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Abstract� We study local and global Cauchy problems for the Semi�
linear Parabolic Equations �tU � �U � P �D�F �U� with initial data
in fractional Sobolev spaces Hs

p�R
n�� In most of the studies on this

subject� the initial data U��x� belongs to Lebesgue spaces Lp�Rn� or
to supercritical fractional Sobolev spaces Hs

p�R
n� �s � n�p�� Our pur�

pose is to study the intermediate cases �namely for 	 � s � n�p�� We
give some mapping properties for functions with polynomial growth on
subcritical Hs

p�R
n� spaces and we show how to use them to solve the

local Cauchy problem for data with low regularity� We also give some
results about the global Cauchy problem for small initial data�

�� Introduction and results�

���� The evolution equation�

We study the Cauchy problem for the Semilinear Parabolic Equa�
tion

�
�

�
�tU ��U � P �D�F �U� � �t� x� � R

� � R
n �

U�	� x� � U��x� �

�
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where P �D� is a pseudodi�erential operator of order d � �	� � and
where F is a nonlinear function which behaves like jxj� or x jxj���

�� � 
�� The most classical examples of such evolution equations are
the semilinear heat equations

�tu��u � a u juj��� �

the Burgers viscous equations

�tu��u � a �x�juj
��

and the Navier�Stokes equation

�tu��u � P r�u� u� �

where P denotes the projector on the divergence free vector �eld �see
�Ca� for instance��

We look for mild solutions of �
�� i�e� for solutions of the integral
equation

�� U�t� x� � et� U� �

Z t

�

e�t����P �D�F �U���� d� �

where et� is the heat kernel� As usual the fractional Sobolev spaces
and their homogeneous versions are de�ned by

Hs
p�R

n � � ff � S ��Rn� � �sf � Lpg

and
�Hs
p � ff � S ��Rn� � ��sf � Lpg �

where �s and ��s are the operators with symbols �s��� � �
 � j�j��s��

and ��s��� � j�js �these spaces are sometimes also denoted Lp�s�Rn ��
see �Me��� In the sequel we will say that Hs

p�R
n� is supercritical if

s � n�p� i�e� if the embedding Hs
p�R

n� 	� L��Rn� is veri�ed and� on
the contrary� we will say that Hs

p�R
n� is subcritical�

In the proofs of existence and uniqueness for ��� there always exists
a tight connection between the regularity of the Cauchy�s data U� and
the properties of the nonlinear term P �D�F �U�� Thus� for F �x� � jxj��
Giga �Gi� proved existence and uniqueness for Equation �� as long as
U� belongs to an Lp�Rn� for p large enough� When U� belongs to su�
percritical Hs

p�R
n� spaces� Taylor �Ta� proved existence and uniqueness
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for �� under the assumptions F �	� � 	 and F � C �s	���R�� One of our
purpose is to study all the intermediate range of regularity� namely� to
solve �� for initial data in Hs

p�R
n� with s in �	� n�p�� About this prob�

lem� partial results have been found by Henry �He� who proved that� if
s � � d and if F maps bounded sets from Hs

p�R
n� into bounded sets

in Lp�Rn �� then �� is well posed� Let us remark that� in the examples
considered by these authors� the action of F on the functional space
of the initial data is well understood� This allows to obtain crucial
estimates on the nonlinear terms to solve ��� in the �rst two cases
F � Lp �� Lp�� and F � Hs

p�R
n� �� Hs

p�R
n� is bounded and in the

third one� the hypothesis on F implies some similar properties�
In this paper our goal is to improve Henry�s results for the local

Cauchy problem and Giga�s results for the global Cauchy problem �for
small initial data�� We give the minimal regularity of U� �see Remark �
after Theorem 
�� about this�� measured on the scale of Hs

p�R
n� spaces�

which ensures both existence and uniqueness for ��� So� for a �xed p
in �
����� we are looking for the smallest exponent of regularity such
that� for all U� in Hs

p�R
n� with s greater than this smallest exponent�

existence and uniqueness occur� In such a framework one of the most
important di�culty arises from the fact that the action of the nonlinear
function F on subcritical Hs

p�R
n� spaces is badly understood� So� to

solve �� in subcritical Hs
p�R

n� spaces� we will need to prove some map�
ping properties on those spaces for functions with polynomial growth�
this will be realized using harmonic analysis and paradi�erential calcu�
lus techniques in Section ��

As an example� let us consider the nonlinear heat equations

��� �tU ��U � aU jU j��� � �t� x� � R
� � R

n 


When U�t� x� is a solution of ��� then� for each � � 	� the functions U�
de�ned by U��t� x� � ����d�������U���t� �x� are also solutions �here
d � 	� and� one can check that U and U� have the same norm in
L��R� � �Hs

p� if and only if

��� s � sc �
n

p
�

� d

�� 




Without further assumptions on the nonlinear term� this scaling ar�
gument suggests that� for all data in Hs

p�R
n �� there exists a unique

solution of ��� as long as s � sc� This also suggests that the �right
spaces� for the study of global existence are the spaces Hsc

p �Rn�� For
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instance� we show �see Theorem 
��� that� for all U��x� � H��R
�� one
can �nd a unique local solution of ��� as long as � � �
� �� and� fur�
thermore �see Theorem 
���� this solution is global as long as kU�kH� is
su�ciently small� This result improves Henry�s results because� using
his criterion� one can only prove existence and uniqueness in H��R
�
for � � �
� ���

In fact� we will show that this scaling argument is true for Equa�
tion �� even if P �D� and F do not possess the exact homogeneity of
Equation ���� For these reasons we will say that Hs

p�R
n� is supercritical

�respectively critical� for �� if s � sc �respectively if s � sc��
To avoid technical problems we will always assume that

��� s �
n

p
�
n

�

and that

��� s � 	 


Indeed� according to the Sobolev embedding theorem� if u � C��	� T ��
Hs
p� with s as in ��� and as in ��� then u � C��	� T �� L�p� with �p � ��

Hence� the term F �u� in �� is well de�ned in D���	� T ��Rn�� On the
contrary� if ��� or ��� is not satis�ed� solutions in C��	� T �� Hs

p� cannot be
de�ned in a simple way� for instance� if u � C��	� T �� Hs

p� with s � 	�
then F �u� has no sense a priori� For the study of such cases� when
��� or ��� are not ful�lled� we refer to �Ri� where we show that ��
can sometimes be solved using some smoothing properties of the heat
kernel�

���� Hypotheses on the nonlinear terms�

About the nonlinear terms P �D� and F �u� we will make the fol�
lowing assumptions�

H
� P �D� is a pseudodi�erential operator of degree d � �	� �
with constant coe�cients �and so P �D� is bounded from Hs�d

p �Rn�
to Hs

p�R
n� for all s � R and for all p � �
������

About F we will assume that

H� there exists � � 
 such that�

i� s 	 n ��� 
���p���
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ii� F � R �� R veri�es jF �x�� F �y�j 	 C jx� yj�jxj��� � jyj����
or�

H�� there exists � � 
 such that�

i� n ��� 
���p�� � s � min f�n�p� 
� ��� 
���� n�pg�

ii� F � R �� R is ��� time di�erentiable� DjF �	� � 	 for j �
	� 
 
 
 � ��� � 
� D��	F �	� � 	 if � �� N � and jD��	F �x� � D��	F �y�j 	
C jx� yj����	

or�

H��

i� n�p � s�

ii� F � R �� R veri�es F �	� � 	 and F � C �s	���R��

Note that those assumptions on the nonlinear term F depend in a
crucial way of the smoothness of the initial data U��x�� Indeed� when
U��x� belongs to a supercritical Hs

p�R
n� space then� since we look for a

solution in C��	� T �� Hs
p�� we look for a bounded solution of ��� Hence�

in H��� we do not need any assumptions on the asymptotic behavior of
F � we just need smoothness assumptions on F � On the contrary� when
U��x� belongs to a subcritical Hs

p�R
n � space� then U��x� is possibily

unbounded in a neighbourhood of some point x� and then we need
assumptions on the behavior of F at in�nity to �control� F �U��x��
near x��

Note also that� from the assumptions on F � we can easily deduce
from H��ii� the following properties for the intermediate derivatives of
F �

Lemma ���� If H��ii� holds then there exists a constant C such that�

��� jDjF �x��DjF �y�j 	 C jx� yj �jxj��j�� � jyj��j��� �

for all j � 	� 
 
 
 � ���� 
�

��� jDjF �x�j 	 C jxj��j �

for all j � 	� 
 
 
 � ����
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���� Statement of main results�

To solve �� the main idea is to counterbalance the loss of smooth�
ness coming from the nonlinear terms by the smoothing e�ects of the
heat kernel� In the framework of Lp�Rn � spaces� according to H� and
H older�s inequality� F � Lp �� Lp�� is continuous� If H�� holds there
is no loss of smoothness on the Hs

p�R
n � scale thanks to the following

Theorem �see �Me� or �Ta���

Theorem ���� Let p � �
����� If H�� is ful�lled then� for all u �
Hs
p�R

n�� F �u� belongs to Hs
p�R

n � and furthermore

kF �u�kHs
p
	 C �kukL�� kukHs

p



On the other hand� in the case of subcriticalHs
p�R

n� spaces� there is
no stability by composition with nonlinear functions� For instance� the
Hs
p�R

n� spaces are algebras if and only if s � n�p� For s � �
�
�p� n�p �
and p � �
���� one can also prove that the functional calculus is trivial
in Hs

p�R
n � �see G� Bourdaud �Bo� for instance�� if F maps Hs

p�R
n� into

itself for s in this range then f�x� � a x�
To measure the loss of smoothness on the Hs

p�R
n � scale coming

from the composition by F � we will prove the following Theorem in
Section ��

Theorem ���� Let p � �
���� and s such that

max
n
	�
n

p
�
n

�

o
� s �

n

p



Let s� de�ned by

�!� s� � s� ��� 
�
�n
p
� s
�



If H� or H�� is ful�lled then� for all u � Hs
p�R

n�� F �u� belongs to

Hs�
p �Rn� and furthermore� there exists a constant C independent of u

such that

kF �u�kHs�
p
	 C kuk�Hs

p
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Remarks�


� Note that the condition s 	 n ���
���p�� in H�i� is equivalent
to

�
	� s� 	 	 


In the same way� the conditions n ���
���p�� � s � �n�p�
����
���
in H��i� are equivalent to

�

� 	 � s� � �� 
 


� The hypothesis s � max f	� n�p � n��g ensures that F �u� is
well de�ned as an element of D��

�� The restriction s � �
�n�p����
��� in H��i� �i�e� s� � ��
�
comes from the lack of smoothness of F at x � 	� However� if F is C�

�F �x� � xm for instance�� then in H��i� we must only assume that

n ��� 
�

p�
� s �

n

p

to obtain Theorem 
���

�� The value of s� given by Theorem 
� is optimal� To see this we
have just to consider the example of u�x� � ��x�x�� and F �x� � jxj�

where � is a cut of function near 	�

�� In order to solve nonlinear Schr odinger equations� T� Colin �Co�
established a related result to Theorem 
� for the spaces Hs

p�R
n� 


Lz�Rn �� Recently another proof of Theorem 
� has been found by
T� Runst and W� Sickel in �RS�� First� using paraproduct techniques�
they prove Theorem 
� in the special case of polynomial functions�
Then� using a Taylor expantion of F and Poisson approximations of
u� they prove Theorem 
� in the general seeting of H��� Our proof
is in fact very di�erent� First� we use di�erent techniques �we only
use paradi�erential calculus� and� second� we do not need to distingue
between the polynomial case and the general case�

Using the nonlinear estimates given by Theorem 
� and the �xed
point Theorem� in Section  we prove the following result about the
local Cauchy problem�
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Theorem ���� Let p � �
����� Assume that ��� and ��� holds� and

that H� or H�� or H�� is ful�lled�

a� For all initial data U� in Hs
p�R

n� with s � sc there exists a

unique maximal solution U�t� x� of �� in C��	� Tm� � Hs
p� with

Tm � C kU�k
����

Hs
p

� where  �
s� sc


�

and� if Tm � ��� then

lim
t�Tm

kU�t� ��kHs
p
� �� 


b� Furthermore the following smoothing e�ects occur �

� U�t� x��et�U� � C��	� Tm� � Hs�	
p � for all � � ���
�  if s � n�p

and for all � � � d if s � n�p�

� If F is C��R� then�

U�t� x� � C����� Tm��Rn� �

for all � � 	�

c� Let us assume that s �  � d� Let U � C��	� T�� � H
s
p� and

V � C��	� T�� � H
s
p� be the maximal solutions for the respective initial

data U� and V�� Then�

kU � V kC����T ��Hs
p�
	 C�T � kU� � V�k

���
Hs
p



for all T � minfT�� T�g�

Remarks�


� Let us consider Equation ��� with U� � Hs
p�R

n �� If s �  � d
and if � � 
��
 � sp�n� then Henry�s results �He� give existence and
uniqueness of a solution in C��	� T � � Hs

p�� Theorem 
�� improves this
because one can consider larger values of � �see the example in Section

�
� and because the condition s � � d is not needed�

� Because of ��� we see that Lp�Rn� is supercritical for �� if and
only if p � pc where pc is de�ned as

�
� pc �
n ��� 
�

� d
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So� for U� � Lp�Rn � with p � pc and p � � �to make sure that ���
and that ��� are ful�lled with s � 	�� there exists a unique solution
of �� in C��	� T �� Lp�� this had ever been proved in �Gi�� However�
when U� � Hs

p�R
n � with Hs

p�R
n� 	� L�p for supercritical L�p�Rn � space�

Giga�s results give existence and uniqueness only in C��	� T � � L�p� but
nothing is said about the Hs

p�R
n� regularity of the solution� Theorem


�� answers precisely to this question�

�� If U� � Lp�Rn� with p � pc� phenomena of non�existence and
non�uniqueness may occur �see �We
� and �HW��� Note also that non
uniqueness could also occur in the space Hs�Rn� for subcritical value
of s� see Tayachi �T� for the nonlinear heat equations and Dix �Di� for
the nonlinear Burgers equations� Theorem 
�� shows that this could
occur only for subcritical Hs

p�R
n � spaces since it is su�cient to assume

that U� belongs to Hs
p�R

n� with s � sc to ensure both existence and
uniqueness� Thus� with no further assumptions than H� or H�� on
the nonlinear terms� our results are optimal� However� for some more
speci�c nonlinear terms� one can sometimes prove that �� is well posed
in some subcritical spaces� for instance for the nonlinear heat equa�
tions with the �good� sign and for the Burgers viscous equation with
nonlinear term in divergence form �see �EZ���

�� We mentioned earlier that the restrictions ��� and ��� are only
technical� Indeed� when U��x� � Hs

p�R
n� with 	 	 sc � s 	 n�p�n���

using Lq��	� T � � Lz� estimates for the heat kernel we can always solve
��� Also� when U��x� � Hs

p�R
n� with sc � s � 	 we can sometimes

solve ��� this allows us to solve �� with measures or distributions as
initial data� see �Ri��

In the critical case� we obtain existence of a solution but uniqueness
occurs �a priori� only in a subspace of C��	� T � � Hsc

p �� However� in this
case� we prove global existence for small initial data� We also prove
some time decay estimates for those solutions in various Lq�Rn� norms�

For the study of the global Cauchy problem� we will assume that

H
�� P �D� is a pseudodi�erential of order d �  with homogeneous
symbol P ����

and

H�� F �	� � 	 and there exists � � 
 such that�

jF �x�� F �y�j 	 C jx� yj �jxj��� � jyj���� 
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First� let us recall a useful result about the Cauchy problem for small
initial data in Lpc�Rn � which has been proved by F� Weissler �We� for
the nonlinear heat equations� by T� Kato �Ka� for the Navier�Stokes
equations and by Y� Giga �Gi� for the general problem ���

Theorem ���� Assume that H
�� and that H�� are ful�lled� Assume

furthermore that pc � 
� Let ��q� de�ned as

�
�� ��q� �
n



� 


pc
�




q

�



Then� there exists an absolute constant A such that� for all U��L
pc�Rn�

with kU�kLpc 	 A� there is a unique global solution U�t� x� of �� such
that

�
�� t �� t
�q�kU�t� ��kLq � BC��	����� �

for all q and ��q� such that

�
�� pc 	 q � �� and 	 	 ��q� � ��� �

and such that

�
�� lim
t���

t
�q� kU�t� ��kLq � 	 �

for all q and ��q� such that

�
�� pc � q � �� � � � q and 	 � ��q� � ��� 


Remarks�


� Generally� the assumption pc � 
 is sharp� For the nonlinear
heat equations ��� with a � 	 the blow�up for non�negative C�

� �R
n�

initial data has been proved when pc 	 
 �see �Fu� and �We���

� Note that uniqueness in BC�R� � Lpc� occurs only on the sub�
space de�ned by �
����
�� and �
����
��� if V �t� x� is a solution of ��
in BC�R� � Lpc�� we do not know if V satis�es �
����
�� and �
����
��
or not�

�� Note that� from Theorem 
��� the asymptotic decay of U�t� x� in
Lq�Rn � norm is exactly the same as the asymptotic decay of et� U��x�
as long as the decay rate ��q� satis�es ��q� � ����
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�� Note also that� since pc � 
� there always exists a q� such that
�
�� holds� if � 	 pc this is obvious since ��pc� � 	 and if pc � �
one can check that for q � ��� � pc� then 	 � ���� � ��q� � ���pc� �
�� d����� 	 ��

First� we will prove a slight improvement of the Giga�s result�

Lemma ���� Assume that kU�kLpc 	 A and let us consider U�t� x� the
Giga�s solution of ��� Then�

�
�� kU�t� ��kLq 	 C t�
�q� kU�kLpc � for all q � �pc���� 


Remark� Note that� in the estimate �
��� there is no any restrictions
on the size of the decay rate ��q��

Then� using the Lemma 
�� we will consider the case of initial
data with arbitrarily high norm in subcritical Lp�Rn� spaces and small
norm in the critical space Lpc�Rn��

Proposition ���� Let U� � Lpc�Rn�
Lp�Rn� with p 	 pc and assume

that kU�kLpc 	 A� Let us consider U�t� x� the global solution of ��
given by Theorem 

�� Then�

U�t� x� � BC�R� � Lp� 
BC�R� � Lpc� ��
!�

kU�t� ��kLr 	 C t�n�����p���r� kU�kLp ��	�

for all r � p and t � 	�

Remark� One more time we see that U�t� x� decay in Lr�Rn� with the
same rate than et� U��x� this� without any restriction on the decay rate�
For the Navier�Stokes equations� such a result has ever been proved in
�Ka� but only when n �
�p� 
�r�� � 
� in �	��

Using Proposition 
�
� in Section ��� we will prove the following
result on the global Cauchy problem for initial data in Hs

p�R
n� spaces�

Theorem ���� Assume that H
�� and H�� hold� Assume that pc � 

and that p ��pc �

��� pc�� Then�
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a� There exists an absolute constant A� such that� for all U� �
Hsc
p �Rn� with kU�kHsc

p
	 A�� there is a unique global solution U�t� x�

of �� in C��	����� Hsc
p � which satis�es �
����
�� and �
����
��� Fur�

thermore U�t� x� satis�es the estimates �
!� and �	��

b� Let U� � Hs
p�R

n� with s � sc� If kU�kHsc
p

	 A�� then the

local solution of �� given by Theorem 

� belongs to BC�R� � Hs
p� and

satis�es the estimates �
!� and �	��

Remarks�


� For data with an arbitrarily norm in Hsc
p �Rn � one can also prove

local existence and uniqueness in a subspace of C��	� T �� Hsc
p � de�ned

by a local version of �
����
�� and �
����
���

� There is no restriction on the size of kU�kHs
p
in Part b� of The�

orem 
��� we just assume that kU�kHsc
p �Rn� is small enough �the only

norm invariant by scaling��

�� For the Navier�Stokes equations� using Besov spaces of non�
positive order� one can also prove global existence under a weaker as�
sumption than the natural assumption kU�kHsc

p
	 A �for instance see

�GM�� �KM� or �Ca���

In Section  we will study the local Cauchy problem under the as�
sumptions of Theorem 
��� we prove existence� uniqueness and continu�
ous dependance with respect to the initial data� we also prove smooth�
ing e�ects for the solution of ��� In Section � we study the global
Cauchy problem for small initial data in the critical space Lpc�Rn ��
for initial data in the space Lp�Rn� 
 Lpc�Rn� for subcritical Lp�Rn�
spaces and then� for initial data in the Sobolev spaces Hs

p�R
n�� we will

prove Lemma 
�� Proposition 
�
 and Theorem 
��� Next� in Section
�� we will prove the nonlinear estimate of Theorem 
� which is the key
estimate to prove the Theorem 
���

�� The local Cauchy problem�

We �rst prove existence of a solution �Section �
� and then unique�
ness �Section ��� In Section �� we study smoothing e�ects for �� and�
in Section ��� we study continuous dependence of the solutions with
respect to the initial data�
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���� Existence�

First we assume that Theorem 
� holds and that U� belongs to
subcritical Hs

p�R
n� spaces� In the sequel C will denote a non�negative

constant which may be changed from one line to another� We also forget
the time dependance of C since in this section we are only dealing with
a local problem� To simplify the notations we de�ne

L�u��t� x� �

Z t

�

e�t����P �D�F �u���� d� 


We introduce the exponent �p given by

�
�



�p
�




p
�

s

n
�

and by ���� ��� and since s � sc�

�� �p � � and �p � pc 


We de�ne the spaces

��� Y � C��	� T � � Hs
p�

and

��� X � C��	� T � � L�p� 


Hence� by the Sobolev embedding Theorem� Y 	� X� Now� let us
consider the sequence of functions

��� u� � et� U��x� � uj�� � u� � L�uj� 


First we are going to prove that fujg converges strongly in X to a
limit U which veri�es �� �this proof follows closely Giga�s proof but
we detail it for the reader�s convenience� and second� using the new
estimates given by Theorem 
�� we will show that U belongs also to Y �
Let us recall the �Lp�Lq� and �Hs�	

p �Hs
p� estimates for the semigroup

e�� �see �Tr���
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Lemma ����

a� For all q � p and � � 	� there exists C such that

ke��fkLq 	 C ��n�����p���q� kfkLp 


b� For all � � 	 and � � �	� T �� there exists C�T � such that

ke��fkHs��
p

	 C�T � ��	�� kfkHs
p



c� For all � � 	 and � � 	� there exists C such that

ke��fk �Hs��
p

	 C ��	�� kfk �Hs
p



By Part a� of Lemma �


��� ku�kX 	 kU�kL�p 	 C kU�kHs
p



Let u and v in X then�

kL�u��t�� L�v��t�kL�p 	

Z t

�

��e�t����P �D� �F �u����� F �v�����
��
L�p d� 


Since we are working in the whole Euclidian space Rn � the operators
e�� and P �D� are some Fourier multipliers and so�

e�t����P �D� � P �D� e�t���� � e��t����� P �D� e��t����� 


Furthermore by H
�� P �D� � Hd
p �R

n� �� Lp�Rn � is bounded and so�
using Lemma �
�

ke�t���� P �D� �F �u����� F �v�����kL�p

	 C �t� ���d�� ke��t����� �F �u����� F �v�����kL�p

	 C �t� ���� kF �u����� F �v����kL�p�� �

�note that the �rst part of �� is needed� where� by ����

��� � �
d


�
n



�� 


�p
� 
�

��� 
� �s� sc�


� 
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Using this last estimate and H older�s inequality� we obtain

kL�u��t�� L�v��t�kL�p

	 C

Z t

�

�t� ���� ku���� v���kL�p

�
ku���k���

L�p � kv���k���
L�p

�
d�

and� since � � 
�

��� kL�u�� L�v�kX 	 C T ��� ku� vkX
�
kuk���X � kvk���X

�



Furthermore L�	� � 	 and from ��� and ��� we deduce that

�!�

���	��

kuj��kX 	 kU�kHs

p
� C T ���kujk�X �

kuj�� � ujkX 	 C T ���kuj � uj��kX

�
�
kujk���X � kuj��k���X

�



Then� a standard �xed point argument shows that� for

��	� T �
C

�
kU�k

������������
Hs
p

�

the sequence fujg converges strongly in X to a limit U which obviously
solves �� since �p � � by ���

Now� we must prove that this solution belongs also to Y � Let
u � Y � then�

kL�u��t�kHs
p
	

Z t

�

ke�t����P �D�F �u����kHs
p
d� 


As previously

ke�t����P �D�F �u����kHs
p
	 C �t� ���d�� ke��t�����F �u����kHs

p

	 C �t� ����d�s�s���� kF �u����kHs�
p




But now� using Theorem 
�� we can bound the term kF �u����kHs�
p

by
C ku���k�Hs

p
and furthermore� thanks to ��� and to ���� we obtain

ke�t����P �D�F �u����kHs
p
	 C �t� ���� ku���k�Hs

p
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This last inequality leads then to

kL�u��t�kHs
p
	 C

Z t

�

�t� ���� ku���k�Hs
p
d� 	 C T ��� kuk�Y

and so by ����

��
� kuj��kY 	 kU�kHs
p
� C T ��� kujk�Y 


As previously� if T satis�es ��	�� thanks to ��
� we see that the kujkY
remain bounded and so� we can always extract a subsequence fujkg
which converges weakly�� to a limit �U � Y � Now the ujk converge to
U and converge to �U in D���	� T ��Rn� and so U agrees with �U � Thus
we have proved the existence of a solution in C��	� T �� Hs

p��
The estimate for Tm comes from ��	� which gives

Tm �
C

�
kU�k

����s�sc�
Hs
p




If Tm � ��� this explicit lower bound obviously allows us to show the
blow�up in Hs

p�R
n � norm �one can also prove the blow up in L�p�Rn�

when it holds in Hs
p�R

n���
If s � n�p� using Theorem 
�
 instead of Theorem 
�� the same

proof gives existence under the hypothesis H���

��� Uniqueness�

Let U�t� x� � Y and V �t� x� � Y be two solutions for the same
initial data U� and let T � maxfTm�V �� Tm�U�g� Then� since U and
V solve ���

kU � V kX � kL�U�� L�V �kX

and so� by ����

kU � V kX 	 T ��� CM��� kU � V kX �

where
M � sup

���T 	

fkU�t�kL�p � kV �t�kL�pg 


So� for T small enough�

kU � V kX 	




kU � V kX
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and so U � V on �	� T �� To conclude we just have to iterate this in
order to prove that Tm�U� � Tm�V � and that U � V on �	� Tm�U�� �

���� Smoothing e�ects�

Let U be a solution of ��� Using Lemma �
 we easily see that

kU�t� x�� et�U�kHs��
p

	 C

Z t

�

�t� ���	�� kU��� ��k�Hs
p
d�

and so� for all � � 
� � � ��� 
��

kU�t� x�� et�U�kHs��
p

	 C T ����	 kUk�Y �

which gives the �rst part of Theorem 
���b�� If s � n�p� the proof is
the same using Theorem 
�
 instead of Theorem 
��

Now let us assume that F � C��R�� For all t � 	� et�U� is
C��Rn � and so U���� �� � Hs�	

p �Rn�� Taking �� as initial time�
we just have to repeat this argument to prove that U��� � ���� �� �
Hs��	
p �Rn� � � � �nally� U � C���� T � � C�� for each � � 	� Thus we have

proved the second part of Theorem 
���b��

���� Continuous dependence with respect to the data�

First we deal with continuity in X norm� Let U and V be two
solutions of �� for the respective initial data U� and V�� Let

T � min fTm�U��� Tm�V��g

and
M � sup

t����T 	

fkU�t�kHs
p
� kV �t�kHs

p
g 


By ����

kU � V kX 	 kU� � V�kL�p � C T ��� kU � V kX M��� 


Taking T � 	 T such that �C T ����M��� 	 
 then�

kU � V kC����T �� �L�p� 	  kU� � V�kL�p
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and� if one can take T � � T � this ends the proof� On the contrary�
solving �� for the initial data U�T �� and V �T ��� the uniqueness and
the uniform bound for U and V in X norm allow us to iterate this last
argument N times until N T � � T and thus

��� kU � V kX 	 C�T � kU� � V�kL�p 	 C�T � kU� � V�kHs
p



Now let us assume that s� 	 	� i�e� that s 	 n ��� 
���p��� Then�

kU�t�� V �t�kHs
p

	 kU� � V�kHs
p
� C

Z t

�

�t� ���� kF �U����� F �V ����kHs�
p
d� 


Since s� 	 	 and ���p � 
�p�s��n� we can use the Sobolev embedding

L�p�� 	� Hs�
p �

which leads to

kU�t�� V �t�kHs
p

	 kU� � V�kHs
p
� C

Z t

�

�t� ���� kF �U����� F �V ����kL�p�� d�

	 kU� � V�kHs
p
� C T ��� kU � V kX

�
kUk���X � kV k���X

�
and� according to ��� and to this last inequality� we obtain that

���� kU � V kY 	 C�T � kU� � V�kHs
p



To conclude we have to relax our assumption on s� Since U and V are
solutions of ���

kU � V kY 	 kU� � V�kHs
p
� kL�U�� L�V �kY 


First� let us recall the following interpolation inequality�

Lemma ���� Let p � �
���� � � � R and s � R� Then� for all f �
Hs�	
p �Rn ��

kfk�Hs
p
	 C kfkHs��

p
kfkHs��

p



For a proof see �Tr��
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By Lemma � we see that

kL�U��t�� L�V ��t�kHs
p

	
�
kL�U��t��kHs��

p
� kL�V ��t�kHs��

p

����
kL�U��t�� L�V ��t�k

���

Hs��
p

Now since s � � d� one can choose � � ��� 
� �s� sc�� such that

���� sc � s� � �
�� 


�

n

p



Using the smoothing e�ects� the �rst term of the left�hand side of the
last inequality can be bounded by

C�T � �kUkY � kV kY �
��� 	 C ��T �M �

and� using ����� since �s� �� satis�es ����� we bound the second term
by

kU� � V�k
���

Hs��
p

� kU�t�� V �t�k
���

Hs��
p

	 C�T � kU� � V�k
���

Hs��
p

	 C�T �kU� � V�k
���
Y 


Combining this two inequalities we obtain that

kU � V kY 	 C�T � kU� � V�k
���
Y

and the proof of Part c� is completed�

�� The global Cauchy problem�

In this section we study the global Cauchy problem for small initial
data in Lpc�Rn�� First in Section ��
 we study the case of initial data
which belongs only to Lpc�Rn � and we prove Lemma 
�� In Section ��
we study the global Cauchy problem for initial data in Lp�Rn �
Lpc�Rn�
when Lp�Rn� is subcritical for �� and we prove the Proposition 
�
�
Then� in Section ���� we consider initial data in Hs

p�R
n � space and we

prove the Theorem 
���
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���� Initial data in Lpc�Rn ��

Let us consider U� � Lpc�Rn�� In �Gi� Giga proved that there
exists a non�negative absolute constant A such that� if kU�kLpc 	 A�
then there exists a unique global solution of �� in BC�R� � Lpc� which
satis�es

t �� t
�q� kU�t� ��kLq � BC�R�� �

for all q and ��q� such that

pc 	 q � �� and 	 	 ��q� � ��� �

and which satis�es

lim
t���

t
�q� kU�t� ��kLq � 	 �

for all q and ��q� such that

pc � q � �� � � � q and 	 � ��q� � ��� 


First we are going to prove that� for pc 	 q � �� and 	 	 ��q� � ����

���� kU�t� ��kLq 	 C t�
�q� kU�kLpc �

which is a little more precise than the estimate

kU�t� ��kLq 	 C t�
�q� 


Second� we are going to relax the restriction ��q� � ��� in this estimate�
Indeed� when pc � n��� the reader will check that the assumption
��q� � ��� is ful�lled for all q � �pc���� and so� the asymptotic
estimates ���� to� On the contrary� when pc � n��� on must assume
that q � �pc� �
�pc � ��n������ to be sure that ��q� � ��� holds� So�
when pc � n��� the asymptotic estimates are proved only for q in the
range �pc� �
�pc � ��n������ and we want to show that they holds for
all exponent q in �pc���� �

To prove Lemma 
� let us come back to the proof of Theorem 
��
given in �Gi�� In the critical case �when U� � Lpc�Rn��� to prove the
existence of a solution for ��� one introduce� for pc � q � ��� � � q
and 	 � ��q� � ���� the Banach spaces

Xq � ff�t� x� � t �� t
�q� kf�t� x�kLq � BC�R��g



Cauchy problem for semilinear parabolic equations ��

and the space

Y � ff�t� x� � t �� kf�t� x�kLpc � BC�R��g 


Then� if we consider fujg the sequence of functions de�ned by ���� we
have the estimate �see �Gi��

���� kuj��kXq
	 C� ku

�kXq
� C� ku

jk�Xq
�

where�
kf�t� x�kXq

� sup
t��

t
�q� kf�t� x�kLq 


Then� when kU�kLpc 	 A� using ���� and �
����
��� one can prove that
the fujg converge in Xq to U�t� x� the unique solution of �� such that
�
����
�� is ful�lled �see �Gi� for a proof�� Furthermore� to prove that
U�t� x� belongs also to BC��	���� � Lpc�Rn��� one can easily check that
the nonlinear map L � Xq �� Y de�ned at the beginning of the Section
�
 satis�es

���� kL�U�kY 	 CkUk�Xq

as soon as pc � q � ��� � � q and as soon as 	 � ��q� � ����
Now let us come back to the proof of Lemma 
�� By ����� it is

obvious that the sequence fujg stay in the ball B�	� C�ku
�kXq

� for the
Xq topology as soon as

C� �C� ku
�kXq

�� 	 C� ku
�kXq

�

which holds for

ku�kXq
	
� 


�C���
� C�

��������



Now� by Lemma �
�

���� ku�kXq
	 C kU�kLpc

and so� for

kU�kLpc 	 A �



C

� 


�C���
� C�

��������
�
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there exists a global solution U�t� x� of �� which belongs to the ball

B�	� C� ku
�kXq

� � B�	� C�C kU�kLpc � �

for the Xq topology� Thus the proof of Lemma 
� is completed for the
exponents q such that pc � q � ��� � � q and 	 � ��q� � ���� To
conclude in the special case of Lpc�Rn�� we have just to use this last
result and the estimate ����� Thus� if pc � � the proof is over� On the
contrary� if pc � �� we have just to interpolate the estimates in Lq�Rn�
norm and in Lpc�Rn� norm to end the proof�

Now we are going to prove that the asymptotic estimates

kU�t� ��kLq 	 C t�
�q� kU�kLpc

holds also when ��q� � ���� First� for U� such that kU�kLpc 	 A�
let us consider U�t� x� the Giga�s solution of �� and let us consider q�
an exponent such that q� � pc and such that ��q�� � ��� �such a q�
always exists since pc � 
� see the Remark � after Theorem 
���� Next
let us consider the sequence fqig de�ned by

��!�
n



� 


qi
�




qi��

�
� � � ���

and note that fqig is increasing and that there exists ql such that
n�� ql� � ����

Let us de�ne

I�qi� qi��� �

Z �

�

�
� s��d���n��������qi��� s��� ds 


Then� by ��!�� for all i � 	�

I�qi� qi��� � �� 


Now we pick t� � 	 and we consider V the solution of

��	�

�
V �t� x� � et�V� � L�V ��t� x� �

V �	� x� � V��x� � U�t�� x� 


First� by the previous result and since 	 � ��q�� � ���� it follows that

��
� V� � Lpc�Rn �
Lq��Rn � with kV�kLq� 	 C t�
�� kU�kLpc 
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Lemma ���� Let T � T �t�� such that

��� �C� T ���d������pc�qo�I�q�� q�� kV�k
���
Lq� � 


then�

���� kV �t�kLq� 	 C t�� kV�kLq� �

for all t � �	� T � �

Indeed� since V��x� � Lq��Rn � with q� � pc� using the proof of
Theorem 
�� we see that the sequence

v� � et�V� � vj���t� x� � v� � L�vj��t� x� �

converges strongly to V �t� x� in C��	� T �� Lq��� By Lemma �
� v� obvi�
ously satis�es ���� for all t � 	� Now� if vj satis�es ����� then

kvj���t�kLq� 	 C kV�kLq� t
��

� C

Z t

�

�t� ���d���n��������q�� kvj���k�Lq� d�

	 C kV�kLq� t
��

� C �C� kV�k
�
Lq�

Z t

�

�t� ���d���n��������q�� ���� d�

for all t � �	� T � � and so�

kvj���t�kLq�

	
C kV�kLq�

tn�����q����q��

�


� ���C� kV�k

���
Lq� Iq��q� T

���d������pc�q��
�
�

for all t � �	� T � � Hence� if T satis�es ����

kvj���t� ��kLq� 	 C t�� kV�kLq� 


So� by induction� ���� holds for all j and thus the Lemma is proved�

Using the uniqueness result in the supercritical case and ��	� we
see that

V �t� x� � U�t� t�� x�
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and so� by Lemma ��
�

kU�t� t��kLq� 	 C t�� kU�t��kLq� �

for each t � �	� T �t��� where T �t�� satis�es ���� Now� we claim that
there exists an absolute constant A� such that� when kU�kLpc 	 A��
one can always take T �t�� � t�� in the previous inequality� Indeed by
Lemma ��
 we have only to make sure that

� C�
� t�


����d������pc�q��
kV�k

���
Lq� I�q�� q�� � 
 �

which� combined with ��
�� leads to

�C�
� t�


����d������pc�q���n����������pc���q��
kU�k

���
Lpc I�q�� q�� � 


and� since

� d



�

�

pc
q�

�
�
n��� 
�



� 


pc
�




q�

�
� 	

it is su�cient to make sure that

� C� kU�k
���
Lpc I�q�� q�� � 
 


Thus� when U� is small enough in Lpc�Rn�� ��� holds for each t� � 	
and so ���U�� t�



����
Lq�

	 C t��� t
�n�����pc���q��
� kU�kLpc

and� since t� is arbitrary�

kU�t�kLq� 	 C t�n�����pc���q�� kU�kLpc �

for all t � 	� Now� since I�qi� qi��� � �� and since we have prove the
required estimate for q� de�ned by ��!�� we have just to iterate this
proof to get the required estimate in Lq� norm
 
 
 Thus� for each qi� the
proof follows by induction� Now� if q � �qi� qi��� � we get the result by
interpolation� Thus we have proved that U�t� x�� the global solution of
��� satis�es

kU�t� x�kLq 	 C t�
�q� kU�kLpc �
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for all q � �pc���� �

���� Initial data in Lpc�Rn � 
 Lp�Rn��

Let p � pc� We consider now an initial data U� which belongs
to Lp�Rn� 
 Lpc�Rn�� we assume that kU�kLpc 	 A and we denote
by U�t� x� the Giga�s solution of �� which belongs to BC�R� � Lpc�
and satis�es the estimates �
����
�� and �
����
��� Using the slight
improvement about the decay of the Lq�Rn� norms �estimates �
�� of
Lemma 
�� that we previously proved� we are �rst going to show that
the Giga�s solution belongs to Lp�Rn� for all t �step one�� then we will
prove that U�t� x� belongs to BC�R� � Lp�Rn�� �step two� and next�
that U�t� x� satis�es the asymptotic estimates �	� �step three��

Step one� Here we consider U��x� � Lp�Rn� 
 Lpc�Rn� and we want to
prove that�

���� kU�t�kLp 	 C�T � � for all T � 	 and t � �	� T � 


First let us assume that

���� max
n

�
pc
�

o
	 p � pc 


Then� since U�t� x� is a solution for ��� for all T � 	 and t � �	� T �

kU�t�kLp 	 kU�kLp � kL�U��t�kLp

	 kU�kLp �

Z t

�

ke�t����P �D�F �U����kLp d�

	 kU�kLp �

Z t

�

jt� � j�d�� kF �U����kLp d�

	 kU�kLp �

Z t

�

jt� � j�d�� kU���k�Lp� d�

Now� by ����� p� � pc and so� using the estimates �
�� of the Lemma

�� we obtain that

kU�t�kLp 	 kU�kLp �

Z t

�

jt� � j�d�� ���
�p�� kU�k
�
Lpc d�

	 kU�kLp � C�T � kU�k
�
Lpc
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since d �  and

	 � ��p�� � ��pc �� �
� d

�
	




�
�

for all pc�� � p � pc�
Thus� the estimate ���� is proved for all p which verify ���� and� if

pc � �� the proof is over�
Assume now that

���� max
n

�

pc
��

o
	 p �

pc
�




First� if U��x� � Lp 
 Lpc � then U��x� belongs to Lq�Rn� for all q �
�pc �

��� pc� and then� by the previous result� kU�t�kLq 	 C�T� U�� for
all q in the range �pc �

��� pc�� Second� since U�t� x� is a solution of ��

kU�t�kLp 	 kU�kLp � kL�U��t�kLp

	 kU�kLp �

Z t

�

ke�t����P �D�F �U����kLp d�

	 kU�kLp �

Z t

�

jt� � j�d��kF �U����kLp d�

	 kU�kLp �

Z t

�

jt� � j�d�� kU���k�Lp� d� 


Next� we remark that d �  and that� by ����� p� belongs to the range
�pc �

��� pc� � Hence� by the previous result� we can use the bound

kU�t�kLp� 	 C�T� U�� �

which leads to
kU�t�kLp 	 kU�kLp � C�T� U��

and so� the estimate ���� holds for all p in the range �max f
� pc��
�g� pc��

Next� for p � �pc �
�n��� pc �

�n� � the proof of ���� follows easily by
induction�

Step two� In step one� we have proved that U�t� x� the Giga�s solution of
�� belongs to Lp�Rn � for all t � 	 when U� belongs to L

p�Rn�
Lpc�Rn�
and when U� is small enough in Lpc�Rn�� Now� we are going to prove
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that U�t� x� belongs to BC�R� � Lp�� Let us consider T � 	 and t in
�	� T �� First� since U�t� x� is a mild solution of �
��

U�t� x� � et�U��x� � L�U��t� x� 


So� by Lemma �
�

kU�t�kLp 	 kU�kLp � kL�U��t�kLp

	 kU�kLp �

Z t

�

ke�t����P �D�F �U����kLp d�

	 kU�kLp � C

Z t

�

�t� ����q� kF �U����kLq d� �

where q is any exponent in �
� p� which will be �xed latter and where
��q� is de�ned by

���� ��q� �
d


�
n



�

q
�




p

�
�

Using H older�s inequality we get

kU�t�kLp 	 kU�kLp � C

Z t

�

�t� ����q� kU���kLqq� kU���k���
Lqq������

d� �

where 
�q��
�q� � 
 and furthermore� we choose q� such that q q� � p
to obtain

kU�t�kLp	kU�kLp�C kUkL�����T 	�Lp�

Z t

�

�t�����q�kU���k���
Lqq������

d� 


Now if we choose q such that q � p with q � p then� since q q� � p�
q� � 
� Hence it follows that z � q q� �� � 
� � pc� Next� for z �
q q� ���
� � pc� by Lemma 
�� we can bound U�t� x� in Lqq�������Rn�
norm by

kU�t� x�kLqq������ 	 C t�
�qq������� kU�kLpc

and so�

kU�t�kLp	C kU�kLp�kUkL�����T 	�Lp� kU�k
���
Lpc

Z t

�

�t�����q���	�q� d� �
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where

���� ��q� � ��� 
� ��q q� ��� 
�� �





�
� d�

n

q q�

�



One can easily check that choosing q � p then q� is large enough to
makes sure that 	 � ��q� � 
 and that 	 � ��q� � 
 �since d � ��
Furthermore ��q� � ��q� � 
 and so�

��!� kUkL�����T 	�Lp� 	 kU�kLp � C kUkL�����T 	�Lp� kU�k
���
Lpc 


Now� if kU�kLpc is small enough then


� C kU�k
���
Lpc �






and then� by ��!�� and since kUkL�����T ��Lp� � �� for all T � 	�

kUkL�����T 	�Lp� 	
kU�kLp


� C kU�k
���
Lpc

	  kU�kLp 


To conclude� we have just to remark that the right side of this estimate
do not depend of T � Thus� we have proved that U�t� x� the mild solution
of �
� belongs to BC�R� � Lp�Rn���

Step three� Now we have to prove the Lr�Rn� estimates �	� of Theorem

��� They hold obviously for the term et�U� by Lemma �
� hence� we
just deal with the nonlinear term L�U�� First let us suppose that

��	� ��r� �
n



�

p
�




r

�
�

� d





Then�

kL�U��t�kLr 	

Z t

�

ke�t����P �D�F �U����kLr d�

	 C

Z t

�

�t� �����r�ke�t����P �D�F �U����kLp d�

	 C

Z t

�

�t� �����r���q� kU���kLqq� kU���k���
Lqq������

d� �
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where q � �
� p� � 
�q��
�q� � 
 and ��q� is given by ����� Now� taking
q q� � p with q � p then q� � 
 and q q� ��� 
� � pc and so� we using
the estimates of Lemma 
� we obtain

kL�U��t�kLr	C
�
sup
t�R�

kU�t�kLp
�
kU�k

���
Lpc

Z t

�

�t������r���q� ��	�q� d� �

where ��q� is given by ����� If ��	� holds then one can choose q� q� and
q� such that ��q� � 
� ��r� � ��q� � 
 and ��q� � ��q� � 
� and so�

kL�U��t�kLr 	 C t���r�
�
sup
t�R�

kU�t�kLp
�
kU�k

���
Lpc 


Then� since kU�t�kLp 	 C kU�kLp �by step two��

kL�U��t�kLr 	 C t���r� kU�k
���
Lpc kU�kLp 	 C t���r� kU�kLp �

which completes the proof�

Now� if ��	� is not ful�lled� we build a sequence frig de�ned by

r� � p �
n



� 


ri
�




ri��

�
� � � max

n �� d�


� ���

o



And� if p � r� � r� � pc� since U�t� �� is bounded in Lp 
 Lpc � then
U�t� �� is also bounded in Lr for all r in �p� pc� and for each t � 	�

Now let t� � 	 and let W be the solution of

��
�

�
W �t� x� � et�V� � L�W ��t� x� �

W �	� x� � W��x� � U�t�� x� 


We have already proved that

��� W� � Lpc�Rn� 
 Lr��Rn� with kW�kLr� 	 C t
���r��
� kU�kLpc

and furthermore W �t� �� is bounded in Lr��Rn� 
 Lpc�Rn�� So we just
have to iterate the previous proof to estimate W �t�� x� � U� t�� x� in
Lr��Rn � norm with respect to W��x� � U�t�� x� in Lr��Rn � norm to
obtain the required estimate and we can do this until ri 	 pc�

Now let us denote by I the �rst index such that rI � pc� We have
proved that

����

�
kU�t�kLpc 	 C �
 � t����pc� �

kU�t�kLrI 	 C t���rI� 




�
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and� to conclude� we just have to use the same proof as in Section ��

with the estimate ���� instead of the estimates ��
�� This end the proof
of the Proposition�

���� Initial data in Hs
p�R

n��

We give now the proof of Theorem 
��� Let us consider an initial
data U� such that kU�kHsc

p
	 A�� Then� by the Sobolev embedding

theorem� U� belongs to Lpc�Rn� 
 Lp�Rn� and� if A� is small enough�
then kU�kLpc 	 A� So� according to Theorem 
��� there exists a unique
global solution U�t� x� of �� and this solution satis�es �
!� and �	��
Hence� to prove that U belongs to BC�R� � Hsc

p �� we have only to check

that U remains bounded in the homogeneous space �Hsc
p �Rn� thanks to

the following well know inequality

kfkHs
p
	 C �kfkLp � kfk �Hs

p
� � for all s � 	 


Now since U is a solution of ���

kU�t�k �Hsc
p
	 kU�k �Hsc

p
� kL�U��t�k �Hsc

p

	 kU�kHsc
p

�

Z t

�

ke�t����P �D�F �U����k �Hsc
p
d�

	 kU�kHsc
p

� C

Z t

�

�t� ����sc�d��� kF �U����kLp d�����

	 kU�kHsc
p

� C

Z t

�

�t� �����q� kF �U����kLq�� d�

	 kU�kHsc
p

� C

Z t

�

�t� �����q� kU���k�Lq d� �

where

���� ��q� �
sc � d


�
n



��
q
�




p

�
� q � �pc� p �� 


and where� in the third inequality� we used the hypothesis of homogene�
ity on P �D��
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Since p � pc��� one can check that sc �  � d� and so taking
q � p�� one can always choose q such that 	 � ��q� � 
� Then� for
this choice of q we obtain

kU�t�k �Hsc
p
	 kU�kHsc

p

� C
�
sup
R�

t
�q� kU�t�kLq
�� Z t

�

�t� �����q� ���
�q� d�

	 kU�kHsc
p

� C
�
sup
R�

t
�q� kU�t�kLq
��

�

since ��q� � ���q� � 
� But� by Lemma 
�� we know that t
kU�t�kLq
remains bounded for all t � 	 and so U belongs to BC�R� � �Hsc

p �� Thus
we have proved that U belongs to BC�R� � Hsc

p ��

Now� let U� � Hs
p�R

n � such that kU�kHsc
p
	 A�� Then� according

to Part a� of Theorem 
�� and to Part a� of Theorem 
��� there exists a
unique solution of �� in C��	� T � � Hs

p�
BC�R� � Hsc
p � and so� to prove

Part b� of Theorem 
��� we must show that blow up in Hs
p�R

n� norm
cannot occur� But� like in Part b� of Theorem 
��� one can easily show
that smoothing e�ects occur namely that

kU�t�� et�U�kHsc��
p

	 C kU�t�kHsc
p
�

this� as long as ��q� � � � 
� where ��q� is given by ����� Hence� if
blow up holds in Hsc�	

p �Rn� norm� it holds also in Hsc
p �Rn� norm� this

contradicts Part a� of Theorem 
��� Now� since s � sc is arbitrary� we
have just to iterate this proof to obtain the required result�

�� Composition on Hs
p�R

n � spaces�

���� Introduction�

In this section we prove the nonlinear estimate

kF �u�kHs�
p
	 C kuk�Hs

p

that we used in a crucial way in the proof of Theorem 
�� �our result
about local existence and uniqueness for Equation ���� First we are
going to consider the case H� �i�e� when s� 	 	�� Then� after recalling
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a few results about Littlewood�Paley analysis� we will prove Theorem

�� when H�� is ful�lled �	 � s� � �� 
��

���� The case s� 	 	�

Here� we suppose that max f	� n�p � n��g � s and that H� is
ful�lled� i�e� that s� 	 	 and that jF �x�j 	 C jxj�� Now consider
u�x� � Hs

p�R
n �� Then� by the Sobolev embedding Theorem �s � 	 and

p ��
����� we have

���� Hs
p�R

n� 	� L���p�s�n����Rn� 


Now� since s � n�p�n�� we have �
�p�s�n��� � � and� on the other
hand� we have jF �x�j 	 Cjxj�� Thus� by ����

���� kF �u�kL���p��s���n��� 	 C kuk�
L���p�s�n�

�� 	 C kuk�Hs
p



Next� to conclude� we remark that




p
�
s�
n

�
�

p
�
s �

n

and then� since s� 	 	 and ���p � �s���n��� � 
� we can use the
Sobolev embedding

���� L���p��s���n����Rn� 	� Hs�
p �Rn� �

which� with the estimate ����� gives

kF �u�kHs�
p
	 C kuk�Hs

p

as we claim�

���� Littlewood	Paley analysis�

Let us �rst recall the Littlewood�Paley dyadic decomposition for a
tempered distribution� Let ��� be a non�negative radial test function
such that d������ � 
 for j�j 	 ��� and such that d������ � 	 for j�j � 
�
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Let �j�x� � nj ����
jx� and let us consider the partial sum operators

Sj associated with the �j and de�ned by

��!� Sj�f��x� � �j � f�x� 


Now de�ne ����x� � ����x� and �j�x� � �j�x�� �j���x� and� in the
same way as previously� consider the operators �j de�ned by

��	� �j�f��x� � Sj�f��x�� Sj���f��x� � �j � f�x� 


Thus�

��
� f � lim
j��

Sj�f� � ����f� �
�X
j�

�j�f� 


More precisely one can prove the following result �see �Tr���

Proposition ���� The convergence in ��
� occurs in Hs
p�R

n� for all p
in �
��� and for all s in R� Furthermore� for all f in Hs

p�R
n ��

kfkHs
p
� k����f�kLp �

���� �X
j�

�js j�j�f�j
�
�������

Lp



Now we give some classical Lemmas which will be of great use in
the sequel�

Lemma ��� �Bernstein�s inequalities�� Let p � �
����

a� If f has its spectrum in the ball B�	� r� then there exists a con�

stant C independent of f and r such that

k�sfkLp 	 C rs kfkLp � for all s � 	 


b� If f has its spectrum in the ring C�	� Ar�Br� � f� � Ar 	 j�j 	
B rg then there exists some constants C� and C� independent of f and

r such that

C� r
s kfkLp 	 k�sfkLp 	 C� r

s kfkLp � for all s � 	 
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For a proof see �AG�� The second Lemma describes the behavior of
Sj�u� and �j�u� in L��Rn � norm when u belongs to Hs

p�R
n� spaces�

Lemma ���� Let

��� sn � s�
n

p



Then�

a� For all s in R� k�k�u�kL� 	 C �ksn kukHs
p
�

b� If s � n�p then� kSk�u�kL� 	 C �ksn kukHs
p
�

The proof is left to the reader �hint� use Bernstein�s inequalities��

Lemma ���� Let ffkg
�
k� be a sequence of functions in S ��Rn� such

that

supp � "fk� � B�	� C k� 


Then there exists a constant C such that���� �X
j�

�X
k�

j�j�fk�j
�
�������

Lp
	 C

���� �X
k�

jfkj
�
�������

Lp



For a proof see �Me��

���� The paracomposition formula�

To prove Theorem 
� we use the paracomposition technique �see
�Me�� �Ta�� �AG�� �Co�� 
 
 
 � which generalizes the paraproduct technique
introduced by J� M� Bony� We rewrite F �u� as the serie

F �u� � F �S��u�� � �F �S��u��� F �S��u��� � � � �

� �F �Sk���u��� F �Sk�u��� � � � �

and since F is C� at least

���� F �u� � F �S��u�� �
�X
k�

�k�u�mk�u� �



Cauchy problem for semilinear parabolic equations ��

where

���� mk�u� �

Z �

�

F ��Sk�u� � t�k�u�� dt 


To relocate the mk�u� spectrums we introduce a second Littlewood�
Paley�s partition of unity

d���� �

A k

�
�

�X
p�

b�� �

A k�p

�
� 


and so�

���� mk�u� � mk����u� �
�X
p�

mk�p�u� �

where

����

��	�

mk����u� � F��

�
"���

� �

A k

��
� mk�u� �

mk�p�u� � F��
�
"���
� �

A k

��
� mk�u� 


So� by ���� and �����

���� F �u� � F �S��u�� �
�X
k�

�k�u�mk����u� �
�X

k�p�

�k�u�mk�p�u�

and we want to prove that each of those terms belongs to Hs�
p �Rn�

where s� � 	 is given by �!��
For the term F �S��u�� we refer to �Co� �one uses bounds on the

maximal function of F �S��U�� to get the proof��

������ The series
P�

k��k�u�mk����u� belongs to Hs�
p �Rn��

We begin with the following Lemma�

Lemma ���� Under H���

kmk����u�kL� 	 C �ksn����� kuk���Hs
p

� for all k � N 
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Lemma ��� follows from Lemma �� since

kmk����u�kL� � kF��� "����� A
�� �k�� � mk�u�kL�

	 kF��� "����� A
�� �k��kL� kmk�u�kL�

	 C kmk�u�kL� 


Now jF ��x�j 	 Cjxj��� and so

jmk�u�j 	

Z �

�

C jSk�u� � t�k�u�j
��� dt

and the estimates of Lemma �� for Sk�u� and �k�u� in L��Rn� norm
lead to the proof�

To prove that the series belongs to Hs�
p �Rn� by Proposition ��
 it

is then su�cient to show that the function

��x� �
� �X
j�

�js�
����j

� �X
k�

�k�u�mk����u�
���������

belongs to Lp�Rn �� By construction the mk����u� spectrums are in the
balls B�	� A k� and the �k�u� spectrums are in the rings C�	� ��A k�
A k�� Taking A � �	 �for instance� then the mk����u��k�u� spec�
trums are in some extended balls B�	� A�k� and so� there exists an
integer N such that �j�mk����u��k�u�� � 	 for j � k � N since the
spectrums of �j and �k�u�mk����u� are disjointed� So�

����j

� �X
k�

�k�u�mk����u�
�����

�
����j

� �X
kj�N

�k�u�mk����u�
�����

	 C ��js�
� �X
kj�N

�ks� j�j��k�u�mk����u��j
�
�

by Cauchy�Schwartz inequality applied to the sequences

f�ks� �k�j�Ng and fks��k�u�mk����u��k�j�Ng
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�note that s� � 	 is needed�� Then by de�nition of ��x� we get

��x� 	 C
� �X
j�

�X
k�

j�j�
ks��k�u�mk����u��j

�
����

and� Lemma ��� applied to the sequence fks��k�u�mk����u�g leads
to

k��x�kLp 	
���� �X

k�

�ks� j�k�u�mk����u�j
�
�������

Lp



Now� using Lemma ���

j�k�u�mk����u�j
� 	 kmk����u�k

�
L� j�k�u�j

�

	 C ��ksn����� kuk
������
Hs
p

j�k�u�j
�

and so�

k��x�kLp 	 C kuk���Hs
p

���� �X
k�

�k�s��sn������ j�k�u�j
�
�������

Lp



But� s � s� � sn��� 
� and so

k��x�kLp 	 C kuk���Hs
p

���� �X
k�

�ks j�k�u�j
�
�������

Lp
	 C kuk�Hs

p



Thus the series belongs to Hs�
p �Rn� and its norm is bounded

by C kuk�Hs
p
�

������ The series
P�

k�

�P�
p��k�u�mk�p�u�

�
belongs to Hs�

p �Rn��

For �xed p � 	 we de�ne

lp�x� �
�X
k�

�k�u�mk�p�u� 


Taking the constant A large enough one can check that the
�k�u�mk�p�u� spectrums are in some rings f� � C� 

p�k	j�j	C� 
p�kg�

So� there exists an integer K �which does not depend of p� such that
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those rings are K to K disjointed� So we can use the Littlewood�Paley
analysis on the K partial sums lrp�x� de�ned by

���� lrp�x� �
X

krmod�K�

�k�u�mk�p�u� with r � f	� 
 
 
 � K � 
g

and� by Proposition ��
� we know that for all r in f	� 
 
 
 � K � 
g�

klrpkHs�
p
	 C

���� X
krmod�K�

��k�p�s� j�k�u�mk�p�u�j
�
�������

Lp



Let us assume that the following Lemma holds�

Lemma ���� Under H���

kmk�p�u�kL� 	 C ������p �k�����sn kuk���Hs
p

� for all k � N 


Then by Lemma ����

klrpkHs�
p
	 C p�s�������� kuk���Hs

p

�
���� X

krmod�K�

�k�s��sn������ j�k�u�j
�
�������

Lp

	 C p�s�������� kuk���Hs
p

���� X
krmod�K�

�ks j�k�u�j
�
�������

Lp

	 C p�s�������� kuk�Hs
p



Thus� for s� � �� 
� the K series flrpgp�N are uniformly convergent in
Hs�
p �Rn� and furthermore� for r � f	� 
 
 
 � K � 
g�X

p

klrpkHs�
p
	 C kuk�Hs

p
�

which ends the proof of Theorem 
��

So� to conclude� we have just to prove Lemma ���� Let us de�ne

��!� � � �� 
 � N �  � where N � ��� and  � �	� 
� 
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and

��	� P t
k�x� � Sk�x� � t�k�x� 


By Lemma ��
 applied with p ���

��
� kmk�p�u�kL� 	 C ��k�p�	 kmk�u�kC� �

where C	�Rn� denotes the H older space of order � endowed with the
norm

��� khkC� � khkL� � � � �� kD	hkL� � if � � N �

and

���� khkC� � khkCN � sup
jx�yj��

jDNh�x��DNh�y�j

jx� yj�
� if � �� N

�for more details see �Tr� for instance��
So� by ��
��

kmk�p�u�kL� 	 C ��k�p�	
�
kmk�u�kL� � � � �� kDNmk�u�kL�

� sup
jx�yj��

jDNmk�u��x��DNmk�u��y�j

jx� yj�

�

����

The bound of kmk�u�kL� is easy to establish� we have just to argue as
in the proof of Lemma ��� to get

���� kmk�u�kL� 	 C �ksn����� kuk���Hs
p




Next we must bound kDjmk�u�kL� for j � f
� 
 
 
 � Ng� Let � be
a multi�index such that � � �� � � � � � �n with total length j�j �
j��j� � � �� j�nj � j then�

�
mk�x� �

Z �

�

jX
q�

X

������
q


Dq��F �P t
k�x�� �


�P t
k�x� � � ��


qP t
k�x� dt �

where the second sum is taken on all the decompositions of � � �� �
� � �� �q� By Lemma ��
 and Lemma ���

k�
iP t
k�x�kL� 	 C j
ijk kP t

k�x�kL� 	 C j
ijk �ksn kukHs
p
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and so�

k�
�P t
k�x� � � ��


qP t
k�x�kL�

	 C �j
�jk �ksn kukHs
p
� � � � �j
qjk �ksn kukHs

p
�

	 C k�j
�j�����j
qj� �kqsn kukqHs
p



Furthermore by Lemma 
�
 and Lemma ��

kDq��F �P t
k��x�kL� 	 C kSk�u� � t�k�u�k

��q��
L�

	 C �ksn�����q� kuk����qHs
p




And so� for �xed q���� Z �

�

X

������
q


Dq��F �P t
k�x�� �


�P t
k�x� � � ��


qP t
k�x� dt

���
L�

	 C �ksn�����q� kuk����qHs
p

k�j
�j�����j
qj� �kqsn kukqHs
p

	 C �ksn����� jk kuk
�����
Hs
p




Thus� for j � f
� 
 
 
 � Ng�

���� kDjmk�u�kL� 	 C �ksn����� kj kuk
�����
Hs
p




To conclude we must estimate

sup
jx�yj��

jD�N 	mk�u��x��D�N 	mk�u��y�j

jx� yj�



Let � be a multi�index of length N � Then�

�
mk�x� �

Z �

�

NX
q�

X

������
q


Dq��F �P t
k�x�� �


�P t
k�x� � � ��


qP t
k�x� dt

and so� �
mk�x�� �
mk�y� � I�x� y� � J�x� y� where

I�x� y� �

Z �

�

NX
q�

X

������
q


�Dq��F �P t
k�x���Dq��F �P t

k�y���

�
Y

i

�
iP t
k�x� dt
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and�

J�x� y� �

Z �

�

NX
q�

X

������
q


Dq��F �P t
k�y��

�
�Y


i

�
iP t
k�x��

Y

i

�
iP t
k�y�

�
dt 


We deal �rst with the term I�x� y�� For q � f
� 
 
 
 � Ng and f�igi������q
a decomposition of � we must estimate

Iqk � sup
jx�yj��

n 


jx� yj�

��� Z �

�

X

������
q


�DqF ��P t
k�x���DqF ��P t

k�y���

�
Y

i

�
iP t
k�x� dt

���o 

First suppose that q 	 N � 
� Then� by Lemmas ��
 and ��

����
��� qY
i�

�
iP t
k�x�

���
L�

	 C kN �kqsn kukqHs
p



Next we must bound

sup
jx�yj��

jDq��F �P t
k��x��Dq��F �P t

k��y�j

jx� yj�



But� by Lemma 
�
� for q 	 N � 
�

jDq��F �x��Dq��F �y�j 	 C jx� yj �jxj��q�� � jyj��q���

and so

jDq��F �P t
k��x��Dq��F �P t

k��y�j

	 C jP t
k�x�� P t

k�y�j �jP
t
k�x�j

��q�� � jP t
k�y�j

��q��� 


But� by de�nition of the C��R� norm�

sup
jx�yj��

jP t
k�x�� P t

k�y�j

jx� yj�
	 C kP t

kkC�

	 C k� kP t
kkL�

	 C k� �ksn kukHs
p
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by Lemmas ��
 and ��� Thus� for all x� y � R
n with jx� yj � 
�

jP t
k�x�� P t

k�y�j 	 C jx� yj� k� �ksn kukHs
p

and so

sup
jx�yj��

jDq��F �P t
k��x��Dq��F �P t

k��y�j

jx� yj�

	 C k� �ksn kukHs
p
kP t

kk
��q��
L�

and so� by Lemma ��� for all q in f	� 
 
 
 � N � 
g�

����
sup

jx�yj��

jDq��F �P t
k��x��Dq��F �P t

k��y�j

jx� yj�

	 C k� �ksn���q��� kuk��q��Hs
p




Then� from ��!�� ���� and ����� we deduce that for all q in f	� 
 
 
 � N�
g�

��!� Iqk 	 C k����� �ksn����� kuk���Hs
p




Now we deal with the terms INk � By lemmas ��
 and ���

��	�
��� NY
i�

�
iP t
k�x�

���
L�

	 C Nk �kNsn kukNHs
p



Now by H��
jDNF ��x��DNF ��y�j 	 C jx� yj�

and so

sup
t�����	

jDNF ��P t
k�x���DNF ��P t

k�y��j 	 C sup
t�����	

jP t
k�x�� P t

k�y�j
�

	 C sup
t�����	

jx� yj� krP k
t k

�
L�

	 C jx� yj� �k �ksn kukHs
p
�� �

by Lemma ��
 and Lemma ��� Combining these inequalities we get

��
� sup
jx�yj��

jP t
k�x�� P t

k�y�j

jx� yj�
	 C �k �ksn kukHs

p
�� 
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Then� by ��	� and ��
�

INk 	 C �k �ksn kukHs
p
�N�� �

which leads to

��� INk 	 C �ksn����� k����� kuk���Hs
p




Now by ��!� and ����

���� sup
jx�yj��

jI�x� y�j

jx� yj�
	 C �ksn����� k����� kuk���Hs

p



Now we deal with the term J � It can be rewritten as

J�x� y� �
NX
q�

X

������
q


qX
j�

Z �

�

Dq��F �P t
k�y�� �


j�P t
k�x�� P t

k�y��

�
�Y
i�j

�
iP t
k�x�

��Y
i�j

�
iP t
k�y�

�
dt 


and we denote by Jq�
i�j each term of the sum and we estimate them
for all �xed triplet �q� �i� j�� As previously� by Lemma 
�


���� kDq��F �P t
k�y��kL� 	 C �ksn���q��� kuk��q��Hs

p



Now� let i �� j� then by Lemmas ��
 and ���

k�
ix P t
k�x�k 	 C j
ijk kP t

k�x�kL� 	 C j
ijk �ksn kukHs
p

and so

����

���Y
i�j

�
iP t
k�x�

Y
i�j

�
iP t
k�y�

���
L�

	 C k�
P

i��j j
ij� �k�q���sn kukq��Hs
p



By de�nition of the Cs�R� norm

sup
jx�yj��

�
j �P t
k�x�� P t

k�y��

jx� yj�
	 kP t

kkCj�j j��

	 C k�j
j j��� kP t
kkL�

	 C k�j
j j��� �ksn kukHs
p
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And so�

���� sup
jx�yj��

�
j �P t
k�x�� P t

k�y��

jx� yj�
	 C k�j
jj��� �ksn kukHs

p



Then by ����� ���� and ���� we get

sup
jx�yj��

jJ�x� y�j

jx� yj�
	 C �ksn���q��� kuk��q��Hs

p
k�j
j j��� �ksnkukHs

p

� k�
P

i��j j
ij� �k�q���sn kukq��Hs
p

	 C k�N��� �ksn����� kuk���Hs
p

and so� since N �  � �� 
�

���� sup
jx�yj��

jJ�x� y�j

jx� yj�
	 C k����� �ksn����� kuk���Hs

p



Thus by ���� and ����

���� sup
jx�yj��

���D�N 	mk�x��D�N 	mk�y�

�x� y��

��� 	 �ksn����� k����� kuk���Hs
p




Now by ��!�� ��
�� ����� ���� and ���� we see that

kmk�pkL�

	 C ��k�p�	
� NX
j�

�ksn����� jk � �ksn����� k�����
�
kuk���Hs

p

	 C �p����� �ksn����� kuk���Hs
p

� NX
j�

k�j������� � 

�



And for j � f	� 
 
 
 � Ng� j � �� 
 	 	 from which we deduce that

kmk�p�u�kL� 	 C �ksn����� �p����� kuk���Hs
p

�

which ends the proof of Lemma ����
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A proof of the smoothing

properties of the positive

part of Boltzmann�s kernel

Fran�cois Bouchut and Laurent Desvillettes

Abstract� We give two direct proofs of Sobolev estimates for the
positive part of Boltzmann�s kernel� The �rst deals with a cross section
with separated variables� no derivative is needed in this case� The
second is concerned with a general cross section having one derivative
in the angular variable�

R�esum�e� Nous donnons deux preuves directes des estimations de
Sobolev pour la partie positive du noyau de Boltzmann� La premi�ere
concerne les sections e�caces �a variables s�epar�ees� aucune d�eriv�ee n�est
n�ecessaire dans ce cas� La deuxi�eme traite des sections e�caces g�en�era	
les ayant une d�eriv�ee dans la variable angulaire�

�� Introduction�

The Boltzmann quadratic kernel Q models binary collisions occur	
ring in a rare�ed monatomic gas 
cf� ��� ��� ���� It can be written
under the form


���� Q
f�
v� � Q�
f�
v�� f
v�Lf
v� �

where Lf is a linear convolution operator� and Q� is the positive part

��



�� F� Bouchut and L� Desvillettes

of Q� de�ned by

Q�
f�
v� �

ZZ
v��R

N

��SN��

f
�v � v�

�
� jv � v�j

�
�
�
f
�v � v�

�
�
jv � v�j

�
�
�

�B
�
jv � v�j� v � v�

jv � v�j � �
�
d� dv� �
����

The nonnegative cross section B depends on the type of interaction
between the particles of the gas�

In a gas in which particles interact with respect to forces propor	
tional to r�s� s � �� the cross section B writes


���� B
x� u� � b
x� �
u� �

where


���� b
x� � x�s�����s��� �

and � has a strong singularity near u � ��
The classical assumption of angular cuto� of Grad �� 
that is � �

L�
��� ���� is used to remove this singularity� It will always be made in
this paper� To get an idea of the properties of Q when this assumption
is not made� we refer the reader for example to �� or ���

The properties of Q� 
with the assumption of angular cuto� of
Grad� have �rst been investigated by P�	L� Lions in ��� In this work�
it is proved that if B is a very smooth function with support avoiding
certain points� then there exists CN�B such that


���� kQ�
f�k �H�N������RNv � � CN�B kfkL��RNv � kfkL��RNv �

for any f � L� � L�
RNv ��
The proof of this estimate used the theory of Fourier integral op	

erators� The very restricting conditions on B were not a serious in	
convenience since in the application to the inhomogeneous Boltzmann
equation� only the strong compactness in L� of Q�
f� was used� and
not the estimate itself� so that these smoothness assumptions could be
relaxed by suitable approximations of B� Notice that the use of the
Fourier transform in the velocity variable in the context of the Boltz	
mann equation was already used by Bobylev in ���
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An extension of this work to the case of the relativistic Boltzmann
kernel can be found in ���

Then� another proof of 
���� was given by Wennberg ��� with the
help of the regularizing properties of the 
generalized� Radon trans	
form� The hypothesis on B were considerably diminished� so that for
example forces in r�s with angular cuto� and s � � were included�
Considerations on related kernels 
for example the relativistic kernel�
can also be found in ����

This work is intended to give yet another proof of 
����	like esti	
mates� using only elementary properties of the Fourier transform� More	
over� we prove that the estimate holds for a large class of cross sections
B� including all hard potentials with cuto� 
that is when s � �� and
also soft potentials up to s � �����

One of the drawbacks of our proof is that instead of having a L�

norm times a L� norm in the right	hand side of 
����� we only get a L�

norm to the square�
In Section �� we deal with the case when B is a tensor product


that is of the form 
������ Then� we present in Section � the case of
general dependence for B with a reasonable smoothness assumption�

The following notations will be used throughout the paper� For
any p � �� q � �� Lpq
R

N � is the weighted space embedded with the
norm


���� kfkLpq�RN� �
�Z

v�RN
jf
v�jp 
� � jvj�pq dv

���p
�

and if � � s � N��� �Hs
RN � is the homogeneous Sobolev space of
functions f of L�N��N��s�
RN � such that

bf � L�
loc
R

N � and j	js bf
	� � L�
RN� � �

Its norm is given by


���� kfk �Hs�RN� �
�Z

��RN
j bf
	�j� j	j�s d	���� �

We shall use the two following formulas to compute some integrals on
the sphere SN�� 
N � ��� The �rst deals with functions which only
depend on one component� for any function � de�ned on � �� �� �


����

Z
SN��

�

N � d
 �
���N�����

�
�N � �

�

� Z �

��

�
u� 
�� u���N����� du �
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The second is concerned with the change of variables � � � 
	 �
�
�	�
for a �xed 	 � SN��� We have for any function � de�ned on SN��


����

Z
SN��

�
�� d� �

Z
SN��

�
� 
	 � 
�
 � 	� j� 	 � 
jN�� d
 �

Finally� constants will be denoted by C� or CN when they depend on
the dimension N �

�� The case of separated variables�

We investigate here the properties of Q� when


���� B
�
jv � v�j� v � v�

jv � v�j � �
�
� b 
jv � v�j� �

� v � v�
jv � v�j � �

�
�

where b and � are Borel functions de�ned on ���� and � �� �� respec	
tively� We consider the multidimensional case N � �� Let us state the
main result of this section�

Theorem ���� Assume that there exists K � ��  � � such that


���� jb
x�j � K
� � x�� � for all x � � �

and that


���� � � L�
 � �� �� � 
�� u���N����� du� �

Then for any f � L�
���
R

N �� Q�
f� � �H�N�����
RN � and


����
kQ�
f�k �H�N������RN�

� CNK k�kL�� 	����
 ����u���N����� du�kfk�L�
����R

N� �

In order to prove Theorem ���� let us de�ne the operator eQ� for
functions of two variables F 
v�� v��� v�� v� � RN by

eQ�
F �
v� �

ZZ
v��R

N

��SN��

F
�v � v�

�
� jv � v�j

�
��
v � v�

�
�
jv � v�j

�
�
�

� �
� v � v�
jv � v�j � �

�
d� dv� �
����
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Proposition ���� For the linear operator 
����� we have

i� If � � L�
 ��� �� � 
��u���N����� du�� then for any F � L�
RN�
RN �� eQ�
F � � L�
RN � and

k eQ�
F �kL��RN�

� ���N�����

�
�N � �

�

� k�kL��	����
����u���N����� du� kFkL��RN�RN� �


����

Moreover� 
���� is an equality if � and F are nonnegative�

ii� If � � L�
 ��� �� � 
��u���N����� du�� then for any F � L�
RN�
RN � such that 
v��v��F � L�
RN �RN �� the integral 
���� is absolutely

convergent for almost every v� eQ�
F � � �H�N�����
RN � and

k eQ�
F �k �H�N������RN�

� CNk�kL��	����
����u���N����� du� kFk���L� k
v� � v��Fk���L� �


����

Let us postpone the proof of Proposition ��� and deduce Theorem
����

Proof of Theorem ���� Let us de�ne


���� F 
v�� v�� � f
v�� f
v�� b
jv� � v�j� �

Then� de�nitions 
����� 
���� and 
���� yield Q�
f� � eQ�
F �� Now� by

���� we have


����

jF 
v�� v��j � jf
v��j jf
v��jK 
� � jv� � v�j��

� K jf
v��j jf
v��j 
� � jv�j� jv�j��

� K j
� � jv�j�� f
v��j j
� � jv�j�� f
v��j �

Therefore�


����� kFkL� � K kfk�L�
�
� kFkL� � K kfk�L�

�
�
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and since

j
v� � v��F 
v�� v��j � jv�j jF 
v�� v��j� jv�j jF 
v�� v��j
� Kj
� � jv�j����f
v��j j
� � jv�j��f
v��j

�Kj
� � jv�j��f
v��j j
� � jv�j����f
v��j �

we have also


����� k
v� � v��FkL� � �KkfkL�
�
kfkL�

���
�

Therefore� we can apply Proposition ����ii�� and we get Q�
f� � eQ�
F �
� �H�N������


����� kQ�
f�k �H�N����� � CN k�kL� Kkfk���L�
�
kfk���

L�
���

�

Finally� 
���� follows since

kfkL�
�
� kfkL�

���
�

Proof of Proposition ���� Estimate i� is easy with 
����� and we
only prove ii�� Let us �rst assume that F � L�
RN �RN �� We perform
the change of variables


����� � � �
� v � v�
jv � v�j � 


�

 � v � v�

jv � v�j �

According to 
�����

eQ�
F �
v� �

ZZ
v��R

N

��SN��

F 
v � 
v � v�� � 
 
� v� � 
v � v�� � 
 
�

� �
�
�
� v�v�
jv�v�j � 


��
� �

����� v�v�
jv�v�j � 


���N��

dv� d
 �
�����

Since by i� eQ�
F � � L�� we can compute its Fourier transform� which
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is given by

�eQ�
F �
	�

�

ZZZ
v�v��R

N

��SN��

e�i��vF 
v � 
v � v�� � 
 
� v� � 
v � v�� � 
 
�

� �
�
�
� v � v�
jv � v�j � 


��
� �

����� v � v�
jv � v�j � 


���N��

dv dv� d


�

ZZZ
v��v��R

N

��SN��

e�i���v���v��v���� ��F 
v�� v��

� �
�
�
� v� � v�
jv� � v�j � 


��
� �

����� v� � v�
jv� � v�j � 


���N��

dv� dv� d
 �

by the usual pre	post collisional change of variables� Next we perform a
change of variables in 
� given by an orthogonal hyperplane symmetry
which exchanges the unitary vectors

v� � v�
jv� � v�j and

	

j	j �

We obtain

�eQ�
F �
	� �

ZZZ
v��v��R

N

��SN��

e�i���v���v��v���� ����F 
v�� v��

� �
�
�
� 	

j	j � 

��
� �

����� 	

j	j � 

���N��

dv� dv� d


�

Z
��SN��

bF 
	 � 	 � 
 
� 	 � 
 
�

� �
�
�
� 	

j	j � 

��
� �

����� 	

j	j � 

���N��

d
 �

with bF the Fourier transform of F in both variables� Finally� we make
the change of variables

� � �
� 	

j	j � 

�

 � 	

j	j �
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and get according to 
����


�����
�eQ�
F �
	� �

Z
��SN��

bF�	 � j	j�
�

�
	 � j	j�

�

�
�
� 	

j	j � �
�
d� �

Now� in order to estimate 
����� we assume that F � C�
c 
RN � RN ��

so that bF is smooth� This assumption can easily be relaxed by cuto�
and convolution of F to get 
���� in the general case�

We have by Cauchy	Schwarz�s inequality


�����

j�eQ�
F �
	�j� �
Z

��SN��

��� bF�	 � j	j�
�

�
	 � j	j�

�

����� d�
�

Z
��SN��

����� 	

j	j � �
����� d� �

and the last integral can be computed using 
�����


�����

Z
��SN��

����� 	

j	j ��
����� d�
�

���N�����

�
�N � �

�

� Z �

��

j�
u�j� 
�� u���N����� du �

Then�Z
��SN��

��� bF�	 � j	j�
�

�
	 � j	j�

�

����� d�
�

Z
��SN��

Z �

r�j�j

� �

�r

��� bF�	 � r �

�
�
	 � r �

�

����� d� dr
�

Z
��SN��

Z �

r�j�j

��� bF�	 � r �

�
�
	 � r �

�

����
�
���
r�

bF �r�
bF ��	 � r �

�
�
	 � r �

�

���� d� dr
�

Z
j�j	j�j

��� bF�	 � �

�
�
	 � �

�

����
�
���
r�

bF �r�
bF ��	 � �

�
�
	 � �

�

���� d�

j�jN��
�
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where r�
bF and r�

bF denote the gradients of bF with respect to the �rst
and second variables� Therefore�Z
��RN

j	jN�� d	

Z
��SN��

��� bF�	 � j	j�
�

�
	 � j	j�

�

����� d�
�

ZZ
����RN

��� bF�	 � �

�
�
	 � �

�

���� ���
r�
bF �r�

bF ��	 � �

�
�
	 � �

�

���� d	 d�
� �Nk j bF j jr�

bF �r�
bF j kL��RN�RN�

� �Nk bFkL��RN�RN� kr�
bF �r�

bFkL��RN�RN�

� �N 
����NkFkL��RN�RN� k
v� � v��FkL��RN�RN� �

and together with 
�����	
������ we obtain 
�����

Remark ���� A slightly weaker version of Theorem ��� is still true
when one deals with 
not too� soft potentials 
with the angular cuto�
of Grad��

Namely� for a cross section satisfying assumption 
���� with

� � L�
 � �� �� � 
�� u���N����� du�

and


����� b
x� � x�� � � �  �
N

�
�

for any f � L
�N��N���
� 
RN �� we have that

Q�
f� � �H�N�����
RN �

with


�����
kQ�
f�k �H�N������RN�

� CN��k�kL��	����
����u���N����� du�kfk�L�N��N���
�

�

Actually� de�ning

F 
v�� v�� � f
v��f
v�� jv� � v�j�� �
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we have

kFk�L��RN�RN� �

ZZ
jf
v��j� jf
v��j� jv� � v�j��� dv� dv�

� k jf j� kLr� k jf j� 	 jvj��� kLr �

We choose r � N�� so that

k jf j� 	 jvj��� kLr � CN�� k jf j� kLN��N���

and we obtain

kFk�L� � CN�� k jf j� k�LN��N��� �

Therefore�

kFkL��RN�RN� � CN�� kfk�L�N��N���

and similarly

k
v� � v��FkL��RN�RN� � CN�� kvfkL�N��N���kfkL�N��N��� �

We conclude by applying Proposition ����ii��

�� The general case�

We now concentrate on the case when B is not a tensor product�
The estimate is not as straightforward as in Section �� and we have to
make a regularity assumption on B� Moreover� we only treat here the
three	dimensional case�

Theorem ���� Let B be a continuous function from ��������� � to
R� admitting a continuous derivative in the second variable� We assume

that


���� jB
x� u�j�
����B
�u


x� u�
��� � K
� � x� �

for all x � � and u � ���� �� Then� for any � � �� there exists a

constant C
 only depending on � such that for any

f � L�
�
R

�� � L�
���
���
R

�� �
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Q�
f� � �H�
R�� with


���� kQ�
f�k �H��R�� � C
Kkfk�L�
�������

�

Proof� Since
jB
x� u�j � K 
� � x� �

the result of Proposition ����i� ensures that the integral 
���� de�ning
Q�
f� is absolutely convergent for almost every v� and that Q�
f� �
L�
R���


���� kQ�
f�kL� � ��Kkfk�L�
�
�

Therefore� we can compute the Fourier transform of Q�
f��

�Q�
f�
	� �

ZZZ
v�v��R

�

��S�

e�iv��f
�v � v�

�
� jv � v�j

�
�
�
f
�v � v�

�
�
jv � v�j

�
�
�

�B
�
jv � v�j� v � v�

jv � v�j � �
�
d� dv dv�

�

ZZZ
v�v��R

�

��S�

e�i���v�v��jv�v�j����f
v�f
v��
����

�B
�
jv � v�j� v � v�

jv � v�j � �
�
d� dv dv� �

according to the pre	post collisional change of variables� Thus we obtain


���� �Q�
f�
	� �

ZZ
v�v��R�

e�i���v�v����f
v�f
v��D
v�v�� 	� dv dv� �

where for any w� 	 � R� n f�g
D
w� 	�

�

Z
��S�

eijwj�����B
�
jwj� wjwj � �

�
d�

�

Z ��

s���

eijwjj�js��


����

�
Z ��

���

B

�
jwj� s 	

j	j �
w

jwj�
p
��s�

s
��

� 	

j	j �
w

jwj
��

cos�

�
d� ds �
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with spherical coordinates and


���� s � � � 	

j	j �

Integrating by parts� we get

D
w� 	� � �
Z ��

s���

� eijwjj�js��

i jwj j	j

�
Z ��

���

�
	

j	j �
w

jwj �
sp

�� s�

s
��

� 	

j	j �
w

jwj
��

cos�

�

� �B
�u

�
jwj� s 	

j	j �
w

jwj

�
p
��s�

s
��

� 	

j	j �
w

jwj
��

cos�

�
d� ds


����

�
� eijwjj�j��

i jwj j	j ��B
�
jwj� 	j	j �

w

jwj
�

� � e�ijwjj�j��

i jwj j	j ��B
�
jwj�� 	

j	j �
w

jwj
�

and therefore


����

jD
w� 	�j � ��

jwj j	j K
� � jwj�
Z ��

��

�
� �

jsjp
�� s�

�
ds

�
��

jwj j	j K
� � jwj�

� ���

j	j K
�
� �

�

jwj
�
�

Coming back to 
���� and using the variables


����� z �
v � v�

�
� w � v � v� �

we get


����� �Q�
f�
	� �

Z
w�R�

W 
f� 
w� 	�D
w� 	� dw �
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where


����� W 
f�
w� 	� �

Z
z�R�

e�iz��f
�
z �

w

�

�
f
�
z � w

�

�
dz

is a Wigner	type transform of f � Then� according to Cauchy	Schwarz�s
inequality� we get for any � � �


�����

j�Q�
f�
	�j� �
Z

w�R�

jW 
f�
w� 	�j�
� � jwj���
 dw

�
Z

w�R�

jD
w� 	�j� dw


� � jwj���


� C

K�

j	j�
Z

w�R�

jW 
f�
w� 	�j�
� � jwj���
 dw �

Finally� using Plancherel�s identity� we obtainZ
��R�

j	j� j�Q�
f�
	�j� d	

� C
K
�

Z
w�R�

� Z
��R�

jW 
f�
w� 	�j� d	
�

� � jwj���
 dw

� C
K
�
����

�
Z

w�R�

� Z
z�R�

���f�z � w

�

�
f
�
z � w

�

����� dz�
� � jwj���
 dw

�����

� C
K
�
����

ZZ
v�v��R�

jf
v�f
v��j� 
� � jv � v�j���
 dv dv�

� C
K
�
���� kfkL�

�������
�

by the same estimate as in 
���� and the proof is complete�

Remark ���� As in Section �� one could here also treat singular B 
in
the �rst variable� if one allowed to replace the weighted L� norms of f
in 
���� by suitable 
weighted� Lp norms� with p � ��
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Remark ���� As in ���� one could deduce from Theorems ��� and ���
regularity properties for the homogeneous Boltzmann equation� Notice
that such properties give also counterexamples� For example one can
prove that if f is the solution of the homogeneous Boltzmann equation
and if f
�� is not smooth 
the exact smoothness considered here de	
pends on the properties of B�� then for any t � �� f
t� will also not be
smooth�

This behavior is completely opposite to that of the Boltzmann
equation without angular cuto� 
cf� ��� ����
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Vol� ��� N�
o
�� ����

Moyenne de localisation

fr�equentielle des

paquets d�ondelettes

Ai Hua Fan

R�esum�e� En utilisant le th�eor�eme de Ruelle d�op�erateur de trans�

fert� nous d�emontrons que la moyenne ��k
P�k��

n�� k �wnkL� de la locali�
sation fr�equentielle pour les paquets d�ondelettes admet un �equivalent
de la forme c �k 	c � 
� � � � �

p
�� Cela am�eliore une in�egalit�e

ant�erieurement obtenue par Coifman� Meyer et Wickerhauser Des es�
timations num�eriques de � sont obtenues pour des �ltres de Daubechies

�� Enonc�e�

On consid�ere un couple de �ltres miroirs conjugu�es en quadrature
	m��m��� c�est��a�dire deux fonctions satisfaisant aux conditions suiv�
antes�

C�� m� et m� sont d�une classe lipschitzienne� ���p�eriodiques�

C�� jm�	��j� � jm�	� � ��j� � �� m�	�� � e�i�m�	� � ���

C�� m�	
� � �� m�	�� �� 
 sur un compact K tel que

�
j�Z

	K � �j� � R �

��
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Le produit suivant est alors bien d�e�ni

�		�� �
�Y
j��

m�

� �
�j

�
�

C�est la transform�ee de Fourier d�une fonction d��echelle 	 Les paquets
d�ondelettes wn 	n � 
� sont d�e�nis par leurs transform�ees de Fourier
comme suit

�wn	�� �
� kY
j��

m�j

� �
�j

��
	
� �

�k

�
� si n �

kX
j��


j �
j�� �

Ainsi on a w� � 	� w� � �� l�ondelette associ�ee au couple 	m��m�� de
�ltres miroirs en quadrature �M��

Pour d�ecrire la localisation fr�equentielle de wn� on fait appel �a la
variance de �wn d�e�nie par

�n � inf
��R

Z
R

j� � j� j �wn	��j� d� �

L�estimation de �n s�av�ere un peu d�elicate Cependant on obtient facile�
ment la minoration suivante pour �n

k �wnkL��R� � C 	� � �n�
��� �

o�u C est une constante ind�ependante de n Il est prouv�e dans �CMW�
qu�il existe une constante r � � telle que pour tout k � � on ait

�

�k

�k��X
n��

k �wnkL��R� � �� rk �

Nous nous proposons de d�emontrer dans cette note le th�eor�eme suivant

Th�eor�eme� Soit 	m��m�� un couple de �ltres miroirs conjugu�es en

quadrature� Supposons que

�	�� �
X
j�Z

j �		� � ��j�j
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est continue� Alors il existe deux constantes � � � �
p
� et c � 
 telles

qu�on ait l��equivalence

�

�k

�k��X
n��

k �wnkL��R� � c �k�

Les paquets d�ondelettes ont �et�e introduits en traitement et en
compression du signal par Coifman� Meyer et Wickerhauser �CMW�
L�id�ee remonte �a l�analyse en temps�fr�equence de signal� qui consiste �a
d�ecomposer les signaux compliqu�es en signaux �el�ementaires caract�eris�es
par leurs localisations en temps et en fr�equence On dit q�un signal fR	t�
est localis�e dans un rectangle R � �t��h� t��h�� �����h� ����h�
dans le plan temps�fr�equence si

Z ��

��

	t� t��
� jfR	t�j� dt � K�h� �

Z ��

��

	 � ��
� j �fR	�j� d � ��K�

h�
�

Un tel signal� dit atome temps�fr�equence� est consid�er�e comme �el�emen�
taire On souhaite aussi que ces atomes soient orthogonaux L�exemple
le plus c�el�ebre d�atomes temps�fr�equence est celui de Gabor qui r�ealise
la meilleure constante K Mais les ondelettes de Gabor ne sont pas
orthogonales� m�eme pas presque orthogonales �S�� Dans la litt�erature�
il y avait aussi les ondelettes de Malvar Celles�ci sont orthogonales
par construction Mais la localisation n�est pas satisfaite D�ailleurs�
les ondelettes de Malvar ne sont pas obtenues par translation� change�
ment d��echelles et modulation d�une fonction �x�ee une fois pour toutes
C�est pour quoi on a introduit les paquets d�ondelettes �M�� Elles
sont orthogonales et obtenues �a partir d�une seule fonction par trans�
lation� changement d��echelle et modulation Mais comme le montrent
l�in�egalit�e de Coifman�Meyer�Wickerhauser et le th�eor�eme �enonc�e
ci dessus� certain paquets d�ondelettes ont une mauvaise localisation
temps�fr�equence Signalons que des estimations de la localisation pour
un paquet individuel sont obtenues dans �S��
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�� Preuve�

La preuve du th�eor�eme se d�ecompose en une s�erie de lemmes Pour
simpli�er� notons

M� � jm�j � 
 � 
� � � S � M� �M� �

Lemme �� Soient q � 
 un r�eel� h	�� � 
 une fonction homog�ene

d�ordre � � Si n �
Pk

j�� 
j �
j��� on a

kh �wq
nkL��R� � �k�����

Z ��

�

� kY
j��

M�j 	�
j����

�q
�h	q	�� d� �

o�u

�h	q	�� �
X
j�Z

h	� � ��j� j �		� � ��j�jq �

Preuve� Par le th�eor�eme de convergence monotone� on a

kh �wq
nkL��R� � lim

J��

���h	���
JY

j��

M�j

� �
�j

��q
�	q
� �

�J

����
L�������J 	���J 	�

�

Or� si J � k� l�int�egrale �a droite est �egale �a

Z ���J

����J
h	��

� kY
j��

M�j

� �

�j

��q��� �	� �

�k

����q d�

� �k�����
Z ���J�k

����J�k

� kY
j��

M�j 	�
j��y�

�q
h	y� j �		y�jq dy

� �k�����
Z ��

�

� kY
j��

M�j 	�
j��y�

�q

�
�j�k��X
j���J�k

h	y � ��j� j �		y � ��j�jq dy �

Pour obtenir la premi�ere �egalit�e on a fait le changement de variable
� � �ky et utilis�e l�homog�en�eit�e de h Pour obtenir la seconde on a
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utilis�e la p�eriodicit�e de M�	�
jy� A�n de terminer la preuve il su�t

d�appliquer encore une fois le th�eor�eme de convergence monotone

Le Lemme � est �enonc�e sous une forme un peu plus g�en�erale que
ce dont on a besoin En fait� le choix q � � et h � � sera su�sant pour
d�eduire le lemme suivant

Lemme �� Pour tout k � �� on a

�

�k

�k��X
n��

k �wnkL��R� �

Z ��

�

kY
j��

S	�j���� �	�� d� �

Preuve� Il su�t de remarquer que

X
��	


	�k

kY
j��

M�j 	�
j���� �

kY
j��

S	�j���� �

Le Lemme � va �etablir une relation entre l�int�egrale �a droite dans
le Lemme � et un op�erateur de transfert� qui est d�e�ni par

LSf	�� � S
��
�

�
f
��
�

�
� S

��
�
� �
�
f
��
�
� �
�
�

Lemme �� Pour toute fonction � d�e�nie sur �
� ���� on a

�k
Z ��

�

kY
j��

S	�j���� �	�� d� �

Z ��

�

Lk
S�	�� d� �

Preuve� On prouve l��egalit�e pour n � � Le cas g�en�eral se demontre
par r�ecurrence

Z ��

�

LS�	�� d� �

Z ��

�

S
� �
�

�
�
��
�

�
d� �

Z ��

�

S
��
�
� �
�
�
��
�
� �
�
d�

� �

Z �

�

S	y� �	y� dy� �

Z ��

�

S	z� �	z� dz

� �

Z ��

�

S	x� �	x� dx �
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Pour la seconde �egalit�e� on a fait les changements de variables ��� � y
et ��� � � � z

Preuve du Th�eor�eme� L�op�erateur de transfert LS � C	T� 	 C	T�
est bien d�e�ni et born�e� o�u T � R�	��Z� On note � son rayon spectral
Comme S est strictement positive et lipschitzienne� d�apr�es le th�eor�eme
d�op�erateur de transfert d�u �a Ruelle �R� 	voir aussi �B�� �F� ��W��� il existe
une mesure de probabilit�e � et une fonction continue � � 
 telles que�
pour toute fonction continue f � ��kLk

Sf converge uniform�ement vers
hf� �i � o�u hf� �i d�esigne l�int�egrale de f par rapport �a � De plus� on
sait que � est di�use� singuli�ere et de support �
� ��� Par cons�equent�

��k
Z ��

�

Lk
S�	�� d� �	 h�� �i h�� �i � c � 
 �

d�o�u l��equivalence dans le th�eor�eme avec � � ��� Il reste �a expliquer
que � � � �

p
�� ou bien log � � log� � � log ��� Or� log � est la pres�

sion de logS sous la transformation T 	x� � �x 	mod ��� Rappelons
le principe variationnel �B�� �R�� �W�

log� � sup
�
H	�� �

Z ��

�

logS	�� d�	��
�
�

o�u le sup est pris sur l�ensemble des mesures T �invariantes� il est atteint
uniquement en �S � � �� H	�� d�esignant l�entropie de � Alors� comme
S	�� � p

�� on a

log� � h�S �

Z ��

�

logS	�� d�S	�� � h�S �
�

�
log � � log � �

�

�
log � �

Pour la derni�ere in�egalit�e on a utilis�e le fait que l�entropie maximale de
T est �egale �a log � et que la mesure de Lebesgue est l�unique mesure
d�entropie maximale Notons �� la mesure de Lebesgue Comme S	�� �
�� on a

log � � h�� �

Z ��

�

logS	�� d��	�� � h�� � log � �



Moyenne de localisation fr�equentielle des paquets d	ondelettes ��

�� Filtres de Daubechies�

On consid�ere les �ltres de Daubechies de la forme suivante �D���
�D��� qui d�ependent d�un param�etre entier N � � �D��� �D�� Au lieu
d��ecrire m�� on �ecrit m�	N � qui est d�e�ni par

m�	N 	�� �
��
�
	� � ei��

�N
QN 	�� �

o�u QN est un polyn�ome tel que

jQN 	��j� �
N��X
k��

�
N � � � k

k

�
sin�k

��
�

�
�

Pour N � �� notons �N le � correspondant dans le th�eor�eme Num�eri�
quement� on a

�� � �� �
��� � �
 � �� ����
 �

�� � �� ����� � �� � �� ����� �

� � �� ��
�� � �� � �� ����� �

�� � �� �
��� � �� � �� 
���
 �

La m�ethode de calcul num�erique se trouve dans �FL� Il s�agit d�appro�
cher la fonction S par une fonction en escalier dont le rayon spectral de
l�op�erateur associ�e est celui d�une matrice
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Asymptotic behavior

of global solutions to the

Navier�Stokes equations in R
�

Fabrice Planchon

Abstract� We construct global solutions to the Navier�Stokes equa�
tions with initial data small in a Besov space� Under additional as�
sumptions� we show that they behave asymptotically like self�similar
solutions�

�� Introduction�

When studying global solutions to an evolution problem� it is natu�
ral to study their asymptotic behavior� as it is usually a simpler way to
describe the long term behavior than the solution itself� Global solution
of the non�linear heat equation have been showed to be asymptotically
close to self�similar solutions ���� Under certain conditions� we will
show how to obtain similar results for the incompressible Navier�Stokes
system�

We recall the equations

�	


����
���

�u

�t
� �u�r � �u� u
�rp �

r � u �  �
u�x� 
 � u��x
 � x � R

� � t �  �

��
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As we are in the whole space� if u�x� t
 is a solution of �	
� then for all
� � � u��x� t
 � �u��x� �� t
 is also a solution�

We now note that studying the asymptotic behavior of u�x� t
 for
large time is equivalent to studying the asymptotic behavior of u��x� t

for large � with �xed time� Actually� we shall show that� as t goes to��
the natural space scale is

p
t as in the heat equation� If we replace x by

x�
p
t and let t ���� we obtain the same result as if we let � ��� in

u��x� t
� This new point of view is interesting for the following heuristic
reason� we expect that the limit v�x� t
 of u��x� t
 will also be a solution
of �	
� Furthermore� one might assume that v�x� t
 is the solution with
initial data v��x
 � lim��� �u��x� 
� Of course� the limiting solution
is invariant under the scaling� so

v�x� t
 �
	p
t
V
� xp

t

�
�

and v��x
 is an homogeneous function of degree �	�
Such self�similar solutions have been studied previously �see ����

���
� and we shall see in the present work how to make rigorous the
previous heuristic approach�

Let us de�ne the projection operator P onto the divergence free
vector �elds

��
 P

�
� u�
u�
u�

	
A �

�
�u�
u�
u�

	
A�

�
�R��
R��
R��

	
A �

where Rj is the Riesz transform of symbol

��
 �Rj
��
 �

�i
j�j �

and where

��
 � � R� u� � R� u� � R� u� �

Therefore P is a pseudo�di�erential operator of order �
We transform the system �	
 into an integral equation� where

S�t
 � et� denotes the heat kernel�

��
 u�x� t
 � S�t
u��x
�
Z t

�

PS�t � s
r � �u� u
�x� s
 ds �
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This equation can be solved by a classical �xed point method �see �	��
���� ���
� Following the method of �	�� we remark that the bilinear term
in the previous equation can be reduced to a scalar operator

��
 B�f� g
 �

Z t

�

	

�t� s
�
G
� �p

t� s

�
� �fg
 ds �

where G is analytic� such that

jG�x
j 	 C

	 � jxj� ���


jrG�x
j 	 C

	 � jxj� ���


This comes easily from the study of the symbol of B� as we have an exact
expression under the integral� The matrix of this pseudo�di�erential
operator has components like

��
 ��j �k �l
j�j� e�tj�j

�

o� the diagonal� with an additional term �j e
�tj�j� on it� The function

G is then the inverse Fourier transform of any of these functions at
t � 	� The only thing we will need is that G � L� 
 L��

This paper is organized as follows� In a �rst part� we will de�ne the
functional setting which is well�suited for our study� then study global
existence in this setting� and lastly the behavior of attracting solutions
for large time� if they exist� Then in a second part� we will try to
state a partial converse to the Theorem �� that is a condition on the
initial data in order to obtain a convergence to a self�similar solution
for large time� The third part will be devoted to a better understanding
of this condition� and will include reformulations of the condition and
examples�

�� Global existence in Besov spaces�

A well suited functional space to study �	
 is L� ����
� as ku�kL� �
kukL� � But homogeneous functions of degree �	 are not in L�� and
we easily see that the weak limit of u��� is � We therefore have to
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enlarge this functional space to include homogeneous functions of degree

�	� We have chosen the homogeneous Besov spaces �B
������p���
p � We

will see later they arise naturally in our problem� Let us recall their
de�nition ����� �	�
�

De�nition �� Let 	 � S�Rn
 such that b	 � 	 in B�� 	
 and b	 �  in

B�� �
c� 	j�x
 � �
nj 	��j x
� Sj � 	j � � � �j � Sj	��Sj � Let f be in

S ��Rn 
�
� If s 
 n�p� or if s � n�p and q � 	� f belongs to �Bs�q

p if and

only if the following two conditions are satis�ed

� The partial sum
mX
�m

�j�f


converge to f for the topology ��S ��S
�
� The sequence �j � �

jsk�j�f
kLp belongs to �q�

� If s � n�p� or s � n�p and q � 	� let us denote m � E�s�n�p
�
Then �Bs�q

p is the space of distributions f � modulo polynomials of degree

less than m� 	� such that

� We have f �
P�
���j�f
 for the quotient topology�

� The sequence �j � �
js k�j�f
kLp belongs to �q�

We remark that nothing in this de�nition restricts s from being
negative� In fact� we will use s � ��	 � ��p
 which is indeed negative
as p � �� In the particular case where s 
 � it is worth noting that
we can replace the condition �j � �

js k�j�f
kLp � �q by the equivalent
condition ��j � �

js kSj�f
kLp � �q� This second condition implies easily
the �rst one� and conversely� we remark that ��j can be seen as a con�
volution between �j and j � �sj � ��� We shall obtain the following
theorem which extends the results of �	��

Theorem �� There exists a positive function �q
� q � � such that if

u� � B
������p���
p � r � u� � � p � �� satis�es

�	
 ku�kB������q���
q


 �q
 �

for a �xed q � p� then there exists a unique solution of �	
 such that

�		
 u � Cw�� ��
� �B������p���
p 
 �
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where Cw denotes the weakly continuous functions� and� if p 	 � and

u � S�t
u� � w�x� t
� then

�	�
 w � L��� ��
� L��R�



and

�	�
 kwkL� 
 ��q
 �

where ��q
 depends only of �q
�

We remark that the restriction p 	 � in order to obtain �	�
 is
merely due to the linear part� the equivalent of �	�
 actually holds for
p � � if one considers higher order terms� if u is written as a sum
of multilinear operators of u� For the sake of simplicity� we restrict
ourselves to the �rst term� which yields this restriction�

We will prove the Theorem 	� using a �xed point argument via the
following abstract lemma �Picard�s theorem in a Banach space
�

Lemma �� Let E be a Banach space� B a continuous bilinear applica�

tion� x� y � E

�	�
 kB�x� y
kE 	 � kxkE kykE �

Then� if � � kx�kE 
 	� the sequence de�ned by

xn	� � x� � B�xn� xn


converges to x � E such that

�	�
 x � x� � B�x� x
 and kxkE 
 	

� �
�

Let us de�ne the space

�	�
 Fq � ff�x� t
 � sup
t��

kf�x� t
kLq 
 ��g �

The following characterization will be very useful�

Proposition �� Take � � � � � 	� f � S�Rn 
� then

�	�
 kfk � sup
t��

t��� kS�t
fkL�
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is a norm in �B����
� equivalent to the usual dyadic one�

Therefore� using the Sobolev inclusion

�B��p����
p �� �B��q����

q �

for p 	 q� we see that u� � �B
��q����
q � so that

p
t �S�t
u�
 �

p
t x
 � Fq �

Then� in order to apply Lemma 	 to Fq� we are left to prove that if

Dtf �
p
t f�

p
t x� t
 �

then DtB�D
��
t �� D��

t �
 is bicontinuous on Fq� Take �f � Dtf and �g �

Dtg in Fq� We denote M � �f �g � Fq��� We observe that the bilinear
operator �renormalized with Dt
 can be written as follows

eB� �f� �g
 � Z �

�

	

�	� �
�
G
� xp

	� �

�
�M

� xp
�
� � t

� d�
�

�

Then� by H�older and Young inequalities� we obtain

�	�
 k eB� �f� �g
kFq 	
Z �

�

C d�

�	� �
���	����q������q
k �fkFq k�gkFq �

which gives us �q
� Proceeding the same way� if p 	 � gives

�	�
 k eB� �f� �g
kF� 	
Z �

�

C d�

�	� �
��q�����q
k �fkFq k�gkFq �

This proves �	�
 and �	�
� We have now to prove the weak convergence
when t � � Clearly S�t
u� �

t��
u� by a duality argument� As for the

bilinear term� if 	 � C�� �R
�
 and if we denote by Q��
 the convolution

operator with G� � �p�
����

hQ�t� s
fg�s
� 	i � hfg�s
� S�t� s
 eQ	i�
where eQ is de�ned by

ceQ	��
 � �j �k ��
j�j�

b	��
 �
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so that eQ	 � L�� like the function G de�ned previously� Therefore

S�t� s
 eQ	 is �uniformly in t� s
 in L� � with 	�� � ��q � 	� Thus




D Z t

�

Q�t� s
 fg�s
ds� 	
E




	 C

Z t

�

kfg�s
kLq�� ds��


	 C

Z t

�

ds

s����q
k �fkFq k�gkFq��	


	 C t��q ��  ����


The uniqueness part of the theorem follows from the construction part�
so we have proved the Theorem 	� in the case where p � q� with q
for which �	
 is veri�ed� We next remark that the solution u actually
satis�es

���

p
t u�

p
t x� t
 � Fq� � for all q� � p� q � � �

and that moreover the bilinear term w satis�es

���

p
t w�

p
t x� t
 � Fq� � for

p

�

 q� 	 p �

���
 is of course true for the linear part� Then� the bilinear term is in
Fp�� and in Fq for the particular q we have �xed� And by interpolation
between Fp�� and Fq it is in all Fq� with p�� 
 q� 
 q� We are left to
prove ���
 for the bilinear term when q� � q� An easy modi�cation of
�	�
 takes care of this situation

���
 k eB� �f� �g
kFq� 	
Z �

�

C d�

�	� �
���	��q�����q�� �����q
k �fkFq k�gkFq

and if q � � we get all the q� � q� Otherwise� we have to proceed in
several steps to reach a value q� � �� Note that the great amount of
�exibility provided by inequalities of type �	�
� ���
 allows us to obtain
this result in many di�erent ways� In particular� we could establish the
bicontinuity of the renormalized operator from FqF �q to F

�
q and carry

along the �xed point iterations all the properties we want� provided
the di�erent continuity constants verify inequalities in the correct way�
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which happens to be the case� By the way� we remark that initial
data in the the space L��� are included� In fact� we have the following
embedding�

Theorem ��

L����R�
 �� �B������p���
p �

for all p � ��

In order to prove this� we will make use of the following character�
ization of weak Lebesgue spaces

f � L��� if and only if

Z
E

jf�x
j dx 	 C jEj��� �

for all Borel sets E� In particular� if � � S then � � f � L�� and
therefore is in Lp� for all p � �� In fact � � f � L���� and all bounded
functions in L��� are also in Lp� as the following estimate showsX

j��

��jp jfx � ��j 	 jgj 	 ��j	�jg 	 C
X
j��

�j���p� 
 �� �

Thus�

Sj�f
 � �
�j

Z
���jx� �jy
 f�y
 dy

�

Z
���jx� y
 f���jy
 dy

� �j
Z
���jx� y
 ��jf���jy
 dy

� �j h��jx
 �

Also� as h and f have the same norm in L���� we obtain

kSj�f
kLp 	 �����p kfkL��� �

which achieves the proof�

Now that we have solutions in the proper functional setting� we
can study the asymptotic behavior of these solutions� We begin with a
de�nition�
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De�nition �� We say that u�x� t
 �converges in Lp norm� to a function

V �x
 if and only if one of the two equivalent conditions is satis�ed�

	
 For all compact intervals �a� b� � � ��


u��x� t

Lp�dx��� 	p

t
V
� xp

t

�
� as ��� �

uniformly for t � �a� b�

�

p
t u�

p
t x� t


Lp�dx��� V �x
� as t ����

Then we will show the following

Theorem �� Let us take � 
 p 
 ��� Let u�x� t
 be a solution of �	

such that

���
 sup
t��

k
p
t u�

p
t x� t
kLp 
 ��

and

���
 u�x� t
 converges weakly to u��x
 when t ��  �

If

��
 u �converges in Lp norm� to V �

then the initial data u��x
 belongs to B
������p���
p � V �x�

p
t
�
p
t is a

self�similar solution of �	
� and

��	
 S�t
u� �converges in Lp norm� to v��x
 �

where v��x
 � S�	
 v�� and v� is the initial data of the self�similar

solution�

Note that we did not make any smallness assumption on the initial

data� In other respects� when u� � B
������p���
p � the condition ��	


implies that

���
 �u���x
 converges weakly to v� when � ��  �
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but this is not equivalent� and we postpone the discussion on that mat�
ter to Section �� We recall that the integral equation is

p
t u�

p
t x� t


�
p
t �S�t
u�
�

p
t x
�

Z t

�

PDt�S�t� s
r � u� u�s

 ds �

Let us denote U�t
 �
p
t u�

p
t x� t
� Then we have

U�t
 �
p
t �S�t
u�
�

p
t x
� eB�U�U
�t
 �

where we still use the usual notation for the bilinear operator� By
hypothesis

M � U � U
Lp��

�� N � V � V �

We consider the di�erence

���
 �t�x
�

Z �

�

	

�	� �
�
G
� xp

	� �

�
�
�
M
� xp

�
� � t

�
�N

� xp
�

��d�
�
�

and we want to estimate the Lp�norm� Let

��t
 � kM�x� t
�N�x
kLp�� �

so ���M� xp
t
� �t
�
�N

� xp
�

����
p��

� ���p ��� t
 �

and therefore�

���
 k�t�x
kLp 	 C

Z �

�

��� t
 d�

�	� �
���	����p� �����p
�

We know that ��t
 is bounded� and

�	� �
���������p� ���p�� � L��� 	
 �

when p � �� so we can apply the Lebesgue theorem and obtain

lim
t���

k�t�x
kLp �  �
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Therefore� the bilinear term becomes

	p
t
W
� xp

t

�
� o�	
 �

with

W �x
 �

Z �

�

	

