proposition 6. The operator Pq is bounded on GP whenever Py is
bounded on LP(R).

PROOF. The proof parallels the proof of Proposition 1. Assuming that
Pq is bounded on LP(R) we obtain

Lipafr e an) = [~ e ([~ ipagar dz ) dy

< C/oo e—2v° (/oo |f(,;+iy)]7‘dx> dy

=c/c|f(z)|l’e-2y’ dm(z).

Thus Pq is bounded on GP.

Similarly, it is easy to carry over Proposition 2 and from there one
derives the expected analogue of Theorem 1 (in the statement of the
theorem replace everywhere FP and F: by GP and G: respectively),
but according to our above promise we omit the details.

There remains the hyperbolic case. But there is a difficulty hidden
which we have not been able to overcome ...

3. Hyperbolic case. In a model situation the pencil might consist
of lines through a point, say, the origin -the configuration that perhaps
first comes to our mind. So if p = 2 we are in a situation when the
spaces to be interpolated are Schrodinger spaces Sp. The trouble is
that in the general case p # 2 we do not possess a workable analogue of
these spaces; in particular, we know of no counterpart of the Corollary
to Theorem 1 in Section 1.

So let us instead take as model the case of the spaces F? and F(”k’ 0
with £ = secd, | = itanf. The pencil then consists of the circles
through the points 0 and —2 — 2:tand. (It is easy to see that this is
basically the set up of Section 2, Example 3 shifted the amount 2 to
the left.)

It is convenient to introduce, quite generally, the notation H} =
F(”k,,) if k and [ are related by the previous relation k = sec8, ! = itané.
The corresponding circle with center at the point —1 — 7 tan § may be
written Cy. We are going to follow our usual abuses putting H = H,
and also dropping the superscript p if p = 2.
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So we want to interpolate between H? and a fixed space HE. The
first thing is to determine the corresponding diagonalizing map (taking
temporarily p = 2). In the case of H we have § = 0 and the circle Cy
is the unit circle so transforming the space H into a Schrédinger space
So goes as before (in the parabolic case) via the Moebius map

a+2
2a

&

1 1
== 4=
a

5"

a— b=

In the case of H; and the circle Cy we first observe that the parameter
¢ has a geometric meaning: it is the angle between this circle and Cs.
Hence the previous map must essentially be composed by a rotation by
an angle 8. This leads to the map

e'%a + 2secd

a — b' S e ———
2¢eisecfa

N =

1
= -4
a

Elimination between the last two identities, as in the parabolic case,
yields

/_1. 1 _ie_—e_io 1..
b—§s1n0+(b—§)e —-a—+-2-zsm9,
where we have used Euler’s formula e~ * = cos§ —isin 8. From this we
get the map
(25) f(Z) — f"'(eiO/\) eisin 61%/4 .

(This would correspond to f(A) — f(}) eC(/k=DX*/4 i the parabolic
case; see formula (24).) But, in view of the appearence, of the factor e
in front of the variable A in the second half of (25), the map given by
this formula does not give a simultanous diagonalization of the group
operators { — g¢. To get a bona fide diagonalization we must first
apply a Mellin type transformation to the Fourier transform f( A). But
then we do not have anymore any such simple transfer results as the
above Propositions 1 and 6. Therefore we stop here hoping to be able
to resume this thread on a future occasion. Concluding let us only
remark (as a conjecture!) that perhaps it is the case that the presence
of a hyperbolic pencil does not imply quasi-linearizability.
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4. Concluding remarks.

In this section we consider some left-overs from the previous sec-
tions, also complementing some points in [9]. We begin by some easy
observations on the Orlicz case.

4.1. On Orlicz-Fock spaces.

Recall that, generally speaking, a measurable function f on some
measure space X endowed with a measure p is said to belong to the Or-
licz space L? = L¥(X, 1), where & is an Orlicz function (in particular,
increasing), if

(1) /x 3 (‘i(—”“')—') du(z) < o0

a

for some number « > 0. It is well-known that L% is a (quasi-)Banach
space with the (quasi-)norm of f defined by

(2) Ifllge = infe,

‘where a ranges over all numbers satisfying (1). If @ is convex, we can
drop the affix “quasi” everywhere. If ®(u) = u?P, p > 0, then we get
back the Lebesgue space L”.