�	� �
�
G
� xp

	� �

�
�N

� xp
�

� d�
�
�

The equation ���
 can be written as

���
 V �x
 � t��� �S�t
u�
�
p
t x
�W �x
 � o�	
 �

We see that the Fourier transform of
p
t �S�t
u�
�

p
t x
 is

	

t
e�j�j

�

�u�

� �p
t

�
�

which converges in FLp to a distribution� Therefore� �u����
p
t
�t con�

verges weakly to �v���
� On other hand� by means of ���
 and ���
�

���

��pt �S�t
u�
�pt x
��Lp 	 C 
 �� � for all t �  �

Hence�

���
 sup
t��

t��������p� kS�t
u�kLp 	 C �

which is equivalent to u� � B
��p����
p � Then for all �� u��� � B

��p����
p �

and
ku���k 
B

��p����
p

� ku�k 
B
��p����
p

�

so that we can extract a subsequence which converges to v� in the space
of tempered distribution� actually the convergence is in the sense of the

topology �� �B
��p����
p � �B

����p��
p 
� Then because the limit is unique� we

have that �v� � �v�� and the whole sequence converges weakly to v�� and

moreover v��x
 belongs to �B
��p����
p � We remark that v� is necessarily

homogeneous of degree �	� Let us prove that V is actually a solution
of �	
 where u� has been replaced by v�� The set �u�
� satis�es the
estimates ���
 and ���
 uniformly in � and indeed� for �xed t � �

�u��x� �� t

Lp

��
��	�

	p
t
V
� xp

t

�
�
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Therefore� if we pass to the limit in the equation ��
 which is satis�ed
by u�� we obtain

���

	p
t
V
� xp

t

�
� S�t
 v� �

Z t

�

PS�t � s
r � V �s
� V �s
 ds �

We see that

lim
t��

	p
t
V
� xp

t

�
� v�

weakly� which can be obtained in the same way as in the proof of
Theorem 	�

�� Initial data and asymptotic convergence�

Theorem � was the easy part of the study� In some sense� if we
have a convergence to a function� then this function must be a self�
similar solution whose initial data is obtained in a natural way from
the initial data� namely the weak limit of the rescaled initial data� It
would be nice if the existence of such a weak limit was enough to ensure
convergence toward a self�similar solution� Unfortunately� it is untrue�
and this is the purpose of Proposition � to explain why� Nevertheless�
we can obtain a necessary and su�cient condition in order to obtain
this converse to the Theorem �� We have seen in the �rst theorem
that it is useful to see the solution u�x� t
 as the sum of two terms
u�x� t
 � S�t
u� � w�x� t
� the heat term which gives a tendency� and
the bilinear term which is some sort of �uctuation� more regular than
the linear term� We will do the same for the self�similar solution� so
that

v�x� t
 �
	p
t
V
� xp

t

�
� S�t
 v� �

	p
t
W
� xp

t

�
�

Theorem �� Let u� be in �B
��p����
p � r � u� � � � 	 p 
 ��� such

that for some q � p�

ku�k 
B
��q����
q


 �q
 �

Moreover� suppose that there exists r� r � p and r � �� such that

��
 S�t
u� �converges in Lr norm� to v��x
 �
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Then �u���x
 converges weakly to a function v� such that v� � S�	
 v��
Further� if u�x� t
 is the solution of �	
 with initial data u�� V �x�

p
t
�
p
t

is the solution with initial data v��

��	
 lim
t��

t���������q�
���u�x� t
� 	p

t
V
� xp

t

����
L�q
�  �

for all �q � p� �q � � and� if p 	 �

���
 lim
t��

���w�x� t
� 	p
t
W
� xp

t

����
L�
�  �

We remark �rst that the case u� � L� leads to v� � � so that
v� � V � � In this case� ��	
 and ���
 become the usual estimates
�see ���
� Therefore� we shall assume that r � �� We easily see that
the convergence ��
 is in L�q� �q � p �and even �q � p if p � �
� In
fact

p
t �S�t
u�
�

p
t x
 is bounded for the norm k � kL�q � for all �q � p�

as �B
��p����
p �� �B

���q����
�q � Therefore� we conclude by interpolation

between Lp and Lr norms or between Lr and L��
We obtained

Lemma �� Let f � �B
��p����
p � p � �� such that for some r � p�

lim
t���

t��������r� kS�t
 fkLr �  �

Then� for all �q � p

���
 lim
t��

t���������q� kS�t
 fkL�q �  �

From the proof of the Theorem �� we already know that v�� which
is the weak limit of u���� belongs to the same Besov spaces as u�� There�
fore�

kv�k 
B
��q����
q

� ku�k 
B
��q����
q


 �q
 �

Furthermore we obtain the solutions u�x� t
 and V �x�
p
t
�
p
t by apply�

ing the Theorem 	� which used a �xed point argument� If we denote by
u�n�� respectively V �n�� the successive approximations of u� respectively
V � we remark that

u����x� t
 � S�t
u� �
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respectively
	p
t
V ���

� xp
t

�
�

	p
t
�S�	
 v�


� xp
t

�
�

If we recall that

u�n	���x� t
 � S�t
u� �
Z t

�

PS�t � s
r � �u�n� � u�n�

�s
 ds �

we see from ��
 that for r � q� we just have to prove� for a �xed n�
that

���

p
t u�n��

p
t x� t


Lq

�� V �n��x
 �

This can be done using the estimates obtained in the proof of Theorem
�� Recall that we obtained a estimation on S�t
u� using an estimation
on u and the equation� Here� the same technique applies� but we know
an estimation on S�t
u� and un and deduce the estimation un	� using
the equation� Then� by means of an estimates like ���
 and ���
 and
the dominated convergence theorem� we obtain

���

p
t B
�
u�n�� u�x�


�
p
t x� t


L�

�� B
�
V �n�� V �n�


�

Therefore� splitting

u�x� t
� 	p
t
V
� xp

t

�
�
�
u� u�n�


�
�
V �n� � V


�
�
u�n� � V �n�


�

we conclude with an ��� argument to obtain ��	
 using ���
 for the �xed
q we have chosen� We obtain the same result for all �q by interpolation
between various L	 norms� as in Lemma �� We obtain ���
 using ���

in the same way�

�� Understanding the condition on the initial data�

We might ask about the meaning of condition ��
 and the rela�
tionship with the remark we made previously� Let us �rst introduce an

equivalent de�nition of our Besov spaces B
������p���
p � p � ��
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Proposition �� Let f�
jg
 be a set of � wavelets such that the set

f�
��jx� k
g
�j�k�Z is an orthogonal basis of L��R�
� Then if

f�x
 �
X

�j�k

�
�j� k
 �
j �
��

jx� k
 �

f � �B
������p���
p is equivalent to

sup
j

�X
k

j�
�j� k
jp
���p


 �� �

Then we have

Proposition �� The following two conditions are equivalent�

If �
�j� k
 are the wavelets coe	cients of f under the previous nor�

malization� and

���
 f � B������p���
p � � 
 p 
 �� �

	
 f satis�es

���
 � f��x
 converges weakly to  �

and

���
 lim
j���

�X
k

j�
�j� k
jp
���p

�  �

�
 The function f satis�es

���
 lim
t�	�

t��������p� kS�t
fkLp �  �

Using the previous propositions� we will later prove the promised
Proposition �� which explains why the condition ��
 is necessary and
su�cient in order to obtain Theorem �� It is in fact deeply linked to
the nature of the functional space we are using� rather than to the
equation itself� On the other hand� no other pathological examples
are known to the author other than those constructed in the proof of
this proposition� On simple practical examples� where we start with a
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rather regular initial data� the condition will be ful�lled� Let us give
an example� where we forget about the divergence free vectors and deal
with a scalar function for sake of simplicity� Take

u��x
 �
�

	 � jxj �

then� by rescaling it converges weakly to

v��x
 �
�

jxj �

We put an � in order to comply with the smallness assumption� Then
the condition ��
 is veri�ed� because the di�erence � � u��v� belongs
to L� outside of the unit ball� so that the solution of the heat equation
with initial data ��x
 has its L��R�nB�� 	

 norm going to zero as
time goes to in�nity� and by Sobolev�s embedding we get ��
� In
other words� what matters is the behavior of the initial data for low
frequencies�

Proposition �� There exists a function f � B���
� �R�
� such that

� f��x
 converges weakly to  when �� ��� but such that� if p � �

lim
���

kS�	
 �� f��x

kLp ��  �

We will now prove Proposition �� Proposition � is nothing else than
the usual characterization of Besov spaces with wavelets coe�cients
����
� We only changed the normalization� We restrict ourselves to
Littlewood�Paley wavelets� as de�ned in ���� because they are closely
related to Littlewood�Paley decomposition� But the same results hold
for any wavelets basis� provided it has su�cient regularity� Let us recall
a few useful properties of these particular wavelets basis� as they will
be used later� The so�called scaling function of the wavelet basis is a
function 	 � S� such that �	��
 � 	 if ����� 
 � 
 ����� �	��
 �  if

���� 
 �� �	��
 is even� positive and such that �	���
� �	����� �
 � 	 if
 
 � 
 ��� Then the equivalent of operator Sj in the Littlewood�Paley
analysis is an operator Ej � de�ned as follow�

De�nition �� The operator Ej is a sum of three terms�

Ej �  j �Mj�
�
j �M��

j �	
j �
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where the three terms  j� �
�
j and �	

j are the Fourier multipliers by

�	����j�
� �	���j�
 �	���j ���� �

� and �	���j�
 �	���j���� �

� M� is

the multiplication by exp ��� i �jx
� We then de�ne Dj � Ej	� � Ej�

which is very close to the usual �j from De�nition 	�

We see that ���
 can be written as

��
 lim
���

kS�	
 �� f��x

kLp �  �

Then� if 	 � S and supp �	 is compact�

��	
 lim
���

k	 � �� f��x

kLp �  �

We remark then that

���

�X


�k

j�j�k�
jp
���p

� kD��� f��x

kLp �

with � � ��j � and D� de�ned as in ��� p� ���� Then we know from ��

that D� is a sum of operators likeM�� where M is a multiplication by
an imaginary exponential� and � is a convolution by a function whose
Fourier transform is compactly supported� We deduce our result by
using ��	
� Conversely� if we suppose that ���
 is true� we �rst prove
that for 	 as de�ned above�

lim
���

k	 � f�kLp �  �

Doing a rescaling and taking � of the order of �N � we are left to prove
that

lim
N��

�N�����p�
��� X
j��N

X

�k

�f�k�
 �
j �
��

jx� k

���
Lp
�  �

The sum on j 
 �N being the convolution with 	� if we assume the
support of �	 to be contained in the unit ball� However� for a �xed j

���X

�k

�
�j�k �
j �
��

jx� k

���
Lp

	 C �j�����p�
�X


�k

j�j�k�
jp
���p

�
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Then� by means of ���


���X
k�


�
�j�k �
j �
 ��

jx� k

���
Lp

	 �j�����p��j �

with limj��� �j � �
Then

������p�N
X
j��N

�j �
�����p�j ��  �

as it it a convolution between �� and ��� Equation ���
 follows by
splitting S�	
 into a sum of dyadic blocks�

Let us go back to Proposition �� It helps to understand why ��	

is a necessary and su�cient condition� unlike ���
� In fact� let us forget
for a while the proposition and suppose only ���
! in the opinion of the
author� the following gives a good heuristic of the situation� and could
be made rigorous except that in our case� and unlike ���� it doesn�t
produce any useful results� With the help of the Theorem 	� we can
construct a set �u�
� of solutions of �	
 with initial data u���� All the
estimates do not change by rescaling� which means they are indepen�
dent of �� Therefore� we can extract a subsequence which converges in
C��t�� t���B�� R

� where t� � � for exactly the same reasons as in
���� by bootstrap we obtain u� � C��t�� t���W

���
� with a bound in�
dependent of �� and then we know that W ��p�B�� R

 �� C�B�� R

�
We also obtain easily that v�x� t
 is actually the �self�similar
 solution
of �	
 with an initial condition v�� which is the weak limit of �u���
��
But to prove ��	
� we just have to prove

���
 lim
���

ku��x� 	
� v�x� 	
kLq �  �

This last sentence is true if we replace Lq by Lq�B�� R

� and in order
to prove ���
� we should prove something like

lim
R��

k�
R
u��x� 	
kLq �  �

uniformly with regards to �� where �
R
�x
 � ��x�R
 has value zero

on B�� 	
� and one outside B�� �
� Let us deal with the linear part�
suppose that u� � L�� k�

R
u���kL� 	 ku�kL��jxj��R�� we obtain easily

lim
R��

k�
R
S�	
u���kLq �  � uniformly in � � 	 �
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We conclude with such a proof for the two dimensional case� as in ����
�
However� if u� � �B���

� but u� �� L�� then k�
R
u�k 
B���

�
��  is not

always true when R ���� For instance� if we take f � 	�jxj� then

k�
R
fk 
B���

�
� k�fk 
B���

�
� constant �

We could hope to have a property like

lim
R��

k�
R
S�	
u���kLq �  �

uniformly if � � 	� In fact� it is not possible� as we will see�

Proposition 	� There exists f � �B���
� such that for all R� there exists

� � 	 such that

k�
R
S�	
 f�kL� � 	 �

Here� we have chosen p � �� q � �� but we could have chosen any
other values�

We remark that� if � is �xed� S�	
f� � L� and

lim
R��

k�
R
S�	
f�kL� �  �

We will need the following lemma�

Lemma �� If f � L�� g � L�� then

�Z
jxj�R

jf � gj� dx
����

	 kgkL�

�Z
jxj�R��

jf j� dx
����

� kfkL�

Z
jxj�R��

jgj dx �

Therefore� in order to prove that k�
R
S�	
f�kL� is large enough�

we just need to �nd a function g � L� such that k�
R
�g � S�	
f�
kL� is

large� Let 	 � S be a function such that supp �	 � f��	 	 j�j 	 	��g�
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and

f�x
 �
�X
�

��j 	���jx� xj
 � where jxj j �� � �

�mf��mx
 �
m��X
�

�m�j	��m�jx� xj
 � 	�x� xm


�
�X

m	�

�m�j	��m�jx� xj


� um�x
 � 	�x� xm
 � vm�x
 �

We observe that the frequencies of um are in fj�j � ���g and the ones
of vm in fj�j 	 ��� 	 ��	g� Thus there exists g � S such that

supp �g �
n	
	�

	 j�j 	 	�

	

o

and

�g��
 � ej�j
�

� for
�

	
	 j�j 	 	

�
�

We take � � �m� g � S�	
f� � 	�x� xm
� and

lim
m��

Z
jxj�R

j	�x� xm
j� dx � k	k�L� �

We can go further in our study of f �
If �m 
 � 
 �m	�� we split f as

� f��x
 � um�x
 � vm�x
 �

where um is the part of frequencies ��j � with jm� jj 
 N and vm the
one where jm� jj � N �

Then� we take a test function � such that  �� supp ��� and N
such that supp �� � ���N � �N �� Then

R
� f��x
��x
 dx contains only

terms with jj �mj 	 N � which are in �nite number and go to  when
jxj j �� ��

We have proved the following proposition�
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Proposition 
� There exists f � �B���
� such that f� �  for the weak

topology �� �B���
� � �B���

���
� but nevertheless� k�RS�	
f�kL� does not go to

 when R ���� uniformly in � � 	�

The reader should consult �	� to see why the test functions � we
used are dense into �B���

����

We have now to link the Proposition � and the condition ��	
�

Proposition �� Let

f � �B���
� � f��x
 � �f��x
 �

The two following properties are equivalent


	
 The function f satis�es

���
 lim
t��

t�� kS�t
fkL� �  �

�
 f� �  for the topology �� �B���
� � �B���

���
� and

���

�Z

jxj�R

jS�	
f�j�
����

	 �R �

with limR�� �R �  independently of � � 	�

Let us prove that the �rst condition implies the second one� The
weak convergence has already been proved� Knowing that ���
 is equiv�
alent to

lim
���

kS�	
f�kL� �  �

this proves � Z
jxj�R

jS�	
f�j� dx
����

	 � �

for � � ��� It remains the case where � � �	� ��
� As

S�	
f��x
 � � �S���
f
 ��x
 �

we remark that the functions S���
f are in a compact set of L�� Then
there exists R
 such that� for � � �	� ��
 and R � R
�
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� Z
jxj�R

jS�	
f�j� dx
����

	 � �

the converse statement can be easily proved� In fact� if

f� �  �

we obtain that
S�	
f��x
 �� 

uniformly on any compact set� We can therefore estimate

kS�	
f�kL�

by splitting for jxj 	 R and jxj � R� which ends the proof�
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Subnormal operators

of �nite type I�

Xia�s model and real

algebraic curves in C
�

Dmitry V� Yakubovich

Abstract� Xia proves in ��� that a pure subnormal operator S is com�
pletely determined by its self�commutator C � S�S � SS�� restricted
to the closure M of its range and the operator � � 	S�jM
�� In ����
���� ����� he constructs a model for S that involves these two operators
and the so�called mosaic� which is a projection�valued function� ana�
lytic outside the spectrum of the minimal normal extension of S� He
�nds all pure subnormals S with rankC � �� We will give a complete
description of pairs of matrices 	C��
 that correspond to some S for
the case of the self�commutator C of arbitrary �nite rank� It is given
in terms of a topological property of a certain algebraic curve� asso�
ciated with C and �� We also give a new explicit formula for Xia�s
mosaic�

�� Introduction�

One of the modern approaches to the spectral theory of a nonselfad�
joint operator consists in constructing its functional model� The most
developed theory of this kind is the Sz��Nagy�Foia�s theory of Hilbert

��
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space contractions� Recently� several attempts have been made to con�
struct functional models for other classes of operators� This paper con�
cerns some questions that arise in connection with Xia�s analytic model
of subnormal operators�

A 	bounded
 linear operator S acting on a 	complex
 Hilbert space
H is called subnormal if there exists a larger Hilbert space K� K � H�
and a normal operator N � K � K such that NH � H and S � N jH�
The operator S is called pure if it has no nonzero reducing subspace
on which it is normal� We will always assume S to be pure and the
normal extension N of S to be minimal� the latter means that there
is no subspace K �� H � K � � K� such that NK � � K � and N jK � is
normal�

This class of operators has been much investigated� we refer to ���
for a background�

It is known that for a subnormal operator S� if we put

C
def
� S�S � SS� � M

def
� closRangeC �

then S�M � M � In ���� ���� ����� Xia constructs and studies an ana�
lytic model of a subnormal operator� He de�nes two functional model
spaces that consist� respectively� of analytic and antianalyticM �valued
functions on C n �	N
 and gives formulas for the trancription of S and
S� in each of these two models 	here �	N
 is the spectrum of N
�

One of the consequences of Xia�s results is that if we put

� �
�
S�jM

��
�

then the pair 	C��
 of operators on M completely determines a pure
subnormal operator S� If M is one�dimensional� then C� � are� essen�
tially� complex numbers� and the spectrum of S is the closed disk with
center in � and radius C���� Therefore� by analogy� � and C��� can be
called the matrix center and the matrix radius of S�

The following question arises� which pairs 	C��
 can appear in
this way� The main result of this paper is a complete answer to this
question in the case dimM � �� It is given in terms of the algebraic
curve

� �
�
	z� w
 � det

�
C � 	w � ��
 	z � �


�
� 

�
in C P � � A crucial topological condition is that � has to be separated�
that is� that � � f	z� �z
 � z � C g divides each of the 	nondegener�
ate
 irreducible components of � into two connected components 	see
Theorem � below
�
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One of the main objects in Xia�s model is Xia�s mosaic

�	z
 � PM 	N � SPH
 	N � z
��jM � z � C n �	N
 �

here N is the minimal normal extension of S and PW is the orthogonal
projection onto a subspace W � We will give an explicit formula for �	z

in terms of C� � and the curve ��

Sections ��� are devoted to preliminaries� Main results are formu�
lated in Section �� in Section �� proofs are given� Section � collects some
additional facts and examples� In the subsequent publication ����� we
are going to continue the analysis of Xia�s model�

The form of the main result resembles some results in the theory of
commuting nonselfadjoint operators by Liv�sic� Vinnikov and others 	see
���
� The connection between this theory and the topic of the present
paper may exist� but does not seem to be obvious�

�� Xia�s results�

We reproduce only those results by Xia that will be necessary for
our exposition�

Let S be a pure subnormal operator� and de�ne M � C� � as above�
We will write C � C	S
� � � �	S
� Let us say that S is of �nite type

if dimM ��� Denote by L	M
 the space of bounded linear operators
on M � Following Xia ���� de�ne a L	M
�valued measure e	 � 
 by

	���
 e	 � 
 � PME	 � 
PM �

where E	 � 
 is the spectral measure of N � Xia shows that �	N
 is
contained in the set

	���
 � � fu � C � det
�
C � 	�u� ��
 	u� �


�
� g

and that

	���

�
C � 	u� ��
 	u� �


�
de	u
 	  �

He also proves that the values of the function

	���
 �	z
 �

Z
u� �

u� z
de	u
 � PM 	N�SPH
 	N�z


��jM � z � C n�
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are parallel projections on M 	that is� �	z
� 	 �	z

� We will call this
function Xia�s mosaic of S� Xia proves that

	���

�
�	z
� C	z � �
�� � ��

�
�  � z � C n � �

where �A�B� � AB � BA�
For any non�negative L	M
�valued measure e� we put L�	e
 to be

the space of all measurable M �valued functions f satisfying

kfk�
def
�

Z
�

�
de	u
f	u
� f	u


�
�� �

factorized by the linear manifold ff � kfk� � g� It is easy to see that
L�	e
 is a Hilbert space�

The following result is part of ��� Theorems � and ���

Theorem A 	Xia ���
� Let C�� � L	M
 and C � � Suppose that

there exists an L	M
�valued positive measure e on a compact subset �
of C such that

	���


Z
u� �

u� z
de	u
 �  �

for z in the unbounded component of C n � and 	���
 holds� Let D be

the set of all z � C n� for which 	���
 holds� and H the closure in L�	e

of all linear combinations of functions 		 � 	 � 

��m� 	 � D� m � M �

Then the operator

	���
 	eSf
	u
 � u f	u
 � f � H �

is pure subnormal�

	���
 	 eNf
	u
 � u f	u
 � f � L�	e
 �

is its minimal normal extension� C � C	eS
� � � �	eS
� and e	 � 
 is

connected with eN in the same way as in formula 	���
� We imbed M
into L�	e
 via the formula c 
�� �c�� where �c�	z
 	 c�

Conversely� if S is a subnormal operator of �nite type and C �
C	S
� � � �	S
� then the measure e	 � 
� given by 	���
� enjoys the

above properties� and 	���
� 	���
 de�ne operators� unitarily equivalent

to S and N � respectively�
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The statements C � C	S
� � � �	S
 are not stated explicitly in
��� Theorem ��� but they follow at once from 	���
 and ��� formula 	��
��

Theorem A gives a criterion for existence of a pure subnormal S
with given matrices C � C	S
 and � � �	S
 in terms of the existence
of a L	M
�valued measure with certain properties� Our aim is to give
a more explicit criterion�

�� The discriminant curve and its geometry�

Let M be a �nite�dimensional Hilbert space and C �  and �
operators on M � We associate with C� � the polynomial

	���
 
	z� w
 � det
�
C � 	w � ��
 	z � �


�
and the algebraic curve

� �
�
	z� w
 � C � � 
	z� w
 � 

�
�

which will be called the discriminant curve of S� As usual� we pass
to homogeneous coordinates 	�� �� 
 in the complex projective plane
C P � by putting z � � ��� w � � �� and consider � as an alge�
braic curve in C P � � de�ned by the homogeneous polynomial equation
�dimM
	� ��� � ��
 � � Since

	���
 
	w� z
 � 
	z� w
 �

� possesses an antianalytic involution given by

� � 	z� w
 
�� ��
def
� 	w� z
 �

If we substitute z � x�iy� w � x�iy� then 
 becomes a real polynomial
in variables x� y� In this sense� � is a real algebraic curve� In terms
of the coordinates 	x� y
 in C � � the map � 
�� �� is the usual complex
conjugation 	x� y
 
�� 	x� y
� that is� the re�exion with respect to the
linear submanifold R� � fx � x� y � yg � fw � zg of real points of
C � � In what follows� only the coordinates 	z� w
 will be used�

We observe that

a
 � � �� w	�
 �� implies z	�
 � �	�
�

b
 � � �� z	�
 �� implies w	�
 � �	��
�
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For instance� to prove a
� it su ces to rewrite the equation 
	z� w

�  as

det
�
Cw�� � 	�� w����
 	z � �


�
� 

and to put here w�� � �
Let

	���
 
	z� w
 �
TY
j��


j	z� w

�j

be the decomposition of 
 into irreducible factors ���� associated is a
decomposition

	���
 � �

T�
j��

�j �

where �j �
�
	z� w
 � 
j	z� w
 � 

�
� We will call algebraic curves �j

the components of ��
A component b�k will be called degenerate if it has the form z 	

const or w 	 const and nondegenerate in the opposite case� Let b�deg

be the union of degenerate components of b� and b�ndeg the union of
nondegenerate components�

Consider the following example� Let S be the shift operator

Sf	 � 
 � 	 � 
 f	 � 
 �

acting of the Hardy space H�� equipped with the modi�ed norm kfk�� �
kfk�H� � a jf	
j�� where a � � It is easy to see that S is simple
subnormal and that its discriminant surface is

fz w � �g � fz � g � fw � g �

This shows that degenerate surfaces really can appear�
We put

�C	�
 �
�
z � C � det	C � 	w � ��
 	z � �

 �  � for all w � C

�
�

so that the degenerate components in the decomposition 	���
 are ex�
actly the surfaces z 	 	 and w 	 	� 	 � �C	�
� It is immediate that
�C	�
 � �	�
 and �C	�
 � ��
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A point � of � will be called regular if it belongs to only one �j

and either
�
j
�z
	�
 ��  or

�
j
�w
	�
 ��  �

and singular in all other cases� The set �s of singular points of � is
�nite� Put �� � �n�s� then the sets �j��� are pairwise disjoint� The

blow�up b� of � can be de�ned as a unique abstract compact Riemann
surface that consists of exactly T connected components b�j � where eachb�j is compact and is obtained by adding a �nite number of points to

�j ���� There is a natural projection of b� onto � which is identical
on ��� If � � b� and 	z� w
 is its image on �� we will write �  	z� w
�
We refer to ��� for the background on the blow�up�

The functions � 
�� z	�
� � 
�� w	�
 extend to meromorphic func�

tions on b�� The conjugation � 
�� �� also extends to b��
The function

	���
 � � �
dz

dw
�

de�ned initially on regular points � � 	z� w
 � b�ndeg� can be continued

to a meromorphic function on b�� This function will play an important
role in the sequel�

It is easy to check� using a
 and b
� that

	���

z	�
 ��� implies �	�
 ��� �

w	�
 ��� implies �	�
 ��  �

Since both z�projection and w�projection of each nondegenerate com�
ponent �j is the whole sphere bC � it follows that � is non�constant on
each nondegenerate component of ��

By 	���
� � has the following symmetry property

	���
 �	��
 � 	�	�

�� �

Put

b�� � f� � b�ndeg � j�	�
j � �g � b�� � f� � b�ndeg � j�	�
j � �g �

then
� b�� � � b�� � f� � b�ndeg � j�	�
j � �g �
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Let b�R � f� � b�ndeg � � � ��g

be the set of real points of b�� then b�R � �� � �� � f	z� z
 � z � C g�
By 	���
� b�R � � b�� �

De�nition� The algebraic curve � is called separated if for any non�

degenerate component b�k of b�� b�R� b�k separates b�k into at least two

connected components�

Let � be separated� Then the set b�R � b�k is in�nite for each
nondegenerate b�k 	and contains a continuous curve
� In particular� it

contains points of ��� It follows that
�b�k

��
� b�k for each nondegener�

ate component b�k� The conjugation transforms degenerate components
z � const into the components w � const� and vice versa� The general
theory of Riemann surfaces with antianalytic convolution 	see ���
 says

that for each nondegenerate b�k� b�R� b�k separates b�k into exactly two
connected components�

Proposition �� � is separated if and only if b�R � � b���

Proof� Clearly� � b�� � b�k separates b�k into at least two connected

components for all nondegenerate b�k� this proves the !if" part�
To prove the converse� suppose that � is separated� but b�R �

� b��� The set � b�� has no isolated points� Since both � b�� and b�R
are closed� � b�� n b�R contains an arc� say� �� Then � is contained in
a nondegenerate component b�k� Therefore b�k n b�R can be obtained
from the connected set 	b�k n � b��
�� by adding part of its boundary�

Hence b�k n b�R is connected� a contradiction�
Suppose � is separated� Put

	���
 �c � z 	� b��
 �

it is a �nite union of piecewise analytic curves� We have that �c � �
	see 	���

� and � n �c is a �nite set�
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�� The projection	valued function Q�

Let A be a square matrix� Then �	A
 is de�ned by means of the
Riesz�Dunford calculus for any function �� analytic in a neighbourhood
of �	A
� It is easy to see that

	���
 �	AjR
 � �	A
jR �

for any invariant subspace R of A�
For 	 � �	A
� we put

#�	A
 � �
�
	A
 �

where �
�
is a locally constant function on a neighbourhood of �	A
 such

that �
�
	 � in a neighbourhood of 	 and �

�
	  in a neighbourhood

of �	A
 n f	g� We put #�	A
 �  if 	 �� �	A
� The operator #�	A
 is
a parallel projection� it is called the Riesz projection corresponding to
the eigenvalue 	 of A�

Let b�� � b�ndeg �
�

w���C��	

f	z� w
 � w 	 w�g

be the algebraic curve obtained from b� by excluding from it the !ver�
tical" degenerate components z 	 z�� For z �� �	�
� a point 	z� w
 is in
� if and only if w belongs to �	C	z � �
�� � ��
� Therefore for any
� � 	z� w
 � �� n z

��	�	�

�

	���
 Q	�

def
� #w	C 	z � �


�� � ��


is a non�zero parallel projection in M � The function Q is a projection�
valued meromorphic function on b��� The well�known properties of the
functional calculus imply that

i
 Q	��
Q	��
 �  if ��� �� � ��� z	��
 � z	��
 �� �	�
� �� �� ���

ii

P

z��	�z�
Q	�
 � I for any z� such that z

��	z�
 � ���

It follows from 	���
 that

	���

�
Q
�
	z� w


�
� �	z


�
�  � for 	z� w
 � �� n z

��
�
�	�


�
�
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� Main results�

Theorem �� Let M be a �nite�dimensional Hilbert space and C� �
operators on M with C � � De�ne �� ��� Q as above� and put

	���
 �	z
 �
X

w
�z�w	���

Q		z� w

 � z � C n
�
�	�
 � � � z	�s


�
�

Then there exists a subnormal operator S satisfying C � C	S
 and

� � �	S
 if and only if the following conditions hold�

i
 � is separated�

ii
 There exists a positive L	M
�valued measure de	 � 
 such that

	���
 	�� z
��	�� �	z

 �

Z
de	u


u� z
� z � C n

�
�	�
� � � z	�s


�
and

	���

�
C � 	�u� ��
 	u� �


�
de	u
 	  �

If i
� ii
 hold� then the measure de	 � 
 is connected with the operator S
by the formula 	���
� and � is Xia�s mosaic of S�

It follows� in particular� that 	���
 expresses the mosaic of any
subnormal operator S of �nite type in terms of matrices C � C	S
�
� � �	S
�

By 	���
� the set of singularities of the function 	� � z
��	� �
�	z

 is contained in the set �	�
 � �� which has zero area� By the
Hartogs�Rosenthal theorem 	see ���
� e	�
 is uniquely determined by
	���
� whenever it exists�

The next Theorem � is a more detailed version of Theorem ��
Before formulating it� we need to introduce a few more notions�

De�nition� The pair 	C��
 will be called non�exceptional if there exists

a �nite subset Z of C such that for z � C n Z� all Jordan blocks of the

matrix C	z��
����� corresponding to eigenvalues w with w �� �C	�

are simple�

In fact� the author does not know whether exceptional pairs 	C��

exist�
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Suppose that � is separated� that is� � b�� � b�R� Let �cns be the
set of all nonsingular points of the curve �c 	see 	���

� then �c n �cns is
�nite� If 	z� z
 � � and 
 �z	z� z
 �� � 


�
w	z� z
 �� � then 	z� z
 � �� and

z � �cns�
Let us orient the curve �c according to the positive orientation of

� b�� as a boundary of b��� There is a continuous function � � �cns �� C
with j�j 	 � such that dz � i �	z
 jdzj on �cns� Then �		z� z

 	 �	z
��
z � �cns�

Theorem �� In the above Theorem �� conditions i
�ii
 can be replaced

by the following conditions�

i�
 � is separated�

ii�
 The pair 	C��
 is non�exceptional�

iii�
 The matrix�valued measure �	z
 	z � �
��Q		z� z

 jdzj
��
�c

is

positive and �nite�

iv�
 There exists a �nite subset R of C such that a representation

	�� z
��	���	z



�
�

��

Z
�c

	u� �
��Q		u� u



u� z
�	u
 jduj�

X
��R

A�

� � z
�	���


holds for some non�negative matrices A� � � � R�

v�

�
C � 	�� � ��
 	� � �


�
A� �  for all � � R�

If i�
�v�
 hold� the measure de	 � 
 that corresponds to the 	unique

subnormal operator S such that C � C	S
� � � �	S
 is given by

	���
 de	u
 �
�

��
	u� �
��Q		u� u

 �	u
 jduj

��
�c
�
X
��R

A� ��	u
 �

where �� is the delta�measure concentrated in ��

In fact� the di$erence between the left�hand side and the integral
in the right�hand side in 	���
 is always a rational matrix function� So
iv�
 is only a restriction on the form of this function�

We remark that if i�
� ii�
 hold� then� by ��� formula 	��
�� the
matrix �	u
 	u� �
��Q		u� u

 is self�adjoint for u � �c� It seems that
Xia uses ii�
 implicitly in some of his arguments� In Section � below� we
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give an example of a non�exceptional pair 	C��
 such that this matrix
fails to be positive on certain arcs of �c� It would be interesting to know
whether i�
 and ii�
 imply iii�
�

Theorem � and the above Theorem A by Xia permit one to con�
struct the operator S from matrices C � C	S
� � � �	S
 	whenever it
is possible
� In ����� we will discuss this construction in detail�

�� Proofs of Theorems � and ��

Lemma �� Let S be a subnormal operator of �nite type� and put C �
C	S
� � � �	S
� Let � be the discriminant surface of S and � its

mosaic� Let U be an open connected set contained in b� n b�R� and let

��� �� � U � with z	��
� z	��
 � C n ��
If z	��
 � C n �	S
� then

	���
 �	z	��

Q	��
 �  �

If w	��
 � C n �	S
� then

	���
 �	z	��

Q	��
 � Q	��
 �

Proof� We remind that for a domain G with piecewise smooth bound�
ary� the Smirnov class Ep	G
 consists of functions f analytic in G such
that

sup
n

Z
	Gn

jf	z
jp jdzj �� �

for some increasing sequence fGng of domains with smooth boundaries
such that �Gn � G� here  � p � �� We refer to ���� ��� for basic
properties of Smirnov classes� The Cauchy integral of any �nite measure
supported in C nG belongs to Ep	G
 for any p � �� So it follows from
	���
 that for each p � � and each connected component % of C n �� �
belongs to Ep	% �� L	M

� By 	���
 and the Plemelj !jump" formula
���� the interior and exterior boundary values �i� �e of � satisfy

�i	z
� �e	z
 � ��i 	z � �

de	z


jdzj

jdzj

dz
�

almost everywhere on �c with respect to the arc length measure� Here
de	z
�jdzj is the Radon�Nikodim density of the absolutely continuous
part of de	z
 with respect to jdzj� By 	���
� it follows that

	���

�
C	z � �
�� � �� � z

��
�i	z
� �e	z


�
�  �
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almost everywhere on �c� We may assume that U n z��	�c
 consists
of a �nite number of connected components %�� � � � �%k� that �%j and
�%j�� have a common arc for j � � � � � � k � � and �� � %�� �� � %k�
Take any %j and any � � 	z� w
 � �%j � �%j�� � ��� Then we have
w �� z by the hypothesis�

Let �� be an analytic function in a neighbourhood of �	C	z �
�
�����
 such that ��	u
 � 	u� z


�� on a small neighbourhood of w
and ��	u
 �  outside this neighbourhood� Putting &	�
 � ��	C	z �
�
�� � ��
� we obtain from the Riesz�Dunford calculus that

&	�

�
C 	z � �
�� � �� � �z

�
� Q	�
 �

so that 	���
 and 	���
 give

	���
 	�i	z
� �e	z

Q	�
 � Q	�
 	�i	z
� �e	z

 �  �

almost everywhere on �c� Consider �rst the case z	��
 � C n �	S
� Put

�	�
 � �	z	�

Q	�
 � � � U �

Since �	z
 	  in a neighbourhood of z	��
� it follows that � 	  in %��
Then 	���
 implies that �j%� has zero boundary values on �%� � �%��
By the Privalov uniqueness theorem ���� �j%� 	 � Continuing in the
same way� we see that � 	  in U � and this implies 	���
�

Now assume that w	��
 � C n �	S
 and let us prove 	���
� Our
arguments are motivated by the proof of ��� Lemma ����� Xia proves
in ��� that the function

	���
 S	z� w
 �

Z
de	u


	u� z
 	u� w

�

de�ned for z� w � C n �� for 	z� w
 �� � has a representation

	���

S	z� w
 � �	C � 	w � ��
 	z � �


���
	�� �	z



� �	w
�	C � 	w � ��
 	z � �

���

�

It follows that if 	z� w
 � C � n� is such that �	w
 � � then

	���
 	C 	z � �
�� � �� � w
 	z � �
S	z� w
 � �	�� �	z

 �

By continuity� we can assert that this equality also holds for 	z� w
 � �
if z � C n 	� ��	�

� �w � C n � and �	w
 � � In particular� 	���
 holds
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por points 	z� w
� 	z� w
 � ��� in a neighbourhood of ��� By 	���
� the
operator C 	z � �
�� � �� has an invariant subspace 	� � �	z

M � It
follows from 	���
 that

	���
 #�

�
C 	z ��
�� ��� �w

��	�� �	z

M
�
� 	�� �	z

Q		z� w

 �

On the other hand� by 	���
 and 	���
�

	C 	z � �
�� � �� � w
 	�� �	z

 	z � �
S	z� w
 � �	�� �	z

 �

which shows that C 	z � �
�� � �� � w
��	�� �	z

M is invertible� By

	���
�
	�� �	z

Q		z� w

 	  �

for points 	z� w
 � �� in a neighbourhood of ��� Putting �	�
 � 	� �
�	z	�

Q	�
� � � U and proceeding as above� we obtain 	���
 in the
same way as 	���
� The proof of the Lemma is complete�

Proof of Theorem �� Sufficiency� This follows from the above
Theorem A by Xia� Indeed� 	���
 and 	���
 imply that �	z
 	  in the
unbounded component of C n 	� � �	�

� Therefore� letting z �� in
	���
 we get e	C 
 � I� Now one gets that 	���
 is equivalent to

�	z
 �

Z
u� �

u� z
de	u
 � z � C n � �

So all the hypotheses of Theorem A are satis�ed� In the model for S�
given by this theorem�

	���
 PMf �

Z
de	u
 f	u
 � f � L�	e
 �

Formulas 	���
 and 	���
 imply that representation 	���
 of e holds�

Necessity� Now we start with a subnormal operator S of �nite type
and put C � C	S
� � � �	S
� If � is not separated� then there is

a nondegenerate component b�k of b� such that b�k n b�R is connected�
Take U � b�k n b�R� then U has points �� with z	��
 � C n �	S
 and
points �� with w	��
 � C n �	S
� We conclude from Lemma � that

 � �	z	�

Q	�
 � Q	�
 �
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for all � in U � which is a contradiction�
So we may assume � to be separated� For any nondegenerate

component b�l of b�� b�l � b�� is the connected component of b�l n b�R
containing 	all
 points ��  	z��
� where z � �	�
� This follows from

	���
 and the fact that b�l n b�R has only two connected components�
Moreover� b�l � b�� contains neighbourhoods of the points of the above

type� A similar fact about b�l � b�� takes place� By applying Lemma �
to connected sets b�l � b�� and b�l � b��� we see that for � � b�l�

	���
 �	z	�

Q	�
 �

	
 � � � b�� �

Q	�
 � � � b�� �

Now let b�l be a degenerate component of b��� b�l � fw 	 w�g� Then

there is a point �� � b�l with ��  	�� w�
� We conclude from Lemma �

that �	z	�

Q	�
 	  on b�l in this case� Therefore for z �� �	�
�z	�s


�	z
 � �	z

X

w
�z�w	�b��

Q		z� w

 �
X

w
�z�w	���

Q		z� w

 �

So the righthand part of 	���
 coincides with Xia�s mosaic of S� Let
e	 � 
 be de�ned by 	���
� then 	���
 follows from Theorem A� and 	���

from 	���
�

Proof of Theorem �� First we remark that conditions i�
�v�
 of
Theorem � imply conditions i
� ii
 of Theorem �� Indeed� if i�
�v�
 hold�
then the measure de� de�ned by 	���
� is �nite� positive�valued� and
	���
 holds� Condition v�
 implies 	���
 for the discrete part of de	 � 
�
Since the pair 	C��
 is non�exceptional� one has

	C 	z � �
�� � ��
Q		z� w

 � 

identically for 	z� w
 � b�ndeg� This and v�
 give 	���
�
Conversely� let us suppose that i
� ii
 hold� so that C � C	S
�

� � �	S
 for an operator S of �nite type� First we observe that 	���

and 	���
 imply

	�� z
��
X

�z�w	�b��nb��

Q		z� w

 � 	�� z
��	�� �	z

 �

Z
de	u


u� z
�
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It follows that there exists a �nite subset F of �c such that

de
���cnF � �

��i
	u��
��Q		u� u

 du �

�

��
�	u
 	u��
��Q		u� u

 jduj �

Therefore iii�
 holds�
Put R � F ��C	�
� Then there exist positive matrices A� � � � R�

such that 	���
 holds� By 	���
�

	C 	u� �
�� � �� � u
Q		u� u

 	  �

for all u � �c nR� By the de�nition of Q� the matrix C 	u� �

�� ���

for these u has no non�trivial Jordan blocks corresponding to eigenvalue
u�

Fix any nondegenerate component �k of �� Then� since �R ��k

contains an arc� there are in�nitely many points 	z� w
 � �k such that
all Jordan blocks of C	z��
����� that correspond to the eigenvalue
w are trivial� From a simple algebraic argument one sees that this
property holds for all but a �nite number of points 	z� w
 in �k� Thus
	C��
 is not exceptional� We conclude that all properties i�
�v�
 take
place�

�� Some additional results�

Proposition �� Let C �  and � be two operators on a �nite�

dimensional space M � Then there exists an operator S with C � C	S
�
� � �	S
 if and ony if there exist a two�sided sequence of spaces

fMngn�Z and operators �n � L	Mn
� Rn �Mn�� �Mn such that

�
 M� �M �

�
 RangeRn �Mn for n �  and RangeR�n �Mn�� for n � �

�
 R�n��Rn�� � RnR
�
n � �n �

�
n � �

�
n �n�

�
 R�n�� �n�� � �nR
�
n���

�
 �� � �� and C � R�R
�
��

�
 supn�Zk�nk �� and supn�ZkRnk ���

For any such operators� put

K �
�M

n���

Mn � H �
�M
n��

Mn �
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and de�ne N � S� S� by the following two�diagonal block matrix

N �



S�� 

 S

�

�

�BBBBBBBBB

� � �
� � �

� � �
� � �

 R�� ��� 
 R�� ��� 

 R� �� 
 R� �� 

 R� �� 
� � �

� � �
� � �

� � �

�CCCCCCCCCA

�

�BBBBBBBBBB

� � �
� � �

� � �
� � �

 R�� ��� 
 R�� ��� 

 R� �� 
 R� �� 

 R� �� 
� � �

� � �
� � �

� � �

�CCCCCCCCCCA
�

so that S � N jH� Then S is pure subnormal� N is its minimal normal

extension� and C	S
 � C� �	S
 � ��

This proposition may be known to specialists� A similar fact about
hyponormal operators is contained in ���� Therefore we omit the proof�
and make only the following observations�

If N � S� S� are de�ned in the above way� then S� is also subnormal�
it is called dual to S� Conditions �
� �
 comprise to the equality N�N �
NN�� and �
 follows from the de�nition of C	S
 and �	S
� Without
loss of generality� one can assume that Mn � M for all n � Z� and
that Rn � eRnjMn� with eRn � L	M
 and eR�n � eRn � � Then �
�

�
 permit one to de�ne eRn� �n by forward and backward inductive

processes in a unique way� Namely� if n �  and 	 eRn��n
 have been

determined� then eR�
n�� is de�ned by �
 and �n�� � Mn�� �� Mn��

is uniquely determined from �
� because Ker
� eRn��jMn��

�
� � On

each inductive step� either �
 or �
 may fail to produce eRn����n��
	for instance� if the eR�

n�� obtained fails to be non�negative
� One has
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similar inductive de�nitions for n � � The subnormal S exists if and
only if this two�sided inductive process fails nowhere and additionally�
�
 holds�

For a point � � b�� de�ne the index '�	�
 by '�	�
 � �j if � � b�j �

here b�j are the components of b� and �j the corresponding multiplici�
ties� see 	���
� 	���
� Let � � C n� be such that b� as a Riemann surface
over the z�plane has no branching points that project into �� De�ne
the index �	�
 at � by

	���
 �	�
 �
X�

'�	�
 � z	�
 � �� � � b��

�
�

Proposition �� For any z � C n ��

	���

dim Ker 	S� � z I
 � 	the number of positive eigenvalues

of C � 	z � ��
 	z � �

 �

If z is not a projection of a branching point of b�� then the above two

quantities also coincide with �	z
�

Proof� We have 	���w
 
j	z� w
 ��  for 	z� w
 � �j � except for
a �nite number of points 	z� w
� by virtue of the irreducibility of 
j�
Therefore det

�
C 	z��
������ �

�
has an �j�th order zero at � � w

for 	z� w
 � �j for all but a �nite number of points 	z� w
� For these
points 	z� w
� rankQ

�
	z� w


�
� '�

�
	z� w


�
� and we conclude that

dim Ker 	S� � z I
 � rank�	z
 � rank
X

�z�w	�b��

Q		z� w

 � �	z
 �

the �rst equality is from Xia�s work ��� p� �����
Let z � C n �� then by substituting w � z in 	���
� one gets

S	z� z
 � �A	�� �	z

 � �	z
�A �

where A �
�
C � 	z � ��
 	z � �


���
� Therefore

�	z
�S	z� z
�	z
 � �	z
�A�	z
 �

Set n � dimM � and let k be the number of the positive eigenvalues of
A 	which equals to the right hand part of 	���

� Since S	z� z
 �  by
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	���
� we obtain that the quadratic form 	Ax� x
 on M is positive on
�	z
M � It follows that dim�	z
M � k�

Similarly�

	�� �	z
�
S	z� z
 	�� �	z

 � �	�� �	z
�
A	�� �	z

 �

gives dim 	�� �	z

M � n� k� These two inequalities imply 	���
�

Remark� If S� S� are subnormals of �nite type and their essential
spectra coincide� then the nondegenerate parts of their discriminant
curves �� �� also coincide 	we do not assert anything here about the
corresponding multiplicities �j
�

Indeed� let �c� �� etc� correspond to S and �
�
c� �

�� etc� to S�� Two

subarcs of � b�� cannot project into the same arc in the z�plane� It
follows from the last statement of Proposition � that �c � �ess	S
 �
�	N
 � �� Since � n �c� �

� n ��c are �nite and �ess	S
 � �ess	S
�
�

we conclude that �c � ��c� Take any nondegenerate component �j

of �� By Theorem �� there is an arc � of �c such that �j contains
�� � f	z� z
 � z � �g� Since � � ��c� �

� � �j � �
�� By standard

algebraic geometry� this implies �j � �
��

If �ess	S
 � �ess	S
�
 and� moreover�

dim Ker 	S� � 	
 � dim Ker 	S�� � �	
 �

for 	 �� �ess	S
� then Proposition � and 	���
 imply that nondegenerate
parts of �� �� coincide� and the multiplicities �j of nondegenerate
components also coincide�

An example� The choice of the orientation of �c� made before Theorem
�� does not guarantee automatically that the matrix�valued function
�	z
 	z � �
��Q		z� z

 is non�negative on �c� To see this� set C ��
� �

� ��

�
�  and � �

�
� ��

� �

�
� The polynomial 	���
 takes the form


	z� w
 � 	w � z � z w
 	��� z w
 � 	�z � �w
� �

Since 
 �z	� 
 � 
 �w	� 
 � �� �� � z �  is a nonsingular point of
�c� The implicit function w � w	z
� whose graph near 	� 
 is given
by equation 
	z� w
 � � has the form w � �z � �z� � o 	z�
� In
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particular� jw�	z
j � � for negative z with small jzj and jw�	z
j � �
for small positive z� Comparing with our choice of the orientation of
�c� we conclude that �		� 

 � �� But from 	���
 one calculates that

Q		� 

 �
�
� �

� �

�
� so that the matrix �		� 

 	 � �
��Q		� 

 ��

�� �

� �

�
fails to be non�negative�
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Maximal functions

and Hilbert transforms

associated to polynomials

Anthony Carbery� Fulvio Ricci and James Wright

�� Introduction�

Let M denote the classical Hardy�Littlewood maximal function

Mf�x� � sup
h��

�

�h

Z h

�h

jf�x� t�j dt

and H the classical Hilbert transform

Hf�x� � p�v�

Z �

��

f�x� t�
dt

t
�

on R
� � The mapping properties of these functions are very well�known

�see for example 	S�
�� as are those of their higher dimensional analogues
the Hardy�Littlewood�Wiener maximal function and the Calder�on�Zyg�
mund singular integral operators� Analogues of M and H associated
to certain submanifolds of positive codimension in Rn � n � �� have also
been extensively studied� These are the so�called maximal functions
and singular integrals along surfaces� or maximal and singular Radon
transforms� See for example 	SW
� 	S�
� 	Ch
� 	PS�
� 	RS�
� 	CWW�
�
	CWW�
� One approach to these general problems is to model them
on translation�invariant problems in certain homogeneous Lie groups
so that the basic translation operation �x� t� ��� x � t on R

n � R
n is

���
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replaced by �x� t� ��� x t�� on the Lie group� When written in terms
of canonical coordinates� this multiplication is a polynomial mapping�
Another approach� at least for the singular integral problems� is via
oscillatory integrals and Fourier integral operators� In certain model
cases a partial Fourier transform may be used to reduce the problem
to a less singular one but with the familiar dierence or inner prod�
uct replaced by a more general mapping on R

n � R
n � Once again�

polynomial mappings provide substantial model cases in this setting�
Thus an understanding of the classical operators of harmonic analysis
with translation and inner product replaced by more general polyno�
mial mappings is an important step in the study of higher dimensional
problems associated to submanifolds�

However� very little seems to have been done systematically in this
direction� with the principal exception of 	RS�
� 	RS�
� 	PS�
 and 	HP
�
In the present paper we take up this point in the context of the most
classical one�dimensional operators of harmonic analysis� the Hardy�
Littlewood maximal function and the Hilbert transform� While we do
not believe our results will have any direct bearing on the higher dimen�
sional problems mentioned above� it nevertheless seems a reasonable
starting point to consider the one�dimensional setting �rst�

Thus we let p � R�R �� R be a polynomial mapping p � �x� t� ���
p�x� t�� We shall assume that p has degree n � � in the second variable
and that p�x� �� � x� �That this condition cannot be entirely dispensed
with is discussed below� and is natural in so far as the averages occurring
in Mp below are then concerned with the local behaviour of f near x��
We de�ne the maximal function and Hilbert transform associated to p
as

Mpf�x� � sup
h��

�

�h

Z h

�h

jf�p�x� t��j dt

and

Hpf�x� � p�v�

Z �

��

f�p�x� t��
dt

t
�

when these make sense� �Indeed� as a consequence of Theorem ���
below� Hp can be realised as a principal�value distribution�� When
p�x� t� � x� p�t� � with p a polynomial of degree n of one real variable
t satisfying p��� � � � we sometimes write these as Mp and Hp� The
main object of this paper is to begin to study the mapping properties
of these operators�

The principal results are as follows�
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Theorem �� If p has degree n in t� then Mp and Hp are bounded

on Lp�R� when p � n� Mp and Hp may not be bounded on Ln�R� for

certain p of degree n in t�

Theorem �� If p is quadratic in t� then the mapping properties of Mp

and Hp can be precisely given terms of the behaviour of the coe�cients

of t and t� in p� �See Theorem ��� for full details��

Theorem �� If p�x� t� � x � p�t�� then the operators Mp and Hp are

of weak�type ��� with bounds depending only on the degree n of p� and
not otherwise on the coe�cients�

These theorems are proved in subsections ���� ��� and ��� respec�
tively of Section ��

As the conditions of Theorem ��� place no constraints on the �poly�
nomial� coe�cients of t whatsoever� it is natural to consider the situa�
tion when these coe�cients of t are completely arbitrary functions of x�
Thus we are lead to what we term the supermaximal function and su�
perhilbert transform� which seem to be of independent interest� These
are de�ned as

Mnf�x� � sup
p�Pn

Mpf�x� � sup
h��
p�Pn

�

�h

Z h

�h

jf�x� p�t��j dt

and

Tnf�x� � sup
p�Pn

jHpf�x�j � sup
p�Pn

��� Z �

��

f�x� p�t��
dt

t

��� �
where Pn is the class of polynomials p of degree at most n in t with
p��� � �� The result about these operators� proved in Section �� is the
following�

Theorem ���� Mn and Tn are bounded on Lq�R� if and only if q � n�

An interesting lemma that we use to prove these results is that
jHpf�x�j is pointwise dominated by Mpf�x� plus the maximal Hilbert
transform H�f�x� with constants depending only on the degree of p�
�H�f�x� is de�ned as

sup
��a�b��

��� Z
a�jtj�b

f�x� t�
dt

t

��� �
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and it is well�known �see for example 	S�
� that this operator is of weak�
type �����

We comment upon the condition p�x� �� � x� This comes from the
analogues in higher dimensions where one wants to think geometrically
of S�x� t� as� for each �xed x� some surface passing through x when
t � �� However there is no particular reason to assume p�x� �� � x in
our setting other than that a necessary condition for any Lp�p � ��
boundedness of Mp is that p�x� �� have no critical points� �To see this�
suppose p�x� �� has a critical point at say zero� Then for � su�ciently
small� jxj � C���� and jtj � C� implies jp�x� t�j � C ��� Thus for
f � �

������
�

�

�h

Z h

�h

f�p�x� t�� dt � � � if jxj � C���� and h � C� �

Hence kMpfkp � C�����p� while kfkp 	 ���p� This is a contradiction
unless p � ��� If p�x� �� does have no critical points� then one can
in principle change variables to reduce to the case p�x� �� � x� but
for modi�ed maximal functions and Hilbert transforms whose coe��
cients are no longer polynomials� It is partly for this reason that we
have stated Theorem ��� below for coe�cients which are not necessarily
polynomials�

Finally we make some remarks about possible higher�dimensional
analogues of our results� We �rst note that there is no interesting super�
maximal function or superhilbert transform� even of degree �� in R

d �
d � �� This is because the putative supermaximal function contains
the universal maximal function associated to averages in arbitrary di�
rections in Rd � which is well known to be unbounded on all Lp� p ���
by the Perron tree example� �See 	deG
 for example�� On the other
hand one can study operators such as

f ��� sup
a�b
h��

�

h

��� Z h

�

f�x� �a t� b t��� dt
���

on R
� and indeed Marletta and Ricci 	MR
 have done so� Note that

these operators arise in connection with Stein�s and Bourgain�s circular
maximal function� Secondly� while it may well be true that there is an
analogue of our Theorem ��� above in higher dimensions �indeed the
Lp� � � p � �� variant is true in all dimensions� there is at present a
serious obstacle to proving it� which is the fact that the weak�type ���
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of the Hilbert transform and maximal function along a parabola in R�

are unknown� That is� while the operators

f ��� sup
h��

�

h

��� Z h

�

f�x� �t� t��� dt
���

and

f ���

Z �

��

f�x� �t� t���
dt

t
�

are known to be bounded on Lp�R��� � � p � �� it is not known
whether they are of weak�type ���� See 	SW
� However if p � Rn �� R

n

is a polynomial which satis�es certain nondegeneracy conditions at �
and�� then the higher�dimensional versions ofMp and Hp are of weak�
type ���� moreover the same is true if we replace the additive structure
of Rn by the group structure in any homogeneous Lie group� We plan
to return to this matter in a forthcoming paper�

�� The supermaximal function and the superhilbert trans�

form�

Let Pn be the class of all real polynomials p� of a single real vari�
able� of degree at most n � �� such that p��� � �� De�ne

Mnf�x� � sup
h��
p�Pn

�

�h

Z h

�h

jf�x� p�t��j dt � sup
p�Pn

Mpf�x�

�the �supermaximal� function of degree n��

Theorem ���� Let � � q ��� Then Mn is bounded on Lq�R� if and

only if q � n� Moreover Mn is of restricted weak�type n�n�

Remark� When n � ��M� is the classical Hardy�Littlewood maximal
operator in one variable� and so there is nothing to prove in this case�
We shall appeal to the result for M� in the cases of higher n�

The failure of boundedness when q � n may be seen as follows�
Let � � � be large and let p��t� � � �� � �� � t�n�� Let f��t� �
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jtj���n j log jtj j�� �
�����

� Then f� 
 Ln if 	 � �
n� Now for x � � we

take � � x and h � � and observe that

Z �

�

f��x� p��t�� dt �

Z �

�

f��x ��� t�n� dt

�

Z �

�

f��x t
n� dt

�
�

x��n

Z x��n

�

f��s
n� ds �if x� ��

�
�

x��n

Z �

�

s���log jsnj��� ds

�� � if 	 � � �

Furthermore� for each r � � we can �nd a 	 � � such that f� 
 Ln�r�
Indeed� f� 
 Ln�r if and only if 	 � �
r� Thus Mn does not map
Ln�r to any Lebesgue�Lorentz space for any r � �� �See 	StW
 for a
discussion of Lorentz spaces and related topics��

Proof of Theorem ���� We only need consider the restricted weak�
type n � n result as the case q � n follows by interpolation with the
trivial L� result� and the negative result has been established in the
discussion above�

Let S � R be a measurable set� and let f � �
S
� It su�ces to

prove that kMnfkn�� � Cnkfkn� by standard arguments from Lorentz
spaces� Let p 
 Pn and h � � and consider

�

h

Z h

�h

f�x� p�t�� dt �

Z
Ih

f�x� u� g�u� du �

where Ih � p�	�h� h
��

��� g�u� �
�

h

X
j

�
Ej

�u�
�

jp��p��j �u��j
�

where fEjg are the images under p of the intervals upon which p is
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monotonic� and where p��j is the inverse to p on Ej � ThenZ
Ih

f�x� u� g�u� du

� kf�x� �kLn���Ih� kgkLn����Ih�

� kf�x� �kLn�Ih� kgkLn����Ih�
�since f � �

S
�

� sup
h��

� �

jIhj

Z
Ih

jf�x� u�jn du
���n

jIhj
��n kgkLn����Ih�

�

Now p��� � �� so � 
 Ih� and thus� �

jIhj

Z
jIhj

jf�x� u�jn du
���n

is dominated by �Mfn���n�x� where M � M� is the Hardy�Littlewood
maximal function� Since

jfx � �Mfn���n�x� � �j � jfx � Mfn�x� � �ngj �
�

�n

Z
fn �

the result now follows once we have established the following lemma�

Lemma ���� There is an absolute constant Cn� depending only upon

n� such that for all h � �� all p 
 Pn�

jIhj
��n kgkLn����Ih�

� Cn �

�Here g is de�ned as in �����

Proof� For � � � �xed�

jfu 
 Ih � jg�u�j � �gj �

Z
Ih

�
fu � g�u���g

du

�

Z
Ih

��
u �
P

j 	Ej
�u� jp��p��j �u��j����h

� du
�

Z h

�h

�
ft � ��jp��t�j��hg

jp��t�j dt

�
�

�h

���nt 
 	�h� h
 � jp��t�j �
�

�h

o��� �
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On the other hand�

jIhj �

Z
�
Ih
�u� du �

Z h

�h

jp��t�j dt �

Thus� to establish the lemma� it is enough to show���nt 
 	�h� h
 � jp��t�j �
�

�h

o��� � Cn�h

�n��n���
�Z h

�h

jp��t�j dt
����n��� �

By scaling we may assume that h � � and that
R �
��
jp�j � � and so we

are reduced to showing

��� jft 
 	��� �
 � jp��t�j � �gj � Cn �
���n���

under the normalization condition
R �
��
jp�j � ��

Consider the functional k j  j k on the class Qn�� of polynomials of
degree at most n� � given by

k jqj k � max
��j�n��

inf
���t��

jq�j��t�j �

This is a continuous function of q� positively homogeneous of degree ��
which does not vanish on the unit sphere of Qn��� �measured� say� with
respect to the L� norm on 	��� �
�� For if q�t� � a��a�t�  �an��t

n��

and k jqj k � �� we have successively that an��� an��� � � � � a� are all zero�
Thus there is a constant mn depending only upon n such that

k jqj k � mn

Z �

��

jq�t�j dt �

Applying this to p�� we see that for some j� � � j � n� �� j�p���j��t�j �
mn for all t 
 	��� �
� The mean�value theorem now yields ��� for small
��

Remark� ��� is an endpoint version of a result of Ricci and Stein 	RS�

which states that a polynomial of degree n � � �in this case p�� is in
the Muckenhoupt Aq class� q � n� with constants independent of the
coe�cients� Inequalities such as ��� and variants in higher dimensions
are also studied in 	CCW
�
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We now turn to the superhilbert transform of degree n� Let

Tnf�x� � sup
p�Pn

��� Z �

��

f�x� p�t��
dt

t

��� � sup
p�Pn

jHpf�x�j �

Theorem ���� Let � � q � �� Then Tn is bounded on Lq�R� if and

only if q � n� Moreover Tn is of restricted weak�type n�n�

Remark� Again� when n � �� T� is the classical Hilbert transform and
so there is nothing to prove�

The negative result can be seen in a similar manner to the cor�
responding result for Mn� Indeed� with the same f� as above� the
nonintegrable singularity of f� when 	 � � guarantees thatZ �

��

f��x� p��t��
dt

t

will be �� when � is taken to be x� at least for large x�
The positive part of Theorem ��� follows from the following result�

which is also useful in other contexts�

Theorem ���� Let p 
 Pn� Then there is the pointwise estimate

jHpf�x�j � AnMpf�x� � BnH
�f�x� �

where H� is the maximal Hilbert transform and An and Bn are con�

stants depending only upon n�

Proof� Let p 
 pn� and assume without loss of generality that p has
degree n and has leading coe�cient �� We also assume �although this
is not strictly speaking necessary� that all the complex roots of p are
distinct� Let � � t�� t�� � � � � tn be the n complex roots of p ordered so
that

� � jt�j � jt	j �    � jtnj �

The second and third parts of the next lemma say that the zeros of p�

are strongly attracted to the zeros of p�

Lemma ��	 There are constants C�n� � � and ���n� depending only

on n� such that if A � C�n� and j and  are such that  � j � � and

are such that for some k 
 f�� � � � � n� �g

jtkj � Aj � A
 � jtk
�j �
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then

a� If Aj
� � jtj � A
����
��

�

A

�n��
jtjkjtk
�j    jtnj � jp�t�j

�
�
� �

�

A

�n��
jtjkjtk
�j    jtnj �

b� jt p��t�
p�t�j � ���n� whenever A
j
� � jtj � A
���

c� jp�t�j is strictly increasing on 	Aj
�� A
��
 and strictly decreasing
on 	�A
����Aj
�
�

Proof� a� This part is trivial since p�t� �
Qn

m���t � tm� and� when
Aj
� � jtj � A
����

��
�

A

�
jtj � jt� tmj �

�
� �

�

A

�
jtj � for � � m � k �

while�
��

�

A

�
jtmj � jt� tmj �

�
� �

�

A

�
jtmj � for k � � � m � n �

�Note that only A � � is required here��

b� Observe �rst that

p��t�

p�t�
�

nX
m��

�

t� tm
�

so

���p��t�
p�t�

��� � ��� kX
m��

�

t� tm

���� nX
m�k
�

�

jt� tmj
�
��� kX
m��

�

t� tm

���� �n� k�

�A� �� jtj
�

since jtmj � A jtj if m � k � � and jtj 
 	Aj
�� A
��
�
Assume for simplicity that t � � and consider� for m � k

Re
�

t� tm
�

t� Re tm
jt� tmj�

�

�
��

�

A

�
t�

� �
�

A

��
t�

�

�
��

�

A

�
�
� �

�

A

�� �

t
�
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since t � A jtmj�
Therefore

���p��t�
p�t�

��� � �k
�
��

�

A

�
�
� �

�

A

�� � n� k

A� �

�
�

t
�

Now if A is su�ciently large� the coe�cient of �
t is positive� which
implies that jt p��t�
p�t�j is bounded below by an absolute constant�

c� We have in fact shown that

p��t�

p�t�
� Re

p��t�

p�t�
� � � for t � � �

that is� log jp�t�j is increasing on 	Aj
�� A
��
� Thus� jp�t�j is strict�
ly increasing on 	Aj
�� A
��
 and similarly is strictly decreasing on
	�A
����Aj
�
�

In particular� if Aj � jt�j � Aj
�� then jt p��t�
p�t�j is bounded
below and p is monotonic on 	�Aj��� Aj��
� One simply has to observe
that� since � is a simple root� p is monotonic through ��

Furthermore� implicit in the proof of Lemma ��� is that if jtnj � Aj�

and jtj � Aj�
� then�
��

�

A

�n��
jtjn � jp�t�j �

�
� �

�

A

�n��
jtjn

and jt p��t�
p�t�j is bounded below� and jp�t�j is strictly increasing on
	Aj�
���� and strictly decreasing on �����Aj�
�
�

A maximal set of the form 	�A
����Aj
�
 � 	Aj
�� A
��
 with
� j � � and such that for some k 
 f�� � � � � n� �g�

jtkj � Aj � A
 � jtk
�j

is called a gap� There are at most n � � such gaps� In addition
there are two special gaps� 	�Aj��� Aj��
 where Aj � jt�j � Aj
��
and �����Aj�
�
� 	Aj�
����� where j� is the least integer such that
jtnj � Aj� �

Two consecutive gaps are separated by a pair of �dyadic� intervals�
symmetric with respect to the origin� In fact each of these �dyadic�
intervals can contain at most �n intervals of the form 	Am� Am
�
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or 	�Am
���Am
� The idea of the remainder of the proof is that
such dyadic intervals are harmless since the contribution to

R�
��

f�x�
p�t�� dt
t arising from such an interval is clearly controlled by a con�
stant times Mpf�x�� while on the gaps � where p� and p �except at
�� have no zeros � one can try to change variables as in the proof of
Theorem ���� However this is not entirely straightforward because of
the nature of the cancellation in the problem�

We now indicate how to handle the contribution to
R�
��

f�x �
p�t�� dt
t arising from an �ordinary� gap� the minor changes of detail
required for the special gaps are left to the reader� Suppose the gap is
	�A
��Aj 
 � 	Aj� A

 with  � j � � and with jtkj � Aj�� � A

� �
jtk
�j� �� � k � n� ��� �Note that there is a slight change of notation
here�� Of course A is chosen so that Lemma ��� is valid�

By part a� of Lemma ����

jp�A
�j �
�
��

�

A

�n��
A
k

nY
m�k
�

jtmj

�
�
� �

�

A

�n��
Ajk

nY
m�k
�

jtmj

� jp��Aj�j

�if also A � ��A � ��
�A � ���n��� and similarly jp��A
�j � jp�Aj�j�
Thus the intervals 	 jp�Aj�j� jp�A
�j 
 and 	 jp��Aj�j� jp��A
�j 
 have a
nonempty intersection 	a� b
� say� Then� by Lemma ����c�� there is a
unique � 
 	Aj � A

 such that jp���j � a and a unique 	 � �� 	 

	Aj� A

 such that jp�	�j � b� Similarly there are unique �� � �� 

	�A
��Aj 
 such that jp����j � a� jp����j � b� Observe that the set

�	Aj� A

n	�� 	
� � �	�A
��Aj 
n	�����
�

is the union of two intervals whose logarithmic measure is bounded
above by an absolute constant� �This follows again by Lemma ����a��
we suggest the reader draw a picture�� Therefore the integral over this
set is dominated by Mpf�x��

We have thus reduced matters to estimatingZ �

�

f�x� p�t��
dt

t
�

Z ��

��

f�x� p�t��
dt

t
�
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We distinguish between two cases�

i� p has the same sign on both intervals 	�� 	
 and 	�����
� say
p � ��

ii� p has opposite signs on the two intervals� say p � � for t � ��

Case i�� We observe thatZ �

�

p��t�

p�t�
dt � �

Z ��

��

p��t�

p�t�
dt

since p��� � p���� and p�	� � p����� Thus it is enough to estimate
two similar integrals separately� one of which isZ �

�

f�x� p�t��
��
t
�

p��t�

k p�t�

�
dt �

where jtkj � Aj�� � A

� � jtk
�j�
Now� for t 
 	�� 	
 � 	Aj� A

�

����
t
�

p��t�

k p�t�

��� � ����
t
�

�

k

nX
m��

�

t� tm

���
�

�

k

kX
m��

����
t
�

�

t� tm

���� �

k

nX
m�k
�

�

jt� tmj

�
�

k

kX
m��

jtmj

jtj jt� tmj
�

�

k

nX
m�k
�

�

jt� tmj

�
c�A

j

t�
� c�A

�
 �

where c� and c� depend upon n and A�
Therefore��� Z �

�

f�x� p�t��
��
t
�

p��t�

k p�t�

�
dt
��� � c�A

j

Z �

Aj

jf�x� p�t��j
dt

t�

� c�A
�


Z A�

�

jf�x� p�t��j dt

� c	Mpf�x� �
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Case ii�� It is here that we �nally use the cancellation in the operator�
Indeed�Z �

�

f�x� p�t��
dt

t
�

Z ��

��

f�x� p�t��
dt

t

�

Z �

�

f�x� p�t��
��
t
�

p��t�

k p�t�

�
dt�

Z ��

��

f�x� p�t��
��
t
�

p��t�

k p�t�

�
dt

�
�

k

Z
f�x� p�t��

p��t�

p�t�
��

�����
�t� � �

�������
�t�� dt �

The �rst two integrals are treated exactly as in case i�� while for the
third we change variables separately on 	�� 	
 and 	�����
 to obtain

�

k

Z
a�juj�b

f�x� u�
du

u
�

which is controlled by the maximal Hilbert transform as desired� This
concludes the proof of Theorem ����

�� p�x� t� as a polynomial in t�

Let p � R � R �� R be a polynomial such that p�x� �� � x� Let

Mpf�x� � sup
h��

�

�h

Z h

�h

f�p�x� t�� dt

and

Hpf�x� �

Z �

��

f�p�x� t��
dt

t

be the maximal function and Hilbert transform respectively associated
to p� We write

p�x� t� � x�A��x� t�A��x� t
� �   �An�x� t

n �

so that p has degree at most n as a polynomial in t� A�� � � � � An are for
the moment arbitrary polynomial functions of x�
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���� Results with no conditions on the coe
cients�

In view of the negative parts of Theorems ��� and ���� the only
possible general positive result �with no conditions placed on the coef�
�cients� is�

Theorem ���� For p�x� t� an arbitrary polynomial of degree n in t such
that p�x� �� � x� the operators Mp and Hp are bounded on Lq�R� for

q � n and are of restricted weak�type n�n�

This result is sharp in so far as for each n there exists a p of degree
n in t as in the statement of the theorem with Mp and Hp unbounded
on Ln�R�� Indeed� letting p�x� t� � x ���t�n� the proof of the sharpness
of Theorems ��� and ��� applies here also� When n � � we give below
in Corollary ��� a complete analysis of the Lq boundedness problem for
each p�

���� Many coe
cients vanishing � the quadratic case�

When all but one of the Aj �s is identically zero and the remain�
ing one is a completely arbitrary function of x� then Hp and Mp are
dominated by the standard Hilbert transform and maximal function re�
spectively and so are of weak�type ��� and are Lq bounded� � � q ���
�If j is even and Aj�x� is the nonzero coe�cient� then Hp � ���

The situation when all but two of the Aj �s are identically zero is
already considerably more complicated� the �rst special case of this is

p�x� t� � x�A��x� t� A��x� t
�

corresponding to polynomials of degree � in t�
In Theorem ��� we give an analysis of this quadratic case� We

have carried out a similar but much lengthier analysis of the cubic case
which we do not propose to present here� the interested reader is invited
to contact one of the authors for details� �We estimate that merely a
statement of the result would �ll several printed pages and so we have
chosen not to unecessarily burden the reader at this moment��

We set up some notation� Let p and q be arbitrary C� functions
of x� We write A� � p and A� � q so that

p�x� t� � x� t p�x� � t� q�x� �
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We let ��x� � p��x� � �x q�x� be the discriminant of p�x� � as a
quadratic in t� and when q�x� �� � we let ��x� � ��x�
� q�x�� We
shall require � to have some smoothness� It turns out that the critical
points of � play a decisive role� We say that � has a monotonic critical

point at �� if limx��� ���x� � � and �� is single signed as x �� ���
We say that � has a critical point of �nite order k � � at x� 
 R if

��x� � ��x�� � � �x� x��
k �O�jx� x�j

k
��

with � �� ��

Theorem ���� With the notation as above� let p�x� t� � x � t p�x� �
t� q�x� with p� q 
 C� such that Zq � fq�x� � �g is �nite�

i� If j��j is bounded below on RnZq then Mp and Hp are of weak�

type ��� and are bounded on Lr� � � r ���

ii� If j��j is bounded below at �� and near Zq� if � has �nitely

many critical points of �nite order at each of which ��x��x is nonzero�

then Mp and Hp are bounded on Lr if and only if r � � �k���
k� where
k is the maximum of the orders of the critical points� When k � � this

must be modi�ed to read asMp and Hp are of weak�type ��� and bounded
on Lr� � � r ���

iii� If either

a� � has a monotonic critical point at ��� or

b� � has a critical point of �nite order at x� such that

��x�� � x� � � �

then Mp and Hp are unbounded on L�� and bounded on Lr for r � ��

Before proving this theorem we �rst give some lemmas�

Lemma ����

sup
p�q�Rnf�g

h��

�

h

Z
�h��h�	fjt
p���q�j
jpj���jqj�g

jf�x� p t� q t��j dt � CMf�x� �

where Mf is the ordinary Hardy�Littlewood maximal function of f �
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Proof� By scaling it is enough to take h � �� Assume without loss of
generality that q � �� We split the integral into two pieces� the �rst
over jpj
��q� � jt�p
��q�j � �� jpj
q� and the second over jt�p
��q�j �
�� jpj
q� Let u � u�t� � p t� q t�� then

ju��t�j � jp� � q tj � � q
���t� p

�q

��� � jpj
in the �rst case and

ju��t�j � jp� � q tj � � q
���t� p

�q

��� � q jtj � q��� u���

in the second case� Thus�Z
�����	fjpj���q��jt
p���q�j���jpj�qg

jf�x� p t� q t��j dt

�

Z
fjuj�Cjp�j�qg	u�����

jf�x� u�j
du

jpj

�
���p
q

��� ��� q
p�

��� Z
fjuj�Cjp�j�qg	u�����

jf�x� u�j du

� CMf�x� �

since if � � t � �� we get a nonzero contribution only when jpj
jqj � C�
For the second pieceZ

�����	fjt
p���q�j
��jpj�qg

jf�x� p t� q t��j dt

� C

Z
u�q

jf�x� u�j
du

q��� u���

� CMf�x�

since if � � t � � and jt� p
��q�j � ��jpj
qthen ju�t�j � q t� � q�

Corollary ����

sup
p�q�Rnf�g

h��

�

h

Z
��h�h�	fjt
p���q�j
jpj��jqjg

jf�x� p t� q t��j dt � CMf�x� �
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Proof� Break up 	�h� h
 into dyadic intervals �	��kh� ��k
�h
 and
use Lemma ��� on each to obtain a convergent geometric series�

Thus for the maximal function problem� all we need consider is

��� �Mpf�x� � sup
h��

�

h

Z
H

jf�x� p�x� t� q�x� t��j dt �

where

H � 	�h� h
 �
n���t� p�x�

� q�x�

��� � jp�x�j

� jq�x�j

o
�

Now when p�x� or q�x� �or both� are zero� Mpf�x� � CMf�x� and
jHpf�x�j � C jHf�x�j� so that we may assume here and in what follows
that we need consider only x with p�x�� q�x� �� �� By virtue of Theorem
���� we have

jHpf�x�j � A�Mpf�x� � B�H
�f�x� � C � �Mpf�x� �Mf�x� �H�f�x��

and so to control the Hilbert transform we again only need consider
�Mpf�x�� Furthermore it is easily seen �using arguments from Lemma
��� and Theorem ���� that

jHpf�x�� �Hpf�x�j � C �Mf�x� �H�f�x�� �

where

��� �Hpf�x� �

Z
jt
p�x����q�x��j�jp�x�j���jq�x�j�

f�x� p�x� t� q�x� t��
dt

t
�

Since for each �xed x� the integral in ��� is over a dyadic interval� there
is no further cancellation in the operator �Hp and indeed �Hp is essentially

a contribution to �Mp where h takes the value � jp�x�j
jq�x�j� On the
other hand this value of h is the only interesting one contributing to
�Mp� and so the operators �Mp and �Hp are both essentially equivalent to

Rpf�x�

�
���q�x�
p�x�

��� Z
jt
p�x����q�x��j�jp�x�j��jq�x�j

f�x� p�x� t� q�x� t�� dt �

���
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which therefore governs the behaviour of both Mp and Hp�
At this point it is appropriate to comment upon the simple aver�

aging operator

��� Spf�x� �

Z �

�

f�x� p�x� t� q�x� t�� dt �

Clearly Sp is dominated by Mp� and if Hp has certain boundedness
property� so does Sp �see for example 	CG
�� On the other hand� making
the change of variables t � u p�x�
q�x� in ��� gives

��� Rpf�x� �

Z
ju
���j����

f�x� �p�x�u� �q�x�u�� du �

where �p�x� � p��x�
q�x� and �q�x� � p��x�
q�x� also� Thus Rq arises
essentially as Sep where

ep�x� t� � x�
p��x�

q�x�
t�

p��x�

q�x�
t� �

Thus positive results for Sep imply corresponding ones for Sp although
there is no formal invariance property from which this follows� Notice
that if we de�ne �� � �p� � �x �q�x� and �� � ��
��q� then �� � � and
�p�
��q � p�
�q� that is� the quantities arising in the statement of Theo�
rem ��� remain invariant� which is natural since the basic problems for
Mp and Hp are invariant under

�p� q� ��� �p�x�h�x�� q�x�h�x��� �
	�
p�
�
q



for any h�x� �� �� Indeed� the basic problem for Mp is equivalent to
that for S�

p
with arbitrary h�x�� as can be seen by linearising Mp with

h�x��
Performing the further changes of variables u � v � �
� and then

v � fs
�p�x�g��� �assuming that �p�x� � � without loss of generality�
yields in ���

��� Tepf�x� �
�

�p�x����

Z
��s�p�x�

f�s� ���x��
ds

s���

as the operator determining the behaviour of Mp and Hp�
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Lemma ��	� For � � x � �� � � � and 	 � � de�ne

T���f�x� �
�

x���

Z x�

�

f�s� x��
ds

s���
�

Then for p ��� T��� is bounded from Lp�R� to Lp��� ���

i� If 	 � � for p � � ��� ��
�� except when � � �� in which case

for p � �� moreover T��� is of weak�type ����

ii� if � � 	 � � for p � � ��� ��
��� 	��

iii� if 	 � � for p � ��

In all other cases� or if 	 � �� T��� is unbounded�

Proof� Let ��x� � x�� ThenZ �

�

jT���f�x�j
p dx �

Z �

�

�

xp���
jI���f���x��j

p dx

�

Z �

�

�

����u�p���
jI���f�u�j

p du

�������u��
�

where I��� is the standard fractional integral of order �
�� Now ���x� �

�x��� and ����u� � u���� So

����u��p����������u���� � ���u�p������u��
���

which belongs to the space Lr����� ��� � � r � �� precisely when
� � r � ��
���� p 	 � ��� ThusZ �

�

jT���f�x�j
p dx � C k jI���f j

p kLr��� � C kI���fk
p

Lr
�p�p �

provided � � r � ��
��� � p 	 � ��� Now� by the Marcinkiewicz
interpolation theorem �see 	StW
�� I��� � L

p�p �� Lq�p for �
q � �
p�
�
�� �
� � �
p � �� and so T��� is bounded on Lp if �
�r�p� � �
p��
��
i�e� �
�pr� � �
�� i�e� p � � ��� ��
���	� if this number lies in ������
which when 	 � � is when � � �� when 	 
 ��� �� is for all � � � and
for 	 � � does not occur� We have thus proved the positive assertions of
the lemma with the exception of the case � � �� 	 � � and � arbitrary�
	 � �� The results for p � � and p � � respectively follow from
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�nonsharp� Lp �� Lq mapping properties of I���� while the weak�type
��� result for T��� follows since

jfx � jT���f�x�j � �gj �

Z
�
fx � jT���f�x�j��g

dx

�

Z
�
fu � jI���f�u�j��g

du

�������u��

�
��� �

u���

���
L���

���
fu � jI���f�u�j��g

��
L���

� C jfu � jI���f�u�j � �gj���

�
C kfk�

�
�

as I��� � L
� �� L����

T��� is clearly not bounded on L� �test on f � ���� For the other
necessary conditions� �rst let f � �

������
� Then� for x� � ��

T���f�x� �
�

x���

Z x���

�

ds

s���
�

�
C � 	 � � �

C x������� � 	 � � �

and so T���f has Lp norm bounded below by�
�����p� � 	 � � �

�����������
����p� � 	 � � �

Hence� when 	 � �� � is forced to be at most �� �violating our assump�
tion � � �� and when 	 � �� we must have

�� 	

��
�

�

�p
�

�

p
�

i�e� p � � ��� ��
��� 	�� Secondly� to see 	 � � is necessary� assume
	 � � �for when 	 � � we have already seen there are no p for which
T��� is bounded on Lp�� and observe that� for f � ��

T���f�x� �
�

x���

Z x�

x�
f�s�x��

ds

s���
�

�

x���

Z x��x�

�

f�s�
ds

�s� x�����
�

Now set f � �
�����

and observe that for x� � ��

T���f�x� �
�

x���

Z x��x�

�

ds

�s� x�����
�

�

x���

Z x�

x�

ds

s���
� C �
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Thus kT���fkp � c ����p� while kfkp 	 ���p� Hence indeed 	 � ��
Finally� to see that T��� is not bounded on L�� �nor indeed of weak�
type ����� let

f�s� �
�
�������

�s�

s��� log
��
s

� 
 L� �

Then

T���f�x� �
�

x���

Z x�x�

�

�

s��� log
��
s

� ds

�s� x�����

�
�

x���

Z x

x�

�

�s� x����� log
� �

s� x�

� ds

s���

�
�

x���

Z x

x�

ds

s log
��
s

�
�

c

x���

which is not in L��

T��� is also of restricted weak�type ���� This follows from the proof
of Theorem ����

Lemma ���� Suppose ���x� �� � as x ���� and that ���x� � � for

su�ciently large x� Let

Tf�x� �
�

x���

Z x

�

f�t� ��x��
dt

t���
�

Then T is unbounded from L��R� to L����� ����

Proof� We may assume that ��x� � � for su�ciently large x� Then

�

x���

Z x

�

f�t� ��x��
dt

t���
�

�

x���

Z x��x�

��x�

f�s�
ds

�s� ��x�����

�
�

x���

Z x��x�

�

f�s�
ds

�s� ��x�����
�
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for f � �� Let f � �
���A�

with A large� Then

Tf�x� �
�

x���

Z A

�

ds

�s� ��x�����
� for x� A �

since �� �� � implies

��x�

x
�

��x��

x
�
x� x�
x

�

x� x�

Z x

x�

���u� du

goes to zero as x ���� Hence� for such x�

Tf�x� �
�

x���

Z A
�x�

�x�

ds

s���
	

A

x����A� ��x�����
�

Therefore� for appropriate constants C� and C��

�Z
jTf�x�j

� dx
����

� CA���
�Z

fx �x
C�A��x��C�Ag

dx

x

����
� A��� �

while kfk� 	 A����

Proof of Theorem ���� By the discussion between Corollary ���
and Lemma ���� it is su�cient to study the operators given by ���� that
is

Tepf�x� �
�

�p�x����

Z
��s�p�x�

f�s� ���x��
ds

s���
�

where �p � �q � p�
q� �� � ��
��q� �� � �p��x� � �x �q�x�� so that ��x� �
���x� � �p�x�
��x� Thus ��x��x vanishes if and only if �p�x� vanishes�
�Of course it is neighbourhoods of such points rather than the points
themselves which concern us in obtaining Lr estimates�� We change
notation� we replace �� by �� �p by p and ep by p�

i� Let us �rst assume �� � C � � on R� Then� since we always have
jTpf�x�j � CMf���x�� where M is the ordinary Hardy�Littlewood
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maximal function� we can write

jfx � jTpf�x�j � �gj �
���nx � Mf���x�� �

�

C

o���
�

Z
�
fx �Mf��x�����Cg

dx

�

Z
�
fu �Mf�u����Cg

du

�������u��

� c�
���nu � Mf�u� �

�

C

o���
� c��

kfk�
�

�

Notice that the same argument controls the behaviour of Tpf�x� on any
interval of x upon which j��j is bounded below�

ii� By the proof of i� it is enough to consider the behaviour of Tp
near a critical point� say �� of maximal order k� Now p��� �� � implies
that by taking a small enough neighbourhood of zero� we can assume
p�x� 	 � � �� After a translation of f we can assume� then� that

Tpf�x� �

Z �

�

f�s� �xk � O�xk
���
ds

s���
�

which is essentially the situation of Lemma ���� case 	 � �� � � k�
�The proof of Lemma ��� can be easily modi�ed to give the variant
required here��

iii� Suppose �rst that � has a monotonic critical point at�� Then
limx�� p��x� � � and thus p�x� 	 x for large x� So in this case�

Tpf�x� 	
�

x���

Z x

�

f�s� ��x��
ds

s���
�

which is unbounded on L� by Lemma ����
If � has a critical point of �nite order at x�� then � � ���x�� �

p��x��
�� � which implies that

p�x� � p�x�� � � �x� x�� � O�x� x��
�

near x�� Assuming that x� � �� and making a translation of f � we have

Tpf�x� 	
�

x���

Z x

�

f�s� ��x��
ds

s���
�
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which is the case 	 � � of Lemma ���� Thus Tp is unbounded on L� in
this case too�

Corollary ���� Let p�x� and q�x� be polynomials in x� p�x� t� � x �
t p�x� � t� q�x�� ��x� � p��x�� �x q�x� and � � �
��q��

i� If deg� � deg q and � has no critical points then Mp and Hp

are of weak�type ��� and bounded on Lr� � � r ���

ii� If deg� � deg q� p�
��q� does not vanish at any of the critical

points of �� the largest of the orders of which is k� then Mp and Hp are

bounded on Lr if and only if r � � �k � ��
k� except when k � �� in
which case they are of weak�type ��� and bounded on Lr� � � r ���

iii� If deg� � deg q and p�
��q� vanishes at some critical point of

�� if deg� � deg q� or if � � �� then Mp and Hp are unbounded on

L��

Proof� When � �� �� �� vanishes at in�nity if and only if deg� �
deg q� when deg� � deg q� �� is bounded below at in�nity� Moreover
�� is bounded below near Zq anyway� The result now follows from
Theorem ����

���� Constant coe
cients�

When each of the A�s is constant� then Hp and Mp are bounded
on Lq�R�� � � q � �� and are of weak�type ���� Moreover when
q � � the bounds may be taken to be independent of the A�s� This
latter statement for Hp follows trivially from Theorem ���� for both
Hp and Mp it is also a special case of 	S�� Chapter XI� Section ��
Propositions � and �
� However since the method of 	S�
 involves lifting
to a higher dimensional setting R

k � k � �� where the lifted operators
are now associated to curves in R

k � the weak�type ��� estimate does
not follow� We now present in Theorem �� the result that the weak�
type ��� bounds of Hp and Mp may be taken to be independent of
the coe�cients� and depend only on the degree� The following lemma
is closely related to Lemma ���� It is also useful in examining higher
degree analogues of Theorem ����

Lemma ��� Let p be a real polynomial of degree at most n� with

p��� � � and leading coe�cient �� Let G be the union of the gaps of p
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as in Section � above� Then

sup
h��

��� �
h

Z
�h��h�	G

f�x� p�t�� dt
��� � CnMf�x� �

where Cn depends only upon n andMf is the ordinary Hardy�Littlewood

maximal function of f �

Proof� By scaling we may assume h � �� �Note that J is a gap for p if
and only if J
h is a gap for h�np�h ��� By Lemma ��� we may change
variables to obtain��� Z

�����	G

f�x� p�t�� dt
��� � ��� Z

p������	G�

f�x� u�
du

jp��p���u��j

���
�

C

jp��t��j

Z jp�t��j

�jp�t��j

jf�x� u�j du �

where jpj attains its maximum on 	�� �
 � G at t� and jp�j attains its
minimum on 	�� �
�G at t�� Now jp�t��j � C jp�t��j by Lemma ����a� �
and by Lemma ����b�� jp�t��j � � ���n�

��jp��t��j� so jp�t��j � C jp��t��j�
Thus the integral above is dominated� independently of the coe�cients
of p� by the Hardy�Littlewood maximal function of f �

Theorem ���� Let p�x� t� � x�
Pn

j��Aj t
j with Aj constants� Then

there exists C�n� depending only upon n and not on fAjg such that

jfx � Mpf�x� � �gj � C�n�
kfk�
�

and

jfx � jHpf�x�j � �gj � C�n�
kfk�
�

�

Proof� By Theorem ��� it is enough to prove the estimate for Mp�
Let p�t� �

Pn
j��Aj t

j � Without loss of generality� assume An � �� It
is enough to obtain the weak�type estimate for

sup
k�Z

��� �
�k

Z
��k��k���

f�x� p�t�� dt
��� �

For all except boundedly may k �with the bound depending only upon
n� we can use Lemma ��� to dominate the integrals by Mf�x�� The
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remaining k�s correspond to a bounded number of �nite measures of
mass � and hence play no role�

It is interesting to note that one may also prove the quadratic case
of Theorem �� by dominating Mpf�x� pointwise by Mf�x��Mf�x�
p�tx�� where tx is the critical point of p� The proof proceeds along the
lines of that of Theorem ���� uses Lemma ��� and dominates Tpf�x� by
Mf�x� p�tx��� It also suggests that it is really the gaps of p which are
also gaps of p� which are crucial in Lemma ����
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Weighted Weyl estimates

near an elliptic trajectory

Thierry Paul and Alejandro Uribe

Abstract� Let ��j and E�

j denote the eigenfunctions and eigenvalues of
a Schr�odinger�type operator H� with discrete spectrum� Let ��x��� be a
coherent state centered at a point �x� �� belonging to an elliptic periodic
orbit� � of action S� and Maslov index �� � We consider �weighted Weyl
estimates	 of the following form
 we study the asymptotics� as � �� �
along any sequence

� �
S�

�l� �� ��
�

l � N � � � R �xed� of X
jEj�Ej�c�

j ���x���� �
h
j � j� �

We prove that the asymptotics depend strongly on ��dependent arith�
metical properties of c and on the angles 	 of the Poincar�e mapping
of �� In particular� under irrationality assumptions on the angles� the
limit exists for a non�open set of full measure of c�s� We also study the
regularity of the limit as a function of c�

�� Introduction and results�

Consider a Schr�odinger operatorH � �����V �x� with V smooth�
either onM � R

m �in which case we assume V tends to in�nity at in�n�
ity and therefore H has discrete spectrum� or on a compact Riemannian

���
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manifold� M � In ��� we considered �trace formulae	 associated to pro�
jectors on coherent states in the following sense� For �x� �� � R

�m and
a � S�Rm� de�ne the coherent state �ax� as


��� �a�x����y� � 
�y � x� ������m�� �m�� e�ix���� ei�y�� �a
�y � xp

�

�
�

Here 
 is a cut�o� function near zero and �a is the Fourier transform of a�
�in the manifold case �x� �� � T �M and the above de�nition is in local
coordinates near x�� Let �j and Ej the eigenfunctions and eigenvalues
of H� Then if � is a Schwartz function whose Fourier transform is
compactly supported and E � j�j� � V �x�� we have

��
X
j

�
�Ej �E

�

�
j ���x���� �j� j��

X
j��

c�j �x� �� �
�m�	���j �

for � �� �� �If E �� j�j� � V �x�� the left�hand side tends to � rapidly
in ��� Although the form of the asymptotic expansion does not depend
on �x� ��� the coe�cient c��x� �� is highly sensitive to the point �x� ��
being periodic or not with respect to the classical �ow� In case �x� ��
is either not periodic or is on a hyperbolic trajectory� we proved in ���
�using a Tauberian theorem� that� for every c � R�

���
X

jEj�Ej�c�

j ���x���� �j� j�� c
�

�c�c�

� �x� �� ��m�	�� � o���m�	��� �

as � � � possibly along certain sequence� �Here �

�c�c�

is the charac�

teristic function of the interval ��c� c��� The main goal of this paper is
to study the case where �x� �� belongs to an elliptic closed trajectory�

Our results are related to the existence of quasi�modes near an
elliptic trajectory� Recall that if H is as before and � is a closed elliptic
trajectory of the Hamiltonian j�j� � V �x� with energy E� period T� �
action S� � Maslov index �� and Poincar�e mapping of angles 	j � j �
�� � � � �m��� then one can construct �see ���� ���� ���� ���� quasi�modes of
H �namely solutions of the Schr�odinger equation modulo a remainder��
microlocalized near �� of quasi�energies

��� Ek�l
QM � E �

�

T�

��
�l� S�

�

�
�

m�	X
j�	

�
kj �

�



�
	j � ��

�
�
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for �k� l� � Z
m� l large� The remainder is O���� uniformly as

����l� S�

�

��� and jkj 
�
X

kj

remain bounded� The existence of these quasi�modes implies that part
of the spectral density of H concentrates near the quasi�energies de�ned
by ���� but this doesn�t say anything about Ek�l

QM as j k j�� � and
does not involve the rest of the spectrum� The results of this paper will
indicate that the rescaled localized spectral density

���
X
j


�Ej � �

�

�
j ���x���� �j� j�

�which is the rescaled spectral density microlocalized at the point in
phase space �x� ��� has a certain semiclassical limit whose singulari�
ties are indeed precisely the quasi�energies ���� and this time with no
restriction on j k j�

We will now state our results� valid for more general quantum
Hamiltonians
 Let H� �

PL
l�� �

lPl�x�Dx� where Pl is a di�erential
operator of order l on Rm �or M� of principal symbol P �

l � sub�principal
symbol P�	l �formally Pl is regarded as acting on half�densities� and

smooth coe�cients� Let H�x� �� �
PL

l�� P
�
l �x� �� and Hsub�x� �� �PL

l�� P
�	
l �x� �� be the principal and sub�principal symbols of H�� We

assume that PL is elliptic� H is positive� and in case M � R
m � that

H tends polynomially to in�nity at in�nity� We will also suppose for
simplicity that Hsub�x� �� � ��

Let E�

j and ��j denote the eigenvalues and eigenvectors of H��
Let us suppose that �x� �� belongs to an elliptic trajectory of period
T� � action S� � Maslov index �� and Poincar�e mapping of angles 	 �
�		� � � � � 	m�	�� We will use throughout the notations

k � �k	� � � � � km�	� � N
m�	 �

k 	 
�
m�	X
j�	

kj	j and
�
k �

�



�
	 
�

m�	X
j�	

�
kj �

�



�
	j �� �
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Theorem ���� Assume that 		����� � � � � 	m�	���� are rational�
Then� for every � � ��� ��� as �� � along the sequence

��� � �
S�

�l� �� ��
� l � N �

one has

���
X

jEj�Ej�c�

j ���x���� �j� j�� �
�m�	��L��c� � o���m�	��� �

for all c such that

��� c �� � �

T�

�
�j �

�
k �

�



�
	 � �

�
� for all j � Z � k � N

m�	 �

Moreover� as a function of c the limit L��c� is a step function constant
on the intervals de�ned by ����

Next we consider the irrational case


Theorem ���� Assume that �� 		����� � � � � 	m�	���� are linearly in�
dependent over the rationals� Then there exists a set M� of values of
c� of full Lebesgue measure� such that for all c � M�

����
X

jEj�Ej�c�

j ���x���� �j� j�� �
m�	��L��c� � o��m�	��� �

for � as in ���� Moreover� as a function of c� L��c� is locally Lipschitz
on M� in the sense that for all c � M� there exists �c � � such that�

���� j L��c��� L��c� j� �c j c� � c j � for all c� � M� �

Finally there exists a rapidly decreasing family fgkgk�Nm�� �related to
the microlocalization of the symbol a of ��x���� such that

��� fc 
 for all k � N
m�	 j �� ei�cT���k�	���	��� j� � gkg 	 M� �

for all � � �� �For a precise de�nition of the set M� see Lemma ������
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Remark� In the rational case the discontinuities of the function L� are
located exactly at the values of the Ek�l

QM de�ned before by ���� for the
values of � given by ���� In the irrational case in order to prove that
L��c� exists we need that c be at some distance from the quasi�energies

Ek�l
QM �unless the symbol a of the quasi�mode is chosen very judiciously�

in which case we can work with c in the complement of the set of all
quasi�energies�� In all cases this suggests that the weighted spectral
measure� ���� in the semi�classical limit� is particularly singular exactly

at the values of the Ek�l
QM de�ned before� We hope to provide a rigorous

proof of a precise statement of this elsewhere�

The paper is organized as follows
 In Section � we prove the exis�
tence of the functions L� which are studied in Section �� In Section �
we �nish the proof of the main Theorems� using a Tauberian argument
that we recall in Section � Finally� in the appendix we review and ex�
tend slightly a result on H�older continuity of function such as L� using
wavelets�

�� A Tauberian lemma�

In this section we re�ne the Tauberian lemma of �� and ����
Consider an expression of the following form

���� !w
E����� �

X
j

wj����
�Ej���� E

�

�
�

de�ned for all � � R where R will henceforth denote the set of all
Schwartz functions on the line with compactly supported Fourier trans�
form�

Let M� a subset of R� of full Lebesgue measure in a bounded
interval�

We introduce the following notations� Fix a positive function f �
R satisfying f��� � � and �f��� � �� For every a � �� de�ne

���� fa�r� 
� a�	f
� r
a

�

and for every a � � and c � �

���� �a�c 
� fa 
 �
�c�c� �
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where �

�c�c�

is the characteristic function of the interval ��c� c��
The Tauberian lemma in question is


Theorem ��� �See �� and ����� LetM� a subset of R� of full Lebesgue
measure in a bounded interval� Suppose wj���� Ej���� E and !w

�
itself

satisfy all of the following 


�� There exists a positive function ����� de�ned on an interval
��� ���� and a functional F� on R� such that for all � � R

�� � !w
E����� � F�������� � o������ � � �� � �

� for all c � M� the limit

L��c� � lim
a��

F���a�c�

exists�

�� L� is a continuous function on M��

�� There exists a k � Z such that �k � O������� �� ��

�� There exists an � � � such that for every � there is a constant
C� such that for all E� � �E � �� E � ��

���� j!w
E������j � C� ����

�rough uniformity in E��

 � The wj��� are non�negative and bounded 
 there exists a constant
C � � such that for all j and all �� � � � � ��

���� � � wj��� � C �

�� The eigenvalues Ej��� satisfy the following rough estimate 
 for
each C	 there exist constants C�� N� such that for all k

���� "fj 
 Ej��� � C	 � k� g � C���
�	k�N� �

De�ne the weighted counting function by

��� Nw
E�c��� �

X
j � jxj���j�c

wj��� �
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where

��� xj��� 
�
Ej����E

�
�

Then the conclusion is 
 for all c � M��

�� Nw
E�c��� � L��c����� � o������ � � �� � �

Proof� Except for the fact that the set M� of allowed c�s is not R� �
this theorem is precisely �� Theorem  ���� Proceeding exactly as in the
proof of the �� inequalities ������� one shows that for all R � �� for all
N � N exists C � �� CN � � such that for all a � ��� R� and for all ��
� � � � c�

���

�

����

�
�� C

a

�

�
NE�c�
��� � �

����
!E����a�c�

� �

����
NE�c�
��� � CN

�a
�

�N
�

Let c � M� be given� We begin by observing that by the �rst of the
inequalities ���

���
�

����
NE�c��� � �

����
!E����a�c�
� � C	

a

�
�

where we have also used the fact thatNE�c�������� is bounded �a trivial
consequence of �� ��� For every � such that � � � � c one can take the
limit in ��� as � �� � to obtain that

��� lim sup
���

�

����
NE�c��� � F���a�c�
� � C	

a

�
�

If we now assume that � � c � M� we can take the limit as a �� � to
obtain

� � lim sup
���

�

����
NE�c��� � L��c� �� �

By the assumption that M� has full measure� we can �nd a sequence
f�jg such that for all j� c� �j � M� and �j �� �� Taking the limit in
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� � of L��c� �j� as j ��� and using the fact that L� is continuous
at c we obtain

��� lim sup
���

�

����
NE�c��� � L��c� �

A similar argument starting with the second inequality ��� shows that

��� lim inf
���

�

����
NE�c��� � L��c� �

which �nishes the proof�

�� The existence of L��c��

In this section we prove the existence of the coe�cients L��c� in
the limits ��� and ���� �see �� � below��

Lemma ���� There exists a rapidly decreasing family of non�negative
numbers� fckgk�Nm�� � such that for all � � R the �rst coe�cient
c�k �x� �� in �� can be written as

��� c�� �x� �� �
��X

n���

X
k�Nm��

���nT�� ck e
in��k�	���	��� �

Proof� In ��� we proved that the �rst coe�cient c�� �x� �� in �� can be
written as

�n ���n�	��� c�� �x� ��

�
��X

n���

���nT�� e
inS������

Z ��

��

�a� Z��s #x� s #���Una� ds �����

where � #x� #�� is the tangent vector to the classical �ow at �x� ��� Z is the
Weyl$Heisenberg operator de�ned by

���� Z�e� f��a���� � e�ief�� eie
 a�� � f�

and U is the metaplectic representation of the linearized �ow at time T� �
�We should point out that in the manifold case a de�nes intrinsically a
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smooth vector in the metaplectic representation of T�x����T
�M�� and U

and Z are operators in that representation space�� Denoting by S the
linearized �ow at time T� � we also showed that one can �nd a symplectic
mapping R such that R�	SR is block�diagonal of the form

��� R�	SR �

�
� � � �

� � �
� � A	

�
A �

where � � R and A	 is the direct sum of rotations of angles 		� � � � � 	m�	�
Furthermore� the transformation R maps the vector �s #x� s #�� to the
vector �s� ���

Let us denote a� 
� Mp�R��	a and V 
� Mp�R�	SR�� where
Mp�R� denotes the metaplectic representation of the mapping R� Then�
letting Z�s� 
� Z��s #x� s #��� and

W �s� 
� Mp�R��	 Z�s�Mp�R� � Z�s� �� �� �� �

one has �
a� Z�s�Una

�
�
�
a��W �s�V na�

�
�

Denote the variables of a� by ��	� ��� where �	 � R and �� � R
m�	 �

and let ei	�D
�
��

�
�
���� denote the direct sum of the propagators of one�

dimensional Harmonic oscillators at times 		� � � � 	m�	� acting on a� by

acting on the �� variables� If ein�
�
��
�� denotes the metaplectic quanti�

zation of

����

�
� n�
� �

	
�

we get that ���� becomes

�n ���n�	��� c�� �x� ��

�
��X

n���

���nT�� e
in�

�
Z

a���� �ein�
�
��
�� ein	�D

�
��

�
�
���� �a��� ��	 � s� ��� d� ds �

The integral over ds is a convolution and the integral over d�	 is the
integral of that convolution� Therefore� using the Fourier inversion
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formula plus the fact that on the Fourier transform side the operator

ein�
�
��
�� is multiplication by e�in��

��� �� being the dual variable�� one
gets

�n ���n�	��� c�� �x� ��

�
��X

n���

���nT�� e
in�

Z
a����� ��� e

in	�D�
��

�
�
����a����� ��� d�� �

����

where a�� is the Fourier transform of a� with respect to �	� Let b�x� 
�
a����� x� and let us decompose b on the Hermite basis� hk� of eigenfunc�
tions of the harmonic oscillator

���� b �
X

k�Nm��

bk hk �

Then� letting ck 
� jbkj� we get ��� and the family fckg is non�negative�
It is also rapidly decreasing since the function b is Schwartz�

Remark� For a given quantum Hamiltonian H� the coe�cients fckg
depend only on the symbol a of the coherent state� Observe that the
proof shows that given any rapidly decreasing family fckg one can �nd
an a giving rise to it�

We next prove the existence of the limit

�� � L��c� 
� lim
a��

c
�fa��
�c�c�

�

� �x� �� �

for f as in the Tauberian lemma and c�� �x� �� as in ���� Let �a�c� 
�

c
�fa��
�c�c�

�

� �x� ��� that is

���� �a�c� 
� c �
X
n	���k

�f�a n�
sin �n c T��

nT�
ck e

in��k�	���	��� �

We must then prove that the limit L��c� � lima�� �a�c� exists�
To lighten up the notation a bit� let us de�ne

���� dk 
�
�
k �

�



�
	 � � � k � N

m�	 �
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keeping in mind the notation � �� Let � � a � �� then

�	�c�� �a�c� �
�

T�

X
�n�k��Z
Nm��

sin �c n T�� ck e
indk

Z 	

a

�f ��t n� dt

�
�

T�

X
�n� k�

�eincT� � e�incT�

 i

�
ck e

indk

Z 	

a

�f ��t n� dt �����

Applying the Poisson summation formula to the series over n� we get
�after a calculation�

�	�c�� �a�c� �
��
T�

X
�j� k��Z
Nm��

ck

Z 	

a

�
g
��
t
��j � c T� � dk�

�

� g
��
t
��j�c T��dk�

��dt
t
�����

where g�x� 
� x f�x��

Lemma ���� De�ne

M�
� �

n
c � R 
 for all �j� k� � Z N

m�	 � c �� � �

T�
��j � dk�

o
�

If 		����� � � � � 	m�	���� are rational and c � M�
� � then each of the

limits

���� lim
a��

X
�j�k��Z
Nm��

ck

Z 	

a

g
��
t
��j � c T� � dk�

�dt
t
�

exists �and is �nite�� Moreover� the convergence is locally uniform in c�

Proof� By the rationality assumption the complement of M�
� is dis�

crete� Therefore� if c � M�
� there exists � such that

� � � � j�j � c T� � dkj � for all �j� k� � Z N
m�	 �

The function g is rapidly decreasing
 for all N � N �CN � � such that
for all x � R� jg�x�j � CN �� � jxj��N � Therefore

���

���g��j � c T � dk
t

���� � CN
tN

tN � ��j � c T � dk�N

� CN
tN

��j � c T � dk�N
�
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and so for all �j� k� � Z N
m�	 and for all a � ��� ��

����

Z 	

a

���g��
t
��j � c T� � dk�

����dt
t
� CN

N

�� aN�	

j�j � c T� � dkjN �

This shows that each of the integrals in the series ���� extends to a
continuous function of a � ��� ��� Moreover� since the family

Mk�j 
�
ck

j�j � c T� � dkjN � �j� k� � Z N
m�	

is absolutely convergent �for N su�ciently large� and it dominates the
absolute values of the terms of ����� we are done�

We now turn to the irrational case�

Lemma ���� Assume that �� 		����� � � � � 	m�	���� are linearly inde�
pendent over the rationals� Let

���� M�
� 
�

n
c � M�

� 

X

k�Nm��

ck

�
�
�
dk �

c T

�

����
��

o
�

where fxg denotes the fractional part of x� and let

���� M� 
�M�
� �M�

� �

Then� if c � M�� each of the limits

lim
a��

X
j�k

ck

Z b

a

g
��
t
��j � c T� � dk�

�dt
t

exists and is �nite� Moreover� the convergence is locally uniform in c�

Proof� It is enough to consider one of the series above� say the one
with the plus sign� Let c � M� and de�ne

O� 
� f�j� k� � Z N
m�	 
 �j � c T� � dk � �g �

and
O� 
� f�j� k� � Z N

m�	 
 �j � c T� � dk � �g �
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Since c � M�
� � Z N

m�	 � O� � O�� Recalling that g�x� � x f�x�
and that f as well as the ck are non�negative� we see that the terms
with �j� k� � O� have the sign � and therefore each of

X
�j�k��O�

ck

Z 	

a

g
��
t
��j � c T� � dk�

�dt
t

is a decreasing function of a� It therefore su�ces to show that

lim
a��

X
�j�k��O�

ck

Z 	

a

g
��
t
��j � c T� � dk�

�dt
t
��

and similarly for the series over O��
Specializing ���� to N � � we see that exists C � � such that for

all a � ��� �� and for all �j� k� � O�

�� �

Z 	

a

g
��j � c T � dk

t

�dt
t
� C

��j � c T � dk��
�

�The last denominator is not zero if �j� k� � O��� Therefore� the Lemma
will be proved provided we show the convergence of the double series
of scalars

����
X

�j�k��O�

Mk�j �

where

Mk�j � ck

�
j �

c T � dk
�

���
�

that is

���� Mk�j �
ck

�j � k � � ���
�

where

���� � �
� 		
�

� � � � �
	m�	
�

�
and � �

�

�

�
c T � ��

m�	X
j�	

	j


�
�

Since the terms in ���� are positive� we can prove its convergence by
�rst summing over j with k �xed� and then summing over k � N

m�	 �
Observe that

���� �j� k� � O� if and only if j � ��k � � �� � � �
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where �x� denotes the greatest integer less than or equal to x� For every
k consider the series

����
��X

j��
k����

Mk�j �

�If x �� Z� then ��x� � ��x� � �� and since c � M�
� � for all k � N

m�	 �
k � � � �� Z�� Comparing this series with the integral

���

Z ��

�
k����

dx

�x� k � � ���
�

we �nd that

����
��X

j��
k����

Mk�j �Mk�
�k���� �
ck

��k� � �� � k � � �
�

or with the notation fxg � fractional part of x � x� �x��

����
��X

j��
k �����	

Mk�j � ck
fk � � �g� �

ck
fk � � �g �

Therefore convergence of ���� follows from the convergence of

X
k�Nm��

ck
fk � � �g� �

But since by assumption c � M�
�� this series converges�

In conclusion we have shown that L��c� exists for c as de�ned by
the Lemmas�

Remarks� In the irrational case


�� To �nd examples of numbers c inM�
�� it su�ces to �nd a family

fgkgk�Nm�� of positive numbers such that
P

g��k ck ��� Then if

����
����j� c T� �

�
k�

�



�
	��

��� � gk � for all �j� k� � ZN
m�	 �
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then c � M�� De�ning �gk � �gk� � � �� one see that still
P

�g��k ck �
� and therefore associated to �gk �by ����� is a subset of M� whose
intersection with any interval I has a co�measure in I arbitrary small
as � �� �% therefore M� has full measure�

� The set M� is related to the rate of decay of the ck �that is
to the properties of the symbol� a� of the coherent states�� as well as
to irrationality properties of 	����� At one extreme� we can choose
a such that only �nitely�many of the coe�cients ck are non�zero �see
the remark following Lemma ����� In that case M� � M�

� is just the
complement of the set of quasi�energies of the quasi�modes associated
with the trajectory�

�� Properties of the function L��

Having established the existence of the function L��c�� we now
derive some of its properties�

Rational case� Let us go back to the identity L��c� � lima�� �a�c�
where �a is de�ned in ����� Applying in ���� the Poisson summation
formula to the series over n with k �xed one obtains

�� � L��c� � lim
a��

�

a

�
Fc 
 f

� �
a

��
��� �

where

���� Fc�y� �

Z c

�c

X
j�k

ck �T��x� y�� �j � dk� dx �

For each c � � the function Fc is a step function% indeed

���� Fc �
X
j�k

ck �
�c����j�dk��T � c����j�dk��T �
�

Since f���a��a �� � we obtain

���� L��c� �
X

fj�k �cT���j�dk�cTg

ck � for all c � M�
� �

which is clearly a step function �i�e� a locally constant function� of
c � M�

� �
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Irrational case� To study the function L��c� onM� as de�ned by �� ��
we will use a wavelet decomposition�

Let g � L� be a function satisfying
R
g�x� dx � � and

R
x g�x� dx �

�� If it exists� the wavelet coe�cient of L��c�� c is

� �� T �a� b� �
�

a

Z
g
�x� b

a

�
�L��x�� x� dx �

Plugging in � �� the expression

� �� L��x�� x �
X
n	��
k

sin �nxT��

nT�
eindk ck �

one �nds� supposing �g even

� � T �a� b� �
�

 i

X
n	��
k

�

nT�
�g�a n� sin �n b T�� ck e

in�dk� �

The following result shows that such a decomposition is indeed valid�

Proposition ���� Let g as before� �g being compactly supported and
even� and let us suppose that � is a compactly supported function sat�
isfying

� ��

Z
���a� �g�a�

da

a
�

Z
�g��a� ����a� da

a
� � �

Then� for all c � M��

� �� L��c�� c � lim
���

Z ��

�

da

a

Z ��

��

�
�c� b

a

�
T �a� b� db �

where

� �� T �a� b� �
�

 i

X
n	��
k

�

nT�
�g�a n� sin �n b T�� ck e

indk �
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Proof�Z ��

�

da

a

Z ��

��

db �
�c� b

a

�
T �a� b�

�

Z ��

�

da

a

X
n	��
k

�

nT�
� ���a n� eincT� � ����a n� e�incT� �

� eindk�g�a n� ck

�

Z ��

�

da

a

X
n	��
k

���a n� �g�a n� sin �n c T�� e
in��k�	���	��� ck�  �

�
X
n	��
k

��� n� sin �n c T�� e
indk ck �

where

���� 
�

Z ��

�

da

a
���a� �g�a� �

Noting that ���a� � ���a� �g�a��a is compactly supported and ���� � �
by hypothesis one get the result� thanks to Lemma ����

The next result� thanks to the result of the Appendix will enable
us to prove the Lipschitz continuity on M��

Proposition ����

� �� T �a� b� � O�a� � near � almost everywhere and uniformly in b �

Proof� Since
R
x g�x� dx �

R
g�x� dx � �� g���� � �� So one can �nd

a C� function f such that �g��� � � f��� and f��� � �� Then

� �� T �a� b� � a
X
n	��
k

f�a n� sin �b n T�� e
indk ck �

and it is easy to check� by the same argument as in Lemma ���� that if
b � M�� X

n	��
k

f�a n� sin �b n T�� e
in��k�	���	��� ck
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is bounded�

�� End of proofs�

The convergence statements in both theorems are immediate con�
sequences of the Tauberian lemma of Section � applied to the following
objects

� �� !��a� c� �
X
j

wj����
�Ej����E

�

�
�

where

���� wj��� � j���x���� �j�j� �

The weighted counting function is therefore

����
X
j

jEj����Ej�c�

j���x���� �j�j� �

The functional of the Tauberian lemma is

��� F���� 
� c�� �x� ��

as de�ned by ���� We must check that the above objects satisfy the
assumptions of the Tauberian lemma�

a� Theorem ���� It is easy to see that the functional F� de�ned
where c�� �x� �� is de�ned by ��� satis�es the hypothesis  of the Taube�
rian Lemma of Section  if we take for M� the set de�ned by ����
Moreover the other hypotheses are satis�ed as in ���� Then just apply
the Tauberian Lemma�

b� Theorem ��� The Lipschitz continuity of F� is an immedi�
ate consequence of Proposition �� together with Theorem A�� below�
The fact that M� is of full Lebesgue measure� is a classical result of
Diophantine analysis �recall that the sequence fgkg in the remark ��
Section � is rapidly decreasing��
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Appendix� Wavelets and H�older continuity�

Int his appendix we will prove an easy extension of results of � ��
��� and ����

Let M� a bounded subset of R of full Lebesgue measure�

Theorem A��� Let g be a be a continuously di�erentiable compactly
supported function� Let f de�ned and bounded on M�� Let us suppose
that f admits a �scale�space coe�cient T	a�b
� decomposition with re�
spect to g� namely

���� f�x� �

Z �

�

Z ��

��

g
�x� b

a

�
T �a� b�

da

a
db � for all x � M� �

Let us suppose moreover that

���� T �a� b� � o�a�� �

near � almost everywhere and uniformly in b� Then F is ��H�older
continuous on M� by this we mean

���� jf�x	�� f�x��j � Ox��jx� � x	j�� � for all x	� x� � M� �

Proof� The proof is absolutely equivalent to the one in ���� so we will
only sketch it� Let us write �rst


�� �
f�x� �

� Z 	

�

da

a
�

Z �

	

da

a

�Z
db g

�x� b

a

�
T �a� b�

� fs�x� � fl�x� �

fl is obviously C
�� We concentrate on fs�

Let x	� x� � M�� x	 � x�� we cut fs in three pieces�

fs�x	�� fs�x�� �

Z x��x�

�

da

a

Z
db g

�x� � b

a

�
T �a� b�

�
Z x��x�

�

da

a

Z
db g

�x� � b

a

�
T �a� b�����

�

Z 	

x��x�

da

Z
db
��
a
g
�x� � b

a

�
� �

a
g
�x	 � b

a

��

� T �a� b�
�
 T	 � T� � T� �����
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We now analyze each term


� T	 and T�� Since T �a� b� � O�a�� almost everywhere� we have

����

jTij �
Z x��x�

�

da

a

Z
db
����
a
g
�xi � b

a

����C a�

� O�jx� � x	j�� kgkL�
C

�
�

� T�� If g is continuously di�erentiable let us write

���� g
�x� � b

a

�
� g

�x	 � b

a

�
�

x� � x	
a

g�
�x� � b

a

�

with x	 � x� � x�� So

����

jT�j �
Z 	

x��x�

da

a

Z
db
��� �
a�

g�
�x� � b

a

���� jT �a� b�j jx�� x	j

� O�jx� � x	j� kg�kL�
Z 	

x��x�

da

a
a��	

� O�jx� � x	j�� �
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On Bernoulli identities

and applications

Minking Eie and King F� Lai

Part I

Abstract� Bernoulli numbers appear as special values of zeta func�
tions at integers and identities relating the Bernoulli numbers follow as
a consequence of properties of the corresponding zeta functions� The
most famous example is that of the special values of the Riemann zeta
function and the Bernoulli identities due to Euler� In this paper we
introduce a general principle for producing Bernoulli identities and ap�
ply it to zeta functions considered by Shintani� Zagier and Eie� Our
results include some of the classical results of Euler and Ramanujan�
Kummer�s congruences play important roles in the investigation of p�
adic interpolation of the classical Riemann zeta function� It asserts
congruence relations among Bernoulli numbers� i�e�

��� pm���
Bm

m
� ��� pn���

Bn

n
�mod pN���

if m � n �mod �p � �� pN � and �p � �� is not a divisor of m� In the
second part of this paper� we use a simple Bernoulli identity to prove
that

��� pm���
Bm

m

� p��N���

m

X
�j�p���

��j�pN��

jm � �

	

X
�j�p���

��j�pN��

jm�� �mod pN��� �

���



��� M� Eie and K� F� Lai

We then deduce from this Kummer�s congruence by using von Staudt�s
theorem and Euler�s generalization of Fermat�s theorem

am � an �mod pN��� �

if a is relative prime to p and m � n �mod �p� �� pN �� Our argument
can be applied to derive congruences among Bernoulli polynomials and
in general the special values at negative integers of zeta functions asso�
ciated with rational functions considered by Eie�

�� Introduction�

Let m�� � � � �mr be positive integers and P �T � be a polynomial in T
with complex coe
cients of degree less than m�� � � ��mr� For jT j � ��
we let

F �T � �
P �T �

��� Tm�� � � � ��� Tmr �
�

�X
k��

a�k�T k �

Such functions occur as generating functions of partition numbers �cf�
Hardy and Wright �� Chapter XIX�� and dimensions of spaces of au�
tomorphic forms � e�g� if we let a�k� be the dimension of the space of
Siegel modular forms of genus 	 and weight k� then

�X
k��

a�k�T k �
� � T ��

��� T 	� ��� T 
� ��� T ��� ��� T ���

�cf� Igusa ���� The value of a�k� is determined by F via the residue
theorem as

a�k� �
�

	�i

Z
C

F �z� dz

zk��
�

where C is a su
ciently small circle centered at the origin going coun�
terclockwise�

The generating function of the numbers a�k� is the Dirichlet series

ZF �s� �
�X
k��

a�k� k�s

�cf� Hardy and Wright �� Chapter XVII��� This zeta function is related
to F �T � via a Mellin transform

ZF �s� ��s� �

Z �

�

ts�� �F �e�t�� F ���� dt �
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for Re s su
ciently large� Our underlying principle is to evaluate F �T �
in two ways� yielding a Bernoulli identity� with special values of the zeta
functions of Shintani ��� Zagier �� and Eie 	�� �� on the one hand� the
special values of classical zeta functions of Riemann and Hurwitz and
sums of residues on the other� One gets easily this way Euler�s identity�
if n � 	�

n��X
k��

�	n��

�	 k�� �	n� 	 k��
B�k B�n��k � ��	n� ��B�n �

�cf� �� Part I� p� �		�� and Ramanujan�s identities ��� � � � with
�� � ����

�� if n � ��

�n
�X
k��

k�n��

e��k � �
� ����n

�X
k��

k�n��

e��k � �
� ��n � ����n� B�n

�n
�

	� if n � Z�

��n
��
	
	�	n� �� �

�X
k��

k��n��

e��k � �

�

� �����n
��
	
	�	n� �� �

�X
k��

k��n��

e��k � �

�

� �	�n
n��X
k��

����k B�k

�	 k��

B�n����k
�	n� 	� 	 k��

�n���k �k �

�� if n � ��

��n
�X
k��

����k�� csch ��k�
k�n��

� �����n
�X
k��

����k�� csch �� k�
k�n��

� 	�n��
n��X
k��

����k
B�k

��
	

�
�	 k��

B�n����k
��
	

�
�	n� 	� 	 k��

�n���k �k �

�cf� �� Part II� Chapter �����
In the �rst part of this paper we present some new Bernoulli iden�

tities� In view of the current motivic interest in special values of zeta
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functions� one cannot help from wondering if there is an abstract frame�
work giving a uni�ed explanation of these identities as in the case of
polylogarithms �cf� Zagier �����

In the second part of the paper the Bernoulli identities are used
to give new proofs of classical Kummer congruences� The Bernoulli
numbers Bn �n � �� �� 	� � � � � and Bernoulli polynomials Bn�x� �n �
�� �� 	� � � � � are de�ned by

t

et � �
�

�X
n��

Bn t
n

n�
� jtj � 	� �

and
t ext

et � �
�

�X
n��

Bn�x� t
n

n�
� jtj � 	� �

Suppose that m�n are positive even integers� p is an odd prime with
p � � not a divisor of m and N is a non�negative integer� Kummer�s
congruences asserted that if

m � n �mod �p� �� pN � �

then

��� pm���
Bm

m
� ��� pn���

Bn

n
�mod pN��� �

Kummer�s congruences play important roles in the p�adic interpola�
tion of the classical Riemman zeta function� Indeed if we consider the
function

	p�s� � ��� p�s� 	�s� �
X
n��

�n�p���

n�s � Re s � � �

Then the congruences tell us that 	p�s� is a continuous function on the
ring of p�adic integers Zp� i�e��

	p���m� � 	p��� n� �mod pN��� �

if m � n �mod �p� �� pN ��
One can construct a p�adic measure 
 on Zp and express 	p���m�

as a constant multiple of the p�adic integration

Z
xm�� d
�x� �
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where the integration is over Z�p �see for example Koblitz ���� Note

that for x � �Z�pN��Z��� the set of invertible elements of the quotent
ring Z�pN��Z� one has

xm�� � xn�� �mod pN��� �

if
m � n �mod �p� �� pN � �

So that Kummer�s congruences follow as easy consequences by a simple
argument �cf� ����

Here we shall develop another elementary proof of Kummer�s con�
gruences by a simple identity among Riemann zeta function and Hur�
witz zeta functions�

�I� ��� p�s� 	�s� � p��N���s
X

�j�p���

��j�pN��

	
�
s�

j

pN��

�
�

where the Hurwitz zeta function is de�ned as

	�s� �� �
�X
n��

�n� ���s � Re s � � � � � � �

Such an identity follows easily from the consideration of zeta functions
associated with rational functions of the form

F �T � �
P �T �

��� Tm�� � � � ��� Tmr�

�see Part I��
Note that both the Riemann zeta function 	�s� and Hurwitz zeta

function 	�s� �� have analytic continuations in the whole complex plane�
Moreover� their special values at non�positive integers are given by
Bernoulli numbers and Bernoulli polynomials� respectively� Speci�cally�
one has

	���m� � ����m�� Bm

m
and 	���m� �� � �Bm���

m
�

Set s � ��m in the identity �I�� we get

�II� ��� pm���
Bm

m
�

�

m

X
�j�p���

��j�pN��

mX
l��

�
m

l

�
Bl j

m�l p�N����l��� �
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Here �
m

l

�
�

m�

l� �m� l��

is the binomial coe
cient�
On the other hand� von Staudt�s theorem �	� Chapter �� Theo�

rem ��� implies that pBl is alway p�integral� i�e� it contains no divisor
of p in the denominator of pBl� So after modulo pN��� we get

�III�

��� pm���
Bm

m
� �

m

X
�j�p���

��j�pN��

jm p��N���

� �

	

X
�j�p���

��j�pN��

jm�� �mod pN��� �

Next we evaluate the sum

X
�j�p���

��j�pN��

jm �

in the multiplicative group �Z�pN��Z�� by decomposing it into a direct
product of �nite cyclic groups and we obtain Kummer�s congruences by
assuming von Staudt�s Theorem� �nally we give a proof of von Staudt�s
theorem by using the Bernoulli identity �II� with N � ��

At the end of the paper we extend Kummer�s congruences on
Bernoulli numbers to congruences on Bernoulli polynomials�

�� Special values of zeta functions�

���� Bernoulli numbers and Bernoulli polynomials�

We recall some results on special values of zeta functions�
For the Riemann zeta function

	�s� �
�X
n��

n�s � Re s � �
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and the Hurwitz zeta function

	�s� �� �
�X
n��

�n� ���s � � � � � Re s � � �

it is well known that for an integer m � � �

	��m� � ����m Bm��

m� �
and 	��m� �� � �Bm�����

m� �
�

���� Zeta functions associated with linear forms�

Let � � ���� � � � � �r� be an r�tuple of nonnegative integers and
L�x� � a� x� � � � �� ar xr � � be a linear form with

Re aj � � and Re
�
� �

rX
j��

aj
�
� � �

For Re s � r � j�j� de�ne the zeta function associated with L as

Z�L� �� s� �
X
n�Nr

n�L�n��s

�
�X

n���

� � �
�X

nr��

n��� � � �n�rr �a� n� � � � �� ar nr � ���s �

where we use the notation n� � n��� � � �n�rr �
These zeta functions were �rst considered in more general context

by Eie in 	�� In particular� they have meromorphic continuations in
the whole complex s�plane� Furthermore� their special values at non�
positive integers are given explicitly there� Here we summarize the
results we need from ���

For any polynomial f�x� of p variables and degree k

f�x� �
kX

j�j��
a� x

��
� � � �x�pp �

we let

Jp�f�x�� �
kX

j�j��
a� 	����� � � � 	���p� �

kX
j�j��

a�

pY
j��

�����jB�j��

�j � �
�
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where � � ���� � � � � �p� ranges over all p�tuples of non�negative integers
and j�j � �� � � � �� �p�

Also for any nonempty subset S of the index set I � f�� 	� � � � � rg�
we let

LS�x� �
X

i�I�S
ai xi � � � L�x��

X
j�S

aj xj

and jSj be the cardinal number of S�
The following proposition is an immediate consequence of the main

theorem in ���

Proposition �� For any integer m � �� the special value at s � �m
of Z�L� �� s� is given by

Z�L� ���m� � Jr�x�Lm�x��

�
X
S

�Y
j�S

�����j�� �j �
a
�j��
j

� �

��S��
Jr�jSj

�
�Y
i��S

x�ii L
��S�
S �x�

�
�

where S ranges over all non�empty subset of I � f�� 	� � � � � rg in the

summation and

��S� � m� jSj�
X
j�S

�j �

Here we describe the analytic continuation of Z�L� �� s�� For Re s �
r � j�j� we have

Z�L� �� s� ��s�

�
�X

n���

� � �
�X

nr��

n��� � � �n�rr
Z �

�

ts�� e��a�n������arnr���t dt

�

Z �

�

e��t
rY

j��

� �X
n��

n�j e�ajnt
�
dt �

Set

Fj�t� �
�X
n��

n�j e�ajnt and F �t� � e��t
rY

j��

Fj�t� �
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A term by term di�erentiation of the identity

�X
n��

e�ajnt �
�

eajt � �
� t � � �

we get

Fj�t� � ��aj���j
� d
dt

��j� �

eajt � �

�
�

Thus around t � �� Fj�t� has the asymptotic expansion

�j �

�aj t��j��
� �����j

X
nj��j��

Bn�aj t�
n��j��

n�n� �j � ���
�

It follows that at t � �� F �t� has an asymptotic expansion of the form

X
n���j�j�r�

Cn t
n �

Consequently� the analytic continuation of Z�L� �� s� and its special
values at negative integers follow from Lemma � in Section ��

When � � �� we have the following

Corollary� For any integer m � r� one has

Z�L� �� r�m�

�
X
j�j�m

����m�r��r�� �m� r��

��� � � ��r��r��� B�� � � �B�r a
����
� � � �a�r��r ��r�� �

���� Shintani zeta functions�

Next we consider another kind of zeta function which were inves�
tigated �rst by Shintani in �� and then Eie in ��� Here we reformulate
the main result in ���

Let A � �a�� � � � � ar� and u � �u�� � � � � ur� be r�tuples of complex
numbers such that Re aj � � and uj � �� De�ne the zeta function

Z�A� u� s� �
�X

n���

� � �
�X

nr��

�a��n� � u�� � � � �� ar�nr � ur��
�s �
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where Re s � r�

Proposition �� For any integer m � r� one has

Z�A� u� r�m�

� ����r
X
jpj�m

�m� r��

p�� � � � pr� Bp��u�� � � �Bpr �ur� a
p���
� � � �apr��r �

Here the summation is over all p�tuples of non�negative integers
such that and jpj � p� � � � �� pr � m�

�� Euler�s Identity�

If we start from the fraction

F �T � �
�

��� T ��
�

�X
k��

�k � ��T k �

we obtain the identity

	�s� �� � 	�s� �
�X

n���

�X
n���

�n� � n��
�s � 	 	�s� �

from the Dirichlet series ZF �s�� Setting s � 	 � 	n� we get Euler�s
identity

n��X
k��

�	n��

�	 k�� �	n� 	 k��
B�k B�n��k � ��	n� ��B�n � n � 	 �

In this section we shall establish a new identity analogous to that of
Euler and then as an illustration of our method we give an extension
of the Euler identity to Bernoulli polynomials� We state a lemma�

Lemma �� Given

P �T � �
mX
j��

bj T
j

and

F �T � �
P �T �

��� Tm�� � � � ��� Tmr�
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with m� � � � ��mr � m� then� for jT j � � we have

F �T � �
mX
j��

bj

�X
n���

� � �
�X

nr��

Tn�m������nrmr�j

and hence

ZF �s� � b�
X

n������nr��
jnj��

�n�m� � � � �� nrmr�
�s

�
mX
j��

bj
X

n������nr��
�n�m� � � � �� nrmr � j��s �

To illustrate our principle we consider as a �rst example� a fraction
related to the generating function of the dimensions of Siegel modular
forms of genus two�

F �T � �
�

��� T �� ��� T �� ��� T �� ��� T 
�

and we derive a new Bernoulli identity�

Proposition �� For any integer m � ��

X
jpj��m

�	m� ���

p�� p�� p�� p	�
Bp� Bp� Bp� Bp� 	

p��� �p��� �p��� �p���

� � �

����

B�m

	m
�
� ��

��	
�

�

��
	�m�� �

	��

���
��m�	

� B�m��
	m� 	

� ���

���

��m�	

	m� 	

�
B�m��

��
�

�
� B�m��

��
�

��

�
�

��

��m�	

	m� �

�
	�B�m��

��
�

�
� ��B�m��

��
�

��

� ��m��

	m� �
B�m��

��
�

�
�

Proof� Let

F �T � �
�

��� T �� ��� T �� ��� T 
� ��� T ��
�



��� M� Eie and K� F� Lai

By Lemma �� we have for Re s � �

ZF �s� �
X

n������n���
jnj��

�	n� � �n� � �n� � �n	�
�s

�
�X

n���

�X
n���

�X
n���

�X
n���

�	n� � �n� � �n� � �n	�
�s

�
�X

n���

�X
n���

�X
n���

�
�	n� � �n� � �n��

�s��	n���n���n��
�s

��	n���n���n��
�s���n���n���n��

�s�

�
�X

n���

�X
n���

�
�	n� � �n��

�s��	n� � �n��
�s��	n� � �n��

�s

���n���n��
�s���n���n��

�s���n���n��
�s�

� �	�s � ��s � ��s � ��s� 	�s� �

On the other hand� we decompose F �T � into partial fractions

F �T � �
�

��� ��� T �	
�

�

�� ��� T ��
�

�

�� �� � T ��
�

�� T 	

� ��� T ��

�
��� ��	T � 	�T � � ��T � � ��T 	 � ���T �

�	� ��� T 
�

�
��� � 	��T � ���T � � ���T � � 	��T 	 � ���T �

�	� ��� T 
��

�
�

����

�X
k��

�k � �� �k � 	� �k � ��T k �
�

��

�X
k��

�k � �� �k � 	�T k

�
�

��

�X
k��

����k�k � ��T k �
�

�

�X
k��

��� T 	�T �k

�
�

�	�

�X
k��

���� ��	T � 	�T � � ��T � � ��T 	 � ���T ��T 
k

�
�

�	�

�X
k��

�k � �� ���� � 	��T � ���T �
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� ���T � � 	��T 	 � ���T ��T 
k �

So the corresponding zeta function is

ZF �s� �
�

����
�	�s� �� � � 	�s� 	� � �� 	�s� �� � � 	�s��

�
�

��
�	�s� 	� � � 	�s� �� � 	 	�s��

�
�

��
��	��s � �� 	�s� �� � �	��s � �� 	�s��

�
�

�

� �X
k��

�� k��s �
�X
k��

�� k � ���s
�

�
�

�	�

�
��

�X
k��

�� k��s

�
�X
k��

�
��	 �� k � ���s � 	� �� k� 	��s

��� �� k����s��� �� k����s���� �� k����s
��

�
�

�	�

�
���

�X
k��

�� k��s

�
�X
k��

�k � ��
�
	�� �� k� ���s � ��� �� k � 	��s

� ��� �� k� ���s � 	�� �� k� ���s

� ��� �� k� ���s
��

�

Set s � � � 	m with m � �� we get that ZF �� � 	m� is equal to the
right hand side of our identity after an elementary calculation�

Consider ZF �s� as a sum of zeta functions associated with linear
forms� we have

ZF ��� 	m�

�
X

jpj��m

�	m� ���

p�� p�� p�� p	�
Bp� Bp� Bp� Bp� 	

p��� �p��� �p��� �p���



��� M� Eie and K� F� Lai

�
X

jpj��m��

�	m� ���

p�� p�� p��
Bp� Bp� Bp�

� �	p��� �p��� �p��� � 	p��� �p��� �p���

� 	p��� �p��� �p��� � �p��� �p��� �p���
�

�
X

jpj��m��

�	m� ���

p�� p��
Bp� Bp�

� �	p��� �p��� � 	p��� �p��� � 	p��� �p���

� �p��� �p��� � �p��� �p��� � �p��� �p���
�
�

In the second summation� p � �p�� p�� p�� ranges over all non�negative
integers p�� p�� p� such that p� � p� � p� � 	m � �� So at least one of
pj must be odd� But Bernoulli numbers of odd index are zero except
B� � ���	� Hence we have

X
jpj��m��

�	m� ���

p�� p�� p��
Bp� Bp� Bp� a

p���
� ap���� ap����

� ��

	

X
jpj��m��

�	m� ���

p�� p��
Bp� Bp�

� �ap���� ap���� � ap���� ap���� � ap���� ap����

�
�

Therefore� the second sum in the summation cancels the third sum�
Hence our identity follows�

Remark� Di�erent decompositions of F �T � into partial fractions may
lead to di�erent expressions of ZF �s� in terms of �nite sums of Riemann
zeta functions and Hurwitz zeta functions� However� one can prove that
the resulting identities are the same by employing well known identities
such as

Bm�k �� � km��
kX

j��

Bm

�
� �

j

k

�
�

The formula in the next proposition is an analogue of Euler�s iden�
tity�
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Proposition �� For each positive integer n � �� one has

n��X
k��

�	n� 	��

�	 k � 	�� �	n� 	 k � 	��

B�k

	 k

B�n��k
	n� 	 k

�
�
� B�n

	n

� �	n� �� �	n� ��

� �	n� 	� �	n� ��
�

Proof� Let

F �T � �
T �

��� T �	
�

Then for jT j � ��

F �T � �
�

��

�X
k��

�k � �� �k � 	� �k � ��T k�� �
�

�

�X
m��

�m� �m�Tm �

The corresponding zeta function ZF �s� is then

�

�
�	�s� ��� 	�s� ��� �

Also we can express ZF �s� as a sum of zeta functions associated with
linear forms� By Lemma � we have

ZF �s� �
�X

n���

�X
n���

�X
n���

�X
n���

�n� � n� � n� � n	 � 	��s �

After a change of variables n� � n� � � � p�� n� � n	 � � � p� in the
summation we get

ZF �s� �
�X

p���

�X
p���

p� p� �p� � p��
�s �

Set s � �� 	n with n � �� The identity

�n�	X
k��

�	n� ���

k� �	n� k � ���

Bk��

k � 	

B�n�k��
	n� k � 	

�
�
�B�n

	n

� 	

�	n� 	� �	n� ��

�
�

�

�
� B�n

	n
�

B�n��
	n� 	

�
�
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follows from Proposition � and a simple calculation yields our assertion�

Remark� The identity of Proposition � appears in �� as a consequence
of an identity among Eisenstein series� Similar identities follow from
di�erent consideration of generating functions� For example� if we con�
sider F �T � � T ����� T �
� we get the following identity for n � ��

X
p�q�r�n
p�q�r��

�	n� ���

�	 p� 	�� �	 q � 	�� �	 r� 	��

B�pB�q B�r

� p q r

�
�
� B�n

	n

�� �

�	�
� 	n� � �n

�	n� 	� �	n� �� �	n� �� �	n� ��

�

�
�

��

� B�n�	
	n� �

�
�

Proposition 	� For any integer n � 	

�nX
k��

�	n��

k� �	n� k��
����k Bk�u�B�n�k�u� � ��	n� ��B�n �

Proof� Writing the fraction F �T � � T��� � T �� in two ways we get
the identity

�X
k��

k T k �
�X

n���

�X
n���

Tn��n��� �

Hence for Re s � 	� we have

	�s� �� �
�X

n���

�X
n���

�n� � n� � ���s

�
�X

n���

�X
n���

��n� � �� � �n� � �� ����s � � � � � � �

This is just the function Z���� ��� ��� �� ��� s� of Proposition 	�
Set s � 	� 	n� we get

�nX
k��

�	n��

k� �	n� k��
Bk���B�n�k��� �� � ��	n� ��B�n �
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In light of the identity �cf� ��� p� ����

B�n�k��� �� � ����k B�n�k��� �

we have proved that the identity holds for � � u � ��
However� as functions of variable u� both sides of the identity are

analytic functions of u� If it holds for � � u � �� it must hold for all u�

Remark� In exactly the same way� we get the following identity

X
p�q�r��n

�	n��

p� q� r�
Bp�u�Bq�v�Br�w�

� �	n� �� �	n� 	�B�n�u� v � w�

� ��� 	 �u� v � w�� 	n �	n� 	�B�n���u� v � w�

� ��u� v � w���� �u� v � w��	� 	n �	n���B�n���u� v � w� �

�� Identities in Ramanujan�s notebooks�

In Chapter �� of Ramanujan�s notebooks II ��� there are many
interesting identities on Bernoulli numbers� We shall use here Cauchy�s
formula for Taylor series coe
cients� First we prove a new identity
analogous to those of Ramanujan and then we make some remarks on
the proof of Ramanujan�s identities by our method�

We quote the following classical result from ���

Lemma 
� Let fg be a sequence of positive real numbers tending ���

Suppose that the Dirichlet series

��s� �
X
	��

a	 
�s �

converges for su�ciently large Re s� Let

f�t� �
X
	��

a�	t	

be the corresponding exponential series� If at t � �� f�t� has an expan�

sion of the form X
n�n�

Cn t
n � n� being integer �
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then

�� ��s� has a meromorphic continuation in the whole complex

plane� and

	� ���m� � ����mm�Cm for each integer m � ��

Proposition �� For �� � � � with �� � �� and each positive integer

n�

n��X
k��

B�k

�	 k��

B�n����k
�	n� 	� 	 k��

�	 k � �� �	n� 	 k � �� ����k �n���k

� �	n� �� 	����n ���n
�X
k��

csch�k�

k�n

� 	��n ���n
�X
k��

csch�k� cotanh k �

k�n��

� �	n� �� 	����n ������n
�X
k��

csch�k�

k�n

� 	��n ���n
�X
k��

csch�k� cotanh k�

k�n��
�

Proof� For any positive number �� consider the zeta function

Z
�s� �
�X

n���

�X
n���

n�n�
�p

� n� �
�
��

p
� i
�
n�
��s

� Re s � � �

By Proposition �� Z
�s� has an analytic continuation and

Z
�	� 	n�

�
�n��X
k��

�	n� 	��

k� �	n� 	� k��

Bk��

k � 	

B�n�k
	n� k

�p
�
�k�

��
p
� i
��n���k

�
����p

� i
��n

��
�

�n�
��

p
� i
��
��

� B�n��

	n� 	

� �

	n �	n� ��
�
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It follows that

I � lim

	�

Z
�	� 	n�

�
n��X
k��

�	n� 	��

�	 k�� �	n� 	� 	 k��
�	 k � �� �	n� 	 k � ��

�B�k B�n����k ����k�� �n�k �
On the other hand� let

F
�t� �
� �X
n���

n�e
�p�n�t

�� �X
n���

n� e
��
�p� i�n�t

�

�
e�
p
��
�i

p
��t

�e
p
�t � ��� �e�
�i

p
��t � ���

and

F �t� � lim

	�

F
�t� �
e�
p
��i

p
��t

�e
p
�t � ��� �ei

p
�t � ���

�

Note that for Re s � ��

Z
�s� ��s� �

Z �

�

ts��F
�t� dt �

It follows from Lemma � that

Z
�	� 	n� � �	n� 	��
�

	�i

Z
jzj��

z���n F
�z� dz �

where � � � � � and the direction on the circle jzj � � is counterclock�
wise� As � �� �� we get

I � �	n� 	��
�

	�i

Z
jzj��

z���n F �z� dz �

Let CN be the contour in the complex plane consisting of the rectangle
with vertices �	N � ���

p
� �

p
� i�� �	N � ���

p
� � p

� i�� �	N �
����p� � p

� i�� �	N � ����p� �
p
� i� in counterclock direction�

Note that F �z� is bounded on the rectangle by a constant independent
of N � Thus we have

lim
N	�

Z
CN

z���n F �z� dz � � �
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This implies in particular that the sum of residues of z���nF �z� inside
CN approaches zero as N �� �� Thus the residue at zero is equal to
the negative of the sum of residues elsewhere� It follows that

I � ��	n� 	��
X
k ���

�
Residues of z���nF �z� at z � 	 k

p
� i� 	 k

p
�
	
�

Our assertion now follows �

Remark �� When � � � � � and n is odd� we get

n��X
k��

B�k B�n����k
�	 k�� �	n� 	� 	 k��

�	 k � �� �	n� �� 	 k� ����k

� �	n� �� �	����n
�X
k��

csch�k�

k�n
� �	�����n

�X
k��

csch�k� cotanh k�

k�n��
�

Remark �� If we consider instead the zeta function

Z
�s� �
�X

n���

�X
n���

�p
� �n��u��

�
�� i

p
�
�
�n�� v�

��s
� Re s � 	 �

with � � u� v � �� we �nd that for all positive integers n

	�n
n��X
k��

B�k�u�

�	 k��

B�n��k���v�
�	n� 	 k � 	��

�n�k�� ����k

� ��

	
��n

�X
k��

cos �	 k � v� �e�ku� � e�k���u���
k�n�� �e�k� � ��

�
�

	
�����n

�X
k��

cos �	 k �u� �e�kv� � e�k���v���
k�n�� �e�k� � ��

�

Setting u � v � ��	� we obtain the identity

��n
�X
k��

����k�� csch ��k�
k�n��

� �����n
�X
k��

����k�� csch �� k�
k�n��

� 	�n��
n��X
k��

����k
B�k

��
	

�
�	 k��

B�n����k
��
	

�
�	n� 	� 	 k��

�n���k �k �
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As u� v approach �� we get the identity

��n
��
	
	�	n����

�X
k��

k��n��

e�k� � �

�
������n

��
	
	�	n����

�X
k��

k��n��

e��k � �

�

� �	�n
n��X
k��

����k B�k

�	 k��

B�n����k
�	n� 	� 	 k��

�n���k �k �

with n a positive integer� The right hand side of the identity we ob�
tained is a constant multiple of

�

	�i

Z
jzj��

e��
p
�u�i

p
�v�z dz

z�n�� ��� e�
p
�z� ��� e�i

p
�z�

�

It is zero if n � ��� This yields the identity ��� Chapter ��� p� 	����

�n
�X
k��

k�n��

e��k � �
�����n

�X
k��

k�n��

e��k � �
� ��n�����n� B�n

�n
� n � � �

if we let u� v approach zero�

Remark �� For each rational function F �T � of the form

P �T �

��� Tm�� � � � ��� Tmr �
�

where degP �T � � m��� � ��mr� The possible poles of F �e�z� lie in the
imaginary axis of the complex plane� By a direct veri�cation� we can
�nd a sequence of contours CN �N � �� 	� � � � � such that the following
conditions hold�

�� CN is the rectangle with vertices xN�i yN � xN�i yN � �xn�i yN �
�xN � i yN � xN � �� yN � � with direction counterclockwise�

	� limN	� xN � limN	� yN � ���

�� CN does not pass through any pole of F �e�z�� and

�� maxz�CN
jF �e�z�j is bounded by a constant independent of N �

It follows that for any positive integer n�

lim
N	�

�

	�i

Z
CN

z��n���F �e�z� dz � � �
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This also implies that the residue of z��n���F �e�z� at � is equal to
the negative of the sum of residues of z��n���F �e�z� at z � 	k�i�mj�
k � Z� k 	� �� j � �� � � � � r� Note that the former is a constant multiple
of ZF ��n� while the latter is an in�nite series in general� This produces
an identity between Bernoulli numbers and sums of in�nite series� Here
we give two examples�

I� For positive integers m and N with N � ��

�X
n��

n�
� �mod N�

cotan
�n�
N

�
n�m��

�
����m���	���m��

N �	m� ���

N��X
j��

�N � j � ��B�m��

� j

N

�
�

II� For positive integer m and even integer N � ��

�X
n��

n�
N�� �mod N�

tan
�n�
N

�
n�m��

�
����m�	���m��

N �	m� ���

NX
j��

����j �N � j � ��B�m��

� j

N

�
�

�� Generalizations to several variables�

It is possible to extend our arguments to the cases when F �T � is a
particular type of rational functions of several variables�

Suppose that �j � ��j�� � � � � �jn�� j � �� � � � � r are n�tuples of
non�negative integers with j�jj � �j� � � � � � �jn � � and P �T � �
P �T�� � � � � Tn� is a polynomial in n variables T�� � � � � Tn with degP �T � �
j��j� � � �� j�rj� We use the notation

T � �
nY

j��

T
�j
j � if � � ���� � � � � �n� �

Consider the rational function F �T � of the form

F �T � �
P �T �

��� T��� � � � ��� T�r �

�
P �T�� � � � � Tn�

��� T���
� � � �T��n

n � � � � ��� T�r�
� � � �T�rn

n �
�
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For jT�j � �� � � � � jTnj � �� F �T � has a power series expansion

�X
j�j��

a���T � �
�X

j�j��
a���T ��

� � � �T �n
n �

For su
ciently large Re s� the zeta function associated with F �T � is
given by

ZF �s� �
�X

����

� � �
�X

�n��

a��� ����� � � ��n��s �

Another expression for ZF �s� as a sum of zeta functions associated with
linear forms was given by Eie in 	�� This leads to an identity in zeta
functions� Using the special values at negative integers� we obtain a
family of Bernoulli identities� Here we give an example to illustrate the
general procedure�

Consider the rational function

F �T � �
�

��� T� T�� ��� T� T �
� �

�

For jT�j � � and jT�j � �� we have

F �T � �
�X

n���

�X
n���

�T� T��
n��T� T

�
� �

n� �
�X

n���

�X
n���

Tn��n�
� Tn���n�

� �

It follows for Re s � ��

ZF �s� �
�X

n���

�X
n���

��n� � n�� �n� � 	n���
�s �

�X
n���

n��s� �
�X

n���

�	n���
�s

�
�X

n���

�X
n���

��n� � n�� �n� � 	n���
�s � �� � 	�s� 	�	 s� �

On the other hand� as a rational function of T�� we have the following
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decomposition of F �T � into partial fraction

F �T � �
�

��� T�� ��� T� T �
� �

�
T� T�

��� T�� ��� T� T �
� �

� T�
��� T�� ��� T� T��

�
�X

n���

�X
n���

Tn��n�
� T �n�

� �
�X

n���

�X
n���

Tn��n���
� T �n���

�

�
�X

n���

�X
n���

Tn��n���
� Tn�

� �

Consequently we get another expression for ZF �s� as

ZF �s� �
�X

n���

�X
n���

�n� � n��
�s �	n���s

�
�X

n���

�X
n���

�n� � n� � ���s �	n� � ���s

�
�X

n���

�X
n���

�n� � n� � ���s n�s�

� �	�s � ��
�X

n���

�X
n���

�n� � n��
�s n�s� � 	�s 	�	 s�

� 	�s
�X

n���

�X
n���

��
n� �

�

	

�
�
�
n� �

�

	

���s�
n� �

�

	

��s

�
�

	
�	�s � �� �	��s�� 	�	 s�� � 	�s 	�	 s�

� 	�s
�X

n���

�X
n���

��
n� �

�

	

�
�
�
n� �

�

	

���s�
n� �

�

	

��s
�

Here we use the identity

	�s�� �
�X

m��

�X
n��

�mn��s
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�
�X

m��

�X
n�m��

�mn��s �
�X
n��

�X
m�n��

�mn��s � 	�	 s�

� 	
�X

n���

�X
n���

�n� � n��
�s n�s� � 	�	 s� �

Now it remains to evaluate the zeta functions at negative integers� We
need the following proposition from Eie ���

Proposition �� Let Q � a x� � b x y � c y� with a� b� c � � and

D � b� � � a c � �� Suppose that

ZQ�s� �
�X

n���

�X
n���

�a n�� � b n� n� � c n���
�s � Re s � � �

Then ZQ�s� has an analytic continuation and its special value at each

negative integer s � �m �m � �� 	� � � � � is given by

ZQ��m� �
X

p�q�r�m

m�

p� q� r�
ap bq cr

B�p�q��

	 p� q � �

B�r�q��

	 r � q � �

�
�
� B�m��

	m� 	

��Z �b���a�

�

�a x� � b x� c�m dx

�

Z �b���c�

�

�a� b y � c y��m dy
�
�

Proposition �� Suppose that

Z�s� �
�X

n���

�X
n���

�n� � n� � 	 ���s �n� � ���s � � � �� Re s � 	 �

Then Z�s� has an analytic continuation and its special value at the

negative integer s � �m �m � �� 	� � � � � is given by

m��X
k��

m�

�m� �� k�� k� �	m� 	� k�
Bk���B�m���k���

�
� ����m �m���

	 �	m� 	��
�

�

	 �m� ���

�
B�m����� �
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Proof� For Re s � 	� we have

Z�s� ���s���

�
�X

n���

�X
n���

Z �

�

Z �

�

�t� t��
s�� e��n��n�����t� e��n����t� dt� dt�

�

Z �

�

Z �

�

�t� t��
s��

�X
n���

�X
n���

e��n��n�����t� e��n����t� dt� dt�

�

Z �

�

Z �

�

�t� t��
s�� e�����t��t� e�����t�

�et��t� � �� �et� � ��
dt� dt�

�

Z �

�

t�s�� e�����t

et � �
dt

Z �

�

�u ��� u��s�� e�����tu

etu � �
du �

Rewrite the above formula as

Z�s� ��s� �

Z �

�

t�s��
t e�����t

et � �
dt

�

��s�

Z �

�

�u ��� u��s��
e�����tu

etu � �
du �

It follows from a standard process as given in the proof of the main
theorem in �� that

Z��m� �
����mm�

	

�m��X
���

B�m������� ��B���� ��

�	m� 	� ��� ��
F���m� �

where

F��s� �
�

��s�

Z �

�

�u ��� u��s�� u��� du �
��s� � � ��

��	 s� � � ��
�

An elementary calculation shows that

F���m� �


���
��

m� � if � � 	m� 	 �

	 ����m �	m� �� ���

�m� �� ���
� if � � � � m� � �

� � if m� 	 � � � 	m� � �

Hence our assertion follows�
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Using the identity

�X
n���

�X
n���

��n� � n�� �n� � 	n���
�s � �� � 	�s� 	�	 s�

�
�

	
�	�s � �� �	��s�� 	�	 s�� � 	�s 	�	 s�

� 	�s
�X

n���

�X
n���

��
n� �

�

	

�
�
�
n� �

�

	

���s�
n� �

�

	

��s

and propositions � and ��� we get the following Bernoulli identity

X
p�q�r�m

m� �q 	r

p� q� r�

B�p�q��

	 p� q � �

B�r�q��

	 r � q � �

�
��B�m��

	m� 	

�� Z ����

�

�x� � �x� 	�m dx

�

Z ���	

�

�� � � y � 	 y��m dy
�

�
�

	
�	m � ��

�Bm��

m� �

��

� 	m��
� ����m �m���

�	m� 	��
�

�

�m� ���

�
B�m��

��
	

�

� 	m
��m�����X

k��

m�

�m� �� 	 k�� �	 k�� �	m� 	� 	 k�

�B�k

��
	

�
B�m����k

��
	

�
�

Remark �� As shown above� the consideration of cases of several
variables leads to zeta functions with products of linear forms� Though
we have no general formula to evaluate their special values at negative
integers� it is possible to calculate these values case by case�

Remark �� It is possible to further extend our arguments in this
section to the cases that

F �T � �
P �T �

��� T��� � � � ��� T�r �
�
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with P �T � not necessarily a polynomial and ��� � � � � �r are not necessar�
ily n�tuples of non�negative integers� Indeed� we only need the following
considerations�

I� P �T � is a �nite complex linear conbination of T ��
� � � �T �n

n with
Re �j � ��

II� For all � � j � r� �j � ��j�� � � � � �jn� with �ji � � or Re
�ji � �� but �j 	� ��

Under the second condition� for � � Tj � �� we have the expansion

P �T � �
�X

m���

� � �
�X

mr��

P �T �Tm��������mr�r

�
�X

m���

� � �
�X

mr��

P �T �
nY
j��

T
m��j������mr�jr
j �

Hence it is easy to write down ZF �s� as a sum of zeta functions associ�
ated with products of n linear forms� By employing the same arguments
as in Proposition � we obtain more identities� As an example we con�
sider the function

F �T � �
T �u

p
��v�
�i

p
���

��� T
p
�� ��� T 
�i

p
��

�

where � � �� � � u� v � � and �� � � � with �� � ��� Calculating
the residues and separating the real and imaginary parts we obtain the
following known �cf� �� volume II� p� 	���� identity

	�m
m��X
k��

B�n��k���u�B�k�v�

�	n� 	 k � 	�� �	 k��
�m���k ����k

� ��

	
��m

�X
k��

cos �	 k � v� �e�ku� � e�k���u���
k�m�� �e�k� � ��

�
�

	
����m

�X
k��

cos �	 k � u� �e�kv� � e�k���v���
k�m�� �e�k� � ��

�
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Part II

Minking Eie

Throughout the rest of the paper� we use the following notations�
p is an odd prime number� m�n are integers such that p � � is not a
divisor of m� N is a positive integer or zero�

	� An identity for zeta functions�

We apply the method of Part I to establish an identity for zeta
functions�

Proposition ��� For any prime number p and complex number s with

Re s � �� one has

��� p�s� 	�s� � p��N���s
X

�j�p���

��j�pN��

	
�
s�

j

pN��

�
�

Proof� Consider the zeta function ZF �s� associated with the rational
function

F �T � �
�

�� T
� �

�� T p
�

It is easy to see that for Re s � �

ZF �s� �
�X
k��

k�s �
�X
k��

�k p��s � ��� p�s� 	�s� �
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On the other hand� we have for any nonegative integer N �

F �T � �
T � T p

��� T � ��� T p�

�
T � T � � � � �� T p��

�� T p

�
�T � T � � � � �� T p��� �� � T p � T �p � � � �� T p�pN�����

�� T pN�� �

�
X

�j�p���

��j�pN��

�X
k��

T j�kpN��

�

It follows that for Re s � ��

ZF �s� � p��N���s
X

�j�p���

��j�pN��

	
�
s�

j

pN��

�
�

Note that ZF �s� is determined by F �T � uniquely through the integral
formula

ZF �s� ��s� �

Z �

�

ts��F �e�t� dt � Re s � � �

where ��s� is the classical gamma function� Thus our identity follows�

As a consequence� we have the following�

Proposition ��� Suppose m is a positive even integer and p is an odd

prime with p� � not a divisor of m� Then

��� pm���
Bm

m
� C��m� � C��m� �mod pN��� �

where

Cl�m� �
�

m

X
�j�p���

��j�pN��

jm�l
�
m

l

�
Bl p

�N����l��� � � � l � m�
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Proof� We begin with the identity in Proposition ��� Both the Rie�
mann zeta function 	�s� and Hurwitz zeta functions

	
�
s�

j

pN��

�
� j � �� � � � � pN�� �

have analytic continuations in the whole complex plane� So that the
identity I� is true for all s� In particular� we can set s � ��m in the
identity to yield

��� pm���
Bm

m
�

�

m

X
�j�p���

��j�pN��

p�N����m���Bm

� j

pN��

�

�
�

m

X
�j�p���

��j�pN��

mX
l��

�
m

l

�
Bl j

m�l p�N����l���

�
mX
l��

Cl�m� �

Note that the exponent of p occurs in l� is not greater than

l

p
�

l

p�
� � � �� l

pl
� � � � � l

p� �
� l

	
�

Also pBl is p�integral for all l and

Cl�m� � �m� �� � � � �m� l� ��
X

�j�p���

��j�pN��

jm�l
�

l�
�pBl� p

�N����l����� �

Thus Cl�m� � � �mod pN��� provides that

� l

	
� �N � �� �l� ��� � � N � � �

This is equivalent to

�N � �� �l� 	� � l

	
� � �
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But N is a nonnegative integer� the inequality holds provides that

l � 	 � l

	
� � �

This is equivalent to l � �� Thus it follows

��� pm���
Bm

m
�

�X
l��

Cl�m� �mod pN���

� C��m� � C��m� � C��m� � C	�m� �mod pN��� �

Next we prove
C��m� � � �mod pN���

and
C	�m� � � �mod pN��� �

Note that

C��m� �
m� �

	
B�

X
�j�p���

jm�� pN�� �
m� �

�	
pN��

X
�j�p���

jm�� �

If p 	� �� then
m� �

�	
pN�� �

is p�integral and divisible by pN��� However the case p � � is impossible
under the assumption that p� � is not a divisor of m� This proves that

C��m� � � �mod pN��� �

Now consider the case l � ��

C	�m� �
�m� �� �m� 	� �m� ��

	�
B	

X
�j�p���

jm�	 p�N��

� � �m� �� �m� 	� �m� ��

�	�
p�N��

X
�j�p���

jm�	

� � �m� �� �m� 	� �m� ��

		 �� �
p�N��

X
�j�p���

jm�	 �
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Obviously C	�m� is p�integral and divisible by pN�� for any odd prime
p� Hence we can drop the last two terms in our congruence relation and
it completes our proof�


� Congruence relations of C��m��

Recall that for � � l � m�

Cl�m� �
�

m

X
�j�p���

��j�pN��

jm�l
�
m

l

�
Bl p

�N����l��� �

As shown in Proposition �	� Kummer�s congruences are equivalent to

C��m� � C��m� � C��n� � C��n� �mod pN��� �

However

C��m� � ��

	

X
�j�p���

��j�pN��

jm�� �

So it is easy to see that if m � n �mod �p� ��pN �� then

C��m� � C��n� �mod pN��� �

since

jm�� � jn�� �mod pN��� �

for all integer j relative prime to p� Consequently� Kummer�s congru�
ences are equivalent to

p��N���

m

X
�j�p���

��j�pN��

jm � p��N���

n

X
�j�p���

��j�pN��

jn �mod pN��� �

To simplify the notation we write

X
�j�p���
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for X
�j�p���

��j�pN��

�

Our proof that
C��m� � C��n� �mod pN��� �

employs the classical theorems of Fermat ��� Theorems ��� �����

Proposition ��� Suppose that m� n are positive even integers and p
is an odd prome with p� � not a divisor of m� Then

C��m� � C��n� �mod pN��� �

if m � n �mod �p� �� pN ��

Proof� By the fundamental theorem of �nite abelian group ������ we
can decompose the multiplicative group G � �Z�pN��Z�� into a direct
product

G�

�Y
i��

Gi �

where G� is a cyclic group of order p � � and Gi �i � �� � � � � 
� is a
cyclic group of order pei with

e� � � � �� e� � N �

Such a decomposition is possible since Z�pN��Z contains Z�pZ as a
sub�eld and the multiplicative group �Z�pZ�� is a cyclic group of order
p� � �����

Suppose that g� g�� � � � � g� are generators of G�� G�� � � � � G�� respec�
tively� It follows

C��m� �
p��N���

m

X
�j�p���

jm

�
p��N���

m
���gm�� � ��gm�p����

�Y
i��

���gmi �� � ��gm�pei���
i � �

Note that gm 	� � since p� � is not a divisor of m� So

� � gm � � � �� gm�p��� �
g�p���m � �

gm � �
�
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For each � � i � 
� if gmi � �� then we automatically have

� � gmi � � � �� g
m�pei���
i � pei �

If gmi 	� �� we have

� � gmi � � � �� g
m�pei���
i �

gmpei

i � �

gmi � �
�

But
gmpei

i � � �mod pei� �

Consequently the sum

� � gmi � � � �� g
m�pei���
i �

always has the divisor pei �
With a possible permutation in the indices� we suppose that gmi � �

for � � i � q and gmi 	� � for q � i � 
� Then we rewrite C��m� as

C��m� �
p��N���

m

gm�p��� � �

gm � �

q��Y
i��

pei
�Y
i�q

gmpei

i � �

gmi � �
�

Suppose that gp�� � � � k p� then it is a direct veri�cation that
�gm�p��� � ����mp� is p integral and

�

mp
�gm�p��� � �� � k �mod p� �

It follows

�

mp
�gm�p��� � �� � �

n p
�gn�p��� � �� �mod p� �

Also gm�� and gmi �� �i � q� � � � � 
� are invertible elements of Z�pN��Z

and

gm � � � gn � � �mod pN��� �

gmi � � � gni � � �mod pN��� �
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So that

�gm � ���� � �gn � ���� �mod pN��� �

�gmi � ���� � �gni � ���� �mod pN��� �

Multiply all these congruences together� we get

C��m� � C��n� �mod pN��� �

�� von Staudt�s Theorem�

Our proof of Proposition �� is analogous to the proof of von
Staudt�s Theorem in 	� p� ����� Indeed we are able to give another
proof of von Staudt�s Theorem by the identity �II� with N � �� In other
words� we are able to kill two birds with one stone�
Proposition �� �von Staudt�s Theorem�� Suppose that m is a positive

even integer and p is an odd prime� Then

a� Bm is p�integral if p� � is not a divisor of m�

b� if p� � is a divisor of m� then pBm is p�integral and

pBm � �� �mod p� �

Proof� We begin with the identity �II� with N � ��

��� pm���
Bm

m
�

�

m

p��X
j��

mX
l��

�
m

l

�
Bl j

m�l pl�� �

Multiply both sides by m� we get

��� pm���Bm �

p��X
j��

mX
l��

�
m

l

�
Bl j

m�l pl��

�

p��X
j��

m��X
l��

�
m

l

�
Bl j

m�l pl�� � pm�� �p� ��Bm �
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It follows

��� pm�Bm �

p��X
j��

m��X
l��

�
m

l

�
Bl j

m�l pl�� �

Now we shall prove our assertion by induction on m�
Suppose that pBl is p�integral for all � � l � m� �� Then

�
m

l

�
Bl p

l�� �
�
m

l

�
�pBl� p

l��

is p�integral provide that l � 	� Hence we have

���pm�Bm� �

p

p��X
j��

jm�m

	

p��X
j��

jm���
m �m� ��

�	
p

p��X
j��

jm�� �mod p� �

Note that p 	� 	 or �� so that the third term on the right hand side is also
p�integral and divisible by p� So we can drop it in our consideration�

If �p � �� is a divisor of m� then jm � � for all � � j � p � �� It
follows

��� pm�Bm � p� �

p
� m

	

p��X
j��

jm�� �mod p� �

Thus pBm is p�integral and

pBm � �� �mod p� �

On the other hand� if p� � is not a divisor of m� we choose an element
g of order p� � in �Z�pZ��� Then

��� pm�Bm � �

p

p��X
j��

gmj � m

	

p��X
j��

g�m���j �mod p�

�
�

p

g�p���m � �

gm � �
� m

	

p��X
j��

g�m���j �mod p� �

Suppose that gp�� � � � �p� Then

g�p���m � � �m�p �mod p�� �

Thus
�

p

g�p���m � �

gm � �
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is p�integral� This proves that Bm is p�integral�

�� A slight generalization of Kummer�s congruences�

Here we reformulate Kummer�s congruences in a general form�

Theorem ��� Suppose that m�n are positive even integers and k is

a positive integer such that p � � is not a divisor of m for all prime

divisor p of k� Then

Bm

m

Y
pjk

��� pm��� � Bn

n

Y
pjk

��� pn��� �mod k� �

if m � n �mod ��k��� here � is the Euler ��function�
Proof� Suppose that

k �

�Y
i��

pNi��
i �

with p�� � � � � p� are distinct prime numbers and N�� � � � � N� are non�
negative integers�

Consider the zeta function

	k�s� �
X

�n�k���
n��

n�s � Re s � � �

	k�s� has the Euler productY
pjk

��� p�s� 	�s� �

As usual� 	k�s� has its analytic continuation and its special value at
s � ��m is given by

	k���m� � �Bm

m

Y
pjk

��� pm��� �

On the other hand� 	k�s� is the zeta function associated with the ratio�
nal function

F �T � �
�

�� T
�

�X
i��

�

�� T pi
�
X
��i
l��

�

�� T pipl
� � � �� ����� �

�� T p����p�
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by the well known inclusion�exclusion principle� Also for jT j � �� F �T �
has the power series expansion

F �T � �
X

�j�k���
��j�k

�X
l��

T j�lk �

Thus it follows

	k�s� � k�s
X

�j�p���
��j�k

	
�
s�
j

k

�

and hence

	k���m���km��

m

X
�j�k���
��j�k

Bm

�
j

k

�
�� �

m

X
�j�k���
��j�k

mX
l��

�
m

l

�
jm�lBl k

l�� �

Set

Cl�m� �
�

m

X
�j�k���
��j�k

�
m

l

�
jm�lBl k

l�� �

Note that for each � � i � 


Cl�m� � �

mpNi��
i

X
�j�k���

��j�pNi��

�
m

l

�
jm�lBlk

l�� �mod pNi��
i � �

By our proof Proposition 	� we have for l � 	�

Cl�m� � � �mod pNi��
i � � i � �� � � � � 
 �

By Chinese remainder�s theorem� we get for l � 	�

Cl�m� � � �mod k� �

This implies

Bm

m

Y
pjk

��� pm��� � �

mk

X
�j�k���
��j�k

jm � �

	

X
�j�k���
��j�k

jm�� �mod k� �
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Consequently our assertion is equivalent to prove

�

mk

X
�j�k���
��j�k

jm � �

n k

X
�j�k���
��j�k

jn �mod k� �

But it follows from the fact that

�

mk

X
�j�k���
��j�k

jm � p
��Ni���
i

m

X
�j�k���

��j�pNi��

jm �mod pNi���

and our previous identity

p
��Ni���
i

m

X
�j�k���

��j�pNi��

jm � p
��Ni���
i

n

X
�j�k���

��j�pNi��

jn �mod pNi��� �

for all � � i � 
�

�� p�adic interpolation�

Let p be a prime number� Zp and Qp are the ring of p�adic integers
and the �eld of p�adic numbers� respectively� �p is the algebra com�
pletion of Qp � For a �xed positive integer k� we let Xk be the inverse
projective limit of Z�k pN Z� i�e�

Xk � lim
��

Z�k pN Z �

where the map from Z�k pM Z to Z�k pN Z for M � N is the reduction
modulo k pN � Denote by a� k pN Zp the set of x in Xk which map to
a in Z�k pN Z under the natural projection map from Xk to Z�k pN Z�

Fix a r�th root of unity � with r relative prime to k� Also suppose
that � is not a pN �th root of unity for any N � De�ne



�a� k pN Zp� �
�a

�� �kpN

and

�a� k pN Zp� �

X

r��

���



�a� k pN Zp� �
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The above p�adic measure was given in �� and it is also known as
Mazure measure�

Note that
Xk �

�
��a�k

�a� kZp�

is a disjoint union of k topological spaces isomorphic to Zp� Also we
have

a� k pN Zp �
�

��b�p
��a� b k pN � � k pN�� Zp� �

The above is a disjoint union of p compact open sets� It is easy to verify
directly that


�a� k pN Z� �

p��X
b��


��a� b k pN � � k pN�� Zp� �

For any continuous function f � Xk �� �p� we de�ne

Z
Xk

f�x� d
�x� � lim
N�	�

X
��a�k pN

f�a�
�a� k pN Zp� �

Consider the integration of the exponential function etx and follow the
general procedure of ��� we obtain the following�

Proposition �	� For any positive integers m and k� we have

Z
Xk

xm�� d
�x� � ��� rm�
Bm

m
�

Proposition �
� Let X�
k be elements of Xk which map onto �Z�kZ���

the invertible elements of Z�kZ� Then for any positive integer m�

Z
X�

k

xm�� d
�x� � ��� rm�
Bm

m

Y
pjk

��� pm��� �

Proof� By the inclusion�exclusion principle� we decompose the inte�
gration into the following�

Z
X�

k

�

Z
Xk

�
X
pijk

Z
piXk

�
X
pipj jk

Z
pipjXk

� � � �� �����
Z
p����p�Xk

�



��� M� Eie and K� F� Lai

Here p�� � � � � p� are distinct prime divisors of k� To prove the proposi�
tion� it su
ces to prove thatZ

�Xk

xm�� d
�x� � ��� rm��m��
Bm

m
�

for any integer � which is a prime divisor or a product of distinct prime
divisors of k�

Again we consider the integration of etx�Z
�Xk

etx d

�x� � lim
N	�

��� �kp
N

���
X

��b�kpN��

�� et��b

� lim
N	�

��� �kp
N

��� ��� �� et�kp
N

� ��� �� e�t���

� ��� �� e�t��� �

Since r is relative prime to �� the mapping � to �� causes a permutation
among r�th roots of unity� Hence

Z
�Xk

etx d
�x� �
r � �� � e�t � � � �� e�r����t�

�� er�t

�
r

�� er�t
� �

�� e�t

�
�X

m��

��� rm�Bm�� t�m��

m�
�

By comparing the coe
cients of t� we get our assertion�

Now we are ready to given another proof of the theorem in Section
��

Proof of Theorem ��� For any element x in �Z�kZ��� we have the
congruence relation

xm�� � xn�� �mod k� �

since m � n is a multiple of ��k�� Hence for any prime divisor p of k�
with the p�adic measure 
�x� de�ned on Xk� we have

Z
X�

k

xm�� d
�x� �
Z
X�

k

xn�� d
�x� �mod p�� �
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where � � �p�k� is the highest power of p dividing k� On the other
hand� we have rm � � � �Z�kZ�� since rm � � � �Z�p�Z�� for any
prime divisor p of k� Also we have

rm � � � rn � � �mod k� �

since �r� n� � � and m � n �mod ��k��� Hence

��� rm���
Z
X�

k

xm�� d
�x� � ��� rn���
Z
X�

k

xn�� d
�x� �mod p�� �

This is equivalent to

Bm

m

Y
pjk

��� pm��� � Bn

n

Y
pjk

��� pn��� �mod p�� �

Thus it follows

Bm

m

Y
pjk

��� pm��� � Bn

n

Y
pjk

��� pn��� �mod k� �

��� Congruences among Bernoulli polynomials�

We are able to apply our previous arguments in Section � to derive
congruences among Bernoulli polynomials or in general� the special val�
ues at negative integers of zeta functions associated with rational func�
tions as considered before� Here we give a simple example to illustrate
the general procedure�

Proposition ��� For a �xed prime odd number p �p � �� and any

positive integer k relative prime to p� Suppose that �� � are positive

integers such that � � �� � � k and � � j� n � � p for some positive

integer j� with � � j� � p � �� Then for all complex number s with

Re s � ��

	
�
s�
�

k

�
� p�s	

�
s�
�

k

�
� �pN����s

X
��j�kpN��

�j�p���
j
� �mod k�

	
�
s�

j

k pN��

�
�
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Proof� Consider the zeta function ZF �s� associated with the rational
function

F �T � �
T�

�� T k
�

Obviously� we have

ZF �s� � k�s	
�
s�
�

k

�
�

Also from the identity

F �T � �
T��� � T k � � � �� T �p���k�

�� T kp
�

we conclude that

ZF �s� � �k p��s
p��X
j��

	
�
s�
�� j k

k p

�

� �k p��s	
�
s�
�

k

�
� �k p��s

p��X
j��
j ��j�

	
�
s�
�� j k

k p

�
�

On the other hand� we also have

F �T � �
T� �� � T k � � � �� T �p���k� �� � T kp � � � �� T kp�pN����

�� T kpN��
�

Thus it follows also that

k�s 	
�
s�
�

k

�
� �k p��s 	

�
s�
�

k

�
� �k p��s

p��X
j��
j ��j�

	
�
s�
�� j k

k p

�

� �k pN����s
X

��j�kpN��

�j�p���
j
� �mod k�

	
�
s�

j

k pN��

�
�

Multiply the factor k�s on both sides� we get our assertion�



On Bernoulli identities and applications ���

To simplify notation we write

X
j
� �mod k�

for X
��j�kpN��

�j�p���
j
� �mod k�

�

Proposition ��� Under the assumptions of the previous proposition

and suppose that m�n are positive integers such that p � � is not a

divisor of m� Then

�

m

�
Bm

��
k

�
� pm��Bm

��
k

��

� �

n

�
Bn

��
k

�
� pn��Bm

��
k

��
�mod pN��� �

if m � n �mod �p� �� pN ��

Proof� Set s � ��m in the identity of Proposition �� we get

�

m

�
Bm

��
k

�
� pm��Bm

��
k

��

�
�

m

X
j
� �mod k�

mX
l��

�
m

l

�
Bl j

m�l p�N����l��� kl�m �

With exact the same argument as in Proposition 	� we get

�

m

�
Bm

��
k

�
� pm��Bm

��
k

��

� �

mkm pN��

X
j
� �mod k�

jm � �

	

X
j
� �mod k�

jm�� k��m �mod pN��� �

Thus our congruences are equivalent to

�

mkm pN��

X
j
� �mod k�

jm � �

n kn pN��

X
j
� �mod k�

jn �mod pN��� �
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Note that k is relative prime to p� so the mapping x 
�� k x � � is an
one to one mapping from Z�pN��Z into Z�pN��Z� Thus we have

X
j
� �mod k�

jm �
X

��j�pN��

�j�p���

jm �mod pN��� �

Hence our congruences follow by the same argument as in Proposition
���

Remark� It is possible to construct another p�adic measure on the
space Zp so that the integration of the monomial xm�� over Z�p yields a
sum of Bernoulli polynomials� Hence� we have the p�adic interpolation
of Kummer�s congruences on Bernoulli polynomials� We�ll discuss this
in another paper�
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Di�erential equations

driven by rough signals

Terry J� Lyons

�� Preliminaries�

���� Introduction�

������ Inhomogeneous di�erential equations�

Time inhomogeneous �or non�autonomous� systems of di�erential
equations are often treated rather formally as extensions of the homo�
geneous �or autonomous� case by adding an extra parameter to the
system� however this can be a travesty� Consider an equation of the
kind

����� dyt 	
X
i

f i�yt� dx
i
t �

where the f i are vector 
elds� xt represents some �multi�dimensional�
forcing or controlling term and the trajectory yt represents some 
l�
tered e�ect thereof� In this case the e�ect of such a reduction produces
an equation whose expression involves a derivative of the term xt� In
problems from control� or where noise is involved� or even in algebra
�developing a path from a Lie algebra into a group� this path will rarely
be smooth� so the resulting autonomous system will have a de
ning vec�
tor 
eld which will frequently not be continuous� perhaps it will only
exist as a distribution� In this case the classical theory does not suggest

���
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the correct approach to identifying solutions� and even in highly oscilla�
tory but smooth situations suggests ine�cient algorithms for numerical
approximation to classical solutions�

������ Objectives�

This paper aims to provide a systematic approach to the treatment
of di�erential equations of the type described by ����� where the driving
signal xt is a rough path� Such equations are very common and occur
particularly frequently in probability where the driving signal might be
a vector valued Brownian motion� semi�martingale or similar process�

However� our approach is deterministic� is totally independent of
probability and permits much rougher paths than the Brownian paths
usually discussed� The results here are strong enough to treat the main
probabilistic examples and signi
cantly widen the class of stochastic
processes which can be used to drive stochastic di�erential equations�
�For a simple example see ���� ����

We hope our results will have an in�uence on in
nite dimensional
analysis on path spaces� loop groups� etc� as well as in more applied
situations� Variable step size algorithms for the numerical integration
of stochastic di�erential equations �� have been constructed as a con�
sequence of these results�

������ The It�o map�

Suppose every vector 
eld f i in ����� is Lipschitz with respect to
some complete metric on a manifold M and that the driving signal xt
is continuous and piece�wise smooth� then classical solutions to �����
exist for all time and are unique� by 
xing y�� we may regard ����� as
de
ning a functional �which we will refer to as the It�o map� taking each
smooth path xt �in a certain vector space V � to a unique path based
at y� in a manifold M � By varying the starting point y� and taking the
induced �ow� one may also regard ����� as de
ning a map taking the
path xt to a path in the group of homeomorphisms of M �

We would like to extend this It�o map to a far richer class of paths�
Our intention is to identify a family of metric topologies on smooth
paths for which the It�o map is uniformly continuous �and even di�er�
entiable although we cannot show this here ���� ���� ����� A point in
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the completion of the smooth paths in one of these metrics corresponds
to a path in V with proscribed low order integrals and having 
nite
p�variation for some p ��� As a 
rst application we have the theorem
that the solution to a Stratonovich stochastic di�erential equation of
the classical type is a continuous function of the driving Wiener process
and L�evy area taken as a pair�

������ The fundamental problem	 Lack of continuity�

Before we proceed to develop the technology required to prove the
main results it is useful to consider a simple example which highlights
the obstruction we must overcome�

There is in general no natural extension of the It�o map to all con�
tinuous paths xt� The following very simple example shows that the
It�o map is rarely a continuous function in the uniform topology�

Example ������ Some of the simplest di�erential equations are those

whose solutions can be expressed as exact integrals of the driving term

xt� The simplest nontrivial example is the second iterated integral

�����

X���� t� 	

Z
t�u���

�Z
u��u���

dxu�

�
dxu�

	

ZZ
t�u��u���

dxu� dxu� �

In the one dimensional case� where xt is real valued� we see that X
���� t�

	 �xt � x��
��� and so the functional x� �� X���� � � clearly is contin�

uous in the uniform topology�

The multi�dimensional case is quite di�erent� Let xt 	 �x�t � � � � � x
d
t �

be vector valued and interpret the second iterated integral as the d� d�
matrix de�ned by

�X���� t��ij 	

ZZ
t�u��u���

dxiu� dx
j
u�

�

or better� as a ��tensor

�����

ZZ
t�u��u���

dxu� � dxu� �
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Now decompose this integral into it�s symmetric and anti�symmetric

components Sij � Aij� We see that the symmetric part has a form dif�

fering little from the one dimensional situation

����� Sij 	
�

�
�xit � xi�� �x

j
t � xj�� �

in particular� it is continuous in the uniform topology� The anti�symme�

tric part� which only arises in dimension two and higher� has the form

����� Aij 	
�

�

ZZ
t�u��u���

dxiu� dx
j
u�
� dxju� dx

i
u�

and has a well known geometric interpretation� For any two distinct

coordinates i� j� the projection �xit� x
j
t� of the path into R� is a directed

planar curve� The integral Aij is the area between that curve �xi� � x
j
� �

and the chord from �xit� x
j
t� to �xi�� x

j
�� where multiplicity and orientation

are taken into account in the calculation�

Using this obvious geometric remark� it is trivial to see that A��� t�
is not a continuous function of x� in the uniform topology� Take

xnt 	
�cos �n� t�

n
�
sin �n� t�

n

�
�

then as n converges to in�nity� the area integral converges locally uni�

formly to � t whereas the paths xnt converge uniformly to the zero path�

However� closer examination of the example shows that xnt is con�
verging to zero in p�variation norm for p � �� and a more complicated
example could be given showing that A is discontinuous even for the
��variation norm� This and other considerations suggest that we should
restrict attention to the case where p � �� It is shown in ���� ��� that
the It�o map extends uniquely as a continuous function to all paths of

nite p�variation norm with p � � providing the vector 
elds f i are
smooth enough� In this case one can indeed develop a theory very
similar to the classical one�

Nevertheless� there are important formal examples of equations of
our basic type ����� in which the driving signal fails to have 
nite ��
variation and these have motivated several attempts to treat equations
driven by rougher signals� Easily the most important and successful up
to now has been the approach originating with It�o� which treats equa�
tions driven by Brownian motion or more generally by semi�martingales
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�Brownian paths have 
nite p�variation norm for every p � � but do
not have 
nite ��variation norm� ���� Although It�o�s approach only
constructs solutions as random variables it has lead to an enormous
range of applications and must be regarded as a major achievement of
��th century mathematics�

Although It�o�s approach is not path�wise� it makes it clear that
any deterministic approach to interpreting ����� that only treats paths
of 
nite p�variation norm with p � � is missing its target and failing to
explain the richest class of examples we have�

We have just seen that iterated integrals provide the obstruction
to the continuous extension of the It�o map� The remainder of the paper
is dedicated to showing that they are also lead to the solution of the
problem� We will show that the solution is a continuous function of

the path and its low order iterated integrals in an appropriate variation

norm� The rougher the path the more iterated integrals required and
the more smoothness required of the vector 
elds�

����
� Summary of existing approaches�

The main approaches to the solution of di�erential equations seem
to have two key features�

� A notion of integral �Riemann� It�o� Stratonovich or Skorohod�

� An understanding of change of variable �Fundamental Theorem
of Calculus� It�o�s formulae� etc��

These together allow one to use integral equations to de
ne what
one means by a solution� At this point existence can sometimes be
shown via 
xed point arguments� but in any case one usually wishes to
add a method for constructing solutions �power series� Picard iteration�
which will work under slightly stronger regularity conditions on the
vector 
elds f i and which usually gives the bonus of uniqueness of
solution under these improved regularity assumptions�

Finally one needs to complete the discussion with the observation
that characterisations of di�erential equations via integrals depend on a
choice of coordinates for the underlying space where yt takes its values�
So although the equation ����� gives the impression of being coordinate
independent� the de
nition of a solution may not be� The issue is a real
one� in probability theory the Stratonovich equation has co�ordinate
invariant solutions� while It�o equations do not�
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In this paper we will concentrate on developing the co�ordinate
invariant theory� the full theory is more mathematically challenging�
and although we hope to return to it later we do not have a complete
description at the current time�

������ History�

A number of authors have tried to develop deterministic theories
of integration appropriate for rough paths� attempting to make sense
of
R
Y dX� L� C� Young ��� showed that such integrals make sense

providing both paths are continuous� X has 
nite p�variation and Y
has 
nite q�variation and ��p � ��q � �� For some reason he did not
clinch the nonlinear question and show the existence of solutions of
di�erential equations driven by paths with p�variation less than � and
this was closed o� in ���� ���� F�ollmer ��� �� has written a number
of interesting papers giving deterministic meaning to It�o�s change of
variable formula� F�ollmer also made a verbal conjecture at an Ober�
wolfach meeting several years ago that knowing the L�evy area would
be su�cient to construct solutions to SDE�s� In some sense we prove
his conjecture below�

The case where xt is one dimensional or ��dimensional and of the
form ��xt� t� is special� In this case the stochastic functional is continuous
in the uniform topology � this was established by ���� ���� ���� ����

������ Advantages to a probabilist�

A probabilist� interested in stochastic di�erential equations� might
be tempted to believe that this article has little interest for him �except
as a theoretical curiosity� because he can do everything that he wanted
to do using It�o calculus� So we brie�y mention a few situations where
we believe that the results we develop here have consequences�

The 
rst is conceptual� until now the probabilist�s notion of a solu�
tion to an SDE has been as a function de
ned on path space and lying
in some measure class or in
nite dimensional Sobolev space� As such�
the solution is only de
ned o� an unspeci
ed set of paths of capacity
or measure zero� It is never de
ned at a given path� Given the results
below� the solutions to all di�erential equations can be computed simul�
taneously for a path with an area satisfying certain H�older conditions�
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The set of Brownian paths with their L�evy area satisfying this condition
has full measure� Therefore and with probability one� one may simulta�
neously solve all di�erential equations� over a given driving noise �the
content of this remark is in the fact that there are uncountably many
di�erent di�erential equations��

Related consequences include�

�� Stochastic �ows can be constructed simply� Changing the start�
ing point in the di�erential equation is a special case of changing the
di�erential equation� With a little more work one gets continuity� and
with increasing smoothness of the vector 
elds� increasing smoothness
of the �ow�

�� It can be interesting to solve di�erential equations subject to
boundary conditions other than initial conditions and the construction
of a �ow often allows one to 
nd an initial value so that the result�
ing solution satis
es the boundary condition� However� in the classical
framework� it is tricky to be precise about the sense in which this  solu�
tion! really is a solution� It does not satisfy the predictability condition
necessary for the de
nition of an It�o integral to make sense� the stan�
dard approach involving changing the measure is quite deep� We have
no such problems of interpretation because we use no probability� �al�
though there will always be a problem of existence of solutions to non�
linear boundary problems � and this can be easy or di�cult depending
on the precise problem��

�� Stroock and Varadhan established a support theorem for solu�
tions to stochastic di�erential equations� In one strong and non�trivial
form it says that if we 
x a smooth path in V and look at the solution to
the SDE ����� when the driving noise is Brownian motion conditioned
to be uniformly close to the smooth path� then the random solution
converges in distribution to the deterministic one obtained by driving
the equation with the 
xed path� It is clear that all such theorems
will follow if one establishes the continuity of ����� and that Brownian
motion conditioned to be uniformly close to the smooth path converges
in probability in the metric topology involving the area� Therefore our
results below reduce the problem to one about Brownian motion alone�

�� Not all interesting stochastic dynamical systems are semi�mar�
tingales� It seems completely natural that there are nonlinear systems
forced by random processes that may be Markov or Gaussian but are

�
The vector �elds should be Lipschitz of order greater than two�
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certainly not inside the normal framework� One thinks immediately
of di�usion processes associated with elliptic operators in divergence
form where the coe�cients are not di�erentiable� or of di�usions on
fractals� Both of these frequently have area processes and satisfy our
hypotheses although they are not semi�martingales� Since this article
was written work of Bass� Hambly and Lyons has established that the
class of reversible processes to which this theory applies is really much
wider than the class for which semi�martingale methods can be used�
The iterated Brownian motion �IBM� studied by Burdzy and Adler is
another example ���

�� Numerical algorithms for solving di�erential equations which
adapt their step sizes can be vastly more e�cient than 
xed step algo�
rithms in certain settings� However� the decisions about step size are
most e�ciently made on the basis of previous rough approximations to
the solution� and identi
cation of the sensitive areas where accurate so�
lution is required �e�g� before the trajectory approaches a critical point
to ensure it passes on the correct side�� The choice of step is typically
based on knowledge of the future evolution of the solution and is there�
fore not predictable and constitute illicit information� For example if
non�predictable infomation is used to determine the step size in classical
approaches to solving SDEs numerically then in general these schemes
will converge nicely to the wrong answer� Using the ideas set out below�
and ensuring approximations to the path and area of the driving noise
are correct over every interval it is possible to have a genuine variable
step algorithm that converges to the correct answer for any choice of
the intervals of approximation as the mesh size of the dissection goes
to zero ���

�� Stochastic 
ltering is concerned with the estimation of the con�
ditional law of a Markov process� given observations of some function
of it� The normal formulation �due to Zakai� looks at the case where
the process is of di�usion type and splits into a 
rst part �known as
the signal� and a second part� known as the observation process with
values in a vector space� and whose martingale part has stationary in�
crements independent of the signal� In this case� Zakai showed that it
was possible to completely describe the conditional density of the signal
given knowledge of the observation process� In fact� the density evolves
according to an in
nite dimensional SDE of parabolic type� It is a
commutative equation� and so the relationship between the observation
process and the conditional density is a relatively stable one� On the
other hand� it is really rather rare that real 
ltering problems present
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themselves with the noise in the observation process being independent
of the signal� And the transformation involved in making it so involves
the solution of a generic SDE which will not commute� It follows that
to do robust and stable 
ltering it is important to measure the  area!
process as well as the values of the observation process�

�� Finally we hope that by solving the one dimensional di�erential
equation without using predictability� our ideas might produce a few
pointers to the correct way to treat PDE�s driven by spatial noise� Of
course in that situation predictability assumptions are quite inappro�
priate � at least in the initial assumptions and 
nal conclusions� But at
the moment this remains pure speculation�

���� Background�

������ Preliminaries	 Groups and di�erential equations�

We set out some basic material and notation�

The logarithm of a ow� Throughout this paper we will make
implicit use of the standard identi
cation of autonomous di�erential
equations� �ows� and vector 
elds� If f is a Lipschitz vector 
eld for
some choice of complete Riemannian metric on a manifold then the
autonomous di�erential equation

����� dyt 	 f�yt� dt � y� 	 a �

has a unique solution de
ned for all time� By varying the initial con�
dition� one may associate with it a �ow �t de
ned by �t�y�� 	 yt�
The assumptions ensure the �ow is de
ned for all positive and negative
times and is a homeomorphism� We may use the notation �t 	 exp �tf�
to emphasise that vector 
elds should be regarded� at least formally� as
elements of the Lie algebra of the group of homeo�di�eo�morphisms of
the underlying manifold�

If a homeomorphism � can be realized by �owing along a 
xed
vector 
eld � so that � 	 exp�� we say � 	 log�� In general� it is
not possible for one to construct a logarithmic vector 
eld even for the
smoothest di�eomorphisms homotopic to the identity� equally the log�
arithm need not be unique when it exists� If one has a time varying
di�erential equation such as ������ and one looks at the �ow obtained
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by solving it over a short time then it is useful to be able to deter�
mine if the resulting �ow has a logarithm and express that logarithmic
vector 
eld directly in terms of xs and the f i� ��� �e�g� in numerical
analysis� to solve the time varying and rough equation over a short in�
terval it would be su�cient to solve the smooth and time independent
di�erential equation determined by the logarithmic vector 
eld��

Determining this logarithm as a vector is in fact an analytic ex�
tension of the Dynhin�Campbell�Baker�Hausdor� formula �which in its
algebraic form considers the e�ect of �owing for unit time along one left
invariant vector 
eld on a group and then a second� and tries to 
nd
an expression for the logarithm of the result�� In this paper� we will be
able to construct the logarithm of a �ow driven by a rough signal for a
short period under the hypotheses that the vector 
elds are invariant
vector 
elds on a 
nite dimensional group�

Matrix groups� Recall some very basic facts about Lie groups� Sup�
pose that a topological group G has a connected �nite dimensional

manifold structure� then it is very well known that it is a Lie group
and can always be represented as a real analytic group of matrices� or a
quotient thereof by a discrete group� In this representation� the tangent
space to a point in the group is a linear space of matrices�

The tangent space g at the identity can be made into a Lie algebra
in two equivalent ways�

If a is an element of the tangent space at the identity of a matrix
group� then t �� exp t a �where exp is the power series in the the
matrix� de
nes a smooth path in the group �and hence a direction in
the tangent space over the identity� starting at the identity element�
Consider any other element 	 of the group� The map t �� exp t a 	
de
nes a path and hence a direction in the tangent space over 	� clearly
the induced vector 
eld a� on the group is right invariant� depends
linearly on a� and de
nes an isomorphism between right invariant 
elds
and the tangent space over the identity� We may take the Lie bracket of
these 
elds in the sense of vector 
elds and as this yields another right
invariant vector 
eld we de
ne a Lie algebra structure on the tangent
space� Alternatively� we can use the matrix representation and simply
de
ne A�B� 	 AB�BA� They give the same results� The Lie algebra
of a Lie group is important in many ways and we cannot recall them all
here� However� we mention a couple of basic facts that will be essential�
A group is abelian if a� b� � �� and has nilpotency rank at most n if
a�� a�� a�� � � � an��� an�� � � � �� � � for all elements in the Lie algebra�
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A homomorphism 
 of one Lie group to another induces �by di�er�
entiation� a Lie map d
 from the Lie algebra of the 
rst group to the Lie
algebra of the second� These two maps intertwine with the exponential
map �applied to the vector 
eld or the matrix� and so

����� 
�exp t a� 	 exp t d
�a� �

Conversely� to every 
nite dimensional Lie algebra we may associate a
unique simply connected Lie group� and to every Lie algebra map from
such a 
nite dimensional Lie algebra to the Lie algebra of a Lie group is
associated a unique homomorphism whose derivative is the Lie algebra
map�

Di�erential equations on matrix groups� Suppose we have a
smooth path Xt in the Lie algebra of our matrix group� we may develop
it onto the group� That is we solve the di�erential equation for the path
	t in the group which at time t is always tangential to �dXt�dt�

�� The
di�erential equation has the form

����� d	t 	 �dXt�
��	t�

and since � is a linear map from the vector space carrying Xt to vector

elds on a manifold �the group� it falls into the general category of time
inhomogeneous di�erential equations we introduced in ������

Any time inhomogeneous di�erential equation can be regarded� at
least formally� in the same way if one is prepared to consider the group
of homeomorphisms �or di�eomorphisms� of the manifold� Any vector

eld de
nes a parameterised �ow on the manifold ����� and hence a
tangent vector to the identity map on the group of homeomorphisms�
Consider the �ow �t on that same group de
ned by the inhomogeneous
equation

����� dyt 	
X
i

f i�yt� dx
i
t � xt 	 V � f�y� � V �� TMy �

Now f� �xt is a path in the space of vector 
elds� and �t its development
onto the group of homeomorphisms�

Although there are very big di�erences between this formal in
nite
dimensional setting and the 
nite dimensional one �the vector 
elds
will not in general be smooth enough to form a Lie algebra� etc�� the
abstract picture is very helpful in the following two ways� It suggests
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that there might be a universal object� and also that we could learn
something about the general problem by studying the simpler case of
development of a rough path on a 
nite dimensional Lie group�

De�nition ������ A Lie algebra g containing V is said to be free over

V if it has the universal property that any linear map f of V into a

Lie algebra h extends in a unique way to a Lie algebra map �f of g to h�

Such a Lie algebra exists but is in�nite dimensional�

Now suppose we consider again our basic di�erential equation�
That is� we have a path xt in a vector space V and a linear map f
of V into the Lie algebra h of a Lie group H and we would like to
develop a path yt in H tangential to �f�yt� dxt�

��
Pretend for a minute that we could associate a simply connected

group G with the free Lie algebra g� and that there was a group ho�
momorphism from it to H induced by the Lie algebra map� It would

be su�cient to develop xt in the simply connected group G with Lie

algebra g and use the homomorphism

G
�f

�� H

to produce a path in H � It follows that it would be both necessary
and su�cient to solve our problem in general if we could develop rough
paths from V to this Lie group G alone� However� there is a problem
with this picture � there is no simple analytic object we can call the
free group � but still the picture de
nitely points one in the correct
direction�

Linear di�erential equations� Suppose that Yt takes its values in
a vector space W and that for each x the vector 
elds y �� f�y�x �
W �� W is linear in y� then we say the standard equation ����� is
linear� and observe that the sum of two solutions is a solution� the �ow
is therefore a linear map �which by solving the equation backwards in
time is invertible�� and the solution �ow takes its values in a matrix
group�

Thus we see that to solve a time inhomogeneous linear equation
�which are certainly not linear in the relationship between x and y� is
essentially the same problem as to develop a path in a �nite dimensional
Lie algebra onto the associated �nite dimensional Lie group using the
right invariant extensions of the vector 
elds�
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More generally� we can re�parameterise our problem and reduce
it to a 
nite dimensional linear problem whenever the vector 
elds in
the range of f are smooth enough that one can take Lie brackets and
the resulting Lie algebra is 
nite dimensional� Although this is not the
generic case� the equation

������ dyt 	 f�yt� dxt � xt 	 V � f�y� � V �� TMy �

where the dimension of V is one satis
es the 
nite dimensionality hy�
potheses in a rather trivial way� In this case let d�t 	 f��t� dt be the
�ow de
ned by the autonomous equation� One readily sees that for
smooth xt the solution of ������ can easily be expressed as yt 	 �xt�y��
and that this is uniformly continuous in the forcing term xt� It is gen�
erally true that ������ is uniformly continuous in this way if and only if
the Lie algebra is trivial and the vector 
elds commute� In Section �����
we showed that the iterated integral for the area produced a discontin�
uous It�o map� The associated di�erential equation has a Lie algebra of
the simplest non�commutative type � nilpotent of rank ��

Einstein expansions� Consider a linear di�erential equation� Let
x �� A� �x � V 
�� hom�W�W � be a bounded linear map �of Banach
spaces� and consider the linear equations

dyt 	 A�y� dxt �������

d�t 	 A��� dxt �t �������

for the trajectory and �ow� If the path xt is smooth and yt is the
classical solution� then one may construct a Taylor series expansion for
it �and the operator �t� in terms of iterated integrals of xt�

yt 	 ys �

Z t

s

dyu

	 ys �

Z t

s

A�yu� dxu

������

	 ys �A�ys�

Z
s�u�t

dxu

�

ZZ
s�u��u��t

A�A�yu��� dxu� dxu�

������
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nX
i��

A�A�� � �A�ys���

Z Z
s�u��u������ui�t

dxu� dxu� � � �dxui

�

Z Z
s�u��u������un���t

A�A�� � �A�yu���� dxu� dxu� � � �dxun��

������

and using the boundedness of y on s� t�� the factorial decay of the
iterated integrals� and the geometric growth of the norm of the product
of operators� one quickly shows that the remainder goes to zero with n
and so we have the convergent series

������ �s�t 	 I � A

Z
s�u�t

dxu � AA

ZZ
s�u��u��t

dxu� dxu� � � � �

and observe that the solution can be expressed as a inner product of a
sequence of iterated integrals and  powers! of A�

This expansion �which occurs regularly in the literature over the
last �� years or so� underlines the importance of iterated integrals�
We will see later that we will be able to associate in
nite and rapidly
decaying sequences of iterated integrals in settings where the paths are
not smooth� In this case the series above can be used as a de
nition
of the solution� However� it does not directly extend from the 
nite
dimensional linear setting ������ to the fully nonlinear one ����� �for in
this case the operators in the range of A are unbounded and do not
have a common core�� Additional ideas will be required at that point�

������ Preliminaries	 Rough paths and smooth functions�

In this section we remind the reader of some basic analytic con�
cepts� For our purposes a very convenient way of measuring the smooth�
ness of rough paths is via the p�variation norm 
rst introduced by
Wiener� If we are to solve di�erential equations driven by rough paths�
then it transpires that we must balance this by taking progressively
smoother vector 
elds� For unique solutions in the classical case it suf�

ces that the 
elds be Lipschitz� For our uniqueness results we will
require that the 
elds are Lipschitz of order � � p� Using the obvious
de
nition� one might conclude that there were no non�constant func�
tions satisfying the hypothesis� The de
nition we use follows Stein and
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seems particularly well adapted to the problem in hand� Any bounded
function with n bounded derivatives is Lip�� for � � n�

Paths of �nite p�variation� Suppose Xt is a path taking its values
in a metric space� Following Wiener� one says that the p�variation of
Xt on J is

������ kXkpp�J 	 sup
nX

j

d�Xtj � Xtj���
p� tj� � � � � � tjr 	 J

o
�

De�nition ������ We say that Xt has p�variation controlled by �s� t�
if

������ kXkpp�	s�t
 � �s� t� � for all s � t �

A path is said to be of regular �nite p�variation if  can be chosen to

be continuous near the diagonal� and zero on the diagonal�

Note that

������ kXkpp�	s�t
 � kXkpp�	t�u
 � kXkpp�	s�u


and so in this paper we only consider controlling  that satisfy the
inequality

������ �s� t� � �t� u� � �s� u� �

It makes sense to introduce a distance between two paths� Let Yt denote
a second path�

De�nition ������ We de�ne the distance� between two paths to be

�nite if

kX�Y kp�J	max
n

sup
tj������tjr�J

�X
j

jd�Xtj � Xtj����d�Ytj � Ytj���j
p
���p

�

sup
t�J

d�Xt� Yt�
o
�� �

�
In the more restricted situation where X takes its values in a Banach space there

is a smaller norm where jd�Y�Y ��d�X�X�j is replaced by k�Xtj��
�Xtj

���Ytj���Ytj �k�

In fact it is this distance that we will use later�
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As before we may talk about the distance being controlled by �

It is obvious from standard facts about sequence spaces that this
distance is indeed a metric �and a norm if the original space were a Ba�
nach space� and that the space of paths of 
nite p�variation is complete
in this metric providing the original metric space was complete� The
space of regular paths is a closed subspace� The p�variation of a path
and distance between two paths are monotone decreasing with increas�
ing p� If X is continuous and of 
nite p�variation then X is regular for
all p� � p� If X is not continuous the local p�variation never goes to
zero and the path is never regular�

Example ������ A path of bounded variation on a closed interval has

�nite ��variation� Almost all Brownian paths Xt�� are of regular p�
variation for all p � � but do not have �nite ��variation although the

map t �� Xt���� R
 �� L��"�P� does have �nite ��variation�

Lipschitz functions� In ��� Chapter VI� Stein looked at the general
problem of extending smooth functions from subsets of Euclidean space
to the whole space� In particular� he considers the Whitney theorem
which extends in a norm bounded way the space Lip��� F � of Lipschitz
functions on a closed set F to the whole Euclidean space� In doing so
he introduces a de
nition of Lip��� F � which is valid for any � � � and
not just for � � �� We recall a modi
cation of this de
nition here�
although we modify it slightly to be compatible with our notations� the
resulting norms are equivalent�

De�nition ������ Suppose that V�W are normed vector spaces� k is a

non�negative integer� and that k � � � k��� A function f 	 f� de�ned
on a closed subset F  V and taking values in W belongs to Lip��� F �
if there exist symmetric multi�linear functions �formal derivatives�

f �j��x�� � � j � k taking
j
�
�
V to W and satisfying the natural Taylor

expansion type condition

f �j��xt��v� 	
X
jl�k

f �jl��xs�
�
v �

Z Z
s�u������ul�t

dxu� � � �dxul

�

� Rj�xs�xt��v� �������

for v 	
j
�
�
V and where� as operators on the tensor product� the deriva�
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tives and remainder satisfy

kf �j��x�k �M �������

kRj�x�y�k �M jx� yj��j � x�y 	 F �������

We de�ne the smallest M to be the Lip��� F � norm of the sequence

f �j��x�� � � j � k�

Some remarks are in order�
The terms

������ f �jl��xs�
�
v �

Z Z
s�u������ul�t

dxu� � � �dxul

�
�

are� for smooth paths#conventional integrals� independent of the choice
of path and only depend on the values �xs�xt�� To prove this� ob�
serve 
rst� that the dimension of W is irrelevant� Now consider the
polynomial p�x� of degree k whose Taylor expansion at xs agrees with
ff �j��xs�gj�������k� Expanding p�xt� in terms of iterated integrals� as in
the last section� we see that the expansion formulae is exact at level k
and

������ p�xt� 	
X

��l�k

f �l��xs�
�Z Z

s�u������ul�t

dxu� � � �dxul

�
�

and as the left hand expression does not depend on the path nor can the
right hand side� Similar arguments can be applied to the derivatives of
p�x� to obtain the invariance of the other expressions� An alternative�
more algebraic proof of the result is to observe that the symmetric na�
ture of the ff �j��xs�gj�������k annihilates the antisymmetric components
of a tensor and only these change when one perturbs the path� Either
way� the observation is clear� and will be crucial to us�

The functions ff �j�gj�������k will not in general be unique given
f 	 f�� One only expects this if the set F is thick enough� In other
words a function in Lip��� F � is not a function on F but a sequence of

functions representing formal derivatives and satisfying these complex
Taylor type bounds relating one term with the next� We will see that
an essentially dual idea occurs when one considers paths of 
nite p�
variation where p � �� The de
nition we give above for p�variation� is
in some sense wrong� as it fails to specify enough information�
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De�nition ����
� We have de�ned a Lip��� F � function	 this de�nition
easily extends to i�forms� A sequence f �j��x�� i � j � k is a Lip��� F �
i�form if all the higher Taylor expressions ������ satisfy the estimates

set out in the de�nition above whenever i � j � k�

Both de
nitions make sense if the functions or forms are vector
valued�

Example ������ If � is a ��form on F and � � � � �� then we say it

is in Lip��� F � if one has de�ned a ��form d�

������
�����Xt�� ��Xs��

�

�
�d�� �Xs� �Xt �Xs�

��� � M kXt �Xsk
�

and

������ kd��Xt�� d��Xs�k � M kXt �Xsk
��� �

However� some caution is now required as the resulting multi�linear
maps are only required to have full symmetry in the x�� � � � � xl co�
ordinates� One may compare this approach to de
ning Lip��� F � j�
forms with the alternative approach which simply says a form valued
function is a matrix valued function� and so we have already de
ned
what we mean by Lip��� F �� The two approaches give the same result�

�� The Finite�Dimensional Case � Linear Di�erential Equa�

tions�

���� Multiplicative Functionals � Introduction�

������ Multiplicative functionals � Introductory material and

de�nitions�

Let V be a vector space� and suppose that Xt is a smooth path
in V � The k�th iterated integral Xk

s�t of Xt over a 
xed time interval

s� t� is an element of the tensor product V �k� The sequence of iterated
integrals

�Xk
s�t�

	
k��

is far from being a generic collection of tensors� there are complicated
algebraic dependencies between the terms in the sequence� To fully
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understand the collection of iterated integrals one must treat them as
a single object�

The tensor algebra� We start by recalling some rather elementary
facts about tensor algebras� Consider the space T of sequences a 	
�a��a��a�� � � � � with ak 	 V �k� That is

����� T 	
	M
k��

V �k �

�We take the zero order tensor product to be the 
eld of scalars�� Then
T is an associative algebra with unit� which we shall refer to as the
tensor algebra over V � If a 	 �a��a��a�� � � � � and b 	 �b�� b�� b�� � � � �
are two elements of T then we may de
ne their sum� �tensor� product�
and the action of scalars in the obvious way

�����

a� b 	 �a� � b��a� � b��a� � b�� � � � � �

�a� b�i 	
X

��j�i

aj � bi�j �

�a 	 ��a�� �a�� �a�� � � � � �

The space T with these operations is an associative algebra� Suppose
that a 	 �a��a��a�� � � � � is any element of the algebra with a� � � then
a is invertible using the usual geometric power series approach

�����

a 	 a� ��� b�� b�� � � � � 	 a� �� � c� �

a�� 	
�� c� c� � c� � � � �

a�
� a� 	 R �

where

�����

bi 	
ai

a�
�

� 	 ������� � � � � �

c 	 ��� b�� b�� � � � � �

Now c� 	 �� hence fcjgk 	 � providing k � j� therefore the k�tensor
component of any power series in c and in particular ��c�c��c��� � � is
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a sum including only 
nitely many non zero terms and so has meaning�
Similarly� providing a� � �� we may de
ne the logarithm of a by

����� loga 	 log a� � �� c�
c�

�
�
c�

�
� � � �

Both of these de
nitions are pure algebra� and no analysis is required�
The exponential function is de
ned for all elements of T � but the se�
ries de
ning the k�tensor component involves a genuinely in
nite sum
�which always converges��

����� expa 	 � � a�
a�

�$
�
a�

�$
� � � �

One can check that exp ��a� 	 �expa��� and that exp loga 	 a�
log expa 	 a� etc� Because the space

����� Dn 	
	O

k�n�

V �k

of tensors of degree greater than n form an ideal we may also study the
truncated tensor algebra T �n� obtained by quotienting out by Dn� We
make the identi
cation

����� T �n� 	
nM

k��

V �k �

The full tensor algebra is an adequate algebraic object� but because it
ignores any notion of convergence of the in
nite sequences it is a rather
poor analytic object� We will mainly work with the truncated tensor
algebras T �n� where the analytic and algebraic structures are completely
compatible� the 
ne analytic information will come from understanding
the way objects in these 
nite dimensional quotients piece together�

At this point we record only the basic facts� If m � n� then there
is a natural projection � of T �m� onto T �n� given by

����� � � �a��a��a�� � � � �am� 
�� �a��a��a�� � � � �an� �

The map � is an algebra homomorphism� Moreover� the de
nitions of
log� exp� a�� extend to T �n� and their actions commute with that of �
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so that for example ��expa� 	 exp ���a��� The inclusion � of T �n� into
T �m� given by

������ � � �a��a��a�� � � � �an� 
�� �a��a��a�� � � � �an����� � � � � �

is linear but is not an algebra homomorphism�

The free Lie algebra and free nilpotent groups� One can build
certain Lie algebras inside T �n� and T � The product

������ a� b� 	 a� b� b� a �

de
nes a Lie Bracket on T and T �n�� Of particular interest is the Lie
algebra generated by V � This is comprised of linear combinations of

nite sequences of Lie brackets of elements of V

A 	 �� V � V� V �� V� V� V ��� � � �

where for example V� V� V �� is the linear subspace of V �� spanned by

v�� v�� v��� � vi 	 V �

One may trivially prove that it has the special property that if S is a
linear map from V into a Lie algebraB then there is a unique extension
of the map to a Lie algebra map from A to B� In other words it is the
free Lie algebra we identi
ed earlier� The corresponding Lie algebra
A�n�  T �n� has the same extension property providing one restricts
attention to maps into Lie algebras of nilpotency rank at most n �i�e� all
Lie products involving n or more elements of the algebra are identically
zero��

Theorem ������ Let G�n� 	 expA�n�  T �n� then G�n� is a group

called the free nilpotent group of step n� G��� 	 R and G��� 	 V �
The exponential map from the Lie algebra A�n� to the Lie group G�n�

is one to one and onto� The restriction of the map � to a map from

G�m� �� T �n�� m � n de�nes a group homomorphism from G�m� ��
G�n�� m � n� On the other hand the map � takes G�n� �� T �m�� m � n
but intersects G�m� only at the identity�

Remark ������ The above theorem and indeed everything in ����� is
standard� proofs can be found in� for example� ���� The properties
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of A�n� are by no means all easy to derive� and for example it is an
interesting� nontrivial� and a numerically worthwhile exercise to com�
pute the dimension of A�n�� to 
nd explicit bases for the space �such
calculations go back to Hall and Linden�� and even to decompose the
space into GL�V ��invariant subspaces ��� according to the di�erent
irreducible representations�

Every element of the free Lie algebra is of 
nite degree and an
element of T �n� for some n� We may exponentiate the free Lie algebra
into the full tensor algebra and the map is injective� but the range is
not a group or even multiplicatively closed� On the other hand� we can
introduce the �highly non�separable� Lie algebra of in
nite sequences of
Lie elements� In this case� we see that the exponential map has a range
comprising solely of elements of the tensor algebra which are carried
by each of the projections � � T �� T �n� into the corresponding group
G�n�� This subset of the full tensor algebra is the inverse limit of our
nilpotent groups and is clearly itself a group which we denote G����

De�nition ������ We say an element of the full tensor algebra is group

like if it is an element of G����

Unfortunately this group is very big and its Lie algebra is no longer
the free algebra�

Any attempt to use a linear map from V into the Lie algebra of
a Lie group H to de
ne a homomorphism of this enormous Lie group
G��� �or some part thereof� into the group H in a unique way must
involve analysis� This paper can be viewed as an attempt to provide
this analytic content�

Paths and multiplicative functionals � the de�nition� Let Xt

be a 
xed smooth path in V � and consider the sequence of iterated
integrals

X
�n�
s�t 	 � �

Z
s�u�t

dxu �

Z Z
s�u��u��t

dxu� � dxu� � � � �

�

Z Z
s�u��u������un�t

dxu� � dxu� � � � � � dxun 	 T �n� �

������

Let Xs�t denote the in
nite sequence� Suppose now that one wants to
describe in detail the relationship between the iterated integrals over
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r� t� and those over r� s� and s� t� where s 	 r� t�� If one starts to
calculate in coordinates one will quickly become engulfed in terms and
conclude that this is a horribly complicated thing to do� however this
is really because the main features are best derived without taking co�
ordinates� Now K� T� Chen �� observed two essential features of the
process Xs�t which we now state as a theorem�

Theorem ������ For smooth paths and conventional integrals� the

process Xs�t is multiplicative� That is to say

������ Xr�s �Xs�t 	Xr�t �

Moreover� it is group like� so that for each n�

������ X
�n�
s�t 	 G�n� � log �X

�n�
s�t � 	 A�n� �

Proof� The proof that Xs�t is multiplicative is instructive� Let the
i�th component of Xs�t be denoted by Xi

s�t� etc� Then

Xi
r�t 	

Z Z
r�u��u������ui�t

dxu� dxu� � � �dxui

	
X

��j�i

Z Z
s�uj�������ui�t

�Z Z
r�u������uj�s

dxu� � � �dxuj

�

� dxuj�� � � �dxui

������

	
X

��j�i

�Z Z
r�u������uj�s

dxu� � � �dxuj

�

�

Z Z
s�uj�������ui�t

dxuj�� � � �dxui

	
X

��j�i

Xj
rs �X

i�j
st �

which establishes the multiplicative identity�
To prove that the iterated integral sequence is group like one needs

a di�erent approach� Because iterated integrals are integrals and our
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paths are smooth� it is an easy consequence of the fundamental theorem
of calculus that they satisfy the system of di�erential equations

������

��
�

dX
�n�
��t 	X

�n�
��t � dXt 	 T �n� �

X
�n�
��� 	 � 	 ������� � � � � �

Suppose g is an element of the group G�n� thought of as a sub�manifold
of T �n�� Then left tensor multiplication by g is a linear map of T �n�

which takes the group G�n� to itself� and � to g� It follows that the
derivative of this map takes the tangent space to the group G�n� at �
to the tangent space to g� However the derivative of a linear map is
the map itself� and V is in the tangent space to G�n� at �� Hence any
solution to the di�erential equation dgt 	 gt � dXt 	 T �n� will remain
in the group G�n� if it starts there� It follows that Xs�t is a group like
element�

Remarks ������ The proof of the above result yields a certain amount
of extra information�

�� From the di�erential equation ������ �which of course is of a very
fundamental kind� we observe that the iterated integrals over a 
xed
time interval are insensitive to re�parameterisation of the underlying
path� and by solving the di�erential equation backwards in time we see
that the inverse group element is produced� The map from piecewise
smooth path segment to iterated integral sequence is a homomorphism
of the semi�group of path segments �multiplication is concatenation� to
the group like elements� Identify re�parameterisations of paths� and the
inverse of path segment with the path run in the reverse direction and
one makes the path segments into a group� Chen proved that in this
case the map into the group like elements is injective� Therefore� the
in
nite algebraic sequence Xs�t contains �in code$� all the information
from xu� u 	 s� t� required to determine the solution yt from ys�

�� The proof of the 
rst part of the theorem holds in wide gener�
ality� The 
rst integral identity relies only on additivity of the integral
over disjoint domains of a nice kind� The second term depends on a
multiplicative linearity of the integral� In fact these properties �of lin�
earity and additivity� are so basic that ������ is true for any sensible
choice of integral �It�o� etc�� and in some sense captures what one means
when one talks about an integral� Because the multiplicative property
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seems so widely characteristic of integrals we make it our basic object
of study�

De�nition ������ A multiplicative functional is a map from pairs

�s� t� of real numbers to Xst 	 �X�
st�X

�
st�X

�
st� � � � � in T �n� satisfying

Xrs �Xst 	 Xrt and X�
st � �� We say a multiplicative functional is

geometric if it takes its values in the group like elements�

Suppose that Xt 	 ���X�
t �X

�
t � � � � �X

n
t � 	 T �n� is a path in the

space of n�tensors with unit scalar component� Then we say that
Xs�t 	 �Xs�

�� � Xt is the multiplicative functional determined by
Xt� Conversely� given a multiplicative functional Xs�t and a point x in
T �n�� we say that Xt 	 x�X��t is the path in T �n� starting at x deter�
mined by Xs�t� Given this almost one to one correspondence between
paths and multiplicative functionals in T �n� it is reasonable to question
the sense of introducing the concept of multiplicative functional at all�
However� we will see later that it will be fundamental to the process of
constructing an integral or of solving a di�erential equation that one
can go from an almost multiplicative functional to a multiplicative func�
tional and hence to a path� Almost multiplicative functionals will have
no direct path�wise interpretation�

The logarithmic ow� As a simple application of the algebraic ideas
set out so far� we go back to a question we raised earlier� suppose
that one would like to know how to construct the logarithm of a �ow�
We can easily derive an asymptotic formulae for the logarithm of the
�ow �proving that it converges to a Lie element is of course a di�erent
question�� Recall our basic equation

������ dyt 	 f�yt� dxt �

where f is the linear map from V to a space of vector 
elds and suppose
the 
elds form a Lie algebra �e�g� they are smooth�� Can we construct a

xed vector 
eld which� if we �ow along it for unit time� gives the same
homeomorphism as solving the inhomogeneneous di�erential equation
over the interval s� t�% Now f is a linear map from V into the smooth
vector 
elds on some general target space� Because of the universal
property of A the map f extends to a unique Lie map f� from A into
the vector 
elds with f��v�� v�� v���� 	 f�v��� f�v��� f�v����� The log�
arithm of the �ow should be given by f��log �X��t��� However� this
calculation is formal because one quietly slips from 
nite to in
nite
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sequences� On the other hand one can always compute

f��log �X
�n�
��t �� � where log �X

�n�
��t �

is regarded as an element of An  T �n�� These form a sequence of
explicit and readily calculable vector 
elds providing an asymptotic
expansion for the logarithmic vector 
eld� A number of the optimal
algorithms for solving sde�s numerically are based on this idea ���

Rough and smooth multiplicative functionals� Although our
prime examples were obtained by computing the iterated integrals of
a smooth path� the underlying de
nition of a multiplicative functional
is at present a purely algebraic one� We now wish to consider rough
and smooth multiplicative functionals� Equivalently we wish to con�
sider rough or smooth monic paths in the truncated tensor algebras�
For this we need a notion of distance between tensors in T �n�� For
all further discussion� suppose that V � and more generally V �n are
Banach spaces and that they have compatible norms k � k so that
ku � vk � kuk kvk� and that the norms are invariant under permu�
tations of the indices of the tensors� �Given a norm on V there are
many norms one could take on the tensor products so that this prop�
erty holds�� Let c 	 ��� c�� c�� � � � � cn� be an element of the radical

D
�n�
� 	

nM
k��

V �k

of T �n�� then for any sequence � 	 ���� ��� � � � � of strictly positive
weights we may de
ne a homogeneous distance function

������ kjcjk� 	 max f��i kcik�
��i � � � i � ng �

It is clear that kjc � djk� � kjcjk� � kjdjk� and so we de
ne a met�

ric on the radical by d�c�d� 	 kjc � djk�� The metrics on D
�n�
� are

uniformly equivalent for alternative choices of the constants �� however
this is only true for 
xed and 
nite n� Although the metric is not a
norm if n � � it has the very important property that it has the same
homogeneity properties as our sequence of iterated integrals when we
scale the underlying path�

Consider the element of the radical X
�n�
s�t ���� � generated by the

sequence of iterated integrals of a smooth path �s� Now scale the path�
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then the individual iterated integrals transform according to their de�
gree and

kjX
�n�
s�t �� ��� �jk 	 � kjX

�n�
s�t ���� �jk �

If we are only interested in 
xed n we will frequently take � � � to
avoid complicated expressions� If we wish to prove that the Einstein
expansion for the solution of a linear equation converges one will need
to control the behaviour as n goes to in
nity� For this one requires a
choice of � very well adapted to the problem� In this more critical work
we 
nd �i 	 � �i�p�$ to be an excellent choice� where � � �� p � � are
to be chosen later� For notational convenience� we will use the notation
kj � jk to denote either metric� It will not cause signi
cant confusion�

Suppose that we have a monic path Xt in the truncated tensor
algebra and its associated multiplicative functionalXs�t� Then we could
introduce a distance 	�Xs�Xt� 	 kjXs�t � �jk� In general this will not
be a metric �although it is good enough� because it fails the symmetry
condition and the triangle inequality� However� it is clear from the neo�
classical inequality �see later� that if � � �p p� then it will satisfy the
triangle inequality� For group like elements� it is obvious from Remark
������� the inverse being obtained from the path run backwards and the
invariance of the norm under re�ordering of the tensors� that the inverse
of a group like element has the same modulus as the original element�
In this case it is clearly a metric�

We ignore the fact that this distance is a metric or not �because
it follows that it is always equivalent to one�� In any case we may
follow section ������� and use it to de
ne monic paths and multiplicative
functionals of 
nite p�variation �controlled by a regular super additive
function �s� t� etc�� and to provide a distance between two paths�

Lemma ������ A multiplicative functional Xs�t in T �n� is of �nite

p�variation controlled by  if and only if it satis�es the inequality

kXi
s�tk �

�s� t�i�p

� �i�p�$
� i � n �

The proof is immediate from the de
nition� We include it as a
convenient formulation�
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���� Multiplicative functionals � the �rst main theorems�

Overview� We have introduced the idea of a multiplicative functional
in T �n� of 
nite p�variation without making any direct connection be�
tween the degree n of the multiplicative functional and the roughness
of the path as described by p � ��

The theorems in this section� which are fundamental to our ap�
proach� demonstrate the central role played by the class of multiplica�
tive functionals for which the degree n is the integer part p� of the
variation p�

We have already observed that if we take a smooth path in a vector
space and take its 
rst k iterated integrals then we have constructed
a multiplicative functional of degree k� computing the next iterated
integral gives a method of extending the multiplicative functional to �a
geometric� one of the next degree� This extension map is continuous
as a function of the underlying path in p�variation metric if and only if
p � ��

By way of an extension of this result� the theorems in this section
show by restriction that� for any p � �� if we regard as our basic object
the smooth path and its iterated integrals of degree up to p� then the
higher iterated integrals are uniformly continuous functions in the met�
ric of 
nite p�variation� The uniform continuity allows one to extend
the de
nition of iterated integral to this class�

These results are the 
rst step towards our main theorem that
the It�o map� is uniformly continuous as a function of the sequence
comprising a smooth path and its iterated integrals of degree up to p�
where one takes the metric of 
nite p�variation� So providing a natural
analytic extension of the It�o map to the class of geometric paths of

nite p�variation and degree p��

The application to stochastic Stratonovich di�erential equations
is realized by taking � � p � �� where these results reduce to the
statement that the It�o map is continuous in the pair comprising the
path and its L�evy area�

������ The First Theorem�

Theorem ������ Let X
�n�
s�t be a multiplicative functional in T �n� of

�nite p�variation controlled by a regular �s� t� on an interval J where

�
de�ned by a di�erential equation with smooth enough coe�cients
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n 	 p�� There exists a multiplicative extension X
�m�
s�t to T �m�� m � n

which is of �nite p�variation� the extension is unique in this class�

Moreover� this unique extension satis�es a rather precise estimate�

Suppose that the p�variation norm of X
�n�
s�t is controlled by �s� t� so

that for all pairs of times in an interval we have

������ kXi
s�tk �

�s� t�i�p

� �i�p�$
� i � p �

then� providing � is large enough the same inequality

������ kXi
s�tk �

�s� t�i�p

� �i�p�$
� i � p �

holds in all degrees and p�variation norm ofX
�m�
s�t is controlled by �s� t�

without any sort of factor for all m��

Remarks ������ �� It su�ces for the above theorem that

������ � � p�
�
� � ��	p
���p

�
�
� p� � �

p

�
� �

��
�

where

������ ��z� 	
	X
�

�

nz

is the traditional Riemann zeta function�

�� It is a more or less trivial remark that� in the case where n � p��
if a multiplicative functional of degree n and 
nite p�variation has an
extension to a multiplicative functional of degree m of 
nite p�variation�
then the extension will never be unique� On the other hand in the case
where n � p� the above theorem shows by restriction the existence and
uniqueness of an extension of 
nite p�variation�

In the remainder of this section we outline the proof�

Two key results under�pin our argument� The 
rst is completely
elementary�

�
where x����x��
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Lemma ������ Suppose

D 	 fs 	 t� � t� � � � � � tr 	 tg

is a dissection of s� t�� Then there is a j such that

������ �tj��� tj�� �

��
�

��s� t�

r � �
� r � � �

�s� t� � r 	 � �

Proof�  is super�additive and so when r � �

������
r��X
�

�tj��� tj�� � ��s� t�

and at least one term in a sum is dominated by the mean so the result
is clear� On the other hand when r 	 �

�tj��� tj�� 	 �s� t� � if j 	 � �

A neo�classical inequality�

Lemma ������ The following extension of the binomial theorem holds

������
��
p

�� nX
j��

xj�p

�j�p�$

y�n�j��p

��n� j��p�$
�

�x� y�n�p

�n�p�$
�

where n 	 N� x� y � �� p � ��

We postpone the proof of this inequality which is quite non�trivial�
Notice that since �x�p�$ is roughly �x$���p� the lemma loosely asserts
that we have a sequence of numbers satisfying

P
aj 	 b from the bi�

nomial theorem and
P

a
��p
j � b��p� In general the inequality would be

reversed�

Proof� Existence� Our intention is to proceed by induction� Fix
m � p�� As initial data consider a multiplicative functional

X
�m�
s�t 	 ���X�

st� � � � �X
	p

s�t�X

	p
�
s�t � � � � �Xm

s�t�
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satisfying ������� we wish to construct a multiplicative functional

X
�m��
s�t satisfying the same constraints�

Consider

������
�

Xs�t 	 i�X
�m�
s�t � 	 ���X�

s�t� � � � �X
m
s�t��� �

Of course
�

Xst is not multiplicative� but at least it is in T �m��� Fix a
dissection D 	 fs � t� � � � � � ti�� � tg of s� t� and de
ne

������
�

X
D

s�t 	
�

Xs�t� �
�

Xt��t� � � � � �
�

Xti���t

using the multiplication in T �m��� It su�ces to show the existence of

limmesh�D�
�

�

X
D

s�t � for this limit� if it exists� will surely be multiplica�
tive�

To check this last point observe that if the limit exists over s� u��
then it can be attained via dissections D all of which include a 
xed
t 	 �s� u�� and so we have

������
�

X
D

s�u 	
�

X
D�	s�t


s�t �
�

X
D�	t�u


t�u �

Taking this limit as the mesh size of D converges to zero we see that
we have

������
�
lim
D
�

�

X
D

s�t

	
	
�
lim
D
�

�

X
D�	s�t


s�t

	
�
�
lim
D
�

�

X
D�	t�u
	

�

To prove the convergence of
�

X
D

we see that the di�culty rests in

understanding the terms
��
X

D

s�t

	m�
for

��

X
D

s�t

	j
	 X

j
s�t for all j � m

since X
�m�
s�t is multiplicative�

The heart of our argument is a maximal inequality� the existence of
the limit follows by a secondary argument� Our aim is to prove� under
the induction hypothesis

������

X�m�
u�v 	 f��X�

u�v� � � � �X
m
u�vg 	 T �m� �

X�m�
u�w 	 X�m�

u�v �X�m�
v�w �

kXi
u�vk �

� ��u� v��i�p
��i�p�$

�
� for all u � v� i � m�
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that for any dissection D of s� t�

������
����

X
D

s�t

	j�� � ��s� t��j�p

��j�p�$
� for all j � m� � �

The case where j � m � � is a trivial consequence of our induction

hypothesis� The �m����tensor
��
X

D

s�t

	m�
is the focus of our attention�

Now from the triangle inequality

������ k�XD
st �

m�k � k�XD
s�t �X

D�

s�t �
m�k� k�XD�

st �
m�k �

where D� is any other dissection� Suppose that it is obtained from D
by dropping a single point from the dissection �this trick seems to be
due to L� C� Young�� By choosing the point to omit from the dissection
carefully� and repeating this deletion procedure until we have the trivial
dissection we will obtain our result�

Fix
D 	 fs 	 t� � t� � � � � � tr 	 tg

and use Lemma ����� to choose j so that

������ �tj��� tj�� �

��
�
� �

r � �

�
�s� t� � r � � �

�s� t� � r 	 � �

Let D� be D n ftjg and consider
�

X
D

s�t �
�

X
D�

s�t� Now
�

������

�

X
D

s�t 	
��

Xs�t� � � �
�

Xtj���tj��

	�

X tj���tj

�

Xtj �tj��

� �
�

Xtj���tj�� � � �
�

Xtj���tr�

	
�

X
D�

s�tj��

�

Xtj���tj

�

Xtj �tj��

�

X
D�

tj���t
�

while

������
�

X
D�

st 	
�

X
D�

s�tj��

�

Xtj���tj��

�

X
D�

tj���t

�
To shorten expressions we henceforth drop the use of the � to denote multiplication

in the tensor algebra�
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�

and so

������
�

X
D

st �
�

X
D�

st 	
�

X
D�

s�tj��
Ztj�� tj tj��

�

X
D�

tj���t
�

where

������ Ztj��tjtj�� 	
�

Xtj���tj

�

Xtj���tj�� �
�

Xtj���tj��

and using the de
nition of
�

X and the multiplicative nature of X one
has

������ Ztj��tjtj�� 	
�
�� � � � ���

mX
�

Xi
tj���tj X

m��i
tj�tj��

�
�

The only products which yield nonzero results in this tensor multipli�
cation are those where the sum of the degrees of the individual factors
is at most m� it follows that we have the reasonably simple expression
for the di�erence

�

X
D

s�t �
�

X
D�

s�t 	 ��� � � ��
�
�� � � � ���

mX
�

Xi
tj���tj

X
�m���i
tj�tj��

�
��� � � ��

	
�
�� � � � ���

mX
�

Xi
tj���tj X

�m���i
tj�tj��

�
�������

We can estimate this di�erence

������
��� mX

�

Xi
tj��tj

Xm��i
tjtj��

��� � mX
�

kXi
tj��tj

k kXm��i
tjtj��

k

and so using our a priori bound ������ for the magnitudes of these
tensors

��� mX
i��

Xi
tj���tj

Xm��i
tj �tj��

���

�
m�X
i��

��tj��� tj�i�p
��i�p�$

� ��tj� tj��
�m��i��p

���m� �� i��p�$

�������
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and by the Neo�Classical inequality� Lemma ������ and superadditivity
this is

�
p�

��
��tj��� tj� � �tjtj���

�m���p

��m� ���p�$
������

�
p�

��
��tj��� tj���

�m���p

��m� ���p�$
�������

We now recall that we chose our j carefully so that ������ held so that
if r � � one has

������
��� mX
i��

Xi
tj��tj

Xm��i
tjtj��

��� � � �

r � �

��m���p p�

�

�s� t��m���p

���m� ���p�$

and if r 	 � one has the similar

������
��� mX
i��

Xi
tj��tjX

m��i
tjtj��

��� � p�

�

�s� t��m���p

���m� ���p�$
�

Successively dropping points we see that

����

X
D

st

	m�
�
��

Xs�t

	m���
�

p�

�

�
� �

	X
r��

� �

r � �

��m���p�� �s� t��m���p

���m� ���p�$

�

	
p�

�

�
� � ��m���p

�
�
�m� �

p

�
� �

��� �s� t��m���p

���m� ���p�$

�
�

������

Observing that as
��

Xst

	m�
	 � and

�
� �

	X
r��

� �

r � �

��m���p�

is monotone in m and 
nite because m� � � p we have

����

X
D

s�t

	m���

�
p�

�

�
� � ��	p
���p

�
�
� p� � �

p

�
� �

�� �s� t��m���p

���m� ���p�$

������
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�where ��z� 	
P	

� ��nz is the traditional Riemann zeta function��
Thus if we choose

������ � � p�
�
� � ��	p
���p

�
�
� p� � �

p

�
� �

��
�

we get the estimate

������
����

X
D

s�t

	m��� � �s� t��m���p

���m� ���p�$
�

for all choices of dissection D� This completes the proof of the maximal
inequality�

Now we must show convergence of the products� It is at this point
that we require our control  on the p�variation to be regular� We will

show that our sequence
�

X
D

satis
es a Cauchy convergence principle�
Consider two dissections D� �D both having mesh size less than �� We
can always 
nd a common re
nement �D of D and �D� We 
x some
interval in tj � tj�� 	 D� then the re
nement �D breaks the interval up
into a number of pieces tj � sj� � � � � � sjr 	 tj�� call the dissection
�Dj � Then� we know from the maximal inequality� how to estimate

��

X
�Dj

tjtj��
�

�

Xtjtj��

	m�

and all terms of degree less than m�� in the di�erence are zero because
X is multiplicative� Therefore

������
���

X
�Dj

tjtj��
�

�

Xtjtj��

�� � �tj� tj��
m��p

���m� ���p�$
�

So the total di�erence�

������
��

X
�Dj

�
�

X
D	m�

is controlled in norm by�X
D

�tj� tj��
�m���p

���m� ���p�$

�

�
�

���m� ���p�$
max
D

��tj�tj���
�m���p��

X
D

�tj�tj��

�
�

���m� ���p�$
max
D

��tj�tj���
�m���p�� �s� t� �

������

�
using a simple extension of the argument used in ������������� which drastically

limited the range of terms which contribute to the di�erence of the products�
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which is independent of �D and by the regularity of  this converges
uniformly to zero as the mesh size of D converges to zero� Applying the

triangle inequality� we have a uniform bound on X
�D�XD as required�

It follows that we have established the existence of a multiplicative
functional satisfying all the requirements of the induction�

Uniqueness� We must show that ifXs�t and Ys�t are two multiplicative
functionals which agree up to the m�th degree� so that Xi

st 	 Y i
st� i �

m� and which are both of regular 
nite p�variation where �m����p � �
then they agree� The following algebraic lemma makes the situation
clear�

Lemma ������ Suppose that Xs�t and Ys�t are multiplicative function�

als in T �m�� which agree up to the m�th degree so that Xi
st 	 Y i

st�

i � m� The di�erence function �s�t

������ �s�t 	Xm�
s�t � Y m�

s�t 	
m�
�
i��

V

is additive

������ �s�t � �t�u 	 �s�u �

Conversely� if Xs�t is a multiplicative functional in T �m�� and �s�t is

additive in V �m� then Xs�t � �s�t is also a multiplicative functional�

Remark ������ This easy result re�ects the nilpotent nature of the
algebraic structures we are interested in� the function �s�t lies in the
centre�

Proof� Use the multiplicative property for Xs�t and Ys�t to observe
that

�Ys�u�
m� 	 �Ys�t � Yt�u�

m�

	 Y m�
s�t � Y m�

t�u � �Xs�t �Xt�u�
m� �Xm�

s�t �Xm�
t�u

	 �Ys�u�
m�������

	 �Xs�u�
m� � �Y m�

s�t �Xm�
s�t � � �Y m�

t�u �Xm�
t�u �

and so our claim is veri
ed

������ �s�u 	 �s�t � �t�u �
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The same identity also makes it clear that if Xs�t is multiplicative on
T �n�� and � satis
es ������ and is in �n�

i V � then Xs�t � �s�t is also
multiplicative�

Suppose X and Y have 
nite p�variation controlled by a regular
 where �m� ���p � �� By assumption� there is a constant so that

������ k�stk � c �s� t��m���p �

and so ���t is a conventional path of 
nite �m � ���p�variation� If
�m����p � � and  is regular� it follows that � is identically zero and
uniqueness follows�

These calculations also establish the remarks we made on the non�
uniqueness of extensions of multiplicative functionals if �m� ���p � �
as in this case perturbing an extension by a continuous additive �s�t
of bounded variation will produce a di�erent extension of 
nite p�
variation�

������ Continuity�

We have shown that the high order multiplicative functionals are
uniquely determined by the low order ones if we impose a p�variation
condition� We also de
ned a natural distance between paths of 
nite
p�variation� The map we have de
ned is continuous� and there is a very
explicit estimate for the modulus of continuity�

Theorem ������ Suppose X and Y are multiplicative functionals in

T �n� of �nite p�variation controlled by  where �n� ���p � �� Suppose
further that for some � � � one has

������ kXi
s�t � Y

i
s�tk � �

�s� t�i�p

��i�p�$
�

for all i � n� Then for a suitable choice of ��

������ � � � p�
�
� � ��	p
���p

�
�
� p� � �

p

�
� �

��

will do� one has

������ kXi
s�t � Y

i
s�tk � �

�s� t�i�p

��i�p�$
�
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for all i �� where Xi and Y i are� for i � n� the components in V �i

of the multiplicative extension of �nite p�variation�

Proof� Proceed by induction� Suppose n�� � p� Recall how we con�
structed Xm� and Y m� from X�m� and Y �m� by taking the limit of
the products XD� Y D� Recall in particular� that our choice of dissec�
tion in the proof of the maximal inequality depended on  alone and
not on X�n� or Y �n�� So we may select the same coarsening sequence
of dissections in the analysis bounding XD and Y D� We may also use
this sequence of dissections to estimate kXD � Y Dk� As we coarsen
the dissection we have

k�XD � Y D�m�k � k�XD �XD�

�m� � �Y D � Y D�

�m�k

� k�XD�

� Y D�

�m�k �������

Estimate the 
rst term on the right side of the expression�

������ �XD�

s�t �X
D
s�t�

n� 	
X

��j�n

X
j
ti��tiX

n��j
titi��

and

������ Y
j
s�t 	 X

j
s�t �R

j
s�t �

so

��XD�

s�t �X
D
s�t�� �Y D�

s�t � Y
D
s�t��

n�

	
X

��j�n

�Xj
ti���ti

X
n��j
ti�ti��

� �Xj
ti���ti

�R
j
ti���ti

� �Xn��j
ti�ti��

�R
n��j
ti�ti��

��

������

and by exploiting induction and the neo�classical inequality one has

������

k��XD�

s�t �X
D
s�t� �Y

D�

st � Y D
s�t��

n�k

� �� �� ��� p�
�ti���ti��

�n���p

����n� ���p�$

and as before� summing over our carefully chosen and successively coars�
ening partitions one has

������

kXD
s�t � Y

D
s�tk �

� � ��n���p����n� ���p�� ��

��

� p�
�s� t��n���p

��n� ���p�$
�� �� ��� �
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So for

� �
�
� � ��	p
���p

�
�
� p� � �

p

�
� �

��
p� �� �� ���

the result follows� In particular if � � � the required estimate holds�
This completes the induction step and this rather explicit continuity
result follows�

Remark ������ It might be thought that we have introduced a variety
of topologies on the space of paths of 
nite p�variation in the above
theorem� however� they can all be pasted together in the most natural
way�

De�nition ������ We say a pair of paths X and Y in T �n� which have

regular �nite p�variation are at most a distance � apart if

X�Y �s� t�

	 sup
s�t�J

n�X
j

kjXtj �tj�� � Ytj �tj�� jk
p
�
� s � tj� � � � � � tjr � t

o
� � �

sup fkjXt � Ytjk� t 	 Jg � � �

It is elementary that such a distance is complete� and that if a
sequence converges in the sense that we introduced and exploited in
the preceding lemma then it also converges in this new sense�

Consider a sequence U
�n�
t of paths converging to a path U�

t � Then

the p�variation of U
�n�
t � denoted by U

�n�

�s� t�� and U
�n��U���

�s� t� are
continuous and zero on the diagonal because of the regularity of the
paths� We may choose and re�label a subsequence so that

sup
s�t

U
�n��U���

�s� t� � ��n

on J � Consider the new superadditive functional

������ &�s� t� 	 sup
n

U
�n�

�s� t� �
X
n

�n U
�n��U���

�s� t�

and observe that it is continuous �note that the supremum of a sequence
of continuous and uniformly converging functions is itself continuous��
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it is obviously superadditive and zero on the diagonal� it therefore pro�
vides a regular control on the p�variation of all the paths we are con�

sidering� and most importantly� satis
es U
�n��U���

�s� t� � ��n ��s� t��
This essentially concludes the remark� Every convergent sequence in
the weaker sense has a subsequence converging in this stronger domi�
nated sense� and so we see that the notions of convergent sequence must
correspond�

In a metric space� the topology is determined by the convergent
sequences�

������ The neo�classical inequality	 a proof�

Theorem ������ The following inequality holds uniformly in p � �� n

������
�

p�

nX
j��

aj�p b�n�j��p

�j�p�$ ��n� j��p�$
�

�a� b�n�p

�n�p�$
� a� b � � �

Remark ������ For our application we only require this inequality
with some constant in place of ��p� which is independent of a and n�
However� it is interesting to ask what is the best uniform estimate in
all the variables� All numerical evidence and proofs of special cases
suggest the inequality is true with ��p in place of ��p� and that in this
form the inequality is very strongly saturated �with equality to the n�th
degree as p approaches one if a 	 b� When p 	 �� we have equality of
the left and right expressions by the binomial theorem in either form�
When p 	 n we can prove the result in its strengthened form with ��p�

Proof� To prove the inequality in the form stated� it su�ces to estab�
lish that

������
�

p

nX
j��

xj�p ��� x��n�j��p
�n�p�$

�j�p�$ ��n� j��p�$
� p �

because the expression ������ is homogeneous under scaling of a and b�
Moreover� we have an integral expression for the special functions

������

� x$ y$

�x� y�$

���
	

�

�x� y � �� ��x� �� y � ��

	
�

�x� y � ��

Z �

�

ux��� u�y du

�
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We may rewrite the left hand of the expression ������

�

p

nX
�

xj�p ��� x��n�j��p
�n�p�$

�j�p�$ ��n� j��p�$

	
�

n� p

nX
�

xj�p ��� x��n�j��pZ �

�

�uj ��� u�n�j���p du

	
�

n� p

nX
�

�Z �

�

�u
x

�j�p��� u

�� x

��n�j��p
du

�

We now make a substitution� � 	 p�n� �j 	 j�n� Then the individual
terms in the above sum are derived from

������ F	�x� v� 	
�

n �v � ��

x	�
 ��� x����	��
Z �

�

�u	 ��� u���	���v du

�

By the binomial theorem

������
nX
�

F	j

�
x�

�

n

�
� � �

for all n and all x 	 �� ��� If we could also prove that

������
nX
�

F	j �x� v� � � �

for all v � ��n� and for all x then we would have established the stronger
result which we believe is true� To do this it would su�ce to show that

������
� �

�x
�x ��� x��

�

�x
�

�

��

�
F	 � � �

for in this case we could use the maximum principle for sub�parabolic
functions to deduce that any positive linear combination of F	� taken
over varying �� attains its maximum over the region v � ��n� x 	
��� �� on its parabolic boundary� In particular we could conclude thatPn

� F	j �x� v� � �� for all x and for all v � ��n�
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But F	 is not a subsolution� On the positive side� we can prove
that

������
�

v
x	�v ��� x����	��v

�Z
�u	 ��� u���	���v du

���

is a subsolution for any choice of �� We can therefore apply a maximum
principle argument to prove that if �j 	 j�n then

������

nX
j��

v � �

v
F	j �v� u� � sup

u�	���


nX
j��

�

n
� �

�

n

F	j

� �
n
� u
�

	

�

n
� �

�

n

	 n� � �

for v � ��n� We may cross�multiply and substitute to obtain

������
nX
j��

F	j �v� u� �
v �n� ��

v � �
	

p �n� ��

p� n
�

As the inequality v � ��n is equivalent to p � �� we may deduce that
for v � ��n and u 	 �� �� the inequality

������
nX
j��

F	j �v� u� � p

holds� concluding our main argument�
However� it remains to prove that our expression ������ is indeed

a subsolution to the parabolic equation ������� This is elementary� but
relatively delicate�

Because our expression is positive� we may work with its loga�
rithm� Observe that as a general fact a parabolic operator applied to
an exponential has a simple form

������
LeU �	

�

�u
�

�

�u
eU �

�eU

�v

	
� �

�u
�

�

�u
U � jr�U j

� �
�U

�v

�
eU �
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where we de
ne

������ jr�uj
� 	 � jruj� �

To show that the exponential eU is a subsolution it su�ces to show that

������
� �

�u
�

�

�u
U � jr�U j

� �
�U

�v

�
� � �

The log of the expression ������ is

������

� log v �
�

v
log x�

�� �

v
log ��� x�

� log

Z �

�

�u	��� u���	���vdu �

Let us apply our identity for LeU � one term at a time� with U given by
the expression ������ above�

������
�

�x
x ��� x�

�

�x
U 	

�

�x

��
v
��� x�

�
�

�

�x

��� �

v
x
�
	 �

�

v
and

������

x ��� x�



 �
�x

U



� 	 x ��� x�

��
v

�

x
�

�� �

v

�

�� x

��

	
�� � x

v

�� �

x ��� x�
�

On the other hand the expression ������ can also be rewritten as

������ � log v � log
�Z ��u

x

�	��� u

�� x

���	���v
du
�
�
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������ log

���u
��x

����u
x

�	���u
��x

���	���v
duZ ��u
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and applying Jensen�s inequality to the convex function x logx�

������
�
� log

� �
u

�
� ��� �� log

� �� �

�� u

��

in the last integral� and hence the integral itself is always positive�
Collecting the terms together we see that ������ will hold providing we
can show

������ f��� x� 	
�� � x��

x ��� x�
�
�
� log

� �
x

�
� ��� �� log

� �� �

�� x

��
� � �

for all pairs �� x 	 �� ��� This will follow through a study of �f��� x���x�
This derivative is � at x 	 �� If we prove it to be positive for x � � and
negative for x � � then the result follows since f��� �� 	 �� But

������

�f

�x
	 �x� ��

x ��� x� � ��� �x� �� � x�

�x ��� x���

	 �x� ��
�x� ��� � �� � ���

�x ��� x���

and the second factor in the last expression is positive because � 	 �� ���
This completes the proof of the neo�classical inequality�

���� Multiplicative functionals � The basic spaces of paths�

We can now identify the basic classes of objects which drive di�er�
ential equations�

De�nition ������ A p�multiplicative functional is a multiplicative

functional of degree p� and �nite p�variation� taking its values in

T �V ��	p
�� We denote the set of such paths by "�V �p� The elements

of "�V �p with Xs�t 	 G�	p
� for all pairs of times s� t are the geometric
p�multiplicative functionals denoted by "G�V �p�

Within these spaces� we will often re�ne our interest and consider

only multiplicative functionals which are controlled by a given regular

�
The constraint de�ning "G�V �p as a subspace of "�V �p is a purely

algebraic one	 and for this reason it is obvious that it de�nes a closed

subset� On the other hand "G�V �p has a very important analytic in�

terpretation� The class S�V � of piecewise smooth paths can be lifted to
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a subset S�V �p of "�V �p in a canonical way using the �rst p� iterated
integrals and� as we have shown� Chen observed that the embedding is

actually into "G�V �p�

Lemma ������ The closure of S�V �p in "�V �p is "G�V �p�

The proof of this lemma is quite routine and so we only sketch it�
Fix a group�like multiplicative functional X� Suppose that it has 
nite
p�variation controlled by a regular � We must construct piecewise
smooth paths whose iterated integrals approximate it� However� given
an element g of the group G�n� there is always a smooth path whose

rst n iterated integrals at time one agree with g� Among these paths
the one with shortest projected distance in V has been closely studied
���� In any case� its p�variation in a compact neighborhood of the
identity in G�n� will be uniformly comparable� with kjg � �jk� As a
consequence� we see that the paths obtained by taking the original
multiplicative functional� 
xing a dissection� and then replacing the
intermediate segments of the multiplicative functional by these  chords!
re�parameterised so that they are transversed according to the times in
our dissection provide an approximating family of piecewise smooth
multiplicative functionals� The regularity of  ensures convergence�

The class of geometric multiplicative functionals will be of great
importance later� A number of questions that remain open relate to
the possible extension of theorems from "G�V �p to "�V �p� Such an
extension corresponds to the extension from Stratonovich to It�o in the
classical probabilistic setting� In this paper� we will frequently use the
above lemma to obtain results for the geometric p�functionals that we
do not know how to prove more generally� We hope to understand
matters better� and return to this issue in a later paper�

������ Inhomogeneous degrees of smoothness�

Consider the equation

������ dyt 	
X
i

f i�yt� dx
i
t � f��yt� dt �

by taking our driving signal to be �xt� t� everything we said previously
applies� However� this is an analytically wasteful approach as we fail

�
The bound will depend on the values of n and p�
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to take advantage of the smoother character of one of the co�ordinates
in contrast with the others� So we remark now that at the price of
increased notational complexity� one may introduce a notion of multi�
plicative functional Xs�t of 
nite p 	 �p�� � � � � pd� variation controlled
by �

De�nition ������ A path Xs�t in T �V � � � � � � V d� is of �nite p 	
�p�� � � � � pd� variation controlled by  providing the component

������ X
�r������r�
s�t 	 V r� � � � � � V rl �

where ri 	 f�� � � � � dg satis�es

������ kX
�r������r�
s�t k �

�s� t�l��p����ld�pd

�d �l��p��$ � � � �ld�pd�$
�

where

������ lj 	
jfi � ri 	 jgj

l
�

In this case it is easy to see that essentially the same arguments and
de
nitions can be applied to get existence� uniqueness and continuity
theorems� The crucial point is that to get existence� and a uniqueness
theorem� one must know all the components of the multiplicative func�
tional for which l��p� � � � �� ld�pd � �� The arguments vary scarcely
at all�

���� Di�erential equations driven by rough signals � The linear

case�

������ The ow induced by a rough multiplicative functional�

We now draw out some applications of our 
rst theorems on mul�
tiplicative functionals�

Recall that a linear di�erential equation is one where the target
manifold �where yt takes its values� is a Banach space� and the linear
map from the space V carrying the driving signal xt has as its range
vector 
elds that are bounded linear maps

������ x �� A� �x � V 
�� hom�W�W � �
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In our general form an equation can be reparameterised in this way if
the vector 
elds de
ne a 
nite dimensional Lie algebra�

If xt is a smooth path then� as we saw previously� the linear �ow
associated to the linear equation

������

�
dyt 	 A�y� dxt �

d�t 	 A��� dxt �t �

can be recovered as the sum of the convergent Einstein series

������ �s�t 	 I �A

Z
s�u�t

dxu �AA

ZZ
s�u��u��t

dxu� dxu� � � � �

The theorems in the last section associate to any element X in "�V �p a

unique multiplicative functional Xs�t 	 ���X�
s�t� � � � �X

	p

s�t�X

	p
�
s�t � � � ��

of arbitrarily high �and hence of in
nite� degree and 
nite p�variation�
Because the terms Xi

s�t decay like

������
�

�i�p�$

and this is faster than any geometric series grows� the series

������� �s�t 	 I � AX�
s�t �AAX�

s�t � � � �

converges absolutely to an operator in hom �W�W �� Moreover the map�
ping is obviously continuous from "�V �p�

Lemma ������ The map

������� �s�t 	 I � AX�
s�t �AAX�

s�t � � � �

from "�V �p to hom�W�W � respects multiplication� That is to say

�s�t �t�u 	 �s�u�

Remark ������ The fact that we can 
nd a multiplicative extension
of our map from geometric paths to all p�multiplicative paths indicates
that the role of "�V �p relative to "G�V �p is very similar to that of the
enveloping algebra to the Lie group�
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Proof� If s� t� u are in V then

������� �Av��AA t� u� 	 AAAv � t� u � etc�

From this observation� the multiplicative property of X� and the abso�
lute convergence of all the series the result is immediate�

We could state a more abstract form of the above result�

Corollary ������ Suppose A is a bounded map from a Banach space

V into any Banach algebra Q then the map

������� d�t��t 	 �t��tAdxt � �t��t� 	 � �

de�ned on smooth paths in V extends in a unique continuous way to the

geometric multiplicative functionals of �nite p�variation in "G�V �p and
more generally to any regular multiplicative functional of p�variation�
The map is multiplicative on "�V �p�

Although this allows us to give a meaning to ������ for elements of
"�V �p� we only feel ���' con
dent about calling it a solution in the case
where X is an element of "G�V �p� The reason for our nervousness is
that if we apply the functional that we have just identi
ed to an element
of "�V �p that is not geometric� then the resulting operator is no longer
a path in the underlying Lie group� but an element of the enveloping
algebra� In other words� the natural solution to an It�o equation is
not a randomly evolving �ow on the manifold� but rather an evolving
di�erential operator� Only the use of a connection can bring it back to
a �ow�

Iterated integrals for solutions to linear equations�� We have
established that the It�o functional associated to a linear di�erential
equation can be extended to a continuous multiplicative function from
"G�V �p in a unique way� But our solution was a �ow� or a path �t
in the algebra of linear homomorphisms of W to itself� By evaluating
it against a single vector w we get the solution yt 	 �tw which starts
at w� At least in the linear case it would seem that all is complete�
But this is not really the case� The point is that we would like the

�
The remarks in this section are far more signi�cant than the reader might appreciate

on �rst inspection�
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solutions to our equation to be of the same class as the driving signal�
It is obvious from our estimates that the solution yt is a path in W of

nite p�variation� But we have seen that such paths are not the correct
objects with which to drive di�erential equations� we also require the
iterated integrals of low degree�

For smooth driving paths xt we can obviously construct all the
iterated integrals of yt and the joint iterated integrals of xt with yt�
This de
nes a map from S�V � into "G�V �W �p� The question we
aim to answer in this section is the following� can we extend that
de
nition to one valid for any path in "G�V �p� or even to any path
in "�V �p% We only have a general answer in the former case which
we now explain� �Understanding how to make the extension to "�V �p

is the key to generalising It�o�s type of di�erential equation to rougher
paths��

Consider the equation ������ driven by a piecewise smooth path�
The solution is again piecewise smooth� moreover the series solution
converges locally uniformly at the level of derivatives� Therefore we
have the expression for the iterated integrals of y

Y i
s�t 	

ZZ
s�u������ui�t

dyu� � � �dyui

	

ZZ
s�u������ui�t

	X
l���

Al��dX l�
s�u�� � � �

	X
l���

Ali�dX li
s�ui� y

�i
s �

�������

Providing we can justify changing the order of summation of the series
we have the alternative expression

�������
	X
S�r

X
l����li�S

lj��

Al� �� � ��Ali

ZZ
s�u������ui�t

dX l�
s�u�

� � �dX li
s�ui

y�is

where

������� Al� � � � � � Ali � V ��l����li� �� hom�W�i�W�i�

is the obvious induced map�
To obtain the absolute convergence of the series� and the continu�

ous extension of the map to "G�V �p� we must look a bit more closely
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at the expression for

�������

ZZ
s�u������ui�t

dX l�
s�u� � � �dX

li
s�ui �

At this point we exploit in a critical way the fact that we are dealing
with iterated integrals of the classical kind and are not working with
abstract multiplicative functionals� Now

ZZ
s�u������ui�t

dX l�
s�u�

� � �dX li
s�ui

	

ZZ
s�u������ui�t

s�u��������ul��u��l�
���

dxu��� � � �dxui�li ��������

and the domain of integration in this second expression can be parti�
tioned into disjoint simplexes� Given a sequence of distinct real num�
bers u��� 	 v�� � � � � ui�li 	 vS let � be the unique rearrangement of
�� � � � � S so that v�j are monotone decreasing� More generally� con�
sider the set of all rearrangements (l of �� � � � � S that arise as one
reorders sequences u���� � � � � ui�l� satisfying s � u� � � � � � ui � t�
s � u��� � � � � � u� 	 u��l� � etc� until s � ui�� � � � � � ui 	 ui�li �
These are in one to one correspondence with the number of ways to
partition �� � � � � S into exactly i components� The correspondence with
�l�� � � � � li� is achieved by ordering the components according to their
last surviving element� �the component that becomes extinct 
rst is the

rst component etc�� and putting lj equal to the number of elements
in the j�th component� Each element � 	 (l induces a linear map of
V ��l����li� to itself� and this map �� is an isometry� Because the do�
main of integration is the sum of the disjoint simplexes associated with
the rearrangements� and the integral is the sum of the integrals over
these disjoint domains� we have

�������

ZZ
s�u������ui�t

dX l�
s�u� � � �dX

li
s�u� 	

X
���l

��XS
s�t �

As we will see� this expression is easy to estimate� and we can read�
ily conclude that the expression ������� converges absolutely� So for
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smooth paths we have the identity

������� Y i
s�t 	

	X
S�i

X
l����li�S

lj��

Al� � � � � � Ali
X
���l

��XS
s�t y

�i
s �

which has the considerable attraction that the right hand side involves
xt only through it�s associated multiplicative functional and is essen�
tially a function on the in
nite tensor algebra�

However� this expression should carry a government health warn�

ing� Certainly� the right hand side is �as we shall see� de
ned for any
multiplicative functional in "�V �p and is a continuous function on that
space� For piecewise smooth paths� it de
nes a multiplicative functional
because it coincides with the iterated integrals of the piecewise smooth
path yt� using the continuity of the map it also de
nes a multiplicative
functional for any element of "G�V �p� indeed that path is geometric�

It is therefore tempting to assume the expression has a natural
interpretation for any multiplicative functional in "�V �p� but this is a
mistake� The result will not be multiplicative� and so fails the most ba�
sic property we expect of iterated integrals� and their substitutes in the
rougher case� The point is that the expression on the right in �������
is the unique linear function yielding the desired value on group�like
elements in the tensor algebra� However� although the functions on
smooth paths obtained by taking iterated integrals are linearly inde�
pendent �when regarded as elements of the space of functions on the
space of smooth paths�� they are certainly not algebraically indepen�
dent� There are many di�erent algebraic expressions that agree on the
sequences of iterated integrals corresponding to geometric multiplica�
tive paths�

Observe that ������� de
nes a multiplicative map from the group�
like elements in the tensor algebra of in
nite degree into an associative
algebra� Arguing formally� we may di�erentiate to induce a Lie map
from the Lie elements of the tensor algebra into the associative algebra�
Again arguing formally� the tensor algebra is the enveloping algebra of
this embedded Lie algebra� and so exploiting the universal property of
enveloping algebras� there should exist a unique multiplicative extension
of the Lie map to the full tensor algebra�

If there is a unique extension of ������� to a continuous and multi�
plicative map from T �W � it will not be linear� It�s construction would
allow us to give a uni
ed treatment of di�erential equations of It�o and
Stratonovich type� We would then be con
dent that there was good
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sense in extending the It�o functional beyond geometric paths� and al�
lowing any multiplicative functional in "�V �p to be the driving signal�

At the time of writing� we believe we understand the correct ap�
proach to the identi
cation of such an extension in an analytically useful
form� �In the piecewise smooth case each iterated integral of yt solves
a di�erential equation over xt� and we may compute the Lie algebra
associated to it� In fact this Lie algebra is always 
nite dimensional�
Therefore� after a non�linear change of co�ordinates� we may express
the iterated integral as a Taylor series as we have mapped out earlier�
By computing these changes of co�ordinates the new expression would
be multiplicative for all Xs�t in "�V �p�� con
rmation and explicit de�
termination of the formulae one obtains requires calculations we have
not carried through and must wait for a later paper�

Theorem ������ The series ������� and ������� converge absolutely for
any multiplicative functionalXs�t in "�V �p and de�ne continuous func�

tions� The resulting sequence Ys�t 	 fY i
s�tg

n
i�� is of �nite p�variation

and

������� kY i
s�tk � Ki i

i

i$

�s� t�i�p

� �i�p�$

	X
S��

KS iS
�s� t�S�p

�S�p�$
kysk

i �

If Xs�t in "G�V �p is multiplicative� then Ys�t 	 fY i
s�tg

n
i�� is multiplica�

tive� and we have the asymptotically improved bound

������� kY i
s�tk �

�Up �s� t��
i�p

� �i�p�$
�

Proof� Let K 	 kAk be the operator norm of A regarded as a linear
map A � V �� hom�W�W �� The number of partitionings of an ordered
set of S elements into exactly i non�empty subsets is bounded above by

�������
iS

i$

and so

������� kY i
s�tk �

	X
S�i

KS iS

i$
kXS

s�tk kysk
i �
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If Xs�t is in "�V �p and has variation controlled by  then one has the
estimate

�������

kY i
s�tk �

	X
S�i

KS iS

i$

�s� t�S�p

� �S�p�$
kysk

i

	 Ki i
i

i$

�s� t�i�p

� �i�p�$

	X
S��

KS iS
�s� t�S�p �i�p�$

��S � i��p�$
kysk

i

� Ki i
i

i$

�s� t�i�p

� �i�p�$

	X
S��

KS iS
�s� t�S�p

�S�p�$
kysk

i �

showing the series converges absolutely and bounding the individual

terms in a way that makes it clear that Y
�n�
s�t has 
nite p�variation con�

trolled by a multiple of  on any interval where  is bounded� A vir�
tually identical argument shows the uniform continuity of the sequence
under variation of Xs�t� However� the constants in these estimates ex�
plode with the degree�

On the positive side� the continuity ensures that if Xs�t is in

"G�V �p then Y
�n�
s�t is multiplicative� our results in Section ��� and par�

ticularly Theorem ����� then give the much stronger and more useful
estimate that for n � p�  bounded by L� and with

������� Up 	 max
j�	p


kysk
j Kp jp

�j$�p�j

� 	X
S��

KS jS LS�p

�S�p�$

�p�j
�

choosing � large enough� we have

������� kY i
s�tk �

�Up �s� t��
i�p

� �i�p�$

completing the proof of the theorem�

Cross terms� We have therefore seen that for linear equations the It�o
functional can be extended in a unique continuous way as a map from
"G�V �p to "G�W �p� However� for technical reasons that will become
apparent later� we would like also to know that the iterated integrals
between solution and driving noise also exist� This is readily done by
extending the original di�erential equation� in other words we solve the
equation

�������

���
��

dct 	 � ct dxt �

d�xt 	 ct dxt �

dyt 	 A�y� dxt �



��� T� J� Lyons

with c� 	 �� �x� 	 x�� The equation is still linear and so we can use the
approach above to construct the iterated integrals of �x and y and see
that they have unique continuous extension to "G�V �p�

In this way we see that if we wish to record the full structure
associated to our di�erential equation we should regard the It
o map as

an extension map lifting paths in "G�V �p to paths in "G�V �W �p�

������ The stochastic example�

What do the results we have proved so far say in the context of
Brownian motion and stochastic di�erential equations%

Suppose that Xt 	 V is a continuous path in Euclidean space�
chosen randomly according to Wiener measure �in which case we say
it is a Brownian path� or more generally according to some measure
which makes the underlying stochastic process a martingale or semi�
martingale �when we say Xt is a martingale or semimartingale path��
Then it is standard ��� that� with probability one� the forward and
symmetric Riemann sums

X
��ito
s�t 	 lim

n
	

k��n�tX
s�k��n

Xk��n � �Xk��n �X�k����n� �

X
��strat
s�t 	 lim

n
	

k��n�tX
s�k��n

Xk��n �X�k����n

�
� �Xk��n �X�k����n� �

�������

converge uniformly in the time co�ordinates and de
ne two distinct
multiplicative functionals

�������
X ito

s�t 	 ���Xs �Xt�X
��ito
s�t � �

Xstrat
s�t 	 ���Xs �Xt�X

��strat
s�t � �

corresponding to the It�o and Stratonovich integrals� A simple Borel�
Cantelli lemma shows that with probability one they are both in "�V �p

for every p � �� The two multiplicative functionals agree in degree one�
so their di�erence is an additive function with values in two tensors� It
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is referred to by probabilists as the quadratic variation process

�������
hX�Xis�t 	

�

�
lim
n
	

k��n�tX
s�k��n

�Xk��n �X�k����n�

� �Xk��n �X�k����n� �

it has 
nite variation with probability one� Exploiting the It�o and
Stratonovich integrals further� one may construct higher order iterated
integrals� These sequences X ito

s�t and Xstrat
s�t de
ne multiplicative func�

tionals of 
nite p�variation and arbitrarily high degree�
By our theorems these higher iterated integrals etc� are continuous

functions of the path and its second iterated integral� The di�erence

between the It
o and Stratonovich equations driven by Brownian motion

depends entirely on the choice of multiplicative functional of degree two

that we use to extend Brownian motion�

To understand clearly the possibilities and choices made in extend�
ing our Brownian path to a multiplicative functional of degree two and

nite p�variation where � � p � �� we must look more carefully at the
symmetric and anti�symmetric components of X�

st�

Decomposing the second integral � the area or anti�symmetric

part� In our discussion of the iterated integrals of a smooth path� we
saw that the symmetric part of the classical second iterated integral of
a smooth path is

�������
�

�
�Xt �Xs�� �Xt �Xs�

and as this is a continuous function in the uniform topology this relation
will hold true for any geometric path� �One readily checks that for the
Stratonovich integral the symmetric component of the second integral
is precisely this continuous extension��

To create a geometric multiplicative functional of degree two it is
therefore su�cient to construct the anti�symmetric two tensor process�
and to be multiplicative this must satisfy the algebraic relationship

������� As�u 	 As�t �At�u �Area �XsXtXu� �

where

������� Area �PQR� �
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is the area of the triangle interpolating the three points P�Q�R� �Ob�
serve that the area associated to a loop formed by taking a chord and
the trajectory of the path along the time interval s� t� would obviously
satisfy this relationship��

De�nition ������ We call an anti�symmetric two tensor process sat�

isfying ������� an area process relative to the path Xs�

Suppose � � p � �� then for any path of 
nite p�variation in V � and
associated area process As�t �having the correct modulus of continuity�
the multiplicative functional

�������
�
��Xt �Xt�

�

�
�Xt �Xs�� �Xt �Xs� �As�t

�
de
nes a geometric multiplicative functional in "G�V ��� The geometric
condition does not imply any sort of uniqueness or canonical choice for
the the area process given the underlying path� this is in contrast to
the unique continuous choice for symmetric component� Even if Xt is
smooth� there are many elements of "G�V �� lying over the path� Con�
sider the multiplicative functional Ys�t 	 ��� �� ��t����s�� constructed
by taking the limit of the increments and second integrals of the smooth
paths exp �n�� i ��t����n��� The result is geometric� non�trivial� and
for smooth enough � will be in "G�R���� however it projects to the
constant path�

The key� then� to de
ning stochastic di�erential equations is the
choice of this area integral� It really is a choice even in the Brown�
ian case� the work ��� demonstrates just how tenuous the connection
between L�evy area and geometric area of smooth paths really is�

The It�o and Stratonovich second iterated integrals only di�er in
the symmetric bracket process� they share a common area process � the
L�evy Area� The Stratonovich multiplicative functional is geometric�

Theorem ������ Let Xt be a semi�martingale and As�t be its L�evy

area� The linear stochastic di�erential equation

������� dyt 	 A�yt� dXt� � B�yt� dt �

where x �� A� � x� in hom�V� hom�W�W ��� and B� � in hom�W�W ��
are bounded operators which can be regarded as the composition of a con�

tinuous function on "�V�R���� and the random multiplicative func�

tional

�������
�
��Xt �Xs�

�

�
�Xt �Xs�� �Xt �Xs� �As�t

�
�
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In particular� all equations can be solved simultaneously with only a

single null set� The equations can be chosen to depend on the path� end

point of the solution etc�

Proof� There is little to say� The driving signal is �Xt� t�� so that if
we consider the inhomogeneous p�variation introduced in �������� �The
cross�iterated integrals against t are all canonically de
ned� we deduce
that the di�erential equation can be extended from the class of smooth
paths in an unique way to "G�V�R���� � The multiplicative functional
�������� with probability one� takes its values in "G�V�R���� ���� We
claim that this construction obtained by taking the composition of the
two maps coincides with the Stratonovich solution which probabilists
construct�

Fortunately� the very continuity of the map from "G�V�R����

ensures this� It is well known that one may solve a Stratonovich dif�
ferential equation in probability� by replacing the semimartingale path
by its dyadic piecewise linear approximations� and then taking the so�
lutions to the equation driven by these piecewise linear equations ����

On the other hand� our de
nition of the L�evy area makes it clear
that it is the limit of the areas associated to these piecewise linear paths�
a Borel�Cantelli argument ���� Sipil�ainen� shows that the rate of con�
vergence is fast enough for the piecewise linear paths� and their iterated
integrals to converge in "G�V�R����� By our continuity results� we
see that our solution and the conventional probabilistic one agree with
probability one�

Finally observe that our solution is obtained by composing a de�
terministic function depending on the coe�cients of the equation with
a random multiplicative functional constructed almost surely� but with
a null set that is independent of the coe�cients of the equation� In par�
ticular we may solve all such equations simultaneously and can choose
the equation so as to depend on the path without di�culty of interpre�
tation� No predictability condition is involved�

Remarks ������ Generalizing the equation� We will in due
course prove that we can develop continuity results in the fully non�
linear situation where the vector 
elds in the di�erential equation are
Lip �� � �� V � so the remarks above apply in much greater generality
than the linear case proven so far�

Remarks ������ Generalizing the noise� There are a number of
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directions in which one could generalize the noise� One should certainly
consider jumps� in general these are a little easier� because pure jump
random processes tend to have 
nite variation for p � �� The area inte�
gral does not come into the picture ���� In another direction� one could
look at other Markov processes as driving processes for dynamical sys�
tems� Here� matters still seem relatively open� except that one can say
there are wide classes of Markov processes which extend� like Brownian
motion� to admit L�evy area processes� and hence Stratonovich di�eren�
tial equations� but which are de
nitely not semi�martingales and cannot
be attacked via the standard It�o theory�

In these situations where the usual theory simply does not apply
��� an alternative approach is required to construct the L�evy area�
Now� L�evy proved� if one takes the piecewise linear approximation to
the path Xs that agrees at �n equally spaced points and look at the
sequence of areas as one re
nes the dyadic partitions� Then if Xs is
Brownian motion� this sequence forms a martingale over the 
ltration
obtained by revealingXs at the �

n equally spaced points� In many other
situations� one can still show that it is a convergent semi�martingale�
The classical martingale techniques are still important � but not the
time ordered 
ltration�

The symmetric part of X�
s�t and It�o Equations� By now a per�

sistent reader might understand enough to guess that constructing dif�
ferent second order multiplicative extensions to Brownian motion is
essentially equivalent to varying our notion of solution to our stochas�
tic di�erential equation� Even so we are at least super
cially surprised
that the distinction between It�o and Stratonovich second integrals is
not in the discontinuous L�evy area� but in the symmetric part� the part
which has a natural continuous choice for all continuous paths$

The di�erence between the It�o and Stratonovich approaches lie in
the symmetric additive functional known as the quadratic variation or
bracket process�

The earlier results about iterated integrals apply to the It�o equa�
tion and it is easy to write down series solutions etc� but now those
series involve the bracket process� To apply our approach we express
our equations in co�ordinate invariant form� An It�o equation

������� dyt 	 f i�yt� dx
i
t � f��yt� dt �

always requires a connection before it makes good sense� but can then
be rewritten in the Stratonovich form

������� dyt 	 f i�yt� dx
i
t � f��yt� dt�rfi f

j dhX�Xii�j��t
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and one can deduce all the theorems one had before� but now the de�
pendence includes the bracket process separately�

Theorem ������ Consider the linear It
o stochastic di�erential equation

�������

������� dyt 	 A�yt� dxt� � B�yt� dt �

where x �� A� � x� in hom�V� hom�W�W ��� and B� � in hom�W�W ��
are bounded operators� This map can be regarded as the composition of

a continuous function on "�V� V ��V�R������ and a random multiplica�

tive functional depending only on the path� its L�evy area� and its bracket

process� In particular� all equations can be solved simultaneously with

only a single null set� The equations can be chosen to depend on the

path� end point of the solution etc�

In particular� this perspective suggests that for robust numerical
solution of stochastic di�erential equations� one should not try to im�
plicitly simulate the bracket process locally as the quadratic variation
of the path� �as one does when one solves an It�o equation directly using
Euler type methods� but treat it separately as a known quantity and
go via Stratonovich methods� We think this is de
nitely true in some
cases� although it is not the whole story� and a complete understand�
ing of di�erential equations driven by �non�geometric� multiplicative
functionals will be required to give a better answer�

�� Integration against a rough path�

In this section we move from the linear#real analytic setting to the
truly non�linear#rough setting� Our objective is to de
ne the integral
of a rough path against a one form�

���� Almost multiplicative functionals � The construction of

an integral�

We have shown in Section ��� that ifXst 	 T �n� is p�multiplicative
�where we will use the convention n 	 p�� then it extends in a unique
way to a multiplicative functional Xst of 
nite p �variation in T �m� for
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all m � n and if Xst is controlled by  in T �n� so that

����� kXj
stk �

�s� t�j�p

� �j�p�$
� for all j � n �

then one has the same estimate for all j ��� �Here � is an appropri�
ately chosen constant depending only on p�� Similar estimates re�ect
the continuity of this extension map�

We will now explain how� with some loss of quantitative control�
this result can be seen as a special case of a more general one concerning
almost multiplicative functionals�

De�nition ������ Suppose Xst is any functional taking values in T
�n��

we say it is of �nite p�variation controlled by  if� for all s� t�

����� kXj
stk �

�s� t�j�p

� �j�p�$
� for all j � n �

In addition we say that such an Xst is an almost multiplicative func�

tional if for any compact interval J there is a � and a K such that for

all s� t and u in J we have

����� k�XstXtu �Xsu�
jk � K �s� u�	 � for all j � n� � � � �

Observations ������ We have already seen an almost multiplicative
functional� The lift �Xst 	 ���X�

st� � � � �X
n
st��� de
ned in the proof of

Theorem ����� is an almost multiplicative functional controlled by 
providing Xs�t 	 ��� � � � �Xn

st� is a multiplicative functional of 
nite p�
variation where n � p�� We see therefore that �ignoring the quality of
the estimates� Theorem ����� is a special case of the following�

Theorem ������ Suppose Xst is a bounded almost multiplicative func�

tional controlled by  on the compact interval J of degree n� Then there

exists a unique multiplicative functional �Xst on J and a constant

C �L�K� ��max
s�t�J

�s� t�� n� �

such that

����� k� �Xst �Xst�
ik � C �L�K� ��max

s�t�J
�s� t�� n��s� t�	 �
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for all i � n� There is at most one multiplicative functional �Xst that

can satisfy ����� regardless of the choice of C� Here �� K and  are the

terms in the de�nition of almost multiplicative and L is the uniform

bound on the components of Xst�

Corollary ������ In addition� if Xst has �nite p�variation controlled

by  then �X has p�variation controlled by C�  where C� only depends

on K� �� max f�s� t�� s� t 	 Jg and n�

Proof of the theorem� We proceed by induction and suppose the
projection of Xst into T

�j� has the multiplicative property� Presuming
for a moment existence of the limit� de
ne �X as follows

����� � �Xst�
j� 	 lim

mesh�D�
�
�Xst�Xt�t� � � �Xtr��t�

j�

and for all i �	 j�� take � �Xst�
i 	 �Xst�

i� In this case it is clear that �X
will be multiplicative on T �j��� If we show the existence of � �Xst�

j��
establish that �X is almost multiplicative� and compare it with Xst we
will have established the induction step� Iterating it completes the
proof�

We proceed in a similar way to before� Let

XD
s�t 	Xs�t�Xt��t� � � �Xtr���t �

where D 	 fs� t�� � � � � tr��� tg is a dissection of s� t�� First we bound

����� �XD
st �Xst�

j� �

independently of the choice of dissection D� and then we will show the
convergence of the products as the mesh size of the dissections tends
to zero� always providing  is regular� Observe 
rst that in the case
where the dissection is trivial� r 	 �� the di�erence in ����� is zero�
Assume the dissection is nontrivial� and choose an interior point ti of
the dissection D so that

�ti��� ti�� �
�

�r � ��
�s� t�

or equals �s� t� in the case where r 	 �� Let D� 	 D � ftig� If we
estimate ��XD

st �X
D�

st ��
j� and the similar terms as we successively

remove all the interior points of the dissection� we may use the triangle
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inequality to estimate ������ we will obtain a bound� which in analogy
with our previous arguments� is easily seen to be dissection independent�
Now

��XD
st �X

D�

st ��
j������

	 �X
D�	s�ti��

s�ti��

�Xti���tiXti�ti��

�Xti���ti���X
D�	ti���t

ti���t

�j������

and the multiplicative nature of X ensures that

����� Xti��tiXtiti�� �Xtiti�� 	 � �� � � � � � �z �
j� terms

�Rj�
ti���ti�ti��

� � � � �

and so

������ ��XD
st �X

D�

st ��
j� 	 R

j�
ti���ti�ti�� �

But the almost multiplicative property then gives the estimate

������ kRj�
ti���ti�ti��

k � K �ti��� ti��
	 � K

� �

r � �

�	
�s� t�	 �

for r � � and the similar estimate for r 	 �� Summing these error
estimates as one drops points from the dissection leads to the� by now�
familiar estimate

������ k�XD
s�t �Xs�t�

j�k � K ��	������ �� � ���s� t�	 �

and the consequential argument that if  is regular� then the XD con�
verge as the mesh size of the dissection goes to zero� In particular we
may de
ne

� �Xs�t�
j� 	 lim

mesh�D�
�
�XD

st �
j� �

It follows that if

������ R
j�
st 	 � �Xst �Xst�

j� �

then

������ kRj�
st k � K ��	������ �� � ���s� t�	 �
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To see that �X is almost multiplicative� observe that

������ � �Xst
�Xtu � �Xsu�

i 	

�����
����

� � i � j � � �

�XstXtu �Xsu�
i

�Rj�
st X

i��j��
tu

�X
i��j��
st R

j�
tu � i � j � � �

and providing kXi
stk � L for all i � n� s� t 	 J we have the estimate

������
k� �Xst

�Xtu � �Xsu�
ik � K �s� u�	

� �LK��	������ �� � ���s� u�	 �

completing the proof that �X is almost multiplicative� but with the new
constant

������ �K � K �� � �L ��	������ �� � ��� �

and a new uniform bound

������ �L � L�K ��	������ �� � �� max
s�t�J

�s� t�	 �

As �X is also almost multiplicative controlled by a multiple of  and
bounded on J this completes the basic induction step� Observing that
the theorem is trivial if j 	 � and repeating the step n times completes
the construction of the multiplicative functional�

To see uniqueness of the functional� it is enough to show that if

one has two multiplicative functionals
�

Xst�
�

Xst and they satisfy

������ k�
�

Xst �
�

Xst�
ik � C �s� t�	 � for all s� t 	 J� i � n �

then they agree for all i � n� The proof is also an induction argument�

x the smallest i for which the two multiplicative functionals di�er�
Then putting

��s� t� 	 �
�

Xst �
�

Xst�
i �

one obtains from the multiplicative property that

��s� u� 	 ��s� t� � ��t� u�
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and hence for any dissection one has the estimate that

��s� t� � �max
D

�ti� ti���
	�� �s� t� �

For regular  on an interval J this forces ��s� t� � � contradicting the
induction hypothesis�

The theorem and its proof only require a boundedness assumption
on X and regularity assumption on �

Proof of the Corollary� Suppose now that X is of 
nite p�
variation controlled by  on T �n�� where n�p � �� Then it is a simple

application of the triang le inequality to see that �X is also of 
nite
p�variation on T �n�� If n � p then one may repeat the uniqueness
induction argument we have just given to deduce that the new mul�
tiplicative functional we have constructed in this theorem agrees with
the unique multiplicative extension of 
nite p�variation we constructed
in Theorem ������

������ Applications and extensions�

A� The map from p�almost multiplicative functional to p�multipli�
cative functional is a uniformly continuous one� However� this is not a
consequence of the result so much as of the proof� Suppose that X� Y
are two almost multiplicative functionals controlled by the sameK�� ��
And suppose that they are close to each other in the sense that

������ k�Xs�t � Ys�t�
ik � ��s� t�i�p � i � p� �

then of course by the triangle inequality

������ k� �Xs�t � �Ys�t�
ik � ��s� t�i�p � C �s� t�	

and for i � p� this looks adequate� But for � � C �s� t�	�	p
�p or less
seriously �s� t�� � the estimate deteriorates� The key to the proof of
a continuity result is to observe that at each stage in the construction of
the multiplicative functional out of the almost multiplicative functional�
we can control the di�erence between the two approximations� We then
obtain the following theorem�
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Theorem ������ Suppose that X� Y are two almost multiplicative

functionals controlled by the same K�� �� and that �s� t� � L for

s� t 	 J � Suppose further that X�Y are close in the p�variation sense

so that

������ k�Xs�t � Ys�t�
ik � ��s� t�i�p � i � p� �

then there is a continuous� increasing function ���� depending only on

K�L� �� p and satisfying ���� 	 � so that the associated multiplicative

functionals satisfy

������ k� �Xs�t � �Ys�t�
ik � ����

�s� t�i�p

�i�p�$
�

for all i�

Proof� Because of Theorem ������ it is su�cient that we deal with the
case i � p��

Suppose Xst� Yst are almost multiplicative and multiplicative up
to degree j � p�� and that they satisfy the hypotheses of the theorem�
De
ne �X� �Y by

������ � �Xst�
j� 	 lim

mesh�D�
�
�Xst�Xt�t� � � �Xtr��t�

j�

and for all i �	 j�� take � �Xst�
i 	 �Xst�

i� and similarly for �Y � We will
show that these are close in the sense of the conclusion� Repeating the
argument the required 
nite number of times� the result will follow�

De
ne XD
s�t 	Xs�t�Xt��t� � � �Xtr���t� etc� where

D 	 fs� t�� � � � � tr��� tg �

We will estimate k� �Xs�t� �Ys�t�
j�k by controlling �XD

st � Y
D
st �

j� in a
uniform way and passing to the limit� Now as before we may succes�
sively drop points from the dissection� By making a careful choice of
the point to drop �but note that the choice depends on  alone� and can
be common for both functionals� we have the following two estimates�
because of the almost multiplicativeness we have

������ k�XD
st �X

D�

st �
j�k � K

� �

r � �

�	
�s� t�	 �
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for r � � and the similar estimate for r 	 �� Combining the estimates
for Y we have

������ k��XD
st � Y

D
st �� �XD�

st � Y
D�

st ��j�k � �K
� �

r � �

�	
�s� t�	 �

while using the closeness hypothesis� �and some crude version of the
neo�classical inequality� one obtains

������

k��XD
st � Y

D
st �� �XD�

st � Y
D�

st ��j�k

� A�p� ��� ���
� �

r � �

��j���p

�s� t��j���p �

so combining the two and using the uniform bound that �s� t� � L one
has

������

k��XD
st � Y

D
st �� �XD�

st � Y
D�

st ��j�k

�
�
A�p� ��� ���

� �

r � �

��j���p

� �K L	��j���p
� �

r � �

�	�
�s� t��j���p

and summing this over r yields the required uniform estimate�

B� As a second simple� but rather important corollary of Theorem
������ we see that it is possible to vary one multiplicative functional in
the direction of a second� In particular� suppose that Xst is a multi�
plicative functional of 
nite p�variation controlled by  and that Hst

is a second� and suppose further that k�Hst�
jk � K��s� t��� for all

j � p� and for some � � � � ��p� In this case� the neo�classical
inequality shows HstXst to be of 
nite p�variation an d more ele�
mentary considerations show it to be almost multiplicative� Moreover
k�HstXst �XstHst�

jk � K��s� t�����p� and so Theorem ����� shows
that the multiplicative functional associated to the left or right hand
perturbations of Xst coincide� We denote this modi
cation by XH

s�t�
Although we do not have time in this paper to pursue the matter� it
will be useful if we want to di�erentiate functionals on path space�
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���� Integrating a one�form � A most important almost mul�

tiplicative functional�

Our intention is to solve equations of the type

������ dY 	 f�Y � dX � Y� 	 a �

whereX and Y are multiplicative functionals and where Ys 	 Y�s�Y��
We wish to adopt an approach based on Picard iteration� in other words
we treat our equation as an integral equation and construct a solution
by iterating the function F

������ F �Y �t 	 a�

Z t

�

f�Ys� dXs �

Although such an approach is almost universal� it is apparently un�
natural from a geometric perspective� Every term in our di�erential
equation is meaningful without a choice of co�ordinates for the space
where Y takes its values and one would hope that the solution had the
same properties� However� the functional in ������ certainly involves a
choice of co�ordinate chart� and di�erent choices produce di�erent maps
F �

To succeed in our Picard iteration we now follow up these two
separate but closely related points� We must make sense of the concept
of an integral� and we must understand its behaviour under changes of
variable�

������ Integrating a one form�

We will now prove that a one form can be integrated against a mul�
tiplicative functional in a natural way� We do this via the construction
of an almost multiplicative functional� The reader should be warned
that our methods are currently limited� and in general we can only treat
geometric multiplicative functionals of 
nite p�variation� However� for
the case where the paths have p�variation satisfying p � � �and so de�
gree is n � �� then the next section will extend these results to all
multiplicative functionals� This improvement in the case n 	 � is im�
portant because it allows one to treat the It�o approach to di�erential
equations in common with the Stratonovich approach� We believe our
failure to extend the result to all multiplicative functionals in the gen�
eral case re�ects a lack of understanding on our part� inspection and
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guess work allow one to treat n 	 � but do not point to the general
picture�

But before explaining the analysis� for the sake of precision� we
need some simple notation�

De�nition ������ We say that a multiplicative functional Xs�t 	 T �n�

lies above a path Xt 	 V if X�
s�t 	 Xt �Xs�

It is clear that there always is such a path under any multiplicative
functional and that it is unique� once we have determined its value at
a single time� In what follows we will use the notation �vector font�
normal font� to express this relationship without further mention�

Main Lemma� Notation� A W �valued ��form � on V is a function
on V whose value at any point is a linear homomorphism from V to
W � that is ��v� 	 hom�V�W �� Suppose that � is smooth enough that
one can di�erentiate it� Denote by

������

������
�����

�� 	 � � ���v� 	 hom�V�W � �

�� 	 d� � ���v� 	 hom�V� hom�V�W ��
�	 hom�V � V�W � �

�k 	 d�k�� � �k�v� 	 hom�
k
�
�
V�W � �

Now� the multilinear map �k�v� is not symmetric in all its coe�cients
� and so one must have some convention on the order in which they
appear� We adopt the convention that �k�v� �v�� v�� � � � � vk� is de
ned
so that for smooth paths and conventional integrals

������

Z
s�u�t

�k�xu� �dxu� v�� � � � � vk�

	 �k���xt� �v�� � � � � vk�� �k���xs� �v�� � � � � vk� �

Recall that � is a Lip�� � �� one form with norm at most M providing
that for � � j � � one has the Taylor series style expression

������
�j�xt� �v�� v�� � � � � vj� 	

X
��i���j

�ji�x�� �x
i
��t� v�� v�� � � � � vj�

� Rj�x�� xt� �v�� v�� � � � � vj� �
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where �i�x� and Ri�x� y� are bounded in operator norm on

hom
� iO

�

V�W
�

with the controls

������
k�i�x�k �M �

kRi�x� y�k �Mkx� yk��i �

As we noted �������� the remainder only depends on x�� and xt� and
not on the intermediate smooth path segment� Exploiting this point�
and taking a limit� we see that the identity ������ and estimate ������
hold for any sequence ���xt 	 xi��t� � � � �x

i
��t� arising from a geometric

multiplicative functional�
We are now in a position to de
ne the crucial almost multiplicative

functional which will give us the integral� We start with a de
nition
which is understandable for smooth paths� and then transform it in a
combinatorial way so that it is clear that the functional is the restriction
of a uniformly continuous function de
ned on all paths in "�V �p� This
extension is easily seen to de
ne an almost multiplicative functional
when evaluated on "G�V �p and this completes the de
nition#theorem�
As a warning� this functional �which is linear� de
nitely does not give
an almost multiplicative functional for a general element of "�V �p�

Prede�nition ������ For � a Lip�� � �� one form with values in

W � and Xs�t a geometric multiplicative functional of �nite p�variation
�obtained by taking a sequence of iterated integrals of a smooth path��
de�ne

������

Y i
s�t 	

ZZ
s�u������ui�t

	p
X
l���

�l��Xs� �dX
l�
s�u�

�

� � �

	p
X
li��

�li�Xs� �dX
li
s�ui

� �

Because the �li�Xs� are constants we may equate the expression with

������

Y i
s�t 	

	p
X
l������li��

�l��Xs�� � � � � �li�Xs�

�

ZZ
s�u������ui�t

dX l�
s�u�

� � �dX li
s�ui

�
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Focus attention on
RR

s�u������ui�t
dX l�

s�u� � � �dX
li
s�ui� For our smooth

path one has

������

ZZ
s�u������ui�t

dX l�
s�u�

� � �dX li
s�ui

	

ZZ
V

dXu��� � � �dXu��l�
� � �dXui�� � � �dXui�li

�

where the domain of integration V is given by

������

V 	 s � u� � � � � � ui � t �

s � u��� � � � � � u��l� 	 u� �

���

s � ui�� � � � � � ui�li 	 ui �

But this domain of integration is a product of simplexes and can be

represented as a union of disjoint simplexes obtained by shu�ing� Fix

l 	 �l�� � � � � li� and let u 	 �u���� � � � � u��l� � � � � � ui��� � � � � ui�li� be any

distinct sequence satisfying the constraints of ������� Let �u denote the

permutation that would reorder the numbers u to be increasing� and let

(l denote the range of this function as a subset of the group )klk of

permutations of klk elements where klk 	
P

j�������i lj� We can expand

our integral as a sum

������

ZZ
s�u������ui�t

dX l�
s�u� � � �dX

li
s�ui

	
X
���l

ZZ
s�v������vklk�t

dXv���� � � �dXv��klk� �

Now the group )n acts on �
n
V in the obvious way taking �v�� � � � � vn�

to �v����� � � � � v��n��� It follows that

������

ZZ
s�u������ui�t

dX l�
s�u� � � �dX

li
s�ui

	
X
���l

�
� ZZ
s�v������vklk�t

dXv� � � �dXvklk

�

	
X
���l

��X
klk
s�t �
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and so �nally we have reduced the integral to an expression involving

only the multiplicative functional� Regarding this calculation as moti�

vation� we give our formal de�nition for Ys�t�

De�nition ������ For any multiplicative functional Xs�t in "G�V �p

de�ne�

������ Y i
s�t 	

	p
X
l������li��

�l��Xs�� � � � � �li�Xs�
X
���l

��X
klk
s�t � �

Theorem ������ For any multiplicative functionalXs�t in "G�V �p and
any one�form � 	 Lip� � �� fXu� u 	 s� t�g� with � � p the sequence

Ys�t 	 ���Y �
s�t� � � � �Y

	p

s�t � de�ned above is almost multiplicative and of

�nite p�variation	 if Xs�t is controlled by  on J where  is bounded

by L� and the Lip� � �� norm of � is bounded by M � then the almost

multiplicative and p�variation properties of Y are controlled by multiples

of  which depend only on �� p� L�M �

Proof� Note that we also have the trivial estimate based on the size
of the permutation group that

������

���
ZZ

s�u������ui�t

dX l�
s�u� � � �dX

li
s�ui

��� � j(lj
�s� t�klk�p

� �klk�p�$

� klk$
�s� t�klk�p

� �klk�p�$
�

We must now prove that Ys�t is almost multiplicative when restricted
to "G�V �p� For motivation of our calculations we again start by for�
mally regarding our multiplicative functional as a sequence of iterated
integrals�

Y i
s�u 	

ZZ
s�u������ui�u

	p
X
l���

�l��Xs� �dX
l�
s�u�

� � � �

	p
X
li��

�li�Xs� �dX
li
s�ui

�

	
X

r�������i

ZZ
t�ur�������ui�u

� ZZ
s�u������ur�t

	p
X
l���

�l��Xs� �dX
l�
s�u�

�

� � �

	p
X
lr��

�lr �Xs� �dX
lr
s�ur

�
�
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�

	p
X
lr����

�lr���Xs� �dX
lr��
s�ur��

�

������

� � �

	p
X
li��

�li�Xs� �dX
li
s�ui

�

	
�
Ys�t �

� ZZ
t�u������uj�u

	p
X
l���

�l��Xs� �dX
l�
s�u�

�

� � �

	p
X
lj��

�lj �Xs� �dX
lj
s�uj

�
�	p

j��

�i

This expression looks close to our target� but we must move the ref�
erence point in the second half of the expression from the time point
s to the time point t� This follows from the Taylor type expression�
Consider the terms �l�Xs� dX

l
s�u where u � t� Then again by linearity

of tensor multiplication one gets dX l
s�u 	 �Xs�t � dXt�u�

l and so

	p
X
l��

�l�Xs� �dX
l
s�u�

� 	

	p
X
l��

l�� or lX
i��

�l�Xs� �X
i
s�t � dX l�i

t�u �

	

	p
X
j��

	p
�jX
i��

�ij�Xs� �X
i
s�t � dXj

t�u�������

	

	p
X
j��

�j�Xt� �dX
j
t�u� �

	p
X
j��

Rj�X�� Xt� �dX
j
t�u�

� and so we have

Ys�u 	 Ys�t � Yt�u

� Ys�t �
� 	p
X
l������li��

�X
�

�l��Xs� Xt�� � � � � �li�Xs� Xt�

�
It is exactly at this point that one is assuming the derivatives of the one form

contract with the iterated integrals to produce a result that depends on the path chosen

only through it�s initial and terminal values� In other words� the iterated integrals di�er

from those of the chord Xt�X� by an element in the enveloping algebra�
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�

ZZ
t�u������ui�u

dX l�
t�u� � � �dX

li
t�ui

��i�	p


i��

������

where the sum is over all sequences � where

������ �l 	 f�l�Xs�� R
l�X�� Xt�g

and where for each l� one has� for at least one of lj� that �
l 	 Rl�X�� Xt��

It is then an easy matter to estimate the size of this term and see that
the functional is almost multiplicative�

One has that

���
	p
X

l������li��

�X
�

�l��Xs� Xt�� � � � � �li�Xs� Xt�

�

ZZ
t�u������ui�u

dX l�
t�u�

� � �dX li
t�ui

����

�M i

	p
X
l������li��

��i � �� j(lj �� � jXs �Xtj
����i�� jXs �Xtj

���

�
�t� u��l����l���li��p

� �jlj�p�$

�M i jXs �Xtj
��� �t� u��li����p

�

	p
X
l������li��

��i � �� j(lj �� � jXs �Xtj
����i�� �� � �t� u�������p�i��

where the passage from the 
rst to second expression is based on the es�
timate given above for the iterated integral of iterated integrals� count�
ing the number of �� and by exploiting the inequality

������ �lj �Xs�Xt� � M �� � kXs �Xtk
����

in all but one of the terms in the product� in the latter one uses the fact
that the remainder type term appears at least� once to be more precise

�M i
��t� u���p

���p�$

�
�t� u�li���p

�
� �

��t� u���p
���p�$

�����i��
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� �� � �t� u�������p�i��
	p
X

l������li��

��i � �� j(lj

� �klk�p�$

�M i
��t� u���p

���p�$

���l
�t� u�li���p

�
� �

��t� u���p
���p�$

�����i��

� �� � �t� u�������p�i��
i	p
X
m��

��i � ��m$

� �m�p�$

�
�i p� � ��$ ��i � ��

� ���p�$
M i

��t� u���p
���p�$

���l
�t� u�li���p

�
�
� �

��t� u���p
���p�$

�����i��
�� � �t� u�������p�i��

� K�p� ��M i �s� u��i���p
�
� �

��t� u�
���p�$

�������p���i���
and since � � p and i � � we have the estimate� The functional Yst is
almost multiplicative with power ��p� It is interesting that the const
ant grows so rapidly with the roughness of the path�

To 
nalize the argument� recall that we did some manipulations of
Yst where we used the representation of the terms in the iterated inte�
gral to motivate certain manipulations which were obvious for classical
smooth integrals because of their general properties of linearity and
additivity over disjoint simplexes� It is necessary to convince oneself
that an integrated form of ������ holds when a geometric multiplicative
functional is substituted for the iterated integrals of the smooth path�
This is obvious for geometric multiplicative functionals because the al�
gebraic identities clearly hold on a closed set containing the lifts of the
smooth paths� By de
nition this includes "G�V �p�

As a consequence of this result we can de
ne the integral of a
��form�

De�nition ������ We say that �Ys�t is the integral of the one form �

against X if �Ys�t is the multiplicative functional associated to the almost
multiplicative functional we de�ned above� In this case we write

������

�Ys�t 	

Z
s�u�t

��Xu� �Xu �

� �Y 	 ��X� �X �
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We now have an integral� We also have a change of variable for�
mula�

Corollary ������ Suppose f is a Lip�� map from V �� U then it

induces a natural map of "G�V �p �� "G�U�p providing � � p�

Proof� Apply the above theorem to the di�erential of f �

So just as semimartingales as a class are preserved by smooth maps�
so is "G�V �p�

������ The two step case � p�variation less than ��

The reader may be particularly interested in the special case which
includes stochastic di�erential equations� For this reason we treat in�
dependently the case where one has a multiplicative functional of de�
gree two� the more explicit approach developed here permits a stronger
result� We show that it is possible to integrate any p�multiplicative
functional against a Lip� � �� one form providing � � p� Again our
approach is to construct an almost multiplicative functional and al�
though the result is almost contained in the previous section it seems
worth the e�ort of doing the calculation explicitly in this important
special case to identify the constants and �perhaps%� get a feel for how
to generalise to the general case�

Even in this case there are many terms and the algebra is relatively
complex� Mathematica was used by the author to keep track of some
of the terms in the calculations�

Our basic idea can be summarized by saying we start with a multi�
plicative functional X of degree two which we think of as representing
the integral and second iterated integral of a path X � We write down
the obvious approximation to the integral and iterated integral of the
integral of X against a ��form� This is not multiplicative� but it is
almost multiplicative� The unique multiplicative functional that is ap�
propriately close is regarded as the integral of X against the ��form�

Fix � � p � �� Then Xst is a multiplicative functional on J with
p�variation controlled by  if

kX�
tsk � �t� s���p and kX�

tsk � �t� s���p �

Suppose that � is a ��form that is Lip�� where p� � � � � ��
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By Taylor�s theorem

������
�����Xt�� ��Xs��

�

�
�d�� �Xs� �X

�
st�
��� � M �t� s���p �

So if we wish to approximate the iterated integrals of Y the  integral!
of X against �� it makes sense to consider
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�
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�
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�
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�
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o
�

Clearly� Ys�t has 
nite p�variation controlled by �M � We will now
establish the claim that it is also an almost multiplicative functional
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now recalling Taylor�s theorem

��Xt� 	 ��Xs� �
�

�
�d�� �Xs� �X

�
st� � r��t� s� �

kr��t� s�k � M �t� s���p

and

������
d��Xt� 	 d��Xs� � r��t� s� �

kr��t� s�k � M �t� s�������p �

We use these approximations to estimate Ysu�Yst�Ytu� Substituting
both approximations into the ��tensor component of Yst � Ytu� substi�
tuting only the 
rst into the ��tensor component� and expanding out
each term in Xi

s�u within Ysu in terms of Xj
st�X

j
tu using the multi�

plicative proper ty for X one has after a tedious calculation with many
terms �or using Mathematica after a relatively complex set of manipu�
lations� the three terms of di�erent tensor degree in Ysu�Yst �Ytu in
increasing order of complexity�

The zero�th order term is clearly zero�
The 
rst order term is r��s� t�X

�
t�u � r��s� t�X

�
t�u and

kr��s� t�X
�
t�u � r��s� t�X

�
t�uk

�M ��s� t���p �t� u���p � �s� t�������p �t� u���p�

� �M �s� u������p �

������

giving the required estimate�
The second order term breaks naturally �if somewhat painfully�

into a sum of �� terms� which under our assumptions are of � di�erent
magnitudes�

���Xs�� d��Xs�� �X
�
s�t �X

�
t�u�

� ���Xs�� d��Xt�� �X
�
s�t �X

�
t�u�

� �d��Xs�� ��Xs�� �X
�
s�t �X

�
t�u �X�

s�t �X
�
t�u�

������

� ���Xs�� d��Xs�� �X
�
s�t �X

�
s�t �X

�
t�u�

� ���Xs�� r��s� t�� �X
�
t�u �X�

t�u �X
�
s�t�
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� �r��s� t�� ��Xs�� �X
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� �d��Xs�� d��Xs�� �X
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������

and so one has that the norm of the expression above is less than

������
M� ���s� u���p � ��s� u������p � ��s� u���p

� ��s� u������p � �s� u�������p�

and providing �s� u� � � we have the simpler bound

������ ��M� �s� u���p � �s� u� � � �

Recalling our assumption that � is a ��form that is Lip�� where p�� �
� � � we see that both errors are controlled to a degree greater than
one in � This leads us to conclude that Y is an almost multiplicative
functional� Our approach used the multiplicative property� but never
required the geometric property of X� As above we de
ne the integral

������

Z
s�u�t

��Xu� �X �

to be the associated multiplicative functional�
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������ Continuity of the integral�

It is an immediate corollary of our results so far� that the integral

������

Z
s�u�t

��Xu� �X

is a continuous map from �geometric� multiplicative functionals and
Lip� � �� one forms to p�multiplicative functionals� Since it is clear
that the integral of a smooth path produces a geometric functional� it
follows from the continuity of the map that the integral against any
element of "G�V �p produces a multiplicative functional in "G�W �p 
"�W �p�

In more detail� the almost multiplicative functional associated with
a geometric functional

������ Y i
s�t 	

	p
X
l������li��

�l��Xs�� � � � � �li�Xs�
X
���l

��X
klk
s�t �

is clearly continuous in the sense that if X�X �� are multiplicative func�
tionals controlled by  and satisfying

������ k�Xs�t �X
�
s�t�

ik � �
�s� t�

� �i�p�$
�

moreover the kXu �X �
uk � �� and the 
nitely many functions x ��

�l��x� � � � � � �li�x� have a uniform modulus of continuity ����M� p��
so one has the estimate on the almost multiplicative functionals

������

kY i
s�t � Y

�i
s�tk

�
� 	p
X
l������li��

��Mklk j(lj

� ����M� p��
�s� t�jlj�p�i�p

� �jlj�p�$

�
�s� t�i�p

and so we can apply the continuity theorem for the construction of
a multiplicative functional from an almost multiplicative functional to
deduce the following
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Theorem ������ If X�X �� are geometric multiplicative functionals of

�nite p�variation controlled by  with �s� t� � L for s� t 	 J � and � is

a one form with a Lip� � �� norm at most M then there is a function

���� L�M� p� continuous and zero if � 	 � such that if

������ k�Xs�t �X
�
s�t�

ik � �
�s� t�i�p

� �i�p�$
� i � p�

and

������ kXu �X �
uk � � �

then for i � p�

������

����
Z

s�u�t

��Xu� �X �

Z
s�u�t

��X �
u� �X

�
�i���

� ���� L�M� p�
�s� t�i

�i�p�$
�

Similar estimates apply to the variation of the one form�

Corollary ������ If X 	 "G�V �p then

������

Z
s�u�t

��Xu� �X is in "G�W �p  "�W �p �

Continuity in the case p � � for non�geometric functionals� In
the situation where p � � we have the alternative description of our
almost multiplicative functional valid for any X 	 "�V �p� and we may
check the continuity directly in this case as well� We explicitly compute
the changes to the almost multiplicative functional
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Suppose that

������ Xs 	 �Xs�e �s � X�
st 	 �X�

st�e �st � X�
st 	 �X�

st�e �st �
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where the approximation errors satisfy

������ e �s � � � e �st � ��s� t���p � e �st � ��s� t���p �
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M �� �s� t���p���� �s� t���p

�
�

�
M ��s� t���p�

M� ���� � ���s� t���p

� � ��� � ���s� t���p

� �� �s� t���p�
o
�

with i 	 �� �� �� and providing �s� t� � �� � � �� one has the more
intelligible inequality

������ k�Yst � �Yst�
ik � f�� �M ���� �s� t���p� �M� � �s� t���pg �

with i 	 �� �� �� establishing the continuity of the map into almost
multiplicative functionals�

�� Di�erential equations� putting it all together�

In this section we achieve our main objective of showing that the
It�o functional extends uniquely to a continuous map de
ned on the
rough paths in "G�V �p providing the de
ning vector 
elds are Lip��
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and � � p� This permits� in a reasonably complete way� the solution
of di�erential equations driven by rough �but geometric� multiplicative
functionals� It completely removes the 
nite dimensional Lie algebra
assumption�

The key estimate will be the one we established for the integration
of one forms� this together with a reasonably delicate exploitation of
inhomogeneity will show Picard�s iteration scheme converges� The ar�
gument will be split into a number of distinct steps� But 
rst we must
be precise about our concept or de
nition of a solution$

���� Giving the di�erential equation meaning�

Take a smooth path Xt in V and a linear map f from V into the
Lipschitz vector 
elds on a vector space W � then one may use schoolboy
integration to de
ne a solution to our basic equation� Classically� one
could say the path Yt solves the equation

����� dYt 	 f�Yt� dXt � Y� 	 a �

providing Yt satis
es the integral equation

����� Yt 	 a�

Z
��u�t

f�Yu� dXu �

Observe that we can reformulate this integral identity in a trivially
di�erent way

�����

Xt 	 X� �

Z
��u�t

dXu �

Yt 	 a�

Z
��u�t

f�Yu� dXu �

Consider the one form on V �W with values in V �W de
ned by

����� h��x� y�� �dX� dY � 	 �dX� f�y� dX� �

Then for smooth paths the integral equation ����� can be rewritten as

����� �Xt� Yt� 	 �X�� a� �

Z t

�

h�Xu� Yu� �dXu� dYu� �
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Putting Zt 	 �Xt� Yt� we can say that a solution to ����� is a lift of the
path Xt to a path in V �W satisfying

�����

Zt � Z� 	

Z
��u�t

h�Zu� dZu �

Z� 	 �X�� a� �

Although this transformation may seem essentially trivial in the clas�
sical setting� for us it is not really so� We have no di�culty extending
this characterisation to rough signals�

De�nition ������ Let X 	 "G�V �p be a geometric multiplicative

functional projecting onto the path Xt� and let f be a linear map from

V into the Lip� � ��W � vector �elds� A solution to the equation

����� dY 	 f�Yt� dX � Y� 	 a �

is an extension of X to Z 	 "G�V �W �p such that Z projects onto

Zt 	 �Xt� Yt�� Y� 	 a� and such that Z satis�es �Z 	 h�Zt� �Z�

The main point to notice is that we do not treat the solution as an
independent object� but rather as an extension of the original driving
signal� In particular� we require the existence of cross iterated integrals
between driving signal and solution to be constructed� On the one hand
this seems a bonus� if we can construct integrals between solution and
driving signal so much the better� on the other hand it is essential� we
could not make sense of the integral at all for rough signals without
some cross information between integrand and integrator� The author
is remi nded of those induction arguments which only work if you prove
a stronger result than you were aiming for� In any case� the de
nition
is clearly consistent with the classical one� If X 	 "G�V �p is a smooth
path with its iterated integrals� the classical solution� its iterated inte�
grals� together with the cross integrals with the driving signal� together
satisfy the extended equation�

Our approach requires that the vector 
elds in the equation have
a smoothness related to the roughness of the path� This was necessary
for the integral to make sense� However� as in the classical situation�
the smoothness required of the vector 
elds in the de
nition is less than
that required for uniqueness�

The main purpose of this part of the paper� and indeed of the entire
paper is to prove the following theorem�
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Theorem ������ Suppose that f � V �� Lip��W�W � is a linear map

into Lipschitz vector �elds� Then consider the It
o map X �� �X�Y �
de�ned for smooth paths by

����� dYt 	 f�Yt� dXt � Y� 	 a �

De�ne the one form h by

h��x� y�� �dX� dY � 	 h�y� �dX� dY � 	 �dX� f�y� dX� �

For any geometric multiplicative functional X 	 "G�V �p with � �
p � � there is exactly one geometric multiplicative functional extension

Z 	 �X�Y � 	 "G�V �W �p such that if Yt 	 Y �
��t � a then Z satis�es

the rough di�erential equation

����� �Z 	 h�Yt� �Z �

Moreover this solution to the rough di�erential equation is constructed

by Picard iteration� there is a small interval �� T � whose length can be

controlled entirely in terms of the control on the roughness of X and

of f and the rate so that the convergence of this iteration scheme is

faster than the given exponential rate on the interval� The It
o map is

uniformly continuous and the map X �� Z is the unique continuous

extension of the It
o map from "G�V �p to "G�V �W �p�

Our convergence theorem for Picard iteration requires that � � p�
and constructively produces a unique solution� the extension of Peano�s
theorem to show existence under the weaker hypothesis � � p � � is
open �except in the case where p � �� here a 
xed point argument
can be applied to show existence and A� M� Davie �Edinburgh � pri�
vate communication� has given the author examples to show that the
solution need not be unique � � p ���� �����

We may de
ne Picard iteration as follows

������

Zn�
s�t 	

Z
s�u�t

h�Zn
u � �Z

n �

Zn
� 	 �b� a� �

where Zn is uniquely determined by Zn
� 	 �b� a�� the choice of b is

irrelevant to the de
nition as h does not depend in any way on the 
rst
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coordinate of Z� If we can prove that the multiplicative functionals
Zn converge in "G�V �p� then it is routine from our result about the
continuity of the integration against one forms that the limit will be a

xed point of the functional and so our desired solution�

However� in contrast to the normal contraction mapping argument�
it seems essential to consider a more complicated iteration so that we
might keep track of the joint interactions of more terms�

Step �� Norms on tensor algebras over �nite sums of vector

spaces� There are many di�erent equivalent norms one could use on
the tensor algebra over the space V � W � we will use an induction
argument where a choice adapted to the possibilities for independently
scaling the di�erent coordinates will simplify the proof��

The tensors of 
xed degree over a vector space admit a further
direct sum decomposition if the underlying vector space is already a
direct sum

������
T �n��V �W � 	

nM
j��

�V �W ��j �

�V �W ��j 	 Zj�� � Zj���� � Zj���� � � � � � Z��j �

where Zj�k�k comprises those tensors that are homogeneous of degree
j � k in V and k in W in whatsoever order�

Remark �������Requirement� Let z 	 zj���zj�����zj����� � � ��
z��j represent the decomposition of an element z 	 �V �W ��j � then
the norm on �V �W ��j should be chosen to have the property that
kzk 	 supk�j kz

j�k�kk�

De�nition ������ A multiplicative functional Z in "�V �W �p is con�
trolled by  if

������ kZj�k�k
s�t k �

�s� t�j�p

� �j � k�p�$ �k�p�$
�

for all j � p��

Of course this control is comparable with the one that ignores the
inhomogeneity�

�
See also the earlier section inhomogeneous degrees of smoothness�
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Step �� Rescaling and Tensor Algebras� If S is a linear automor�
phism on V then it induces a natural graded algebra homomorphism �S
on the tensor algebra� taking v��v��� � ��vn to Sv��Sv��� � ��Svn�
Apply this to the scaling operators S�v� 	 � v� Their extensions
act by multiplying the tensors of degree k by �k so that �S �a� 	
��� �a�� �

� a�� � � � � �
n an�� These operators are very important to us�

but the general notation is clumsy� so we shorten it�

De�nition ������ We will use the notation �Xs�t for �S�Xs�t��

Because �S is always an algebra homomorphism �Xs�t is also a
multiplicative functional� leading to the slightly peculiar but correct
notation �Xs�t � �Xt�u 	 �Xs�u�

Consider the linear projections PV � V � W �� V � and PW �
V �W �� W � then if Z is a multiplicative functional in the tensor
algebra over V �W � let X 	 PVZ and Y 	 PWZ be the associated
multiplicative functionals� We will frequently use the notation �X�Y �
for Z to remind the reader of the direct sum structure� however the
multiplicative functional �X�Y � is not determined by X�Y separately�
as it involves cross terms�

It is possible to scale the complementary subspaces of a direct sum
di�erently and we use the shorthand ��X� �Y �st for the multiplicative
functional �S��X�Y �st where S��v �w� 	 � v � �w�

Consider how this inhomogeneous scaling interacts with a control
on the p�variation�

Lemma ���� Let X 	 "�V �p be controlled by �s� t� so that

������ kXj
s�tk �

�s� t�j�p

� �j�p�$

and �X�Y � 	 "�V �W �p be an extension of X� Suppose �X�Y �st is
controlled by K �s� t�� Then �X� �Y �st is controlled by

������ maxf�� �kp�jK � � � k � j � p�g�s� t� �

In particular� if � � K�	p
�p � � then �X� �Y �st is controlled by

�s� t��

Proof� Let Zj
s�t 	 �X�Y �js�t be the component of the multiplicative

functional of degree j and let Zj�k�k
s�t denote the component of this
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tensor of degree j � k in V and k in W � Then by assumption

������ kZj�k�k
s�t k �

�K �s� t��j�p

� �j � k�p�$ �k�p�$
�

therefore

������ k �S���Z
j�k�k
s�t �k � �k

�K �s� t��j�p

� �j � k�p�$ �k�p�$
�

but Zj��
s�t 	X

j
s�t and so

������ kZj��
s�t k �

�s� t�j�p

� �j�p�$
�

without any constant� It follows that �X� �Y �st is controlled by

������ maxf�� �kp�jK � � � k � j � p�g�s� t�

as required�

Step �� The boundedness of the Picard integral operator� As
a simple application of the scaling lemma we have just established� we
prove the following a priori bound�

Lemma ������ Let Z��� be the initial multiplicative functional in the

Picard iteration scheme de�ned recursively by ������� Suppose Z��� is

controlled by �� Then all iterates Z�j� are uniformly controlled by

 	 max f�� K �M� p� ��	p
g�

on the time interval J 	 fu � ��� u� � �g�
Here M is the Lip� � �� norm of f on

n
 � k � ak �

�

�

��
p

�
$
o
�

and K is the constant introduced in Theorem ������

Proof� First we condition the problem� Suppose that the initial point

Z
���
s�t 	 �X�Y ����s�t in our Picard iteration is of 
nite p�variation con�

trolled by �� For any � � � we may choose a regular

 	 max f��p� �g�
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so that ����X�Y ����s�t is controlled by � and a short interval depend�
ing on  where  � �� We choose � 	 K�M� p� ���	p
�p where K is
the function derived in Theorem ������ and M � is de
ned to be the
Lip� � �� norm of the one form h�x� y� restricted to the domain

V �
n
w � kw � ak �

�

�

��
p

�
$
o
�

We now proceed by induction� Suppose that ����X�Y ����s�t is con�

trolled by  where  � �� The control on �Y
���
��t �

� ensures that its

projection onto the path Y
���
u starting at a remains in the ball of radius

����� ���p�$ centred on a� Observe that the multiplicative functional

������

Z
s�u�t

h�����Xu� Y
���
u �� �����X�Y ���� ����X��Y

���
� �t

	 ���� b� a�

equals ����X� ���Y ����s�t where �X�Y ����s�t is the Picard iterate of
�X�Y ����s�t de
ned in ������� By Theorem ������ it is controlled by
K�M� p� �� on the chosen time interval� here K depends only on the
explicit variables �we have arranged that ����X�Y ����s�t is controlled
by  where  � ���

The di�erence in homogeneity between ����X� ���Y ����s�t and our
starting data ����X�Y ����s�t is crucial to the analysis� If the reader

nds the unfamiliar notation di�cult then the equivalent formulation
for smooth paths is

������

���Y
���
st 	

Z t

s

f �Y ���
u � d���Xu �

���Xst 	

Z t

s

d���Xu �

By assumption � � K �M� p� ���	p
�p� so we may apply Lemma �����
to prove that the rescaled functional ����X�Y ����s�t is controlled by
 � �� This concludes the induction� We deduce that all the Picard
iterates ����X�Y �n��s�t are uniformly controlled by this same  � �
on this 
xed time interval�

An obvious extension of the same idea shows that

����X�Y �n��Y �n���s�t
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is also uniformly bounded for a di�erent 
xed choice of ��  and the
time interval� This observation will be useful to us later�

This result only requires the minimal smoothness condition re�
quired to make sense of the equation� It can be interpreted as a com�
pactness result and can probably be used to deduce a Peano theorem
in the general case although we have not pursued the matter�

The main existence result is a more subtle and complicated version
of the same approach�

Step �� A division lemma� Suppose that f is a Lip�� vector 
eld on
W � then there exists a function g which is Lip� � �� on W �W and
such that

������ f i�x�� f i�y� 	
X
j

�x� y�j gij�x� y� �

The function g is not uniquely de
ned� but for example the mean value
of df along the ray from x to y � will do perfectly well� Thus we can
rewrite the classical Picard iteration in the more useful form

������

�Y
�n��
t � Y

�n�
t �

	

Z
��u�t

�Y �n�
u � Y �n���

u � g�Y �n�
u � Y �n���

u � dXu �

The crucial di�erence between the earlier formulation of Picard itera�
tion and the approach here is that we have introduced an expression
which is quasi�linear in �Yn � Yn���� We will really be able to take
advantage of this and push the scaling arguments we introduced above�

Interpreting the integral ������ requires the extra smoothness we
assume for our main theorem on the convergence of Picard�s iterative
scheme�

Step �� De�ning the correct iteration� In fact we consider recur�
sively� a sequence containing a wider series of interrelated objects

������ �Z�n��Y �n��Y �n����X�s�t �

�
Note that if the function f is only de�ned on a subset of Rd then one would need

to apply the extension theorem for Lipschitz functions to use this approach�
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For smooth paths the iteration is de
ned by

������

dZ
�n��
t 	 Z�n�

u g�Y �n�
u � Y �n���

u � dXu �

dY
�n��
t 	 dY �n�

u � dZ�n�
u �

dY
�n�
t 	 dY

�n�
t �

dXt 	 dXt �

where dZ
���
t 	 f�a� dXt� Z

�n�
� 	 �� Y ��� � a� and Y

�n�
� 	 a� Now

������ de
nes a one�form� we can use this to extend the iteration�
in the now obvious way� to functionals �Z�n�� Y �n�� Y �n���� X�s�t in
"G�W �W �W � V �p� The iteration step makes sense because g �and
hence the full one�form� is Lip� � ���

It is obvious for smooth driving paths X and smooth initial esti�
mates for the solution� that projection onto the last two co�ordinates
gives the Picard iteration we studied in Step �� The continuity of the it�
eration procedure makes it clear that this identity extends to geometric
functionals�

We must prove that the sequence of iterations converge as a mul�
tiplicative functional to a functional �I�Y �Y �X�� the continuity will
then show that this is a 
xed point for the equation� The argument
will rely on a careful exploitation of the homogeneity of the various
components�

Step �� The conditioning� The 
rst step is to rescale the coordinates
and condition the problem�

For any choice of � � �� and � � � there is a choice of  �depending
on both parameters� so that if

������ U ��� 	 � �Z����Y ����Y ���� ���X�

where �Z��� 	 �Z���� then U ��� is controlled by �
We now use our estimates to study what happens when we replace

the top line in ������ by

�Z
�n��
t 	 � �

Z
��u�t

�Z�n�
u g�Y �n�

u � Y �n���
u � ��� dXu

and use the new one�form to de
ne a changed recursion involving �Z�n�

	 �nZ�n� etc� In other words we recursively de
ne

������ U �n��� 	 � �Z�n��Y �n��Y �n���� ���X� �
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We will prove by induction that� for any choice of � � � there is a
suitably small choice of � � �� chosen to depend on K �M� p� ���	p
�p

and � alone� so that the sequence of elements in the sequence Un�� are
uniformly controlled by our  on our predetermined time interval� By
rescaling� it will be clear that the increments in the original iteration
converge to zero with a geometric rate giving the overall result�

Step �� The induction step� First 
x the time interval so that  � �
and assume that

������ � � K� �M� p� ���	p
�p �

where M will be chosen later� but only depends on the Lip norms of
various one forms and will be independent of other parameters in this
problem�

We assume as our induction hypotheses that Un�� is controlled by
� Consider the form we must integrate to go from

Un�� to ������� �Zn��Y n��Y n� ���X� �������

d�� ���� �Z
�n��
t 	 �Z�n�

u g�Y �n�
u � Y �n���

u � d���Xu �

dY
�n��
t 	 dY �n�

u � ��n d �Z�n�
u �

dY
�n�
t 	 dY

�n�
t �

d���Xt 	 d���Xt �

������

Although examination of the second line in the expression shows this
form varies with n the e�ect of increasing n is to decrease the Lipschitz
norm� Hence� and because g is Lip � � �� there is a uniform bound
M on the Lip � � �� norms of the forms on the range of paths under
Un��� �Recall that the Un�� are controlled by  and this in turn is
uniformly bounded by one��

Hence there exists K�M� p� ��� independent of our particular mul�
tiplicative functionals� time interval� etc�� so that

������ ������� �Zn��Y n��Y n� ���X�

is of 
nite p�variation controlled by K�M� p� ��� By Step � we observe
that providing � � K� �M� p� ���	p
�p then �Y �n�� Y �n���� ���X� is con�
trolled by  on any interval where  � � without any sort of factor�
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Therefore we can apply the rescaling lemma again� Choose � so that
� � � K �M� p� ���	p
�p and � � K� �M� p� ���	p
�p� Then

������ � �Zn��Y n��Y n� ���X�

is also controlled by � without a constant� This establishes the induc�
tion step�

Step �� Convergence� At the level of paths it is now trivial that we
have convergence� Let

� �Zn�� Y n�� Y n� ���X�

be the path under

� �Zn��Y n��Y n� ���X�

satisfying the initial condition

� �Zn�
� � Y n�

� � Y n
� � �

��X�� 	 ��� a� a� �� �

Then it is clear that for smooth paths� and by continuity� for elements
of "Gp �and geometric multiplicative functionals are all that one will
ever see� the algebraic identity

������ Y
�n��
t 	 Y �n�

u � ��n �Z�n�
u

holds� But � � � and we have just proved that the di�erence process

Z
�n�
t is bounded independently of n on our time interval and so we

have uniform convergence� The convergence is in p�variation� and as

the sequence Y
�n�
t � Y

�n��
u is uniformly bounded in p�variation norm

that bound goes over to the limit�
However� our real objective is not just to construct a path in W

and call it the solution� we want to construct a multiplicative func�
tional� In other words we want to show that the multiplicative func�
tionals �Y �n��X� converge in "G�W � V �p� This is essentially triv�
ial as well� Consider the projection � �Z�n�� Y �n�� ���X� of U �n��� and
�Y �n��� ���X� of U �n���� Let (n be the linear map �z� y� x� ��
���nz � y� x� then the induced map (n on the tensor algebra takes
� �Z�n��Y �n�� ���X� to �Y �n��� ���X� �again this is obvious for smooth
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sequences� and algebraic identities hold on closed sets� and hence ex�
tend to geometric functionals�� But now the convergence is clear� and
uniformly controlled by the �� The uniform nature of the estimates here
on the convergence of Picard iteration prove the It�o map is continuous
since our earlier arguments demonstrate that the 
nite iterations are
certainly continuous�

���� Uniqueness�

To see uniqueness is also relatively straightforward and we do not
dwell on it� We did not need to start our new Picard iteration with
the function that was constant at a and its integral� We could have
started it at two of our  solutions!� in this case our iteration would
have compared the di�erence and shown that it went to zero�

Acknowledgements� This paper has not been easy for the author
to write� So his 
rst acknowledgement must go to those� like Leonard
Gross� David Elworthy and Bruce Driver �and of course his family�
who showed interest and provided encouragement on the way� and were
silent and uncritical when the 
nal mss with the details took well over a
year to put together� I hope that the content in some small part makes
up for the delay�

In addition� I owe an enormous debt to the students who attended
a graduate course in the fall of ���� where the details of the proofs
were 
rst presented in a public manner� particularly to Marc Joannides
and Zhongmin Qian for taking good notes which could be typed up as
rough drafts from which I prepared this mss� In addition Zhongmin
Qian read an intermediate draft very carefully and his contribution has
signi
cantly improved the exposition �although of course there will still
be plenty of errors and these are entirely my own resposibility�� David
R� E� Williams did a fantastic and fairly massive job in the 
nal days
converting the mss into a suitable form of TEX for submission�

I would also recall that it was in an open and ongoing discus�
sion during ����#� with my then students Jessica Gaines and Eva Sip�
pil�ainen� that we all assimilated the Lie algebraic perspective of Chen
on ordinay di�erential equations� which of course forms a quite essential
foundation for the present paper�

Finally I acknowledge research funding from EPSRC and EEC� In



	�� T� J� Lyons

particular� the support of the SERC via senior fellowship B#��#sf#���
and grants YYYY SERC ��� GR#J ������ EEC grants SC����� and
SC�������

References�

��� Burdzy K� Variation of iterated Brownian motion� In� Workshop and

Conference on Measure�valued Processes Stochastic Partial Di�eren�

tial equations and Interacting Systems �CRM Proceedings and Lecture

Notes ���	��

��� Bachelier L� Calcul des probabilit�es� Reprint of the ���� original�

Les Grands Classiques Gauthier�Villars ���� Editions Jacques Gabay

Sceaux �����

�	� Ben Arous G� Flots et S�eries de Taylor Stochastique� Probab� Theor�

Relat� Fields �� ������ ������

�
� Castell F� Gaines J� G� The ordinary di�erential equation approach

to asymptotically e�cient schemes for solution of stochastic di�erential

equations� Ann� Inst� H� Poincar�e �� ������ �	������

��� Chen K��T� Integration of Paths Geometric Invariants and a General�

ized Baker�Hausdor� Formula� Ann� of Math� �� ������ ��	�����

��� F�ollmer H� Calcul d�It�o sans probabilit�es� Seminar on Probability� XV�

Lecture Notes in Math� ��� �
	���� Springer �����

��� F�ollmer H� Dirichlet processes Stochastic integrals� Proceedings of the

LMS Durham Symposium held at the University of Durham Durham

July ���� ����� Edited by David Williams� Lecture Notes in Math�

��� 
���
�� Springer �����

��� Gaines J� G� Lyons T� J� Variable Step Size Control in the Numerical

Solution of Stochastic Di�erential Equations� SIAM J� Appl� Math� ��

������ �
����
�
�

��� L�evy P� Th�eorie de l�Addition des Variables Al�eatoires� Gauthier�

Villars ��	��

���� Hambly B� M� Lyons T� J� Stochastic Area for Brownian motion on

the Sierpinski gasket� Ann� Probab� �� ������ �	���
��

���� Ikeda N� Watanabe S� Stochastic Di�erential Equations and Di�usion

Processes� North�Holland �����

���� It�o K� Stochastic Integral� Proc� Imperial Acad� Tokyo �� ���

�

������
�

��	� L�evy P� Processus Stochastiques et Mouvement Brownien� Gauthier�

Villars ��
��



Differential equations driven by rough signals 	��

��
� Lyons T� J� The Interpretation and Solution of Ordinary Di�erential

Equations Driven by Rough Signals� Proceedings of Symposia in Pure

Mathematics� �� �������

���� Lyons T� Di�erential equations driven by rough signals �I�� an extension

of an inequality of L� C� Young� Mathematical Research Letters � ����
�


���
�
�

���� Lyons T� On the nonexistence of path integrals� Proc� Roy� Soc�

London Ser� A 	�� ������ ��������

���� Lyons T� J� Qian Z� M� Calculus of variation for multiplicative func�

tionals� In� New Trends in Stochastic Analysis� World Scienti�c� Ed�

Elworthy� ������ 	
��	�
�

���� Lyons T� J� Qian Z� M� Flow of di�eomorphisms induced by a geo�

metric multiplicative functional� To appear in Probab� Theor� Relat�

Fields�

���� Lyons T� J� Qian Z� M� Calculus for multiplicative functionals It�o�s

formula and di�erential equations� In� It�o�s Stochastic Calculus� Ed�

Ikeda� Springer� ������ �		�����

���� Malliavin P� In�nite�dimensional analysis� Bull� Sci� Math� ���

����	� �	����

���� Protter P� On the existence uniqueness convergence and explosions of

solutions of systems of stochastic di�erential equations� Ann� Probab�

� ������ �
	�����

���� Reutenauer C� Free Lie Algebras� London Mathematical Society Mono�

graphs New Series � Oxford Science Publications ���	�

��	� Sipil�ainen E��M� A pathwise view of solutions of stochastic di�erential

equations� Ph�D� Thesis University of Edinburgh ���	�

��
� Stein E� M� Singular Integrals and Di�erentiability Properties of Func�

tions� Princeton University Press �����

���� Sugita H� Various topologies in the Wiener space and L�evy�s stochastic

area� Probab� Theor� Relat� Fields 
� ������ ��	�����

���� Doss H� Liens entre �equations di��erentielles stochastiques et ordinaires�

Ann� Inst� H� Poincar�e �� ������ �������

���� Sussmann H� J� On the gap between deterministic and stochastic ordi�

nary di�erential equations� Ann� Probab� � ������ ���
��

���� Kunita H� On the representation of solutions of stochastic di�erential

equations� Seminar on Probability� XIV� Lecture Notes in Math� ��	

����	�
 Springer �����

���� Yamato Y� Stochastic di�erential equations and nilpotent Lie Algebras

Z� Wahrscheinlichkeitstheorie und verw� Gebiete 	� ������ ��	�����



	�� T� J� Lyons

�	�� Gershkovich V� Vershik A� Nonholonomic manifolds and nilpotent

analysis� J� Geom� Phys� � ������ 
���
���

�	�� Williams D� R� E� Solutions of di�erential equations driven by C�adl�ag

paths of �nite p�variation �� � p � ��� Thesis Imperial College �����

�	�� Young L� C� An inequality of H�older type connected with Stieltjes

integration� Acta Math� �� ���	�� ��������

Recibido �� de septiembre de �����

Terry J� Lyons
Department of Mathematics

Imperial College
Huxley Building� ��� Queen�s Gate

London� SW� �BZ� UNITED KINGDOM
t�lyons�ic�ac�uk



Revista Matem�atica Iberoamericana

Vol� ��� N�
o
�� ���	

Beta�gamma random variables

and intertwining relations

between certain Markov processes

Philippe Carmona� Fr�ed�erique Petit and Marc Yor

�� Introduction�

In this paper� we study particular examples of the intertwining
relation

���a� Qt � � �Pt

between two Markov semi	groups �Pt� t � 
� and �Qt� t � 
� de�ned
respectively on �E� E� and �F�F�� via the Markov kernel

� � �E� E� �� �F�F� �

A number of examples of ���a� have already attracted the attention
of probabilists for quite some time see� for instance� Dynkin ���� and
Pitman	Rogers ����� Some more recent study by Diaconis	Fill ���� has
been carried out in relation with strong uniform times�

In Section �� a general �ltering type framework for intertwining is
presented which includes a fair proportion of the di�erent examples of
intertwining known up to now�

In Section �� we prove that the relation ���a� holds when Pt �

Q���
t � Qt � Q�

t � with � � 
� � � 
� where �Q���
t � �respectively

���
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�Q�
t �� is the semi	group of the square of the Bessel process of dimension