This suggests (c¢f. Section 1) to introduce in our case the Orlicz-
Fock spaces F(q,’c, ) as the space of entire analytic functions f in C such

that the function |f(z)|e~(klzI*~Re(lz")/2 belongs to L® when X = C
and g = m (BEuclidean measure). Again it is clear that if ®(u) = u?,
p > 0, they reduce to the spaces F("k‘,). Also in the general case they
should have similar properties as the spaces F(qi_,l). The norm of f in
F(d;:,l) is the induced norm and will be written || f||; ;.4 - (In the special
case k =1, [ = 0 we allow us to drop these indices in the notation.)

We shall limit ourselves to calculating the norm of the correspond-
ing Gauss-Weierstrass functions e,. in one simple case, namely when @
is of the form

B(u)=) ApuP  with 4, >0,
p=1

for simplicity’s sake also taking k =1, 1= 0.
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REMARK 1. More generally we could have allowed functions admitting
an integral representation (Mellin transform):

®(u) = [; A(p)uP dp with A(p) > 0.

Using a formula established in [9, Section 2] for the norm of e, in
the space FP, we then find

eae(2) e 121272\ "
o () e

o0 2) o121/
=ZAP/C(Iea,C( )‘l; )p dm(z)

p=1
=2 2
(3) - _ exp (B Reac +2|ci )
_ ZA (2) 2 1—|af 1
= P
2473 ar A= [aP) 72
1 Reac? + |c|?
_ xp (§ _T—|_a|2——> 1
o or (1= a2/

where we in the last step have introduced the notation

oo

®i(u) = 2 (g)—l ApuP .

We now take account of (2) letting a tend to ||eqc]l¢. Then we end up
with the formula

1 Reac® + |c[2> 1
4 €aclle = exp (-_— —
@ e =22 3 mRE ) s e

In particular, we draw the conclusion that e, . € F(di_ ) if and only if
la] < 1. Obviously, a similar result must hold true for gencral ¥ and [
as well.
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4.2. Fock space in the case 0 <p < 1.

Now we return to the case of Lebesgue spaces L? but for a change
take p < 1. (Thus we are leaving the realm of Banach spaces.) Also we
take again k = 1, I = 0. In this situation we have the following obvious
generalizing of a corresponding result in [9, Section 8] for p > 1.1

Theorem 1. The metaplectic group G = Mp(2,R) acts on the space
F? 0 < p < 1. Indeed, if g € G then we have the following estimate
for the opearator norm of Ty in FP:

, 1
(5) “Ty”p ~ (1 _ Ig0|2)(l/p—1/2)/2 :

PROOF. Let f be in FP. Let us write ||f]|, = ”f“F, for the (quasi-)
norm in F,; we use this notation even for p > 1. Let us further put
ec(z) = eo,c(z) = e* (exponential function). In view of Wallstén’s
theorem [17] (atomic decomposition in Fy, 0 < p < 1; generalization of
the corresponding result for Fj in [6, Theorem 8.1]) we can write

f::Z/\L-ﬂze—c-El-l— Wlth Zl/\,{lp<00,
k cxll2 k

for some sequence of complex numbers {ci}. For ¢ € G we now obtain

T,f= 30 Mo

M Tearll;
For each index k we have ([9], Section 3)
1/2 o= c; /26

Tgeck = ego_ck/g 6“

In particular, we have

-1/2 vk
ITyecll, = llego,euoll, 161772 exp ( —Re TE
Beg | el
(1 EE e
‘(5) P\ 3 187
YT

11 This theorem again was used already in Section 2.
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/2p
:m“‘ 1/ 7l
( W 16] expk -—Re 5)
p
9

( )_ r |6ll/p -1/2 lel /'2
A

while
”cc‘k |Iz o qum/z

It follows that

: [ N B,
17,515 < 23 1 m( ) <z_(-§) i 5P < o0,

whence T, f € F,. As

o - 2, 187 1
go==,  1-|g0] ~1""W—7|3-|5,

it likewise follows that inequality {5) is true.
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On fractional differentiation
and integration

on spaces of homogeneous type

A. Eduardo Gatto, Carlos Segovia and Stephen Viagi

Abstract. In this paper we define derivatives of fractional order on
spaces of homogeneous type by generalizing a classical formula for the
fractional powers of the Laplacean [S1], [S2], [SZ] and introducing suit-
able quasidistances related to an approximation of the identity. We de-
fine integration of fractional order as in [GV] but using quasidistances
related to the approximation of the identity mentioned before.

We show that these operators act on Lipschitz spaces as in the
classical cases. We prove that the composition T, of a fractional integral
I, and a fractional derivative D, of the same order and its transpose
(a fractional derivative composed with a fractional integral of the same
order) are Calderéon-Zygmund operators. We also prove that for small
order a, Ty is an invertible operator in L?. In order to prove that T, is
invertible we obtain Nahmod type representations for I, and D, and
then we follow the method of her thesis [N1], [N2].

1. Definitions and statement of the main results.

In this paper (X, 6, 1) will be a space of homogeneous type which
is normal and of order v, 0 < v < 1, and such that u({z}) = 0 for all
z in X, and p(X) = co.

We recall that a space of homogeneous type consists of a set X, a

111
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quasidistance §, t.e. a function 6 : X x X — [0, c0) that satisfies

(1.1) é(z,y)=0 if and only if z =y,
(1.2) 6(z,y) = 6(y,2), for every z and y in X,

there is a positive constant x such that
(1.3) 6(z,y) < & (8(z,2) + &(z,y))

for every z,y and z in X, and a measure p defined on a o-algebra of
subsets of X which contains the open sets of X and the balls B, (z) =
{y : 8(z,y) < r} and satisfies the doubling condition: there exists
a positive constant A such that for every z in X and every r > 0,
0 < p(B2r(z)) £ Ap(By(z)). f X has more than one element, as in
this paper, the constant « in (1.3) cannot be less than 1.

A space of homogeneous type is normal if there are positive con-
stants A; and A such that for all z in X

(1.4) Arr < p(Bi(z)) L 4y, forall r > 0.

Two quasidistances é and p are said to be equivalent, p = §, if there
exist positive constants ¢; and ¢; such that for all z, y in X

(15) € 6(1:3 y) < p(ma y) <c 6(‘7:7 y) :

It is easy to see that if (X, 6, p) satisfies (1.4) then so does (X, p, ).
A space of homogeneous type is of order v, 0 < v < 1if thereis a
positive constant M such that for all z,z',y in X

(1.6) 16(z,y) — 8(z",y)] < M 67(z,2") (8(x,y) + 6(z",y))' 7.

It is shown in [MS] that in any space of homogeneous type there is
a topologically equivalent quasidistance é that satisfies (1.4) and (1.6).

For 0 < 3 < «, Lip(f) will denote the space of complex valued
functions f such that for all z and y in X

(1.7) 1f(2) = f(¥)| < C6%(z,y)

holds with a constant C independent of z and y. The norm of an
element f of Lip (B) is the infimum of the constants C in (1.7). Given
a ball B, CP(B) will denote the space of functions f in Lip(8) with
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compact support in B. We shall say that f belongs to C'g if f belongs
to Céi(B) for some B. The space 6'65 is the inductive limit of the Banach
spaces C?(B) with the inductive limit topology and (C?)" will denote
the space of all continuous linear functionals on Cf .

Let s(z,y,t) be a symmetric approximation to the identity of the

type introduced by Coifman, see Section 2. Let —oco < o < 1 ,we define
8o 1 X x X — [0,00) by

T 1/(a=1)
18 bale) = ( [t s@und) T, foraty,
0
and
ba(z,y) =10, forz=y.

We shall see in Section 2, Lemma 2.2, that for each «, §, is a quasidis-
tance equivalent to §, and it satisfies (1.6). Note that (X,d4,4) is a
normal space of order 7.