� ��� �� �respectively ���� and � � ���� is de�ned by

���b� �f�y� � E �f�y Z�� � where Z is a beta����� random variable

�in the sequel� we shall say� in general� that � is the multiplication
kernel associated with Z��

The intertwining relation

���c� Q���
t ���� � ���� Q

�
t

may then be considered as an extension to the semi	group level of the
well	known fact that the product of a beta��� �� variable by an inde	
pendent gamma��� �� variable is a gamma��� variable�

Changing the order in which the product of these two random
variables is performed� we show the existence of a semi	group �����

t � t �

� such that

���d� ����
t ���� � ���� Q

�
t � � � 
� � � 
� �� � � � �

where ���� is the multiplication kernel associated with a gamma�����

variable and �����
t � t � 
� is the semi	group of a piecewise linear Markov

process X��� taking values in R� �
In Section �� it is shown that the X��� processes possess a number

of properties which are reminiscent of those enjoyed by the squares of
Bessel processes X��

In Section �� we compare the intertwining relation ���a� and the
notion of duality of two Markov processes with respect to a function
h de�ned on their product space �see Liggett ������ The intertwining
relationships discussed in Section � are then translated in terms of this
notion of duality� With the help of some �local time� perturbations of
the re�ecting Brownian motion� some other intertwining relations have
been obtained in ��� these are brie�y discussed at the end of Section ��

It would be interesting to be able� in the examples of intertwin	
ing discussed in this paper �Section �� in particular� to obtain a joint
realization of the two Markov processes �Xt� and �Yt�� with respec	
tive semi	groups which satisfy ���a�� In many cases �see Siegmund �����
Diaconis	Fill ������ there exists a pathwise construction of Y in terms
of X for instance �possibly allowing some extra randomization�� So far�
we have been able to obtain such a construction of the X��� process in
terms of X� only in the case �� � � ��
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It may well be that� if such a pathwise construction can be obtained
for any ��� ��� then most of the properties of the X��� processes which
are being discovered in Section �� mainly by analogy with their Bessel
counterparts� will then appear in a more straightforward manner�

A summary� without proofs� of the main results contained in this
paper has been presented in ����

�� A �ltering type framework for intertwining�

The following set	up provides a fairly general framework for in	
tertwining� �Xt� t � 
� and �Yt� t � 
� are two measurable processes�
de�ned on the same probability space ���F � P � taking values respec	
tively in E and F � two measurable spaces furthermore� �Xt� t � 
� and
�Yt� t � 
� satisfy the following properties�

�� there exist two �ltrations �Gt� t � 
� and �Ft� t � 
� such that�

a� for every t� Gt � Ft � F �

b� �Xt� t � 
� is �Ft� adapted and �Yt� t � 
� is �Gt� adapted
�� �Xt� t � 
� is Markovian with respect to �Ft�� with semi	group

�Pt� t � 
�� and �Yt� t � 
� is Markovian with respect to �Gt�� with
semi	group �Qt� t � 
�

�� there exists a Markov kernel � � E �� F such that for every
f � E �� R� �

E �f�Xt�jGt� � �f�Yt� � for every t � 
 �

We then have�

Proposition ���� For every function f � E �� R� � for every t� s � 
�

���a� Qt � f�Ys� � �Pt f�Ys� � almost surely �

Consequently� under some mild �continuity� assumptions� one obtains
the identity

���b� Qt � � �Pt � t � 
 �
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Proof� The result ���a� is obtained by computing

E �f�Xt�s�jGs�

in two di�erent ways�
On one hand� we have

E �f�Xt�s�jGs� � E �E �f�Xt�s�jGt�s�jGs�
� E ��f�Yt�s�jGs�
� Qt �f�Ys� �

On the other hand�

E �f�Xt�s�jGs��E �E �f�Xt�s�jFs�jGs��E �Ptf�Xs�jGs���Pt f�Ys� �

We now present six classes of examples of intertwining where the
hypotheses made in Proposition ��� are in force�

���� Dynkin�s criterion�

This is� undoubtedly� one of the best known� and oldest� examples
of intertwining between two Markov processes �see ������ Here� we start
with a Markov process �Yt� t � 
� taking its values in a measurable
space F  Y is Markovian with respect to �Gt�� with semi	group �Qt� t �

�� We assume that there exists a measurable application � � F �� E
such that for every measurable function f � E �� R� � the quantity

Qt�f � ���y� only depends� through y� on ��y� �

Now� if x � ��y�� we de�ne Ptf�x� � Qt�f � ���y�� It is now easy to

see that the process �Xt
def
� ��Yt�� t � 
� is Markovian with respect to

�Ft� � �Gt�� and has semi	group �Pt� t � 
�� Moreover� by de�nition of
�Pt� t � 
�� we have

Qt � � �Pt � with �f�y� � f���y�� �

so that the hypotheses of Proposition ��� are satis�ed�
A particularly important example of this situation is obtained by

taking Brownian motion in R
n for �Yt� t � 
�� and �Xt � jYtj� t � 
��
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the radial part of �Yt� t � 
�� so called Bessel process of dimension n�
Here� F � R

n � E � R� and ��y� � jyj�

���� Filtering theory�

Consider the canonical realization of a nice Markov process �Xt� t�

�� taking values in E� with semi	group �Pt� t � 
�� and distribution
P� associated with the initial probability measure � on E� De�ne

P� � W �P� �

where W denotes the Wiener measure on C�R� �R
n�� which makes

�Bt� t � 
�� the process of coordinates on C�R� �R
n�� an n	dimensional

Brownian motion� Next� de�ne �on the product probability space�� the
observation process

Yt � Bt �

Z t

�

h�Xs� ds �

where h � E �� R
n is a bounded Borel function�

De�ne Gt � 	�Ys� s � t�� and the �ltering process ���
t � t � 
� by

��
t �f� � E� �f�Xt�jGt� �

for every bounded measurable f � E �� R� Then� ���
t � t � 
� is a

��Gt� t � 
�� P�� Markov process� with transition semi	group

Qt�
��� � P� ��
�
t 	 ��

which satis�es the following intertwining relationship with �Pt� t � 
�

���c� Qt� � �Pt � where ���
� � h
� �i �

Proof of ���c��

Qt ���
� � E� ��
�
t ���� � E� ���Xt�� � �Pt ��
� �

Note� A deep study of the measure	valued process ���
t � t � 
� has

been made in ���� �see also ���� and ������
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��	� Pitman�s representation of BES����

Consider �Bt� t � 
� a one	dimensional Brownian motion starting
from 
� In this example� we take �Xt � jBtj� t � 
� and �Yt � jBtj �
lt� t � 
�� where �lt� t � 
� is the local time at 
 of �Bt� t � 
�� Then�
it follows from ��
� that �Yt� t � 
� is a �	dimensional Bessel process
starting from 
� and a key to this result is that� if �Gt � 	�Ys� s �
t�� t � 
�� then� for every Borel function f � R� �� R� � one has

E �f�Xt�jGt� �
Z �

�

f�xYt� dx �

so that the hypotheses made in Proposition ��� are satis�ed with

�f�y� �

Z �

�

f�x y� dx �

Several variants of this result� in di�erent contexts� have now been
obtained� starting with Pitman and Rogers �����

��
� Age�processes�

Let �Xt� t � 
� be a real	valued di�usion such that 
 is regular for
itself� and let n be the characteristic measure of excursions of X away
from 
� De�ne gt � sup fs � t � Xs � 
g �At � t� gt� t � 
� is called
the age�process�

�At� t � 
� is a Markov process in the �ltration �Gt � Fgt � t � 
��
and its semi	group ��t� t � 
� satis�es

�t � � �Pt � where �f�a� � n�f�Xa�jV � a� �

with V the life	time of the generic excursion under n� The identity

E �f�Xt�jFgt � � �f�At�

�which corresponds to the third hypothesis in Proposition ���� may be
proved by excursion theory� In the particular case where �Xt� t � 
� is
a Bessel process with dimension d 	 �
� �� and index �
 �the dimension
and the index are related by d � � ��� 
�� so that 
 � 
 � ��� we now
identify ��
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We simply write g for g�� and de�ne the Bessel meander of index

� �m��u�� u � ��� by the formula

m��u� �
�p
�� g

Xg�u���g� � u � �

�this process is called the Brownian meander in the case 
 � �����
Then� we have the following

Lemma ���� Let 
 � 
 � ��

�� m� is independent of Fg�
�� M�� the distribution of m� on C��
� ���R��� and P

���
� � the dis�

tribution on C��
� ���R�� of BES�d��� with d� � � �� � 
�� satisfy the
absolute continuity relationship

���d� M� �
c�
X��

�

P
���
� � with c� �

��� � 
�

����
�

The relation ���d� is a generalization of Imhof�s relation for 
 �
���� A proof of this relation involving enlargement of �ltrations and
change of probabilities� may be found in ��� another proof is given in
���� Chapter ���

Figure �� Age and Residual�life processes�
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As a consequence of ���d�� it is easily seen that the distributions
M� are all distinct as 
 varies in �
� ��� but that� nonetheless� the one	
dimensional marginal X��M�� does not depend on 
 we have

X��M���d� � P�m���� 	 d� �  e��
��� d �

so that�

�f�u� � E �f�
p
u m������ �

Z �

�

d  e��
��� f�

p
u � �

Remark� The age	process and the intertwining relationship corre	
sponding to 
 � ��� have been considered in ����

���� Residual�life processes�

Consider again �Xt� t � 
� a real valued	di�usion such that 
 is
regular for itself� De�ne dt � inf fs � t � Xs � 
g� The process
�Rt � dt � t� t � 
� is called the residual	life process�

The random times �dt� t � 
� are obviously �Ft�	stopping times�
and �Rt� t � 
� is a Markov process in the �ltration �Fdt� with semi	
group �� given by

��uf�t� �

�
E �EXu�t

�f�T���� � if u � t �

f�t� u� � if u � t �

where E denotes the expectation with respect to P�� and T� � inf ft �

 � Xt � 
g� This is a classical result in regenerative systems theory
�see ���� and ��
��� the proof of which relies only on the strong Markov
property of X�

Indeed� let f be a positive Borel function� and T � ds� We want
to establish the formula

E �f�Rt�s�jFT � � ��t f�Rs� �

On the event ft � Rsg 	 FT � we have dt�s � ds so that Rt�s � Rs� t�
On the event ft � Rsg� we can write

f�Rt�s���� � g��� �T �� �
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with g��� ��� � f�Rt�Rs�	���
���� a FT � F measurable function� The

strong Markov property taken at time T � ds yields� on ft � Rsg

E �f�Rt�s�jFT � � E �g��� �T ��jFT �
� EXT

�g��� 
 ��
� E �f�Rt�Rs �	�� 
 ���
� E �EXt�Rs ���

�f�T���� �

�recall that for all t� Rt � T� � �t��
The semi	group ���t� satis�es

Pt � � � ��t � where �f�x� � Ex�f�T��� �

and �Pt� t � 
� denotes the semi	group of X� Indeed� for all positive
Borel functions f � we have

E �f�Rt�jFt� � E �f�T� � �t�jFt� � EXt
�f�T��� �

In the case where �Xt� t � 
� is a Bessel process with dimension d � �
and index ��
� �recall that d � � ��� 
��� the law of T� is well	known
�see� e�g� �����

T�
d
�

x�

�Z�
�

so that

�f�x� � E

h
f
� x�

�Z�

�i
�

Furthermore� if u � t

��uf�t� � E

h
f
�X�

u�t

�Z�

�i
� E

h
f
�Z���

Z�
�u� t�

�i
�

Consequently� the semi	group �� is given by

��uf�t� � E

h
f
�Z���

Z�
�u� t�� � �t� u��

�i
�
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��� Brownian �or Bochner� subordination�

We present now an example of intertwining where Pt � Kt is the
semi	group of the standard symmetric Cauchy process �Ct� t � 
�� and
� is the kernel of multiplication by N � a centered� reduced� Gaussian
variable �see Section ��� below for some general de�nition�� i�e� for any
Borel f � R �� R� �

�f�x� � E �f�Nx�� �

Consider �Bt� �t� t � 
� a two dimensional Brownian motion starting
from zero� and let

Bt � 	�Bs� �s� s � t�

be its natural �ltration� Furthermore� let ��t� t � 
� be the inverse of
the local time at zero of B�

Then� as is well	known �see� e�g�� Spitzer ������ the process �Ct
def
�

�
t � t � 
� is a standard symmetric Cauchy process furthermore� if we

de�ne Gt � 	��s� s � t� and Ft def
� B
t � then all the hypotheses at the

beginning of this section are in force� with� Xt � Ct� and Yt �
p
�t�

Thus� if ��
�����
t � t � 
� denotes the semi	group of �

p
�t� t � 
�� we

deduce� from Proposition ���� the intertwining relationship

���e� �
�����
t � � �Kt �

More generally� if� for 
 � � � �� �C�
t � t � 
� denotes a symmet	

ric stable process of index � starting from zero� this process may be
represented as

C�
t � B

T
���
t

� t � 
 �

where �T
���
t � t � 
� denotes a one	sided subordinator of index � � ����

independent from �Bu� u � 
��

Then� just as above� if we call ��
���
t � t � 
� the semi	group of

�

q
T
���
t � t � 
� and �K�

t � t � 
� the semi	group of �C�
t � t � 
�� we

obtain the following intertwining relationship

���f� �
�����
t � � �K�

t �

More generally� we could also represent �C�
t � t � 
� using a time change

of another symmetric stable process �C�
u � u � 
�� by a suitable one	sided

stable subordinator �T
���
t � t � 
�� thus obtaining a more general family
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of intertwinings relating the symmetric stable processes to the one	sided
stable subordinators�

We intend to develop such studies more thoroughly in a forthcom	
ing paper�

Remark� After the presentation of these six classes of examples� the
following instructive remark may be made� in the set	up of Proposition
���� it is wrong to think of �Yt� t � 
� as a �Markov� process which
would carry less information than the process �Xt� t � 
�� so that one
would have

���g� 	�Ys� s � t� � 	�Xs� s � t� � for every t � 
 �

Indeed� in Section ���� it is X which� generally� carries less information
than Y  in Section ���� the natural �ltrations of X and Y cannot� in
general� be compared in sections ��� and ���� Y carries less information
than X� Instead of ���g�� the important assumption in Proposition ���
is that X is Markovian with respect to �Ft�� and Y is Markovian with
respect to �Gt�� with Gt � Ft this is quite di�erent from asserting
���g��

	� The algebra of beta�gamma variables and its relationship
with intertwining�

	��� The beta�gamma algebra�

In order to facilitate the reading of the main Section� ���� we need
to recall a few well	known facts about beta and gamma distributed
random variables�

Let a and b be two strictly positive real numbers� We shall consider
three families of random variables� which we denote respectively by Za�

Za�b� Z
���
a�b � and which are distributed as follows

P �Za 	 dx� � �a�dx� � xa�� e�x
dx

��a�
� x � 
 �

P �Za�b 	 dx� � �a�b�dx� � xa�� ��� x�b�� dx

B�a� b�
� 
 � x � � �

P �Z
���
a�b 	 dx� � �

���
a�b�dx� �

xa�� dx

�� � x�a�bB�a� b�
� x � 
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�recall that� B�a� b� � ��a� ��b����a� b���
There exist important �well	known� algebraic relations between the

laws of these di�erent variables �see e�g� ���� for some applications of
these relations� see ���� which also refers to ������

We �rst remark that

���a� Z
���
a�b

d
�

Za�b
�� Za�b

�

The main relation is the following

���b� �Za�b� Za�b�
d
�
� Za
Za � Zb

� Za � Zb

�
�

where� on the left hand side� the two variables are assumed to be in	
dependent� while on the right hand side� Za and Zb are assumed to be
independent and� as a consequence of ���b�� Za��Za �Zb� and Za �Zb
are independent�

Here is an interesting consequence of ���b�� if Za�b and Za�b�c are
independent� then

���c� Za�b Za�b�c
d
� Za�b�c �

Proof of ���c�� From ���b�� the pair of variables �Za�b� Za�b�c� may
be realized as the pair

� Za
Za � Zb

�
Za � Zb

Za � Zb � Zc

�

with Za� Zb� Zc independent then

Za�b Za�b�c
d
�

Za
Za � Zb � Zc

d
�

Za
Za � Zb�c

d
� Za�b�c �

We now remark that� as a consequence of ���a� and ���b�� we obtain

���d� Z
���
a�b

d
�

Za
Zb

�

where Za and Zb are assumed to be independent�
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Finally� we remark that if Za�b and Z
���
a�b�c are independent� then

���e� Za�b Z
���
a�b�c

d
� Z���

a�c �

Proof of ���e�� From ���b� and ���d�� the pair of variables

�Za�b� Z
���
a�b�c�

may be realized as the pair

� Za
Za � Zb

�
Za � Zb

Zc

�
�

with Za� Zb� Zc independent� We then obtain

Za�b Z
���
a�b�c

d
�

Za
Za � Zb

Za � Zb
Zc

d
�

Za
Zc

�

	��� Notation�

All the intertwining kernels � which will be featured in this Section
� act from R� to R� � and are of the form

�f�x� � E �f�xZ�� �

for some positive random variable Z it will be convenient to say that
� is the kernel of multiplication by Z�

More precisely� we shall encounter the multiplication kernels listed
in the following table

Z �Z� ����Z�� Z��� ��Z��� Z
���
���

� ��
��� ����

����� �
���
���

Table �� Multiplication Kernels�
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	�	� Markovian extensions of the beta�gamma algebra�

In this section� �Q�
t � denotes the semi	group of the square of the

Bessel process of dimension ��� Then� we have the following

Theorem 	��� For every � � 
� � � 
 and every t�

���f� Q���
t ���� � ���� Q

�
t �

Remarks� �� The identity ���f� may be understood as a Markovian
extension of the relation ���b�� since we deduce� in particular� from
���f�� that�

Q���
t ����f�
� � ���� Q

�
t f�
� �

which is equivalent to

���g� E �f�� t Z��� Z����� � E �f�� t Z��� �

where� on the left hand side� Z��� and Z��� are assumed to be inde	
pendent�

The relation ���g� is another way to write the following main con	
sequence of ���b�

Z�
d
� Z��� Z��� �

�� We have already encountered the relation ���f� in the particular
case� � � ���� � � �� in Section ����

�� As a consequence of ���g�� the in�nitesimal generators are inter	
twined

L��� ���� � ���� L
� �

This relation corresponds� in the language of di�erential equations� to
the transmutation of di�erential operators �see e�g� Trim eche ������

Proof of Theorem ���� The identity ���f� may be obtained as a

consequence of Proposition ��� indeed� if �X�
t � and �X�

t � are indepen	
dent squares of Bessel processes� with respective dimensions �� and

� �� starting at 
� then �X���
t

def
� X�

t � X�
t � t � 
� is the square of a

Bessel process of dimension � ��� ��� and the hypotheses which are in
force in Proposition ��� are satis�ed with

Ft � 	�X�
s � X

�
s � s � t� � Gt � 	�X���

s � s � t� �

Xt � X�
t � Yt � X���

t �
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Indeed� by time	inversion� the processes �t�X�
��t� t � 
� and �t�X�

��t� t�

� are independent squares of Bessel processes of respective dimensions
�� and � �� starting from zero�

Let H be a non	negative measurable functional� and let f be a
positive Borel function we have

E �H�Yu � u � t� f�X�
t �� � E �H�u� Y��u� u � t� f�t�X��t�� �

We note Ht � H�u�Y��u� u � t�� Since �t�Y��t� t � 
� is Markovian

with respect to the �ltration 	�X�
��u� X

�
��u� u � t��

E �H�Yu � u � t�f�X�
t �� � E �Htf�t

�X�
��t�� � E �E �Ht jY��t� f�t�X�

��t�� �

We now use ���b� and the fact that ���� is a multiplication kernel to
obtain

E �H�Yu � u � t�f�X�
t �� � E �E �Ht jY��t�����f�t

� Y��t��

� E �Ht ���� f�t
� Y��t��

� E �H�Yu � u � t� ����f�Yt�� �

By comparing the two extreme terms� and letting H vary� we get

E �f�X�
t �jGt� � ���� f�Yt� �

We consider again the relation ���g� which we write in a more
concise form as

�� � ���� ���� �

Since multiplication kernels commute� we also have

�� � ���� ����

and this identity admits the following extension

Theorem 	��� Let � � 
� � � 
� such that �� � � �� Then�

�� There exists a semi�group on R� � which we denote �����
t �� such

that

���h� ����
t ���� � ���� Q

�
t �
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�� This semi�group is characterized by

���i�

Z �

�

����
t �y� dz� �� � � z������� �

�� � � t��

�� � � �t� y�����
�

for all t� �� y � 
�

�� Suppose �� � � �� Then every C��function f � R� �� R� �
with compact support� belongs to the domain of the in�nitesimal gener�
ator L��� of �����

t �� and

L���f�x� � f ��x� �
���� � � ��

x

Z �

�

y����� �f�x y�� f�x�� dy �

Comments� �� The particular case �� � � � of the relation ���h� was
already encountered in Section ��� �up to some elementary modi�cation�
since in that example we considered the Bessel process of dimension
��� instead of the square�� More precisely� the square �A�

t � t � 
� of
the age process of the Bessel process of dimension �� is a realization
�starting from 
� of the process X������ On the contrary� in the case
�� � � �� we do not know whether the relation ���h� may be obtained
as a consequence of Proposition ��� and our proof of ���h� consists in

showing the existence of �����
t � via ���i�� The relation ���i� is deduced

from ���h� by applying both sides to the function

e�y�
def
� exp

�
� �

�
y
�
� y � 


and using the relations

���j�

��
�

�����e��z� � c��� �� � � z������� �

Q�
t �e��z� � �� � � t��� exp

�
� � z

� �� � � t�

�
�

�� The third part of the theorem follows from the second when one
considers the functions

��z� � �� � � z��� �

�� In the case �� � � �� the following pathwise description of a

Markov process X��� with semi	group ����
t is easily deduced from part
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�� of the theorem� the trajectories of X��� are ascending sawteeth of
constant slope ��

More precisely� starting from x� � 
�

X���
t � x� � t � 
 � t � S �

where S � x� �e
� � ��� and 	 is an exponential random variable of

parameter �� Then� X��� has a negative jump of magnitude �� �
e�T �X���

S�
� where T is an exponential random variable of parameter

�� � � �� independent of S then� X��� starts anew from x� � X���
S �

We draw a typical trajectory of X����

�

�

�

�
���
�

��
�

�

�
�

�

�

�

Figure �� Trajectories of X����

We will show in Section ��� the existence of a positive measure
����
t �y� dz�� which is characterized by ���i� this existence is assumed

for the moment� We now discuss duality properties for the semi	groups
�Q�

t � and �����
t � this will be important in the sequel� both in order

to discover some new intertwining relations �see theorems ��� and ���
below� and also to express some results of time reversal for X��� �see
Section ��� below�� We begin by recalling the

De�nition� Two Markov semi�groups �Pt� and � �Pt� on E are said to
be in duality with respect to a 	��nite positive measure � �in short � they
are in ��duality�� if for every pair of measurable functions f� g � E ��
R� �

hPtf� gi� � hf� �Pt gi� �
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We now have the following

Theorem 	�	� Let � � 
 and ��dx� � x��� dx� Then �

�� Q�
t is self�dual with respect to ��

�� Let � � 
� such that �� � � �� There is a unique Markovian

semi�group ������
t � on R� � which is in ��duality with �����

t ��

�� Every C��function f � R� �� R� � with compact support� be�

longs to the domain of the in�nitesimal generator �L��� of ������
t �� and

we have

�L���f�x� � �f ��x� � �
�� � � �

x

Z �

�

f�x y�� f�x�

y���
dy �

Remarks� �� Suppose � � �� If we let � decrease to �� �� we obtain
in the limit a semi	group �������� A realization of this semi	group is
given by the square �R�

t � t � 
� of the residual	life process of a Bessel
process of dimension �� �see Section �����

�

�

�

�����

���

�

��

�

�

�

�

Figure �� Trajectories of �X����

�� Again� in the case �� � � �� the following pathwise description

of a Markov process �X��� with semi	group �����
t is easily deduced from

the form of the in�nitesimal generator �L���� the trajectories of �X���

are descending sawteeth of constant slope ���
More precisely� starting from �x� � 
�

�X���
t � �x� � t � 
 � t � �S �
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where �S � �x� �� � e���� and 	 is an exponential random variable of
parameter �� � � �� Then� �X��� has a positive jump of magnitude

���e� �T � �X���
�S�

� where �T is an exponential random variable of parameter

�� independent of �S then� �X��� starts anew from �x� � �X���
�S

� We draw

a typical trajectory of �X����

From Theorem ���� we easily deduce two other intertwining rela	
tions� namely ���k� and ���l� below�

Theorem 	�
� Let � � 
� � � 
 such that �� � � �� Then� we have

Q�
t
��� � ���

�����
t �

Proof� We start from the intertwining relation ���h�

����
t ���� � ���� Q

�
t �

and consider the adjoint operators in L����� where ��dx� � x��� dx�
as in Theorem ���� We obtain

Q�
t
����� � �����

�����
t �

since Q�
t is self	adjoint with respect to � �obviously ����� denotes the

adjoint of ���� with respect to ��� It remains to compute explicitly
�����  one �nds

����� g�y� �
����

�� ���� ��
E

h
g
� y

�Z�

�i
� c��� ��� g�y� �

Theorem 	��� Let � � 
� � � 
 such that �� � � �� Then� we have

���l� ����
t �

���
����� � �

���
�����

�����
t �

Proof� Remark that� from ���d�� �
���
����� � ����

��� � The result ���l�
now follows immediately from the intertwining relations ���h� and ���k��



��
 P� Carmona� F� Petit and M� Yor

As was already pointed out� Theorems ��� and ��� may be under	
stood as Markovian extensions of the relation ���b�� Likewise� the next
theorem is a Markovian extension of the relation

���c� Za�b�c
d
� Za�b Za�b�c �

with the notation of Section ����

Theorem 	�� Let � � 
� � � 
� � � 
� such that �� � � �� Then

���m� ����
t ������ � ������ �

�����
t

and

���n� �������
t ���� � ����

�����
t �

Proof� A kernel � is said to be determining if� when considered as a
linear operator from C��R�� to C��R� �� it is injective�

�� Since the kernel ������ is determining� it su!ces� in order to
prove ���m�� to show the relation

���o� ����
t ������ ������ � ������ �

�����
t ������ �

Now� the left	hand side of ���o� is equal to ����
t ���� � with the help of

���g�� The right	hand side of ���o� is equal to

������ ������ Q
�
t � ���� Q

�
t � ����

t ���� �

using �rst Theorem ���� then ���g�� and again Theorem ����

�� To prove ���n�� we consider the adjoint operators in L����� where
��dx� � x��� dx� of the kernels featured in ���m��

By Theorem ���� the adjoint of ����
t �respectively ������

t � is �����
t

�respectively �������
t �� and it is easily shown that the adjoint of ������

is a multiple of ���� � The relation ���n� is now proved�

Remarks� �� Assuming that the di�erent intertwining relations ob	
tained in this chapter may be realized in such a way that they �t in
the �ltering framework discussed in Section ���� Theorem ��� suggests
that� for � �xed� and as � increases� the process X��� is Markovian
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with respect to a �ltration �F ���
t � t � 
� which increases with � roughly

speaking� more information seems to be required as � increases in order
to construct X���� and the case � �� corresponds to BESQ���� see
Section ��� for a more precise result formulated as a limit in law�

�� Transforming the relation ����� in Theorem ��� by duality with
respect to the measure ��dx� � x��� dx does not yield any new relation

since �
���
����� is its own adjoint �up to a multiplicative constant��

	�
� Explicit computation of the semi�group ����
t �

This section is devoted to the proof of the existence of a probability
measure ����

t �y� dz� which satis�es formula ���i� we have not found an
elegant way to avoid the technical computations of this section�

We �rst reduce the problem to the inversion of a certain Laplace
transform� Let t� y be given and de�ne � � t��t � y�� Then� from
formula ���i�� there exists a measure ���du� on R� which depends only
on � �and �� �� such thatZ

����
t �y dz� f�z� �

Z
���du� f��t� y�u�

and� from formula ���i� again� �� is the only probability measure on R�

such that� for every � � 


���p�

Z �

�

���du� �� � �u������� �
�� � ����

�� � �����
�

In fact� from the comments following Theorem ���� we see that �� must
be carried by �
� ���

We shall then deduce from formula ���p� the following Laplace
transform identity

���q�

Z �

�

���du�u������ exp
�
� s

� �
u
� �

��

�
���� ��

����

��
s

��
"
�
� �� ��� s

�

�
�

where � � � � � � y��t� y�� and "�a� b z� is the con�uent hypergeo	
metric function de�ned by

"�a� b z� �
�X
k��

�a�k
�b�k

zk

k#
�
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where �a�k � a �a� �� 
 
 
 �a� k � ��� The hypergeometric function

F �a� b� c z� �
�X
k��

�a�k�b�k
�c�k

zk

k#

shall also play a prominent role in the sequel �see e�g� Lebedev ��
���

Now� the key to the explicit computation of ����
t is the

Proposition 	��� Let � � 
� � � 
 and �� � � �� Then �

�� there exists a unique function g��� � R�� �� R� such that for
all s � 


� �

Z �

�

du g����u� e
�su �

���� ��

����
s�� "���� ��s� �

�� the function g��� may be expressed as follows in terms of F

g����u� �

�
c� u��� F

�
�� �� �� �

�

u

�
� if u � � �

c� F ��� �� �� �� �� �u� � otherwise �

where

c� �
�

B��� ��
and c� � ��� � � �� � �

It is now easy to express �� and ����
t �y dz� in terms of g���� We

obtain the

Theorem 	��� Let � � 
� � � 
 and �� � � �� Then

���du� � �� ���du� �
��
�

�
�� g���

��u
�u

�
u����� �f��u��g du

and the semi�group ����
t is given by the formulaZ

����
t �y dz� f�z�

�
� y

t� y

��
f�t� y�

�

Z �

�

du u�����
� y

t� y

��
g���

� t
y

� �
u
� �

��
f��t� y�u� �
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For the sake of clarity� we have postponed the proofs of formula ���q�
and Proposition ��� until now�

Proof of formula ���q�� If we apply the formula

�

a���
�

�

���� ��

Z �

�

dx x����� e�ax

to a � � � �u� the left	hand side of ���p� becomes

�

���� ��

Z �

�

���du�

Z �

�

dx x����� e�x�ux

�
�

���� ��

Z �

�

d� e�� ������

Z �

�

���du�u������ e���u �

We shall now identify the right	hand side of ���p� as a Laplace transform
in �� Since formula ���i� follows from ���h�� we know that

���r�
�� � � t��

�� � � �t� y�����
� E �Q�

t �� y Z���  e�� �

where� keeping with our notation� Z��� is a gamma variable with pa	
rameter �� �� We introduce the density p�t �a� b� of Q

�
t which is known

to be �see �����

���s� p�t �a� b� �
�

� t

� b
a

��������

exp
�
� a� b

� t

�
I���

�pa b
t

�
� a �� 
 �

Making an elementary change of variable in ���r�� we obtain the identity

�� � ����

�� � �����
� � �t� y�

Z �

�

d� e�� E �p�t �� y Z���  � �t� y� ��� �

Comparing the new forms we have just obtained for the two sides of
���p�� we get the identity

���t�

������

���� ��

Z �

�

e���u u������ ���du�

� � �t� y� E �p�t �� y Z���  � �t� y� ��� �
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Using formula ���s�� we obtain

� �t� y� E �p�t �� y Z���  � �t� y� ���

�
�
��

�� �

�

���

E

h� �

Z���

��������


 I���

��p�Z��� �

�

�
exp

�
� �Z��� � �

�

�i

and� developing this expectation� we �nd that the formula ���t� may be
written as

������

���� ��

Z �

�

e���u u������ ���du�

�
���� e����

���
�� �

�

Z �

�

d� ������������ e���� I���

��p� � �
�

�
����u�

Now� with the help of the integral representation

"�a� b z� �
��b�

��b� a�
ez z���b���

Z �

�

dt e�t t��b�������a Jb����
p
z t� �

which is valid for Re �b � a� � 
� jarg �z�j � �� b �� 
� �� �� � � � �see ��
�
p� ����� together with the relation

I���� � e�i���� J��� e
i���� �

we �nd that ���r� may be written as

Z �

�

e���u u������ ���du� �
���� ��

����

��
�

��
e�� "

�
� �� ���

�
�
�
�

which is obviously equivalent to ���q��

Proof of Proposition ���� i� The case when � is an integer n is easy�
since "��n� ��s� is a polynomial of degree n in s and the inversion of
the Laplace transform

s�n "��n� ��s�
is elementary�
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ii� It then remains to prove the proposition when 
 � � � �� and
then� when � � � � �� etc � � �

In fact� from the de�nition of g��� as presented in Proposition
������� we deduce the recurrence relation

���v� g����x� �
x���

B��� ��
� �

Z �

�

dt t�� g��������t x�

�more precisely� assuming that g������� exists� then if we de�ne g���
by ���v�� it satis�es part �� of the proposition��

On the other hand� we also show that the expression of g��� as
presented in Proposition ������ satis�es the same recurrence relation
consequently� using a recurrence argument� it will be su!cient to prove
the proposition in the case 
 � � � ��

iii� We start with the proof of the recurrence relation ���v�� We
denote by g�����x� the right	hand side of ���v�� We easily obtain the
formula

� �

Z �

�

du g�����u� e
�su

�
���� ��

���� s�
�

� ���� ��

s� ���� ��

Z s

�

dv"��� �� �� ��v�

and� in order to prove ���v�� it su!ces to show that the right	hand side
in the last equality is� in fact

���� ��

���� s�
"���� ��s� �

or� equivalently

"���� ��s� � � �
�

�

Z s

�

dv"��� �� �� ��v� �

But this follows from the identity

d

dx
"���� ��x� � �

�
"��� �� �� ��x�

�see ��
� formula $�$��� p� ������

iv� We now prove the same recurrence relation ���v� between �g���
�the function de�ned in part �� of the proposition in terms of F � and
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�g�������� It is elementary to transform the desired relation ���v� be	
tween �g��� and �g������� into the following relation

���w� �g���
��
y

�
� y���

� �

B��� ��
� �

Z y

�

d� �� �g�������

��
�

��
�

Consequently� in order to prove ���w� for y � �� we need to verify the
identity

F ���� ���� � y� � ��
B��� �� �

B��� �� � � ��

Z y

�

d� F ����� ���� ��� �� �

which follows from the classical identity

d

dz
F �a� b� c z� �

a b

c
F �a� �� b� �� c� � z�

�see ��
� formula $����� p� ������
At this point� it remains to verify the relation ���v� between �g���

and �g������� only for x � �� We write ���v� in the equivalent form

�g����x� � x����
� �

B��� ��
� �

Z �

x

d� ��� �g����������
�

which implies

�g����x� �
� � �

x
�g����x�� �

x
�g��������x� �

Since the value of �g������ is known� the above di�erence equation de	
termines �g��� uniquely� Hence� all we have to verify is the following
relationship

c�
a b

c
F �a� �� b� �� c� �x�

� c�
� � �

x
F �a� b� cx�� �

x
��� � � �� �� � ��F �a� b� �� cx� �

where c� � ��� � � �� �� � ��� a � �� �� �� b � �� �� c � �� This
relationship is equivalent to

a x

c
F �a� �� b� �� c� �x� � �F �a� b� cx� � F �a� b� �� cx� �
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which is precisely ��
� formula $������ p� �����

v� We �nally prove the proposition when 
 � � � �� The �rst part
of the Proposition will now follow from the relationship

d

ds
�s�� "���� ���s�� � � s����"��� � �� ���s�

and the integral representations

��� � �� y���� �

Z �

�

dt e�yt t�

and

"��� � �� ���y� � �

B��� � �� �� � � ��

Z �

�

dt e�yt t�� ��� t������ �

We now obtain that part �� of the proposition is satis�ed with the
function g � g��� de�ned by

u g�u� �
c �

B��� � �� �� � � �� ��� � ��
h�u� �

where

h�u� �

Z u��

�

dt t�� ��� t������ �u� t�� � and c �
���� ��

����
�

The expression of h� hence of g� in terms of F � is then deduced from
the integral representation

F �a� b� cu� �
�

B�b� c� b�

Z �

�

dt tb�� ��� t�c�b�� ��� u t��a �

which is valid for Re �c� � Re �b� � 
 and u � � �see ��
� formula $�����
p� ��$���


� Some properties of the X��� processes�

The family of processes X��� enjoys a number of properties which
are the counterparts of properties of the squares of Bessel processes� In
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the eight following sections� we shall compare such properties for both
classes of processes�


��� Time�changing�

a� Here are two transformations of Bessel processes which are most
useful in some computations�

i� if �Rt� t � 
� is a BES �d�� with d � �� starting at r� � 
� there
exists a real	valued Brownian motion ��t� t � 
� such that

log �Rt� � �u � 
 u � where u �

Z t

�

ds

R�
s

� 
 �
d

�
� � �

In the literature� this relation is also found in the form of a representa	
tion of the geometric Brownian motion with drift 
� i�e� �exp ��u �

 u�� u � 
�� in terms of a Bessel process R� with dimension d �
� �� � 
�� as follows

exp ��u � 
 u� � R�

�Z u

�

ds exp �� ��s � 
 s��
�
� u � 
 �

�see� for example� ����� and for some applications� ���� and ��
���

ii� for convenience� �R��t�� t � 
� now denotes the Bessel process
with index �� i�e� with dimension d � � �� � ��� Let p and q such that
��p� ��q � �� Then� under suitable conditions on � and p� we have

���a� q R��q
� �t� � R�q

�Z t

�

dsR���p
� �s�

�
�see ��� Lemma ���� and ���� Chapter XI���

b� Here are some similar results for the processes X����

Theorem 
��� i� If X � X��� starts from x � 
� and � � �� there
exists a process with stationary independent increments � � ���� such
that

log �Xt� � �
�Z t

�

ds

Xs

�
� t � 
 �

The generator of � is given by

L�����z� � ���z� � � ��� � � ��

Z �

�

dy e�y������� ���z � y�� ��z�� �
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ii� Let m � 
� then

���b� Xt � X���
t � X��m����m�

�Z t

�

dumXm��
u

�
�

where ��m� � ���� ���m� � �� and ��m� � ���m� � ��

Remarks� �� There are some similar results for the processes �X���

introduced via Theorem ���� the discussion of which is postponed until
Section ����

�� In fact� both Bessel processes and the processes X��� are exam	
ples of a particular class of R� 	valued Markov processes X which enjoy
the following scaling property� there exists c � 
 such that� for a � 
�
� � 
� the law of �Xt� t � 
� under Pa is that of

��cXt� t � 
� � under Pa�c �

Lamperti ���$�� has studied these processes� which he calls semi	stable
Markov processes� and has shown that� if Pa almost surely� �Xt� t � 
�
does not visit 
� then one has

���c� log �Xt� � �
�Z t

�

du

Xu

�
� t � 


�here� we have assumed� for simplicity c � �� for some process � with
stationary independent increments� Several studies of such processes
have been made in recent years �see ��$�� ��
�� ��
���

�� Let �X
�m�
t � t � 
� be the semi	stable Markov process associated

with the L%evy process �m�t� t � 
�� It is easy� using relation ���c�� to
show that

Xm
t � X�m�

�Z t

�

Xm��
u du

�
�

Thus� the relations ���a� and ���b� are easy consequences of the repre	
sentation ���c��
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��� Absolute continuity relations�

Fix x � 
� As � varies in ����� � the laws Q�
x of BESQx���� are

locally mutually equivalent� The following explicit formula holds

���d� Q�
x jFt �

�Xt

x

����
exp

�
� 
�

�

Z t

�

ds

Xs

�
Q�
xjFt � 
 � �� � �

From this relation� one deduces the important formula

� y
x

����
Q�
x

�
exp

�
� 
�

�

Z t

�

ds

Xs

�			Xt � y
�
�

p�t �x� y�

p�t �x� y�
�

It implies �see ���s��

Q�
x

�
exp

�
� 
�

�

Z t

�

ds

Xs

�			Xt � y
�
�

Ij�j
I�

�px y
t

�
�

This formula plays a key role in the study of the winding number of
complex Brownian motion around 
 �see ����� ����� for instance� it has
also found applications in mathematical �nance �������

The counterpart of ���d� for the laws ����
x of the processes X���

starting from x is the following

Theorem 
��� Let � � 
� � � � � �� � � � � � ��� � � �� �� �
� ��� � � �� � ��� � � �� ��� ��� Then� one has

���e� ������
x jGt �

�Xt

x

�
exp

�
� �

Z t

�

ds

Xs

�
����
x jGt �

where

� � �
�� � � �

�� � � � � �
�

Remarks� �� Beware� the notation ��� �� has nothing to do with
the notation ���m�� ��m�� introduced in Theorem ����

�� The absolute continuity relations ���d� and ���e� are obvious
consequences of the representation ���c� of a Markov semi	stable process
as the time	change of the exponential of a L%evy process�

Since the L%evy process ��� associated with the BESQ���� process
X�� is a Brownian motion with drift� precisely

��t � � ���� �� t�Bt� �
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we see that the relation ���d� may be obtained� by time	changing� from
the Cameron	Martin Formula� which relates the laws of Brownian mo	
tion and Brownian motion with drift�

The L%evy process associated with X��� is

����t � t� Pois ��� �� � � ��t �

where Pois ��� �� ���� is the compound Poisson process of parameter
� whose jumps are distributed as exponentials of parameter �� � � �
�see the preceding section to identify ���� with the help of its in�nitesi	
mal generator�� Thus� formula ���e� may be obtained� by time	changing�
from the Girsanov Formula� when we make the change of probabilities
associated with the martingale

exp �� ����t � t �������� � t � 
 �

where ���� is the L%evy exponent of ����

E �exp�� ����t � � exp �t �������� � exp
�
t �

�� �� �

�� � � �� �

�
�


�	� First passage times�


�	��� First passage times for BESQ�d��

If �Xt� t � 
� denotes BESQ�d�� i�e� the square of a d	dimensional
Bessel process� we recall ������ ����� ����� that

���Xt� e
�t is a local martingale� for � � �� or �� �

with

���x� � x���� I��
p
�x � and ���x� � x����K��

p
�x � �

This implies

E a �e
�Tb � �

��� a�

��� b�
� with � �

�
�� � if a � b �

�� � if a � b �

where Tb � inf ft � 
 � Xt � bg�
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�	��� Intertwining and martingales�

The following lemma will be useful in the sequel�

Lemma 
�	� Assume that Qt� � �Pt� Then �

�� if ��Xt� e
�t is a Px martingale� for every x� then

���Yt� e
�t is a Qy martingale� for every y �

�� More generally� if L �respectively �L� denotes the in�nitesimal
generator of X �respectively Y�� then �L� � �L� and if f 	 D�L�� then

�f 	 D��L� and f�Xt��
R t
�
Lf�Xs� ds is a Px�martingale� while

�f�Yt��
Z t

�

ds�Lf�Ys� is a Qy�martingale �

Remark� The �rst result may be understood as a particular case of
the second one� since the function � satis�es L� � ��� and hence�
�L�� � ����


�	�	� First passage times for X����

For convenience� we write � � �� �� and X � X���� From the
above paragraphs� we deduce that

�� ����Xt� e
�t is a ����

y martingale �

which yields

"��� ��Xt� and &��� ��Xt� e
�t are ����

y martingales �

Hence

���f� ����
a �e�Tb� �

H��� �� a�

H��� �� b�
� where H �

�
" � if a � b �

& � if a � b �

In the particular case a � 
� b � �� we obtain

����
� �e�T�� �

�

"��� ���
�
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Hence� the function log�"��� ���� admits the L%evy	Khintchine repre	
sentation

log"��� ��� � c ��

Z �

�

��� e�x� d
�x� �

for some measure 
 to be determined� Taking derivatives with respect
to �� and using the relations

d

d�
"��� ��� �

�

�
"����� ����� � "��� ����

� � �

�
"��� �����

�see ��
� formula $�$���� p� ������ we obtain

� �
�� � �� "��� �� ���

�"��� ���
� c�

Z �

�

x e�x d
�x� �

From the asymptotic result ���
� formula $������ p� �����

"��� ���  C��� e
 ������� � � ��� �

we deduce that c � � and there exists a probability ��dx� on R� such
that

"��� �� ���

"��� ���
�

Z �

�

e�x ��dx� and ��dx� �
�

� � �
x 
�dx� �

Another interpretation of the probability � will be given in Section ����


�	�
� First passage times for �����

The results in this paragraph follow essentially from the absolute
continuity relation obtained in Theorem ��� for the processes �����

First� we have �recall that � � �� ��

E��e
�t � � et��� � where ���� � �

�� � � �

� � � � �
� �

a� b� �

a� �

and we have de�ned a � � � � � �� � � � and b � � � � � ��
We then deduce �or we could appeal again to Theorem ���� that�

with the notation �v � inf fu � �u � vg�

E��e
��
v � � e�v�

����� �
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where

������ �
�

�



�� �a� b� �

p
��� �a� b��� � � a �

�
�

It is interesting to study the L%evy	Khintchine representation of ���
we �nd

������ � ��

Z �

�

��� e��u� 
�du� �

where

���g� 
�du� �

p
a b

u
I���

p
a b u� e��a�b�u du �

Proof of formula ���g�� We �rst remark that

��� �a� b��� � � a � � ��� a� b�� � � a b �

We now seek a constant c and a positive measure 
 on R� such that

�� a� b�
p
��� a� b�� � � a b � �

�
c ��

Z �

�

��� e��u� 
�du�
�
�

Taking derivatives with respect to �� we obtain

� �
�� a� bp

��� a� b�� � � a b
� �

�
c�

Z �

�

e��u u 
�du�
�
�

from which we deduce� by letting � �� �� that c � �� It remains to
�nd the measure 
 which is speci�ed by the equality

�� � �� a� bp
��� a� b�� � � a b

� �

Z �

�

e��u u 
�du� �

Making the change of variables� � � a � b � �
p
a b �� and using the

following relation� valid for � � � ����� p� �����

�p
�� � �

� � �

Z �

�

dx I��x� e
��x �

we obtain

�� � �� a� bp
��� a� b�� � � a b

� �
p
a b

Z �

�

dy I���
p
a b y� e��y e��a�b�y



Beta
gamma random variables ���

and formula ���g� follows�

Note� These computations appear to be closely related to recent work
by J� Pellaumail et al in Queuing Theory �������


�	��� Laguerre polynomials and hypergeometric polynomials�

e�i� Let �X�
t � denote the square of BES �d

��� with d� � �� � � ���

��� �X�

t � may be characterized �in law� as the unique solution of the
martingale problem

���h� for every � � 
� ���X�
t � e

�t is a martingale �

where ��x� � x��
��� I���

p
�x��

We recall the hypergeometric functions notation �see ��
� p� �����

�F���� � � 
� z� � ��
� � �� z��
��� I����

p
z� �

which implies

���i� �F�

�
�� � � 
�

z

�

�
� c�� ��z� � where c�� � ��
� � �� ��

��� �

The Laguerre polynomials with parameter 
�� L
����
n �x� may be de�ned

as the coe!cients of the generating function �in y�

�F���� � � 
��x y� ey �
�X
n��

L
����
n �x� yn

�� � 
��n

����� p� �$���
It then follows from formula ���i� that

���j�

c�����x� e
�t �

�X
n��

�

�� � 
��n
L����
n

� x

� t

�
��� t�n

�
�X
n��

�n Pn�x� t� �

where we have de�ned

Pn�x� t� �
��t�n

�� � 
��n
L����
n

� x

� t

�
�

��t�n
n#

"
�
� n� 
� � �

x

� t

�
�
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since the expression of L
����
n in terms of the con�uent hypergeometric

function " is

L����
n �z� �

�� � 
��n
n#

"��n� � � 
� z� ���
� p� �����

�we recall that� with our notation� � � � � 
��� We deduce from ���h�
and ���j� that

���k� for every n 	 N �
�
tn L����

n

�X�
t

� t

�
� t � 


�
is a martingale �

e�ii� We now discuss similar results for the process X���� This
process may be characterized �in law� as the unique solution of the
martingale problem �recall that � � �� ��

���l� for every � � 
 ����� 
 ��X�
t � e

�t is a martingale �

De�ne

��y� � ����y� �
�

����

Z �

�

da a��� e�a ��� y a�

and

Qn�y� t� �
�

c�
���Pn� 
 � t���y� �

It follows from ���j� that

���m� c�� ���y� e
�t �

�X
n��

�nQn�y� t� �

We now identify � and Qn�
We remark that� in general� if F �z� �

P�
n�� fnz

n �with fn � 
�
for every n�� then

F ��z�
def
� ��F �z� �

�X
n��

���n fnz
n �

In particular� the application F �� F � transforms pFq�ar� bs z� into

p��Fq��� ar� bs z� �
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Consequently� we obtain

��y� � ����y� �
from �	
j�

�

c��
�F���� � 
 ���z� � �

c��
"��� � z� �

Likewise�

Qn�y� t� �
�

c��
���Pn� 
 � t���y�

�
��t�n
c��n#

"
�
� n� �



t

��
�y�

�
��t�n
c�� n#

F
�
� n� �� �

y

t

�
�

Hence� the series ���m� may be written in the form

���n� "��� �� y� e�t �
�X
n��

�n

n#
��t�n F

�
� n� �� �

y

t

�
�

the polynomials F ��n� �� � y�t� are the so	called hypergeometric poly	
nomials�

The assertions similar to ���h� and ���k� are �recall that � � �� ��

���o� for every � � 
 � "��� ��X���
t � e�t is a martingale

and

���p� for every � � 
 � tn F
�
� n� �� �

X���
t

t

�
is a martingale �

e�iii� We have just seen that� in analytic terms� the intertwining of
the processes X� and X��� with respect to the kernel �� translates as
the transformation of Laguerre polynomials "��n� � 
 � into hyperge	
ometric polynomials F ��n� �� � 
 � via the formula

F ��n� �� � y� � �

����

Z �

�

da a��� e�a "��n� � a y� �

Likewise� the intertwining of the processes X� and X��� with respect
to the kernel ���� translates� in analytic terms� as the transformation
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of Laguerre polynomials with parameter 
� � � � �� L
����
n �x� into La	

guerre polynomials with parameter 
 � � � � � �� � � � L
���
n �x� via

Koshlyakov�s formula ���
� p� $���

L���
n �x� �

��n� �� ��

���� ��n� ��

Z �

�

dt t��� ��� t���� L����
n �x t� �

In the same spirit� the integral relation �see ��
� p� �����

F �a� b� c z� �
�

B�d� c� d�

Z �

�

dt td�� ��� t�c�d�� F �a� b� d z t�

may be considered as a translation� in analytic terms� of the intertwining
relations which hold between the di�erent processes X��� �see Theorem
�����

e�iv� We now consider two other fundamental generating functions

for �L
����
n �x�� n � 
� and �F ��n� ��� z�� n � 
� respectively� which

have a clear meaning in terms of martingale properties of X� and X���

respectively� These generating functions are

���q�

��� t������� e�xt����t� �
�X
n��

L���
n �x� tn �

��� t�� ��� t� x t��� �
�X
n��

���n
n#

F ��n� �� �x� tn

���
� p� �� and ��� respectively���
Let t � � s������� with s � �� x � z��� s�� and u��� � ������� �

The two left	hand sides of ���q� become

u��� �� � �� � s��� exp
�
� � z

� �� � � ��� s��

�
and

u��� �� � ���� �� � �� � s��
�
� � �

�
�� s�

z

�

����
�

Both expressions played a key role in the explicit computation of ����
t

�see formula ���i��� Indeed� these expressions are in fact respectively
equal to

u���Q�
��s�e��z� � u���

�X
n��

L���
n

� z

� s

�
sn
� �

� � �

�n
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and

u��� �� � ���� ����
��s���

�z
�

�

� �� � ���� u���
�X
n��

���n
n#

F
�
� n� �� �

z

� s

�
sn
� �

� � �

�n
�

Now� replacing z respectively by X�
s and Y ���

s � we obtain two martin	
gales which are in correspondence via the intertwining kernel �� � since�
by formula ���j�

���e��z� � c� ��z� � c� �� � � z��� �


�
� Time reversal�

In this section� we apply the following general result on time	
reversal successively to X�� a BESQ���� process� and X���� at their
last exit time from b � 
� when � � �� This result was originally proved
by Nagasawa ���� for another proof see ����� or ��$��

Theorem 
�
� Let X and �X be standard Markov processes in E� which
are in duality with respect to � �see Section ��� for the de�nition�� Let
u�x� y� denote the potential kernel density of X relative to �� so that

Ex

h Z �

�

f�Xt� dt
i
�

Z
u�x� y� f�y���dy� �

Let L be a cooptional time for X� that is a positive random variable
satisfying � L � � �� is the lifetime of X�� and L��t � �L� t��� De�ne
�Xt by

�Xt �

�
X�L�t�� � on 
 � L �� for 
 � t � L �

' � otherwise �

Then� for any initial law �� the process � �Xt� t � 
� under P� is an
homogeneous Markov process with transition semi�group � �Pt� given by

�Ptf�y� �

��
�

�Pt�f v��y�

v�y�
� if 
 � v�y� �� �


 � if v�y� � 
 or � �
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In case � � �x� v�y� � u�x� y��

For our application� we take� x � 
� � � �� L � Lb the last exit
time from b � 
� for either X� or X���� We can take ��dx� � x��� dx
and use the results of Theorem ���� However� a more natural choice is
��dx� � dx� the Lebesgue measure on R� � since it will yield� v�y� �
u�
� y� � c� a constant�

Indeed� it is obvious that a L%evy process � is in duality with �� � ���
with respect to the Lebesgue measure on R� The representation

log �Xt� � �
�Z t

�

du

Xu

�
� t � 
 �

implies that the semi	stable Markov process X associated with �� is
in dx	duality with the semi	stable Markov process �X associated with
�� � ��� Furthermore� thanks to the scaling property enjoyed by X�
we have v�y� � u�
� y� � c� a constant� as shown by the following
computation

E �

h Z �

�

dt f�Xt�
i
� E�

h Z �

�

dt f�tX��
i
�

Z �

�

du f�u� E�

h �

X�

i
�

Since ��t � � ������ t�Bt� and �
���
t � t�Pois ��� �� ����t� we have

the following

Theorem 
��� Let � � �� � � 
� and �X�
t � and �X���

t � start at 
	
then for b � 


a� �X�
t � t � Lb�

d
� �X���

t � t � T�� �

b� �X���
t � t � Lb�

d
� � �X�������

t � t � T�� �

where� on both right hand sides� it is assumed that the processes
start at b�


��� Some limit theorems�

In this section� we obtain several limit theorems concerning the
processes X��� and ����� some of which are then applied to the study
of the asymptotics of the functionalZ t

�

ds

X���
s

�
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as t �� �� when X���
� �� 
� In the sequel� we use the notation �f d�

to denote the convergence in law of �nite	dimensional distributions of
processes indexed by R� �

The main result of this section is the following

Theorem 
�� Let � � 
 and �� � � �� De�ne 
� � � � � �

 � �� ���� and let �X�

t � t � 
� denote a BESQ����� and �Bt� t � 
�
a ��dimensional Brownian motion� Then �

i� for �xed ��

�X���
�����t� t � 
�

�fd���
���

�X�
t � t � 
� �

ii� for �xed ��

����������t� t � 
�
�fd���
���

�� �Bt � 
� t�� t � 
� �

iii� for �xed � and � with � � ��

�

�
����t

�P���
��


�



t �

iv� for �xed � � �� � � 
�

� �p
�
����t � t � 


�
�fd���
��

�r�



Bt� t � 


�
�

Remarks� �� The result in ii� is in agreement with i� and the time	
change formula �see Section ����

logX���
t � ����

�Z t

�

ds

X���
s

�
�

Hence� we have

logX���
�����t � ����

�
��� ��

Z t

�

ds

X���
�����s

�
�

and we remark that the result i� �ts in well with the time	change rep	
resentation of �logX�

t � t � 
� as

logX�
t � � �Bu � 
� u� � with u �

Z t

�

ds

X�
s

�
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�� In the case where X����
� � 
� the following scaling property
holds

���r� �X����� t�� t � 
�
d
� ��X���

t � t � 
�

and we may write i� in the equivalent form

���� ��X���
t � t � 
�

�fd���
���

�X�
t � t � 
� �

The result for one	dimensional marginals is easily understood� since we
know that

X���
�

d
� Z���

d
�

X�
�

X�
� �X�

�

�

where X� and X� are independent squares of Bessel processes with
respective dimensions �� and � �� We then deduce from the law of
large numbers that ��� ����X�

� � X�
� � converges in probability to ��

as � ���� which implies the desired result�

�� iv� is obviously a re�nement of iii� in the case � � � �which
implies 
� � 
��

�� Inspection of in�nitesimal generators easily yields the following
identity in law

���s�
� �
�
����t � t � 


�
d
� �������t � t � 
� �

where the couple ��� �� is de�ned by

� � � � � � � � � � � ��� � � �� �

or� in terms of indices instead of dimensions


 � � 
 and 
� � 
� � 
 ��� �� �

The identity in law ���s� allows to recast the limit results in ii�� iii��
and iv� in terms of �	processes� both indices of which increase to � as
� ���� in the manner we have just indicated�
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Proof of Theorem 	�
� �� The in�nitesimal generator of �X���
�����t �

t � 
�� applied to � 	 C��R��� is� in terms of � and �

� ��� ��
�
���y� � �

�� � � �

y

Z �

�

dz z����� ���z y�� ��y��
�

� � ��� ��
�
���y� �

�

y

Z �

�

dv e�v ���e�v�������� y�� ��y��
�
�

after an elementary change of variables�
It is now easy to justify that� as � is �xed� and � goes to �� we

may replace
��e�v��������y�� ��y� �

by

y ���y� �e�v�������� � �� �
y�

�
����y� �e�v�������� � ��� �

Then� the coe!cient of ���y�� respectively ����y�� converges� as � in	
creases to �� towards ��� respectively � y� which implies i��

�� The same kind of argument may be applied to prove the results
ii�� iii� and iv�� We give only the details for ii��

the in�nitesimal generator of ����������t� t � 
�� applied to � 	 C��R�

is� in terms of � and �

� ��� ��
�
���y� � �

�� � � �

y

Z �

�

du e�u������� ���y � u�� ��y��
�
�

We then replace� ��y � u�� ��y� by� �u���y� � u� ����y��� then� the
coe!cient of ���y�� respectively ����y�� is

� ��� ��

�� � � �
��� �� � respectively

� ��� �� �

��� � � ���

and they converge� as � increases to �� to � 
�� respectively �� which
implies ii��

We begin by recalling the following asymptotic results for the
BESQ���� process X�� when X�

� �� 


���t�
�

�log t��

Z t

�

ds

X�
s

d��
t��

	 � if � � � �
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where 	 � inf ft � Bt � �g� and B is a �	dimensional Brownian motion
starting from 
� and

���u�
�

log t

Z t

�

ds

X�
s

a
s
��
t��

�


�
� if � � � �

We now prove similar results for the processes X����

Theorem 
��� We consider the processX��� with � � � and X���
� �� 
�

Then

i� if � � ��
�

�log t��

Z t

�

du

X���
u

d��
t��




�
	 �

where 
 � �� �� �� and 	 � inf fu � Bu � �g� with the same notation
as in ���t� above	

ii� if � � ��
�

log t

Z t

�

ds

X���
s

a
s
��
t��





�
�

where 
 � �� � � � and 
� � �� ��

At least� three di�erent proofs of ���t� are known  they hinge
respectively on�

�� Laplace�s asymptotic method �see ����� ����� ������

�� a pinching argument ������ ������ and �nally�

�� the explicit computation of the law of
R t
� ds�X

�
s �see ����� �����

������

We now see that the three methods admit variants from which part
i� of Theorem ��� follows�


����� Laplace�s method�

From the formula

logX���
t � ����

�Z t

�

du

X���
u

�
�
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we deduce Z t

�

du

X���
u

� inf
n
v �

Z v

�

ds exp �����s � � t
o
�

Let � � log t� We have� after some elementary transformations

���v�
�

��

Z t

�

du

X���
u

� inf
n
u �

�

�
log
�
��
Z u

�

ds exp
�
�
�

�
�����s�

�
� �

o
�

Using Theorem ����iv�� we now deduce from ���v� that

�

��

Z t

�

du

X���
u

d��
t��

inf
n
u �

r
�



Bu � �

o
d
�




�
	 �

which proves Theorem ����i��


����� Pinching method�

Let Ta � inf ft � X���
t � ag and �b � inf ft � ����t � bg� The main

ingredients of the proof �see ����� are

���w�
�

�log t��

Z Tt

t

du

X���
u

d��
t��


 �

and Z Tt

�

du

X���
u

� � log t �

The latter equality is immediate from the time change formula

logX���
t � ����

�Z t

�

du

X���
u

�
�

Moreover� from Theorem ����iv�� we obtain

�

�log t��
� log t

d��
t��




�
	 �

This could also be deduced from the explicit formula

E �exp ��� �b�� � exp
�
� b

�



��

p
�� � �� 


��
�
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see Section ������
It now remains to prove the convergence result ���w�� We haveZ Tt

t

du

X���
u

�

Z �T�

�

du

�X���
u

�

where �X���
u � X���

tu �t� which� thanks to the scaling property of X����

converges in law� as t �� �� towards �X
���

v � v � 
�� a X��� process
starting from zero� Consequently� we haveZ Tt

t

du

X���
u

d��
t��

Z �T�

�

du

X
���

u

�

and the result ���w� follows a fortiori�


���	� Explicit computation�

In the case of Bessel processes� this computation follows from the
conditional expectation formula given in Section ���� as a consequence
of the Girsanov relationship ���g�� Likewise� for the processes X���� we
deduce from Theorem ��� the following

������
t �y� dz������

y

�
exp

�
��

Z t

�

ds

X���
s

�			X���
t � z

��z
y

�
����
t �y� dz� �

where

� � �
�� � � �

�� � � � � �
�

Then� using the explicit forms of the semi	groups ����
t �y� dz� presented

in Section ���� we obtain a closed form expression for the above condi	
tional expectation� from which one should be able to deduce the limit
results announced in Theorem ����


�� A Ciesielski�Taylor type theorem�

a� Let X� and X��� be two squares of Bessel processes with re	
spective dimensions �� and � �� � ��� with � � 
� starting from 
�
Let

T��� � inf fu � X�
u � �g and S����� �

Z �

�

du�fX���
u ��g �
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Ciesielski and Taylor �see ���� and also ����� have proved that

���x� T���
d
� S����� �

For an extension of this result to a large class of di�usions and func	
tionals� see Biane ����

b� We now prove a result similar to ���x� when the Bessel processes
are replaced by the processes X��� with � � 
 and �� � � ��

Theorem 
��� De�ne T���
x � inf fu � X���

u � xg� Then
a�

E �exp���T���
x �� �

�

"��� �� ��x�
�

b� if � � ��

E

h
exp

�
� �

Z �

�

ds�fX���
s �xg

�i
�

�

"��� �� �� ��x�
�

Consequently� for every x � 
� we have

���y� T���
x

d
�

Z �

�

ds�fX�������
s �xg �

Proof� Part a� was already proved in Section ������
To prove part b�� we may take x � �� using the scaling property�

We simply note X for X���� starting from zero� and Tx for T���
x � We

now remark that� if there exists a C�	function �u�x�� x � 
� such that
L��� u�x� � ��fx��gu�x�� then

E

h
exp

�
� �

Z Ta

�

ds�fXs��g

�i
�

u�
�

u�a�
�

so that� letting a increase to �� we obtain

���z� E

h
exp

�
� �

Z �

�

ds�fXs��g

�i
�

u�
�

u���
�

The function

u�x� �

�
"��� �� ��x� � x � � �

a� b x��� � x � � �
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satis�es L���u�x� � ��fx��g u�x�� on �
� �� and ������ It remains to
�nd a and b such that u is C�� This will be so if and only if

���za�

��
�

a� b � "��� �� ��� �

��� �� b � �
�� �

�
"��� � � �� �� ��� �

where� in order to �nd the second equality� we have used

d

dx
"��� �� �x� �

�� �

�
"��� � � �� �� �x�

���
� formula $�$��� p� ������ The solution of the system ���za� is

b �
� ��� ��

� ��� b ��
"��� � � �� �� ��� �

a � "��� �� ���� � ��� ��

� ��� ��
"��� � � �� �� ��� �

Hence� we have� u�
� � �� u��� � a� so that� from ���z�

E

h
exp

�
� �

Z �

�

du�fXu��g

�i
�

�

a
�

We now show� with the help of the recurrence relations satis�ed by
"� that a � "��� �� � � ���� which implies b�� Indeed� we �nd in
��
� �$�$����� p� ����� that

�

�
"��� � � �� �� ��� � "��� � � �� ���� "��� �� ��� �

whence

a � "��� �� ���� �� �

��� ��
�"��� � � �� ���� "��� �� ����

�
�

�� �
���� �� "��� � � �� ���� �� � ��"��� �� ����

� "��� �� �� ��� �

�from ��
� formula $�$��� p� ������
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We now notice� using jointly parts a� and b� of Theorem ��� that

������
x

�
exp

�
� �

Z �

�

ds�fXs�xg

��
�

"��� �� �� ��x�

"��� �� ��x�
�

so that the probability measure � de�ned in Section ������ now appears
as the distribution of

R�
�

ds�fXs�xg under ������
x �

Again� there exists similar results for Bessel processes �see �����
����� and Bessel functions �see ������

Note� An explanation of the Ciesielski	Taylor identity ���x� is given
in ��$�� using jointly Ray	Knight theorems for local times of Bessel
processes and a stochastic integration by parts formula�

It would be interesting to derive such an approach to explain the
identity in law ���y��


��� A�ne boundaries�

This problem has been considered by Breiman ����

a� Let � � �� and consider �Tc � inf fu � X�
u � c �� � u�g� where

X� is a BESQa����� with a � c�
Following a method due to Shepp ���� in the case � � �� it has

been shown in ���� that

���zb� E�
a ��� � �Tc�

��� �
"
�
�� �

a

�

�
"
�
�� �

c

�

� �

Remark� It may be interesting to compare this formula with

����
a �e�Tc� �

"��� �� �� a�

"��� �� �� c�
�

a formula obtained in the above Section ������

b� We shall now obtain a formula similar to ���zb� for

�Tc � inf fu � X���
u � c �� � u�g �

when X���
� � a� and a � c � ��
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Under these conditions� we prove the formula

���zc� ����
a ��� � �Tc�

��� �
F ��� �� �� � a�

F ��� �� �� � c�
�

Proof� Following Shepp ���� again� we use the two next arguments
jointly �we drop the superscripts �� � since there is no risk of confusion�

i� "��� �� ��Xt� e
�t is a martingale�

ii� F ��� �� �� � y� �
�

����

Z �

�

d� ���� e� "��� �� �� y� �

From i�� we deduce

�a�"��� �� �� c �� � �Tc�� e
� �Tc� � "��� �� �� a�

and then� integrating both sides with respect to

d�

����
���� e� �

we obtain

�a

� �

����

Z �

�

d� ���� e����
�Tc�"��� �� �� c �� � �Tc��

�
� F ��� �� �� � a� �

Making the change of variables � � � �� � �Tc� in the above integral in
�d��� we obtain formula ���zc��

�� Some �nal remarks�

���� Duality and intertwinings�

������ ��duality and h�duality�

There are presently� in the Markovian literature� two notions of
duality which have little in common they are�

� the notion of duality of two Markov semi	groups �Pt� and � �Pt�
on E� with respect to a 		�nite measure � on E� this notion� which has
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already been presented in Section ��� plays� as we have seen in Section
���� a crucial role in time reversal

� the notion of duality of two Markov semi	groups �Rt� and �St� on
E and F respectively� with respect to a function h � E � F �� R�  we
borrow this notion from ����� �Rt� and �St� are said to be in h	duality
if for every ��� �� 	 E � F �

Rt�h����� � St�h
����� �

where h���� � h���� � h��� ���

������ Comparison of intertwining and h�duality�

The following proposition shows� under adequate assumptions� the
equivalence between a property of intertwining and a property of h	
duality�

Proposition ���� Suppose that the semi�groups �St� and � �St� are in
��duality� Then �

�� if the semi�groups �Rt� and �St� are in h�duality� then

RtH� � H�
�St �

with H�f��� �
R
d����h��� �� f���	

�� conversely� if RtH� � H�
�St� then �Rt� and �St� are in almost

h�duality� that is � for all ��

Rt�h����� � St�h
����� � d���� almost surely �

Proof� For every positive Borel function f � we have

RtH�f��� �

Z
Rt��� dz�H�f�z�

�

Z
Rt��� dz�

Z
h�z� �� f��� d����

�

Z
d���� f���

Z
Rt��� dz�h�z� ��

�

Z
d���� f���Rt�h����� �
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On the other hand� by de�nition of the dual semi	group� one has

H�
�Stf��� �

Z
d���� �Stf���h

���� �

Z
d���� f���St�h

����� �

Consequently� the �rst part of the theorem is proven�
The second part of the theorem is also immediate� Suppose RtH�

� H�
�St� Then� for all positive Borel functions f � we have

Z
d���� f���Rt�h����� �

Z
d���� f���St�h

����� �

Thus� for all �

Rt�h����� � St�h
����� � d���� almost surely �

In the particular case where St � ����
t � �St � �����

t � R � Q�
t � and

��dx� � x��� dx� the intertwining relation is given by

Q�
t
��� � ���

�����
t �

Consequently� the semi	groups are in ��dx� almost h	duality� where

h��� �� �
��

����
exp

�
� �

� �

�
�

This function is much more complex than the function that appears in
classical duality

h��� �� � �f���g �

���� More intertwinings�

A more complete list of intertwinings of Markov processes is pre	
sented in ���� making important use of the re�ecting Brownian motion
�jBtj� t � 
� perturbed by a multiple of its local time at zero �lt� t � 
��
i�e� �jBtj � � lt� t � 
�� for some � � 
�

The new Markov processes are constructed explicitly in terms of
this perturbed re�ecting Brownian motion� which gives hope that the
intertwining relations described in the present paper and in ��� may
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have a pathwise interpretation� that is� we hope these processes have
joint realizations that �t into the �ltering framework of Section ����

Although we have not yet been able to achieve this program� we
introduced another framework �see ��� Theorem ����� which enabled us
to prove these intertwining relations� We saw in Section ��� how these
relations can be used to prove Ciesielski	Taylor identities between semi	
stable Markov processes of the same family�

Furthermore� the technique developed in ��� to compute the distri	
butions of the exponential functionals

At �

Z t

�

e�s ds � t � 
 �

where � is the L%evy process associated with a semi	stable Markov pro	
cess X� consists in determining a family of random variables �Hp� such
that

P �Hp � t� � E�

h �

Xp
t

i
�

The intertwining relation Qt � � �Pt implies that the families �Hp�
and �Kp� associated respectively to the processes X �with semi	group
�Pt�� and Y �with semi	group �Qt��� are connected by

P �Kp � t� �
�

E �Z�p�
E �Z�p �fZHp�tg� �

if � is the kernel of multiplication by Z� Thus� the intertwining rela	
tions enabled us to infer the distributions of random variables related
to a family of processes �e�g� Y � X���� from the distributions of ran	
dom variables related to another family of processes �e�g� X � X���
therefore avoiding tedious computations�
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Unrecti�able ��sets have

vanishing analytic capacity

Guy David

R�esum�e� On compl�ete la d�emonstration d�une conjecture de Vitush�
kin� si E est une partie compacte du plan complexe de mesure de Haus�
dor� unidimensionelle nulle� alors E est de capacit�e analytique nulle
	toute fonction analytique born�ee sur le compl�ementaire de E est con�
stante
 si et seulement si E est totalement non recti�able 	l�intersection
de E avec toute courbe de longueur �nie est de mesure de Hausdor�
nulle
� Comme dans un papier pr�ec�edent avec P� Mattila� la d�emons�
tration repose sur un crit�ere de recti�abilit�e utilisant la courbure de
Menger� et une extension d�une construction de M� Christ� L��el�ement
nouveau principal est une g�en�eralisation du th�eor�eme T 	b
 sur certains
espaces qui ne sont pas n�ecessairement de type homog�ene�

Abstract� We complete the proof of a conjecture of Vitushkin that says
that if E is a compact set in the complex plane with �nite �dimensional
Hausdor� measure� then E has vanishing analytic capacity 	i�e�� all
bounded analytic functions on the complement of E are constant
 if
and only if E is purely unrecti�able 	i�e�� the intersection of E with
any curve of �nite length has zero �dimensional Hausdor� measure
�
As in a previous paper with P� Mattila� the proof relies on a recti�ability
criterion using Menger curvature� and an extension of a construction of
M� Christ� The main new part is a generalization of the T 	b
�Theorem
to some spaces that are not necessarily of homogeneous type�

���
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�� Introduction�

The main goal of this paper is to complete the proof of Vitushkin�s
conjecture on �sets of vanishing analytic capacity�

Let E be a compact set in the complex plane� We say the E has
vanishing analytic capacity if all bounded analytic functions on C nE are
constant� Ahlfors 	�Ah�
 proved that E has vanishing analytic capacity
if and only if it is removable for bounded analytic functions� i�e�� if for
all choices of an open set � � E and a bounded analytic function f on
�nE� f has an analytic extension to ��

It was conjectured by Vitushkin 	�Vi�
 that if E is a compact set
such that � � H�	E
 � ��� then E has vanishing analytic capacity
if and only if E is totally unrecti�able 	or irregular in the terminology
of Besicovitch
� which means that H�	E � G
 � � for all recti�able
curves G� Here H� denotes one�dimensional Hausdor� measure� Ac�
tually� Vitushkin�s conjecture also said something about the case when
H�	K
 � ��� but this part turned out to be false 	�Ma�
�

The �rst half of this conjecture was obtained as a consequence
of A� P� Calder�on�s result on the boundedness of the Cauchy integral
operator on L�	�
 when � is a C��curve 	or even a Lipschitz graph
with small constant
 in the plane 	�Ca�
� Indeed� if E is a compact
subset of a recti�able curve and H�	E
 � �� there is a C��curve � such
that H�	E � F 
 � �� and one can use Calder�on�s theorem and a nice
duality argument of Uy 	�Uy�
 or Havin and Havinson 	�HH�
 to �nd
non constant bounded analytic functions on C n	E�F 
� Thus E cannot
be removable for bounded analytic functions if H�	E�G
 � � for some
recti�able curve G� See for instance �Ch� for a recent treatment of this
result�

Our main result is as follows�

Theorem ���� Let E � C be a compact set such that H�	E
 � ��
and E is totally unrecti�able� Then E has vanishing analytic capacity�

Progress in the direction of Theorem � has been quite slow for
some time� because one was not able to relate nicely information on
the Cauchy kernel 	typically� the existence of a bounded function on E
whose Cauchy integral is bounded on C nE
 to the geometry of E� Then
M� Melnikov introduced �Menger curvature� in connection to analytic
capacity 	�Me�
� This was rapidly followed by a result on the Cauchy
operator 	�MV�
 and the proof of Theorem � in the special case when
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E is Ahlfors�regular 	�MMV�
� This last means that there is a constant
C � � such that

	��
 C�� r � H�	E � B	x� r

 � C r �

for all x � E and � � r � diamE�
H� Pajot 	�Pa�
 observed that Ahlfors�regularity can be replaced

with the weaker condition that

	��


��
�

lim inf
r��

	r��H�	E � B	x� r


 � � �

lim sup
r��

	r��H�	E � B	x� r


 � �� � for all x � E �

	This last is a su�cient condition for E to be contained in a countable
union of Ahlfors�regular sets�
 The method for these papers uses the
miraculous positivity properties of Menger curvature� but also relies on
standard Calder�on�Zygmund techniques such as the T 	
�theorem� For
these it is very useful to know that E is Ahlfors�regular� or at least that
the restriction of H� to E is doubling� i�e�� that H�	E � B	x� � r

 �
CH�	E � B	x� r

 for all x � E and � � r � diamE 	�Li�
�

It turns out that the general Calder�on�Zygmund techniques used
by �Ch�� and �MMV� do not fail in the general case when � � H�	E
 �
��� but merely become much more painful to apply� This was 	par�
tially
 observed in �DM�� where the analogue of Theorem � for Lips�
chitz harmonic functions 	instead of bounded analytic
 is proved� The
present paper will rely on the construction of �DM��

Before we start a short description of the argument� let us ob�
serve that it is very easy to show that E is removable for bounded
analytic functions if H�	E
 � � 	apply Cauchy�s formula on curves of
arbitrarily small lengths that surround E
� Also� compact sets of di�
mension d �  are not removable� one can construct bounded analytic
functions by taking Cauchy integrals of positive measures � such that
�	B	x� r

 � C rd

�

for some d� � 	� d
� such measures can be obtained
from Frostman�s lemma� Thus the only unclear situation left is when
E has dimension  and H�	E
 � ��� See for instance �Ga�� �Ch��
�Ma��� or �Vi� for general information about analytic capacity�

Let us now describe our strategy for proving Theorem �� More
details will be given in the course of the paper� but the reader may want
to use this description to avoid getting lost in unimportant complica�
tions�

Let E � C be compact� and assume that H�	E
 � �� and E
does not have vanishing analytic capacity� we want to prove that E has
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a non trivial recti�able piece� By easy manipulations� we can �nd a
bounded analytic function h on C nE such that h	�
 � � and h�	�
 �
limz�� z h	z
 �� a � �� It is not hard to show that

	��
 h	z
 �

Z
E

f	y
 d�	y


z � y
� for z � C nE �

where � denotes the restriction of H� to E 	i�e�� �	A
 � H�	A � E

for all Borel sets A
 and f is some bounded measurable function on
E� This is Theorem ��� in �Ma��� To prove it one surrounds E by
a sequence of 	�nitely connected
 curves �n and one applies Cauchy�s
formula to them� eventually f d� comes out as a weak limit of measures
h	y
 dy on curves �n�

The �rst stage of our argument consists in replacing f d� with a
new �nite measure g d� with the following properties�

	��
 � � �	B	x� r

 � C r � for all x � C and r � � �

g is bounded acccretive� i�e��

jg	x
j � C � Re g	x
 � C�� for all x � C �	��


Z
g d� �

Z
f d� � a � � �	��


there is a Borel set F � E such that

	� 
 C��� � � � � on F and �	F 
 �
a

�
�

	the �rst half means that C���	A
 � �	A
 � �	A
 for all Borel subsets
A of F 
� and

	��

the Cauchy integral of g d� lies

in an appropriate space BMO	d�
 �

The measure g d� will be imported directly from �DM�� where it was
constructed for very similar reasons 	see in particular Theorem ��� in
�DM�
� the properties 	��
�	� 
 are the same as 	���
�	�� 
 in �DM��
and 	��
 will have to be made more precise and proved� starting from
the corresponding L��estimate 	���
 in �DM�� The construction of g d�
is very similar in spirit to a construction of M� Christ 	�Ch��
� who used
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it to show that if E is a regular set with positive analytic capacity� then
there is another Ahlfors�regular set G such that H�	E�G
 � � and for
which the Cauchy integral de�nes a bounded operator on L�	G
� At
that time� �MMV� did not exist� and so M� Christ could not conclude
that G is uniformly recti�able� The proof of boundedness of the Cauchy
operator on L�	G
 was directly deduced from the analogues of 	��
 and
	��
 by the T 	b
�theorem 	on G
�

The construction of g d� in �Ch�� and �DM� relies on the existence
on E of an analogue of the decomposition of Rn into dyadic cubes� The
general scheme is to replace f d� by measures that live on small circles
on 	maximal
 �cubes� Q � E where Re

R
f d� is a little too small� The

construction is less pleasant in �DM� than in �Ch��� because one has to
�nd slightly di�erent ways to deal with the �small boundary property�
of the constructed �dyadic cubes� when � is not doubling� Nonetheless
the spirit is the same�

In �DM� we could not continue as in �Ch��� because we did not
have an appropriate T 	b
�theorem� This is the reason why we restricted
to Lipschitz harmonic capacity� If H�	E
 � �� and E has positive
Lipschitz harmonic capacity� then we can get f d� 	and then g d�
 as
above� but with f real�valued 	and hence g	x
 � C��
 in addition�
Then we do not need Stage � below� and we can use the argument of
Stage � below to �nd that F is recti�able 	and hence that E is not
totally unrecti�able
�

In the present situation� g is not necessarily positive and we can�
not apply directly the positivity argument with Menger curvature from
�MMV� 	see below
� as in �DM�� So we�ll prove a T 	b
�theorem on
!E � supp 	�
 and apply it to the truncated operators T� given by

	��
 T�f	x
 �

Z
jx�yj��

f	y
 d�	y


x� y
�

to get uniform bounds on the norm of T� on L�	 !E� d�
� Once again�
the proof of the T 	b
�theorem of Section � will follow rather classical
outlines� we shall use the dyadic cubes from �DM�� construct a version of
the Haar system adapted to those cubes and the accretive function b �
g� remove a �paraproduct� that takes care of Tb and T tb� and prove that
the matrix of the remaining operator in the modi�ed Haar system has
su�cient decay away from the diagonal to allow a use of Schur�s lemma�
This is the same program as in the proof of the 	standard
 T 	b
�theorem
by Coifman�Semmes 	�CJS�
 or Auscher�Tchamitchian 	�AT�
� See also
�Da� or �My� for a presentation of this scheme and �DJS� for the original
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T 	b
 paper� Here again� the fact that � is not necessarily doubling will
create trouble� but altogether nothing dramatic� See sections ��� for
the details�

We shall also need to spend some time checking that our T 	b
�
theorem applies to the space 	 !E� d�
 and the function b � g 	see sections
���
� In particular we�ll have to build cubes adapted to d�� and then
check the appropriate version of 	��
�

At the end of this 	call it Stage �
� we know that the truncated
Cauchy operators T� are bounded on L�	d�
� with bounds that do not
depend on �� In particular�

	�
 kT�k
�
L��d�� � C �

where C does not depend on � � �� A brutal expansion of 	�
 gives
that

	��


Z
x� �E

�Z
jx�yj��

d�	y


x� y

��Z
jx�zj��

d�	z


x� z

�
d�	x
 � C �

	There is no problem of convergence here and in the lines that follows�
because � is a �nite measure�
 The domain of integration in 	��
 is
U	�
 	 V 	�
� where

	��
 U	�
 �
�
	x� y� z
 � !E� � � � jx� yj� jx� zj� jy � zj

�
and

	��
 V 	�
 �
�
	x� y� z
 � !E� � jx�yj � �� jx�zj � � and jy�zj � �

�
�

A fairly brutal computation gives that

	��


ZZZ
V ���

d�	x
 d�	y
 d�	z


jx� yj jx� zj
� C �

see �MV� 	�
�� and note that the 	very short
 proof only uses 	��
� Thus

	��

���
ZZZ

U���

d�	x
 d�	y
 d�	z


	x� y
 	x� z


��� � C �

Now we want to use the following nice formula �Me�� for each triple
	z�� z�� z�
 of distinct points of C �

	��

X
��G�



	z���� � z����
 	z���� � z����

� c�	z�� z�� z�
 �
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where we sum over the group G� of permutations of f� �� �g and
c	z�� z�� z�
 denotes the Menger curvature of the triple 	z�� z�� z�
� i�e��
the inverse of the radius of the circle that goes through z�� z�� z�� 	When
the three points are on a line� set c	z�� z�� z�
 � ��
 This is �Me� 	�
�
p�  ���� Because the integral in 	��
 is invariant under permutations
of x� y� z� we can use 	��
 to get that

	� 


ZZZ
U���

c�	x� y� z
 d�	x
 d�	y
 d�	z
 � C �

still with a constant C that does not depend on �� Hence 	by positivity
�

	��
 c�	�
 ��

ZZZ
�E�

c�	x� y� z
 d�	x
 d�	y
 d�	z
 � C �

We shall call c	�
 the Melnikov curvature of the measure ��
At this point we can use a theorem of David and L�eger 	�L�e�
�

which says that if � is a �nite measure on C such that 	��
 holds�
c�	�
 � ��� and if !E� the support of �� has �nite H��measure� then
� is recti�able� This means that !E is contained in a countable union
of recti�able curves� plus possibly a set of ��measure zero� The set
!E � F � where F is as in 	� 
� is also recti�able� and hence meets some
recti�able curve on a set of H��measure greater than �� This third stage
completes the 	sketch of
 proof of Theorem ��

Theorem � leaves open the characterization of vanishing analytic
capacity for compact subsets of the plane such that H�	E
 � �� but
dimension 	E
 � � The obvious generalization of Vitushkin�s conjec�
ture where one would demand that

	���
 H�		�	E

 � � � for almost every 
 � R �

where 	� denotes the orthogonal projection onto the line of direction ei��
does not work� P� Mattila 	�Ma�
 showed that 	���
 is not preserved
when we replace E with its image under conformal mappings� while
vanishing analytic capacity is� P� Jones and T� Murai 	�JM�
 later
found examples of compact sets E � C with positive analytic capacity
and such that 	���
 holds� It is not known yet whether there are
compact sets of vanishing analytic capacity for which 	���
 does not
hold� M� Melnikov likes to conjecture that compact sets E have positive
analytic capacity if and only if there is a 	nonzero
 positive measure �
supported on E and such that �	B	x� r

 � C r for all x � E and r � ��
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and c�	�
 � ��� Note that the �if� part of this conjecture is proved
in �Me��

�� Construction of a Haar system�

In this section we are given a Borel subset E of some RN and a
�nite Borel measure � on E� We are also given a sequence of partitions
of E into Borel subsets Q� Q � "k� k � �� with the following properties�

��
 for each integer k � �� E is the disjoint union of the sets Q�
Q � "k�

���
 if � � k � �� Q � "k� and R � "�� then either Q � R � � or
else R � Q�

���
 �	Q
 � � for all Q � "k and all k � ��

���
 diamQ � C�A
�k for all k � � and Q � "k�

���
 for each k � � and each Q � "k� the number of R � "k��

such that R � Q is � C��

Here C� and A �  are two constants that do not depend on k
or Q� and diamQ is the diameter of Q� The sets Q� Q �

S
k"k� will

be called cubes� or dyadic cubes 	even though they should probably be
called A�adic�
 In the later sections� more will be required from these
cubes� but the properties ��
����
 will be enough for the moment�

For each cube Q� we shall denote by k	Q
 the integer k such that
Q � "k� and by d	Q
 � A�k�Q� its o�cial approximate size� We
should mention now that diamQ may be much smaller than d	Q
� and
also that a given subset of E could be equal to Q for a few di�erent
cubes Q coming from di�erent generations k	Q
� When we talk about
a cube Q� we shall always mean both the set Q itself and the knowledge
of the generation k	Q
�

If Q is a cube of generation k	Q
 � � then there is a unique cube
#Q � "k�Q��� which contains Q� and which we�ll call the parent of Q�
The children of Q are the cubes R � "k�Q��� that are contained in Q�
We shall denote by F 	Q
 the set of children of Q� Note that in some
instances F 	Q
 will be reduced to only one child� the set Q itself� At
any rate� ���
 says that F 	Q
 never has more than C� elements�

In this section we want to construct a Riesz basis of L�	E� d�

which is adapted to the above decomposition of E into cubes� and a
given accretive function b� This Riesz basis will be analogous to the
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Haar basis� which corresponds to the case of E � ��� � � R� equipped
with the Lebesgue measure� the usual dyadic intervals� and b 
 � The
construction given below is very similar to one initially used for �CJS� or
�AT�� but we shall need to repeat the argument to convince the reader
that nothing more than ��
����
 is needed� For personal convenience
reasons� we shall stay pretty close to the argument given in �Da��

Our function b is Borel�measurable� complex�valued� and bounded
and accretive� This means that

	���
 jb	x
j � C and Re b	x
 � C�� � for all x � E �

In fact� we shall only use the paraaccretivity condition that b is bounded
and

	���

���
Z
Q

b d�
��� � C���	Q
 � for all cubes Q �

but this will not matter for our only application�
We start our construction with the de�nition of a few projection

operators� For x � E and k � �� denote by Qk	x
 the cube of "k that
contains x� Then set� for each f � L�	E� d�
�

	�� 
 Ekf	x
 � �	Qk	x


��

Z
Qk�x�

f d� �

This is the standard orthogonal projection on the set of functions that
are constant on each cube Q � "k� Also set

	���
 Dk � Ek�� � Ek � k � � �

and then de�ne the corresponding twisted operators Fk and Zk by

	���
 Fkf	x
 �
�Z

Qk�x�

b d�
��� Z

Qk�x�

f b d�

and

	��
 Zk � Fk�� � Fk �

We need a few easy facts concerning these operators� First�

	���


Z
Q

	Fkf
 b d� �

Z
Q

f b d� � for all Q � "k �
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which is clear from 	���
� Next�

	���
 FjFk � Fj�k �

with j�k � minfj� kg� When j � k� we observe that Fkf is constant on
all cubes Q � "k� and hence also on cubes of "j � Then FjFkf � Fkf�
When j � k� 	���
 says that

Z
Q

	Fkf
 b d� �

Z
Q

f b d� �

for all Q � "k� and hence all cubes Q � "j � Then FjFkf � Fjf� by
de�nition of Fj � This proves 	���
� Next

	���
 ZjZk � �j�k Zj �

because

ZjZk � 	Fj���Fj
 	Fk���Fk
 � Fj��Fk���FjFk���Fj��Fk�FjFk �

A brutal computation using 	���
 gives the result�
Let us also check that

	���


Z
	Zk u
 	Z� v
 b d� � � � for u� v � L�	d�
 and k �� � �

We can assume that k � �� Since Z� v is constant on each cube of "k�
it is enough to show that

	���


Z
Q

	Zk u
 b d� � � � for all Q � "k �

This last holds becauseZ
Q

	Fk u
 b d� �

Z
Q

	Fk�� u
 b d� �

Z
Q

f b d�

by 	���
�
Next we check that E� and the Dk� k � �� provide an orthonormal

decomposition of L�	d�
� First observe that if E denotes the set of
	�nite
 linear combinations of characteristic functions of cubes� then

	���
 E is dense in L�	d�
 �
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This is an easy consequence of 	���
� or more precisely of the fact that
we can decompose E into disjoint unions of cubes of arbitrarily small
diameters� because continuous functions are dense in L�	d�
� Then

	�� 
 f � lim
k��

Ekf 	with convergence in L�	d�

 �

for all f � L�	d�
� because this is obviously true when f � E � and the
operators Ek are uniformly bounded� Also� the decomposition

	���
 Ekf � E�f �
k��X
�	�

D� f

is orthogonal� The orthogonality of the D��s among themselves comes
for instance from 	���
 with b 
 � and they are orthogonal to E� by
	���
 with b 
 � Because of this and 	�� 
�

	����
 kfk�� � kE�fk
�
� �

X
���

kD�fk
�
� �

for all f � L�	d�
�
We want to prove similar estimates for F� and the Z��s� but �rst

we need a few facts about Carleson measures�

De�nition ����� A Carleson measure on E  N is a measure � �
f�kgk�� on E  N such that

	����
 �	Q fk � N � k � k	Q
g
 ��
X

k�k�Q�

�k	Q
 � C �	Q
 �

for all cubes Q� and with a constant C that does not depend on Q�

Recall that k	Q
 denotes the generation of Q� The de�nition is
very analogous to the de�nition of discrete Carleson measures on the
upper half space� one should not be disturbed by the fact that the role
of t � � is played by A�k� k � N � in our situation� Here is Carleson�s
theorem in our context�

Lemma ����� Let � � f�kgk�� be a Carleson measure on EN � Also
let f � L�	d�
 and a sequence ffkgk�N of functions be given� If

	����
 jfk	x
j � �	Qk	x


��

Z
Qk�x�

jf j d� �
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for all k � � and x � E� then

	����


Z
	jfkj

�
k d� ��
X
k

Z
jfkj

� d�k � C kfk�� �

To prove this� we �rst need estimates on the maximal function

	����
 f�	x
 � sup
k
�	Qk	x



��

Z
Qk�x�

jf j d� �

We start with the usual weak�L� estimate� Let f � L�	d�
 and  � �
be given� and set O	
 � fx � E � f�	x
 � g� Also denote by M	

the collection of maximal cubes Q with the property that

	����


Z
Q

jf j d� � �	Q
 �

	These are the cubes such that 	����
 holds and either Q � "� or else
none of the ancestors of Q satis�es 	����
�
 By de�nitions� the cubes Q
are disjoint 	because they are maximal
 and cover exactly O	
� Then

	��� 
 �	O	

 �
X

Q�M�

�	Q
 � ��
X

Q�M�

Z
Q

jf j d� � �� kfk� �

Thus the maximal operator f �� f� maps L�	d�
 boundedly into
weak�L�	d�
� Since it is also clearly bounded on L�	d�
� real interpo�
lation gives that

	����
 kf�k� � C kfk� � for f � L�	d�
 �

Now let f and ffkg be as in the lemma� and set

	����
 U	
 � f	x� k
 � E  N � jfk	x
j � g �

for each  � �� If 	x� k
 � U	
� then

�	Qk	x


��

Z
Qk�x�

jf j d� � jfk	x
j � 

by 	����
� and hence Qk	x
 is contained in one of the cubes of M	�
Thus

	���
 U	
 �
	

Q�M�

Q fk � k	Q
g
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and then

	����


�	U	

 �
X

Q�M�

�	Q fk � k	Q
g


� C
X

Q�M�

�	Q
 � C �	O	

 �

where O	
 is as above� and by 	����
 and the �rst part of 	��� 
�
Thus the function of repartition of ffkgk�� for the measure � is

dominated by the function of repartition of f� for �� the desired esti�
mate 	����
 follows from this and the maximal theorem 	����
� This
proves Lemma �����

Lemma ����� For every f � L�	d�
�

	����
 f � F�f �
X
k��

Zkf �

where the series converges in L�	d�
� and

	����
 C��kfk�� � kF�fk
�
� �

X
k��

Z
jZkf j

� d� � C kfk�� �

Of course the constant C is not allowed to depend on f � it depends
only on the accretivity constant in 	���
�

The formula 	����
 obviously holds when f � E 	and then the sum
is �nite
� because Fkf � f as soon as f is constant on all the cubes
of "k� The general case follows by density of E � plus the fact that the
operators Fk are uniformly bounded on L�� by their de�nition 	���

and the accretivity condition 	���
� 	Look at the e�ect of Fk on each
cube Q � "k separately�


Now we want to prove the second inequality in 	����
� Write

	����


Zkf � Fk��f � Fkf

� 	Ek�� b

��Ek��	bf
� 	Ek b


��Ek	bf


� 		Ek�� b

�� � 	Ek b


��
Ek��	bf


� 	Ek b

�� 	Ek��	bf
�Ek	bf

 �
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and then use the fact that 	Ek�� b

��	Ek b


�� is bounded because of
	���
 to get that

	����
 jZkf j
� � C jDk bj

� jEk��	bf
j
� � C jDk	bf
j

� �

We can easily take care of the second piece� because

	��� 

X
k��

Z
jDk	bf
j

� d� �
X
k

kDk bfk
�
� � kbfk�� � C kfk�� �

by 	����
� For the �rst piece� we want to use Lemma ���� with the
sequence ffkg given by fk � Ek	bf
� k � � Obviously

jEk	bf
	x
j � �	Qk	x


��

Z
Qk�x�

jbf j d� �

for all x � E� and so 	����
 holds 	modulo an inessential constant
�
We also want to take �k � jDk�� bj� d� for k � � and we have to

check that this is a Carleson measure� Thus we take a cube Q and try
to estimate X

k�k�Q�

Z
Q

jDk�� bj
� d� �

When k � k	Q
� Dk�� b � Dk��	b�Q
 on Q by de�nitions� and so

	����


X
k�k�Q�

Z
Q

jDk�� bj
� d� �

X
k

Z
jDk��	b�Q
j

� d�

� kb�Qk
�
�

� C �	Q


by 	����
 and the fact that b is bounded� The last term
R
Q
jDk�Q� bj

� d�

is at most C �	Q
 because kDk�Q� bk� � � kbk�� and so f�kgk�� de�nes
a Carleson measure� By Lemma �����

	����

X
k��

Z
jDk�� bj

� jEk	bf
j
� d� � C kfk�� �

We are left with a last term� k � �� For this one�

	���


Z
jD� bj

� jE�	bf
j
� d� � C kE�	bf
k

�
� � C kfk�� �
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by a brutal estimate� From 	����
� 	��� 
� 	����
 and 	���
 we deduce
that

	����

X
k��

Z
jZkf j

� d� � C kfk�� �

Since we also have that

kF�fk
�
� �

X
Q�
�

����
Z
Q

b d�
����Z

Q

f b d�
������	Q


� C
X
Q�
�

Z
Q

jf bj� d�

� C kfk�� �

by Cauchy�Schwarz� we get the second half of 	����
�

The �rst half of 	����
 will now follow by duality� We write

f � F�f �
X
k

Zk f

and

b�� f � F�	b
�� f
 �

X
k

Zk	b
�� f


as in 	����
� and then

	����
 kfk�� �

Z
f 	b�� f
 b d� �

which we expand as suggested above� Note that for k �� ��

Z
	Zkf
 	Z�	b

�� f

 b d� � �

by 	���
� and also that

Z
	F�f
Zk	b

�� f
 b d� �

Z
F�	b

�� f
Zk	f
 b d� � � �
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for all k because F�	f
 and F�	b
�� f
 are constant on cubes of "� and

by 	���
� Thus

kfk�� �
���
Z
	F�f
 	F�	b

�� f

 b d�
����X

k

���
Z
	Zkf
 	Zk	b

�� f

 b d�
���

� C kF�fk� kF�	b
�� f
k� � C

X
k

kZkfk� kZk	b
�� f
k�

� C
�
kF�fk

�
� �

X
k

kZkfk
�
�

��
�

�
�
kF�	b

�� f
k�� �
X
k

kZk	b
�� f
k��

��
�	����


� C
�
kF�fk

�
� �

X
k

kZkfk
�
�

��
�
kb�� fk�

by Cauchy�Schwarz 	twice
 and the second half of 	����
 	applied to
b�� f
� Of course kb�� fk� � C kfk�� so we may divide both sides of
	����
 by kfk� 	if f �� �
 and get the �rst half of 	����
�

This completes the proof of Lemma �����

For each cube Q� denote byW�	Q
 the vector space of all functions
f that are supported on Q and constant on each of the children of Q�
Also let W 	Q
 be the set of functions f �W�	Q
 such that

	����


Z
Q

f b d� � � �

Let r denote the number of children of Q� thus  � r � C� by 	���
�
The dimension of W�	Q
 is obviously r� Since the condition 	����
 is
not degenerate on W�	Q
 	because �Q does not satisfy 	����

� W 	Q

is an 	r � 
�dimensional space�

We want to �nd an appropriate basis of W 	Q
� If r � � i�e�� if
Q has only one child� then W 	Q
 � f�g and there is nothing to do�
Otherwise we set D � D	Q
 � f� �� � � � � r � g and look for a basis
fh�Qg��D of W 	Q
 such that

	����


Z
Q

h�Q h
��

Q b d� � ����� �
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for �� �� � D� and where ����� �  if � � �� and � otherwise� It will be
convenient for us to add the function

	����
 h�Q �
� Z

Q

b d�
���
�

�Q �

where the choice of square root is irrelevant� to get a basis of W�	Q
�
With this choice of h�Q� we�ll even have 	����
 for all �� �� � D� �

f�� � � � � � r � g� because
R
Q
h�Q b d� � � if h�Q � W 	Q
� by 	����
�

Denote by ���R �	R

��
� the constant value of h�Q on the child R �

F 	Q
 of Q� Thus we want to look for h�Q under the form

	��� 
 h�Q �
X

R�F �Q�

���R �	R
��
� �R �

We have already decided that

���R �
�Z

Q

b d�
���
�

�	R
�
� �

Set bR � �	R
��
R
R
b d� for all R � F 	Q
� Note that these numbers are

bounded and bounded away from � by 	���
� With all these notations�
our constraints 	����
 are equivalent to

	����

X

R�F �Q�

���R ����R bR � ����� � for �� �� � D� �

Lemma ���	� We can �nd complex numbers ���R�  � � � r �  and

R � F 	Q
� such that 	����
 holds and j���Rj � C for some constant C
that depends only on the accretivity constant in 	���
 and C� in 	���
�

To prove the lemma� some additional notation will be useful� De�
�ne a bilinear form h� � �ib on C

r 	indexed by the set F 	Q
 of children
of Q
 by

hv� wib �
X
R

vR wR bR �

where v � 	vR
 and w � 	wR
�
Now suppose we already chose coe�cients ���R� � � � � k � �

for some k � f� � � � r � g� in such a way that the equations in 	����

hold for � � �� �� � k � � 	We already did this with k � �
 Call v��
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� � � � k� � the vector of C r with coordinates ���R� R � F 	Q
� With
our new notations�

	���
 hv�� v��ib � ����� � for � � �� �� � k �  �

We want to de�ne a new vector vk� Set

	����
 V � fv � C
r � hv� v�i � � for � � � � k � g �

Because k � r � � V is at least one�dimensional and in particular is
not empty� Select a �rst vector z �� � in V � Because the numbers bR
are all �� �� we can �nd w � C r such that hz� wib �� �� Since the jbRj
are bounded from below� we can even choose z and w with bounded
coe�cients� and with hz� wib � �

We want to modify w to get a vector in V � Set

	����
 v � w �
X

�	k��

hw� v�ib v� �

Then

	����
 hv� v��ib � hw� v��ib �
X
�

hw� v�ib hv�� v��ib � � �

for all �� � k � � because of 	���
� Hence v � V � as desired� Also�

	����
 hz� vib � hz� wib �
X

�	k��

hw� v�ib hz� v�ib � hz� wib �  �

because z � V �
Choose among z� v� and z � v the vector x for which jhx� xibj is

largest� Note that if jhz� zibj and jhv� vibj are less than ��� then

jhz � v� z � vibj � jhz� zib � hv� vib � � hz� wibj �  �

by 	����
� so that jhx� xibj � �� in all cases� We take

vk � 	hx� xib

��
� x �

It is easy to see that vk has coe�cients �k�R� R � F 	Q
� that can
be bounded in terms of the j���R� j� � � k �  and R� � F 	Q
� and
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the accretivity constant for b� With this choice of vk� we now have the
identities in 	����
 for �� �� � k� The lemma follows by induction�

Let us choose the coe�cients ���R as in Lemma ����� This de�nes
functions h�Q� � � D � D	Q
� that lie in W 	Q
 and satisfy 	����
� Set

	����
 hf� gib �

Z
f g b d� � for f� g � L�	d�
 �

With this notation� 	����
 is the same as

	����
 hh�Q� h
��

Qib � ����� � for �� �� � D	Q
 �

Lemma ���
� The functions h�Q� � � D	Q
� form a basis of W 	Q
�
and

	����
 f �
X

��D�Q�

hf� h�Qib h
�
Q � for all f �W 	Q
 �

In addition�

	����
 C��kfk�� �
X

��D�Q�

jhf� h�Qibj
� � C kfk�� �

for all f �W 	Q
� with a constant C that depends only on the constants

in 	���
 and 	���
�

Indeed� if f �W 	Q
 can be written as f �
P

��D c� h
�
Q� then

hf� h�Qib �
X
��

c�� hh
��

Q� h
�
Qib � c� �

by 	����
� Applying this with f � � gives the independence of the
functions h�Q� we then deduce that they form a basis of W 	Q
 because
we know that dimension 	W 	Q

 � r � � Thus all f � W 	Q
 can be
written as f �

P
��D c� h

�
Q� and the computation above shows that the

c� are as in 	����
�
From the formula 	��� 
 and the fact that the coe�cients ���R are

bounded� we deduce at one that

	���
 jh�Qj � C
X

R�F �Q�

�	R
��
� �R �
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In particular�

	����
 kh�Qk� � C �

If f �W 	Q
� then 	����
 implies that

kfk� �
X
��D

jhf� h�Qibj kh
�
Qk� � C

�X
��D

jhf� h�Qibj
�
��
�

�

by the equivalence of the �� and ���norms in C r�� � and the fact that
r � C�� Similarly�

X
��D

jhf� h�Qibj
� � C� kfk

�
� �

by Schwarz and 	����
� This completes our proof of Lemma ��� �

Proposition ����� Every function f � L�	d�
 can be written as

	����
 f � F�f �
X
k��

X
Q�
k

X
��D�Q�

hf� h�Qib h
�
Q �

where

	����
 hf� h�Qib �

Z
Q

f h�Q b d�

is as in 	����
� and the convergence of the series in k occurs in L�	d�
�
Moreover�

	����
 C��kfk�� � kF�fk
�
� �

X
k��

X
Q�
k

X
��D�Q�

jhf� h�Qibj
� � C kfk�� �

Finally� the decomposition in 	����
 is unique� if there is a decomposi�

tion

	����
 f � f� �
X
k

X
Q�
k

X
��D�Q�

c�Q h
�
Q �

where f� is constant on each cube of "� and the series 	in k
 converges
in L�	d�
� then f� � F�f and c�Q � hf� h�Qib for all Q �

S
k"k and

� � D	Q
�
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Recall from 	���
 that F� is a harmless projection onto the sub�
space of functions that are constant on each cube of "��

We start with the proof of the existence of the decomposition and
the estimate 	����
� We already have a decomposition of f as f �
F�f �

P
k Zkf � with a control on the norms� that comes from Lemma

����� Because of this� it will be enough to show that for all k � ��

	��� 
 Zkf �
X
Q�
k

X
��D�Q�

hf� h�Qib h
�
Q

and

	����
 kZkfk
�
� �

X
Q�
k

X
��D�Q�

jhf� h�Qibj
� �

Obviously� Zkf �
P

Q�
k
ZQ
k f � where Z

Q
k f � �Q Zkf � and

kZkfk
�
� �

X
Q�
k

kZQ
k fk

�
� �

Thus it is enough to show that

	����
 ZQ
k f �

X
��D�Q�

hf� h�Qib h
�
Q

and

	���
 kZQ
k fk

�
� �

X
��D�Q�

jhf� h�Qibj
� �

for each cube Q � "k� and with constants in 	���
 that do not depend
on f � k� or Q� In view of Lemma ��� � it is enough to show that
ZQ
k f �W 	Q
 and that

	����
 hZQ
k f� h

�
Qib � hf� h�Qib �

for all � � D	Q
�

It is clear that ZQ
k f � �Q 	Fk��f � Fkf
 is supported on Q and

constant on each child of Q� 	See the de�nitions 	���
 and 	��
�
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Also�
R
Q
	ZQ

k f
 b d� � � by 	���
� and hence ZQ
k f � W 	Q
� 	See near

	����
 for the de�nition ofW 	Q
�
 Finally� let � � D	Q
 be given� Then

	����


hZQ
k f� h

�
Qib �

Z
Q

	ZQ
k f
h

�
Q b d�

�

Z
Q

	Fk��f � Fkf
h
�
Q b d�

�

Z
Q

	Fk��f
h
�
Q b d� �

by de�nitions 	and in particular 	��

� the fact that Fkf is constant
on Q� and because

	����


Z
Q

h�Q b d� � � � for all Q and � � D	Q


	because h�Q �W 	Q

� Next h�Q is constant on each cube of "k��� and
so 	���
 	applied with k � 
 tells us that

Z
Q

	Fk��f
h
�
Q b d� �

Z
Q

f h�Q b d� � hf� h�Qib �

This completes the proof of 	����
�	����
� and we are left with the
uniqueness result to prove� To this e�ect� let us �rst check that

	����
 hh�Q� h
��

Q�ib � ��Q�����Q�����

	that is�  if Q � Q� and � � �� and � otherwise
 for all choices of Q�
Q� �

S
k"k� � � D	Q
� and �� � D	Q�
�

We already know this when Q � Q�� When Q and Q� both lie in
a same "k but Q �� Q�� then 	����
 holds because h�Q and h�

�

Q have
disjoint supports� Finally assume that Q � "k and Q� � "�� and that
� � k� Then h�

�

Q� is constant on Q and hh�Q� h
��

Qib � � by 	����
� Thus
	����
 holds in all cases�

Now let f � L�	d�
� and suppose that f has a decomposition 	����

as in the proposition� For each choice of Q� �

S
k"k and �� � D	Q�
�

hf�� h�
�

Q�ib � � by 	����
 and because f� is constant on Q�� Then 	����

tells us that

	����

D
f� �

�X
k	�

X
Q�
k

X
��D�Q�

c�Q h
�
Q� h

��

Q�

E
b
� c�

�

Q� �
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for � large enough� Thus c�
�

Q� � hf� h�
�

Q�ib by taking limits� A comparison
of 	����
 with 	����
 now gives that f� � F�f because we know that
the series are the same�

This completes our proof of Proposition �����

�� A T 	b
�theorem�

Let E be a compact subset of the plane� and let � be a �nite
positive Borel measure� with support 	�
 � E� We shall assume that

	��
 �	B	x� r

 � C� r � for all x � E and r � �

and some constant C� � �� We want to state 	and later prove
 a T	b
�
theorem on the space 	E� d�
 for one�dimensional singular integral oper�
ators� unfortunately� our statement will already require the existence of
a collection of �dyadic cubes on E� with properties somewhat stronger
than those of Section �� We shall assume that E is equipped with col�
lections "k� k � �� of Borel subsets 	which we�ll call cubes
 with the
following properties�

First we ask for the same combinatorial properties as in 	��
 and
	���
�

for each k � �� E is the disjoint union

of the cubes Q� Q � "k�
	���


if k � �� Q � "k and R � "��

then either Q � R � � or else R � Q�
	���


We also require that for each integer k � � and each Q � "k� there be
a ball B	Q
 � B	x	Q
� r	Q

 centered on E and such that

	���
 A�k � r	Q
 � C�A
�k

and

	���
 E � B	Q
 � Q � E � 	��B	Q

 �

where ��B	Q
 � B	x	Q
� �� r	Q

� Here A and C� are positive con�
stant� and we shall assume 	mostly for security reasons
 that A �
��C�� It will be convenient for us to demand also that

	���
 "� has only one element �
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because it will make some of the algebra easier� This is also easy to
arrange� because E is bounded and we could always add a �rst genera�
tion of cubes with only one element� or group all the cubes of "� into
a single one� 	This would make the constants C� and A slightly worse�
though�


We shall also need �small boundary� properties for our cubes� Set

	���

Nt	Q
 � fx � Q � dist 	x�EnQ
 � tA�k�Q�g

	 fx � EnQ � dist 	x�Q
 � tA�k�Q�g �

for all Q � " �
S
k"k and � � t � � and where k	Q
 denotes� as in

Section �� the integer such that Q � "k�Q�� We require the existence
of an exponent � � ����� � and positive numbers �	Q
� Q � "� with
the following properties� First�

	�� 
 �	Nt	Q

 � C� t
� �	Q
 � for all Q � " and � � t �  �

Also�

	���
 �	�B	Q

 � C� �	Q
 � C�
�A

�k�Q� �

and

	���

X
R�
k

R
��B�Q�

�	R
 � C� �	Q
 �

for all k � k	Q
� These are coherence relations that will be useful when
we try to apply Shur�s lemma 	much later
� A reasonable choice would
be �	Q
 � �	��B	Q

� say� but this will not su�ce for our application
to Theorem � because we shall be working at the same time with some
other measure�

Our condition 	�� 
 will be even more useful for cubes Q such that

	��
 �	Q
 � C� �	Q
 �

Let us call these cubes good cubes� Denote by G the set of good cubes�
We also assume that the only cube of "� is a good cube 	which would
be fairly easy to arrage anyway
� and add a last requirement on the
numbers �	Q
 that will allow a better control on the bad cubes� We
demand that

	���
 �	Q
 � A����	 #Q
 �
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whenever Q is a bad cube and #Q is its parent 	i�e�� the cube of "k�Q���

that contains it
�
The reader may be worried by this long list of requirements� In�

deed this will make it rather unpleasant to check all the hypotheses of
Theorem ���� below� but nonetheless it is always possible to construct
cubes with the properties above when E � supp� and � satis�es 	��
�
Such a construction is done in �DM�� and we shall encounter it when
we try to apply Theorem ���� to analytic capacity�

We shall also assume that we are given a Borel function b on E�
and that b is bounded accretive� i�e�� satis�es 	���
�

Now we want to describe the singular integral operators that we
want to study� Denote by E the vector space of 	�nite
 complex linear
combinations of characteristic functions of cubes Q � "� Also let b E be
the set of products bf � f � E � It will be easier to de�ne our operators
as operators from b E to its dual� or equivalently as bilinear operators
from b E  b E �� C � We shall denote by hTbf� b gi� f� g � E � the
e�ect of T 	bf
 on b g 	or equivalently the image of 	bf� b g
 under the
bilinear operator
� In particular� we drop the parentheses around bf
intentionnally� to simplify notations�

We shall assume that T is associated to a �standard kernel�� as
follows� By standard kernel� we mean a continuous function K	x� y
 on
f	x� y
 � C

� � x �� yg such that

	���
 jK	x� y
j � C�jx� yj�� � for x �� y

and

	���
 jK	x� y
�K	x� z
j� jK	y� x
�K	z� x
j � C�
jz � yj

jx� yj�
�

whenever jz � yj � jx� yj���
The Cauchy kernel K	x� y
 � 	x � y
�� is obviously a very good

example of standard kernel�
The relation between T and K is that

	���
 hTf� gi �

ZZ
K	x� y
 f	x
 g	y
 d�	x
 d�	y
 �

whenever f� g � b E have disjoint supports�
By disjoint supports we mean that we can write f and g as f �P

Q Q b�Q and g �
P

R �R b�R� with all the cubes Q disjoint from
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the cubes R� The reader should not worry about the convergence of
the integral in 	���
� We shall see later that

	���


Z
Q

Z
R

d�	x
 d�	y


jx� yj
� �� �

for all cubes Q�R such that Q � R � �� This will come as a fairly
easy consequence of 	��
 and 	�� 
� but we prefer not to check it now
and try to state our main theorem soon� See 	 ��
 and the relevant
de�nition 	���
 for a proof�

We shall also demand that T satisfy the following analogue of the
�weak boundedness property�� there is a constant C� � � such that

	���
 jhTb�Q� b�Qij � C� �	Q
 � for all Q � " �

Our last conditions will be that Tb � BMO and T tb � BMO� Since E
is in general far from being a space of homogeneous type� there is some
ambiguity as to which de�nition of BMO we should take� The following
version of �dyadic�BMO� based on L��oscillation will be best suited to
our needs�

De�nition ���
� We denote by BMO the set of functions � � L�	d�

such that

	���


Z
Q

j�	x
�mQ�j
� d�	x
 � C��	Q
 �

for all cubes Q � " and some C � ��

Here

mQ� �


�	Q


Z
Q

� d� �

We shall denote by k�kBMO the smallest constant C � � such that
	���
 holds for all Q � "� As usual� BMO is a Banach space of
functions de�ned modulo an additive constant� the mean value of �
on the unique cube of "�� or equivalently the value of the constant
function E��� where E� is as in Section �� We are now ready to state
our T 	b
�theorem�

Theorem ���	� Let E � C be a compact set and � a �nite positive

Borel measure such that E � supp� and 	��
 holds� Let b be a bounded
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accretive function on E� as in 	���
� Let 	"k
k�� be collections of

�dyadic cubes�� with the properties 	���
�	���
� Finally let T � b E 
b E �� C be an operator that satis�es 	���
�	���
 and 	���
� and
suppose that there are functions � and !� in BMO such that

	���
 hTb� b gi �

Z
� b g d�

and

	����
 hTb g� bi �

Z
!� b g d� �

for all g � E� Then T extends to a bounded operator on L�	d�
�

A few comments on this statement will be useful�
The conditions 	���
 and 	����
 are just a dual way to say that

Tb � � and T tb � !�� where T t denotes the transposed operator� Recall
that E is dense in L�	d�
� as in 	���
� Since C�� � jbj � C by 	���
�
b E also is dense in L�	d�
 and the hTb� b gi� g � E � determine Tb�

Remark ����� Because b E is dense in L�	d�
� it is easy to see that T
extends to a bounded operator on L�	d�
 	or� if we see T as a bilinear
operator� that T extends to a bounded bilinear operator from L�	d�

L�	d�
 to C 
 if and only if there is a constant C � � such that

	����
 jhTbf� b gij � C kfk� kgk� � for all f� g � E �

Remark ����� Although this was not said explicitely in the statement�
our proof will give a bound on the norm of T 	or equivalently on the best
constant C in 	����

 that depends only C�� C�� C�� C�� A� k�kBMO

and k!�kBMO�
Here we work with a compact set E� and this has the small ad�

vantage that we did not need to de�ne Tb and T tb as �distributions
modulo additive constants�� Our hypothesis 	���
� applied to the only
cube of "�� gives a control on the integrals of Tb and T tb against b
	i�e�� the constant piece F�	Tb
 � F�	T

tb
� with the notations of Sec�
tion �
� Thus it is not surprising that we only need to control k�kBMO

and k!�kBMO once we have 	���
�
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Remark ����� As far as the main goal of this paper is concerned� the
reader should not pay too much attention to the 	slightly complicated

general de�nition of singular integral operators given here� Theorem
���� will be applied to operators T� that can be de�ned brutally by
integration against the very integrable kernels



x� y
�
� jx� yj

�

�
�

where � is a smooth cut�o� function that vanishes in a neighborhood of
�� Also see the beginning of the discussion about principal value oper�
ators associated to antisymmetric standard kernels in the next section�

Remark ����� In our statement we have assumed that E � supp �
because this was natural and simple� However� Theorem ���� is still
true if we only assume instead that E is a bounded Borel set contained
in the support of � and such that �	C �E
 � �� This will not make any
di�erence in the proof below� and it may make the hypotheses a little
bit easier to check� because we could be given partitions of E 	rather
than supp�
 into dyadic cubes� This is not a very serious issue anyway�
because it is fairly easy to see that such a partition can be extended
to a partition of supp� with the same properties� See the argument a
little below 	����
 in �DM��

Remark ����� Our condition 	���
 is clearly necessary for T to have
a bounded extension to L�	d�
� and we wish to claim without proof 	es�
sentially� because we shall not need this fact
 that our main conditions
Tb � BMO and T tb � BMO are necessary as well� The veri�cation
should amount to checking that

	����


Z
Q

jT 		� �Q
b
	x
� T 		� �Q
 b
	x	Q

j� d�	x
 � C �	Q
 �

for all Q � "� and this would follow from

	����


Z
Q

�Z
EnQ

��� 

x� y
�



x	Q
� y

��� d�	y
�� d�	x
 � C �	Q
 �

We shall prove similar 	only a little more complicated
 estimates later�
see in particular the proof of 	����
 to reduce to

Z
Q

� Z
�QnQ

d�	y


jx� yj

��
d�	x
 �
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and then the proof of 	����
� where we can de�ne h	x
 as in 	����

and 	����
 but with r	x
 � �� because � satis�es 	��
�

Remark ���	� Our statement of Theorem ���� is clearly not optimal�
We can replace our accretivity condition 	���
 with the slightly weaker
requirement that b be bounded and satisfy 	���
� Our choice of � �
��� in 	�� 
 is not optimal� probably a weaker de�nition of standard
kernels would work as well and E should not need to be bounded� Our
hypothesis that E and K live in the plane 	as opposed to some Rn
 is
not needed 	see Remark ���
� quite possibly E and K do not need to
be one�dimensional either� However the modi�cations needed to take
care of all these details could be quite painful 	if they exist
� and our
proof is already complicated enough without them� Since we only have
one clear application in mind so far� it is probably wiser not to think
too much about extensions now�

A more unpleasant aspect of Theorem ���� is that we have to
use cubes with the properties 	���
�	���
� This will even create some
trouble in the present paper� because the cubes that are given to us will
come from a di�erent measure and will not be directly adapted to the
measure on which we want to apply Theorem �����

It seems that F� Nazarov� S� Treil� and A� Volberg were able to
prove a T 	b
�theorem for measures that satisfy 	��
 without using our
machinery with dyadic cubes �NTV�� It would be interesting to see
whether their proof can be adapted to give Theorem ��

In the next section we want to say a few words about the �principal
value operator� associated to a given antisymmetric standard kernel�
After this we�ll discuss shortly how to verify that Tb and T tb lie in
BMO with the help of the Haar system of Section ��

� Antisymmetric standard kernels�

Let K be a standard kernel� and suppose that

	��
 K	x� y
 � �K	y� x
 � when x �� y �

We want to de�ne a singular integral operator T � b E  b E �� C such
that 	���
 and 	���
 hold�

We start with the easy case when

	���


Z
Enfxg

jK	x� y
j d�	y
 � C �
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for all x � E and some C � �� Then we can set

	���
 Tf	x
 �

Z
K	x� y
 f	y
 d�	y
 �

for all f � b E and x � E� Tf is a bounded function and

	���


hTf� gi �

Z
Tf	x
 g	x
 d�	x


�

ZZ
K	x� y
 f	y
 g	x
 d�	y
 d�	x
 �

with a nicely convergent integral� for all g � b E � By Fubini and anti�
symmetry�

	���
 hTb�Q� b�Qi � � � for all Q � "

in this case� If f� g � E � then for k large enough we can write

	���
 f �
X
Q�
k

Q �Q and g �
X
R�
k

�R �R �

Then 	���
 and 	���
 imply that

	���


hTbf� b gi

�
X

Q�R�
k

X
Q�	R

Q �R

Z
R

Z
Q

K	x� y
 b	y
 b	x
 d�	y
 d�	x
 �

when 	���
 holds�
When we no longer assume 	���
� the simplest is probably to get T

as a limit of operators T�� as follows� Select a nice C� cut�o� function
� such that �	t
 � � for � � t �  and �	t
 �  for t � �� and then set

K�	x� y
 � �
� jx� yj

�

�
K	x� y
 �

for all 	small
 � � �� The kernels K� are still uniformly standard and
antisymmetric� and they satisfy 	���
� so we can de�ne singular integral
operators T� as in the discussion above�
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Lemma �
� For every antisymmetric standard kernel K we can de�ne

a singular integral operator T � b E  b E �� C by

	���
 hTbf� b gi � lim
���

hT�bf� b gi � for all f� g � E �

Moreover T satis�es 	���
 and 	���
� and 	���
 holds whenever f� g are
as in 	���
�

We shall refer to T as the principal value operator associated to
	the antisymmetric standard kernel
 K� Note that we shall only use
	���
� and not 	���
�

Our proof of Lemma �� will rely on 	���
� which will only be
proved later 	see 	 ��
 and the de�nition 	���

 but is fairly simple�

Because of 	���
� the integrals in 	���
 converge� and we could
have taken 	���
 as our de�nition of T� It is slightly easier to proceed as
we do because we won�t have to check that di�erent expressions for f
and g in 	���
 give the same result in 	���
� Let us return to the lemma�
The existence of a limit in 	���
 follows from the dominated convergence
theorem� applied to the kernels K� 	that converge pointwise to K
 in
the formula 	���
 	which is satis�ed by all the T��s as soon as 	���

holds
� We also get the formula 	���
 for T at the same time� From
	���
 and the linearity of each T� we get that T is linear� The formula
	���
 for T follows directly from 	���
 and the fact that each T� satis�es
it� Finally 	���
 is an easy consequence of 	���
 	and the existence
of decompositions as in 	���

� or can be obtained directly from its
analogue for the T��s and the dominated convergence theorem�

This completes our discussion of the principal value operator as�
sociated to antisymmetric standard kernels� Note that they satisfy the
weak boundedness property 	���
 automatically� because they satisfy
the stronger 	���
�

�� Tb � BMO and the Haar system�

In this section we want to see how to use the modi�ed Haar system
of Section � to check our conditions that Tb � BMO and T tb � BMO�

First observe that our cubes Q� Q � "� satisfy the conditions 	��
�
	���
 required for the construction of Section �� 	��
 and 	���
 are the
same as 	���
 and 	���
� 	���
 follows from 	���
 and the fact that B	Q

is centered on supp �� 	���
 is a consequence of 	���
 and 	���
 	although
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with a slightly larger constant
� and �nally 	���
 	again with a larger
constant
 follows from the fact that for each r�

	��

the number of cubes of "k that meet a

ball of radius r is always �  � CA�k r� �

This last is an easy consequence of 	���
� 	���
� and the fact that the
balls B	Q
 are centered on E� because this implies that jx	Q
�x	Q�
j �
A�k when Q�Q� � "k� with Q �� Q��

So we can apply the construction of Section � to our cubes Q � "
and our function b� We do this and get a modi�ed Haar system fh�QgQ���
It will be simpler to call

	���
 H � f	Q� �
 � Q � " and � � D	Q
g

the set of indices that show up�
For each function � � L�	d�
� set

	���
 ��Q � h�� h�Qib �

Z
� h�Q b d� �

for all 	Q� �
 � H� These coe�cients do not determine � entirely� but
only modulo the piece F�� 	see 	����
 and 	����

� Here� because "�

has only one cube� F�� is simply the constant

	���
 F�� �
�Z

E

b d�
��� Z

E

� b d� �

	See the de�nition 	���
�
 Nonetheless� the coe�cients ��Q are enough
to determine whether � � BMO�

Lemma ���� Let � � L�	d�
 be given� and de�ne the ��Q� 	Q� �
 � H�

by 	���
� Then � � BMO if and only if the ��Q satisfy the following

quadratic Carleson measure condition� there is a constant C � � such

that

	���

X
Q
R

X
��D�Q�

j��Qj
� � C��	R
 � for all R � " �

Moreover the best constant in 	���
 is equivalent to k�kBMO�
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To prove the lemma� let � � L�	d�
 and R � " be given� Set

mR� �


�	R


Z
R

� d� �

as in De�nition �� � and then apply Proposition ���� to f � 	� �
mR�
�R� For all cubes Q � R and all � � D	Q
�

	���
 hf� h�Qib �

Z
Q

f h�Q b d� � ��Q

	the extra term
R
Q
mR � h

�
Q b d� disappears because of 	����

� Then

	�� 

X
Q
R

X
��D�Q�

j��Qj
� � C kfk�� � C

Z
R

j� �mR�j
� d� �

by the second half of 	����
�
Denote by  the constant value on R of F�� �

P
Q��h�� h

�
Qib h

�
Q�

where the sum is restricted to the pairs 	Q� �
 such that Q contains R
and is of a generation k	Q
 � k	R
� It would be easy to check that 
is the value of Fk�R�� on R� but we don�t need this fact� Because of
	����
�

	���
 	� � 
�R �
X
Q
R

X
��D�Q�

h�� h�Qib h
�
Q �

Apply the uniqueness result in Proposition ����� and then 	����
� to the
function 	� � 
�R� This gives

	���


Z
R

j� � j� d� � C
X
Q
R

X
��D�Q�

j��Qj
�

	recall 	���

� Finally observe that

	��


Z
R

j� �mR�j
� d� �

Z
R

j� � j� d� �

This would be true for any constant � it follows from the pythagorean
theorem� or the fact that mR� is the orthogonal projection of � on the
vector space of constant functions in L�	R� d�
�



��� G� David

When we compare 	�� 
� 	��
� and 	���
� we �nd that the quanti�
ties in 	�� 
 are equivalent� Lemma ��� follows by taking the supremum
over all cubes R�

Lemma ����� Let T � b E  b E �� C be a bilinear operator� Set

	���
 ��Q � hTb� b h�Qi

and

	���
 !��Q � hTb h�Q� bi �

for all 	Q� �
 � H� Then there are functions � and !� � BMO such that

	���
 and 	����
 hold if and only if the sequences f��Qg and f
!��Qg both

satisfy the Carleson condition 	���
�

Indeed if � � BMO is such that 	���
 holds� then 	���
 with
g � h�Q says that the numbers ��Q in 	���
 are the same as the ones in
	���
� Lemma ��� then gives the desired control on the ��Q� Conversely�
suppose that the ��Q in 	���
 satisfy 	���
� For each integer k � �� set

	���
 �k �
X
Q�
k

X
��D�Q�

��Q h
�
Q �

Note that

	���






nX
k	m

�k




�
�
� C

nX
k	m

X
Q�
k

X
��D�Q�

j��Qj
� �

by Proposition ����� Since the right�hand side of 	���
 tends to � when
m and n tend to � 	because

P
H j�

�
Qj

� � ��� by 	���
 applied to the

only cube of "�
� the series
P�

k	� �k converges in L�	d�
� Denote its
limit by ��� By the uniqueness part of Proposition �����

	���
 h��� h�Qib � ��Q � for all 	Q� �
 � H �

and �� � BMO by 	���
 and Lemma ����
Denote by W the subspace of E spanned by the h�Q� 	Q� �
 � H�

By 	���
 and 	���
�

	�� 
 hTb� b gi � h��� gib � for all g �W �
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From Proposition ���� and the description of F� in 	���
 we see that W
is a subspace of codimension  in E and the one�dimensional space of
constant functions is a complementary space for W in E � Thus� even
though 	�� 
 does not imply that �� satis�es 	���
� this will be easy
to �x� Set

	���
 � � �� �
�Z

E

b d�
���

	hTb� bi � h��� bi


	note that
R
E
b d� �� � by accretivity�
 Obviously� adding a constant to

�� does not modify h��� gib for g � W � because of 	����
� Therefore
	�� 
 yields

	����
 hTb� b gi � h�� gib �

Z
� b g d� �

for all g �W � Since we also have that

	���


Z
� b d� � h�� bi � h��� bi� 	hTb� bi � h��� bi
 � hTb� bi �

by 	���
� we see that 	����
 holds for all g � E � i�e�� 	���
 holds� Note
that � lies in BMO because �� does� This proves the converse�

The story for the transposed operator� i�e�� with 	����
 and the
numbers !��Q is the same� This completes our proof of Lemma ����

The proof of Theorem ���� will 	continue to
 keep us busy for the
next few sections� The argument will follow roughly the same lines as
in the Coifman�Semmes or Auscher�Tchamitchian proofs of T 	b
� See
�CJS�� �AT�� �Da� or �My��

�� Paraproducts�

In this section we want to construct bounded operators P such that
Pb and P tb are prescribed functions in BMO� We shall call them para�
products because they look like other operators that actually looked like
Bony paraproducts�

In the standard situation for the regular T 	
�theorem� say� these
operators are bounded singular integral operators� and we can use them
to substract them from the operator T of Theorem ����� this allows one
to reduce to the situation where T and T t are equal to � 	instead of
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just lying in BMO�
 Here this approach will not work brutally� because
our paraproducts will have a fairly bad kernel� We shall have to use
them in the following slightly more subtle way� The boundedness of
these operators� which will not be so trivial because it will use Carleson�s
theorem� will be used to show that their matrices in the modi�ed Haar
system of Section � de�ne bounded operators on ��	H
� These bounded
matrices will then be substracted from the matrices of operators T
from Theorem ����� and we shall be able to prove that the resulting
di�erences of matrices are small enough to be handled by just looking
at the size of their coe�cients�

In this section we construct the paraproducts� prove their bound�
edness� and compute their matrices� For the results of this section� none
of the small boundary conditions on our cubes will be used� the weaker
structure of Section � is still enough�

For each sequence f��Qg�Q����H of complex numbers that satis�es
the Carleson condition 	���
 we de�ne an operator P on E by

	��
 Pf �
X

�Q����H

��Q hf� h
�
Qib 
Q �

where

	���
 
Q �
� Z

Q

b d�
���

�Q �

The sum in 	��
 has only �nitely many terms� because only �nitely
many coe�cients hf� h�Qib can be di�erent from � when f � E � Thus
	��
 makes sense� and even Pf � E �

We shall also be interested in the operator !P that we get from P
by �b�transposition�� as follows� !P is the linear operator from E to the
dual of b E de�ned by

	���
 h !Pg� bfi � hPf� b gi �

or equivalently

	���
 h !Pg� fib � hPf� gib � for all f� g � E �

Lemma ���� The operator !P is also given by

	���
 !Pg �
X

�Q����H

��Q

� Z
Q

b d�
����Z

Q

g b d�
�
h�Q �
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for all g � E and where the series in 	���
 converges in L�	d�
�

Let g � E be given� and set

	���
 c�Q � ��Q

�Z
Q

b d�
����Z

Q

g b d�
�
�

By the paraaccretivity conditions 	���
�

���
Z
Q

b d�
����� � C �	Q
��

and� since g is obviously bounded� jc�Qj � C j��Qj for all Q and �� The
constant C may depend wildly on g� but we don�t care� In particular�P

Q�� jc
�
Qj

� � �� by 	���
� and the same argument as in Lemma ���

	see around 	���

 shows that the series in 	���
 converges in L�	d�
�
Call h � L�	d�
 the limit� we want to check that h can be taken as !Pg�
i�e�� that

	�� 
 hh� fib � hPf� gib � for all f � E �

When f is a constant� hh� fib � � because h is a limit in L� of �nite
linear combinations of functions h�Q and hh�Q� fib � � by 	����
� Since
Pf � � because all the hf� h�Qib are equal to �� we get 	�� 
 for constant
functions� Since all functions in E are linear combinations of some
constant and functions h�Q 	by Proposition ���� and 	���

� it is enough
to prove 	�� 
 when f � h�Q� But

hPh�Q� gib � ��Q h
Q� gib � ��Q

�Z
Q

b d�
����Z

Q

g b d�
�
� hh� h�Qib �

by 	��
� 	����
� 	���
� the de�nition of h as the right�hand side of 	���
�
and 	����
 again� This proves Lemma ����

Proposition ���� The operators P and !P both extend to bounded

operators on L�	d�
� with norms less than C � times the constant C in

the Carleson condition 	���
�

First observe that P extends to a bounded operator on L�	d�
 if
and only if there is a constant C � � such that

	���
 jhPf� b gij � C kfk� kgk� � for all f� g � E �
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This follows easily from the density of E in L�	d�
 and the fact that
C�� � jbj � C by 	���
� This condition is also equivalent to the exis�
tence of an extension of !P to a bounded operator on L�	d�
� because of
	���
� Thus it will be enough to prove the boundedness of 	an extension
of
 !P to L�	d�
�

From Lemma ���� the uniqueness result in Proposition ����� and
	����
 we deduce that for every g � E �

	��
 k !Pgk�� � C
X

�Q����H

jc�Qj
� �

where c�Q is as in 	���
� We want to use Lemma ���� 	Carleson�s theo�
rem
 to estimate the right�hand side of 	��
� Set

	���
 fk �
X
Q�
k

�	Q
��
�Z

Q

jgj d�
�
�Q �

for all k � �� Obviously the sequence ffkg satis�es 	����
 with f
replaced with g� Also de�ne measures �k on E by

	���
 d�k �
X
Q�
k

� X
��D�Q�

j��Qj
�
�
�	Q
�� �Q d� �

Let us check that f�kgk�� de�nes a Carleson measure on E  N � as in
De�nition ���� For each cube R �

S
k"k�

	���

X

k�k�R�

�k	R
 �
X
Q
R

� X
��D�Q�

j��Qj
�
�
� C �	R
 �

by 	���
� In other words� 	����
 holds and � � f�kg is a Carleson
measure� Lemma ���� now tells us that

X
k

Z
jfkj

� d�k � C kgk�� �

But

X
k

Z
jfkj

� d�k �
X
k

X
Q�
k

� X
��D�Q�

j��Qj
�
�
�	Q
��

� Z
Q

jgj d�
��

� C��
X

�Q����H

jc�Qj
� �	���
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by de�nitions 	���
 and 	���
� the accretivity condition 	���
� and
	���
� Because of 	��
� this gives that k !Pgk�� � C kgk��� proves the
boundedness of !P � and completes our proof of Proposition ����

Next we want to talk about matrices�

De�nition ����� Let T � E  b E �� C be a bilinear operator� The

matrix of T 	relative to the system fh�Qg
 is the matrix M with coe��

cients

	���
 M	Q� ��R� ��
 � hTh�Q� b h
��

Ri � 	Q� �
 � H and 	R� ��
 � H �

The slight asymmetry of this de�nition cannot be a serious problem
because C�� � jbj � C by 	���
� our de�nition is just more convenient
for our paraproducts P and !P � Note in particular that if !T denotes the
b�transpose of T as in 	���
� i�e�� if !T � E  b E �� C is de�ned by

	�� 
 h !Tg� b fi � hTf� b gi � for f� g � E �

then the matrix of !T is just the transpose of M�
We do not claim that M determines T� and indeed it does not say

anything about hT� bfi or hTf� bi when f � E � but it will still be useful
to determine when T has a bounded extension to L�	d�
�

Lemma ����� Let T � E  b E �� C be a bilinear operator and M
denote its matrix relative to the system fh�Qg� Then T admits an ex�

tension to a bounded operator on L�	d�
 if and only if

T  � L�	d�
 �	����


!T  � L�	d�
 �	���


and

	����
 M de�nes a bounded operator on ��	H
 �

Let us explain these conditions� 	����
 means that there is a func�
tion h � L�	d�
 such that

	����
 hT � bfi � hh� bfi �

Z
h bf d� � for all f � E �
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Similarly� 	���
 means that there is an !h � L�	d�
 such that

	����
 h !T � bfi � hTf� bi �

Z
!h bf d� � for all f � E �

As for 	����
� let W � denote the set of �nitely supported sequences
x � fx�Qg�Q����H and de�ne a bilinear operator S from W � W � to C
by

	����
 hSx� yi �
X

�Q����H

X
�R�����H

M	Q� ��R� ��
x�Q y
��

R �

for all x� y � W �� Then 	����
 means that there is a constant C � �
such that

	����
 jhSx� yij � C kxk kyk � for x� y �W � �

where

kxk �
� X
�Q����H

jx�Qj
�
��
�

and similarly for y�
The obvious mapping from W � to W � span fh�Q � 	Q� �
 � Hg

de�ned by �	x
 �
P

x�Q h
�
Q is a bijection and

C�� kxk � k�	x
k� � C kxk �

by Proposition ����� From 	���
 and 	����
 we deduce that

	����
 hSx� yi � hT�	x
� b �	y
i � for all x� y �W � �

Hence 	����
 holds if and only if there is a constant C � � such that

	��� 
 jhTf� b gij � C kfk� kgk� � for all f� g �W �

Because of this� 	����
 is clearly necessary if we want T to have a
bounded extension� 	����
 and 	���
 are necessary too� because  �
L�	d�
 and T has a bounded extension if and only if !T does� The
converse is not much harder� Suppose that 	����
� 	���
� and 	����

hold� By Proposition ����� every f � E has a decomposition f �
F�f � 	f � where F�f is a constant because "� has only one cube�
	f �W� and

kF�fk� � k	fk� � C kfk� �
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Then� for f� g � E �

jhTf� b gij � jhT 	F�f
� b gij� jhT 		f
� b gij

� C jF�f j kTk� kgk� � jhT 		f
� b F� gij� jhT 		f
� b 	 gij

� C kF�fk� kgk� � C jF� gj k !Tk� k	fk� � C k	fk� k	 gk�

� C kF�fk� kgk� � C kF� gk� kfk� � C kfk� kgk�

	����


� C kfk� kgk� �

by 	����
� 	���
� and 	��� 
� Thus T has a bounded extension to L��
as desired�

This completes the proof of Lemma ����

Finally we want to compute the matrix of P �

Lemma ���	� Denote by P � 		P 	Q� ��R� ��


 the matrix of the

paraproduct P de�ned by 	��
 	using the sequence f��Qg�
 Then

	���
 P 	Q� ��R� ��
 � � � when Q �R � � or R � Q �

and

	����

P 	Q� ��R� ��
 is ��Q times the constant value

of h�
�

R on Q when Q � R� Q �� R �

Recall from 	���
 and 	��
 that

	����
 P 	Q� ��R� ��
 � hPh�Q� b h
��

Ri � ��Q h
Q� b h
��

Ri �

by 	����
� This is obviously � when Q � R � �� and also when R � Q
because 
Q is constant on Q� and by 	����
� Thus we are left with the

case when Q � R� Q �� R� In this case h�
�

R is constant on Q and

h
Q� bi �

Z

Q b d� �  �

by 	���
� The lemma follows�
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�� Reduction to the study of a matrix N �

In this section we take an operator T that satis�es the hypotheses
of Theorem ����� compute its matrix� substract from it the matrices of
appropriate paraproducts� and show that the remaining matrix de�nes
a bounded operator if some other matrix N de�nes a bounded operator
on ��� The matrix N will be a matrix with nonnegative coe�cients�
that no longer depends on the operator T but only on the size of certain
integrals on E� The boundedness of 	the operator de�ned by
 N will
be proved in later sections� with the help of Schur�s lemma�

We shall not use the small boundary properties of our cubes in this
section either� except for the fact that

	��
 �	fx � Q � dist 	x�EnQ
g
 � � � for all Q � " �

which follows from 	�� 
�
Let T be an operator that satis�es the hypotheses of Theorem �����

Denote by T � 		T 	Q� ��R� ��


 the matrix of TMb in the modi�ed
Haar system fh�Qg� and where Mb denotes the operator of pointwise
multiplication by b� Since T is de�ned on b E  b E � TMb is de�ned on
E  b E � as required in De�nition ���� and

	���
 T 	Q� ��R� ��
 � hTb h�Q� b h
��

Ri � for 	Q� �
� 	R� ��
 � H �

We already know from 	���
 and 	����
 that 	TMb
�� and 	 !TMb
�
!� lie in BMO� hence in L�	d�
� 	Compare 	���
 and 	����
 with 	����

and 	����
 for TMb�
 Hence Lemma ��� says that it will be enough to
prove that T de�nes a bounded operator on ��	H
�

Next de�ne sequences f��Qg and f!��Qg by 	���
 and 	���
� Then

Lemma ��� says that f��Qg and f!��Qg satisfy the Carleson condition
	���
�

Denote by P the paraproduct constructed in Section � with the
sequence f��Qg and by P � the analogous operator de�ned with the se�

quence f!��Qg� These two operators have bounded extensions to L�	d�
�
by Proposition ���� Denote by P the matrix of P � By Lemma ����
P de�nes a bounded operator on ��	H
� and so does its transpose !P�
Similarly� the matrix P� of P � de�nes a bounded operator on ��	H
�

Set M � T � !P � P� and denote by M	Q� ��R� ��
 its generic
element� The discussion above shows that

	���

Theorem ���� will follow if we can prove that

M de�nes a bounded operator on ��	H
 �
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Let us compute the coe�cients of M� We use 	���
� Lemma ����� and
then 	���
 and 	���
 to get that

	���
 M	Q� ��R� ��
 � hTb h�Q� b h
��

Ri �

when Q � R � � or Q � R�

M	Q� ��R� ��
 � hTb h�Q� b h
��

Ri � P �	Q� ��R� ��


� hTb h�Q� b h
��

Ri � !��Q 	value of h�
�

R on Q
	���


� hTb h�Q� b h
��

Ri � hTb h
�
Q� bi 	value of h�

�

R on Q
 �

when Q � R� Q �� R� and

M	Q� ��R� ��
 � hTb h�Q� b h
��

Ri � P 	R� ��� Q� �


� hTb h�Q� b h
��

Ri � ��
�

R 	value of h�Q on R
	���


� hTb h�Q� b h
��

Ri � hTb� b h
��

Ri 	value of h�Q on R
 �

when R � Q� R �� Q�
The next stage of our computation is to express the coe�cients of

M in terms of the kernel K	x� y
 and then estimate them in terms of
some integrals on E� The following notation will be useful� Set

	���
 d	Q
 � A�k�Q� �

for all Q � "� where k	Q
 denotes the generation of Q� and also

	�� 
 �Q � fx � E � dist 	x�Q
 � d	Q
g �

For each Borel subset V of E such that Q � V � �� set

	���
 I	Q� V 
 �

Z
V

Z
Q

d�	x
 d�	y


jx� yj
�

and

	���
 J	Q� V 
 �

Z
V

d	Q
 d�	x


jx� x	Q
j�
�

where x	Q
 denotes the center of the ball B	Q
� as in 	���
� These are
the quantities that will be used to control the coe�cients of M� We
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still denote by F 	Q
� Q � "� the set of children of Q� i�e�� the set of
cubes Q� � "k�Q��� such that Q� � Q� We shall try to be systematic
about calling Q� or R� generic children of Q or R�

Lemma ����� If Q � R � �� then for all choices of � � D	Q
 and

�� � D	R
�

	���
 jM	Q� ��R� ��
j � C A�	Q�R
 � C A�	Q�R
 �

where

	���


A�	Q�R


�
X

Q��F �Q�

X
R��F �R�

�	Q�
��
� �	R�
��
� I	Q�� R� � �Q


and

	���
 A�	Q�R
 � �	Q
�
�
X

R��F �R�

�	R�
��
� J	Q�R�n�Q
 �

To prove the lemma� let us �rst observe that Tb h�Q	x
 is well�
de�ned when dist 	x�Q
 � � and that it is given by

	���
 Tb h�Q	x
 �

Z
Q

K	x� y
 b	y
h�Q	y
 d�	y
 �

Recall from 	��� 
 and Lemma ���� that

	���
 h�Q �
X

Q��F �Q�

���Q� �	Q
�
��
� �Q� �

where the coe�cients ���Q� are uniformly bounded� From this descrip�
tion and the �rst standard estimate 	���
 we get that

	���
 jTb h�Q	x
j � C
X

Q��F �Q�

�	Q�
��
�
Z
Q�

d�	y


jx� yj
�

when dist 	x�Q
 � �� Notice incidentally that dist 	x�Q
 � � for ��
almost all x � R� by 	��
 	or 	�� 

�

This estimate is best when x � �QnQ� but when x �� �Q we can
use the second standard estimate 	���
 and the fact that

R
Q
b h�Q d� � �
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	by 	����

 to get a better one� Let x	Q
 denote the center of B	Q
�
as usual� 	Actually� for the computation that follows� any point of Q
would work equally well�
 If x � En�Q�

	�� 


jTb h�Q	x
j �
���
Z
Q

K	x� y
 b	y
h�Q	y
 d�	y

���

�
���
Z
Q

	K	x� y
�K	x� x	Q


 b	y
h�Q	y
 d�	y

���

� C

Z
Q

jy � x	Q
j

jx� x	Q
j�
j b	y
h�Q	y
j d�	y


� C
d	Q


jx� x	Q
j�

X
Q��F �Q�

�	Q�
�
�

� C �	Q
�
�
d	Q


jx� x	Q
j�
�

by 	���
� 	���
� 	���
 and 	���
� We may now use 	���
� 	���
� 	���

and the discussion above to get that

	���


jM	Q� ��R� ��
j � jhTb h�Q� b h
��

Rij

� C
X

R��F �R�

�	R�
��
�
Z
R�
jTb h�Q	x
j d�	x
 �

On each R���Q we use 	���
 to estimate jTb h�Q	x
j� when we integrate
the estimate and sum over R�� we get less than CA�	Q�R
� Similarly�
we use 	�� 
 for x � R�n�Q� integrate over R�n�Q and sum over R��
and we get a contribution � CA�	Q�R
� This proves Lemma ���

Note that our estimate is more performant when d	Q
 � d	R
� in
the other situations� we would use a symmetric argument� We won�t
need to do this� because as we shall see soon we won�t have to bound
coe�cients of M for which d	Q
 � d	R
�

Lemma ���	� We have that

	���
 jM	Q� ��Q� ��
j � C � CA�	Q
 �

for all Q � " and �� �� � D	Q
� where

	����
 A�	Q
 �
X

Q���F �Q�

X
Q���F �Q�
Q�� �	Q

�
�

�	Q��

��
� �	Q��


��
� I	Q��� Q
�
�
 �
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To prove the lemma we start again from 	���
 and use 	���
 to get that

	����


M	Q� ��Q� ��
 � hTb h�Q� b h
��

Qi

�
X
Q��

X
Q���F �Q�

���Q�� ����Q�� �	Q
�
�

��
� �	Q��


��
�

� hTb�Q�� ��Q�� i �

The terms for which Q�� � Q�� are less or equal than CC�� by our weak
boundedness assumption 	���
� and so we are left with terms for which
Q�� �� Q��� For each such term we use 	���
 and 	���
 to get that

	����

jhTb�Q�� � b�Q��ij �

���
Z
Q��

Z
Q��

K	x� y
 b	y
 b	x
 d�	y
 d�	x

���

� CI	Q��� Q
�
�
 �

Lemma ���� follows because the coe�cients �Q�� are uniformly bound�
ed�

Now we want to estimate the coe�cients of M for which Q � R�
Q �� R� In such situations� we shall systematically denote by R	Q
 the
child of R that contains Q�

Lemma ����� For each choice of cubes Q � R� Q �� R and � � D	Q
�
�� � D	R
�

	����
 jM	Q� ��R� ��
j � C 	B�� � B�� �B�� � B��
 �

where

B�� �
X

Q��F �Q�

X
R��F �R�
R� �	R�Q�

�	Q�
��
� �	R�
��
�

� I	Q�� R� � �Q
 �

	����


B�� �
X

R��F �R�
R� �	R�Q�

�	Q
�
� �	R�
��
� J	Q�R�n�Q
 �	��� 


B�� �
X

Q��F �Q�

�	Q�
��
� �	R	Q

��
� I	Q�� �QnR	Q

 �	����
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and

	����
 B�� � �	Q
�
� �	R	Q

��
� J	Q�En	�Q	 R	Q


 �

To prove the lemma� let Q� ��R� �� be given� and denote by � the
constant value of h�

�

R on Q� Thus j�j � C �	R	Q

��
� by 	���
� This
time we apply 	���


	���
 M	Q� ��R� ��
 � hTb h�Q� b h
��

Ri � � hTb h�Q� bi � B� �B� �

where

	����
 B� � hTb h�Q� b h
��

R �RnR�Q�i

and

	����
 B� � �hTb h�Q��E�R�Q� bi �

Note that the part hTb h�Q� ��R�Q� bi cancelled out� this will allow us
to use the kernel K	x� y
 again to estimate B� and B�� Thus

	����
 jB�j � C
X

R��F �R�
R� �	R�Q�

�	R�
��
�
Z
R�
jTb h�Q	x
j d�	x
 �

by 	���
 and 	���
 for R� and now we can estimate jTb h�Q	x
j with
	���
 and 	�� 
� As before� we use 	���
 on each R� � �Q� After we
integrate on R� � �Q and sum over R�� we get a contribution less or
equal than CB��� On the rest of R� we use 	�� 
� and we get a total
contribution less or equal than CB�� after integrating on R�n�Q and
summing over R��

The estimates for B� are similar� Recall that j�j � C �	R	Q

��
�

and hence

	����
 jB�j � C �	R	Q

��
�
Z
EnR�Q�

jTb h�Q	x
j d�	x
 �

On �QnR	Q
 we use 	���
 and get a contribution less or equal than
CB��� On En	�Q 	 R	Q

 we use 	�� 
 and get less or equal than
CB��� This proves Lemma �����
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We are now ready to reduce the proof of Theorem ���� to the
�veri�cation� that a certain matrix N de�nes a bounded operator on
��	"
� De�ne a matrix N � 		N	Q�R


Q�R�
 as follows� Set

	����
 N	Q�R
 � A�	Q�R
 � A�	Q�R
 �

where A�	Q�R
 and A�	Q�R
 are as in 	���
 and 	���
� when

Q �R � � and either d	Q
 � d	R
 or else

d	Q
 � d	R
 and diamQ � diamR �
	����


N	Q�Q
 � A�	Q
 � for Q � " �	��� 


and

	����
 N	Q�R
 � B�� � B�� � B�� �B�� �

when Q � R� Q �� R� where A�	Q
 is as in 	����
 and the Bij are as
in Lemma ����� Finally set N	Q�R
 � � in the other cases� i�e�� when
Q �R � � but 	����
 does not hold and when R � Q� R �� Q�

Lemma ��	� To prove Theorem ���� it is enough to show that N
de�nes a bounded operator on ��	"
�

Set N� � N �N t�Id� where N t is the transpose of N and Id the
identity matrix� Obviously N� de�nes a bounded operator on ��	"

if N does� Let us suppose that this is the case� since N� is a matrix
with nonnegative entries and all the sets D	Q
� Q � "� have at most
C elements� we shall get that M de�nes a bounded operator on ��	H

if we can prove that

	���
 jM	Q� ��R� ��
j � N�	Q�R
 �

for all Q� ��R� ��� and where N�	Q�R
 denotes the generic element of
N��

Denote by D� the set of 	ordered
 pairs 	Q�R
 such that Q � R
or 	����
 holds� When 	Q�R
 � D�� 	���
 follows from Lemma ���
����� or ����� Otherwise� we shall use the transpose !T of T� which is
de�ned by h !Tb f� b gi � hTb g� b fi for all f� g � E � Notice that !T also
satis�es the hypotheses of Theorem ����� only with K	x� y
 replaced
with K	y� x
 and the functions �� !� exchanged� We can de�ne a matrix
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!M with !T as we did for T itself� and it is clear from 	���
�	���
 that !M
is the transpose of M� If 	Q�R
 �� D�� then 	R�Q
 � D� and

jM	Q� ��R� ��
j � j !M	R� ��� Q� �
j � N�	R�Q
 � N�	Q�R
 �

by Lemma ��� ���� or ���� 	applied to !T �
 Thus 	���
 holds in all
cases� and M de�nes a bounded operator if N does� Lemma ����
follows� by 	���
�

We completed the task assigned to this section� we can forget
singular integral operators and concentrate on the matrix N �


� Estimates on I	Q� V 
�

We shall need to estimate the various coe�cients of our new matrix
N � In this section we prove a few estimates on integrals like I	Q� V 

that will be useful later� The small boundary properties 	�� 
�	���

will be needed here�

We start with a simple estimate that uses the density property
	��
 only� First observe that

	 �


Z
jx�yj�d

d�	y


jx� yj�
�
X
���

Z
��d	jx�yj�����d

d�	y


jx� yj�

� C
X
���

	�� d
	�� d
��

� C d�� �

for all x � E and d � ��
Next let Q � " and V � EnQ be given� For each x � Q we use

Cauchy�Schwarz to show that

	 ��


Z
V

d�	y


jx� yj
� �	V 
�
�

�Z
V

d�	y


jx� yj�

��
�
� C �	V 
�
� d	x
��
� �

where we set d	x
 � dist 	x�EnQ
� Note that d	x
 � � almost every�
where on Q� by 	���
�	�� 
� We may now integrate 	 ��
 on Q to get
that

	 ��
 I	Q� V 
 �

Z
Q

Z
V

d�	y
 d�	x


jx� yj
� C �	V 
�
�

Z
Q

d	x
��
� d�	x
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	see 	���
 for the de�nition of I	Q� V 

�

Lemma 
�� We have that

	 ��


Z
Q

d	x
��
� d�	x
 � C d	Q
��
� �	Q
 �

Here d	Q
 � A�k�Q�� as in 	���
� To prove the lemma we decom�
pose Q into a �rst region B� where d	x
 � d	Q
 and annuli B�� � � �
where ���d	Q
 � d	x
 � �����d	Q
� Then

Z
B�

d	x
��
� d�	x
 � d	Q
��
� �	Q
 � C d	Q
��
� �	Q
 �

by 	���
� and

	 ��


Z
B�

d	x
��
� d�	x
 � ��
� d	Q
��
� �	B�


� C ��
� d	Q
��
� ���� �	Q
 �

for � � � by 	�� 
� Lemma  �� follows by summing a convergent power
series�

From 	 ��
 and Lemma  �� we deduce that

	 ��
 I	Q� V 
 � C�	V 
�
� �	Q
 d	Q
��
� �

for all cubes Q and all sets V � EnQ�
We want to re�ne this estimate when Q is not a good cube 	as in

	��

� because getting estimates in terms of �	Q
 rather than �	Q

will be very useful to get rid of some of the negative powers in formulae
like 	���
� 	����
� 	����
 or 	����
� Recall that � is not doubling or
anything like that� and we don�t have much in terms of lower bounds
for ��

Lemma 
�
� We have that

	 ��
 I	Q� V 
 � C�	V 
�
� �	Q
�
� �	Q
�
� d	Q
��
� �

for all Q � " and V � EnQ�
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To prove this we shall use a decomposition of Q� into maximal
good subcubes� For each Q � "� denote by S	Q
 the set of maximal
good cubes contained in Q� Obviously the cubes S� S � S	Q
� are
disjoint and contained in Q� but it is also true that they almost cover
Q� i�e�� that

	 ��
 �
�
Qn

	
S�S�Q�

S
�
� � �

This is essentially �DM� Lemma ��� �� but the proof is quite simple and
so we give it here� For each integer � � �� let Z� denote the set of cubes
R � "k�Q��� such that R � Q but R is not contained in any S � S	Q
�
Such cubes are obviously bad� as well as all their ancestors until Q and
hence they satisfy

	 �
 �	R
 � C� �	R
 � C�A
���� �	Q
 �

by 	���
 and repeated uses of 	���
� Because of 	��
 and 	���
� 	���
�
Z� has at most CA�� elements� and so

	 ��
 �
� 	
R�Z�

R
�
� CA�� �	Q
 �

where the value of C does not matter because we only need to know
that �	

S
R�Z�

R
 tends to � when � �� ��� The desired estimate
	 ��
 follows because �

Qn
	
S�Q�

S
�
�
� 	
R�Z�

R
�
�

for all � � ��
To prove Lemma  � we use 	 ��
 to almost�decompose Q into its

maximal good subcubes S� S � S	Q
 and write

	 ��


I	Q� V 
 �

Z
Q

Z
V

d�	x
 d�	y


jx� yj

�
X

S�S�Q�

I	S� V 


� C�	V 
�
�
X

S�S�Q�

�	S
 d	S
��
�

� C�	V 
�
�
X

S�S�Q�

�	S
 d	S
��
� �
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by 	 ��
 and 	��
 for the good cubes S�

Lemma 
��� For all Q � "�

	 ��

X

S�S�Q�

�	S

�d	Q


d	S


��
� C �	Q
 �

Of course we don�t need the power � here� but the proof will be just
as easy� Denote by S�	Q
� � � �� the set of cubes S � S	Q
 such that
k	S
 � k	Q
 � �� Because of 	��
� S�	Q
 has at most CA�� elements�
Let us check that

	 ��
 �	S
 � C�A
�������� �	Q
 �

for all S � S�	Q
� When � � � or � �	S
 � �	Q
 � C��	Q
 by 	���
�
When � � � �	S
 � �	 #S
 � C� �	 #S
 � C�A

�������� �	Q
 by 	���
 and
repeated uses of 	���
� and where #S denotes the parent of S� Here we
use the fact that all the ancestors of S between #S and Q are bad� by
de�nition of S	Q
�

From 	 ��
 and the fact that S�	Q
 has at most CA�� elements
we deduce that the contribution of S�	Q
 to the left�hand side of 	 ��

is at most CA��A����A���	Q
 � CA����	Q
� Lemma  �� follows by
summing over � � ��

Most of the time� Lemma  �� will be used in combination with
Cauchy�Schwarz� as follows

X
S�S�Q�

�	S

�d	Q


d	S


��
�
� X
S�S�Q�

�	S

��
�� X

S�S�Q�

�	S

�d	Q


d	S


����
�

� C�	Q
�
� �	Q
�
� �	 ��


because Q is 	essentially
 the disjoint union of the cubes S � S	Q
� A
trivial consequence of 	 ��
 is

	 � 


X
S�S�Q�

�	S
 d	S
��
� � d	Q
��
�
X
S

�	S

�d	Q


d	S


��
�

� C d	Q
��
� �	Q
�
� �	Q
�
� �

Lemma  � follows from this and 	 ��
�
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We shall need a last estimate on I	Q� V 
� to be used when we have
a larger power of �	Q
 to recuperate

	 ��
 I	Q� �QnQ
 � C�	Q

� �	Q


d	Q


��
�
�

To prove this we write

	 ���


I	Q� �QnQ
 �
X

S�S�Q�

I	S� �QnQ


�
X

S�S�Q�

I	S� �SnS
 �
X

S�S�Q�

I	S� �Qn�S


� I� � I� �

For each S � S	Q
�

	 ��
 I	S� �SnS
 � C�	�S
�
� �	S
 d	S
��
� � C�	S
�
� d	S
��
� �

by 	 ��
� 	���
 and 	��
 for the good cube S� Hence

	 ���


I� � C
X

S�S�Q�

�	S
�
� d	S
��
�

� C�	Q
�
�
X
S

�	S
 d	S
��
�

� C�	Q
 �	Q
�
� d	Q
��
� �

by 	 � 
� This takes care of I��
As for I�� let us check that

	 ���


Z
�Qn�S

d�	y


jx� yj
� C

�	Q


d	Q

�

for all S � S	Q
 and x � S�
Denote by T�� � � � � k	S
 � k	Q
� the cube of "k�Q��� that

contains S� This is a decreasing sequence of cubes� with T� � Q and�
Tk�S��k�Q� � S� and �Qn�S is the union of the sets �T�n�T���� � �
� � k	S
� k	Q
� � For these values of ��

	 ���
 �	�T�
 � C� �	T�
 � C�A
���� �	Q
 �
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by 	���
 and repeated uses of 	���
� Then

	 ���


Z
�Qn�S

d�	y


jx� yj
�

k�S��k�Q���X
�	�

Z
�T�n�T���

d�	y


jx� yj

�
X
�

�	�T�
 d	T���

��

� C �	Q
 d	Q
�� �

by de�nition 	�� 
 of �T���� the fact that x � S � T���� and then
	 ���
� This proves 	 ���
� Now

	 ���


I� �
X

S�S�Q�

Z
S

Z
�Qn�S

d�	y
 d�	x


jx� yj

� C
X
S

�	S
 �	Q
 d	Q
��

� C�	Q
 �	Q
 d	Q
��

� C�	Q

� �	Q


d	Q


��
�
�

by the de�nitions 	 ���
 and 	���
� 	 ���
� and 	���
 	to get that �	Q
 �
C d	Q

� The desired estimate 	 ��
 follows from 	 ���
� 	 ���
 and
	 ���
�

�� Bounds on N �

In the original version of this paper� the matrix N was bounded
with the help of Schur�s lemma� This was quite tempting� but it turns
out that it actually complicated the estimates� The current section was
revisited in October ���� after the author noticed that in the similar
extension of T 	b
 by Nazarov� Treil� and Volberg� the corresponding
estimates were much simpler� Here is the simple trick that makes the
di�erence� I am sure the reader will be glad that the authors of �NTV�
kindly communicated it to me�

Lemma ���� Let N � 		N	Q�R


Q�R�
 be a matrix with complex

coe�cients� Assume that for each Q � " there are at most C� indices
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R � " such that N	Q�R
 �� �� and also that

	���

X
Q�


jN	Q�R
j� � C�
� � for each R � " �

Then N de�nes a bounded operator on ��	"
� with norm jjjN jjj �
C� C��

This is easy to prove� First observe that if N is as in the lemma�
then it is the sum of at most C� matrices that satisfy the hypotheses
of the lemma with C� �  and the same constant C�� Thus we may
assume that C� � � For each R � "� denote by vR � ��	"
 the
vector with coordinates N	Q�R
� Q � "� By 	���
� kvRk� � C�

� � while
our �rst hypothesis with C� �  says that the vectors vR� R � "� are
orthogonal to each other� Hence if x � 	xR
R�
 is any vector in ��	"
�

	���
 kNxk� �



X

R

xR vR




� �X
R

jxRj
� kvRk

� � C�
� kxk

� �

as needed� The lemma follows�

To estimate the matrix N from Section �� we want to decompose
it into a sum of matrices N k� with k � k	Q
 � k	R
 and prove geo�
metrically decreasing bounds on the norms jjjN kjjj� For each integer
k � �� denote by N k the matrix with coe�cients Nk	Q�R
 � N	Q�R

when k	Q
 � k	R
 � k and Nk	Q�R
 � � otherwise� Note that
N �

P
k��N

k� because N	Q�R
 � � when k	Q
 � k	R
� See around

	����
�	����
 for the de�nition of N �
At this point� and for almost all the rest of this section� we �x an

integer k � � and we study N k by cutting it into smaller pieces� As we
shall see� Lemma �� will be quite handy for most of them�

Case A� Terms with Q � R� Of course this only shows up when k �
�� Denote by N� the part of N that lives on the diagonal� i�e�� set
N�	Q�R
 � � when Q �� R and N�	Q�R
 � N	Q�R
 � A�	Q
 for
Q � "� 	See 	��� 
�


Recall from 	����
 that

	���
 A�	Q
 �
X
Q��

X
Q��

�	Q��

��
� �	Q��


��
� I	Q��� Q
�
�
 �
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where we sum over pairs of distinct children of Q� By 	 ��
 and 	���
�

	���

I	Q��� Q

�
�
 � C�	Q��


�
� �	Q��

�
� �	Q��


�
� d	Q��

��
�

� C�	Q��

�
� �	Q��


�
� �

and so A�	Q
 is a sum of boundedly many bounded terms� Thus N�

de�nes a bounded operator on ��	"
� with norm jjjN�jjj � C�

Case B� Terms coming from A�	Q�R
� Set N�	Q�R
 � A�	Q�R
 when
k	Q
 � k	R
 � k and 	����
 holds� and N�	Q�R
 � � otherwise� We
should perhaps have written Nk

� 	Q�R
 instead of N�	Q�R
� but k is
�xed and we�ll try to keep the notation simple� Note that N�	Q�R
 � �
unless �Q meets R� this is clear from the de�nitions 	���
 and 	���
�
Thus for each Q there are at most C cubes R � "k�Q��k such that
N�	Q�R
 �� �� We can apply Lemma �� to the matrix N� with coe��
cients N�	Q�R
 and get that

	���
 jjjN�jjj
� � C sup

R�

$	R
 �

where

	���
 $	R
 �
X

Q�
�R�

N�	Q�R

�

and "	R
 is the set of cubes Q � "k�R��k such that Q � R � � but
�Q � R �� ��

Fix R � "� plug 	���
 into 	���
 and then apply 	 ��
 to get that

$	R
 � C
X

R��F �R�

X
Q�
�R�

X
Q��F �Q�

�	Q�
�� �	R�
�� I	Q�� R� � �Q
�

� C
X
R�

X
Q

X
Q�

�	R�
�� �	R� � �Q
 �	Q�
 d	Q�
�� �

	�� 


Let us �x R� and try to bound the corresponding sum� Let us warm
up with the easy case when k � �� say� Then we simply say that
�	Q�
 d	Q�
�� � C by 	���
� that the R� � �Q� Q � "k�R��k� have
bounded overlap 	by 	���
� 	���

 and are contained in R� and then
that $	R
 � C after summing over boundedly many children R� of R�

For larger k we wish to argue that since Q � R � � by 	����
�
the sets R� � �Q only cover a small proportion of R�� This can be
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implemented directly if R� is a good cube� but in general we need
to bring in the decomposition of R� into maximal good subcubes S�
S � S	R�
� as in 	 ��
� For each R� � F 	R
 set S� � fS � S	R�
 �
k	S
 � k	R
 � k��g� R�� �

S
S�S�

S and R�� � R�nR��� We write

	���
 $	R
 � C
X

R��F �R�

	��	R
�
 � ��	R

�

�	R�
�� �

where

	���
 ��	R
�
 �

X
Q�
�R�

X
Q��F �Q�

�	R�� � �Q
 �	Q�
 d	Q�
�� �

For ��	R
�
 we say that �	Q�
 � C d	Q�
 by 	���
� so that

	��


��	R
�
 �

X
S�S�

X
Q�
�R�

X
Q��F �Q�

�	S � �Q
 �	Q�
 d	Q�
��

� C
X
S�S�

X
Q�
�R�

�	S � �Q
 � C
X
S�S�

�	AS
 �

where AS is the union of the sets S � �Q� Q � "	R
� We used the
fact that the �Q� Q � "k�R��k� have bounded overlap� Next all the

points of AS lie within A�k�R��k � A�k d	R
 of some point of EnS�
because the cubes Q do not meet R 	and even less S
� 	See 	�� 
 for
the de�nition of �Q�
 Hence AS is contained in the set Nt	S
 of 	���
�
with t � A�k d	R
 d	S
�� � C A�k
� 	because d	R
 � Ak
�d	S
 by
de�nition of S�
� So

	���


��	R
�
 � C

X
S�S�

A�k�
��	S


� CA�k�
�
X
S�S�

�	S


� CA�k�
� �	R�
 �

because the cubes S are good 	as in 	��

� disjoint� and contained in
R�� This will be enough to take care of S��

For ��	R
�
 we only say that �	R�� � �Q
 � �	R�
� but we use a

better estimate for �	Q�
� Let Q � "	R
 be such that �Q meets R���
and let z be any point of �Q � R��� Then let H be the smallest cube
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that contains z such that k	H
 � k	R
�k��� Since H is not contained
in any cube of S�� it is a bad cube and so are all its ancestors contained
in R�� Then

	���


�	H
 � A����k�H��k�R��� �	R�


� CA��k �	R�


� CA��k d	R
 �

by repeated applications of 	���
� because k	H
 � k	R
�k���� and
by 	���
�

Since �Q meets H and Q is of a strictly later generation than
H� Q is contained in �B	H
 and 	���
 says that �	Q�
 � C�	H
 �
CA��k d	R
 for all Q� � F 	Q
�

Thus all the terms in the sum that de�nes ��	R
�
 	in 	���

 are

at most

C�	R�
A��k d	R
 d	Q
�� � C�	R�
A��k �

Since by easy geometric considerations 	like 	��

 there are at most
CA�k cubes Q in "	R
� we get that

	���
 ��	R
�
 � C�	R�
A��k �

From this and the similar estimate 	���
 we deduce that
P

	R
 �
CA��k
� 	see 	���

� and then that jjjN�jjj � CA��k
� 	by 	���

�

Case C� Terms from B��� Set N�	Q�R
 � B��� where B�� is as in
	����
� when Q � R� Q �� R� and k	Q
 � k	R
 � k� Otherwise set
N�	Q�R
 � �� These coe�cients are like the N�	Q�R
 � A�	Q�R
 that
we just treated 	compare 	����
 with 	���

� except that now we sum
over pairs Q�� R� such that Q� � F 	Q
 and R� � F 	R
 is not the cube
of F 	R
 that contains Q� The same estimates as before can be carried
out� because whenever we used the fact that Q does not meet R in
subsection B� we only needed to know that Q does not meet R�� So the
matrix N� with coe�cients N�	Q�R
 has a norm jjjN�jjj � CA��k
��
and the proof is the same as for N��

Case D� Terms from B��� Now set N�	Q�R
 � B��� where B�� is as
in 	����
� when Q � R� Q �� R� and k	Q
 � k	R
 � k� Otherwise set
N�	Q�R
 � �� These coe�cients are a little like the previous ones� but
with a �	R�
��
� replaced with �	R	Q

��
�� where R	Q
 is the child
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of R that contains Q� To accommodate this change� it will be better to
use 	 ��
 rather than 	 ��
� Recall from 	����
 that

	���
 B�� �
X

Q��F �Q�

�	Q�
��
� �	R	Q

��
� I	Q�� �QnR	Q

 �

and note that

	���

I	Q�� �QnR	Q

 � I	Q�� �QnQ�


� I	Q�� �Qn�Q�
 � I	Q�� �Q�nQ�
 �

by de�nition of I	 � 
 	see 	���

�
The last term is at most

C�	Q�
 �	Q�
�
� d	Q�
��
� � C�	Q�
 �	Q
�
� d	Q
��
�

by 	 ��
 and 	���
�
The �rst term is

I	Q�� �Qn�Q�
 � �	Q�
�	�Q
 dist 	Q�� �QnQ�
��

� C�	Q�
�	�Q
 d	Q
��

� C�	Q�
 �	Q
 d	Q
��

� C�	Q�
 �	Q
�
� d	Q
��
� �

by 	���
 and 	���
� Thus

	���
 N�	Q�R

� � C

X
Q��F �Q�

�	Q�
�	R	Q

�� �	Q
 d	Q
�� �

Note that for each Q � " there is at most one cube R � " such that
N�	Q�R
 �� � 	namely� the ancestor of order k of Q
� Thus we can
apply Lemma �� to the matrix N� with coe�cients N�	Q�R
� and

	�� 
 jjjN�jjj � sup
R�


$	R
 �

with

$	R
 �
X
Q

N�	Q�R

�

� C
X

R��F �R�

X
Q�
�R��

X
Q��F �Q�

�	Q�
�	R�
�� �	Q
 d	Q
�� �

	���
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and where

"	R�
 � fQ � "k�R��k � Q � R� and �Q meets EnR�g �

	The last condition is needed if we want I	Q�� �QnR	Q

 �� � in 	���
�

We shall now proceed as in Case B� As before� the case when k � �

is easy� because we can just use 	���
 to get that

$	R
 �
X
R�

X
Q

X
Q�

�	Q�
�	R�
�� � C

	because the cubes Q� are disjoint and contained in R�
� So we may
assume k � ��

Set

S� �
n
S � S	R�
 � k	S
 � k	R
 �

k

�

o

and subdivide "	R�
 into "� and "�� where

"� � fQ � "	R�
 � Q � S for some S � S�g

and "� � "	R�
n"�� For cubes of "� we use 	���
 to get that

	����


��	R
�
 ��

X
Q�
�

X
Q��F �Q�

�	Q�
 �	Q
 d	Q
��

� C
X
Q�
�

�	Q


� C
X
S�S�

X
Q�
�

Q
S

�	Q
 �

Now for S � S� and Q � "�� Q � S� we have that �Q meets EnR�

by de�nition of "	R�
 and so Q � Nt	S
� with t � A�k�Q��k�S���� say�
By de�nition of S�� t � CA�k
� and so 	�� 
 yields

	���

X
Q
S

Q�
�

�	Q
 � �	Nt	S

 � CA�k�
� �	S
 � CA�k�
� �	S
 �

because S is a good cube� Altogether� 	����
 becomes

	����
 ��	R
�
 � C

X
S�S�

A�k�
� �	S
 � CA�k�
� �	R�
 �
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because the maximal cubes S� S � S�� are disjoint and contained in
R��

Next we want to estimate

	����
 ��	R
�
 �

X
Q�
�

X
Q��F �Q�

�	Q�
 �	Q
 d	Q
�� �

This time we shall just say that �	Q�
 � �	R�
� but we�ll use a better
estimate on �	Q
� By de�nition of "�� the smallest ancestor H of Q
such that k	H
 � k	R
� k�� is a bad cube� and so are all its ancestors
in R�� By repeated uses of 	���
�

	����


�	H
 � A����k�H��k�R��� �	R�


� CA��k �	R�


� CA��k d	R


	by 	���

� Also� 	���
 says that �	Q
 � C��	H
� Altogether�

	����
 �	Q
 d	Q
�� � C �	H
 d	Q
�� � CA��k �

By 	��
� there are at most CA�k cubes Q in "	R�
 and so ��	R
�
 �

CA��k�	R�
� Finally

	����
 $	R
 � C
X

R��F �R�

�	R�
�� 	��	R
�
 � ��	R

�

 � CA�k�
� �

by 	���
� 	����
� 	����
� 	����
 and this� and so jjjN�jjj � CA�k�
� by
	�� 
�

Case E� The far part from A�	Q�R
� Now we study the piece ofN k that
comes from terms A�	Q�R
 for which dist 	Q�R
 � d	R
� For each R �
" denote by A	R
 the set of cubes Q � "k�R��k for which 	����
 holds

and dist 	Q�R
 � d	R
 � A�k�R�� De�ne N� by N�	Q�R
 � A�	Q�R

when Q � A	R
 and N�	Q�R
 � � otherwise� When Q � A	R
�

	����


A�	Q�R
 � �	Q
�
�
X

R��F �R�

�	R�
��
� J	Q�R�n�Q


� �	Q
�
�
X

R��F �R�

�	R�
��
�
Z
R�

d	Q
 d�	x


jx� x	Q
j�

� C�	Q
�
�
X
R�

�	R�
�
� d	Q
 dist 	Q�R�
��

� C�	Q
�
� �	R
�
� d	Q
 dist 	Q�R
�� �
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by 	���
 and 	���
�

Subdivide each A	R
 further into the

	��� 
 A�	R
 � fQ � A	R
 � �� d	R
 � dist 	Q�R
 � ���� d	R
g �

� � �� We want to control the norms of the corresponding pieces N���

of N�� and this is the only place in this revised Section � where it will
be more pleasant to use Schur�s lemma�

Lemma ���� 	Schur
� Let N � 		N	Q�R


Q�
�R�
 be a matrix with

complex coe�cients� and assume that there are positive numbers �	Q
�
Q � "� such that

	����

X
Q�


�	Q


�	R

jN	Q�R
j � C � for all R � "

and

	���

X
R�


�	R


�	Q

jN	Q�R
j � C � for all Q � " �

Then N de�nes a bounded operator on L�	"
� with norm jjjN jjj � C�

For the very easy proof� see for instance �Da� p� ��� or �My� p� �����
We want to apply this to N���� with �	Q
 � �	Q
�
�� Let us �rst check
sums over Q� For R � "�

	����


X
Q

�	Q


�	R

jN���	Q�R
j � C

X
Q�A��R�

�	Q
 d	Q
 dist 	Q�R
��

� CA�k d	R
 	�� d	R

��
X

Q�A��R�

�	Q
 �

by 	����
 and de�nitions� Since all the cubes Q � A�	R
 lie within
C �� d	R
 of R� their total mass is at most C �� d	R
 by 	��
� and so

	����

X
Q

�	Q


�	R

jN���	Q�R
j � CA�k ��� �
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Next we �x Q and sum over R� Of course we need only consider those
R for which Q � A�	R
� and all these cubes R lie at distance less or
equal than C �� d	R
 � C ��Ak d	Q
 from Q� Thus

	����


X
R

�	R


�	Q

N���	Q�R
 � C

X
R

�	R
 d	Q
 dist 	Q�R
��

� C d	Q
 	Ak �� d	Q

��
X
R

�	R


� C d	Q
 	Ak �� d	Q

��

� C A�k ��� �

Altogether� Schur�s lemma yields

	����
 jjjN�jjj �
X
�

jjjN���jjj � CA�k �

Case F� The local part of A�	Q�R
 and B��� Set N�	Q�R
 � A�	Q�R

when k	Q
 � k	R
 � k� 	����
 holds� and dist 	Q�R
 � d	R
� set
N�	Q�R
 � B�� when k	Q
 � k	R
 � k� Q � R and Q �� R� �nally set
N�	Q�R
 � � otherwise� Note that

	����
 N�	Q�R
 � �	Q
�
�
X

R��F �R�
QR�	�

�	R�
��
� J	Q�R�n�Q
 �

when N�	Q�R
 �� �� by 	���
 or 	��� 
� Also� dist 	Q�R
 � d	R
 when
N�	Q�R
 �� �� so for each Q � " there are at most C cubes R � "
such that N�	Q�R
 �� �� Lemma �� tells us that

	����
 jjjN�jjj
� � C sup

R�

$	R
 �

where N� is the matrix with coe�cients N�	Q�R
 and

$	R
 �
X
Q

N�	Q�R

� �

For each R � " and R� � F 	R
� set

	��� 
 A	R�
 � fQ � "k�R��k � dist 	Q�R
 � d	R
 but Q�R� � �g �
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Then

	����
 $	R
 � C
X

R��F �R�

�	R�
�� �	R�
 �

with

	����
 �	R�
 �
X

Q�A�R��

�	Q
 J	Q�R�n�Q
� �

Fix R and R� � F 	R
� For each Q � A	R�
 set

	���
 �	Q
 � d	Q
 � dist 	Q�R�


and� for notational convenience�

	����
 JQ � J	Q�R�n�Q
 �

Our basic estimate for JQ is

	����


JQ �

Z
R�n�Q

d	Q
 d�	x


jx� x	Q
j�

� d	Q


Z
jx�x�Q�j��Q�
�

d�	x


jx� x	Q
j�

� C
d	Q


�	Q

�

which follows from 	���
� the fact that

dist 	x	Q
� R�
 � dist 	x	Q
� EnQ
 � d	Q


	by 	���
 and 	���

� and 	 �
�
Let us �rst say rapidly how we would estimate �	R�
 if R� were a

good cube� We would �rst sum over the cubes Q such that �	Q
 � � for
a given �� the interesting case being when d	Q
 � � � d	R�
� By 	����
�
the contribution ofQ to the sum would be at most C�	Q
 	d	Q
��	Q

��
Also� the total mass of the cubes Q would be about

� �

d	R�


��
�	R�
 � C

� �

d	R


��
�	R�




Unrectifiable �
sets have vanishing analytic capacity ���

	if R� is good
 because each cube Q lies at distance less than C� from
R� but does not meet R�� Summing over Q would give less than

C
� �

d	R


���A�k d	R

�

��
�	R�
 �

We would then sum over � and get that

�	R�
 � CA�k� �	R�


	the largest terms are when � � A�k d	R

�
In general� R� is not a good cube and we�ll have to localize to

maximal good subcubes of R� and distinguish two cases as usual� For
each Q � A	R�
� choose a point z	Q
 such that

	����
 z	Q
 � R� and dist 	z	Q
� Q
 � �	Q
 �

Denote by A�	R�
 the set of cubes Q � A	R�
 such that

	����

z	Q
 is contained in a maximal good

cube SQ � S	R�
 and Q � �SQ �

Also set A�	R�
 � A	R�
nA�	R�
 and

	����
 ��	R
�
 �

X
Q�A��R��

�	Q
 J�Q �

Let us �rst estimate ��	R
�
� A trivial estimate for JQ is

	����


JQ �

Z
R�n�Q

d	Q
 d�	x


jx� x	Q
j�

� �	R�
 d	Q
 dist 	R�� x	Q

��

� �	R�
 d	Q
�� �

We want to use the following weighted average of 	����
 and 	����


	��� 
 J�Q � C
�d	Q


�	Q


����
���	R�

d	Q


��
�
� C

d	Q


�	Q


��	R�

d	Q


��
�
�
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For each S � S	R�
 and � � �� denote by B�	S
 the set of cubes
Q � A�	R�
 such that �� d	Q
 � �	Q
 � ���� d	Q
 and S � SQ�
Obviously every Q � A�	R�
 lies in some B�	S
 and so

	����
 ��	R
�
 �

X
S�S�R��

X
���

X
Q�B��S�

�	Q
 J�Q �

If Q � B�	S
� then Q does not meet S 	by de�nition 	��� 
 of A	R�


but

dist 	Q�S
 � dist 	Q� z	Q

 � �	Q
 � ���� d	Q
 �

by de�nitions 	see in particular 	����
 and 	����

� Thus Q � Nt	S
�
with

t � C ���� d	Q
 d	S
�� � C ����A�k d	R
 d	S
�� �

Note that � cannot be too large� if B�	S
 contains some Q� then
�� d	Q
 � �	Q
 � C d	S
 because Q � �S 	by 	����

� In particu�
lar� the value of t above is never more than some constant C� Set
t� � min ft� g� Then all cubes Q � B�	S
 still lie in Nt�	S
 	because
Q � �S for Q � B�	S

� We may now apply 	�� 
 and get that

	����


X
Q�B��S�

�	Q
 � �	Nt�	S



� C 	��A�k d	R
 d	S
��
� �	S


� C 	��A�k d	R
 d	S
��
� �	S
 �

because S is a good cube� Next

X
Q�B��S�

�	Q
 J�Q

� C 	��A�k d	R
 d	S
��
��	S
 ���
� �	R�


A�k d	R


��
�
�	���


by 	����
� 	��� 
� and the de�nition of B�	S
� We may now sum over
� � �� noticing that the largest term is for � � �� and get less than

CA�k�
�
�d	R

d	S


����	R�

d	R


��
�
�	S
 �

Thus 	����
 becomes

	����
 ��	R
�
 � CA�k�
�

��	R�

d	R


��
� X
S�S�R��

�d	R

d	S


��
�	S
 �
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By H%older�

X
S�S�R��

�d	R

d	S


��
�	S
 �

�X
S

�	S

����
��X

S

�d	R

d	S


��
�	S


��
�

� C�	R�
���
� �	R�
�
�	����


� C�	R�
���
� d	R
�
� �

because the cubes S� S � S	R�
� are disjoint and contained in R�� and
by Lemma  �� and 	���
� Hence

	����
 ��	R
�
 � CA�k�
� �	R�
 �

which will be enough for our purposes� Let us now turn to ��	R
�
�

First we want to check that

	����
 JQ � CA�k � for all Q � A�	R�
 �

We start with the easy case when Q is not contained in �R�� If d	Q
 �
d	R�
� then

dist 	x	Q
� R�
 � dist 	x	Q
� EnQ
 � d	Q
 � d	R�
 �

by de�nition 	��� 
 of A	R�
� 	���
 and 	���
� Otherwise� diamQ �
d	R�
�� and� since some point of Q lies at distance � d	R�
 from R��
dist 	x	Q
� R�
 � d	R�
��� In both cases

JQ � �	R�
 d	Q
 dist 	x	Q
� R�
��

� �� 	R�
 d	Q
 d	R�
��

� CA�k � 	R�
 d	R
��

� CA�k �

by 	����
� 	���
 and 	���
�
We still need to check 	����
 when Q � �R�� Let H� � R� �

H� � � � � � H� be the decreasing sequence of all cubes H � R� that
contain z	Q
 	the point of R� that was chosen in 	����

 and such that
Q � �H� Since Q � �R�� there is at least one such cube� and then
d	H�
 � C�	Q
 by minimality of H� 	and 	���

� Note also that all
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the cubes Hj � � � j � �� are bad because Q � A�	R�
 and 	����
 does
not hold� Thus 	���
 and 	���
 yield

	����
 �	�Hj
 � C�	Hj
 � CA���j �	R�
 � CA���j d	R�
 �

Decompose R�n�Q into the sets Zj � 	R�n�Q
 � 	�Hjn�Hj��
� � �
j � �� � and Z� � 	R�n�Q
 � �H�� When � � j � �� � and x � Zj �

	����


jx� x	Q
j � dist 	x�Q


� dist 	x� �H�


� dist 	En�Hj��� �H�


�


�
d	Hj��
 �

Thus� for � � j � �� ��

	��� 
 J	Q�Zj
 � ��	Zj
 d	Q
 d	Hj��

�� � CA�j A�k �

by 	���
 and 	����
�
When j � ��  or j � �� we want to use the simple estimate

	����
 jx� x	Q
j �
�	Q


�
� for x � R� �

which comes from the fact that jx� x	Q
j � dist 	Q�R�
 trivially and
jx � x	Q
j � dist 	x	Q
� EnQ
 � d	Q
 by 	��� 
� 	���
 and 	���
� 	See
also the de�nition 	���
�
 Thus� for j � ��  and j � ��

	����
 J	Q�Zj
 � ��	Zj
 d	Q
 �	Q
�� � CA����A�k d	R
� �	Q
�� �

Recall that d	H�
 � C�	Q
� so that

A���� �
�d	H�


d	R�


���
� C

��	Q


d	R


���
�

Since we also have that �	Q
 � C d	R�
 because Q � �R�� 	����

implies that

J	Q�Zj
 � CA�k
��	Q


d	R


�
� CA�k �
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when j � ��  or j � �� Altogether

	���
 JQ � J	Q�R�n�Q
 �
�X

j	�

J	Q�Zj
 � CA�k �

which completes our proof of 	����
�

A second estimate for JQ is

	����
 JQ � �	R�
 d	Q
 dist 	x	Q
� R�
�� � ��	R�
 d	Q
 �	Q
�� �

which follows directly from the de�nitions 	����
 and 	���
� and 	����
�
Plug these two estimates into 	����
 to get

	����
 ��	R
�
 � CA�k

X
Q�A��R��

�	Q
�	R�
 d	Q
 �	Q
�� �

When we sum over the set of cubes Q such that �	Q
 � A�k
� d	R
�
we get less than

CA�k
�X

Q

�	Q

�
�	R�
A�k d	R
Ak d	R
��

� CA�k �	R�

�X

Q

�	Q

�
d	R
��

� CA�k �	R�
 �

by 	��
 or 	���
�
We are left with the cubes Q such that �	Q
 � A�k
� d	R
� These

cubes are contained in Nt	R
�
� with t � minf� CA�k
�g because they

are �	Q
�close to R� but do not meet it 	by 	��� 

� By 	�� 
 and 	���
�
their total mass is at most

CA�k�
� �	R�
 � CA�k�
� d	R
 �

and so the corresponding piece of ��	R
�
 is at most

CA�k A�k�
� d	R
�	R�
 	A�k d	R

�� � CA�k�
� �	R�
 �

Altogether� ��	R
�
 � CA�k�
� �	R�
� Now

	����
 �	R�
 � ��	R
�
 � ��	R

�
 � CA�k�
� �	R�
 �
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by 	����
� 	����
� 	����
 and this last estimate� We may now compare
with 	����
 and 	����
 to get that jjjN�jjj � CA�k�
�� as desired�

Case G� The terms B��� Finally de�ne N� by taking N�	Q�R
 � B��

when Q � R� Q �� R� and k	Q
 � k	R
 � k� and N�	Q�R
 � �
otherwise� This is the last piece of the matrix N k that we have to
study� recall that N was de�ned around 	����
�	����
� and that co�
e�cients A�	Q�R
 and A�	Q�R
 were dealt with in subsections B� E
and F respectively� while A�	Q�R
 was treated in Subsection A� B�� in
Subsection C � B�� in F and B�� in D�

Recall from 	����
 that

	����
 B�� � �	Q
�
� �	R	Q

��
� J	Q�En	�Q	 R	Q


 �

where R	Q
 is the child of R that contains Q� As usual we can apply
Lemma ��� and

	����
 jjjN�jjj
� � sup

R�

$	R
 �

with

	����
 $	R
 �
X

R��F �R�

X
Q�A�R��

�	Q
�	R�
�� J�Q �

where this time we set

	��� 
 A	R�
 � fQ � "k�R��k � Q � R�g

and

	����
 JQ � J	Q�En	�Q	R�

 �

Set �	Q
 � d	Q
 � dist 	Q�EnR�
 for Q � A	R�
� Note that

	����
 jx� x	Q
j �
�	Q


�
� for x � En	�Q 	 R�
 �

because jx� x	Q
j � d	Q
 on En�Q and jx� x	Q
j � dist 	Q�EnR�

on EnR�� Then

	���
 JQ � d	Q


Z
En��Q�R��

d�	x


jx� x	Q
j�
� C d	Q
 �	Q
�� �
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by 	 �
�
When k � �� say� we can simply say that JQ � C by 	���


and $	R
 � C by summing brutally� When k � �� we expect to win
something from 	���
 when �	Q
� d	Q
� and otherwise to use the fact
that Q stays close to the �boundary of R�� to say that

P
�	Q
 is small�

As usual we need to distinguish cases because R� is not necessarily good�
Fix R� � F 	R
 and �rst consider

	����

A� �

n
Q � A	R�
 � there is a maximal good cube

S � S	R�
 such that k	S
 � k	R
 �
k

�
and Q � S

o
�

For each S � S	R�
 and � � �� set

	����
 A�
� 	S
 � fQ � A� � Q � S and �� d	Q
 � �	Q
 � ���� d	Q
g �

All these cubes lie at distance less than ���� d	Q
 from EnR�� and so
they lie in Nt	S
� with t � C �� d	Q
 d	S
��� If we get a t � � simply
remember that Q � A�

� 	S
 is always contained in S� otherwise apply
	�� 
 and the fact that S is a good cube to get that

	����

X

Q�A�
�
�S�

�	Q
 J�Q � C 	��A�k d	R
 d	S
��
� �	S
 ���� �

where the ���� comes from 	���
� When we sum this over � � �� the
largest term is when � � � and we get at most

CA�k� d	R
� d	S
�� �	S
 � CA�k�
� �	S
 �

because only the maximal good cubes S with k	S
 � k	R
 � k�� can
give non empty sets A�

� 	S
� by 	����
� Since every cube Q � A� lies in
some A�

� 	S
�

	����


X
Q�A�

�	Q
�	R�
�� J�Q � CA�k�
� �	R�
��
X

S�S�R��

�	S


� CA�k�
� �

Next we want to estimate the contribution ofA� � A	R�
nA� to
P

	R

	in 	����

� Let Q � A� be given� and let H� � R� � H� � � � � � H� be
the collection of all subcubes of R� that contain Q and are of generation
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less or equal than k	R
 � k��� By the de�nition 	����
 of A�� all these
cubes are bad� and so

	����
 �	�Hj
 � C�	Hj
 � CA���j �	R�
 � CA���j d	R
 �

by 	���
� 	���
� and 	���
 again� Now

	����
 JQ � J	Q�En	�Q	 R�

 �
���X
j	�

J	Q�Zj
 �

where Z� � En�R�� Zj � �Hj��n�Hj for  � j � �� and Z��� �
�H�n�Q� This comes directly from the de�nitions 	����
 and 	���
�
On Zj � � � j � ��

jx� x	Q
j � dist 	En�Hj� Q
 � d	Hj
 � A�j d	R�
 �

because Q � Hj � Thus� for  � j � ��

	��� 
 J	Q�Zj
 � d	Q
A�j d	R�
�� �	Zj
 � CA�jA�k �

by 	����
� For j � �� we simply have that

	����


J	Q�Z�
 � d	Q


Z
En�R�

d�	x


jx� x	Q
j�

� C d	Q
 d	R�
��

� CA�k �

because dist 	x	Q
� En�R�
 � dist 	Q�En�R�
 � d	R�
 	since Q � R�
�
and by 	 �
� Finally� jx� x	Q
j � d	Q
 on Z��� and so

	�� �
 J	Q�Z���
 � d	Q
�� �	�H�
 � CAk A���� � CA�k �

because H� is the smallest cube H containing Q and for which k	H
 �
k	R
�k��� Summing over � now gives that JQ � CA�k for all Q � A��
and then

	�� 

X

Q�A�

�	Q
�	R�
�� J�Q � CA��k �

because all these cubes are disjoint and contained in R�� Finally� when
we add up the estimates in 	����
 and 	�� 
 and then sum over R� �
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F 	R
� we get that $	R
 � CA�k�
� and jjjN�jjj � CA�k�
� 	see 	����

and 	����

�

At this point we may collect all the estimates from the various
subsections� We get that

jjjN kjjj �
X
j

jjjNjjjj � CA�k�
�

and �nally

jjjN jjj �
X
k

jjjN kjjj � C �

This completes the proof of Theorem �����

Remark 
���� We have only used the fact that the ambient dimension
is � a few times� when we used 	 �
 to estimate the number of cubes
Q � "k�R��k in a ball of radius Cd	R
� This estimate was always

beaten by a A���k that came from 	���
� If we had been working
in a larger ambient dimension� we would only have needed to replace
� with a larger constant in 	���
� which is possible� Thus Theorem
���� works also for one�dimensional sets E � Rn� with almost the same
proof� The proof most probably also works for di�erent dimensions of
E 	and corresponding homogeneities of kernel estimates
 but we did
not check this carefully� The authors of �NTV� did for their version�

�	� A short description of �DM��

We want to use Theorem ���� to prove our theorem about analytic
capacity� So we give ourselves a compact set E � C such that H�	E
 �
�� and E has positive analytic capacity� and we want to show that E
is not totally unrecti�able� As we discussed in the introduction� we can
�nd a bounded measurable function f on E such that

R
f d� � a � �

and the Cauchy integral of f d� is bounded on C nE� Here � denotes
the restriction of H� to E�

Next we want to replace f d� with a new measure g d�� where g
has the advantage of being accretive 	i�e�� satis�es 	���

� We shall use
the measure � and the function g constructed in �DM� for purposes sim�
ilar to those of this paper� These satisfy 	��
�	� 
� and also a weaker
analogue of 	��
� namely� the fact that the maximal Cauchy integral of
g d� lies in L�	d�
� To complete the argument outlined in the introduc�
tion� we shall have to put ourselves in position to apply Theorem ����
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to the measure �� and in particular construct an acceptable collection
of dyadic cubes on the support of �� These cubes will be constructed
as modi�cations of the dyadic cubes on E given by �DM�� see the next
section� Once this is done and we are in positition to apply Theorem
���� we shall have also to check that truncated Cauchy integrals of g d�
lie in the relevant BMO�space 	instead of just L�
 uniformly� This will
only be possible after we give a reasonable description of the construc�
tion of g and �� which is the aim of this section� It will be convenient
to use references like 	���
 rather than the longer ��DM� 	��
���

We start with our compact set E � C � d� � dH�
jE � and a bounded

function f such that kfk� �  and
R
f d� � a � �� The construction of

� and g will only use these informations� it will happen that in addition
the Cauchy integral of f d� is bounded on C nE� and then g d� will also
have nice properties with respect to the Cauchy kernel� but we don�t
need to think about this now�

The �rst thing we do is construct a collection " �
S
k��"k of

dyadic cubes with the properties listed below� Note that � is a �nite
measure� but does not necessarily satisfy 	��
� this will not be a prob�
lem� The constants C�� C�� A� below are absolute constants� see the
discussion below� Let us describe the properties of "� First

For each k � �� E is the disjoint union

of the Borel sets Q� Q � "k �
	��


if k � �� Q � "k and R � "� �

then Q � R � � or else R � Q�
	���


and for each k � � and each cube Q � "k� there is a ball B	Q
 �
B	x	Q
� r	Q

� centered on E� and such that

A�k � r	Q
 � C�A
�k �	���


E � B	Q
 � Q � E � � B	Q
 �	���


and

	���
 the balls �B	Q
� Q � "k� are disjoint �

These are the properties 	����
�	����
 in Theorem ����� It is also easy
to arrange that

	���
 "� has only one element �



Unrectifiable �
sets have vanishing analytic capacity ���

This was assumed in �DM� also 	see just after 	���
� the construction
gives this automatically if we normalize things by taking diamE � �
Next there is the story about small boundaries� Set

	���

Nt	Q
 � fx � EnQ � dist 	x�Q
 � tA�k�Q�g

	 fx � Q � dist 	x�EnQ
 � tA�k�Q�g �

for Q � " and � � t � � and where k	Q
 denotes� as always� the
generation of Q� Then

	�� 
 �	Nt	Q

 � C� t
� �	��B	Q

 �

for all Q � " and � � t � � and where we can take the constant � � 
as close to  as we want� Here we shall take � � ���� Furthermore we
can decompose " into the set of good cubes Q such that

	���
 �	��B	Q

 � C� �	Q
 �

and the set of bad cubes that do not satisfy 	���
 but for which

	���
 r	Q
 � A�k�Q�

and� more importantly�

	��
 �	��B	Q

 � A��� �	��B	 #Q

 �

where #Q denotes the parent of Q� Note that the only cube of "� is good
by de�nitions� and so #Q is de�ned for all bad cubes�

These are not exactly the condition 	����
�	����
 stated in The�
orem ����� First� there is the di�erence that we replaced ��B	Q
 in
	����
 with ��B	Q
� This does not cause any harm� it just makes
some of the constants larger� The second di�erence is in the phrasing
of the conditions� 	�� 
�	��
 are are slightly di�erent from 	����
�
	����
� even with �� instead of ��� but they are fairly easy to deduce
from 	����
�	����
 by choosing C� and A large enough� In fact� this is
what was done in �DM�� in sections � and �� Theorem ���� was stated
for all choices of C� 	which is called C� there
 and A� provided that
C� �  and A � ����C�� but then it was decided to take A � C C���

�

for some absolute constant C 	the one that shows up in 	����

 and
then C� so large that 	����
 and 	����
 actually imply 	�� 
 and
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	��
� See 	���
 for the choice of A� 	�����
 and 	�����
 for a dis�
cretized version of 	�� 
 where t � A�� � 	C C���

� 
�� and we get
� 	Nt	Q

 � C����� �	��B	Q

 � C �t�
���	��B	Q

� and 	�����
 for
	��
� The two other relations 	���
 and 	���
 are the same as
	����
 and 	����
�

This completes our discussion of the construction of cubes in �DM��
Note that we get our implicit property thatA� C� from earlier sections
automatically here 	i�e�� without having to skip generations arti�cially
�

Once our collection of cubes is chosen� we run a stopping time
construction� somewhat like in �Ch��� We select collections I� and LI
of cubes Q � "� with the following main properties�

the cubes of I� 	 L I are disjoint 	this is 	���

 and �	���


all the cubes Q � " such that Q � O	M
 or

Re

Z
Q

f d� � a� �	Q
 are contained in some

cube of I� 	 L I �

	���


where O	M
 � fx � E � there is an r � � such that �	B	x� r

 � Mrg�
and M and a� are two positive constants 	that may depend wildly on
E
� This is Remark ����� see also 	����
 and 	����
 for the de�nition
of O	M
� Set

	���

"� � fQ � " � Q � I� 	 L I or Q is not

contained in any cube of I� 	 L Ig �

These are the cubes which we shall really be working with� A fairly
easy consequence of 	���
 	see 	����

 is that

	���
 �	��B	Q

 � CA�k�Q� � for all Q � "� �

Denote by PL I the set of parents of cubes of L I� This makes sense
because the only cube of "� happens not to be in L I 	or I� either
� by
construction� Set I � I� 	 PL I� One puts a suitable order on I� this
order is chosen so that cubes of earlier generations come �rst and� in
case of equality� cubes of I� �"k come before cubes of PL I �"k� Call
Qn� n � � the nth cube of I for this order� We construct a sequence of
measures Fn� n � �� as follows�

All measures Fn are of the type

	���
 Fn � �nf d��
X

�	m	n

�m d�m
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	see 	����

� where f�ng is a decreasing sequence of nonnegative func�
tions on E� with � � �n � � the �m�s are bounded complex numbers�
and d�m is a �nite sum of multiples of restrictions of Hausdor� measure
on circles�

We start with F� � f d�� �� 
 � and no measure ��� and construct
the Fn by induction� To go from Fn�� to Fn� we distinguish between
two cases� When Qn � I�� we simply replace Qn with a circle� as follows�
Take �n � �n�� �EnQn 	i�e�� kill the part of �n�� f d� that lives on Qn

and choose Cn � C	Qn
� where

	���
 C	Q
 denotes the circle with center x	Q
 and radius
r	Q


��
�

and x	Q
� r	Q
 are as in 	���
�	���
� In �DM� we chose a slightly
larger radius for C	Q
 	see 	����

� but this new choice does not make
any di�erence in �DM�� and will help us a little bit here� Finally choose

d�n � ��n
�	Qn


H�	Cn

dH�

jCn
�

where ��n denotes the value of �n�� onQn� which happens to be constant
by construction� Take �n � �	Qn


��
R
Qn

f d�� so as to get
R
Fn �R

Fn���
When Qn � PL I� the construction is slightly more complicated�

We want to remove the children of Qn that lie in LI and replace them
with circles� but we shall also modify the values of �n��f on the rest
of Q� Denote by An the set of children of Q that lie in LI and by A�n
the set of other children of Q 	i�e�� those that do not lie in L I
� Set
Hn �

S
Q�An

Q� Gn �
S
Q�A�n

Q� and then

	�� 
 �n	x
 �

���
��

�n��	x
 � when x � EnQn �

� � when x � Hn �

	� 
n
 �n��	x
 � when x � Gn �

where the number � � 
n �  is correctly chosen 	see 	���� 
 and
	�����

� Also set

	���
 Cn �
X
Q�An

C	Q


and

	����
 d�n �
X
Q�An

��n
�	Q


H�	C	Q


dH�

jC�Q� �
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where ��n still denotes the constant value of �n�� on Qn� This is slightly
di�erent from the choice given in �DM�� where Cn was taken to be only
one of the C	Q
� Q � An� chosen at random� and on which we put
the total mass of Hn� This modi�cation will make our life a little more
pleasant later 	when we compare the mass repartitions of � and �
� but
it does not alter the argument in �DM�� The main point� of course� is
that we still have the same mass

	���
 k�nk � ��n �	Hn
 �

To complete the de�nition of Fn when Qn � PL I� one also chooses a
complex number �n and sets

	����
 Fn � Fn�� � �Hn �n�� f d�� 
n �Gn �n�� f d�� �n d�n �

We don�t need to be too precise here about the way the constants �n
and 
n were chosen� The main constraint was that

	����


Z
Fn �

Z
Fn�� �

our choices were such that

	����
 � � 
n � C
�	Hn


�	Qn


and

	����
 j�nj � C

	see 	�����
 and 	���� 

�
It is a good idea to set An � fQng� A

�
n � � 	say� but it does

not matter
 when Qn � I�� With these conventions� we still have the
properties 	�� 
�	����
 when Qn � I� 	see 	����
�	�����

�

We may also have to use later the fact that

	����
 the sets Hn� n � � are disjoint �

which comes from 	���
 and the fact that each Hn is the 	disjoint

union of the cubes of An� Alternatively� see 	�����
 for this statement�

Since f�ng is a decreasing sequence of nonnegative functions� it has
a limit ��� Set

	����
 E� � fx � E � ��	x
 � �g �
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By construction� E� does not meet any cube of I� 	 L I� Then

	��� 
 dist 	C	Q
� E�
 � dist 	C	Q
� EnQ
 �
��

��
r	Q
 �

��

��
d	Q
 �

for Q � I� 	 L I� by 	���
� 	���
� and 	���
�
Similarly� if Q and Q� � " are such that Q � Q� � �� 	���
 says

that jx	Q
� x	Q�
j � maxfr	Q
� r	Q�
g� and hence

	����
 dist 	C	Q
� C	Q�

 �
� 

��
max fr	Q
� r	Q�
g �

This is the case in particular when Q�Q� � I� 	 L I and Q �� Q��
The measure that we want to study is

	����
 d� � �� d��
X
n

d�n �

which is obviously �nite because � is� and by 	���
 and 	����
� The
function g is given by

	���


�
g	x
 � f	x
 � on E� �

g	x
 � �n � on Cn �

which does not cause any confusion because all these sets are disjoint
by 	��� 
� 	����
� and 	����
�

The function g turns out to be bounded 	by 	����

 and accre�
tive 	which means that it satis�es 	���

 by construction� This comes
from the whole design of the stopping time argument 	and in particu�
lar 	���

 and the choice of the coe�cients �n� but we don�t need to
know precisely how it is proved to understand the rest of the present
paper� See 	����
 and its proof before Lemma ����� for details�

Our next task is to de�ne a collection of cubes !" on the support
of �� and then prove a T 	b
�theorem for � and these cubes� This is the
aim of the two next sections�

��� Dyadic cubes for � and ���

The following measure �� will be slightly easier to handle than ��
Set

	�
 d�� � �E� d��
X
n

d��n �
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where

	��
 d��n � 	��n

�� d�n �

X
Q�An

�	Q


H�	C	Q


dH�

jC�Q� �

Obviously � � ��� and �� is still a �nite measure because � is �nite�
and by 	���
 and 	����
� Set

	��
 !E � E� 	
� 	
n��

Cn
�
� E� 	

� 	
Q�I��LI

C	Q

�
�

This is not quite the support of ��� because supp �� is closed� but on
the other hand

	��
 ��	C n !E
 � � �

which will be enough for our purposes�
In this section we want to construct families !"k of partitions of

!E and check that they satisfy the conditions 	��
�	���
 required for
Theorem ����� with respect to the measure ��� Let us start with the
construction of cubes�

For each cube Q � "� 	see 	���
 for the de�nition
� set

	��
 R	Q
 � 	Q �E�
 	
� 	
S�I��LI
S
Q

C	S

�
�

Our �rst collection of cubes for �� is !"� � fR	Q
 � Q � "�g� which we
naturally split into the !"�

k � fR	Q
 � Q � "��"kg� k � �� We need to

complete !"� with cubes that come from decomposing the circles C	Q
�
Q � I� 	 L I�

For each cube Q � I�	LI we construct a collection !"	Q
 of subsets
of C	Q
 as follows� We start at generation k	Q
 � � we cut C	Q
 into
	disjoint
 arcs of circle of equal length ��� with �A�k�Q��� � �� �
��A�k�Q���� say� and call !"k�Q���	Q
 the collection of these arcs of

circle� Then we subdivide further each arc R � !"k�Q���	Q
 into smaller

arcs of circle of equal length �� � ��A�k�Q���� ��A�k�Q����� and call
!"k�Q���	Q
 the resulting collection of arcs of C	Q
� We continue like

this� and eventually construct a collection !"k	Q
 of 	disjoint
 subarcs
of C	Q
 for all k � k	Q
� and with the usual properties of dyadic cubes�
Finally set !"	Q
 �

S
k�k�Q�

!"k	Q
�
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Our collection of cubes for �� 	and �
 is

	��
 !" � !"� 	
� 	
Q�I��LI

!"	Q

�
�

which we can decompose into the

	��
 !"k � !"�
k 	

� 	
Q�I��LI
k�Q��k

!"k	Q

�
�

First we want to check that !" has the combinatorial properties 	���

and 	���
� We start with the �rst one�

	� 

for each k � �� !E is the disjoint

union of the cubes R� R � !"k �

Fix k � �� Because E� does not meet the cubes of I� 	 L I 	see
after 	����

� it does not meet the cubes of "n"� either 	by de�nition
	���

� and then 	��
 says that E� is the disjoint union of the
E� �R	Q
� Q � "�

k� So we are left with the circles C	S
� S � I� 	 LI�
If S � I� 	 LI and k	S
 � k� then there is exactly one cube Q � "�

k

that contains S� and C	S
 is contained in R	Q
 by 	��
� Moreover
C	S
 does not meet any other R	Q�
� Q� � "�

k� and it does not meet
any of the circles C	Q��
� Q�� � I� 	 LI and k	Q��
 � k 	and even less
the corresponding cubes of !"k	Q

��

� Thus the cubes of !"k partition
C	S
� If k	S
 � k� then C	S
 does not meet any of the R	Q
� Q � "�

k�
because all the circles contained in those circles come from cubes Q�

with k	Q�
 � k � k	S
� It does not meet the !"k	S
�
� S� �� S� either�

and it is nicely covered by the cubes of !"k	S
� This completes our proof
of 	� 
�

Next we check 	���
� Let R� � !"k and R� � !"k�� be given� and
suppose that R� � R� �� �� If R� � R� � E� �� �� then R� � R	Q�

and R� � R	Q�
 for cubes Q� � "k and Q� � "k��� and 	��
 says
that Q� � Q� � R� � R� � E� �� �� Then Q� � Q� and R� � R�� If
R� � R� � E� � �� then R� � R� � C	S
 ��  for some S � I� 	 LI� If
k � k	S
� then R�� R� � !"	S
 and R� � R� by construction of !"	S
�
If k � k	S
� then R� � R	S
 and R� � !"	S
� whence R� � R�� Finally�
if k � k	S
� then R� � R	Q�
 and R� � R	Q�
 for cubes Q�� Q� � "�

that both contain S� In this case also Q� � Q� and R� � R�� This
proves 	���
 when � � k� � the general case follows because of 	� 
�
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Next we want to consider properties of our cubes that involve the
measures � and ��� We start with the upper bound for density 	��


	��
 ��	B	x� r

 � C r � for all x � C and r � � �

This is proved in �DM�� beginning of Section ���� unfortunately the
statement 	����
 only mentions � and not ��� but the proof applies to
��� 	The only di�erence between � and �� comes from the size of the
functions �n� and the only information used in the proof of 	����
 in
this respect is that � � �n � �


We also want to relate the measures of our cubes for �� ��� and ��
and to this e�ect we de�ne numbers �Q� Q � "�� by

	��
 �Q �
Y

n���Qn�PLI

and Q
Gn

	� 
n
 �

Recall from 	���
 and 	���
 that if Q � "�� Q is never strictly
contained in a cube of I� 	 L I� Let n� denote the largest integer for
which k	Qn�
 � k	Q
� By construction� the function �n� is constant on
Q� and in fact the only times �n has possibly been modi�ed on Q for
n � n� where when Qn � PL I and Q � Qn 	and hence Q � Gn
�
Because of this� the constant value of �n� on Q is precisely �Q 	see
	�� 

�

If furthermore Q � I� and m is the integer such that Q � Qm�
then �m�� � �n� on Q because the cubes Q�� n� � � � m� do not meet
Q� 	All these cubes lie in I�� by de�nition of our order�
 Thus

	�
 �Qm � ��m � when Qm � I� �

where ��m still denotes the constant value of �m�� on Qm�
If Q � L I and m �  is such that Q � Am 	i�e�� the parent of Q

is Qm
� then �m is equal to �n� on Q� because none of the cubes Q��
m � � � n� meet Qm� Thus

	��
 �Q � ��m � when Q � Am �

	We just proved this when Qm � PL I� but 	�
 says that this is
also true when Qm � I��
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Lemma ������ For all Q � "��

	��
 �	R	Q

 � �Q �
�	R	Q

 � �Q �	Q
 � C �	R	Q

 �

We start with the �rst inequality� Let us even prove that for all
Q � "��

	��
 d� � �Q d�
� � on R	Q
 �

Recall that �Q is the constant value on Q of �n� � where n� denotes the
largest integer such that k	Qn�
 � k	Q
� Obviously �� � �n� � �Q
on Q� and hence ��d� � �Q �E� d� on E� � Q � E� � R	Q
� Thus
d� � �Q d�

� on E� �R	Q
 	see the de�nitions 	����
 and 	�
 of �
and ��
� Now let C	S
 be one of the circles that compose R	Q
� as in
	��
� Let n denote the integer such that S � An� Then d� � d�n �
��n d�

�
n � ��n d�

� on C	S
� by 	��
� Since ��n � �S by 	��
� S � Q
by 	��
� and �Q is obviously a nondecreasing function of Q� we get
that ��n � �Q and d� � �Q d�

� on C	S
� This proves 	��
�
The second inequality in 	��
 is fairly straightforward

	��


��	R	Q

 � �	Q �E�
 �
X

S�I��LI
S
Q

��	C	S



� �	Q �E�
 �
X

S�I��LI
S
Q

�	S


� �	Q
 �

by 	��
� 	��
� 	���
� and the fact that E� does not meet the cubes
of I� 	 L I�

To prove the last inequality� we want to use the fact that the inte�
gral of g d� on Q is not too small� Let us �rst check that

	��
 Re

Z
Q

f d� � a� �	Q
 � for all Q � "�nL I �

where a� � a� is some positive constant 	the same one as in �DM��

When Q � "�n	I� 	 L I
� this follows directly from 	���
� the de�ni�
tion 	���
 of "�� and the fact that a� � a�� When Q � I�� Q is not
contained strictly in any cube of HD 	MI 	see the de�nition of I� in
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�DM�� just above 	���

� because it is a maximal cube of HD 	MI�
Also� Q is not contained in any cube of L I 	by 	���
� or the de�ni�
tion of I�
� Since LI is 	by de�nition
 the set of maximal cubes with
the properties that

	� 
 Q is not strictly contained in any cube of HD 	MI

and that 	��
 does not hold 	see 	��� 
 and 	����

� and since we
know already that Q satis�es 	� 
� we get that it satis�es 	��
� as
promised�

Let Q � "�nLI be given� and again denote by n� the largest
integer such that k	Qn�
 � k	Q
� Observe that Q does not meet any
of the Cn� n � n�� otherwise Q would meet a cube of An� thus would
be contained in this cube 	because k	Qn
 � k	Q

� and even would be
strictly contained in it 	because k	Qn
 � k	Q
 if Qn � I� and because
Q �� L I if Qn � PL I
� a contradiction with the de�nition of "�� Then

	��


Z
Q

Fn� �

Z
Q

�n�f d� � �Q

Z
Q

f d� �

by 	���
 and the discussion after 	��
�
Next we claim that

	���


Z
R�Q�

g d� �

Z
Q

Fn� �

i�e�� the further modi�cations of Fn� n � n�� do not change the integral
of Fn on 	what becomes of
 Q� This will follow from the fact that

	��


Z
Q

�n f d��
X

�	m	n

Qm
Q

�m k�mk �

Z
Q

Fn� �

for all n � n� by taking limits and comparing with 	��
� 	The union
of the Cm� Qm � Q� is the same as the union of the C	S
� S � I� 	 L I
and S � Q� because Q �� L I�
 The relation 	��
 is easily proved by
induction� It holds for n� because no Qm� m � n�� can be contained
in Q 	they are all of strictly earlier generations
� If 	��
 holds for
n� � n � n�� and if Qn does not meet Q� then 	��
 also holds for n
because the left�hand side is not modi�ed� Otherwise� Qn � Q 	because
k	Qn
 � k	Q

� and all the modi�cations of the integral of Fn�� a�ect
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the left�hand side of 	��
� Since the sum of these modi�cations is
zero by 	����
 	or by construction
� 	��
 for n follows from 	��

for n� �

From 	��
� 	��
 and 	���
 we deduce that

	���


a� �Q �	Q
 � �QRe

Z
Q

f d�

� �Q

���
Z
Q

f d�
���

�
���
Z
Q

Fn�

���

�
���
Z
R�Q�

g d�
���

� C �	R	Q

 �

because g is bounded 	by 	���
 and 	����

� This proves the last
inequality in 	��
 when Q � "�nL I�

When Q � L I� R	Q
 � C	Q
 and �	R	Q

 � �	C	Q

 � ��n �	Q
�
where n is such that Q � An and ��n is as in 	����
� Thus 	��
 says
that �	R	Q

 � �Q �	Q
� and 	��
 holds in this case as well� Lemma
�� follows�

Note that 	��
 implies that �	R
 � � for all R � !"�� because
�	Q
 � � for all Q � "� 	Recall that Q is centered on E � supp��

Thus �	R
 � � for all R � !"� and so !E � supp � � supp ��� 	We
shall see soon that diamR � CA�k for R � !"k�
 As was observed in
Remark ����� this and 	��
 are just as good� in view of Theorem �����
as knowning that !E � supp � or !E � supp ���

We want to continue checking that ��� !E� and !" satisfy the hy�
potheses for Theorem ����� We already know that 	��
�	���
 hold� and
the next veri�cation in our list is the story about the balls B	Q
�

Thus we want to de�ne a center x	R
 and a radius r	R
 for every
R � !"� We start with the case when R � !"� and R � R	Q
 for some
Q � "�� First�

	���
 dist 	x	Q
� R
 �
r	Q


��
�

Indeed� if x	Q
 does not lie in E�� there are only two possibilities� The
�rst one is that x	Q
 � Q� for some Q� � I� 	 L I which is contained



�	� G� David

in Q� If Q� � Q� then 	���
 holds because R � C	Q
� If Q� is strictly
contained in Q 	i�e�� of a strictly later generation
� then

dist 	x	Q
� R
 � dist 	x	Q
� C	Q�

 � �� r	Q�
 �
r	Q


��
�

The second possibility is that �n	x	Q

 tends to � without ever being
equal to �� Indeed� � � 
n �  for all n� and hence 	�� 
 says that the
only places where �n becomes � are the Hn�s� i�e�� the cubes of I�	L I�
In this second case x	Q
 lies in in�nitely many cubes Qn � PL I� and
dist 	x	Q
� R
 � �� Thus 	���
 holds in all cases�

Let us also check that

	���

every point of R � R	Q
 lies at distance

less or equal than
r	Q


��
from Q�

Of course there is nothing to check for points of Q � E�� thus we are
left with points of the circles C	S
� S � I�	L I and S � Q 	see 	��

�
These points are within r	S
��� of some center x	S
 � Q� by de�nition
of C	S
� 	���
 follows because r	S
 � r	Q
 when S � Q�

Let us choose a center x	R
 � R at distance at most r	Q
���
from x	Q
 and take r	R
 � r	Q
� Then 	���
 is the same as 	���
� and

	���
 R � !E � B	x	R
� �� r	R

 �

by 	���
 and 	���
� Let us also verify that

	���
 !E � B
�
x	R
�

� r	R


��

�
� R �

Let x � !E � B	x	R
� � r	R
���
 be given� If x � E�� then x � Q by
	���
� and hence x � R� Otherwise x � C	S
 for some S � I� 	 L I�
If S � Q we are happy because then C	S
 � R by 	��
� So let us
assume this is not the case� Then S � Q � �� because Q cannot be
strictly contained in S 	since Q � "�
� We know that

dist 	x�Q
 � jx� x	Q
j �
��

��
r	Q
 �

but on the other hand 	��� 
 says that

dist 	x�Q
 � dist 	C	S
� Q
 � dist 	C	S
� EnS
 �
��

��
r	S
 �
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and so r	S
 � r	Q
� Then

dist 	x� S
 �
r	S


��
�
r	Q


��
�

and there are points of S at distance less than jx�x	Q
j� r	Q
��� �
r	Q
 from x	Q
� This is impossible because of 	���
� and 	���
 fol�
lows� 	Note that the argument did not need to be as tight as it looks�
because in the dangerous case where r	S
 � r	Q
� we could use 	���

to get a somewhat more brutal contradiction�


Our estimates 	���
 and 	���
 are not quite the same as 	���
�
because of the factor � ���� but they are just as good for the proof of
Theorem ����� We could also have decided to take r	R
 � � r	Q
����
then we would have obtained 	���
� but only

� 

��
A�k � r	Q
 � C�A

�k

instead of 	���
� This di�erence is even more obviously harmless 	just
dilate E�


We still need to de�ne x	R
 and r	R
 when R � !"n !"�� i�e�� when
R � !"k	Q
 for some Q � I� 	 L I and some k � k	Q
� In this case
R is a small arc of the circle C	Q
� with length � � ��A�k� ��A�k��
We choose for x	R
 the center of this arc and take r	Q
 � A�k� Then
	���
 and 	���
 	and even the analogue of 	���

 hold for R because
k � k	Q
 and

	���
 dist 	C	Q
� !EnC	Q

 �
� 

��
r	Q
 � for all Q � I� 	 L I �

by 	��� 
 and 	����
�
This completes our discussion of 	���
 and 	���
� Since 	���
 is the

same as 	���
� we are left with the story about small boundaries� We
�rst need to de�ne numbers �	R
� R � !"�

When R � !"	Q
 for some Q � I�	LI� simply take �	R
 � ��	R
�
When R � !"�� set �	R
 � �	��B	Q

� where Q � "� is such that
R � R	Q
� Let us �rst check the auxiliary conditions 	���
�	���
� and
then we shall return to 	�� 
�

When R � !"	Q
� 	���
 and the fact that k	R
 � k	Q
 imply
that !E � �B	R
 � C	Q
 � �B	R
� The property 	���
 for R and the
measure �� follows from the fact that �� is a bounded constant times
Hausdor� measure on C	Q
 	by 	��
 and 	���

� 	���
 for R follows
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because in addition �	S
 � ��	S
 for all the cubes S � !"	Q
� All cubes
of !"	Q
 are good for �� 	i�e�� satisfy 	��
 for ��
� and hence we don�t
need to check 	���
 for them�

Now consider R � !"�� and let Q � "� be such that R � R	Q
� Re�
call that we chose r	R
 � r	Q
 and x	R
 at distance less or equal than
r	Q
��� from x	Q
� 	See above 	���

� Thus �B	R
 � ��B	Q
�

Let A denote the set of cubes S � I� 	 L I such that C	S
 meets
�B	R
� Then

��	�B	R

 � ��	E� � �B	R

 �
X
S�A

��	C	S



� �	E� � �B	R

 �
X
S�A

�	S
	�� 


� �	R
 �
X
S�A

�	S
 �

by 	��
� 	��
� the facts that �� � � on E� and �B	R
 � ��B	Q
�
and the de�nition of �	R
� If S � A and S is not contained in Q� then
S �Q � � because Q cannot be strictly contained in S� since Q � "��
Then 	��� 
 says that

r	S
 �
��

��
dist 	C	S
� EnS
 �

��

��
dist 	C	S
� x	Q

 � �� r	Q
 �

Then 	���
 says that S � ��B	Q
� Hence

X
S�A

�	S
 � �	��B	Q

 � �	R


and 	���
 follows from 	�� 
 and 	���
�
Now �x k � k	R
 � k	Q
� and denote by Bk the set of cubes

T � "�
k such that R	T 
 � �B	R
� If T � Bk� T � ��B	Q
� by crude

estimates on diam	T 	 R	T 

 and the fact that k � k	Q
� Then

	���


X
T�Bk

�	R	T 

 �
X
T

�	��B	T 



� C�
�	

T

	��B	T 


�

� C �	R
 �

because the ��B	T 
� T � "k� have bounded overlap and are contained
in ��B	Q
� This takes care of the cubes of !"� in the sum in 	���
� Now
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let Dk be the set of cubes T � !"kn !"
� that are contained in �B	R
�

All these cubes lie in sets !"	S
 for cubes S � I� 	 LI such that C	S

meets �B	R
� Hence

	���

X
T�Dk

�	T 
 �
X
T

��	T 
���
� 	
S�A

C	S

�
�
X
S�A

�	S
��	R
 �

because the cubes T � Dk are disjoint� and by the discussion above�
This completes the veri�cation of 	���
 for R � !"��

Finally 	��
�	���
 follows easily from its counterpart 	���
�
	��
 if C� � C�� and also the only cube of !"� is good for �� and
	��
 because the only cube of "� is good for 	���
 or 	����
�

We still need to check 	�� 
 for cubes of !"� For cubes R � !"	Q
�
Q � I� 	 L I� this follows from the fact that Nt	R
 � C	Q
� by 	���
�
and the simple structure of the cubes of !"	Q
�

Now let R � !"� be given� and let Q � "� be such that R � R	Q
�
Also set k � k	R
 � k	Q
 and

	��

Nt � fx � R � dist 	x� !EnR
 � t A�kg

	 fx � !EnR � dist 	x�R
 � t A�kg �

for � � t � � This is the set that we need to control for 	�� 
� Still
denote by Nt	Q
 the set in 	���
� we want to use 	�� 
 to control the
sets Nt� Note that because of 	���
� it is enough to prove that

	���
 ��	Nt
 � C t� �	Q
 � C t� �	��B	Q

 �

for � � t � ���� say�
So let � � t � ���� y � R � Nt� and z � NtnR be given� with

jy � zj � � t A�k� Note that for each y � R � Nt there is a z like this�
and for each z � NtnR there is an y like this� Let us distinguish a few
cases�

If y and z both lie in E�� then y � Q and z � EnQ� and so y and
z both lie in N�t	Q
�

Next consider the case when z � E� 	and hence z � EnQ
 and
y � RnE�� Then 	��
 says that y � C	S
 for some S � I� 	 L I such
that S � Q� and

	���
 � t A�k � jy � zj � dist 	C	S
� EnQ
 �
��

��
r	S
 �
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by 	��� 
� The center x	S
 of S lies in S � Q� while z � EnQ� since

jx	S
� yj� jy � zj �
r	S


��
� � t A�k � � t A�k �

we get that z and x	S
 lie in N�t	Q
� Using 	���
 again and 	���
�
we deduce from this that the whole cube S lies in N���t	Q
�

Our next case is when y � R�E� � Q�E� and z � 	 !EnR
nE��
Then 	��
 says that z � C	S
 for some S � I� 	 LI� and 	��
 even
adds that S is not contained in Q� Moreover S � Q � �� because Q
cannot be strictly contained in S 	since Q � "�
� This time

	���
 � t A�k� jy�zj�dist 	C	S
� Q
�dist 	C	S
� EnS
�
��

��
r	S
 �

by 	��� 
� and

jx	S
� yj � jx	S
� zj� jz � yj �
r	S


��
� � t A�k � � t A�k �

Since y � Q and x	S
 � S � EnQ� we get that y � N�t	Q
� x	S
 �
N�t	Q
� and 	by 	���
 and 	���

 the whole S lies in N���t	Q
�

Our last case is when y and z lie in !EnE�� Then y � C	S
 for some
S � I� 	 LI such that S � Q� and z lies in C	T 
 for some T � I� 	 LI
such that T �Q � �� Then

	���
 � t A�k � jy� zj � dist 	C	S
� C	T 

 �
� 

��
max fr	S
� r	T 
g �

by 	����
� Since x	S
 � S � Q and x	T 
 � T � EnQ� and

jx	S
� x	T 
j � jy � zj�
r	S


��
�
r	T 


��
� � t A�k �

we get that x	S
� x	T 
 � N�t	Q
� and then that S and T are contained
in N���t	Q
 	by 	���
 again�


We may now summarize our discussion�

	���
 Nt � 	E� �N�t	Q

 	
� 	
S�Z

C	S

�
�

where Z denotes the set of cubes S � I� 	 L I that are contained
N���t	Q
� Now

	���


X
S�Z

��	C	S

 �
X
S�Z

�	S


� ��C� t
� �	��B	Q



� ��C�t
� �	R
 �
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by 	��
� 	���
� 	�� 
� and the de�nition of �	R
� Since ��	E� �
N�t	Q

 � �C� t

� �	R
 by 	�� 
 again� 	���
 follows from 	���

and 	���
�

This completes our veri�cation of the hypotheses of Theorem ����
for the set !E� the measure ��� and the cubes of !"� In the next section
we use this information to show that Theorem ���� also holds on !E� ��
and with the cubes of !"� even though the hypotheses 	�� 
�	���
 are
not necessarily satis�ed in this case�

��� Theorem ���	 holds for ��

In general we do not expect that � 	equipped with the cubes of
!"
 will satisfy the conditions 	�� 
�	���
 about small boundaries� A
typical bad thing that may happen is the following� For some good
cubes R � R	Q
� Q � "�� the factor �Q in 	��
 could be very small�
much smaller than the corresponding factors for other cubes that touch
R�When this happens� we shall not have a good control on the measure
for � of the sets Nt	R
 in terms of �	R
� and so we may have to declare
that R is bad for � without having any compensation available in terms
of 	���
� Nonetheless we want to prove that Theorem ���� holds for
!E� �� and the cubes of !"�

By this we mean that if T � b E  b E �� C is an operator that
satis�es 	���
�	���
 and 	���
 	with � and " replaced with � and
!"
� and if there are functions �� !� � BMO	d�
 that satisfy 	���
 and
	����
 	for �
� then T extends to a bounded operator on L�	d�
� The
de�nition of BMO	d�
 is the same as for d�� we do not use small
boundaries there�

To prove our claim� we shall simply follow the proof of Theorem
���� and show that it applies�

All the arguments in sections ��� can be applied without modi��
cation� the small boundary properties are never used there� except to
get qualitative information like 	���
 or 	��
� These properties are
also true for � because they hold for ��� Thus we can get as far as
Lemma ����� which says that it is enough to prove that the matrix N
	associated to the measure �
 de�nes a bounded operator on ��	 !"
�

We already know from Section  that the corresponding matrix
N� for �� de�nes a bounded operator� and so it will be enough to show
that

	��
 N	Q�R
 � CN�	Q�R
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	with obvious notations
� To make the comparison easier� it will be
useful to de�ne positive numbers �R for all R � !"� When R � !"� and
R � R	Q
 for some Q � "�� we take �R � �Q� When R � !"	Q
 for
some Q � I� 	 L I� we set �R � �Q� We claim that

	���
 d� � �R d�
� � on R

and

	���
 �	R
 � C�� �R �
�	R
 � for all R � !" �

When R � !"� and R � R	Q
� this follows from 	��
 and 	��
�
When R � !"	Q
 for some Q � I� 	 L I� this is obvious because � �
�Q �

� on C	Q
� by 	��
 and 	��
�
We are now ready to prove 	��
� We shall just take the di�er�

ent types of coe�cients N	Q�R
 from 	����
�	����
 one after the other
and compare them with the corresponding ones for ��� We start with
A�	Q�R
 in 	���
� Recall that A�	Q�R
 is a sum of terms

	�	Q�
 �	R�

��
� I	Q�� R� � �Q
 �

where Q� � F 	Q
 	the set of children of Q
 and R� � F 	R
� Note that
for each choice of Q� and R��

	���
 	�	Q�
 �	R�

��
� � C 	�Q� �R� �
�	Q�
 ��	R�

��
� �

by 	���
� and

	���

I	Q�� R� � �Q
 �

Z
Q�

Z
R��Q

d�	x
 d�	y


jx� yj

� �Q� �R� I
�	Q�� R� � �Q
 �

by 	���
� Here we set

	���
 I�	Q� V 
 �

Z
Q

Z
V

d��	x
 d��	y


jx� yj
�

for Q � !" and V � !EnQ� the obvious analogue of I	Q� V 
 for ���
From 	���
 and 	���
 we deduce that A�	Q�R
 � CA�

� 	Q�R

	with obvious notations
�
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Next let A�	Q�R
 be as in 	���
�

	���


A�	Q�R
 � �	Q
�
�
X

R��F �R�

�	R�
��
� J	Q�R�n�Q


� C ��	Q
�
�
X
R�

�
��
�
R� ��	R�
��
� J	Q�R�n�Q


� C ��	Q
�
�
X
R�

�
�
�
R� �

�	R�
��
� J�	Q�R�n�Q


� CA�
� 	Q�R
 �

by 	���
� 	���
� 	���
 again� and where J� and A�
� 	Q�R
 are the ob�

vious analogous of J and A�	Q�R
 for �
�� 	See 	���
 for the de�nition

of J�

The story for A�	Q
 in 	����
 is similar� A�	Q
 is a sum of terms

�	Q��

��
� �	Q��


��
� I	Q��� Q
�
�


� C 	�Q�� �Q�� �
�	Q��
 �

�	Q��


��
� �Q�� �Q�� I

�	Q��� Q
�
�
	�� 


and hence A�	Q
 � CA�
� 	Q
� Next 	����
 says that B�� is a sum of

terms

	�	Q�
 �	R�

��
� I	Q�� R� � �Q



� C 	�Q� �R� �
�	Q�
 ��	R�

��
� �Q� �R� I

�	Q�� R� � �Q


	���


	still by 	���
 and 	���

� and hence B�� � C B�
��� Similarly B�� in

	��� 
 is composed of terms

�	Q
�
� �	R�
��
� J	Q�R�n�Q


� C ��	Q
�
� 	�R� �
�	R�

��
� �R�J

�	Q�R�n�Q
	���


and is thus � C B�
��� Our next term is B�� in 	����
� and it is a sum of

terms

	�	Q�
 �	R	Q


��
� I	Q�� �QnR	Q



� C 	�Q� �R�Q� �
�	Q�
 ��	R	Q


��
� �Q� I

�	Q�� �QnR	Q

 �

	��
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which are also dominated by the corresponding terms for �� because
�Q� � �R�Q� 	since Q

� � Q � R	Q
 by de�nitions
� Finally�

	���


B�� � �	Q
�
� �	R	Q

��
� J	Q�En	�Q	 R	Q




� �
�
�
Q �

��
�
R�Q�B

�
��

� B�
�� �

for the same reason�
This completes our veri�cation of 	��
� Theorem ���� for � and

the cubes of !" follows�

��� The Cauchy operator is bounded on L�	d�
�

It will be easier for us to deal with the truncated operators T��
� � �� de�ned by

	��
 T�f	x
 �

Z
jx�yj��

f	y
 d�	y


x� y
� for f � L�	d�
 �

Because � is a �nite measure� there is no problem in de�ning T�� or
even in proving that it is a bounded operator on L�	d�
� Of course we
want to prove that T� is bounded on L�	d�
 with bounds that do no
depend on �� and this will require more work�

We cannot apply Theorem ���� 	for �
 directly to T�� because it
does not have a standard kernel� but this will be very easy to �x� Denote
by X the nice cut�o� function such that X 	t
 � � for � � t � ���
X 	t
 � � t�  for �� � t � � and X 	t
 �  for t � � Then set

	���
 !T�f	x
 �

Z
X
� jx� yj

�

� f	y
 d�	y

x� y

�

for f � L�	d�
� We can replace T� with !T� because

	���
 k jT� � !T�j kL��d�� � C �

where k j � j k denotes the operator norm� and with a constant C that
does not depend on �� This follows easily from 	the continuous version
of
 Shur�s lemma� since

	���
 j	T� � !T�
f	x
j �

Z
�
��jx�yj��

jf	y
j d�	y


jx� yj
�
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and

	���


sup
x

�Z
�
��jx�yj��

d�	y


jx� yj

�

� sup
y

�Z
�
��jx�yj��

d�	x


jx� yj

�
� C �

by 	��
�
We want to prove that

	���
 kjT�jkL��d�� � C �

with a constant C that does not depend on �� 	���
 tells us that it is
enough to deal with !T� instead� We want to apply Theorem ����� with
!E� �� and the cubes of !"� Section � says that we can do this� We
choose b � g� where g is as in 	���
� Note that g satis�es 	���
� as
was observed shortly after 	���
 	or directly by 	����

� this was the
whole point of the construction in �DM��

The kernel

K	x� y
 � X
� jx� yj

�

� 

x� y

is antisymmetric and standard with uniform estimates� and !T� is the
singular integral operator associated with K	x� y
 as in Lemma �� �
	Most of the construction is not needed� though� because K	x� y
 satis�
�es the integrability condition 	���
�
 In particular� it satis�es the weak
boundedness property 	���
 automatically� by antisymmetry� Hence
	���
 will follow as soon as we verify the last condition in Theorem
����� namely that Tg and T tg lie in BMO with uniform estimates�

Note that we don�t need to be as careful as in the statement of
Theorem ���� and de�ne !Tg and !T tg by duality� Here� due to the fact
that our kernel K is bounded� !Tg and !T tg are well de�ned� and even
bounded� and the only thing we have to check is that they lie in BMO
with uniform bounds� Also� !Tg � � !T tg by de�nitions 	and in particular
antisymmetry
� so we only need to show that k !TgkBMO�d�� � C for
some C that does not depend on ��

Note that

j !T�g	x
� T�g	x
j �

Z
�
��jx�yj��

jg	y
j d�	y


jx� yj
� C �
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by 	���
 and 	��
� Since bounded functions obviously lie in BMO�
the desired estimate 	���
 will follow if we prove that

	���
 kT� gkBMO�d�� � C �

In view of De�nition �� � this means that

	�� 


Z
R�

jT� g	x
�mR�
	T� g
j

� d�	x
 � C �	R�
 �

for all R� � !"� where mR�
	T� g
 denotes the mean value of T� g on R�

	for �
� It is even enough to show that for each R� � !" there is a
constant mR�

such that

	���


Z
R�

jT� g	x
�mR�
j� d�	x
 � C �	R�
 �

because we know that the left�hand side of 	�� 
 is always less than or
equal to the left�hand side of 	���
�

Let us �rst take care of the cubes R� that are contained in circles
C	Q
� Q � I� 	 L I�

Lemma ����	� For each Q � I�	L I there is a constant C�
Q such that

	��
 jT�g	x
� C�
Qj � C � on C	Q
 �

Recall that on C	Q
� g	y
 is a bounded constant �n 	by 	���

and 	����

� and d� � Q dH

�� where Q is of the form

��n
�	Q


H�	C	Q


�

by 	����
� Hence Q � C as well� and

	���
 jT�	�C�Q� g
	x
j � C �

by elementary properties of truncated Cauchy integrals on circles� and
it is enough to study

	���
 a	x
 � T�		��C�Q�
 g
	x
 �

Z
fjx�yj���y� �EnC�Q�g

g	y
 d�	y


x� y
�
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Recall from 	���
 that

dist 	C	Q
� !EnC	Q

 �
� 

��
r	Q
 �

so that we can assume that � � r	Q
��� say� because otherwise we can
replace � with r	Q
�� without modifying a	x
� Denote by x� the center
of C	Q
� and also set

D � fy � !EnC	Q
 � jy � x�j � �g

	the domain of integration for a	x�

 and

A �
n
y � !E � ��

r	Q


��
� jy � x�j � ��

r	Q


��

o

	which contains the di�erence between D and the domain of integration
for a	x
 when x � C	Q

� Then

	���


ja	x
� a	x�
j �
���a	x
�

Z
D

g	y
 d�	y


x� y

���
�
���
Z
D

� 

x� y
�



x� � y

�
g	y
 d�	y


���

� C

Z
A

d�	y


jx� yj

� C

Z
fjy�x�j�r�Q�
�g

��� x� x�
	x� y
 	x� � y


��� d�	y

� C �

because � � r	Q
��� and by the upper density estimate 	��
� 	The
computation for the last line is the same one as for 	 �
�
 Thus we can
choose C�

Q � a	x�
� and Lemma ��� follows�

Lemma ��� immediately gives 	���
 for all the cubes R� that
are contained in a C	Q
� Thus we are left with the cubes R� � !"�� and
we can even suppose that R� � R	Q�
 for some Q� � "�n	I� 	 L I
�
Because of 	��
�

	���


Z
R�

jT�g	x
�mR�
j� d�	x
 � �Q�

Z
R�

jT�g	x
�mR�
j� d��	x
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and� since �Q�
�	Q�
 � C �	R�
 by Lemma ��� 	���
 will follow if

we can show that

	���


Z
R�

jT�g	x
�mR�
j� d��	x
 � C �	Q�
 �

Let us summarize what we have done so far�

Lemma ������ To prove 	���
 with a constant that does not depend

on �� it is enough to show that for each � � � and each cube Q� �
"�n	I� 	 L I
� we can �nd a complex number m� such that

	�� 


Z
R�Q��

jT�g	x
�m�j
� d��	x
 � C �	Q�
 �

where C does not depend on � or Q��

At this point we �x a cube Q� as in the lemma� and we want to
�nd m� and eventually check 	�� 
� Our notations so far have been
slightly di�erent from those of �DM� Section  �� where what we call T�g
was called T �	g d�
� It will be more convenient for us now to revert to
the notation of �DM�� i�e�� to let the measure show up in the notations�
Recall from 	���
� 	����
� and 	���
 that

	���
 g d� � lim
n��

Fn � f d��
X
n��

	Fn � Fn��
 � f d��
X
n��

�n �

where

	����
 �n � ��Hn �n�� f d�� 
n �Gn �n�� f d�� �n d�n �

by 	����
� Hence

	���
 T �	g d�
 � T �	f d�
 �
X
n��

T �	�n
 �

the proof of 	����
 in �DM� also gives that the series converges absolutely
���almost everywhere� so we should not worry about convergence�

Fortunately we shall not need to estimate most of the terms in
	���
 in the present paper� because this was mostly done in �DM��
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Denote by J the set of integers n �  such that Qn � Q� and de�ne a
function A on !E by

	����
 A	x
 � sup
���

�
jT �	f d�
	x
j�

X
n�J

jT �	�n
	x
j
�
�

for x � E�� and

	����
 A	x
 � sup
��A�k�Q�
�

�
jT �	f d�
	x
j�

X
n�J

jT �	�n
	x
j
�
�

for x � C	Q
� Q � I� 	 L I�

Lemma ����� We have that

	����


Z
R�Q��

A	x
� d��	x
 � C �	Q�
 �

with a constant C that does not depend on � � � or Q��

When x � E�� �DM� 	�����
 and 	����
� give that

	����


A	x
 � C � C
X
n�J

X
Q�An�A�n


	Q
�EnQ	x
 e
�
Q	x


� C
X
n�J

Qn�PLI

X
Q�A�n


	Q
�Q	x
h
�
Q	x
 �

with the notations of �DM�� that we won�t have to make explicit here�
Thus

	����
 A	x
 � C �W J
� 	x
 �W J

� 	x
 �

whereW J
� andW J

� are as in 	���
 and 	����
� but where one sums only
on the cubes Q � R � I� 	 L I 	 BLI that come from indices n � J�
i�e�� cubes that lie in An 	A�n for some n � J� By Remarks ����� and
������ and especially 	��� �
�

Z
R�Q��E�

A	x
� d��	x
 � C ��	R	Q�
 �E�
 � C �
� 	
n�J

Qn

�

� C �	Q�
 �	��� 
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	See 	��� �
 if you want to check that �� is the same here as in �DM��
and recall that �� � � on E�
�

Now suppose that x � C	Q
 for some Q � I� 	 L I� We may use
	�����
 and 	�����
 to get that

	����


A	x
 � C � C
X
n�J

X
Q�An�A�n


	Q
 !eQ	x


� C
X
n�J

Qn�PLI

X
Q�A�n


	Q
 !hQ	x
 �

	See 	����
 and a little below for the de�nition of km� indeed km �
k	Q
 for the cubes Q � Am�
 Then

	����
 A	x
 � C � !W J
� 	x
 � !W J

� 	x
 �

where !W J
� and !W J

� are de�ned like !W� and !W� in 	����
 and 	����
�
but where we only sum over those cubes Q � R that lie in An 	A�n for
some n � J� Now

Z
R�Q��nE�

A	x
� d��	x
 �

Z
R�Q���

S
Q�I��LI

C�Q��

A	x
� d��	x


� C ��	R	Q�

 � C �
� 	
n�J

Qn

�
	���


� C �	Q�
 �

by 	��� �
 and Lemma ��� Lemma ���� follows from this and
	��� 
�

Now we want to take care of the T �	�n
 for which n �� J� We start
with the set J� of integers such that Qn does not meet Q��

Denote by x� the �center of Q��� i�e�� the point x	Q�
 of 	���
�
	���
� For each n � J�� set

	����
 Bn	x
 � jT ��n	x
� T ��n	x�
j �

Lemma ������ We have that

	����

X
n�J�

Bn	x
 � C � C Z	x
 � for x � R	Q�
 �
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where

	����
 Z	x
 �

Z
EnQ�

A�k�Q��

jx� yj jx� � yj
d�	y
 �

To prove the lemma� set

V 	x
 � fy � C � jx� yj � � and jx� � yj � �g �	����


W 	x
 � fy � C nV 	x
 � jx� yj � � or jx� � yj � �g �	����


and then de�ne a function h by

h	y
 �

�����
����

jx� x�j

jx� yj jx� � yj
� when y � V 	x
 �

jx� yj�� � jx� � yj�� � when y �W 	x
 �

� � otherwise �

Obviously

	��� 


Bn	x
 �

Z
h	y
 j�n	y
j

�

Z
Hn

�n�� h d�� 
n

Z
Gn

�n��h d�� j�nj

Z
Cn

h d�n �

by 	����
 and because kfk� � � We want to sum this over n � J��
Notice that the sets Hn are disjoint by 	����
 and contained in EnQ�

by de�nition of J�� The Cn�s are disjoint too� by 	����
� The sets Gn

are not necessarily disjoint� but 	�� 
 says that

	����
 
n �n��	x
 � �n��	x
� �n	x
 � when x � Gn �

so that for a given x � E�

	����

X

n�x�Gn


n �n��	x
 �  �

Thus

X
n�J�

Bn	x
 �

Z
S
n�J�

Hn

h d��

Z
S
n�J�

Gn

h d�� C
X
n�J�

Z
Cn

h d�

� �

Z
EnQ�

h d�� C
X
n�J�

Z
Cn

h d� �	���
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for all x � R	Q�
�
Let us �rst take care of the integrals on W 	x
� Let x � R	Q�


be given� When � � � diam	R	Q�
 	 fx�g
� W 	x
 � B	x�� ��
 and
h	x
 � jx� yj�� � jx� � yj�� � � ��� on W 	x
� and hence

	����


Z
W �x�

h	y
 d�	y
 �

Z
W �x�

h	y
 d�	y
 � C �

be 	���
 	applied to Q� or to a suitable ancestor of Q�
 and 	��
�
When � � � diam	R	Q�
 	 fx�g
� W 	x
 � B	x�� CA

�k�Q��
� and
then

	����
 h	y
 �
CA�k�Q��

jx� yj jx� � yj
� on W 	x
 �

From this and 	���
 we deduce that

	����

X
n�J�

Bn	x
 � C � C Z	x
 � C
X
n�J�

Z
Cn

�	y
 d�	y
 �

where

	����
 �	y
 �
A�k�Q��

jx� yj jx� � yj
�

We still need to control the contribution of the sets Cn� Let n � J� be
given� and let Q � An� Since n � J�� Qn does not meet Q�� and neither
does Q � Qn� Then

dist 	x�� C	Q

 � dist 	Q�� C	Q

 � dist 	C	Q
� EnQ
 �
��

��
r	Q
 �

by 	��� 
� Hence

	����
 jx� � zj � C jx� � yj � for all z � Q and y � C	Q
 �

Similarly� C	Q
 does not meet R	Q�
� by 	��
 and the fact that the
circles C	Q
� Q � I� 	 LI� are disjoint 	by 	����

� Then for all x �
R	Q
 we have that

dist 	x� C	Q

 � dist 	R	Q
� C	Q

 � dist 	C	Q
� !EnC	Q

 �
� 

��
r	Q
 �
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by 	���
� and

	����
 jx� zj � C jx� yj � for z � Q and y � C	Q
 �

From 	����
 and 	����
 we deduce that �	y
 � C �	z
 whenever y �
C	Q
 and z � Q� and then

	��� 


X
n�J�

Z
Cn

�	y
 d�	y
 �
X
n�J�

X
Q�An

Z
C�Q�

�	y
 d�	y


� C
X
n�J�

X
Q�An

Z
Q

�	z
 d�	z


� C

Z
EnQ�

�	z
 d�	y


� C Z	x
 �

because �	C	Q

 � �	Q
� the cubes Q are disjoint and do not meet Q��
and by de�nition 	����
 of Z�

Lemma ���� follows from 	����
 and 	��� 
�

Lemma ����� We have

	����


Z
R�Q��

Z	x
� d��	x
 � C �	Q�
 �

We leave the proof of Lemma ���� for later� and continue with the
proof of 	�� 
� Lemmas ���� and ���� will give us enough control
on the T �	�n
� n � J� 	see later
� So we want to switch to the set
J� � N� � 	J 	 J�
 of integers n �  such that Q� is strictly contained
in Qn� Thus Q� � Gn when n � J�� For each n � J�� set

	���

�n � �n � 
n �Q�

�n�� f d�

� ��Hn �n�� f d�� 
n �GnnQ�
�n�� f d�� �n d�n �

	by 	����

� and then set

	����
 Bn	x
 � jT ��n	x
� T ��n	x�
j � for x � R	Q�
 �

We claim that

	����

X
n�J�

Bn	x
 � C � C Z	x
 � for x � R	Q�
 �
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by the same proof as for Lemma ����� The main point is still that the
sets Hn are disjoint and disjoint from R	Q�
� that the integrals against
�nd�n are controlled by the integrals on Hn� and that the integrals on
the sets GnnQ� sum up by 	����
 and still concern EnQ��

The last piece that we need to study is

	����
 � �
X
n�J�


n �n�� �Q�
f d� � 	� �
�Q�

f d� �

where � denotes the constant value of �n� on Q�� where n� is the largest
integer in J�� 	If J� is empty� we don�t need to worry but we can also
take � �  and � � ��
 The last equality in 	����
 comes from 	����
�
For each x � R	Q�
� set

	����
 D	x
 � E �B	x� diam	Q� 	 R	Q�

 � A�k�Q��
 �

By 	�����
 or 	���� 
�

	����
 jT �	�EnD�x� f d�
	x
j � C �

because it is a T ��	f d�
	x
 for some !� � A�k�Q��� next

	����
 jT �	�EnD�x�� f d�
	x
j � C �

by 	����
� and because the di�erence between the left�hand sides of
	����
 and 	����
 is controlled by

Z



d�	y


jx� yj
� C �

where " � 	D	x�
nD	x

 	 	D	x
nD	x�

� This last estimate uses
	���
� Now assume that x � R	Q�
 � E� or x � R	Q�
nE� and
x � C	Q
 for some Q � I� 	 L I such that � � A�k�Q���� Then
jT �	f d�
	x
j � C by 	�����
 or 	���� 
� and hence

	��� 


jT ��	x
j � jT �	f d�
	x
j� jT �	�EnQ�
f d�
	x
j

� C � jT �	�EnD�x�� f d�
	x
j�

Z
D�x��nQ�

d�	y


jx� yj

� C �

Z
D�x��nQ�

d�	y


jx� yj
�
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The following lemma will be useful� we shall prove it later� at the same
time as Lemma �����

Lemma ������ Set

Z�	x
 �

Z
D�x��nQ�

d�	y


jx� yj
� for all x � R	Q�
 �

Then

	����


Z
R�Q��

Z�	x

� d��	x
 � C �	Q�
 �

We are now ready to prove 	�� 
 	modulo the two lemmas
� Take

	���
 m� �
X
n�J�

T ��n	x�
 �
X
n�J�

T ��n	x�
 �

For each x � R	Q�
 � E� � Q� � E� and � � ��

	����


jT� g	x
�m�j � jT �	g d�
	x
�m�j

� A	x
 �
X
n�J�

jT ��n	x
� T ��n	x�
j

�
X
n�J�

jT ��n	x
� T ��n	x�
j� jT ��	x
j

� A	x
 �
X

n�J��J�

Bn	x
 � C � Z�	x


� A	x
 � C � C Z	x
 � Z�	x
 �

by 	���
� 	����
� 	���
 and 	����
 	to get that
P

n�J�
�n �P

n�J�
�n��
� 	����
 and 	����
� 	��� 
� Lemma ����� and 	����
�

When x � R	Q�
nE� and x � C	Q
 for some Q � I� 	 L I� and
we suppose in addition that � � A�k�Q���� we can use 	����
 instead
of 	����
� and the same computations as for 	����
 yield

	����
 jT�g	x
�m�j � A	x
 � C � C Z	x
 � Z�	x
 �

When x � C	Q
 and � � A�k�Q���� set �� � A�k�Q��� and observe that

	����


jT� g	x
� T��g	x
j �
���
Z
f��jx�yj���g

g	y
 d�	y


x� y

���

�
���
Z
fy�C�Q����jx�yj���g

�m d�m	y


x� y

��� � C �
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by 	���
� 	���
� 	����
� 	����
� and elementary properties of trun�
cated Cauchy integrals on circles� and where m denotes the integer
such that Q � Am� Thus 	����
 holds also when � � A�k�Q���� even
though with a slightly larger constant C� Altogether� 	����
 holds for
all x � R	Q�
 	and all � � �
�

Now 	�� 
 follows from Lemmas ����� ����� ����� plus the
fact that ��	R	Q�

 � C �	Q�
� by Lemma ��� Because of Lemma
���� our proof of 	���
 will be complete as soon as we establish the
two lemmas�

First consider the function Z	x
 of Lemma ����� We claim that

	����
 Z	x
 � C � Z�	x
 � for all x � R	Q�
 �

where Z� is as in Lemma ����� Let D	x�
 be as in 	����
 and the
de�nition of Z�� Then

	����


Z
EnD�x��

A�k�Q��

jx� yj jx� � yj
d�	y
 � C �

by the same computation as for 	 �
� because 	jx � yj jx� � yj
�� �
C jx��yj�� on the domain of integration and by 	���
� applied to Q�

and its ancestors�
So we may concentrate on

Z�	x
 �

Z
D�x��nQ�

A�k�Q��

jx� yj jx� � yj
d�	y
 �

But jx� � yj � A�k�Q���� on D	x�
nQ�� by 	���
 and 	���
� and so
Z�	x
 � �Z�	x
� This proves our claim 	����
�

Obviously Lemma ���� will follow from Lemma ���� and 	����
�
because ��	R	Q�

 � �	Q�
 by Lemma ���

We now prove Lemma ����� The argument is quite similar to
estimates for functions h�Q that were done at the beginning of �DM�
Section ���� but we give the argument here because some of the com�
putations in �DM� are much more general than what we need here�

First we want to reduce to an integral on Q� 	rather than R	Q�

�
For each x � Q�� set

	����
 r	x
 � inf fA�k � there is a cube Q � "�
k that contains xg �

The main point of this de�nition is that

	��� 
 �	B	x� r

 � C r � for all r � r	x
 �
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by 	���
� Also note that

	����
 r	x
 � � � on E� �Q� �

because E� does not meet any cube of I� 	 L I� Next set

	����
 h	x
 � �Q�
	x


Z
D�x��nQ�

d�	y


r	x
 � jx� yj
�

We want to check that

	���


Z
R�Q��

Z�	x

� d��	x
 � C

Z
Q�

h	x
� d�	x
 �

For x � E��R	Q�
� r	x
 � � and Z�	x
 � h	x
� for the corresponding
part of the integral� there is nothing to check because �� � � on E��

Now let Q � I�	L I be given� with Q � Q�� and let us look at the
contribution of C	Q
� For each x � C	Q
�

dist 	x�D	x�
nQ�
 � dist 	C	Q
� EnQ
 �
��

��
r	Q
 �

by 	��� 
� and hence

	����
 r	z
�jz�yj � A�k�Q��jz�yj � �� r	Q
�jx�yj � C jx�yj �

for all y � D	x�
nQ� and all z � Q� Then Z�	x
 � C h	z
 for all z � Q�
and

	����


Z
C�Q�

Z�	x

� d��	x
 � C

Z
Q

h�	z
 d�	z
 �

because ��	C	Q

 � �	Q
� When we sum this over the 	disjoint
 cubes
Q � I� 	 L I that are contained in Q�� we obtain that

	����


Z
R�Q��nE�

Z�	x

� d��	x
 � C

Z
Q�

h	z
� d�	z


	by 	��

� our claim 	���
 follows from this and the trivial estimate
for E� mentionned above�

Because of 	���
� Lemma ���� will follow as soon as we show
that

	����


Z
Q�

h	x
� d�	x
 � C �	Q�
 �
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To prove this we decompose Q� into its maximal good subcubes R�
R � S	Q�
� The decomposition is the same as in Section  � even though
� is a slightly di�erent measure now 	that does not satisfy 	��

� In
particular� the analogue of 	 ��
 in this context holds� with the same
proof� 	See Lemma ���� �
 For each R � S	Q�
� set

	����
 hR	x
 � �R	x


Z
�RnR

d�	y


r	x
 � jx� yj
�

where �R is as in 	���
�	�� 
 or in 	�����
� This is almost the same
function as in �DM� 	see 	��� 

� with the only minor di�erence that
we may have chosen r	x
 a little larger than the one in �DM�� 	See
in particular 	����
 and 	����
�
 This di�erence does not disturb us�
because our function hR is slightly smaller than the one in �DM�� and
the estimates from �DM� will work even better for it� Now we claim
that

	����
 h	x
 � C � hQ�
	x
 � C � � hR	x
 �

when x � R� R � S	Q�
� The �rst inequality is an easy consequence of
the fact that jx� yj � A�k�Q�� on D	x�
n�Q�� so that

h	x
� hQ�
	x
 �

Z
D�x��n�Q�

jx� yj�� d�	y
 � Ak�Q�� �	D	x�

 � C �

by 	���
� The second inequality comes directly from Lemma ������
The fairly easy proof is quite similar to arguments used earlier in this
paper� because all the cubes Q such that R � Q � Q� and Q �� R
are bad� the contribution to hQ�

	x
 of the annular shells at distance
� A�k�Q����� � � k	R
 � k	Q�
� from x decrease rapidly� the main
contribution comes from � � � and is less than C by 	���
� 	See �DM�
for details�


Next� for each R � S	Q�
 and each x � R�

	��� 
 hR	x
 � C 	 � log 	 � A�k�R� dist 	x� �RnR
��

 �

This is 	�����
� and it follows from a rather brutal computation using
dyadic annular shells and the density estimate 	��� 
� The logarithm
is an estimate of the number of shells that we need to cover the domain
of integration� Finally�

	����


Z
R

hR	x

� d�	x
 � C �	��B	R

 � C �	R
 �
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This follows fairly easily from 	��� 
 and 	�� 
� plus the fact that R
is a good cube� This is also a consequence of Lemma ������ Now

	�� �


Z
Q�

h	x
� d�	x
 �
X

R�S�Q��

Z
R

h	x
� d�	x


� �
X
R

Z
R

	hR	x

� � C
 d�	x


� C
X
R

�	R
 � C �	Q�
 �

by 	 ��
 	or Lemma ���� 
� 	����
� and 	����
�
This completes our proof of 	����
� Lemma ����� Lemma �����

and our main estimate 	���
 follow�

At this point we may return to the description given in Section �
the estimate 	�
 follows readily from 	���
� and we may conclude as
in the introduction�

This complete our proof of Theorem ��
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Inverse problems in the theory

of analytic planar vector �elds

Natalia Sadovskaia and Rafael O� Ram��rez

Abstract� In this communication we state and analyze the new inverse
problems in the theory of di�erential equations related to the construc�
tion of an analytic planar vector �eld from a given� �nite number of
solutions� trajectories or partial integrals�

Likewise we study the problem of determining a stationary complex
analytic vector �eld � from a given� �nite subset of terms in the formal
power series

V �z� w	 
 � �z� � w�	 �
�X
k��

Hk�z� w	 � Hk�a z� aw	 
 akHk�z� w	 �

and from the subsidiary condition

��V 	 

�X
k��

G�k �z
� � w�	k�� �

where G�k is the Liapunov constant� The particular case when

V �z� w	 
 f��z� w	� f���� �	

and �f�� D � C �	 is a canonic element in the neigbourhood of the origin
of the complex analytic �rst integral F is analyzed� The results are ap�
plied to the quadratic planar vector �elds� In particular we constructed
the all quadratic vector �eld tangent to the curve

�y � q�x		� � p�x	 
 � �

���
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where q and p are polynomials of degree k and m �  k respectively�
We showed that the quadratic di�erential systems admits a limit cycle
of this tipe only when the algebraic curve is of the fourth degree� For
the case when k � � it proved that there exist an unique quadratic
vector �eld tangent to the given curve and it is Darboux�s integrable�

�� Introduction�

We consider analytic planar vector �elds or equivalent systems of
di�erential equations

����	

���
��

dx

dt

 P �x� y� t	 �

dy

dt

 Q�x� y� t	 �

We shall mainly be concerned here with real systems ����	� In order to
understand such systems it is however advisable to sometimes consider
the natural extension of ����	 to the complex system

���	

���
��

dz

dz�

 Z�z� w� z�	 �

dw

dz�

 W �z� w� z�	 �

The following representation is often used instead of ����	 and ���	

� � P dy �Qdx 
 � �

� �W dz � Z dw 
 �� � i�� 
 � �

In the theory of di�erential equations ����	 �or ���		 two main problems
can be studied�

I	 Direct problem or problem of integration ����	 �or ���		�

II	 Inverse problem or problem of construction ����	 �or ���		 from
given properties�

Before solving the direct problem� the question as to what the
integration of ����	 means must be answered� If the given equations
describe the behaviour of physical phenomena� then these can be seen
to change over time�
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By using the theorem of existence and unicity we can determine
the evolution of the phenomena in the past and future by integration�
Integrating the equations without complementary information about
the real situation may lead to useless results� So if integration enables
us to understand the process of �nding the analytical expressions for the
solutions� the following question immediately arises� What character
and properties must the required expression have�� It is well known that
the solutions to ����	 can be expressed though elementary functions or
integrals of such functions only in some exceptional cases�

The analytical expression of linear systems is well known� How�
ever� there are few physical systems which can be described by such
models� If solutions can be found for non�linear systems� the formu�
lae for expressing them are so complicated that they are practically
impossible to study� The problem of integrating ����	 can be stated
with in�nite formal series� The di�culties which arise have to do with
the convergence of the series which is so slow as to be useless in most
cases� Finally� the problems related to the approximate calculation of
the solutions to the given equations are well known� These di�culties
lead the specialist to state and solve another type of problem which is
that of constructing di�erential equations from given properties� This
sort of problems are called inverse problems in the theory of di�eren�
tial equations� Generally speaking� by an inverse problem one usually
means the problem of constructing a mathematical object from given
properties� In recent years this branch of mathematics has been de�
veloping in di�erent directions� in particular in the �eld of di�erential
equations�

One of the di�culties encountered when studying such questions
is that of the high degree of arbitrariness but this can be remedied by
introducing subsidiary conditions inspired by the physical nature of the
phenomenon�

The �rst inverse problem of the di�erential equations was stated
by Newton�

Book One of Newton�s Philosophiae Naturalis Mathematica is to�
tally dominated by the idea of determining the forces capable of gener�
ating planetary orbits of the solar system�

The problem of �nding the forces which generate a given motion
has played a dominant role in the history of dynamics from Newton�s
time to the present� In fact� this problem has been studied by Bertran�
Suslov� Joukovski� Darboux� Danielli� Whittaker and recently by Gali�
ullin ���� Szebehely ��� and their followers�
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Of course� this problem is essentially a problem of construction
di�erential equations of the second order with given properties�

Another fundamental inverse problem in this theory is that of to
Eruguin� who stated the problem of constructing a system of di�er�
ential equations from given integral curves ���� This idea were futher
developed in ����

The aim of this communication is to developed the Eruguin�s ideas
and construct the planar analytical vector �eld from given solutions�
trajectories� partial integrals� etc� The problem posed are illustrated
in a speci�c case� In particular� we determine all the quadratic au�
tonomous vector �elds from the given algebraic curves of the genus �

�� Constructing an analytic planar vector �eld from a given
�nite number of solutions�

Problem ���� Let us specify smooth functions

zj 
 xj � i yj � I � R �� C

t ��� zj�t	 
 xj�t	 � i yj�t	 � j 
 ��M �

We want to construct a di�erential equation

���	 F
�
z� z� t�

dz

dt

�
� a �z� z� t	

dz

dt
� f�z� z� t	 
 � �

where z 
 x� i y� z 
 x� i y� in such a way that

��	 z 
 zj�t	 � j 
 �� � � � � �M

be its solutions�
Evidently� the sought after equation can be represented as follows�

Let us denote by D the matrix

���	 D 


�
BBBBBBBBBBBBBBBB	

� � � � � �
z z��t	 � � � zM �t	

z z��t	 � � � zM �t	

z� z���t	 � � � z�M �t	

jzj� jz��t	j� � � � jzM �t	j�
z� z���t	 � � � z�M �t	
���

���
���

zn zn� �t	 � � � znM �t	

dz

dt

dz��t	

dt
� � �

dzM �t	

dt
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where �n� �	 �n� 	� 
 M �

Proposition ���� The di�erential equation admitting ��	 as its so�

lutions can be represented as follows

���	 F
�
z� z� t�

dz

dt

�

 detD � ��z� z� t	 
 � �

where � �which we will call Eruguin�s function	 is an arbitrary function

such that

��z� z� t	jz�zj�t�� z�zj�t� � � � j 
 �� � � � � �M �

As can be seen the arbitrariness of the equations obtained is high
in relation to the function �� but this drawback can be removed with
the help of some complementary conditions� In the paper ��� we studied
the problem of constructing a stationary polynomial planar vector �eld

dz

dt
� �z 


X
j�k�n

akj z
j zk � akj � C �

from given solutions ��	 and with evidently subsidiary conditions
which enable us to solve ���	 with respect to �z�

We have proposed a method for determining the Eruguin function
in ���� In order to illustrate Proposition �� and this method we shall
analyze the case when the sought after vector �eld is quadratic� We
solve the simplest problem when the given solutions are the following
z 
 � and z 
 z� 
 const �
 ��

We determine the Eruguin function as linear combinations of ele�
ments of the matrix Hj which we de�ne as follows

���	
H��z� z� t	 


X
j�k�n

Bjk z
j zk �

Hj�z� z� t	 
 �Hj���z� z� t	� Hj���zj�t	� zj�t	� t	� �

where j 
 �� � � � � �M � Bkj is an arbitrary matrix of order s and �A�B� 

AB � BA is the Lie bracket of the matrices A and B� By introducing
the vector

L�z� z	 
 ��� z� z� z�� z z� z�	 �
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we easily obtain� for our particular case� that the sought after quadratic
vector �eld is such that

���	
dz

dt

 �L�z�� z�	� KLT �z� z		 �

where by K we denote the antisymmetrical matrix

K 


�
BBBBB	

� � � � � �
� � �� �� �� �	
� ��� � �
 �� ��
� ��� ��
 � � ��
� ��� ��� �� � ���
� ��	 ��� ��� ���� �
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where �j � C � The equation ���	 determines the required quadratic
vector �eld with two critical points� The following particular case is of
interest

�j 


�
� � if j �
 � �

a� i b � if j 
 � �

and z� 
 	 � R� The above equation in this case take the form

dz

dt

 ��	 �	�z � 	 z�	 �

or� what amounts to the same��
�x 
 �	 �b 
yH � a �	 x� y� � x�		 �

�y 
 	 ��b 
xH � a �	 y � x y		 �

where

H 

	


�x� � y�	 � x y� � �

�
x� �

�� Constructing a planar vector �eld from a given complex
analytic �rst integral�

In this section we shall study two problems related with the con�
structing of a vector �eld � such that���

��
dz

dz�

 ��w � Z�z� w	 �

dw

dt

 � z �W �z� w	 �
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where z and z� are complex variables� � � C � Z� W are polynomial
functions in the variables z and w� The �rst problem is the following�

Problem ���� Let

���	 V �z� w	 

�


�z� � w�	 �

�X
j��

Hj�z� w	 �

be a formal power series� where � is a nonzero complex parameter and
Hj is a homogenous function of degree j�

The analytic vector �eld � need to be constructed in such a way
that

��V �z� w		 

�X
j��

G�k �z
� � w�	k�� �

where G�k � C are the Liapunov �complex	 constants�
The second problem is a consequence of the Problem ���� Firstly

we introduce the following concepts and notations ����

De�nition ��� By a canonical element centered at the point a � C
�

will be called a pair �Ua� fa	� where fa is the sum of a power series with

its centre at a and Ua is the domain of convergence of the power series�

De�nition ���� Two canonic elements �Ua� fa	 and �Va� ga	 are said

to be equivalent if fa � ga in the neighbourhood of a�

De�nition ���� The complex analytic function F with domain D � C
�

will be called the set of canonic elements which can be generated from

the canonic element �Ua� fa	 after analytic continuation along the whole

path starting from the given point a � Ua�

De�nition ��	� ��� The system ����	 will be called integrable in the Li�

apunov sense �or Liapunov integrable	 if and only if there is an analytic

�rst integral F which contains the canonic element �U�� f�	 with f�

f��z� w	 
 f���� �	 �
�


�w� � z�	 �

�X
j��

Hj�z� w	 �

where the Hj� j 
 �� �� � � � � are homogenous functions of degree j� and
� is a nonzero complex parameter ����
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Problem ���� To construct a Liapunov integrable polynomial vector
�eld � of degree n such that

����	

���
��

dz

dt

 ��w � Zn�z� w	 �

dw

dt

 � z �Wn�z� w	 �

where by Zn and Wn we denote a polynomial function of degree n � �
in of the variables z and w�

We �nd the solutions to these problem for n 
  and n 
 �� while
for n � � solutions are found by in an analogous manner�

Proposition ���� Let us suppose that the function H� is such that

fH�� H�g � 
zH� 
wH� � 
wH� 
zH� �� � �

Then the sought after quadratic stationary vector �eld � can be repre�

sented as follows

����	 �� 
 fH� g� g�f � H�g �

if this condition holds

���H�k �H�k��	 
 G�k �z
� � w�	k �

or� what amounts to the same�

����	

���
��
fH�� H�k��g� fH�� H�kg� g�fH�k� H�g 
 � �

fH�� H�k��g� fH�� H�k��g� g�fH�k��� H�g

 G�k�� �z

� � w�	k�� �

where H�� H are functions such that

H��z� w	 

�


�z� � w�	 �

H�z� w	 
 H��z� w	 �H��z� w	 �
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Consequence ���� The Liapunov constants G�k for the quadratic
vector �eld thus constructed can be calculated by the formulas�

G�k�� 

�

�

Z ��

�

�� g��z� w	 fH�� H�k��g� fH�� H�k��g
��
z�cos t
w�sin t

dt �

where k � N � From the above results we can deduce the following
consequence

Consequence ���� Let us give the functions H�� H�� H	 and the
Liapunov constant G	�

Then we can construct�

i	 the quadratic vector �eld ���

ii	 all members of the formal power series
P�

k�
Hk�z� w	� and

iii	 the Liapunov constants G�k��� k 
 � �� �� � � �

In order to illustrate these assertions� we shall study the following
particular case� Let H�� H�� H	 and G	 be such that

������������
�����������

H� 

�


�z� � w�	 �

H� 

�

�
��a� � a		w

� � �a� � a
	 z
�	 � a� z w

� � a� z
� w �

H	 

�

�
�a	 �a� � a	 � a�	� a
� a� � a
	 z

		� a� a	 z w
� �

G	 

�

�
a
 �a� � a�	 �

where a�� a�� a	� a
� a� are some complex parameters�
The sought after quadratic vector �eld can be represented as fol�

lows ���
��

dz

dt

 �
wH� � a
 z w �

dw

dt

 
zH

� � a	 z w �

where

H� 

�


�z� � w�	 �

a�
�
z� � a� z

� w � a� z w
� � a�

�
w� �
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By using computer techniques it is easy to obtain the expression for
all the terms of the power series and the Liapunov constants from the
above formulas�

Consequence ���� Let us suppose that the functions H�k and H�k��

are such that

fH�� H�kg �� � � fH�� H�k��g �� � �

so we have the following relations

����	

g��z� w	 
 �fH�� H�k��g� fH�� H�kg
fH�k� H�g



fH�� H�k��g� fH�� H�k��g �G�k�� �z

� � w�	k��

fH�� H�k��g �

where k � N � Likewise we can deduce the following result for cubic
vector �elds�

Proposition ���� Let H	 be a function such that

����	 fH	� H�g �� � �

Then the cubic vector �eld � admits the representation below

����	 �� 
 ��z� w	 fH� g� g� f � H�g �

if the following relation holds������
�����

fH�� H�g 
 � �

��z� w	 fH�k��� H	g� g�z� w	 fH�� H�k��g 
 � �

��z� w	 fH�k� H	g� g�z� w	 fH�� H�kg� fH�� H�k��g

 �G�k�� �z

� � w�	k�� �

where H 
 H� �H	�

As an immediate consequence we �nd that all functions H�k�� are
equal to zero� Formulas analogous to ����	 can be deduced�

From �����	 we easily deduce that the function � is such that

��z� w	 fH	� H�g� fH�� H	g 
 �G	 �z
� � w�	� �
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Proposition ���� Let us suppose that the formal power series is such
that

V �z� w	 

X ak

k
�z� � w�	k � �r�	 �

So the sougth after analytic vector �eld can be rewritten as follows

�����	

���
��

dz

dt

 ��z� w	w �R�r�	 z �

dw

dt

 ���z� w	 z �R�r�	w �

where � is an arbitrary analytic function and R is a function

R�r�	 


r�
�X
k��

G�k r
�k


r��r�	
�

Likewise we can study the problem of constructing a polynomial vector
�eld of degree n� In order to illustrate these ideas we shall analyze the
following speci�c case�

Let us give the functions Hk� k 
 � �� � � � � n� �� such that������
�����

H��z� w	 

�


�z� � w�	 �

Hj�z� w	 
 � � j 
 �� � � � � n �

Hn���z� w	 

�


�c �bwn�� � a zn��		 � c� b� a � C �

and let us suppose that G�n 
 G�n�� 
 ��
We wish to construct the polynomial vector �eld of degree n�
We obtain the solutions to this problem in the same way as in the

above problem� Firstly it is easy to �nd that

��z� w	 
 � �

gn���z� w	 

n �c� �	

n� �
�a zn�� � bwn��	 �

H�z� w	 
 H��z� w	 �Hn�� �

So the sought after vector �eld is���
��

dz

dt

 �w � Awn � Bw zn�� �

dw

dt

 z �Azn �B z wn�� �
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where

A 

b �c �n� �	� � �n	

n� 
� B 


 a n �c� �	

n� �
�

For n 
 m � � we observe that the system obtained has the sym�
metry �z� w� t	 �� ��z� w��t	 and �z� w� t	 �� �z��w��t	� i�e�� it is
reversible� As a consequence there is an analytic �rst integral�

It is interesting to observe that the complex analytic function

V �z� w	 
 z� �� � a zn��	c � w� �� � bwn��	c

has the canonic element �f�� U�	 such that

f��z� w	 
 z��w��c �a zn���bwn��	�c �c��	 �a� z�n�b� w�n	� 	 	 	

The solution to this Problem �� can easily be obtained from the solu�
tion to Problem ���� by considering the complementary condition that
the Liapunov constants are zero in this case�

Lunkevich and Sibirski determine the �rst integral for a quadratic
planar vector �eld with its center at the origin �see ���	� It is easy to
show that these quadratic systems are Liapunov integrable �see ���	�

In order to illustrate the solution to the Problem �� we shall an�
alyze the problem of constructing a quadratic vector �eld from a given
Lunkevich�Sibirski �rst integral�

We shall only study the case below� The others case can be done
analogously�

Firstly� we shall suppose that we have a complex analytic integral

V �z� w	 
 exp ��w	 � z� �  �b� �	w �  bw� � b� �	 � b � C �

The canonic element in the neighbourhood of the origin is the following�����
����

U� 
 C
� �

f��z� w	 
 b� � �  �z� � w�	� �

�
� � b	w� � �w z�

�� z� w� �  �� � b	w	 � 	 	 	
For this case it is easy to deduce that����

���
g��z� w	 


fH	� H�g
fH�� H�g 
 w �

H�z� w	 

�


�z� � w�	� �

�
� � b	w� � w z� �
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As a consequence� we obtain the following representation for the require
quadratic vector �eld

���
��

dw

dt

 
zH�z� w	 �  z w 
 z �

dz

dt

 �
wH�z� w	� w� 
 �w � z� � bw� �

We shall now analyze the speci�c case when the complex analytic �rst
integral V is given by the formula

V �z� w	
��� aw	a��
�
b�� a� �� �a��	� a��	 �bw���� a��	 z�	

�  �a� �	 �b� � a� �	w
a
�

where a� b � C �
The canonic element of the given analytic function is such that

f��z� w	


 T
�
�b� � a� �	� �  �b� � a� �	 �z� � w�	 �

�

�
�b� 	w�

� � �a��	wz� �  �� a	 � �� a� � �� a� � � a� � a b� � b�	w	

�  �a� �	� � a� �	� �� a� �	 z	

� � �a� �	 �� a� � �� a� � � a� b� 	 z� w�

� 	 	 	 �

where

T � �b� � a� �	a�� a �a� �	 � a� �	 �� a� �	 �
 � �

By using the proposed method we can deduce the well known quadratic
vector �eld

����	

���
��

dw

dt

 z �  aw z �

dz

dt

 �w � bw� � ��� a	 z� �

The integrability of the case when a �a� �	 � a� �	 �� a� �	 
 � was
deduced in ���� The integrability of the case when b � � a � � 
 � is
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easy to obtain �see ���	� The analytic �rst integral V and its canonic
element are such that

V �z� w	 
 �� �  aw	�a����a �z� � w�	 �

f��z� w	 
 z� � w� �  �a� �	 �w� � z�w � w	 � z� w�	 � 	 	 	

	� Constructing a vector �eld with given trajectories�

In ��� we stated and solved the following problem

Problem 	�� Let

wj �D � C �� C

z ��� wj�z	 � j 
 �� � � � �M �

be a holomorphic function on D such that

����	 K 
 det

�
BBBBB	

� � � � � �
w��z	 w��z	 � � � wM �z	

w�
��z	 w�

��z	 � � � w�
M �z	

���
���

���

wM��
� �z	 wM��

� �z	 � � � wM��
M �z	
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is identically nonvanishing on D�

We need to construct an analytic vector �eld on D� � C �

���	

���
��

dz

dt

 P �z� w	 �

dw

dt

 Q�z� w	 �

in such a way that

����	 w 
 wj�z	 � j 
 �� � � � �M �
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are its trajectories� We deduced the solution to this problem from the
equality

det

�
BBBBBBBBBB	

� � � � � � �
w w��z	 w��z	 � � � wM �z	

w� w�
��z	 w�

��z	 � � � w�
M �z	

���
���

���
���

wM�� wM��
� �z	 wM��

� �z	 � � � wM��
M �z	

dw

dz

dw��z	

dz

dw��z	

dz
� � �

dwM �z	

dz
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 g�z� w	 detS �
����	

where by S we denote the following matrix

S 


�
BBBBBBBB	

� � � � � � �
w w��z	 w��z	 � � � wM �z	

w� w�
��z	 w�

��z	 � � � w�
M �z	

���
���

���
���

wM�� wM��
� �z	 wM��

� �z	 � � � wM��
M �z	

wM wM
� �z	 wM

� �z	 � � � wM
M �z	
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�

g is an arbitrary analytic function on D�� From ����	 we obtain the
following expression for the most general vector �eld admitting the
given curves as trajectories�

����	

���
��

dz

dt

 detA � P �

dw

dt

 detB � Q �

where

A 


�
BBBBBBBB	

� � � � � � �
w w��z	 w��z	 � � � wM �z	

w� w�
� w�

� � � � w�
M

���
���

���
���

wM�� wM��
� wM��

� � � � wM��
M

K��z� w	 K��z� w	 K��z� w	 � � � KM �z� w	
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�
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B 


�
BBBBBBBB	

� � � � � � �
w w��z	 w��z	 � � � wM �z	

w� w�
� w�

� � � � w�
M

���
���

���
���

wM�� wM��
� wM��

� � � � wM��
M

g��z� w	w
M h��z� w	 h��z� w	 � � � hM �z� w	
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and

hj 
 ���z� w	 dwj

dz
� g��z� w	w

M
j � j 
 �� � � � � �M �

K��z� w	 
 ��z� w	 � g��z� w	w
M �

Kj�z� w	 
 g��z� w	w
M
j � j 
 � �� � � � �M �

In particular for M 
  and

�
w��z	 
 q�z	 �

p
p�z	 �

w��z	 
 q�z	�pp�z	 �

we easily deduce the di�erential equations

����	

�������
������

dz

dt

  p�z	 ���z� w	 � ��z� w	 ��w � q�z		� � p�z		 �

dw

dt

 ���z� w	

�
w
dp�z	

dz
� 

dq�z	

dz
p�z	� q�z	

dp�z	

dz

�
���z� w	 ��w � q�z		� � p�z		 �

where � 

p
p�z	 ��� � and � are arbitrary analytic functions on D��

By changing w � q�z	 �� w in ����	 we deduce the following for�
mulas

����	

���
��

dz

dt

 ��z� w	 
wf�z� w	 � ���z� w	 f�z� w	 �

dw

dt

 ���z� w	 
zf�z� w	 � ���z� w	 f�z� w	 �

where f�z� w	 
 w� � p�z	 and �j � j 
 �� � are arbitrary holomorphic
functions�
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The speci�c case when the given trajectories are conic

q�z	 

a� z � a�


�

p�z	 
 b� z
� �  b� z � b� � a�� a�� b�� b�� b� � R �

was analyzed in ��� and ����
For the subcase when aj 
 �� j 
 ��  and b� 
 �� b� 
 �� b� 
 ��

we obtain the quadratic vector �eld

���
��

dz

dt

 � �z� � �	 � � �w� � z� � �	 �

dw

dt

 � z w � � �w� � z� � �	 � �� � � R �

The bifurcations of the vector �eld on the plane ��� �	 are given in ����
Likewise� for the particulary case when aj 
 �� j 
 ��  and b� 


��� b� 
 �� b� 
 � we deduce the quadratic vector �eld

���
��

dz

dt

  �z� � �	 � � �w� � z� � �	 �

dw

dt

 w z � � �w� � z� � �	 � �� � � R �

The bifurcations of the vector �eld on the plane ��� �	 can be found in
����

Finally� for the subcase when a� 
 � a� 
 � and b� 
 �� b� 
 ��
b� 
 � we construct the quadratic vector �eld

���
��

dz

dt

 �� z �z � w	 � � ��w � z	� �  z		 �

dw

dt

 � �z � w	� � � ��w � z	� � z	 � �� � � R �

The critical points of this system are

O��� �	� N
��

���



�
� M

� ��
K�

�
� ��� �	

K�

�
�

where K� 
  ���� �	� � �	�
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The bifurcation curves are given by the formulas

l� � ��� �	� � � 
 � �

l� � �
� ���� �	 � ��� ��� �	 � ��� ��� �	 
 � �

l� � � � � 
 � �

l	 � � � � 
 � �

l
 � � 
 � �

l� � � 
 � �

These curves divide the plane �� � into �� regions in which we �nd a
change in the behaviour of the vector �eld� Of special interest is the
region between the curves l� and l	 for � � �� where there is a stable
limit cycle� The bifurcations of the vector �eld are given in ����

The problem related to studying the quadratic vector �eld with
parabola as trajectories was analyzed in particular in ���� ���� and �����

To conclude this section it is interesting to observe that the func�
tion detS satis�es the relations

P �z� w	 
z detS �Q�z� w	 
w detS 
 R detS

along the solutions of the equations ����	� for some function R�


� Constructing the planar vector �eld from given algebraic
partial integrals�

Darboux in ��� gives a method of integration ���	 with P�Q �
C �z� w� using algebraic curves� His �rst idea is to search for a general
integral of the form

����	 F �z� w	 


qY
j��

f
�j

j �z� w	 �

where �j � C and fj � C �z� w�� This integral is called Darboux �s �rst
integral and the system ���	 is called Darboux integrable�
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De�nition 
�� �����	� Let f � C �z� w� and let � � C
� � f�z� w	 
 �

be an algebraic particular integral of ���	 if and only if there exists

� � C �z� w� such that

���	 P �z� w	 
zf�z� w	 �Q�z� w	 
wf�z� w	 
 ��z� w	 f�z� w	 �

The result below is Darboux�s�

Theorem ����	� Consider the equation of the form ���	� Let m 

maxfdegP� degQg� If q � m �m� �	� and

fj�z� w	 
 � � j 
 �� � � � � � q

are di�erent algebraic solutions for which ���	 takes place� then there

are complex numbers �j� j 
 �� � � � � � q such that ����	 is a �rst integral

of ���	�

In all of these papers the authors started with a system and asked
what kind of invariant algebraic curves this system could have� but
it seems interesting �by considering the argument given in the intro�
duction	 to analyze the inverse problem related to constructing the
planar vector �eld tangent to the set of algebraic curves fj�z� w	 
 ��
j 
 �� � � � � � q�

This problem was �rst stated by Eruguin ��� and developed by
Galiullin and his followers ���� The new di�erent approach can be found
in the papers ���� and ���� The purpose of this section is to analyze the
problem from another point of view�

We will �rst study the case when q 
 �

Proposition 
��� Let us give algebraic curves

����	 fj�z� w	 
 � � j 
 �� 

such that ff�� f�g �� � in the neighbouhood of the set ����	�
So the the vector �eld tangent to the given curves can be represented

as follows

����	 � 

��f�f � f�g� ��f�ff�� g

ff�� f�g �

where �j� j 
 ��  are arbitrary holomorphic functions on D� � C � �
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The proof follows from the equalities�

zf��z� w	P �z w	 � 
wf��z� w	Q�z� w	 
 ���z� w	 f��z� w	 �


zf��z� w	P �z� w	 � 
wf��z� w	Q�z� w	 
 ���z� w	 f��z� w	 �

Of course if P�Q � C �z� w�� then �� and �� belong to C �z� w�� The
di�erential equations which generate ���	 can be represented as follows

����	

����
���

dz

dt


��f�fz� f�g� ��f�ff�� zg

ff�� f�g �

dw

dt


��f�fw� f�g� ��f�ff�� wg

ff�� f�g �

As an immediate consequence we get the following results�

Consequence 
��� The vector �eld ����	 has the following algebraic

curves as complementary integrals

fj�z� w	 
 � � j 
 �� �� � � � � q �

if and only if

����	 ��f��z� w	 ffj� f�g� ��f�ff�� fjg� �jfjff�� f�g 
 � �

In fact� from the equalities

��fj	 
 �jfj � j 
 �� �� � � � � q �

we deduce that

��f�ff�� fjg� ��f�ff�� f�g
ff�� f�g 
 �jfj

and so ����	 follows trivially�

Consequence 
��� Let F be function ����	� Then

����	 ��F 	 

� qX
j��

�j �j

�
F �
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Consequence 
��� Let us suppose that

����	

qY
j�k��
k ��j

ffj� fkg �� �

in the neighbourhood of the set ffj 
 �� j 
 �� � � � � � qg� so the vector

�eld tangent to the given curves admits the representations

����	 � 

�jfjffj��� g� �j��fj��f � fjg

ffj� fj��g � j 
 �� � � � � � q �

if and only if the following relations hold

�����	 �jfjffn� fmg� �mfmffj � fng� �nfnffm� fjg 
 � �

where j� k� n�m 
 �� � � � � � q � � and n �
 k �
 j �
 m�

Let us denote by A the matrix such that

A 


�
BBB	

� ffn� fmg ffj� fng ffm� fjg
ffm� fng � ffk� fng ffm� fkg
ffn� fjg ffn� fkg � ffj � fkg
ffj � fmg ffk� fmg ffk� fjg �
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Of course�

�����	

detA 

�ffn� fmg ffj� fkg� ffk� fmg ffn� fjg
� ffj� fmg ffk� fng

�

 � �

It is easy to prove that theses relations are an identity for all fj � fn� fm
and fk� By using these identities we can easily deduce the following
consequences

Consequence 
�	� Let us suppose that the arbitrary functions �j�
j 
 �� � � � � � q are such that

����	 RfH� fjg 
 �jfj �
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where H and R are arbitrary functions� Hence the vector �eld � admits

the following representation

�����	 � 
 RfH� g �

From here we can observe that the functionR is an integrant factor
of the ��form � 
 ��z	 dw � ��w	 dz� It is clear that �����	� in view of
�����	 holds identically�

Consequence 
�
� Let us suppose that the following development holds

�����	 Rffj � fng 

qX

m��

Cm
jn�z� w	 fm �

Then the functions Cm
jn must satisfy the relations�

Cm
jn � Cm

nj 
 � �

Cl
nm Cs

lk � Cl
mk C

s
ln � Cl

kn C
s
lm 
 � �

These equalities are identities in the speci�c case when

�����	 Cl
jnfl 


�

R ��jfj � �nfn	 �

Consequence 
�� Let us suppose that

fj�z� w	 
 w � wj�z	 � f �jz � f ��j���z �
 � � j 
 �� � � � � � q �

then �����	 holds with

R 

�jfj � �j��fj��
w�j���z	� w�j�z	

�

w�j �
dw

dz
�

The di�erential equations which generate the vector �eld � are the
following ����

���
dz

dt

 R �

dw

dt

 R �jfj w

�
j�z	� �j��fj��w

�
j���z	

w�j���z	� w�j�z	
�
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To conclude this section we give the solution for the stated problem
when q 
 ��

Proposition 
��� The planar vector �eld tangent to the algebraic curve

f�z� w	 
 � can be represented as follows

� 
 ��z� w	 ff� g� f�z� w	 ����z� w	 
z � ���z� w	 
w	 �

where �� �� and �� are arbitrary analytic functions� such that

�����	 ��f	 
 ��z� w	 f�z� w	 � for all � � C �z� w� �

In order to illustrate the above assertions in the section below we
shall give the solution to the stated problem for the subcase when � is
a quadratic vector �eld in the variables z and w and the given algebraic
curve is the following

�����	 f�z� w	 
 w� � w q�z	 � v�z	 � v�z	 
 q��z	� p�z	 �

where q and p are polynomials of degree k and m �  k respectively�

�� Quadratic stationary planar vector �elds with given alge�
braic curves 
�����

It is well known that the domainG of a real analytic planar station�
ary vector �eld is divided into elementary regions by singular trajecto�
ries� The non singular trajectories �which are topologically equivalent	
are located in these regions�

For structurally stable dynamical systems the singular trajectories
can be stable simple critical points� stable limit cycles� ��� separatrices
which may spread towards a node� a focus� a limit cycle� They may
even leave the domain G�

From these facts we state and analyze the problem of constructing
a planar vector �eld from a �nite number of singular trajectories�

In this section we are going to construct a real quadratic vector
�eld with a given real invariant algebraic curve �����	� All the obtained
results can be generalized �with the respective considerations	 to the
complex case�
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The problem of constructing a quadratic planar vector �eld with
a given algebraic curve of the type �����	 has been studied by many
specialists�

In ���� A� I� Jablonski� published an article �see ����	 in which the
author constructed a di�erential equation

w� 

P �z� w	

Q�z� w	
�

where P and Q are quadratics� which has an algebraic curve of fourth
degree as a limit cycle� He also investigated the phase portraits of this
equation�

In ��� V� F� Filipsov� in the paper ����� showed that for the speci�c
quadratic system studied by Jablonski there is an orbit of the form

w 
 b� z
� � b� z � b� � �a� z � a�	

p
�z� � l� z � l� �

The author shows that for various values of the parameters there is no
limit cycle and no separatrix going from one saddle point to another� In
���� this author� in the article ���� is considering the quadratic system
under the condition that

a� � a� z � b�w
� � b� z w � c� z w

� � c� z
� w � c� z

� � z	 
 � �

is a solution� The author shows that in this case a global analysis of
the topology of integral curves is possible�

Later in the paper  Algebraic limit cycles! the author �nds condi�
tions under which the quadratic di�erential systems�

�z 
 P �z� w	 �

�w 
 Q�z� w	 �

have a limit cycle that is an algebraic curve of the fourth degree�
In ���� Shen Boian� in the paper ����� proves that a quadratic

system possesses a quartic curve solution

�A	 �w � c z�	� � z� �z � a	 �z � b	 
 � � �a� b	 a b c �
 � �

if and only if the quadratic system can be written in the form�����
����

�z 
 �� a b c z � �a� b	 z � � �a� b	 c z� � � z w �

�w 
 ��a� b	 a b z � � a b cw� �� a b c� � �


�a� b	� � � a b 	 z�

	� �a� b	 c z w � �w� �
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For this system a necessary and su�cient condition for the existence of
a type of quartic curve limit cycle �A	 and a separatrix cycle are given�

The aim of the present section is to state and solve the following

Problem ���� Let us give the algebraic curve �����	� We require
to construct a real quadratic planar vector �eld which admits it as a
particular integral�

Firstly we give the following aspects related to the plane curve
�����	�

Let us suppose that the algebraic curve �����	 is found on the plane�
The critical points �z�� w�	 of this curve are the points such that

����	

�����
����

p�z�	 
 � �

w� � q�z�	 
 � �

dp�z	

dz

���
z�z�


 � �

Proposition ��� The following type of critical points can be obtained

for the curve �����	 �

i	 Isolated point� The point with coordinates �z�� q�z�		 where z� is

the maximum of the function p�

ii	 Knot �saddle	 point� The point �z�� q�z�		 where z� is a mini�

mum of p�

iii	 If p���z	jz�z� 
 � then the well known � con�gurations are

possible�

Proposition ���� The relation �����	 holds for the quadratic planar

vector �eld

���	

���������
��������

� 
 ���z	 � ��z	w � � w�	 
z � �a�z	 � b�z	w � cw�	 
w �

��z	 
 �� z
� � �� z � �� �

��z	 
 �� z � �� �

a�z	 
 a� z
� � a� z � a� �

b�z	 
 b� z � b� �
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if and only if the following equality holds

�P �z� w	 �� �w � q�z		 q��z	 � p��z		 �Q�z� w	 �w�  q�z		


 �Az � Bw � C	 ��w � q�z		� � p�z		 �����	

or� what amounts to the same�

����	

�����������
����������

� q��z	 
 c� B


�

 �B � c	 q�z	�  ��z	 q��z	 � � v��z	 
 Az � C �  b�z	 �

 �Az � C � b�z		 q�z	� ��z	 q��z	� B v�z	 � ��z	 v��z	


 � a�z	 �
� a�z	 q�z	� �Az � c	 v�z	 � ��z	 v��z	 
 � �

where v 
 q��z	� p�z	�

In order to solve this system we �rst introduce the following nota�
tions

S�z	 
 ��Az � C � b�z		 �Az � C	 � B a�z		 q�z	

� ��z	 �Az � C	
dq

dz
� a�z	 �Az � C	 �

D�z	 
 �Az � B��	 z
� � �A�� � C �� � ��B	 z � C �� � ��B �

R�z	
��Az � C � b�z		��z	 � a�z	 b�z		 q�z	� ���z	
dq

dz
� a�z	��z	 �

Then for v and dv�dz from ����	 we obtain the following relations

��
�

D�z	 v�z	 
 R�z	 �

D�z	
dv

dz

 S�z	 �

As a consequence the compatibility conditions gives us the relations

����	
dD�z	

dz
R�z	 


�dR�z	
dz

� S�z	
�
D�z	 �



Inverse problems in the theory of analytic planar vector fields �
�

where q is a polynomial such that

����	 q�z	 


���
��

k z � k� � if � �
 � �

k ��� z � ��	
n � k� z � k� � if � �
 �� �� �
 � �

k z� � k� z � k� � if � 
 B 
 c 
 �� 
 � �

By using computer techniques the solutions to ����	 can be obtained�
The �rst case in ����	 enables us to obtain all quadratic vector

�elds admitting the conics as trajectories� For the second case� we
deduce that it is important when n 
 � �� �� �� For n � � we deduce
that there is only one quadratic vector �eld tangent to the given curve�

As Poincar"e observed �see ����	 in order to recognize when the
stationary planar vector �eld is algebraically integrable it is su�cient
to �nd a bound for the degrees of the invariant algebraic curves which
the system could have� In ���� the following problem is stated� �nd a
bound for the degrees of the invariant algebraic curves which a system
����	 could have�

In the development of some aspects of this problem� the results
below about the construction of a quadratic vector �eld from given
algebraic curves for n � � seems to be interesting�

���� Quadratic vector �eld with given conics�

For the case when the given algebraic curve is the following

����	 f�z� w	 
 �w � k z � k�	
� � p� z

� � p� z � p� 
 � �

we obtain all the quadratic vector �elds tangent to it�
In particular� for the case when p� 
 p� 
 � and p� �
 � we get the

following result�

Proposition ��� The quadratic vector �eld tangent to the curve ����	
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with p� 
 p� 
 � and p� �
 � is the following

����	

�����������������������������������
����������������������������������

dz

dt

 �k� �k� � � ��	

� �� ��� �  k� �	 � k� � � �� � B	� C �	
z

� �
� ��w �� z w � � w�

���� � �� �� �B	� A�	
z�

�� � �

dw

dt



k�
� � �� ��� � k� �	 � C �	

� ��� ��� �  k� �	

� � ��� �� � B k� � � B �� � � k� � ��	

�  �� �A�  b�	� � k� �
� �b� �A		

	 z

�� ��
�� ��� � k� �	 � C �	

 �
w

���� � �� �� � B	� A�	
z�

�� � b� z w � cw� �

where �� B� ��� A� �� b� are parameters such that

����	

���
��

� 
  � k �

B 
  c�  � k �

� �B �  ��	 �  � � b� � A	 
 � �� p� � p� �
 � �

Of course if p� � � then the quadratic vector �eld has two invariant
straight lines

w 
 �k �
p
p� 	 z � k� �

w 
 �k �pp� 	 z � k� �

We can deduce the important subcase when

�����	

�����
����

�� 
 �k� � �
c 
 � �

A 
 � � �
B 
 �� �
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Under these restrictions we obtain the well known Darboux integrable
quadratic vector �eld

���
��

dz

dt

 �� w � �� z w � � w� � � z� �

dw

dt

 ��� z � �� z w �

In this case the relations �����	 and ����	 take the form

���
��

��� � � � �b� � �	 
 � �� p� � p� � � �

� 
  � k �

�� 
 B 
 �� �

Likewise we deduce all the quadratic planar vector �elds with given
trajectories ����	�

���� Quadratic planar vector �elds� with a given curve of
fourth degree�

We now shall analyze the above stated problem when the given
curve is an algebraic curve of fourth degree

f�z� w	 
 �w � k� z
� � k� z � k�	

� � p�z	 
 � �

where p is a polynomial of degree four� This case was analyzed� in
particular� in the papers refered to in the section above�

Proposition ��	� Let

�����	 �w � k� z
� � k� z � k�	

� � z	 � �h� z
� � �h� z

� � �h� 
 � �

be a curve such that �
h� � � �

�h�� � ��h� �
Then the curve �����	 has an oval�
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Proposition ��
� The curve �����	 with h� 
 � is a trajectory of the

following quadratic system

���
��

�z 
 �k� ��
��
�
p� z

� � p� z
�
� ��

�
z � �

�
p�

�
w �

�w 
 ���
��

p� �
�

�
p�� � k�� p�

�
z� �

�

�
p� p� z

�
��� k� � p� z � p�	w �

The parameters A�B and C are determined as follows

A 
 �� k� �� b� � B 
 � �� � C 
 � q� p� �� �

The existence of limit cycles can be deduced by analyzing the Liapunov
function V

V �z� w	 
 w� � p� z
� � k� w z� � p� z

� � �� � k��	 z
	 �

Of course� this function is de�nitively strictly positive for p� � �� By
considering that its derivative is such that

�V 
 � q� p� �� V � �� ��w �  q� �� b� z	V �

we deduce that the origin is asymptotically stable if q� �� p� � � and
unstable if q� �� p� � �� On the other hand� the curve V �z� w	 
 � has
an oval around the origin� which is evidently a limit cycle of the system�

Likewise we can analyze the problem of the construction of a
quadratic vector �eld with algebraic with n 
 �� �� ��

It should be pointed out that from the solution of the stated prob�
lem it follows that if the quadratic di�erential system has an algebraic
limit cycle� this must be an algebraic curve of the fourth degree�

�� Quadratic vector �elds with algebraic curves with n � ��

With no loss of generality we shall suppose that �� 
 � and �� 
 ��
By using computer techniques the following results can be easily

deduced�

Proposition ���� Let us suppose that deg �q�z		 
 n � �� Then the

only solutions to ����	 are the following�
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i	

�w �K� z
n �K� z �K�	

� � �p� z
n � p� z � p�	

� 
 � �

P �z� w	 
 z ��� z � w � ��	 �

Q�z� w	 
 ���� z � w � ��	 ��n�� � b�	z � nw � �� n	 �

where K�� K�� K�� p�� p�� p�� are parameters such that

��������������������������
�������������������������

K� 

b� � ��

n �n� �	
�

K� 

b�
n

�

p� 
 K� �

p� 

n ��� n� b� � ��	

�n �n� �	
�

p� 

�n� �	��� n� b�	

n �n� �	
�

A 
 �� � b� �

B 
 n �

C 
 b� �

and

ii	

�w �K� z
n �K� z �K�	

� � zn �p� z
n � p� z � p�	 
 � �

P �z� w	 
 z
�
�� z � w � �

�
�� �

 b�
�n

�
�

Q�z� w	 

z

�n �n� �	
�n �b� � �n� 	��	 � b� � �n� 	��	 z

� �n� 	 ��n� 	�� �  b�	 �b� � n��		

� b� z w � nw� � w

�
�b� � n��	 �
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where K�� K�� K�� p�� p�� p� are parameters such that

����������������������������
���������������������������

K� 

�n� �	�� �  b�

� �n� �	
�

K� 

n�� �  b�

�n
�

p� 
 K�
� �

p� 

K� ��n� �	�� � b�	

� �n� �	
�

p� 
 �K� �b� � n��	

�n
�

A 



�
��n� �	�� � b�	 �

B 
 n �

C 



�
�n�� � b�	 �

The �rst case is trivial� A qualitative analysis of the second case
gives us the following� denoting

r 
 b� � n�� � �n p�
K�

and

� 
 �n� �	�� � b� � � �n� �	 p�
K�

�

the critical points are

�z�� w�	 
 ��� �	 �

�z�� w�	 

�
��
r
�n

�
�

�z�� w�	 

�r
�
�
��n� 	�� �  b�	r

�n �

�
�

�z	� w		 

� �n� �	r

n �
�
��n� 	�� �  b�	r

�n �

�
�
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The quantity

��z� w	 
 
zP �z� w	 
wQ�z� w	� 
wP �z� w	 
zQ�z� w	 �

��z� w	 
 
zP �z� w	 � 
wQ�z� w	 �

calculated at the above points give us the following results

��z�� w�	 

r�

�n
� ��z�� w�	 
 � �n� 	r

�n
�

��z�� w�	 
 �r
�

�n
� ��z�� w�	 


�n� �	r
�n

�

��z�� w�	 

r�

�n�
� ��z�� w�	 
 � �

��z	� w		 

r�

�n�
� ��z	� w		 


r
n
�

Of course� we obtain the bifurcation curves from the equalities� i	 r 

�� ii	 � 
 �� The behaviour of the constructed planar vector �eld is
easily obtained�

In fact� with no loss of generality we shall suppose that K� 
 �
and under the change���������������

��������������

�� 
 p� �K� �

�� 
 p� �K� �

b� 

n


p� � nK� �

b� 
 ��� n	K� �
�n� �	 p�


�

z 
 X �

w 
 Y �K�X �K� �

we deduce that the constructed di�erential equations coincide with the
two dimensional logistic system

����	

��
�

�X 
 X �p� � p�X � Y 	 �

�Y 
 Y
�n

p� �

�n� �	 p�


X � nY
�
�
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The function �����	 and the equation ����	 in the coordinates X�Y take
the form respectively

���	

��
�

f�X�Y 	 
 Y � � Y Xn � p�X
n�� � p�X

n �

df�X�Y 	

dt

 

�n

p� �

�n� �	 p�


X � nY
�
f�X�Y 	 �

The critical points of ����	 are the following

��� �	�
�
���p�



�
�
��p�
p�

� �
�
�
� �n p�
�n� �	 p�

�
p�

n� �

�
�

Proposition ���� If p� �
 � then the equations ����	 do not admit

the �rst integral which can be developed in a formal power series with

respect to X and Y �

By making a linear approximation of ����	 we �nd for arbitrary set
of m��m� � N � m� �m� 
 � and for p� �
 � that

�
m� �

m� n



�
p� �
 � �

Hence� using Liapunov�s results� we can prove ���
To study the case when p� 
 � we can apply the results obtained

in ��� and ���� which are related with the arithmetic properties of the
Kovalevski exponents�

For the equations ����	 it is easy to calculate the Kovalevski expo�
nent � 
 ��� � 
 �� n when p� �
 ��

Proposition ���� The equations

��
�

�X 
 X�p�X � Y 	 �

�Y 
 Y
� �n� �	 p�


X � nY

�
�

do not admits polynomials �rst integral�

The proof follows from the fact that for this case� and for an arbi�
trary set of natural numbers m��m� such that m� �m� 
 � we deduce
that

m� � �m� � 
 m� � �n� �	m� �
 � �
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By applying the results given in ��� we deduce the veracity of the above
assertion�

It is important to observe that autonomous analytic vector �eld
on the plane cannot have chaotic behaviour and so in some sense they
are integrable� But under some conditions the �rst integral is a  bad
integral!� One of these integrals are Darboux�s integrals�

Proposition ��	� The system ����	 is Darboux integrable�

In fact� in view of ����	� ���	 we easily get that the function

F �X�Y 	 
 f�X�Y 	Y ��

is the Darboux�s �rst integral� It is easy to deduce the following repre�
sentation for the system ����	���

��
�X 
 ��X�Y 	


F


Y
�

�Y 
 ���X�Y 	

F


X
�

where ��X�Y 	 
 Y ��Xn�
When n 
 �� as well as the vector �eld constructed above� there are

two complementary vector �elds tangent respectively to the following
curves �we suppose that �� 
 �� �� 
 �	�����������

����������

�w �K� x

 �K� x�K�	

�

� �

������� p	�
�p�� x

� � � p� p�	 �p� x
� � � p�	

	 
 � �

p� 
 b� � ��� �

p� 
 �� �

Kj � R � j 
 �� �� 

and�����������
����������

�w �K� z

 �K� z �K�	

�

� �

������� p	�
�p�� � � p� p�	

� �� p� z
� � �� p�	

� 
 � �

p� 
 b� � ��� �

p� 
 �� �

Kj � R � j 
 �� ��  �
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The critical points are easy to �nd� The quantity � and � for these
vector �elds are� respectively� the following

� 
 � �

��
p� p� � � �

� 
 � �

��

p
p� p� �

and

� 
 �� p� p� � � �

� � �

�

p
p� p� �

For the polynomial vector �eld of degree n �  we can study the prob�
lem stated above analogously�
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Average decay of Fourier

transforms and geometry

of convex sets

Luca Brandolini� Marco Rigoli and Giancarlo Travaglini

Abstract� Let B be a convex body in R
� � with piecewise smooth

boundary and let b�
B
denote the Fourier transform of its characteris�

tic function� In this paper we determine the admissible decays of the
spherical Lp�averages of b�

B
and we relate our analysis to a problem in

the geometry of convex sets� As an application we obtain sharp results
on the average number of integer lattice points in large bodies randomly
positioned in the plane�

�� Introduction�

Given a convex body B� that is� a compact convex set with non
empty interior in Rn � we denote by �

B
its characteristic function� The

study of the decay of the Fourier transform

b�
B
��� �

Z
B

e���i��x dx �

as j�j �� �� in terms of the geometric properties of B� is a fascinating
and by now classical subject �see �	
� Chapter VIII� for basic results�
related problems and references�� For instance� it is well known that�
when the boundary is smooth with everywhere strictly positive Gauss�

���
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Kronecker curvature� the order of decay of b�
B
in a given direction is

independent of this latter�
This situation is far from being typical� as one can easily check by

considering either a cube or any convex body with a smooth boundary
containing �at points� Furthermore� a number of problems requires
some sort of global information� on the decay of b�

B
��� which is not a

direct consequence of the presently known directional estimates�
In this setting� the study of the spherical Lp�averages� Z

�n��

jb�
B
�� ��jp d�

���p
turns out to be quite useful�

We point out that the L� case has been investigated by various
authors� notably �	��� �	��� �	��� �	��� �	��� while for general p�s and
B a polyhedron� a detailed analysis with applications to problems on
lattice points and on irregularities of distributions can be found in ����
We note that the L� case is also naturally related with the summability
of multiple Fourier integrals �see e�g� ��� or ��� �� moreover� F� Ricci and
one of us �G� Travaglini� have recently shown that the general Lp case
is connected to boundedness of Radon transforms �see �	����

Throughout this paper� unless otherwise explicitly stated� we con�
sider convex bodies B in R� with piecewise smooth boundary� More
precisely� we assume that �B is a union of a �nite number of regular
arcs� each one of them being C� in its interior�

According to a more general result of Podkorytov �	��� �see also
�	�� � the L��average decay of b�

B
satis�es

�	�	�
�Z ��

�

jb�
B
����j� d�

����
� c ����� �

where� from now on�

� � �cos �� sin �� � � � ��� �	� �

� � 	 and c� c�� c�� 
 
 
 � denote positive constants independent of � which
may change from line to line�

It is an easy consequence of a result of Montgomery �	�� p� 		��
that �	�	� is sharp� Namely� for any B�

�	��� lim sup
���

����
�Z ��

�

jb�
B
����j� d�

����
� � 
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We stress that in the L� case the order of decay is independent of B�
The aim of this paper is to study the general Lp case where the results
turn out to depend on the shape of B�

It is worth to begin with the case of a polygon P � It has been
proved in ��� that

�	���

�Z ��

�

jb�
P
����jp d�

���p
�

�
c ��� log �	 � �� � when p � 	 �

c ������p � when 	 � p � � 


Here we prove Z ��

�

jb�
P
����j d� � c ��� log �	 � ��

and� for each 	 � p � �

�	��� lim sup
���

�����p
�Z ��

�

jb�
P
����jp d�

���p
� � 


Next� we consider the case when B is not a polygon� We show that

�	��� lim sup
���

����
� Z ��

�

jb�
B
����jp d�

���p
� � �

whenever 	 � p � � �note that� when p � �� �	��� and �	��� agree with
�	����� These results� when compared with �	�	� and �	���� completely
describe the case 	 � p � �� As for p � �� an easy interpolation
argument between p � � and p �� gives�Z ��

�

jb�
B
����jp d�

���p
� c ������p �

for every � � p � �� Contrary to the case 	 � p � �� in the range
� � p � � every order of decay between ����� and ������p is possible�
More precisely we exhibit� for any � � p � � and 	 � 	p � a � ���
a corresponding convex body B such that

c� �
�a �

�Z ��

�

jb�
B
����jp d�

���p
� c� �

�a 
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When 	 � 	p � a � �� such examples are constructed so to have�
for a suitable � � �� a piece of the curve of equation y � jxj� in its
boundary� As a side�product� we obtain a result on the average decay
of the Fourier transforms of singular measures supported on the above
curves �see Proposition ��	� below��

The di�erent results for p � � and p � � are due to the follow�
ing fact� When B is not a polygon� its boundary �B must contain
points with positive curvature and for 	 � p � � they give the relevant
contribution to �Z ��

�

jb�
B
����jp d�

���p



On the other hand� when � � p � � the main contribution is given by
the �at points �if any�� as one may guess considering the L� case�

We summarize the main results discussed so far in Figure 	� For
p � 	 and a � � the point �	p� a� is marked black if and only if there
exists B satisfying

� Z ��

�

jb�
B
����jp d�

���p
� c ��a

and

lim sup
���

�a
�Z ��

�

jb�
B
����jp d�

���p
� � 


Figure ��
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It is natural to ask whether �	��� and �	��� can be turned into
estimates from below� As a matter of fact� a negative answer is given
by the two simplest examples of convex bodies in R� � the square �see
Lemma ��	�� and the disc �because of the zeroes of the Bessel function
J��� On the other hand� we show that� for any 	 � p � � and for some
polygons P � we have�Z ��

�

jb�
P
����jp d�

���p
� c� �

�����p �

while� if B is neither a polygon nor a body too similar� �see De�nition
���� to a disc� then Z ��

�

jb�
B
����j d� � c ����� 


The above results are organized in our main theorem of Section �� We
stress that such general Lp estimates hold provided �B is piecewise
smooth� In Section � we shall see that in the framework of arbitrary
convex bodies one can �nd very chaotic� situations�

A basic tool in some of our proofs is the following known fact�
Let S� � supx�B x ��� For � � � su�ciently small we de�ne� see

Figure �� the set

�	��� AB��� �� � fx � B � S� � � � x �� � S�g 


Figure ��
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Then �see Lemma ��
� ���� or �	���

jb�
B
����j � c �jAB��

��� ��j� jAB��
��� � � 	�j� �

where jKj denotes the Lebesgue measure of a measurable set K�
As a consequence� for each p � 	�

�	���
�Z ��

�

jb�
B
����jp d�

���p
� c
�Z ��

�

jAB��
��� ��jp d�

���p
providing a way to estimate the average decay of b�

B
from above� More�

over we shall see �cf� also ���� that �	��� can be reversed under additional
assumptions on B�

Observe that the right hand side of �	��� does not involve any
Fourier transform and the problem of estimating�Z ��

�

jAB��� ��j
p d�

���p
�

as � �� �� is indeed a genuine problem in the geometry of convex sets�
To the best of our knowledge� such a problem has never been considered
before and the closest area in the �eld is perhaps the study of �oating
bodies �see e�g� �	���� In Section � we shall investigate the admissible
decays of �Z ��

�

jAB��� ��j
p d�

���p
�

as � �� �� mostly as a consequence of the similar problem for b�
B
�

We end the paper by applying some of the previous results to a
problem on the number of lattice points in a large convex planar body
�B�

Elementary geometric considerations show that

card ��B 	 Z�� 
 ��jBj

and

�	�
� card ��B 	 Z��� ��jBj � O���

as � ���� The improvement of �	�
� and the related problems consti�
tute a whole area of research �see e�g� �		� or �
��� where the pointwise
estimate �	�
� is often substituted by mean estimates�
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Here we consider a large convex body �B randomly positioned in
the plane� More precisely� for � � SO��� and t � R

� we study the
discrepancy

DB��� �� t� � card ��� �
���B�� t� 	 Z��� ��jBj �

where � ����B��t is a rotated� dilated and translated copy of B� Since
this function is periodic with respect to the variable t we restrict this
latter to T� � R

�Z�� Kendall ��	��� has proved L� estimates related
to the above discrepancy �see also ����� Here we prove that if B is a
convex planar body with piecewise smooth boundary� di�erent from a
polygon� then� for any 	 � p � ��

�	��� c� �
��� � kDB��� �� ��kLp�SO����T�� � c� �

��� 


We do not know whether �	��� holds for some p � �� We point out
that� in general� it is false when p � �� Indeed� as a consequence of
Hardy�s ��result for the circle problem �see ��� or �		�� we have� for a
disc D�

lim sup
���

������log �����	 kDD��� �� ��kL��SO����T�� � � 


�� Statement of the main result�

Let  � be the unit circle in R
� � For any complex measurable func�

tion g on  � and for any p � 	� let

kgkLp���� �
�Z ��

�

jg���jp d�
���p

�

where d� is the normalized Lebesgue measure� As usual we set

kgkL����� � ess sup

���

jg���j 


Let B be a convex body in R� � � � �	���� �� R
� a non�increasing

function and let 	 � p � �� We say that � is an optimal estimate of
the p�average decay of b�

B
whenever

i� kb�
B
�� ��kLp���� � c �����
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ii� lim sup
���

kb�
B
�� ��kLp����

����
� � 


Similarly� � is a sharp estimate of the p�average decay of b�
B
pro�

vided
c� ���� � kb�

B
�� ��kLp���� � c� ���� 


Our main result essentially concerns the case ���� � ��a and the fol�
lowing de�nition will be useful�

De�nition ���� When ���� � ��a is an optimal or sharp estimate of

the p�average decay of b�
B

we say that the p�average decay of b�
B

has

optimal order a or sharp order a respectively�

With this preparation we state our main result�

Theorem ���� I� Let 	 � p � � and de�ne

S �
n�	

p
� a
�
� 	 � p � �� a �

�

�
or a � 	 �

	

p

o
�

T �
n�	

p
� a
�
� � � p � �� 	 �

	

p
� a �

�

�

o



The following are equivalent �

i� There exists a convex body B with piecewise C� boundary such

that the p�average decay of b�
B

has optimal order a�

ii� �	p� a� � S � T �

II� Let p � 	� If P is a polygon then ���� � ��� log �	 � �� is

an optimal estimate for the 	�average decay of b�
P
� If B is any other

convex body with piecewise C� boundary� then the 	�average decay ofb�
B

has optimal order ���

Moreover it will be clear from the proof that this result still holds
after substituting the word optimal� with the word sharp��

The above theorem will be obtained as a consequence of the fol�
lowing somewhat more informative results�

In the �rst Proposition we cover the case 	 � p � � when B is not
a polygon�
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Proposition ���� Let 	 � p � � and let B be a convex body with

piecewise C� boundary� Suppose B is not a polygon� then �� is the

optimal order of the p�average decay of b�
B
� Moreover� �� is the sharp

order of the p�average decay of b�
B

for some� but not for all� bodies B�

The above Proposition follows from Lemma ��	� Lemma ���� Lem�
ma ��� and the example of the disc�

We now consider the case of a polygon�

Proposition ���� Let P be a compact convex polygon with non empty

interior� Then ���� � ��� log �	 � �� is a sharp estimate of the 	�
average decay of b�

P
� If 	 � p � �� then 	 � 	p is the optimal order

of the p�average decay of b�
P
� Moreover� 	 � 	p is the sharp order of

the p�average decay of b�
P

for some� but not for all� polygons P �

This is a consequence of Lemma ���� Lemma ��	�� Lemma ��		 and
Lemma ��	��

Finally� for � � p � �� we have

Proposition ��	� Let � � p � �� then the following are equivalent �

j� There exists a convex body B with piecewise C� boundary such

that the p�average decay of b�
B

has optimal order a�

jj� 	 � 	p � a � ���

The above Proposition follows from Lemma ���� Lemma ��	� and
Lemma ��	��

�� Lemmas�

The following lemma is contained in �	�� p� ����

Lemma ���� Let B be a convex body in R
� � Then

�Z ��

�

jb�
B
����j� d�

����
� c ����� 


We now prove the following result�
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Lemma ���� Let B be a convex body in R� with piecewise C� boundary

�B� Assume B is not a polygon then� for any p � 	�

lim sup
���

����
� Z ��

�

jb�
B
����jp d�

���p
� � 


Proof� It is enough to prove the lemma when p � 	� Let ! be an arc
in �B where the curvature is strictly positive� We examine two cases�

i� There exists an open interval U of angles � such that for every
� � U there is exactly one point ���� � ! whose tangent is orthogonal to
� � �cos �� sin �� �this may happen since �B is only piecewise smooth��

ii� There exists an open interval U of angles � such that for every
� � U there are exactly two points ������ ����� � �B whose tangent is
orthogonal to ��

We proceed with the proof in case i��
We apply �	� Theorem 	� �see also �	��� to obtain

���	� b�
B
���� � �

	

�	i
����� e���i�
�������i�	K���������� �E� �

where K�P � denotes the curvature at P � �B and jE�j � c ���� We
remark that although �	� Theorem 	� is stated for sets with smooth
boundary� in the bidimensional case it still holds true for sets having a
piecewise smooth boundary� From ���	� we have

����
Z ��

�

jb�
B
����j d� �

	

�	

Z
U

K���������� d�� c� �
���� � c� � � 


We now turn to ii��
As in the previous case we obtain

b�
B
���� � �

	

�	i
�����

�X
j��

e���i�
��j�����i�	K������j���� � E� 


We consider three subcases�

a� Suppose �rst there exists a neighborhood eU � U where

K������� � K������� 
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Then

����
Z ��

�

jb�
B
����j d�

�
	

�	

Z
eU

jK������������K�����������j d�� c� �
���� � c� � � 


b� Suppose there exists a neighborhood eU � U where the vectors
� and ������ ����� are not parallel� Let Aj��� � K������j����� We
have

����
Z ��

�

jb�
B
����j d�

�
	

�	

Z
eU

��� �X
j��

e���i�
��j���Aj���
��� d� � c��

����

�
	

�	

Z
eU

jA���� � A���� e
���i�
��������������j d� � c� �

����

�
	

�	

��� Z
eU

�A���� �A���� e
���i�
��������������� d�

���� c� �
����

�M �
	

�	

��� Z
eU

A���� e
���i�
�������������� d�

���� c� �
���� 


We claim that the last integral tends to zero as � tends to in�nity�
Observe that � � ��j��� � � since � is normal to �B at the point �j����
Hence

�����
d

d�
�� � ������� ������� � �� sin �� cos �� � ������� ������

is di�erent from zero since �� sin �� cos �� is not orthogonal to ������
������ Integration by parts shows that the integral vanishes as � ��
���

c� We suppose now that for every � � U the points ������ �����
have the same curvature and that � and ������ ����� are parallel� In
this case the quantity ����� vanishes so that

� � � � ������� ������
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is constant� Let K��� � K������� � K�������� then

����
Z ��

�

jb�
B
����j d� �

	

�	

Z
eU

K������� j	 � e���i�	j d� � c� �
����

�
	

�	
j	 � e���i�	j

Z
eU

K������� d�� c� �
���� �

and since
lim sup
����

j	 � e���i�	j � � �

the proof is complete�

The result of the previous lemma can be strengthened under simple
geometric hypothesis on the boundary� The following de�nition may be
useful�

De�nition ���� We say that a convex body B is a cut disc if it is not

a polygon and if its boundary �B is the union of a �nite number of

segments and of a �nite number of couples of antipodal arcs of a given

circle�

We now need a technical lemma�

Lemma ���� Let I and J be two neighborhoods of the origin in R

and let f � C��I�� g � C��J�� Assume f�x� � �� f ���x� � �� for

x � I� g�x� � �� g���x� � � for x � J � also suppose f��� � �	�
g��� � 	� f ���� � g���� � �� Finally we assume the existence of a

bijection H � I �� J such that

i� f ��x� � g��H�x���

ii� the curvature of the graph of f at �x� f�x�� equals the curvature

of the graph of g at �H�x�� g�H�x����

iii� the segment joining the points �x� f�x�� and �H�x�� g�H�x��� is
orthogonal to the tangent lines at these points�

Then the graphs of f and g are two �antipodal� arcs of equal length
in the same circle�

Proof� By our assumptions�

i� f ��x� � g��H�x���
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ii�
f ���x�

�	 � �f ��x�������
�

�g���H�x��

�	 � �g��H�x��������
�

iii� �x�H�x�� � �f�x�� g�H�x���f ��x� � ��

Then i� and ii� imply f ���x� � �g���H�x��� while di�erentiating i�
one gets f ���x� � g���H�x��H ��x�� Because of the other assumptions�
this implies H�x� � �x and

f�x� � �g��x� 


Then iii� becomes

�x� � f�x� f ��x� � � �

which gives the equation of a circle�

Lemma ��� can be restated in the following� more geometrical� way�

Lemma ��	� Suppose B is a convex body with piecewise C� boundary

which is not a cut disc� then �B contains a regular point P with unit

exterior normal � such that either there is no other regular point in

�B with unit exterior normal ��� or� if such a point Q exists� at least

one of the following facts happens� i� P �Q is not parallel to �� ii� the
curvatures of �B at P and at Q di�er�

The following is a strengthened version of Lemma ����

Lemma ��
� Suppose B is a convex body with piecewise C� boundary

which is neither a polygon nor a cut disc� then� for 	 � p � ��

c� �
���� �

�Z ��

�

jb�
B
����jp d�

���p
� c� �

���� 


Proof� The estimate from above is contained in Lemma ��	� On the
other hand the estimate from below holds in cases i�� ii��a� ii��b of the
proof of Lemma ���� Our assumptions and Lemma ��� exclude the case
ii��c� This ends the proof �

The forthcoming lemma is probably known� However� since we
have not found a suitable reference� we provide an elementary argument�
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Lemma ���� Let f � R �� ������ be supported and concave in

��	� 	�� Then� for every j�j � 	�

����� j bf���j � 	

j�j

�
f
�
	�

	

� j�j

�
� f

�
� 	 �

	

� j�j

��



Proof� It is enough to prove ����� when � � 	� The assumption on
the concavity of f allows us to integrate by parts obtaining

j bf���j � 	

�	�
f�	�� �

	

�	�
f��	�� �

	

�	�

��� Z �

��

f ��t� e���i�t dt
��� 


Let � be a point where f attains its maximum� Then f will be non�
decreasing in ��	� �� and non�increasing in ��� 	�� We can assume � �
� � 	� so that f��	�� � f��	�	�� ���� To estimate f�	�� we observe
that when � � 	 � 	�� ��� one has f�	�� � f�	 � 	�� ���� On the
other hand� since f is concave� in case � � 	� 	�� �� we have

f�	�� � f��� � �f��� � �f
�
	�

	

� �

�



To estimate the integral we observe that� by a change of variable�

I �

Z �

��

f ��t� e���i�t dt � �

Z ��������

���������

f �
�
t�

	

� �

�
e���i�t dt 


So that

�I �

Z �

��

f ��t� e���i�t dt�

Z ��������

���������

f �
�
t�

	

� �

�
e���i�t dt

�

Z ���������

��

f ��t� e���i�t dt

�

Z �

���������

�
f ��t�� f �

�
t�

	

� �

��
e���i�t dt

�

Z ��������

�

f �
�
t�

	

� �

�
e���i�t dt

� I� � I� � I� 
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To estimate I� from above we note that

jI�j �

Z ���������

��

f ��t� dt � f
�
� 	 �

	

� �

�
� f��	�� � f

�
� 	 �

	

� �

�
�

since � � � � 	�
The estimate for I� is similar in case � � 	 � 	�� ��� If � �

	� 	�� ��� then

jI�j �

Z 
�������

�

f �
�
t�

	

� �

�
dt�

Z ��������


�������

f �
�
t�

	

� �

�
dt

� �f���� f
�
	�

	

� �

�
� f�	��

� �f���

� �f���

� �f
�
	�

	

� �

�



As for I�� since f
� is non increasing� we have

jI�j �

Z �

���������

�
f �
�
t�

	

� �

�
� f ��t�

�
dt

� f
�
	�

	

� �

�
� f��	��� f�	�� � f

�
� 	 �

	

� �

�
� f

�
	�

	

� �

�
� f

�
� 	 �

	

� �

�
ending the proof� Note that no constant c is missing in ������

Remark� A di�erent proof of the above lemma can be modeled on an
argument similar to that of Lemma ��	� below�

The following result is similar to ��� Theorem ��	� �see also �	��
Lemma ���� Our proof is based on the previous lemma�

Lemma ���� Let B be a convex body in R
� � � � �cos �� sin �� and

S� � supx�B x ��� For � � 	 we set �see Figure � with ��� in place of

��
AB��

��� �� � fx � B � S� � ��� � x �� � S�g 
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Then

jb�
B
����j � c �jAB��

��� ��j� jAB��
��� � � 	�j� �

where jEj denotes the Lebesgue measure of a measurable set E�

Proof� Without loss of generality we choose � � �	� ��� Then

�����
b�
B
���� �� �

Z ��

��

� Z ��

��

�
B
�x�� x�� dx�

�
e���ix��� dx�

� bh���� �
where h�s� is the lenght of the segment obtained intersecting B with
the line x� � s� Observe that h is concave on its support� say �a� b�� We
can therefore apply Lemma ��� to obtain� after a change of variable�

jbh����j � 	

j��j

�
h
�
b�

	

� j��j

�
� h
�
a�

	

� j��j

��
� c �jAB�j��j

��� ��j� jAB�j��j
��� 	�j� 


We now consider polygons�
The following lemma appears in ���� here we give a di�erent� more

geometric� argument based on the previous lemma�

Lemma ��� Let P be a compact polygon in R
� � Then

�����
�Z ��

�

jb�
P
����jp d�

���p
�

�
c ��� log �	 � �� � when p � 	 �

c ������p � when p � 	 


Proof� Without loss of generality we can assume that the polygon
is convex� lies in the left halfplane and that the points ����	� and
��� 	� are vertices� By Lemma ��
 we reduce the problem to estimat�
ing jAP �	�� ��j in a suitable right neighborhood of zero� A simple
geometric consideration shows that

jAP ��
��� ��j �

�
c ��� � for � � � � c� �

�� �

c� �
����� � for c� �

�� � � � c� �

which implies ����� by integration�
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We still have to check sharpness of the estimates in ������ This is
not entirely trivial since parallel edges of P �if any� give the same con�
tribution to the decay of b�

P
so that cancellations may occur� Actually

this does not happen for p � 	� but it may happen for p � 	� as shown
in the next three lemmas�

Lemma ����� Let �
P

be the characteristic function of a compact con�

vex polygon P in R
� with non empty interior� ThenZ ��

�

jb�
P
����j d� � c ��� log �	 � �� 


Proof� Let Lj � �Pj� Pj���� j � 	� 
 
 
 � S� be the edges of the polygon
P and let lj be their lengths� Then� with the aid of the divergence
formula� we obtain

b�
P
���� �

Z
P

e���i�
�t dt

� �
	

�	i�

Z
�P

e���i�
�t� � ��t� dt�

�
	

�	���

SX
j��

� � �j
e���i�
�Pj�� � e���i�
�Pj

� � �Pj�� � Pj�
lj �

where dt� is the 	�dimensional measure and �j is the outward unit nor�
mal to Lj � The argument is divided in three cases�

Case 	� Suppose there exists an edge� say L�� which is not parallel to
any other edge� We can suppose P� � ����	� and P� � ��� 	��

Because of these assumptions there exists a right neighborhood
U��� � ��� �	� such that

inf
��U���

j� � �Pj�� � Pj�j � c � � �

for each j � �� HenceZ ��

�

jb�
P
����j d� �

c�
��

Z
U���

���� � �� e���i�
�P� � e���i�
�P�

� � �P� � P��
l�

��� d� � c�
��

�
c�
��

Z
U���

��� cos � sin ��	� sin ��
sin �

��� d� � c�
��
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�
c	
��

Z c�

�

��� sin ��	� u�
u

��� du� c�
��

� c ��� log �	 � �� 


Case �� Suppose there exists a couple of parallel edges of di�erent
length� Let M� � �Q�� R�� and M� � �Q�� R�� be such a pair�

We can assume Q� � H� � ����a��� R� � H� � ��� a��� Q� �
H� � ����a��� R� � H� � ��� a�� with a� � a� � ��

Then� arguing as above�Z ��

�

jb�
P
����j d�

�
c�
��

Z
U���

��� �X
j��

� � ��
e���i�
�Qj � e���i�
�Rj

� � �Qj �Rj�
lj

��� d� � c�
��

�
c�
��

Z
U���

��� cos � �X
j��

e���i�
�Hj
sin ��	� aj sin ��

aj sin �

��� d� � c�
��

�
c�
��

� Z c�

�

��� sin ��	� a� u�
a� u

��� du� Z c�

�

��� sin ��	� a� u�
a� u

��� du�� c�
��

�
c�
��

� 	
a�
log �a� ���

	

a�
log �a� ��

�
�

c�
��

� c ��� log �	 � �� 


Case �� Suppose the edges of P are pairwise parallel and with the same
length� Let M� � �Q�� R�� and M� � �Q�� R�� be one of these couples�
We can assume Q� � H�����	�� R� � H���� 	�� Q� � �H�����	��
R� � �H � ��� 	�� ThenZ ��

�

jb�
P
����j d�

�
c�
��

Z
U���

��� �X
j��

� � ��
e���i�
�Qj � e���i�
�Rj

� � �Qj � Rj�

��� d� � c�
��

�
c�
��

Z
U���

��� cos ��	�� �H� sin ��	� sin ��
sin �

��� d� � c�
��
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Let H � �h�� h�� and � �H � h� cos � � h� sin �� We choose � so that
� �H � jHj sin �� � ��� Since h� � � we have � � � and for symmetry
reasons we can restrict ourselves to the case � � � � 	��

We obtainZ ��

�

jb�
P
����j d�

�
c�
��

Z
U���

��� cos ��	� jHj sin �� � ���
sin ��	� sin ��

sin �

��� d� � c�
��




Observe that choosing a sequence �n so that �njHj sin� is close to an
integer we immediately getZ ��

�

jb�
P
��n��j d� �

c

��n

Z
U���

��� sin ��	�n sin ��
sin �

��� d� � c ���n log �	 � �n� �

that is� we have proved that ��� log �	��� is an optimal estimate of the
	�average decay of b�

P
� To get the full statement of the lemma we must

deal with the values of � close to those annihilating cos ��	� jHj sin���
We begin with the case � � � � 	�� Let � � � � 	� � �

such that ��� �� � U��� and let f�aj� bj�g be the collection of intervals
determined by the choice

aj � arcsin

� j � 	

�
� �

�� jHj

�
� � � bj � arcsin

�j � �

�
� �

�� jHj

�
� �

and j � ��� jHj sin�� � 	� 
 
 
 � ��� jHj sin �� � ��� for some su�ciently
small � � �� We observe that on each �aj � bj� we have

j cos ��	� jHj sin �� � ���j � �� � � 


As a consequence

�����

Z
U���

��� cos ��	� jHj sin �� � ���
sin ��	� sin ��

sin �

��� d�
� ��

X
j

	

sin bj

Z bj

aj

j sin ��	� sin ��j d�

� c ��
X
j

	