For 0 < a < v the fractional derivative of order a of f in Lip (8)N
L, a < B < v is defined by

ORIOF

1.9 D = .
The above definition extends the classical formula for functions on R™,
Duf(z) = lim / flztv) - 1(z) 4,
e—0 |y|
lyl>e

For f sufficiently restricted and 0 < « < 2, one has Do f =cq (—A)%/2 f,
where A is the Laplacean [S1], [S2], [S3].

For 0 < a < 1, the fractional integral of order a of f in Lip (8)NL!
is defined by

f(y)

J 8o~ %(z,y)

The definitions of D, and I, can be extended to Lip (/) for the
same  as above. This requires the following modification similar to
the one needed to define singular integrals on L*°:

(111) EJWEZ/(ﬂw~fh) ,,,,, HOETICO N,

SITx(x v 81t (zq, )

(1.10) Inf(z) = du(y) .
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and

du(y),

(1.12) Iaf(r)—k/f(y) (6}1""‘(1,1/) B é‘“(xo,y))

where z is a fixed but arbitrary point of X. It will be shown in Theorem
1.1 and Theorem 1.2 that Daf(:c) and I, f(z) converge absolutely for
all 2 and therefore changing z, in the definitions above results in adding
a constant. We show in Section 2, Lemma 2.4, that §4 , for 0 < a < 7,
has the cancellation property:

/X (627 () — 6272 (z', ) du(y) = 0.

In [GV] it was shown that for fractional integrals defined with a qua-
sidistance which has the above properties the classical theorems on
boundedness on LP, BMO, Lip (#) and H? hold. For the sake of com-
pleteness we prove the result for Lipschitz spaces in Theorem 1.1. See
[GGW], [GV].

We recall the definition of a singular integral operator as given in
[DJS] and [S3]. Let 2 = X x X \ A where A is the diagonal of X x X.
A continuous function K : & — C is a standard kernel if there exist a
number 7, 0 < < 1, and constants v > 1 and ¢ > 0 such that

(1.13) | K(z,y)] < for (z,y) in 2,

c
o(z,y)

and for v é(z,y) < é(z,z) we have

. . 67(x,y)
(1.14) |K(z,z) = K(y,2)] < ¢ ————61+"($,z) ,
and

. . §"(z,y)
(115) ,]\(Z,I)—-I\(Z,y)l Scm .

A singular integral operator is a continuous linear operator T : C(f -
(CFY associated with a standard kernel K in the following sense:

(TF,3) / / K(z,y) g(z) f(v) du(z) du(y),
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for all f,g € C'é’ with disjoint supports, and where (Tf, g) denotes the
evaluation of Tf on g¢.

A singular integral operator is called a Calderdén-Zygmund operator
if it can be extended to a continuous operator from L? to L2.

The transpose 'T of a singular integral operator T is defined by

('Tf,9) = (Tg,f),

forall f,ge C2 0<pB<¥.
The function s(z,y,t) introduced before, is continuously differen-
tiable in ¢. Let

(1.16) oz,y,t) =t %S(m,y,t)

and set‘

(1.17) Quf(z) = / a(z,u,t) F(u) du(y)
X

In this paper the letter ¢ will denote a constant, not necessarily
the same in different occurrences.
We can now state our main results.

Theorem 1.1. Let0 < a < B < 4.

a) If f € Lip(B) N L! then I, f(z) converges absolutely for all =
and there 1s a constant c independent of f such that

Mo fllLip(a+s) < cllfllLipep) -

b) If f € Lip(B), then To,f(z) converges absolutely for all z, and
there 18 a constant ¢ independent of f such that

”Taf“Lip(cx+ﬂ) < cllfllLipes) -

c) If f € Lip(B)N L* then Taf defines the same class as I, f in
Lip (a + B).

Theorem 1.2. Let0 < a < B < 7.

a) If f € Lip(B) N L™ then D, f(z) converges absolutely for all =
and there 1s a constant ¢ independent of f such that

“Daf”Lip(B—a) <c ”f”Llp(ﬂ) :
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b) If f € Lip(f) then ﬁaf(a:) converges absolutely for all x and
there 18 a constant ¢ independent of f such that

E ” <c i .
” af Lip(f~a) = ”f“Llp(ﬁ)

c) If f € Lip(B)NL> then 5nf defines the same class as Do f in
Lip(8 — a).

For similar classical results see [Z, Chapter XII].

Theorem 1.3. Let 0 < a < v, then Ty = Do, 13 a singular integral
operator with associated kernel

o 1 1 3 1
(1.18) A(l’y)_[(élj&“(z,t) (5‘11_,,(%” 6,1,—°(:z,y)) du(t).

Theorem 1.4. Let0 < a < v, then T, = DI, 1s a Calderén-Zygmund
operator.

Theorem 1.5. Let 5o = I, Dq, then Sof = 'Tof for every f in C8,
with 0 < a < B <7, and S, 13 a Calderén-Zygmund operator.

Theorem 1.6. If Q.(f) is the operator defined by (1.17) then the

following representation formulas hold pointwise everywhere and in the
weak sense:

(1.19) alaf= [ QU
for finLip(B)NL!, 0<a,a+ B <7, and

o d
(1.20) —chaf=/0 QN T

for finLip(f)NL®, 0<a< f <.

The following theorem extends a result obtained by A. R. Nahmod
in her Thesis [N2].

Theorem 1.7 There ezists ag, 0 < ag < 7, such that for 0 < a < aq
the operator T, as defined in Theorem 1.3 has a bounded inverse in L2.
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2. Lemmas needed for the proofs of Theorems 1.1
through 1.5.

The first lemma states the properties of a Coifman type approxi-
mation to the identity. These properties are well known, see [DJS], and
therefore the proofs will be omitted.

Let h > 0 be a C function on [0,00) such that A(r) = 1 for
0<r<1/2,and h(r) =0 for r > 2. For f € L} (X) and t > 0 set

7.5e) = 1 [ (A5 ) dutw),
M (x) = gy F2) = (@) £(2),

Vif(2) = ———— £(z) = $(=,1) f(z).

T,(ﬁ)(z)

St'—'—'M:TtVtTtA’It,

Now define S, by

then
S.f(z) = /Y s t) F(y) duly),

where

(z,y,1) = H2ULHY Joa( (22dy 4 (A8 1) duu)

Lemma 2.1. There exzist positive constants by, by, ¢;, ¢z, and c3 inde-
pendent of z, y, and t such that

i) s(z,y,t) = s(y,x,t) forall x,y in X andt > 0,

i) |s(z,y,t)] < 1/t for all ¢,y in X and t > 0, s(z,y,t) = 0 if
é(z,y) > b t, and ca/t < s(z,y,t) of 6(z,y) < by t,

i) |s(z,y,t) —s(z',y,t)| < c387(z,2')/t1FY for allz, 2’ and y in
X,andt >0,

iv) /s(:r,y,t) du(y) =1 forallz in X, and t > 0,
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v) s(z,y,t) is continuously differentiable with respect to t.

Lemma 2.2. For each o, —o0 < a < 1, the function é,, defined in
(1.8) s a quasidistance equivalent to 6 and it satisfies (1.6).

Proor. We shall prove first that there are positive constants ¢, and
¢l such that for all z,y in X

c 6(z,y) < balz,y) <l b(z,v).

Using the properties of s(z,y,t) stated in Lemma 2.1, we have that
s(z,y,t) =01if é(z,y) > by t. Then

[e ]

68 Nz,y) = / t*1s(z,y,t)dt.
6(z,y)/by

On the other hand ||s(-,-,t)||cc < ¢1/t, and therefore

to=2 dt = Ic-_la' Bl soal(z y).

53 (z,y) < &1 /

6(z,y) /b

Raising this inequality to the power 1/(a — 1) we obtain the first in-
equality of (2.1).

To obtain the second inequality of (2.1) note that s(z,y,t) > c2/t
if 6(z,y) < by t, hence by (2.2)

5~ (z,y) 2/ 071 2 dt = 2 b7 67 ().
8(z,y) /b2 t l-a

Raising this inequality to the power 1/(a — 1) we conclude the proof of
(2.1).

The fact that §,(x,v) is a quasidistance follows from the definition,
property i) of s(z,y,t) and (2.1). We will denote by k. the constant in
the inequality (1.3) for 6, .

We will show now that é, satisfies (1.6). If 6o(z,y) =0thenz =y
and 6,(z',y) = 6o(z,z') and

l6a(2,y) = ba(2", )| = ba(z,2") = 61(,2") (6a(z,y) + ba(z’,y))' 7.

Similarly when é,(z',y) = 0 we get the estimate above.
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Assume now that é4(z,y) # 0 and é64(z',y) # 0. Let

a= -bl— min{éa(l‘,y),éa(l‘,,y)},
1

then by property ii) of Lemma 2.1

|6a(z,y) — balz", )]

e 1/(a—1) o 1/(a-1)
= l(] t* 1 s(z,y,t) dt) R (/ to7 1l s(2',y, t) dt) : I
a

a
) (2—a)/(ax—-1)
< (/ 7 s(z, v, t) + 0(s(z,y,t) — s(z',y,1))]| dt)

([ e st - st vl at),

with 0 < 6 < 1. Using ii) and iii) of Lemma 2.1 we can majorize the
last estimate by

(c /°° fo=2 dt)(Z—a)/(a—l)(/w pa—7—2 c6)(z,z") dt)

a a .
< cé6X(z,z')a' "7

< c83(z,z") (ba(z,y) + Sa(z',y))' 7.
This concludes the proof of the lemma.

Lemma 2.3. Let a < 1 and ko > ko . There ezists a positive constant
Cy, such that

1627 (2,y) - 6271 (=", )| < Ci, 83(z,2') 6572 (=, ),
for all z,z',y in X such that
ko a(z,2") < balz,y).
The ezponent v is the order of the space.

This result follows from property (1.6 ), it was proved in [GV] for
ko = 2 Kq, the proof for k, > k4 is similar.
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Lemma 2.4. (Cancellation property of order a — 1). Let 0 < a < 7,
then

/X (627 (2,y) — 65 (a", ) du(y) = 0,

for any z, z' in X.

PROOF. We show first that
[ [ st = s Bl dutw) de < .
X Jo
We have
1 1
/ / t* 1 |s(z,y,t) — s(a'y,t)| du(y) dt < 2/ t*~1dt < co.
xJo 0

To estimate [y [t |s(z,y,t) — s(a’,y,t)|du(y) dt , observe that
the functions s(z,-,t) are supported in balls of radius b; ¢, also by iii)
of Lemma 2.1 we have
§7(z, '
‘S(JI,y,t) - S(I:', y’t)| <ecs _Z(T:T’_l .

Therefore using normality the double integral is majorized by

e 6(z,z')ct ®  dt
a—1 ) '
/; t ———_t1+7 dt§c5“’(:t,.1:)/l‘ t—l:':-_—(;(OO

Since
/X (8273 (2,y) - 8271 (2", v)) du(y)

- / / T (s(a,y 1) — s(a',,1)) dt dp(y),
X Jo

by changing the order of integration and using v) of Lemma 2.1 we
obtain that the integral is zero.

Lemma 2.5. Letz € X and r > 0. Then

1 —A+1
[ < .
/ P (z.9) du(y) < e1 , for A< 1,

5(z, )<
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and )
—_—d < er~AH A>1
/ 6,\(x’y) /‘L(y) —_ cr ) fOT' > )
5(z,y)>r

where ¢ 13 a constant independent of z.

Note that this lemma is valid for any quasidistance equivalent to
6. This lemma is well known. See for instance [GV].

3. Proofs of Theorems 1.1 through 1.5.

In the next proofs we will use without notice Lemma 2.2, Lemma
2.5 and normality.

PROOF OF THEOREM 1.1. To prove part a) observe that, since f €
Lip(B) N L!, the integral

fy)

LI = | 5oty

du(y)

converges absolutely for any .

Now consider z; # z, and let r = 84(z1,22), B = Ba«,r(z2) and
B¢ the complement of B. Since é, has the cancellation property stated
in Lemma 2.4, we have

Iof(z2) — I f(z1)

= [ 0w~ $6) (g~ eiayy) )
Then
|Faf(22) = Lo (1)
< [ Uw) = )] du(y) + [f(y) — f(z2)| du()

B 63(_&(‘12»?/) éé—a(‘rlay)

+ [ 170) = fe) duy).

1 1
& %(z2,y) 68 %(z1,Y)

Since |f(y) — f(z2)| < || filLip(s) 7* for y € B, the first integral is less

than or equal to c||f]|Lip(s) °T* -
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To estimate the second integral observe that B C By _(2x,+1)-(Z1)
then using the previous argument and integrating over this ball we
obtain that this integral is less than or equal to c||fl|Lip(s) rBte

To estimate the third integral observe that for y € B¢ we can apply
Lemma 2.3, and using that f € Lip (/) this integral is majorized by

C||f||Lip(p)T7/ 68+ Y(zy,y) du(y) < || fllLipeay TP Fe.
BC

Since r = 84(z;,z7) the proof of part a) is complete.

To prove part b) we show first that I, f(z) converges absolutely
for every z. Since 8, has the cancellation property stated in Lemma
2.4 we can write

Lf@) = [Uw) - 1) (qragy ~ Fvimry) 40

Now it is clear that the function inside this integral is integrable over the
ball By s, (z,z,)(Z)- To see that it is also integrable in the complement
of this ball we apply Lemma 2.3 and use the fact that f € Lip (5). The
proof that ||fo,f||Lip(o.+,3) < c||fllLip(s) proceeds exactly as in part a).

Finally the fact that for f € Lip (8)NL!, I, f coincides with I, f as
an element of Lip (a + ), follows from the fact that for such a function

Lo f(z) = Iaf(z) = Lo f(z0).

PROOF OF THEOREM 1.2. Since f € Lip(f)N L™ with a < f < 4,

the integral
fy) - fz)

Daf(®)= [ TS3e(a,y)

1(y)

converges absolutely for every z.
Now consider z; # z, and let r = 6_4(z1,22), B = Bay__-(22)
and B® the complement of B. We have

) = )],
6.1:};0(-7:2a y)
|f(y) — f(=z1)

B 61_—{;&(:1:1,,!}/)

|Da f(z2) = Daf(21)] < 1(y)

+ dp(y)
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y) = f(z2) _ fw) = f(z1)
+f

61_-1;0(132,?;) 51:20@1711)
Since f € Lip(8) the first integral is majorized by c|| f||Lip(s) 7? ™. To
estimate the second integral observe that B C B,__(2x_,+1)-(Z1) then
integrating over this ball and arguing as before this integral is majorized
by ¢ || fllLipa) ™7 -
To estimate the last integral we first rewrite the integrand as follows

f(z1) — f(z2) . 1 1 _
6”“( T2, ) U= 1) (7~ 7))

dp(y) -

then this integral is less than or equal to

/ |f(z1) — f(z2)]

T (209) dp(y)

1
0= 160 [z = Gy | 0

The first term is majorized by ¢||f||Lip(sy 7°~*. Using Lemma 2.3 we
can majorize the second term by
613-—::—1—-7 B—a
Be

1 Fllipes) 6Lalz1,22) (z2,y) du(y) < c|lfllLipsy T
Since r = 6_q(z1,z2) the proof of part a) is complete.

To prove part b), we show first that Dof (z) converges absolutely
for every z. For z fixed, since f € Lip(f), the integral converges abso-
lutely over the ball Byx__s_,(z,z0)(%). To prove that it also converges
absolutely in the complement of this ball rewrite the integrand as fol-
lows

flo) = f&) v oo L .
Tty T (s~ s )

The first term is clearly integrable. The fact that the second term is in-
tegrable is a consequence of Lemma 2.3.<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>