� sin bj

Z � sin bj

� sin aj

j sin ��	 u�j du 
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Using the elementary inequality

sin �bj � ��� sin �aj � �� � sin bj � sin aj

and the above de�nition of aj and bj we see that the quantity

� sin bj � � sin aj

is bounded away from zero and thereforeZ � sin bj

� sin aj

j sin ��	 u�jdu � c � � 


Now the choice of bj impliesX
j

	

� sin bj
� c log �	 � �� 


Indeed� let k � j � ��� jHj sin��� so that we have to estimate

c�X
k��

	

� sin bk���jHj sin��

from below� The choice of bj shows that

sin bk���jHj sin�� �
k � �

�� jHj

and therefore the last term in ����� is greater than

c�

c�X
k��

	

� sin bk���jHj sin��
� c�

c�X
k��

	

k � �
� c� log �	 � �� 


The case � � 	� is similar� We �x � � � so that ��� �� � U���� Next�
we consider the collection of intervals f�aj� bj�g with

aj �
	

�
� arcsin

� j � 	

�
� �

�� jHj

�
� bj �

	

�
� arcsin

�j � �

�
� �

�� jHj

�
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and j � ��� jHj sin �	�� ���	�� 
 
 
 � ��� jHj� for some su�ciently small
� � �� As before on each �aj� bj� we have

j cos ��	� jHj sin �� � ���j � �� � � 


Using the fact that

	

�
� arcsinx � �arcsin

r
	� x

�

one deduces the estimates

aj �

vuut�� jHj � j �
	

�
� �

� jHj
� bj �

vuut�� jHj � j �
�

�
� �

� jHj

and consequently the required result�

Lemma ����� Let �
P

be the characteristic function of a compact poly�

gon P in R
� � For any p � 	

lim sup
���

�����p
�Z ��

�

jb�
P
����jp d�

���p
� � 


Proof� We can suppose that one of the sides of P is vertical� We
assume the following facts� which will be proved in the sequel�

there exists �k �� �� so that jb�
P
��k� ��j �

c

�k
������

jrb�
P
���j �

c

j�j� 	

���
�

Next we considerZ ��

�

jb�
P
��k��j

p d� �

Z ��k

�

jb�
P
��k��j

p d� 


By choosing � su�ciently small we can make ��k cos �� �k sin �� close to
��k� �� so that ���
�� ����� and the mean value theorem imply

jb�
P
��k��j �

c�
�k
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Hence� Z ��

�

jb�
P
��k��j

p d� � c

Z ��k

�

��pk d� � c ��p��k 


We now prove ������
First we recall� see ������ that

b�
P
���� �� � bh���� �

where h�t� is the length of the chord given by the intersection of P
with the line x� � t� Observe that h�t� is a piecewise linear function�
continuous at any point except at least one of the extremes of the
support� Split

h�t� � b�t� � g�t� �

where b�t�� g�t� and h�t� share the same support� b�t� is linear inside
the support and g�t� is continuous on R� Our choice forces b�t� to be
discontinuous in at least one of the extremes �recall that at least one
side of P is ortogonal to �	� ���� while g�t� must be piecewise linear�

An explicit computation gives a sequence �k �� �� such that
jbb��k�j � c ���k � while

jbg����j � c
	

	 � ���



This proves ������
In order to prove ���
� we observe that� for any unit vector u�

�

�u
b�
P
��� �

�

�u

Z
P

e���i��x dx

� ��	i

Z
P

�u � x� e���i��x dx

� ��	i

Z
R�

��u � x��
P
�x�� e���i��x dx �

and ���
� follows since the function x �� �u � x��
P
�x� has bounded

variation�

The following lemma is taken from ���� We reproduce the short
proof�
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Lemma ����� i� Let P be a polygon having an edge not parallel to any

other� Then� if 	 � p � ���Z ��

�

jb�
Q
����jp d�

���p
� c ������p 


ii� Let Q be the unit square ��	�� 	���� If 	 � p � �� and if k
is a positive integer� then�Z ��

�

jb�
Q
�k��jp d�

���p
� c k���������p� 


Proof� i� Arguing as in the �rst case in the proof of Lemma ��	� we
are reduced to bounding

	

��p

Z c�

�

��� sin ��	� u�
u

���p du
from below� A computation ends the proof of this case�

ii� We haveZ ��

�

jb�
Q
�k��jp d� � 


Z ��	

�

��� sin �	k cos ��
	k cos �

sin �	k sin ��

	k sin �

���p d�
� c k��p

Z ��	

�

��� sin �	k cos ��
sin �

���p d�
� c k��p

Z ��	

�

��� sin��	k sin� ��
�

�����p��p d������

� c k��p
Z k����

�

kp �p d� � c k��p
Z ��	

k����
��p d�

� c k��p������ 


The forthcoming results will be used in the proof of Proposition
����

Lemma ����� Let � � p � �� and let s � 	 � 	p� Then the p�
average decay of b�

B
has optimal order s for no convex body B with

piecewise C� boundary�
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Proof� Lemma ��	 and the theorem on the decay of the Fourier trans�
form of a function of bounded variation imply this lemma when p � �
and p �� respectively� When � � p �� we have

�Z ��

�

jb�
B
����jp d�

���p
�
�Z ��

�

jb�
B
����j� jb�

B
����jp�� d�

���p
� c

�Z ��

�

jb�
B
����j� d�

���p
������p

� c ������p 


Lemma ����� Let P � �s�� s


� � be a given point in the graph of the

function t � s
� with � � � � 	� Let � � arctan ��s
��� � be the slope

of the corresponding tangent line and let� for a small positive ��

t � �s
��� �s� s�� � s
� �
�

cos�

be parallel to the above tangent line� at distance �
 Here we assume that

this last line and the curve t � s
 intersect in two points A � �s�� s


� �

and B � �s�� s


� � �see Figure ��� We denote by d��� the distance between

A and B� Then d���� is a convex function of ��

Figure ��
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Proof� Since d��� � �s� � s�� cos� it is enough to check that the
functions h��� � s� � s� and

k��� �
s� � s�
cos�

� � tan�

have convex derivatives�
We start with h���� By the de�nition of the point B we have

s
� � � s
��� �s� � s�� � s
� �
�

cos�
�

that is

�h��� � s��

 � � s
��� h��� � s
� �

�

cos�



Di�erentiating the above with respect to � we get

� �h��� � s��

��h���� � �s
��� h�����

	

cos�
�

which implies h���� � � since � � � � 	� Further di�erentiations show
that h����� � � and h������ � ��

We now turn to k���� which is the distance between the points A
and C in Figure �� In order to prove that the negative function k�����
increases with � we observe that

���	�� k����� � �K�A� �	 � �k���������� �

where K�A� denotes the curvature at the point A� Now it is easy to
check that K�A� decreases as A moves towards O �that is as � grows��
On the other hand� by convexity� k���� decreases too� Therefore� by
���	��� k����� increases and this ends the proof of the lemma�

The following result is related to ��� Lemmas ��� and �����

Lemma ���	� Let f � R �� R
� be supported in ��	� 	�� such that

f � C��Rnf	g�� f � C�R�� f and f � are concave in �b� 	� and f ��b� � ��
f ��	�� � ��� Then� for j�j � 	�

���		� j bf���j � c
	

j�j
f
�
	�

	

� j�j

�
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The constant c depends only on the supremum of jf�t�j on R and on

the variation of f ��t� outside a neighborhood of t � 	�

Proof� We write

bf��� � Z �

��

f�t� e���it� dt

�
	

�	i �

Z �

��

f ��t� e���it� dt

�
	

�	i �

Z b

��

f ��t� e���it� dt�
	

�	i �

Z �

b

f ��t� e���it� dt

� I���� � I���� 


Since f � is of bounded variation on ��	� b� we have jI����j � c j�j��

where c depends only on the variation of f �� Morover� f concave on
�b� 	� and f ��	�� � �� imply

j�j�� � o
�
j�j��f

�
	�

	

� j�j

��
so that

jI����j � o
�
j�j��f

�
	�

	

� j�j

��



To analyze I���� we proceed as follows� we assume � � � �the case
� � � is similar� we write � � ��� � � and let � � �	 � � ���� �� �this
choice will be appreciated later on� while estimating I������ Then

jI����j �
	

�	 �

��� Z �

b

��f ��t�� e��it� dt
���

�
	

�	 �

��� Z �

b

��f ��t�� e��i�t���� dt
���

�
	

�	 �

��� Z �

b

��f ��t�� cos ��	 �t� �� �� dt
���

�
	

�	 �
jI���� � I	��� � I����j �



Average decay of Fourier transforms ���

where

I���� �

Z j���	����

b

��f ��t�� cos ��	 �t� �� �� dt �

I	��� �

	����X
j�j�

Z �j�����	����

j��	����

��f ��t�� cos ��	 �t� �� �� dt �

	����X
j�j�

Aj �

I���� �

Z �

��������

��f ��t�� cos ��	 �t� �� �� dt �

with j� the smallest even integer such that j��� ��� � � b� First we
observe that jI����j � c� and therefore its contribution is negligible�

We consider I	��� and we show that

���	�� I	��� �

	����X
j�j�

Aj � � 


Indeed�

i� A	���� � �� A	���� � �� A	���� � �� A	���	 � �� A	���� � ��
A	���� � �� 
 
 


ii� jAjj � jAj��j so that A	�����A	���� � �� A	�����A	���	 � ��
A	���� � A	���� � �� 
 
 


iii� jA	���� � A	����j � jA	���� � A	���	j � jA	���� � A	����j
� � � �

The validity of i� is obvious� while ii� depends on the monotonicity
of f �� As for iii� we note that the concavity of f � implies

jA	����j � jA	����j � jA	����j � jA	���	j � � � �

By i�� ii�� iii� it follows that the sum

�Aj� � Aj���� � �Aj��� � Aj���� � � � �� �A	���� �A	�����

shares the sign of its last term �A	���� � A	������ thereby proving
���	���

Hence�

I	����I�����I�����

Z �

��������

��f ��t�� cos ��	 �t��� �� dt�
	

�
f
�
	�

	

� �

�
�
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since cos ��	 �t� �� �� � 	� on the domain of integration�

Lemma ���
� For each�	
p
� a
�
� T �

n�	
p
� a
�
� � � p � �� 	 �

	

p
� a �

�

�

o
there exists a convex body B with piecewise C� boundary such that the

p�average decay of b�
B

has sharp order a�

Proof� Let B be a convex body symmetric with respect to the vertical
axis and assume that its boundary �B satis�es the following conditions�

i� �B passes through the origin and it is of class C� in any other
point�

ii� �B coincides with the graph of the function y � jxj� in a neigh�
borhood of the origin �the exponent � � ��p� a� � � will be chosen
later��

iii� �B has strictly positive curvature out of the above neighbor�
hood�

We �rst prove that jb�
B
����j � c ������� for any � �  �� This

bound seems to be quite obvious since j��j
������ is the order of decay

of b�
B
��� ���� that is� the decay associated to the �attest point in �B�

However� a proof seems to be necessary �in order to check that the
constant does not depend on ��� and the argument will be needed in
the sequel�

Let � � ��	�� We choose � � � su�ciently small and we assume
� � j�j � 	��� Since �B has strictly positive curvature away from the
origin� by Lemma ��
 we have�

jb�
B
����j � c

����AB��
��� � �

	

�

����� ���AB

�
���� � �

	

�

����� � c ����� �

for � � j�j � 	 � ��
Symmetry enables us to consider only the case � � � � �� The

assumptions on the curvature of �B show that the contribution of
jAB��

��� � � 	��j is not larger than c ����� so that it su�ces to con�
sider AB��

��� � � 	�� �which is a cap close to the origin��
We set more notation� For any � � � � �� we consider the straight

line with slope � and tangent to the curve y � x� at a point �x�� x
�
���

Then AB��
��� �� 	�� is the set enclosed between the line y � r�x� �



Average decay of Fourier transforms ��	

� x���� �x� x�� � x�� � �� cos��
�� and the curve y � x� � Let us call x�

and x� the abscissae of the two points where they intersect �see Figure
���

Figure ��

Since tan� � � x���� we have

���	�� c� � � x���� � c� � 


We further split the interval � � � � � into � � � � c ������� and
c ������� � � � � for some suitable constant c�

Assume

���	�� � � � � c ������� 


Since � is positive� jAB��
��� �� 	��j � c ��� x�� We recall that x� is

the largest solution of the equation

x� � � x���� �x� x�� � x�� � �� cos��
�� 


We now estimate x�� This gives a bound for jAB��
��� � � 	��j since

the assumption � � � yields x� � jx�j� To do this we observe that
���	�� implies that the above equation has no solutions for x � k �����
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for k su�ciently large� Indeed� ���	�� and ���	�� imply x� � c� �
����

and therefore

x� � � x���� �x� x��� x�� � �� cos��
��

� x� � c	 �
������ x� c	 �

�� � �� cos����

� ��� ������ x�� � c	 �
��� x� c	 � �cos��

���

� � �

when ���� x is larger than a suitable k� Then x� � k ����� and

���	��
���AB

�
���� � �

	

�

���� � c ������� � for � � � � c ������� 


Next� let c ������� � � � �� Then ���	�� and a suitable choice of the
constant c imply x� � �� We want to show that

x� � � x���� �x� x��� x�� � �� cos��
��

becomes positive whenever jx � x�j � c� �
���� x

�����
� � Towards this

aim one checks the inequality

���	�� �	 � u�� � 	� � u �
�

�
u� �

which holds true for � � � and u � �	� Then

x�� � x���� �x� x��� x�� � �� cos��
��

� �x� � �x� x���
� � � x���� �x� x��� x�� � �� cos��

��

� x��

��
	 �

x� x�
x�

��
� �

x� x�
x�

� 	
�
� �� cos����

� x��
�

�

�x� x�
x�

��
� �� cos����

�
�

�
c�� �

�� � �� cos����

� � �

for a suitably large c�� Consequently

���	�� jx� x�j � c� �
���� x

�����
� �
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for any x� � x � x�� This and ���	�� show that

���	
�
���AB

�
���� � �

	

�

���� � c� �
���� ��������������� �

for c ������� � � � �� Then ���	��� ���	
�� the assumptions on the
curvature of �B and Lemma ��
 yield

���	�� jb�
B
����j � c� �

������ 


for any ��
We now study the estimates of the Lp�norm� � � p � ��� Because

of the symmetry of B it is enough to bound

� Z ���

����

jb�
B
����jp d�

���p
�
�Z �����c��������

����

jb�
B
����jp d�

���p
�
�Z �����

�����c��������
jb�
B
����jp d�

���p
�
�Z ���

�����

jb�
B
����jp d�

���p
� I� � I� � I� 


By the assumptions on the curvature of �B we have I� � c� �
�����

Furthermore� by ���	���

I� � c� �
������

�Z c��������

�

d�
���p

� c� �
�����p���������p� 


In order to estimate I� we observe that Lemma ��
� ���	
�� the assump�
tions on the curvature of �B and the choice � � � give

I� � c�� �
����

�Z 

c��������
�p������������ d�

���p

�

�							
							�

c�� �
���� � for p �

� � � �

� � �
�

c�� �
���� �log �������������� � for p �

� � � �

� � �
�

c�� �
�����p���������p� � for p �

� � � �

� � �
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In particular� for p � �� � � ���� � ���

������
�Z ��

�

jb�
B
����jp d�

���p
� c�� �

�����p���������p� 


Observe that ������ cannot be obtained interpolating between L� and
L�� Moreover� we shall see in a moment that the above estimates are
sharp and therefore

kb�
B
�� ��kLp����

�

�							
							�

����� � for p �
� � � �

� � �
�

������log �������������� � for p �
� � � �

� � �
�

������p���������p� � for p �
� � � �

� � �



����	�

When p � �� ��������� the estimate from below follows from Lemma
���� We shall now prove the estimates from below in ����	� when p �
�� � � ���� � ��� Indeed� ���	�� can be reversed so that� by ���	���
x � �x�� x�� implies

jx� x�j � c�� �
���� x

�����
� �

whence ���AB

�	
�
� � �

	

�

���� � c�� �
���� ��������������� �

for c ������� � � � �� To prove this� we argue as for the estimate from
above� after substituting ���	�� with the inequality

�	 � u�� � 	� � u � �� �� u� �

valid for � � � and �	 � u � 	
 The restriction u � 	 causes no
troubles since the monotonicity of the curvature of y � x� implies
x� � x� � x� � x� for c �

������ � � � �� so that

�	 �
x� x�
x�

� 	

if x� � x � x��
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To estimate b�
B
� let � be �xed in c ������� � � � � and recall

that � � �� 	�� By Lemma ��
 the decay of b�
B
���� depends on the

shape of �B at the point �x�� x


� �� see Figure �� and at the opposite�

point� The latter will turn out to give a negligible contribution because
of our assumption on the curvature of �B outside the origin� Then� if
� � C�

� �R
��� ��x� � 	 in a neighborhood of the point �x�� x



� �� Lemma

��	� allows us to apply Lemma ��	� so to obtain

�Z ��

�

jb�
B
����jp d�

���p
�
�Z 

c�������
jb�
B
����jp d�

���p
�
�Z 

c�������
j�� �

B
�� ����jp d�

���p
�
�Z 

c�������
j��	� ���

B
�� ����jp d�

���p
� c�	

�Z 

c�������

���AB

�	
�
� � �

	

�

����p d����p � c�� �
����

� c�� �
�����p���������p� 


We recall that the above holds whenever p � �� � � ���� � ��� This
ends the proof once we observe that when p � �� ��������� we have
�� p� ���p� �� � � �� and therefore the range of the exponent

	 �
	

p
�
	

�
�

	

� p

is the open interval �	 � 	p� ����

The proof of the previous lemma can be used to get a result for
singular measures supported on the curve y � jxj� � � � ��

Proposition ����� Let d� be the measure on the curve y � jxj�� � � ��
induced by the Lebesgue measure on R

� � Let � � C�
� �R

��� ��t� � 	 in

a neighborhood of the origin and let d� � ��t� d�� Let ������ �� be the
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length of the chord as in Figure �� Let 	 � p � �� then

k������ ��kLp������� � kcd��� ��kLp����

�

�							
							�

����� � for p �
� � � �

� � �
�

����� �log �������������� � for p �
� � � �

� � �
�

����p���������p� � for p �
� � � �

� � �



�� A remark on the average decays associated to arbitrary

convex sets�

Let C be the space of convex bodies in R� endowed with the Haus�
dor� metric �H de�ned by

�H�C�D� � max
�
sup
x�C

inf
y�D

jx� yj� sup
y�D

inf
x�C

jx� yj

�

for C�D � C� A weak version of Blaschke selection theorem �see ����
shows that �C� �H� is locally compact and therefore of second category
�not meager� by Baire theorem� We �x n � N � On C we consider the
functional

"n�B� �
�Z ��

�

jb�
B
�n��jp d�

���p
and we observe that

j kb�
C
�n ��kLp���� � kb�D �n ��kLp����j � kb�

C
�n ��� b�

D
�n ��kLp����

� jC#Dj �

implies continuity of "n�
Next� let 	 � p � � and �� � � � 	 � 	p� Let B be a convex set

with piecewise smooth boundary� The results in the previous section
show that the family f"ng satis�es

"n�B� � o �n��� �

when B is a polygon and

n�� � o �"n�B�� �
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if B is not a polygon nor a cut disc� Therefore� the sets

A� � fB � C � "n�B� � o �n���g

and
A� � fB � C � n�� � o �"n�B��g

are dense in C� A similar argument also applies when p � ��
We now use the following result due to Gruber� ����

Lemma ���� Let T be a second category topological space�

i� Let ��� ��� � � � � R
� and let ��� ��� � � � � T �� R

� be continuous

functions such that

A � fx � T � �n�x� � o ��n� as n �� ��g

is dense in T � Then for all� but a meager subset of x	s belonging to T �
the inequality �n�x� � �n holds for in�nitely many n�

ii� Let ��� ��� � � � � R
� and let ��� ��� � � � � T �� R

� be continuous

functions such that

B � fx � T � �n � o ��n�x�� as n �� ��g

is dense in T � Then for all� but a meager subset of x	s belonging to T �
the inequality �n � �n�x� holds for in�nitely many n�

By way of summary we have�

Proposition ���� Let 	 � p � � and �� � �� � �� � 	 � 	p or let

� � p � � and 	 � 	p � �� � �� � ��� Then there exists a meager

set E � C such that for all B � C n E there exist two sequences nk� mk

satisfying �Z ��

�

jb�
B
�nk ��j

p d�
���p

� n���k

and �Z ��

�

jb�
B
�mk��j

p d�
���p

� m���
k 
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	� A result on the geometry of convex sets�

At this point� little e�ort is needed to prove the following result�
which may be of independent interest�

Theorem 	��� Let AB��� �� be as in �	
�� and let � � 	��
If B is a polygon� then

c� �
� log

�	
�

�
�

Z ��

�

AB��� �� d� � c� �
� log

�	
�

�
�

while if B is not a polygon

c� �
��� �

Z ��

�

AB��� �� d� � c� �
��� 


Let 	 � p � �� Then the following are equivalent�

i� There exist a � � and a convex body B with C� boundary such

that

c� �
a �

�Z ��

�

AB��� ��
p d�

���p
� c� �

a 


ii� The pair �	p� a� belongs to the set S � T � where

S �
n�	

p
� a
�
� 	 � p � �� a �

�

�
or a � 	 �

	

p

o
�

T �
n�	

p
� a
�
� � � p � �� 	 �

	

p
� a �

�

�

o



The proof of this theorem is largely a consequence of results in the
previous section� Actually� the present problem is simpler since AB��� ��
is positive and no cancellation can arise� We sketch the argument for a
reader speci�cally interested in this result�

Proof� We split the proof into several steps� We assume � � �
su�ciently small�

Step 	� Upper bound when 	 � p � ��Z ��

�

AB��� ��
� d�

����
� c ���� �
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for any B�
This has been proved by Podkorytov in �	�� p� ����

Step �� If P is a polygon� then

c� �
� log

�	
�

�
�

Z ��

�

AP ��� �� d� � c� �
� log

�	
�

�
�

c� �
����p �

�Z ��

�

AP ��� ��
p d�

���p
� c� �

����p � for 	 � p � � 


These estimates are easy consequences of the argument in Lemma ����

Step �� Upper bound when � � p � ��Z ��

�

AB��� ��
p d�

���p
� c� �

����p �

for any B�
The case p � � is obvious� the case � � p � � follows as in

Lemma ��	��

Step �� Admissible decays when � � p � ��
For any � � p � � and any 	� 	p � a � �� there exists B such

that

c� �
a �

�Z ��

�

AP ��� ��
p d�

���p
� c� �

a 


This is precisely the content of Lemma ��	��

Step �� Lower bound for 	 � p � � when B is not a polygon�Z ��

�

AB��� ��
p d�

���p
� c ���� 


Indeed� if B is not a polygon� there exists a regular arc in �B which
does not coincide with its chord� Then� at any point in this arc one
can apply the following elementary observation� Let f � C���	� 	� be
a real function satisfying f��� � f ���� � � and � � f ���x� � � c for
any x � ��	� 	�� Writing f�x� � � for x � x� and x � x�� we have
jx� � x�j � �

p
�c �
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� Lattice points in large convex planar sets�

From the Introduction we recall the following�

De�nition 
��� Let � � SO��� and t � T
�� The discrepancy function

DB��� �� t� is de�ned by

DB��� �� t� � card ����
���B�� t� 	 Z��� ��jBj

�
X
m�Z�

�
�����B��t

�m�� ��jBj 


We prove the following result�

Theorem 
��� Assume B is a convex body in R
� with piecewise C�

boundary� which is not a polygon� Let 	 � p � �� then

c� �
��� � kDB��� �� ��kLp�SO����T�� � c� �

��� 


Proof� The estimate from above is easy �and essentially known��
Indeed a computation gives

DB��� �� ��
��m� � �� b�

B
�� ��m�� �

for any m � Z
�� m � � �please note that the hat symbol in the left

hand side and in the right hand side refer to the Fourier transform on
T
� and on R� respectively�� Hence� by Lemma ��	�Z

SO���

Z
T �

jDB��� �� t�j
� dt d� � �	

Z
SO���

X
m	��

jb�
B
�� ��m��j� d�

� �	
X
m	��

Z
SO���

jb�
B
�� ��m��j� d�

� �	
X
m	��

j�mj��

� c � 


Therefore� whenever 	 � p � ��

kDB��� �� ��kLp�SO����T�� � kDB��� �� ��kL��SO����T�� � c� �
��� 
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On the other hand� for any m � Z�� m � ��

���	�

kDB��� �� ��kLp�SO����T�� � kDB��� �� ��kL��SO����T��

�

Z
SO���

Z
T�

jDB��� �� t�j dt d�

�

Z
SO���

jDB��� �� ��
��m�j d�

� ��
Z
SO���

jb�
B
�� ��m��j d� 


We split the argument for the estimate from below into three cases�

First case� Suppose B is not a cut disc �see De�nition ����� Then�
making use of Lemma ���� ���	� implies

kDB��� �� ��kLp�SO����T�� � c� �
��� 


Second case� Suppose we have a disc D� First assume

min
n�Z

���� �� 	

�
� n

��� � 	

	�



Let m � �	� ��� then� by ���	�� and the asymptotic of Bessel functions�

kDD��� �� ��kLp�SO����T�� � � J���	��

� 	�� ���� cos
�
�	��

�

�
	
�
�O�	�

� c ���� 


On the other hand� when

min
n�Z

���� �� 	

�
� n

��� � 	

	�

we choose m � ��� ��� then

kDD��� �� ��kLp�SO����T�� � 	�� ���� cos
�
�	��

�

�
	
�
�O�	� � c ���� 
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Third case� Suppose B is a cut disc� coming from a given disc D�
Without loss of generality we can assume

f�cos �� sin �� � j�j � � or j	 � �j � �g � �B �

for a small � � �� Let

U �

��
cos � sin �
� sin � cos �

�
� j�j �

�

�

�



Then� for m � �	� �� or m � ��� ���

kDB��� �� ��kLp�SO����T��

� ��
Z
U

jb�
B
�� ��m��j d�

�
����� Z

U

jb�
D
�� ��m��j d�� ��

Z
U

jb�
DnB

�� ��m��j d�
��� 


Now the third case is a consequence of the second one if we prove thatZ
U

jb�
DnB

�� ��m��j d� � c ��� 


Indeed DnB looks like in the following picture and therefore� by apply�
ing Lemma ��
 to each one of the connected components of DnB� we
get

jb�
DnB

�� ��m��j � c ��� �

uniformly in � � U �

Figure ��
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A mixed norm estimate

for the X�ray transform

Thomas Wol�

Let G be the space of lines in R� � i�e� the ��dimensional mani�
fold whose elements are all lines in R� � We can coordinatize G in the
following way

� � ��e� x� �

where e � S�nf�	g is the direction of � and x � x� is the unique point
on � which is perpendicular to e� We will denote the direction e of � by
���

The distance on G can be de
ned using the standard distances on
the sphere and in R� and this identi
cation� thus

�	� d���m� � jx� � xmj� ����m� �

where ����m� � �����m�� is the unoriented angle �� �� ����� between
� and m� This distance has the following property� Let T��a� be the
cylinder of radius �� axis � and length 	� centered at the point a � ��
and let T� � T��x�� where x� is as de
ned above� Then for � � ��

��� ����m� � � � and T� � Tm �� � imply d���m� � C� � �

where C� is a suitable numerical constant�
All metric quantities de
ned on G refer to the distance d�
We will be using mixed norms on G de
ned in the following way�

if F � G �� R then

kFkLqe�Lrx�
def
�
�Z

e�S�

�Z
fx�R��x�eg

jF �e� x�jr dx
�q�r

de
���q

�

���
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where the x�integral is with respect to two dimensional Lebesgue mea�
sure� We remark that the functions we will be considering will generally
be supported in the set f�e� x� � G � kxk � 	g�

The X�ray transform is the map from functions on R� to functions
on G de
ned by

Xf��� �

Z
�

f 	

Our purpose is to prove the following estimate

Theorem �� If f � R� �� R and the support of f is contained in the

unit disc then

kXfkLqe�Lrx� � C� kfkp�� �
for any 
 � � Here k kp�� is the inhomogeneous Sobolev norm with 

derivatives in Lp� and the exponents are as follows

p �
�

�
� q �

	

�
� r � 	 	

The following is an equivalent formulation of Theorem 	 which is
easier to work with�

Theorem �� Let � be a subset of S�n � 	� let E be a subset of the

unit disc in R� � and � � � Assume that for each e � � there are m
��separated lines � with direction �� � e such that

��� jT� �Ej � � jT�j 	

Then

��� jEj � C��� �C� ����m��	 j�j��	 ���� 	

Of course� a subset fmjg of a metric space M is called ��separated
if j �� k implies that the distance from mj to mk is at least ��

Theorems 	 and � are re
nements of the result in ��� � the result
in ��� corresponds to the case m � 	� The argument in the present
context is more subtle than the argument in ���� but the basic strategy
is similar� Let D�a� r� be the ball centered at a with radius r� The
main work is to prove
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Lemma �� Theorem � is true provided we make the following additional

hypothesis on the tubes T� � for any a � R� �

jT� � E �D�a� ���j � �
�
log

	

�

����
jT�j 	

A version of property ��� was also used in ���� We could call it
the �two ends� condition� since it expresses the fact that E � T� is not
concentrated near one end of T��

We now explain brie�y how Theorem 	 
ts into the literature�
There is a �space time� estimate for the X�ray transform� i�e� an es�
timate from Lp to Lq�G�� which in the three dimensional case says
that

kXfkL�
e�L

�
x�
� kfk� 	

After a result of Oberlin and Stein ��� for the Radon transform� this
was proved by Drury ��� with a loss of 
 derivatives and then by Christ
��� as stated� The main conjecture on the Kakeya maximal function
can be stated as

kXfkL�
e�L

�

x � � kfk���
and if one interpolates between this conjectural result and Drury�s� one
obtains the conjectural bound

��� kXfkLqe�Lrx� � kfkp�� � 
 �  �

for any p � ��� ��� where q � � p� and 	�r � 	���q� Theorem 	 con
rms
��� when p � ����

In ��� it is conjectured that ��� should hold as an endpoint result�
i�e� without the loss of 
 derivatives� When p  ��� it is conceivable
that this can be proved by re
ning the argument below� but we do not
attempt that here� Nor do we attempt a generalization of Theorem 	 to
higher dimensions� the natural generalization would be ��� in Rn with

p �
n� �

�
� q � �n� 	�p� and

	

r
� 	� n

q
	

The plan of the paper is as follows� sections 	 and � are prelimi�
naries to the proof of Lemma � Section � is the proof of Lemma  and
Section � is the proof of Theorems � and 	�
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�� Preliminaries�

Some notation and terminology is as follows� the number 
 is kept

xed throughout the proof of Lemma � We also 
x �� although needless
to say the values of all constants must be independent of �� If � is a
line then the tubes T��a� and T� are as de
ned in the introduction and
in particular have cross section radius �� We will say that tubes T� and
Tm intersect at angle � if T� � Tm �� � and ����m� � � � If E is a set
then the notation jEj will be used to denote the Lebesgue measure or
cardinality of E depending on the context� The characteristic function
of E will be denoted by �

E
� The disc of radius r centered at x in a

metric space is denoted D�x� r�� we remark that we use this notation
regardless of whether the metric space is R� � G� S� or something else�
Finally we will use a certain normalization of the entropy of a set� which
in practice will be a set in G or on the ��sphere�

De�nition� IfM is a metric space and � �  then E��M� � ��N��M��
where N��M� is the maximum possible cardinality for a ��separated
subset of M �

In proving Lemma  we can assume that our lines intersect the
unit ball in R� and make an angle of less or equal than 	�	 with the
vertical direction� say� and will always make these assumptions in order
to avoid some notational complications� We also always assume that �
is su�ciently small�

In several places we will need to use some elementary but not
completely obvious facts from solid geometry� We will generally not give
the proofs of these facts� However� we want to clarify our terminology�
If �� �� � G are intersecting lines then the plane spanned by � and ��

means of course the unique plane containing � and ��� In addition�
if � � G and e � S� then the plane spanned by � and e is the set
fx � R

� � x � y � t e for some y � � and t � Rg� If � and �� are
��planes� then the angle between � and �� is of course the inverse cosine
of the dot product between the unit normal vectors to � and ��� just as
the angle between two lines is is the inverse cosine of the dot product
of their direction vectors� As an example of the kind of statement we
have in mind� we note the following�

Lemma ���� Suppose that � is a plane� � is a line contained in �� �� is
a line intersecting � at a point a� and that the angle between � and �� is
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less or equal than � and the angle between � and the plane spanned by
� and �� is � �� Then T���a� is contained in the C�������neighborhood
of �� i�e�� if x � T���a� then dist�x��� � C��� � ���

Proof� Choose coordinates so that a is the origin� � is the x�x� plane�
and � is the x� axis� Then the assumptions mean that if y � ��� then

jy�j� jy�j � ��jy�j� jy�j� jy�j� �
jy�j � ��jy�j� jy�j� 	

If x � T���a�� then there is a point y � �� with jy�j � jy�j � jy�j � C
and with jx� yj � C �� The above equations then imply jy�j � � �� so
jx�j � � �� � as claimed�

One problem in adapting the argument in ��� is as follows� use
was made there of the fact �perhaps due to C�ordoba� that a family of
tubes contained in a C��neighborhood of a ��plane and with ��separated
directions must satisfy an estimate

P
j jTj j 	 j 
j Tj j up to �� factors�

Here we will be considering families of lines which are ��separated in the
Grassmannian G� but their directions may not be ��separated� Lemma
	�� below is an adaptation of the C�ordoba argument to this situation�
the form of the statement may look peculiar� but it is the one which is
most useful for our purposes�

We will be considering various rectangles R relative to an orthonor�
mal basis e�� e�� e� with respective dimensions 	 � w � 	 �� where
we always assume that 	 � w � 	 �� Given such a rectangle R� we
will call w the width of R and will refer to the plane through the center
point of R spanned by the e� and e� directions as the ��plane of R and
to the line through the center in the e� direction as the axis of R�

We 
x a set E and number �� If A is a ��separated family of lines
and if R is a 	� w � 	 ��rectangle then we de
ne the tube density

of R� dA�R�� via

��� dA�R� �
jf� � A � T� � Rgj

w

�

A plate of width w relative to A is a 	� w � 	 ��rectangle R with
the following property�
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Plate property� Suppose that for each � � A with T� � R� a subset

Y� � T� �E is given� satisfying

jY�j �
�
log

	

�

���
� jT�j 	

Then

� �
��� �
T��R

Y�

��� � � log 	

�

����
�� jRj 	

Assuming that A is ��separated and the tubes fT�g��A satisfy ����
we de
ne a quantity p��A� in the following way

�!� p��A� � sup
R

dA�R� �

where R runs over all plates relative to A of width � �� We will
frequently use the fact �easy to prove� that p� is monotone under set
inclusion�

�	� B � A implies p��B� � p��A� 	

Lemma ���� Assume that A is ��separated and the tubes fT�g��A
satisfy ���� Then

p��A� � sup
R

dA�R� �

where R runs over all 	� w � 	 � rectangles with w � � �not just
plates��

Corollary�

i� p��A� actually depends only on A and not on E or ��

ii� Let � � max�	 �� ������ Then p ��A� � ��� p��A��

Proof of the Corollary� Part i� is obvious from Lemma 	�	� Part
ii� follows since it is easy to see that if w� � max f���w� 	 �g and if
R is a 	 � w � 	 � rectangle which contains M tubes T�� � � A�
then there must be a 	� w� � 	 ��subrectangle containing at least
C�� �	�M of these tubes�
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Proof of Lemma ���� Fix a rectangle P with essentially the maxi�
mum tube density� i�e�� P is a 	 � w � 	 � rectangle with w � ��
and if R is any other such rectangle� then dA�R� � � dA�P �� Let C�P �
be the lines � � A with T� � P �

It su�ces to show that P is a plate relative to A� So 
x appropriate
subsets Y� � T�� which from the form of the statement may be assumed
to have measure exactly

��
log

	

�

�� jT�j 	
Let �E � 
��C�P �Y�� Then� by C�ordoba�s well�known calculation�

��
log

	

�

�� jC�P �j �� 	
X

��C�P �

jY�j

�

Z

E

X
��C�P �

�
Y�

� j �E � P j���
��� X
��C�P �

�
Y�

���
�

� j �E � P j���
� X
��m�C�P �

jY� � Ymj
����

	

For each � and � � �� the maximality property of P implies there are �
���w� jC�P �j tubes Tm with m � C which intersect T� at angle between
�� � ���� and � � For each such m� jY��Ymj � ��� ��� Accordingly �the
sum over � below runs over dyadic values between � and ��

� j �E � P j���
� X
��C�P �

X
�

jC�P �j �
w

��

�

����
�		�

� j �E � P j���
� jC�P �j� �� log

	

�
w

����

and now � � follows by algebra�
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Lemma ���� Let A be a ��separated subset of G and assume that the

tubes T�� � � A are contained in the intersection of a ��neighborhood
of a line and a 	 ��neighborhood of a ��plane� where � � �� Assume

that for each � � A a subset Y� � T� �E is given� satisfying

jY�j �
�
log

	

�

���
� jT�j 	

Let �E � 
��AY�� Then� with p � p��A��

�	�� j �Ej �
�
log

	

�

����
p�� �� E��A� 	

Proof� This is similar to the proof of Lemma 	�	� By Lemma 	�	 we
know that jC�R�j � pw�� for all 	� w � 	 � rectangles R� So for
any 
xed � � A and � � there are � p ��� tubes which intersect T� at
angle less or equal than � � Hence

��
log

	

�

�� jAj �� �X
��A

jY�j

� j �Ej���
�X

�m

jY� � Ymj
����

� j �Ej���
�X

i

X
�

p �

�

��

�

����
� j �Ej���

�
jAj p �� log

	

�

����
�

using the same type of reasoning as before� The result follows�

The rest of this section is of a technical nature � Lemma 	�� below
will allow us to avoid some unpleasant technicalites later on� Similar
issues come up elsewhere in the literature and Lemma 	�� was suggested
by some �rather more sophisticated� lemmas of the same type due to
Szemeredi and Balog�Szemeredi� see ��� Section !����

Assume that A is a set� N a number with jAj � N � An allowable

relation on A means a pair f�BgB�A� � where
	� For each B � A� �B is a collection of subsets of B� Also 

is a relation between points of A and subsets of A which belong to

B�A�B�
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�� If B� � B� and if S� � �B� � then there is S� � �B� with S� � S�
such that x  S� implies x  S��

�� If x � B then there is S � �B with x  S�

If B � A� S � �B then we de
ne nB�S� � jfx � B � x  Sgj� and
q�B� � max fnB�S� � S � �Bg� We note that property �� guarantees
that q is monotone under set inclusion� B� � B� implies q�B�� � q�B���
Likewise property �� guarantees that q�B� � 	 for all B � A�

De�nition� A subset A� � A is good relative to  if the following

holds � if B � A� with jBj � �logN���� jA�j then there is a subset C � B
with jCj � jBj�� such that x � C implies there is S � �B such that

x � S and nB�S� � N�� q�A���

In practice� we will work with several allowable relations simulta�
neously� Suppose then that ff�j

BgB�A�jgkj�� is a family of allowable
relations on a set A and denote the quantities nB�S� and q�B� de
ned
using the relation j by n

j
B�S� and qj�B�� We say that A� � A is good

with respect to all of the relations j if the preceding de
nition is valid
for each j� with the set C being independent of j� More precisely�

De�nition� A subset A� � A is good relative to all of the relations j

if the following holds� if B � A� with jBj � �logN���� jA�j then there

is a subset C � B with jCj � jBj�� such that x � C implies that for each

j there is S � �j
B such that x � S and njB�S� � N�� qj�A���

The point is that a fairly large �good� subset will always exist�

Lemma ���� If fjgkj�� is a family of allowable relations on a set A
with jAj � N � and if N is large enough depending on 
 and k� then

there is a subset A� � A with jA�j � N�� jAj which is good relative to

all of the relations j �

Proof� Consider a subset of A� which we denote by Ai� which is not
good with respect to all of the relations j � Then� from the de
nition�
there is a subset B � Ai with jBj � �logN����jAij� such that half of
the elements x � B satisfy max fnjB�S� � x � S� S � �j

Bg � N�� qj�Ai�
for some j �depending on x�� Hence we can 
nd a common value of j
which works for at least jBj��� k� elements� De
ning Ai�� to be these
elements� we see that njB�S� � N�� qj�Ai� for all S � �j

B such that
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S�Ai�� �� �� Consequently� if S � �j
Ai��

then njAi��
�S� � N��qj�Ai�

by property ��� and therefore qj�Ai��� � N��qj�Ai�� We conclude�

If Ai is not good� then there are Ai�� � Ai with jAi��j �
�logN���� jAij��� k� and j � f	� 	 	 	 � kg such that

qj�Ai��� � N�� qj�Ai� 	

Now suppose we have a string

�	�� A � A� � � � � � An

so that the above property holds for each i � � 	 	 	 � n � 	� We can
pigeonhole to obtain a common value of j for at least n�k values of i�
Using the monotonicity property of qj it then follows that

	 � qj�An� � N��n�k qj�A� � N��n�k�� �

i�e� n � k�
� On the other hand the last element of a maximal string
�	�� must be good� So we have found a good subset with at least
��logN������� k��k�� jAj elements� which gives the result�

We now specialize to the situation we care about� namely the fol�
lowing situation�

��� A is a ��separated subset of G and the tubes fT�g��A satisfy ���
with respect to some set E contained in the unit ball �and some ���

If B � A then we let Pj�B� be the set of all plates relative to B of
width less or equal than �j�� If � is a line� then we let Pj�B� �� be the set
of all plates relative to B of width less or equal than �j� which contain
T�� Finally� if R is a plate relative to B then we let Bir�R� be the set
of lines in B such that the following conditions hold� i� T� intersects R�
and if we denote the axis direction of R by e� then ii� the angle between
the direction of � and the direction of e is less or equal than �i�� and
iii� the angle between the ��plane of R and the ��plane spanned by �
and the e direction is less or equal than �r��

De�nition� Suppose that A� � A� Then A� is good if for any B � A�
with

jBj �
�
log

	

�

����
jA�j �
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there is C � B with jCj � jBj�� such that if �� � C then

	� For any integer j � 	�
� we have

jfm � B � Tm � T�� �� � and �����m� � �j�gj
� �� jfm � A� � Tm � T�� �� � and �����m� � �j�gj 	

�� For any integer j with �j� � 	 �� we have

�	�� max
R�Pj�B����

dB�R� � ���p��A�� 	

Here we have set � � �j�� and the notation dB�R� and p��A�� is de�ned
by ��� and �!��

�� For any j with �j� � 	� and any i � 	�
� r � 	�
� we have

�	�� max
R�Pj�B����

jBir�R�j � �� max
R�Pj�A�����

jA�ir�R�j 	

Lemma ��	� If A is as described by ��� then A has a good subset A�
with jA�j � ��jAj�

Proof� We will de
ne a set of allowable relations and apply Lemma
	��� Let A be our set of lines� N � ��	 which is clearly an upper
bound for jAj� If B � A� and if R is a plate relative to B� then we
de
ne a subset SB�R� � fm � B � Tm � Rg� We could call this the
combinatorial plate corresponding to the geometric plate R� We let
�j�B� be the set of all �combinatorial plates� relative to B with width
less or equal than �j�� i�e�

�	�� �j�B� � fSB�R� � R � Pj�B�g 	

The following then constitute a set of less or equal than 
�	 allowable
relations�

	�j For each B � A� �B is all singleton subsets fmg� m � B� with
the relations �  fmg if ����m� � �j� and T� � Tm �� ��

��j �B � �j�B� is de
ned by �	��� and �  SB�R� if T� � R�

��ijr �B � �j�B� is de
ned by �	��� and �  SB�R� if T� intersects
R� � makes an angle less or equal than �i� with the axis direction of
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R� and the ��plane spanned by � and the axis direction of R makes an
angle less or equal than �r� with the ��plane of R�

It is almost immediate that all these relations are allowable� We
indicate the proof�

Property �� holds for the relations 	�� if S� � fmg� then take
S� � fmg also�

Property �� holds for the relations �� and ��� if S� � �j�B�� then
S� is the combinatorial plate SB��R� corresponding to some plate R �
Pj�B��� Then clearly R � Pj�B�� also� and it follows that we can take
S� � SB��R��

Property �� holds for the relations 	�� if � � B then we can take
S � f�g�

Property �� holds for the relations �� and ��� for this� 
x a line
� � B and set S � SB�R� where R is a 	 � w � 	 � rectangle
containing T�� with axis very close to and coplanar with �� and width
slightly greater than 	 �� R will be a plate with respect to B according
to our de
nition and clearly �  S for any of the relations �� or ���

By Lemma 	��� there is a subset A� � A which is good with respect
to all of these relations and has cardinality � ��jAj� Let us now see
that this means A� is good in the sense of the preceding de
nition� Fix
an appropriate subset B and choose a further subset C using the fact
that A� is good with respect to the relations 	�� ��� ��� If �� � C then
properties 	� and �� in the de
nition of good follow immediately using
the relations 	� and ��� For example� the relation ��ijr leads to the
conclusion

max
R�Pj�B����

jBir�R�j � �� max
R�Pj�A��

jA�ir�R�j �

which is slightly stronger than �	��� and similarly 	�j leads to a slightly
stronger form of property 	�� It remains to prove �	��� The relations
��j imply in the notation ���� �!� that

�	�� max
R�Pk�B����

w�R� dB�R� � �� max
R��Pk�A��

w�R�� dA��R
�� �

for any k� where w�R� is the width of R� Now let j and � be as in
�	�� and choose a plate achieving p��A��� i�e� let R� be a plate relative
to A� with width w� � � and with p��A�� � dA��R

��� Choose k as
large as possible subject to �k� � w�� and apply �	��� Thus p��A�� �
���w����maxR�Pk�B����w�R�dB�R�� Now note that �k� � ���w�� we
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conclude therefore that p��A�� � ����maxR�Pk�B���� dB�R�� Clearly
k � j� so Pk�B� ��� � Pj�B� ���� and �	�� follows�

�� First part of proof�

In this section we prove the following lemma� which is a re
nement
of the main lemma in ����

Lemma ���� Assume A is a ��separated subset of G and for each � � A
the tube T� satis�es ���� ����

Then for some � � �	 �� 	� and for some subset A� � A with

jA�j � �C��jAj�

�	 � jEj � �C�� p��A������ ��
r
E��A�� E��A�� �

�
	

Proof� We may assume that A is good in the sense of Lemma 	���
else we pass to a suitable subset which is� �Actually� for the current
argument only property 	� in the de
nition is needed� Let �

E
be the

characteristic function of E and de
ne

�	!� �A�x� �
X
m�A

�
Tm

�x� 	

It is easy to see that �A�x� � ��� for all x � this follows since a ��
separated family of lines passing through a 
xed point has cardinality
� ���� We also de
ne

��� �jA���x� �
X

m�A��j������m����j����

�
Tm

�x� 	

We claim there are positive integers j � 	�
 and N � ��� and a subset
A�� � A such that

��	� jA��j �
�
log

	

�

���
jAj

and if � � A��� then

���� jY�j � � jT�j�
log

	

�

�� �
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where

���� Y�
def
� T� � E � fx � �A�x� � �Ng � fx � �jA���x� � 
Ng 	

This follows from the pigeonhole principle� Namely� if C is a suitable
constant then for each � there is N � a dyadic integer so that

���� jT� � E � fx � N � �A�x� � �Ngj � � jT�j
C log

	

�

	

Accordingly we can pick a value of N so that ���� holds with that value
of N for at least �C log �	������jAj tubes from A� Next� for each of
these tubes there must be a value of j � 	�
 such that

jT� � E � fx � N � �A�x� � �Ng � fx � �jA���x� � 
Ngj

� � jT�j
C log

	

�


����

and therefore ���� holds with a common value of j for at least

 �C log �	������jAj lines �� This proves the claim� We will use similar
�pigeonhole� arguments several times below without giving the details�

We clearly have

���� jEj � ��N���
X
��A��

jY�j � ��
� E��A���

N
	

Note that this immediately implies �	 � �with � 	 �� if N� � ������
say� so in proving �	 � we may assume that N� � ������

Assuming N� � ����� we now set � � ��j���� and let �T���� be the
� � �� tube concentric with T�� For each � � A��� we de
ne A����� �
fm � A�� � m j �g where j is the relation

� j m

if T� � Tm �� � and ����m� � ��j����� We further de
ne E� for � � A��
by

E� �
�

m�A�����

Ym 	

Note E� is contained in �T�����
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Lemma ���� If N � ����� then there is a subset A� � A�� with

jA�j � jA��j��� such that if � � A�� then �with p � p��A��

jE�j � ��� p��N � � �� 	

Proof� Fix � � A��� If a tube Tm intersects T� at angle greater or
equal than ��� then the intersection has measure � �������� It follows
using ���� that there are at least

C����N
�

�

�
log

	

�

���
�

lines m in A such that Tm intersects T� at angle between ��� and ��
Detailed justi
cation for the latter assertion is as follows� Let B �

fm � A � Tm intersects T� at angle between ��� and �g� Then

jBj ��� �
�

�
�
X
m�B

jTm � T�j

�

Z
T�

X
m�B

�
Tm

�

Z
T�

�jA��

� 
N jY�j

�
N � ���
log

	

�

��
as claimed� We will use this argument again in Section � without giving
the details�

By the �goodness� property� we can choose A� � A�� with jA�j �
jA��j�� so that if � � A� then there are at least

C�����N
�

�

�
log

	

�

���
�

lines in A�� such that Tm intersects T� at angle less than �� i�e�

jA�����j � C��N���
�

�

�
log

	

�

���
� 	
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Fix � � A�� We can pick � � ��� �� such that at least

���N
�

�
�

of these tubes Tm intersect T� at angle between ��� and � � We denote
this set of lines m by C� Thus

���� jCj � ���N
�

�
� 	

We now repeat the argument from ���� First we dispense with a minor
technicality� Namely� we have

�� � � � ���� � 	

To see this note that

���N
�

�
� � C

�	

�	
�

since C �	��	 is a bound for the number of ��separated tubes which can
intersect T� at angle less or equal than � � Hence� since N� � ������

� � �C�����N����	�������	 � ���� � �

proving �� �� Now� as in ��� we choose a family of ��planes �k through
� corresponding to a maximal ������separated set of directions perpen�
dicular to � and consider their 	 ��neighborhoods �����

k � Then every
tube Tm� m � C is contained in some �����

k and a point at distance
� from � belongs to at most Cmaxf���� 	g�����

k �s� This is clear geo�
metrically� see also Lemma ��	 below� For each k� let Ck be the tubes
in C which are contained in �����

k � Let Zm be the points in Ym which
are at distance at least ��� from the axis �� Using �� � and standard
geometrical facts� the complement of Zm in Ym is contained in a disc
of radius 	 ��� so ���� and the �two ends property� ��� imply that

jZmj �
�
log

	

�

���
� jTmj 	

Lemma 	�� implies �using �	�� that��� �
m�Ck

Zm

��� � ��p��jCkj ���� 	
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Therefore� since no point of any Zm can belong to more than
C ��������

k �s� we have

jE�j �
����
m

Zm

���
� ��

X
k

��� �
m�Ck

Zm

���
�
X
k

���p��jCkj ����

� ���p��jCj ����

� ���p��N� � �� �

by �����

We now note the following �this is the punchline"�� Let C� be the
constant in ����

Claim� If x � R� � then there are at most ���
� �C� ��separated lines

� � A� such that x � E��

Namely� suppose we have M such lines �� For each of them there is
a line m � m� at distance less or equal than � from � such that x � Ym�
Thus

	� �A�x� � �N �

�� �mA�j�x� � 
N for each m�

Note the m�s are �C� ��separated by ���� since T� intersects Tm�
at

angle less or equal than �� It follows by ��� that no tube can intersect
two di#erent Tm�s at angle less or equal than �� Accordingly property
�� implies that �A�x� � M
N � hence M � ��
 by property 	� This
proves the claim�

Now take a maximal �C� ��separated subset B � A�� By the claim
and then Lemma ���� we have

jEj � �




X
��B

jE�j � ��p��jBjN � � �� �
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or in other words

��!� jEj � ��p��N��E��A�� �
�
�

since of course E��A� and E	C���A� are comparable� If we take the
geometric mean of ��!� and ���� we get �	 ��

A slab of thickness � is a ��neighborhood of a ��plane� What we
actually use below is the following corollary of Lemma ��	�

Lemma ���� Assume A is a ��separated subset of G and for each � � A
the tube T� satis�es ��� and ����

Assume in addition that all tubes T�� � � A are contained in a slab

of thickness � and in a ��neighborhood of a line� Let p � p	�A� and

de�ne m � m�A� via

���

m�A� � max
e�S�

m�A� e� �

where m�A� e� def
� jf� � A � ��e� ���  �gj 	

Then

��	� jEj � �C���mp������� E��A�

s
�

�
	

Proof� Fix a number � � �� Note that all the lines in A make an
angle less or equal than � with a 
xed ��plane� We will use this fact
to get a lower bound on E��A�� Namely� let A� be the set of angles
��� � � A� Clearly

E��A�� � E��A�

m
	

On the other hand� A� is contained in a ��neighborhood of a great
circle on the ��sphere� which implies that

E��A�� � �

�
E
�A�� �

when � � �� Also E��A�� � E� �A�� if � � � �this is true for any set on
the ��sphere�� so we may conclude that

E��A��
�

�
E��A��

�
�
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for all �� and therefore

E��A��
�

�
E��A�

m�
	

The result now follows from Lemma ��	�

Corollary� Under the assumptions of Lemma �	�� suppose that for

each � � A a subset Y� � T� � E is given� with

jY�j �
�
log

	

�

��	
� jT�j 	

Let �E � 
��AY�� Then estimate ��	� holds also for �E� i�e�

j �Ej � �C���mp������� E��A�

s
�

�
	

Proof� The idea is to apply Lemma ��� with E replaced by �E and �
replaced by

�
�
log

	

�

��	
	

In order to do this we must make the following remarks�

� ��� does not quite hold anymore� However� it holds if we replace
the exponent 	 on the right hand side by �� The reader can easily
check that this does not make any di#erence�

� The de
nition of the number p��A� depended in principle on �
and E as well as A� However� in fact it depends only on A by the
corollary to Lemma 	�	�

Accordingly we can apply Lemma ��� as indicated� obtaining

j �Ej � �C���mp�������
�
log

	

�

���
E��A�

s
�

�
	

The factor �log �	������ may of course be incorporated into the �C��

factor� so we are done�

Remark� The considerations in Section � generalize immediately to
higher dimensions� In particular� Lemma ��	 is true in Rn with the same



��
 T� Wolff

proof provided we de
ne E��A� � �n�� times the maximum possible
cardinality for a ��separated subset of A� de
ne p using 	 � w �
	 � � � � � � 	 � rectangles and replace the factor ��� by �����n���

�� Main argument�

The argument in this section will be based on considering families
of tubes which intersect a plate� rather than a tube as in the previ�
ous section� Lemmas ��	 and ��� below record some geometrical facts
relevant in this situation�

Lemma ���� Suppose that � � ��� ����� � � ��� ����� w � � and R
is a 	 � w � 	 � rectangle� Let � be the ��plane of R� let f�kg be

a maximal ��w � �����separated subset of ����� ��� and for each k let

��k be the two ��planes through the axis of R which make an angle �k

with �� and �
��C�
w���
k their C ��w � ���neighborhoods� Then �

i� Let T� be a tube which intersects R and such that � makes an

angle less or equal than � with the axis of R and the ��plane spanned

by � and the axis direction of R makes an angle between ��� ���� and

� with the ��plane �� Then T� is contained in some slab �
��C�
w���
k �

ii� A point at distance greater or equal than � from � is contained

in � maxf����� 	g slabs �
��C�
w���
k �

Proof� i� First let �� and �� be ��planes passing through the axis
of R and making angle less or equal than � with each other� Let ��
be the ��neighborhood of the axis of R� Then every point of �� � ��

will be within � � of ��� Accordingly �take � � ��w� ����� it su�ces
to show that T� is contained in a C ��w � ���neighborhood of some

plane passing through the axis of R and making an angle between ���
and � with �� On the other hand� let �� be the plane spanned by �
and the axis direction of R� Let ��� be the plane parallel to �� which
passes through the axis of R� The distance between �� and ��� is then
� �w�� and therefore T� is contained in the C ��w����neighborhood
of ����

ii� Choose coordinates so that � is the xy plane and the axis of

R is the y axis� Assume a � �x� y� z� is in n �
��C�w
���
k �s� say� Then

�assuming � � ���� otherwise some minor changes in the argument are
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required� we have

jzj � �sin �k� jxj�O ��w � �� �

for each k and therefore� arranging the �k�s in increasing order�

�n� 	�
�w � �

�
jxj � ��n � ��� jxj � ��w � �� �

so jxj � ���n� 	�� Then

jzj � ��

n� 	
� �w � � �

which implies

jzj � ��

n� 	

since obviously

n� 	 �
��

�w � �
	

This is equivalent to the statement�

Lemma ���� Suppose that � � ��� ����� � � ��� ���� and R is a

	� w � 	 � rectangle� Let � be a line and assume that � makes an

angle greater or equal than � � � with the axis direction of R and that

the ��plane spanned by � and the axis direction of R makes an angle

greater or equal than �� � with the ��plane of R� Then

jT� �Rj � min
n
��

w

�
�

��

�� � �

o
	

Proof� Choose coordinates so the axis direction of R is the y direction�
the ��plane of R is parallel to the xy plane and the origin belongs to
T� �R� If p � �x� y� z� is a point of T� then the assumptions mean that

����
jxj� jyj� jzj � ��� �jxj� jzj� � � �

jxj� jzj � ���jzj� �

and therefore

���� jxj� jyj� jzj � ������jzj� ���� 	
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If p � T� � R then ���� and ���� imply

jxj� jyj� jzj � min f����w � ��� �������g �

or in other words T� � R is a subset of T� with diameter

� min
nw
�
�
�

� �

o
	

The lemma follows�

The next lemma estimates the measure of the union of a �large�
family of tubes intersecting a rectangle�

Lemma ���� Suppose � � 	 �� � � ��� ����� w � �� R is a 	 �
w � 	 � rectangle and C is a family of lines� Assume that if � � C
then T� intersects R� � makes an angle less or equal than � with the

axis direction of R� and the ��plane spanned by � and the axis direction

of R makes an angle in ��� � ����� �� with the ��plane of R� Assume

furthermore that if � � C then T� satis�es ���� ���� Let p � p��C�
and de�ne m � m�C� via ���� Assume that for each � � C a subset

Y� � T� �E is given� with

jY�j �
�
log

	

�

���
� jT�j 	

Let �E � 
�Y�� Then �E is contained in a slab of width C ��� � �� and

���� j �Ej � �C�� �mp����� �� E��C�
s

�

w �� �
	

Proof� It follows by Lemma 	� that �E is contained in a slab of
width C ������ � namely� the C �������neighborhood of the ��plane
of R� We now prove ����� We 
rst dispense with a couple of minor
technicalities� First of all� we can assume that all the lines in C actually
make an angle between ���� and � with the axis direction of R� since
we can always achieve this by replacing � by �j�� for a suitable j � 
and replacing C by a subset C� with E��C�� � E��C�� Second� we can
assume �� � ���� �� To see this� suppose that �� � ���� �� Then all
the tubes in C are contained in a C ������neighborhood of a ��plane�
Accordingly ���� follows immediately from the corollary to Lemma ����
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Now we consider the main case where �� � ���� �� Let Z� be the
points in Y� which are at distance greater or equal than ��� �� from

the ��plane of R and ��E � 
�Z�� Since �� � ���� �� it follows from
���� that the set of points of T� which are within ��� �� of the ��plane
of R is contained in a C ���disc� Thus the complement of Z� in Y� is
contained in a C ���disc� So property ��� implies

jZ�j � �
�
log

	

�

��	
jT�j 	

Now consider a subdivision into ��plane neighborhoods �
C�w
���
k as in

Lemma ��	� relative to the rectangle R� and with the given value of ��

Let Ck be the tubes which are contained in a given �
C�
w���
k � By the

corollary to Lemma ����

����E ��
C�w
���
k

�� � �C�� �mp����� �� E��Ck�
s

�

w �� �
	

Notice that no point of ��E is in more than C ��� sets of the form ��E �
�
C�w
���
k � by Lemma ��	�ii�� So if we sum over k we get

j �Ej � j��Ej
� ��

X
k

����E � �
C�w
���
k

��
� �C�

X
k

�mp����� �� E��Ck�
s

�

w �� �

� �C� �mp����� �� E��C�
s

�

w �� �
	

In order to apply Lemma ��� we need to 
nd su�ciently large
families of tubes which intersect a suitable rectangle� This is done in
the next lemma� which is analogous to Lemma ��� in Section �� The
quantities �A� �

j
A�� were de
ned in �	!�� ����

Lemma ��	� Assume that A � G is ��separated and that the tubes

T� satisfy ��� and ���� and furthermore that A is good in the sense of

Lemma 		�� Fix j and suppose that B is a subset of A with

jBj �
�
log

	

�

����
jAj
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and that for each � � B� a subset

Y� � T� � E � fx � �A�x� � �Ng � fx � �jA���x� � 
Ng

is given� with

jY�j �
�
log

	

�

���
� jT�j 	

Let � � ��j���� and let m � m�A�� Then for some line � � B there

are a number � � ��� ����� a ��plane � and a set of lines D � B �
D��� C	�

���� such that �
m�D

Ym � �C����� 
����

and

����
��� �
m�D

Ym

��� � �C	�N m���� ���� �
p
�
p
�� � � 	

Proof� Let C be associated to B as in the de
nition of �good� preced�
ing Lemma 	��� We will show that the conclusion holds for any � � C�
So 
x a line �� � C�

By �	�� and part ii� of the corollary to Lemma 	�	� T�� must be
contained in a plate P relative to B of width w � maxf	 �� ����g and
B�tube density dB�P � � ���p� where p � p��A��

Claim� For some � � �� there is a set D� � A with

jD�j � ����N
�
p
w

�

����
���� max

n
������ � ���

�

w

o
�

such that if � � D� then T� intersects P � � makes an angle less or equal

than � with the axis of P � and the ��plane spanned by � and the axis

direction of P makes an angle less or equal than � with the ��plane of

P �

To prove the claim� let $ be the set of lines � � B such that T� � P
and Z � 
fY� � � � $g� Then� since j$j � ��� pw��� we have

���� jZj � ��� �� � w �
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by Lemma 	��� We will now show that also

���� jZj � ��� � �� p 	

Namely� let $� be the set of directions of lines in $� It is clear that the
maximum possible cardinality for a ��separated subset of $� is � w���
Accordingly� by de
nition of dB�P � there must be a direction e such
that ����� e�  � for � ���p lines � � $� Denote this set of � ���p lines
by $�� It is clear that no point can belong to more than a bounded
number of the �essentially parallel� tubes T�� � � $�� Accordingly

jZj �
X
����

jY�j � ��p
�
log

	

�

���
� ��

and ���� follows�
Taking the geometric mean of ���� and ���� we conclude that

jZj � ���
r
pw

�
���� �� 	

Next� each point x � Z belongs to Ym for some linem such that Tm � P �
By de
nition of Ym there are � N lines � � A such that T� contains x
and � makes an angle between ��� and � with the line m� We denote
this set of lines � by A�x�� Since the width of P is less or equal than
maxf����� 	 �g it follows that all lines � � 
x�ZA�x� make an angle
between ����� � C � and �� � C � with the axis of P � For each � �

x�ZA�x�� the ��plane spanned by � and the axis direction of P makes a
certain angle �� depending on � with the ��plane of P � We can now use
the pigeonhole principle to obtain a common value of ��� Namely� by
the pigeonhole principle there are a number � � ��� ���� and a subset
F � Z with jF j � �� jZj� so that if x � F then there is a subset
�A�x� � A�x� with cardinality at least N��� which consists of lines �
such that �� � ���� ����� ���

To summarize� there is a subset F � P with measure greater or
equal than

���
r
pw

�
���� �� �

so that if x � F then there is a set �which we denoted �A�x�� of N��

lines � � A such that T� contains x and � makes an angle in ������ �
C �� ���C �� with the axis of P and the ��plane spanned by � and the
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axis direction of P makes an angle in ���� ����� �� with the ��plane of
P � We de
ne D� � 
x�F �A�x�� By Lemma ���� we have

jT� � P j � ����min
n ��

�� � �
� ��

w

�

o
�

for any � � D�� From this we conclude in a standard way �see the argu�
ment at the beginning of the proof of Lemma ��� that the cardinality
of D� must be

� ����N
�
p
w

�

����
����max

n
������ � ���

�

w

o
�

proving the claim�

It follows by �	�� in the de
nition of good �applied with �i� � �����
r as large as possible subject to �r� � �� and j as large as possible
subject to �j� � w� that there is a plate P � containing T�� with width
w� � ���w which intersects at least

����N
�
p
w

�

����
����max

n
��� ��� � ���

�

w

o
tubes T� with � � B such that � makes an angle less or equal than ����
with the axis of P � and the ��plane spanned by � and the axis direction
of P � makes an angle less or equal than ���� with the ��plane of P ��
We can pigeonhole to obtain a number � � ���� and a choice of

��	�N
�
p
w

�

����
����max

n
��� ��� � ���

�

w

o
�

of these tubes T� for which the ��plane spanned by � and the axis
direction of P � makes an angle in ��� � ����� �� with the ��plane of P ��
and we let D be the lines � corresponding to the latter set of tubes T��
It is easy to see that D � D���� C	�

����� this follows since i� each tube
in D intersects the plate P � at angle less or equal than ���� to its axis
and therefore �since w� � ����� also at angle � ���� to the direction
of �� and ii� since w� � ����� every point of P � is within C ��� � of

��� It remains to observe that 
m�CYm � �C�����
���� where � is the
��plane of P � and to prove ����� For this we apply Lemma ���� with R
there equal to P � and � there replaced by ���� and � there equal to � �
We conclude in the 
rst place that�

m�D

Ym � �C�� ������� � �C���� 
 ��� ���� 	
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Note also that p�����D� � ��C�p��D� � ��C�p by the corollary to
Lemma 	�	 and then �	�� Hence by �������� �
m�C

Ym

�����C��pm����� ��
�
N
�
p
w

�

����
����max

n
����������

�

w

o
��
�

�
r

�

w� � � �

� �C��pm�������
�
N
�
p
w

�

����
����max

n
����������

�

w

o
��
�

�
s

�

w �� �

� �C�Nm��������
�w
�

����
max

n
������ � ���

�

w

o
��

�
s

�

w �� �

� �C�Nm���� ���� �
p
�
p
�� � � 	�� �

Inequality �� � may be seen as follows� if w � � � then

�w
�

����
max

n
������ � ���

�

w

o
��

s
�

w �� �

�
�w
�

����
��� ��� � �� ��

s
�

w �

� �
p
�
p
�� � � 	

On the other hand if w � � � then

�w
�

����
max

n
������ � ���

�

w

o
��

s
�

w �� �

�
�w
�

����
��
r
��� ��� � ��

�

w

� �
p
�
p
�� � � 	

This proves �� �� hence �����
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Now we need a simple lemma� Here we let

f�� �e� � sup
�����e

sup
a��

	

jT��a�j
Z
T��a�

f

be the Kakeya maximal function as de
ned in �	��

Lemma ��
� Suppose that � � � � 	 and that fSjgMj�� are slabs with

respective thicknesses less or equal than C ��j � � ��� Let f �
P

j �Sj �

Fix e� � S�� Then

jfe � D�e�� �� � f�� �e� � �gj � �
P

j��j � � ��

�
log

	

�
	

Proof� If
PM

j����j � � �� � � there is nothing to prove� It follows
that we can assume M � 	���

First consider the case where there is just one slab S� with thickness
� �� � �� Then the set fe � D�e�� �� � f�� � �g is contained in the
intersection of D�e�� �� with a �C ���� ������neighborhood of a great
circle� so its measure is � � ��� � ����� Since M � 	��� the general
case now follows from the Stein � N� J� Weiss result on summing weak
type 	 estimates�

In the next corollary we use the notation �� � direction of the line
�� and if C is a set of lines then C� � f��g��C�

Corollary� Let fEkgMk�� be a family of subsets of the unit ball in R� �

such that Ek is contained in a C ��k � � ���slab� Let C be a family of

lines and assume that for each � � C a subset K��� � f	� 	 	 	 �Mg is

given� and that the following holds

��!� If dist ����� ��
�� � C � � then K���� � K���� � � 	

Let E��� � 
k�K���Ek� and assume that for every � � C� we have jT� �
E���j � �� � jT�j� Then

��� �
X
k

��k � � �� � ��� � E��C�� 	
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Proof� Because of property ��!� it su�ces to show ��� assuming that
C� is contained in a single ��disc� and in that case it is immediate from
Lemma ��� since �

P
k �Ek

�� � ��� on a ��neighborhood of C��

Proof of Lemma �� We start by 
xing a maximal ��separated subset
$� of �� and for each e � $� we choose �exactly� m ��separated lines
� with �� � e and so that the tubes T� satisfy ��� and ���� We then
choose a �good� subset by Lemma 	��� We denote this last set of lines
by A� Note that

��	� E��A� � ��m j�j

and also

���� E��C�� � ��� j�j �

if C is any subset of A with jCj � ��jAj� Furthermore� the quantity
m�A� de
ned by ��� is � m�

We choose N and � � ��j���� as in the proof of Lemma ��	 so that
the set

Y �
�

def
� T� � E � fx � �A�x� � �Ng � fx � �jA���x� � 
Ng

will have measure greater or equal than�
log

	

�

���
� jT�j �

for a set of � � A with cardinality greater or equal�
log

	

�

���
jAj

and we let B be this set of ��s� We also let f�jg be a maximal ��� ��
separated subset of B and let �j be the tube of length C and radius
C �

�� � concentric with T�j � Here C is a large constant which is chosen
as follows� let C	 be as in Lemma ��� and make C large enough that
if d��� �j� � �C	 � �� ��� � and Tm intersects T� at angle less or equal
than ��� � then Tm is contained in �j � It is easy to see that this is
legitimate�

We will de
ne subsets Fk � E by a recursive construction� The
logic here is similar to �	� p� 	���� The Fk will have the following
properties�
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	� Each Fk is assigned to a unique �j � j � j�k��

�� The Fk assigned to a given �j are disjoint and are contained in�
��B	D��j ��C���������

Y �
� 	

�In particular� this implies they are contained in �j � by choice of C��

�� Each Fk is contained in a C ����� �k � � ���slab for a certain
�k � ���� and satis
es

jFkj � �C�N m���� ���� �
p
�
p
�k � � � 	

�� �
P

k��k � � �� � �C� � j�j�
To start the recursion� let F� � � and assign it to some arbitrary

�j � If Fi has been de
ned for i � k� 	� then for each tube in B� we let

Y� � Y �
� n 
 fFi � i  k� Fi assigned to �j

for some j with � � D��j � �C	 � �� ��� ��g 	����

We throw out all � � B such that jY�j � jY �
� j��� If half the lines in B

are thrown out� we stop the induction� Otherwise� we let Bk be the
remaining lines and note that the family Bk and the sets Y� satisfy the
hypotheses of Lemma ���� since

jY�j � 	

�
jY �
� j �

�
log

	

�

���
� jT�j 	

It follows that for some � � Bk there is a set Fk � 
fYm � m �
Bk � D��� C	�

����g and with property ��� We choose j so that � �
D��j� � �

���� and assign Fk to this �j � Then clearly Fk is contained
in 
fYm � m � D��j� �C	 � �� �����g� It follows using ���� that Fk
is disjoint from Fi if i  k and Fi is also assigned to �j � This gives
property ���

It remains only to observe that when the induction stops property
�� will hold� This follows from the corollary to Lemma ���� Namely� if
the induction stops at stage k then at stage k we have a subset C � B
of �thrown out� lines� with

jCj � 	

�
jBj � 	

�

�
log

	

�

���
jAj �
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and therefore also E��C�� � ���j�j by ����� If � � C� then we let

E��� � 
fFi � i  k� Fi assigned to �j

for some j with � � D��j � �C	 � �� ��� ��g 	

Since � is thrown out we have

���� jT� �E���j � 	

�

�
log

	

�

���
� jT�j 	

We say that the Fi in ���� are used in forming E���� If C� is a suitable
constant then each set Fi is contained in a C���

����i�����slab� and if �
and m are lines with dist ����m�� � C� �

�� �� then no �j can be within
�C	 � �� ��� � of both � and m� so no Fi is used in forming both E���
and E�m�� This gives the property ��!� �with � replaced by C ������
Accordingly ��� with � replaced by C ��� � implies

����
X
i�k

����� �i � � �� � ��� � ��� j�j �

which gives ���

Next� using properties �� and �� we haveX
k

jFkj � �C�N m���� ���� �
X
k

����k � � ������

� �C�N m���� ���� �
�X

k

���k � � ��
����

� �C�N m���� ���� � �� j�j����

� �C�N m���� �	 � j�j��� 	

Let Ej � 
fFk � Fk assigned to �jg� ThenX
j

jEjj �
X
k

jFkj

by the disjointness property ��� On the other hand� we have

Ej �
�

��D��j ��C���������

Y �
�
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and since the f�jg are �����separated this implies �see the proof of the
claim at the end of the proof of Lemma ��	� that no point is in more
than C� Ej �s� We conclude that

���� jEj �
X
j

jEjj � �C�N m���� �	 � j�j��� 	

As in the proof of Lemma ��	 �see ������ we also have

jEj � ��N���
X
��B

jY �
� j � ��

� E��A�

N
�

hence

jEj � ���
m� j�j
N

by ��	�� If we combine this with ���� we get

jEj � �C� �Nm���� �	 � j�j�������
��m j�j

N

����
� �C�����m��	 j�j��	 ����

and the proof of Lemma  is complete�

	� Proofs of the theorems�

Proof of Theorem �� This is essentially the same as ��� Section ���
The argument may appear simpler here however due to our attempt at
abstraction in ����

The idea is to induct downward on �� There is a technical point
which must be dealt with 
rst� Namely� in the preceding sections it was
convenient to assume that E was contained in the unit ball but this is
now inconvenient� since we will want to use a rescaling argument� We
take care of this issue in the next lemma�

Lemma 	��� Assume that Theorem � is true for a certain value of ��
Then the following variant is also true for the same value of �� Here

the constants C and C� are the same as in ��� and � is a numerical

constant�
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Let � be a subset of S�n � 	� let E be a subset of R� � and � � �
Assume that for each e � � there are m ��separated lines f�jgmj��� and
points fajgmj�� with aj � �j� such that jT�j �aj��Ej � � jT�j �aj�j� Then

jEj � � C���

�
log

	

�

���
�C� ����m��	 j�j��	 ���� 	

Proof� Let � and � be small constants chosen in that order� Subdivide
R
� in cubes� R� � 
j�Z�Qj where Qj is the cube centered at �j with

sidelength �� Denote Ej � �Qj � E� � � j� i�e� Ej is the part of E
contained in Qj � translated to the origin� Then Ej is contained in the
unit ball� and since any tube T��a� intersects only a bounded number
of cubes Qj � one has the following� let mj�e� be the maximum possible
cardinality for a ��separated set of lines � in the e direction such that
jT� � Ejj � �� jT�j� Then

P
jmj�e� � m for all e � ��

Hence also X
j

Z
�

mj�e� de � m j�j 	

Note that mj�e� � ��� for any j and e� Accordingly there are numbers
f�jg such thatZ

fe����j�mj�e����jg

mj�e� de �
�
log

	

�

��� Z
�

mj�e� de

and therefore X
j

�j j�j j � m j�j
log

	

�

�

where �j � fe � � � �j � mj�e� � ��jg� Because of the hypothesis
that Theorem � is true with the given �� we then get

���� jEj �
X
j

jEjj � C� �
C� ���� ����

X
j

�
��	
j j�j j��	 �

where the implicit constant is purely numerical� On the other hand�
clearly �j � m and j�jj � j�j for any j� Accordingly

X
j

�
��	
j j�j j��	 �

X
j

�j j�jj
m��	 j�j��	 �

m j�j
m��	 j�j��	 log 	

�

�
m��	 j�j��	

log
	

�
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If we substitute this into ���� we get the result�

Proof of Theorem �� As has already been mentioned the proof is
by induction on �� By Lemma � we can choose C and A� so that if ���
and ��� hold then

jEj � A��� �C� ����m��	 j�j��	 ���� 	

Next we choose �� small enough that if �  �� then

���� ����� �
�
log

	

�

���
�C������ � �C� 	

Theorem � is trivial when � � �� provided C� is large enough� so we
can de
ne a constant C� by the following requirements�

� Theorem � is true with the given constant C� provided � � ���

� C� � �A��

Fix �  �� and assume that Theorem � has been proved with this
value of C� for parameters �� � � ����� Then under the assumptions of
Theorem ��� one of the following must happen�

	� There is a subset �� � � with measure greater or equal than
j�j��� such that if e � �� then there are m�� ��separated lines � with
direction e such that ��� and ��� hold�

�� There is a subset �� � � with measure greater or equal than
j�j��� such that if e � �� then there are m�� ��separated lines � with
direction e such that ��� holds and ��� fails�

In case 	�� we simply apply Lemma  with � and m replaced by
�� and m�� �more precisely� we use the second requirement on C���
obtaining the estimate

jEj�A��� �C� ����
�m
�

���	� j�j
�

���	
�����C��� �C� ����m��	 j�j��	 ���� �

which is the necessary inequality ����
In case ��� we let E be E dilated by a factor ���� Fix e � �� and

one of the m�� tubes in ���� Because of the hypothesis that ��� fails�
there is a subtube of length �� which intersects E in measure greater
or equal than

	

�
�
�
log

	

�

����
jT�j 	
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The dilation of this tube is a tube T � of length 	 and radius �
def
� ����

which intersects E in measure greater or equal than

	

�
�
�
log

	

�

����
�� jT �j 	

Thus �after dilation� for each e � �� we have m�� �����separated ��s
generating such T ��s� By the inductive hypothesis and Lemma ��	 we
have

���� jEj � jEj � � C���

�
log

	

�

���
�
C�

�
�	
�
���

�
log

	

�

����
�
�����m

�

���	� j�j
�

���	
�
���

or equivalently

jEj � ����� � C���

�
log

	

�

���
�C������ ����m��	 j�j��	 ����

� C��� �C� ����m��	 j�j��	 ���� �

where the last line follows from ����� This 
nishes the proof of Theorem
��

Proof of Theorem �� Fix � and de
ne

X�f��� � jT�j��
Z
T�

f 	

The 
rst step is to prove

�� � kX�fkLqeLrx � ��C� kfkp �

when f is supported in the unit disc� with p� q� r as in Theorem 	�
A well�known argument �in this case it can be carried out by

interpolation with L
 and then with the result of ���� shows that a
bound like �� � which is insensitive to ��� factors need only be proved
for characteristic functions� So 
x a set E� let f � �

E
� and de
ne

N � kX�fkLqeLrx � We claim that for some M there is a set � � S� with

j�j �
�
log

	

�

����N
M

�q
�
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such that e � � implies

kX�f�e� ��kLrx �M 	

To see this� note that X�f is roughly constant on discs of radius �� in
the sense �say� that if X�f���� � �� then X�f��� � � on a subset of
D���� �� with measure � �	� Hence alsoZ

D�e����

kX�f�e� ��kqLrx de � �� kX�f�e�� ��kqLrx �

for any e� � S�� so that

sup
e
kX�f�e� ��kqLrx � ���Nq 	

So if we let

J � fe � S� � C��Nq � kX�f�e� ��kqLrx � C���Nqg �

then Z
J

kX�f�e� ��kqLrx de � Nq 	

Split the integral over J into the regions �j where kX�f�e� ��kqLrx �
��j � �j��� and note that there are � log �	��� relevant values of j� Hence
the claim holds for some M � �j�q and � � �j �

Next� by a similar argument there are m and � with m�� �r �
��Mr and �� � � with j��j � �� j�j such that if e � �� thenX�f�e� x� � �
for a set of x of measure at least m��� Equivalently� if e � �� then there
are m ��separated lines � with direction e and with jE � T�j � � jT�j�
We conclude by Theorem � that

jEj � �C����� �m�����	 j�j��	

� �C� �m�� �r���	 j�j��	

� �C�Mr�	
�N
M

��q�	
� �C�N��� �

so we have proved �� �� To 
nish the proof of Theorem 	 we have to
trade the �� factor for 
 derivatives� This is a standard argument� We
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choose a C
� function � with supp� � D�� 	�	�� and a Schwarz
function � such that %� has compact support not containing the origin�
such that

%�
def
� 	�

X
j��

c�j b�j � C
� �

where �j�x� � ��j���jx�� �j�x� � ��j���jx�� It is easy to see that this
is possible� Here are details since we don�t have a reference at hand�
start with a C
� function � supported in D�� 	��� with %��� �� �

By multiplying � by a character we can insure that %� does not vanish
identically on any sphere centered at � Let �� � �� � � where ���x� �

���x�� Thenc�� � j%�j�� Let � �
P

i ���Ti where fTig is an appropriate

nite set of rotations� By a compactness argument we can arrange that
%� be nonzero on D�� �� say� Next choose a partition of unity of the

form f�
j
g
j��
 where �

j
��� � ����

�j ��� De
ne �j via %�j � �
j
� %�j�

j � �
Furthermore� let � be a C
� cuto# function equal to 	 on

D�� 	�	� and supported in D�� 	�	��
In proving Theorem 	 we can suppose that f is supported in

D�� 	�	� and kfkp�� � 	� Then in the 
rst place�

��!�
X
j

�j k�j � fkp � C� �

if �say� �  
��� this follows easily using the de
nition of the Sobolev
space and the support property of %�� In the second place� using the
support properties we have

f � � � f �
X
j

�j � �� � ��j � f�� �

on supp f � and therefore

jXf j � X�j� � f j� �
X
j

X�j�j � �� � ��j � f��j� 	

The 
rst term is less or equal than C pointwise� For the remain�
ing terms� we use that X�j�j � gj�j � CX�j jgj pointwise if supp g �
D�� 	�	�� where �j � ��j � This is clear from the de
nitions and the
compact support of �� Applying �� � with 
 in �� � taken to be small
compared with the current 
� we obtain

kX�j�j � �� � ��j �f��j�kLqeLrx � kX�j �j� ��j �f j�kLqeLrx � �j k� ��j �fkp �
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with �  
��� Theorem 	 now follows by ��!��

Concluding remarks� 	� The following is an easy corollary of The�
orem 	 or ��

Let E be a Borel subset of R� and assume that for each e � S��
there is a Borel set Le � e� with Hausdor# dimension at least � such
that for each x � Le� some segment of the line through x in the e
direction is contained in E� Then the Hausdor# dimension of E is at
least ��� � ����

Here e� is the orthogonal complement of e in R� � We omit the
proof� It follows a standard pattern originating �to the author�s knowl�
edge� in �	��

�� We make a few remarks about the open question of whether
or not the exponent ��� in the Kakeya problem can be improved� For
example� let E be a compact set containing a unit line segment �e in
every direction e� Is its Minkowski dimension �i�e�

�� lim sup
���

log jE�j
log �

�

E� � ��neighborhood of E� strictly greater than ���& Theorem � shows
that the enemy is the case where the lines �stick together� in the sense
that d��e� �e�� 	 je � e�j up to ��� factors� The reason is that if this
condition fails in too dramatic a way� then the sets E� will contain
not just one but many ��tubes per direction and Theorem � will be
applicable with a large value of m� For example� one can reduce in this
way to the case where the following condition ��� is satis
ed�

��� For any 
 �  there is a sequence of � going to  such that the
set �e� e�� � S� � S� � d��e� �e�� � � has measure greater or equal than
�� ���

At the opposite extreme� if the inequality d��e� �e�� 	 je� e�j holds
in the strict sense that

��� d��e� �e�� � C je� e�j �

for all e and e� then it is easy to show using Rademacher�s theorem on
almost everywhere di#erentiability of Lipschitz functions �e�g� ���� that
E will have positive measure�
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We indicate the proof �in Rn � assuming that for each e� E contains
a segment of �e with length 	 which intersects the plane xn � � only
minor modi
cations are required to treat the general case� First let
U � R

n be open and let F � U �� R
m be any Lipschitz function�

We claim that if 
 �  then there are a subset Y � U with positive
measure� and a linear map T � Rn �� R

m such that

jF �x�� F �y�� T �x� y�j � 
 jx� yj �

for all x � Y � y � Y � Namely� let DF �a� be the derivative of F at a
given by Rademacher�s theorem� By the Lusin and Egoro# theorems
there is a positive measure subset Y� such that DF �a� is continuous on
Y� as a function of a� and furthermore the di#erence quotients

jF �x�� F �a��DF �a��x� a�j
jx� aj

converge to  as x �� a uniformly over a � Y�� Let � be small enough
and let a be a point of density of Y�� Let Y � Y� � D�a� ��� Let
T � DF �a�� Then for x� y � Y � the properties of Y� imply

jF �x�� F �y�� T �x� y�j
� jF �x�� F �y��DF �y��x� y�j� jDF �y��x� y�� T �x� y�j
� 
 jx� yj �

as claimed�
Now parametrize �an appropriate subset of� projective space via

e � ��� 	�� � � R
n�� and de
ne a family of maps Ft from a suitable

subset of Rn�� to Rn�� by letting �Ft���� t� be the intersection point
between �e and the plane xn � t� Note that Ft��� � F���� � t �� F� is
Lipschitz� so we can choose Y and a linear map T so that Y has positive
measure and

jF����� F����� T �� � ��j  
 j� � �j � �� � � Y �

where 
 is to be determined� We then have

jFt���� Ft���� �t I � T � �� � ��j � 
 j� � �j �

when �� � � Y � where I is the identity map� Hence Ft is bilipschitz on Y
provided that 
 k�t I�T ���k  	� which will be the case for all t except
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a set of measure less or equal than C 
���n���� We are free to choose 

small� so the result follows using the fact that a bilipshitz image of a set
of positive measure has positive measure and then Fubini�s theorem�

However� it appears di�cult to replace the strict sense condition
��� with a similar condition �e�g� ���� which is weak enough to be
useful� even if one asks only for the weaker conclusion dim�E� � ����
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H�older quasicontinuity of Sobolev

functions on metric spaces

Piotr Haj�lasz and Juha Kinnunen

Abstract� We prove that every Sobolev function de�ned on a metric
space coincides with a H�older continuous function outside a set of small
Hausdor� content or capacity� Moreover� the H�older continuous func�
tion can be chosen so that it approximates the given function in the
Sobolev norm� This is a generalization of a result of Mal�y 	Ma
� to the
Sobolev spaces on metric spaces 	H
��

�� Introduction�

The classical Luzin theorem asserts that every measurable function
is continuous if it is restricted to the complement of a set of arbitrary
small measure� If the function is more regular� then it is natural to
expect that Luzin�s theorem can be re�ned� One important class of
functions are the Sobolev functions� It is known that every Sobolev
function� after a rede�nition on a set of measure zero� is continuous
when restricted to the complement of a set of arbitrary small capacity�
This is a capacitary version of Luzin�s theorem� On the other hand� if
we restrict the function to the complement of a slightly larger set� we ob�
tain more regularity� see 	BH�� 	CZ�� 	Li�� 	MZ� and 	Z�� We are interested
in the H�older continuity of the restriction� Indeed� a Sobolev function
coincides with a H�older continuous function on the complement of a set
of arbitrary small capacity� Moreover� the H�older continuous function
can be chosen so that it belongs to the Sobolev space and it approxi�

���
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mates the given function in the Sobolev norm� This phenomenon was
�rst observed by Mal�y 	Ma
� in the Euclidean case� Mal�y�s result plays
a crucial role in the re�ned versions of the change of variable formula
for the Sobolev functions� see 	Ma� and 	MM��

It is possible to de�ne the �rst order Sobolev space and to develop
a capacity theory on an arbitrary metric space which is equipped with
a doubling measure� see 	H
� and 	KM�� Hence all notions in re�ned
Luzin�s and Mal�y�s theorems make sense also in the metric context�
Indeed� the capacitary version of Luzin�s theorem holds� see 	KM�� The
purpose of this paper is to generalize Mal�y�s result to metric spaces�
As a by�product we obtain a new proof for the Euclidean case� Mal�y�s
argument is based on the representation of the Sobolev functions by the
Bessel potentials and it does not generalize to the metric setting� Our
approach is based on pointwise estimates for the Sobolev functions� In
fact� we obtain slightly better estimates for the exponent of the H�older
continuity and the size of the exceptional set than Mal�y�

The fundamental fact in our proof is that the oscillation of a
Sobolev function is controlled pointwise by the fractional maximal func�
tion of the derivative� see 	H�� 	HM� Lemma ��� If the fractional maxi�
mal function is bounded� then the function is H�older continuous� This is
Morrey�s lemma� A generalization of Morrey�s lemma to metric spaces
has been studied in 	MS
�� Their main result follows from our pointwise
estimates�

If the fractional maximal function is not bounded� the function is
H�older continuous when restricted to the set where the maximal func�
tion is small� The classical weak type inequalities give estimates for the
Hausdor� content and for the capacity of the exceptional set� As a con�
sequence� we obtain that� after a rede�nition on a set of measure zero�
a Sobolev function coincides with a H�older continuous function outside
a very small set� The obtained function can be easily extended to the
H�older continuous function on the whole space� The main problem is
to construct the extension so that it belongs to the Sobolev space and
approximates the given function in the Sobolev norm� Instead of using
the McShane extension 	Mc� we use a Whitney type extension� How�
ever� in our case it should be rather called Whitney smoothing� since
instead of extending the function we smooth it in the bad set� The
method of our paper can be generalized to higher order derivatives in
the Euclidean case� see 	BHS��

One of the most important applications of Sobolev spaces on metric
spaces are the Sobolev spaces associated to the vector �elds� If V �
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fX�� X�� � � � � Xkg is a family of vector �elds satisfying H�ormander�s
condition on Rn � and W ��p

V is the closure of C��Rn� in the norm

kfkW ��p
V

�
�
kfkpLp � kXfkpLp

���p
�

where

jXf j �
� kX
i��

jXif j
�
����

�

then W ��p
V is equivalent to the Sobolev space on metric space Rn with

the Carnot�Carath�eodory metric and the Lebesgue measure� This
can be deduced from the Poincar�e inequality of Jerison� see 	CDG��
	J�� 	FLW�� the fact that the Lipschitz functions with respect to the
Carnot�Carath�eodory metric belong to W ��p

V � see 	FSS�� 	GN�� and an
approximation argument similar to that we use in the proof of our main
result� For related results� see 	FHK�� 	FLW
�� 	GN
�� 	HK� and 	Vo��
In this paper we work in general metric spaces and no knowledge in the
theory of vector �elds satisfying H�ormander�s condition is required� For
other papers related to the Sobolev spaces on metric spaces� see 	HeK��
	HM�� 	K�� 	KM�� 	KMc� and 	Se��

The outline of our paper is the following� Section  contains some
results on the maximal functions and measure theory� In Section � we
recall the de�nitions of the Sobolev spaces and the capacity on metric
spaces� We also give two characterizations of Sobolev spaces� The �rst
characterization is in terms of Poincar�e inequalities and the second is a
generalization of a result of Calder�on 	C�� Section � is devoted to study
the set of Lebesgue�s points of a Sobolev function� The main result
�Theorem ���� is presented in Section ��

Our notation is fairly standard� By B�x� r� we denote an open
ball with the center x and the radius r� The symbol �

E
stands for the

characteristic function of the set E� The average value of f over the
ball B�x� r� is denoted by

fB�x�r� �

Z
B�x�r�

f d� �



��B�x� r��

Z
B�x�r�

f d� �

Various positive constants are denoted by c� they may change even on
the same line� The dependence on the parameters is expressed� for
example� by c � c�n� p�� We say that two quantities are comparable�
and denote A � B� if there is a constant c � 
 such that A�c � B � cA�
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�� Measure theory�

In this section we collect some basic results concerning measure
theory and the maximal functions� With minor changes all the results
of this section are standard� see 	Ch�� 	CW�� 	St��

Throughout the paper �X� d� is a metric space and � a non�negative
Borel regular outer measure on X which is �nite on bounded sets� We
also assume that � is doubling in the sense that

��B�x�  r�� � Cd ��B�x� r�� �

whenever x � X and r � �� The constant Cd is called the doubling

constant�
The �rst result states that the doubling condition gives a lower

bound for the growth of the measure of a ball�

Proposition ���� Suppose that � is a doubling measure on �X� d�� If

Y � X is a bounded set� then

��� ��B�x� r�� � � diamY ��n ��Y � rn �

for n � log� Cd� x � Y and � � r � diamY � Here Cd is the doubling

constant of ��

In this paper we keep the triple �X� d� �� �xed and n always refers
to the exponent in ����

Let � � 	 � � and R � �� The fractional maximal function of a
locally integrable function f is de�ned by

M��Rf�x� � sup
��r�R

r�
Z
B�x�r�

jf j d� �

If Y � X� then we denote M��Y � M��diamY � For R � �� we write
M��� � M�� If 	 � �� we obtain the Hardy�Littlewood maximal
function and we write M� � M� By the Hardy�Littlewood maximal
theorem M is bounded in Lp provided 
 � p � �� For p � 
 we have
a weak type inequality�

Proposition ���� Under the above assumptions

���� �
��
x � X � Mf�x� � 


��
�

c



kfkL��X� � 
 � � �



H�older quasicontinuity of Sobolev functions on metric spaces ���

and

���� kMfkLp�X� � c kfkLp�X� � 
 � p � � �

It is easy to verify that the set

E� � fx � X � M�f�x� � 
g � 
 � � �

is open� Next we would like to get some estimates for the size of the
set E�� To this end� recall that the Hausdor� s�content of E � X is
de�ned by

Hs
��E� � inf

n �X
i��

rsi � E �
��
i��

B�xi� ri�
o
�

It is easy to see that Hs
��E� � � if and only if Hs�E� � �� where Hs

denotes the Hausdor� s�measure�
By the standard Vitali covering argument 	CW� p� ��� we obtain

the following weak type inequality for the fractional maximal function�
see 	BZ� Lemma ���� 	St� Theorem �����

Lemma ���� Suppose that f � L��X� and let Y � X be a bounded set

with ��Y � � �� Let n be as in ��� and � � 	 � n� Then

���� Hn��
�

��
x � Y � M��Y f�x� � 


��
�

c




Z
X

jf j d� � 
 � � �

with c � �n��� diamY �n ��Y ����

�� Sobolev space and capacity�

Let u � X �	 	����� be ��measurable� We denote by D�u� the
set of all ��measurable functions g � X �	 	���� such that

���
� ju�x�� u�y�j � d�x� y� �g�x� � g�y�� �

almost everywhere� By saying that inequality ���
� holds almost every�
where we mean that there exists N � X with ��N� � � such that ���
�
holds for every x� y � X nN �
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A function u � Lp�X� belongs to the Sobolev space W ��p�X��

 � p � �� if D�u�
Lp�X� �� �� The space W ��p�X� is endowed with
the norm

���� kukW ��p�X� �
�
kukpLp�X� � kukpL��p�X�

���p
�

where

����� kukL��p�X� � inf
g�D�u�

kgkLp�X� �

With this norm W ��p�X� is a Banach space�
If X � � � R

n is an open bounded domain with a Lipschitz
boundary� d is the Euclidean metric and � is the Lebesgue measure�
then the above de�nition is equivalent to the standard de�nition of the
Sobolev space W ��p���� Moreover� kukL��p � krukLp � see 	H
�� This
explains our notation� D�u� corresponds to the set of the �generalized�
gradients of u�

The above de�nition of the Sobolev space on a metric space is due
to the �rst author 	H
�� If p � 
� then the above metric de�nition in no
longer equivalent to the standard de�nition� see 	H�� For that reason
we exclude p � 
�

We present two characterizations of the Sobolev space on a metric
space� see 	FHK�� 	FLW
�� 	HK�� 	KMc� for related results� To this
end� we need yet another maximal function�

Let � � � �� and R � �� The fractional sharp maximal function

of a locally integrable function f is de�ned by

f���R�x� � sup
��r�R

r��
Z
B�x�r�

jf � fB�x�r�j d� �

If R � � we simply write f�� �x��

Theorem ���� Let 
 � p � �� Then the following three conditions

are equivalent�


� u �W ��p�X��

� u � Lp�X� and there is g � Lp�X�� g � �� such that the Poincar�e

inequality

�����

Z
B�x�r�

ju� uB�x�r�j d� � c r

Z
B�x�r�

g d� �
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holds for every x � X and r � ��

�� u � Lp�X� and u�� � Lp�X��

Moreover� we obtain

kukL��p�X� � inf fkgkLp�X� � g satis�es �����g � ku�� kLp�X� �

Remark� The equivalence of 
� and � has been proved in 	FLW
� and
in the classical Euclidean case the equivalence of 
� and �� can be found
in 	C��

Proof� The implication 
� implies � follows by integrating ���
� twice
over the ball�

We prove � implies ��� The Poincar�e inequality ����� implies that

r��
Z
B�x�r�

ju� uB�x�r�j d� � c

Z
B�x�r�

g d� �

Hence

u�� �x� � cMg�x� �

for every x � X and the claim follows from the Hardy�Littlewood max�
imal theorem �Proposition ����

�� implies 
�� We need the following lemma which� in the Euclidean
case with the Lebesgue measure� has been proved in 	DS� Theorem ����

Lemma ���� Suppose that f � X �	 	����� is locally integrable and

let � � � ��� Then there is a constant c � c��� Cd� such that

����� jf�x�� f�y�j � c d�x� y��
�
f����d�x�y��x� � f����d�x�y��y�

�
�

for almost every x� y � X�

Proof� Let N be the the complement of the set of Lebesgue points
of f in X� Fix x � X n N � � � r � � and denote Bi � B�x� �ir��
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i � �� 
� � � � By Lebesgue�s theorem ��N� � �� see 	CW�� Then

�����

jf�x�� fB�x�r�j �
�X
i��

jfBi��
� fBi

j

�
�X
i��

��Bi�

��Bi	��

Z
Bi

jf � fBi
j d�

� c
�X
i��

��ir����ir���
Z
Bi

jf � fBi
j d�

� c r�f���r�x� �

Let y � B�x� r� nN � Then B�x� r� � B�y�  r� and we obtain

�����

jf�y�� fB�x�r�j � jf�y�� fB�y�� r�j� jfB�y�� r� � fB�x�r�j

� c r�f����r�y� �

Z
B�x�r�

jf � fB�y�� r�j d�

� c r�f����r�y� � c

Z
B�y��r�

jf � fB�y�� r�j d�

� c r�f����r�y� �

Let x� y � X n N � x �� y and r �  d�x� y�� Then x� y � B�x� r� and
hence ����� and ����� imply that

jf�x�� f�y�j � jf�x�� fB�x�r�j� jf�y�� fB�x�r�j

� c d�x� y��
�
f����d�x�y��x� � f����d�x�y��y�

�
�

This completes the proof�

Now the last implication in Theorem ��� follows immediately from
Lemma ��� and the de�nition of the Sobolev space� Moreover� the
equivalence of the norms follows from the proof� This completes the
proof of Theorem ����

Now we state some useful inequalities for the future reference�

Corollary ���	� Let u � W ��p�X�� g � D�u� 
 Lp�X� and � � 	 � 
�
Then

���

� u�����R�x� � cM��R g�x� �
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for every R � � and x � X� Moreover� we have

���
� ju�x�� u�y�j � c d�x� y����
�
M���d�x�y�g�x� �M���d�x�y�g�y�

�
�

for almost every x� y � X�

Proof� The �rst assertion follows from the Poincar�e inequality� since

r���
Z
B�x�r�

ju� uB�x�r�j d� � c r�
Z
B�x�r�

g d� �

for every x � X and � � r � R� Inequality ���

� and Lemma ���
imply ���
��

There is a natural capacity in the Sobolev space W ��p�X�� The
norm ���� enables us to de�ne the Sobolev p�capacity of an arbitrary
set E � X by

���
�� Cp�E� � inf
u�A�E�

kukpW ��p�X� �

where the in�mum is taken over all admissible functions

A�E� �
�
u �W ��p�X� � u � 
 on an open neighbourhood of E

�
�

This capacity is a monotone and a countably subadditive set function�
The rudiments of the capacity theory on metric spaces were developed
by the second author with O� Martio in 	KM�� By 	KM� Theorem ����
there is a constant c � c�p� Cd� such that

���
�� Cp�B�x� r�� � c r�p��B�x� r�� � � � r � 
 �

Using the same standard covering argument as in the proof of Lemma
�� together with ���
�� and the assumption that the measure is dou�
bling we obtain the following capacitary version of Lemma ���

Lemma ���
� Suppose that f � L��X� and let 
 � 	 � �� Then

there is c � c�Cd� 	� such that

���
�� C�

��
x � X � M���f�x� � 


��
�

c



kfkL��X� � 
 � � �
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�� Lebesgue points�

A Sobolev function u � W ��p�X� is de�ned only up to a set of
measure zero� but we de�ne u everywhere in X by

���
� eu�x� � lim sup
r��

Z
B�x�r�

u d� �

By Lebesgue�s theorem not only the limit superior but the limit exists
and equals to u almost everywhere� Hence eu coincides with u almost
everywhere and gives the same element in W ��p�X�� We identify u witheu and omit the tilde in notation�

We recall that x � X is Lebesgue�s point for u ifZ
B�x�r�

ju�y�� u�x�j d��y� �	 �

as r �	 �� Lebesgue�s theorem states that almost all points of a
L�loc�X� function are Lebesgue points� see 	CW�� If a function belongs
to the classical Sobolev space� then we can improve the result and prove
that the complement of the set of the Lebesgue points has has small
Hausdor� dimension� see 	FZ�� 	Z�� 	EG�� We generalize this result to
the Sobolev spaces on metric spaces�

By ����� we have for � � �

����

Z
B�x�r�

ju�y�� u�x�j d��y�

�

Z
B�x�r�

ju�y�� uB�x�r�j d��y� � juB�x�r� � u�x�j

� c r�u���r�x� �

Letting r	 � we see that x is Lebesgue�s point for u provided u�����x� �
��

We want to estimate the size of the set of the Lebesgue points of
u � W ��p�X�� We begin with studying the case p � n� where n is the
exponent in ����

Proposition ���� Suppose that u � W ��p�X� with n � p � �� Then

u is H�older continuous on every bounded set in X� In particular� every

point is a Lebesgue point of u�
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Proof� Let g � D�u� 
 Lp�X�� It follows from the H�older inequality
and ��� that Mn�p g is bounded in every ball� Hence ���
� implies
that u is H�older continuous with the exponent 
� n�p in every ball�

Then we consider the more interesting case 
 � p � n�

Theorem ���� Suppose that u � W ��p�X�� g � D�u� 
 Lp�X� and


 � p � n� Let � � 	 � 
� Then every point for which M���g�x� ��
is Lebesgue�s point for u� Moreover� the Hausdor� dimension of the

complement of the set of the Lebesgue points of u is less than or equal

to n� p�

Proof� Inequalities ���� and ���

� imply that

Z
B�x�r�

ju�y�� u�x�j d��y� � c r��� u�������x� � c r���M���g�x� �

when � � r � 
� The term on the right side goes to zero as r �	 � if
M���g�x� ��� This shows that x is the Lebesgue point for u�

The set of the non�Lebesgue points is contained in

E� � fx � X � M���g�x� � �g �

Note that

����� M���g�x� � �M�p��g
p�x����p �

Let 
 � q � p� Choose 	 � q�p� Inequality ����� and the weak type
estimate ���� yield

Hn�q
�

�
E� 
B�y� 
�

�
� Hn�q

�

��
x � B�y� 
� � Mq��g

p�x� � 
p
��

� c 
�p
Z
X

gp d� ������

for every 
 � �� Letting 
 �	� we see that

Hn�q
� �E� 
 B�y� 
�� � � �

for every ball B�y� 
� and hence Hn�q�E�� � � for any q � p� This
gives the desired estimate for the Haudor� dimension� The proof is
complete�
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� H�older quasicontinuity and approximation of Sobolev func�

tions�

In this section we assume that u coincides with the representativeeu de�ned pointwise by ���
�� It follows from the proof of Lemma ���
that for every � � � � 
 the inequality

���
� ju�x�� u�y�j � c d�x� y��
�
u����d�x�y��x� � u����d�x�y��y�

�
�

holds for every x �� y� It may happen that the left hand side of ���
�
is of the inde�nite form like j� � �j� then we adopt the convention
j� ��j � �� In any case inequality ���
� remains valid since u�x� �

�� implies that u���R�x� � � for every R � ��

In particular� if ku�� k� � �� then ���
� shows that u is H�older
continuous� This is the content of Morrey�s lemma� see 	MS
� Theo�
rem ���

Denote

���� E� � fx � X � u�� �x� � 
g � 
 � � �

Using ���
� we see that ujXnE�
is H�older continuous with the exponent

�� We can extend this function to a H�older continuous function on X
using the McShane extension

u�x� � inf
�
u�y� � 
 d�x� y�� � y � X nE�

�
�

for every x � X� see 	Mc�� However� this does not guarantee that the
extended function belongs to the Sobolev space W ��p�X� nor that it is
close to the original function in the Sobolev norm� For that we need a
Whitney type extension� In fact� we do not extend the function from
the set X n E�� but we smooth the function u outside that set leaving
the values of u on X nE� unchanged� Thus our construction should be
called the Whitney smoothing�

Now we are ready for the main result of the paper�

Theorem 
��� Suppose that u �W ��p�X� is de�ned pointwise by ���
��

 � p � n and let � � � � 
� Then for every  � � there is a function

w and an open set O such that


� u � w everywhere in X nO�

� w � W ��p�X�� and w is H�older continuous with the exponent �
on every bounded set in X�
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�� ku� wkW ��p�X� � �

�� H
n������p
� �O� � �

Proof� First suppose that the support of u � W ��p�X� is contained
in a ball

supp u � B�x�� 
� �

for some x� � X� The general case follows from a localization argument�
Various constants c that appear in the proof do not depend on 
�

Note that there is 
� � � such that for every r � 
 and x � X we
have

����� r��
Z
B�x�r�

ju� uB�x�r�j d� � 
� �

and hence E� � B�x�� � when 
 � 
�� Indeed� if the term on the left
hand side of ����� is positive then B�x� r� 
B�x�� 
� �� �� Thus by the
doubling property we have

��B�x� r�� � c ��B�x�� 
�� � � �

for r � 
 and estimate ����� follows easily�
It is easy to verify that the set E� de�ned by ���� is open�
Let g � D�u� 
 Lp�X�� If x � E� and 
 � 
�� by ������ ���

� and

the H�older inequality we obtain

����� u�� �x� � u�����x� � c
�
M�����p�� g

p�x�
���p

� c
�
Mgp�x�

���p
�

The weak type estimate ���� shows that

����� ��E�� � �
��
x � X � Mgp�x� � c
p

��
� c 
�p

Z
X

gp d� �� �

for every 
 � 
��
We recall the following Whitney type covering theorem 	MS� Lem�

ma ��� and 	CW��

Lemma 
�� Let O � X be an open set such that O �� X and ��O� �
�� For given C � 
� let r�x� � dist �x�X n O���C�� Then there is

N � 
 and a sequence fxig such that� denoting r�xi� � ri� the following
properties are true �
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� The balls B�xi� ri��� are pairwise disjoint�

�
S
i�I B�xi� ri� � O�

�� B�xi� C ri� � O for every i � 
� � � � �

�� For every i� x � B�xi� C ri� implies that

C ri � dist �x�X nO� � �C ri �

�� For every i� there is yi � X nO such that d�xi� yi� � �C ri�

��
P�

i�� �B�xi�Cri�
� N �

The previous covering lemma enables us to construct a partition
of unity� see 	MS� Lemma �
�� or 	Se� Lemma C��
�� Let B�xi� ri��
i � 
� � � � � � be the Whitney covering of E� constructed in Lemma
��� with C � �� Then there are non�negative functions f�ig

�
i�� such

that supp�i � B�xi�  ri�� � � �i�x� � 
 for every x � X� every �i is
Lipschitz with the constant c�ri and

�����
�X
i��

�i�x� � �
E�

�x� � x � X �

We de�ne the Whitney smoothing of u by

����� w�x� �

�	

	�
u�x� � x � X nE� �

�X
i��

�i�x�uB�xi��ri� � x � E� �

Note that since E� � B�x�� � for 
 � 
�� we have suppw � B�x�� ��
We prove the theorem with O � E� for su�ciently large 
�

Claim 
� is a trivial consequence of the de�nition of w�

Claim �� First we show that w is H�older continuous with the
exponent ��

Suppose that x � E� and choose x � X n E� so that d�x� x� �
 dist �x�X nE��� Then by ����� and ����� we have

���
��

jw�x�� w�x�j �
��� �X
i��

�i�x�
�
u�x�� uB�xi��ri�

����
�
X
i�Ix

��u�x�� uB�xi��ri�
�� �
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where i � Ix if and only if x � supp�i� A straightforward calculation�
using the properties of the partition of unity� shows that for every i � Ix
we have B�xi�  ri� � B�x� �� ri�� Hence the argument similar to that
in the proof of ����� gives

���

�
��u�x�� uB�xi�� ri�

�� � c r�i u
�
� �x� �

Since the overlap of the balls B�xi�  ri� is uniformly bounded by Lemma
������� we see that the cardinality of Ix is uniformly bounded� By
Lemma ������ we see that ri� i � Ix� is comparable to dist�x� x�� Using

���
��� ���

� and recalling that u�� �x� � 
 for x � X nE�� we arrive at

���
� jw�x�� w�x�j � c d�x� x��u�� �x� � c 
 d�x� x�� �

We show that
jw�x�� w�y�j � c 
 d�x� y�� �

for all x� y � X� We divide the proof into several cases�
First suppose that x� y � E� and let

���
�� � � min
�

dist �x�X nE��� dist �y�X nE��
�
�

If d�x� y� � �� then ���
�� the fact that x� y � X nE� and ���
� imply

jw�x�� w�y�j � jw�x�� w�x�j� ju�x�� u�y�j� jw�y�� w�y�j

� c 

�
d�x� x�� � d�x� y�� � d�y� y��

�
� c 
 d�x� y�� �

Suppose then that x� y � E� with d�x� y� � �� By ����� we have

�X
i��

��i�x�� �i�y�� � � �

Hence we obtain

���
��

jw�x�� w�y�j �
��� �X
i��

�
�i�x�uB�xi��ri� � �i�y�uB�xi��ri�

����
�
��� �X
i��

�
�i�x�� �i�y�

��
u�x�� uB�xi��ri�

����
� c d�x� y�

X
i�Ix�Iy

r��i
��u�x�� uB�xi��ri�

���
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Using the same argument as in ���

� we see that

jw�x�� w�y�j � c d�x� y��
X

i�Ix�Iy

d�x� y����

r���i

u�� �x� � c 
 d�x� y�� �

The last inequality follows from the fact that ri� i � Ix  Iy� is compa�
rable to ��

If x� y � X n E�� then the claim follows from ���
�� If x � E� and
y � X nE�� then

jw�x�� w�y�j � jw�x�� w�x�j� ju�x�� u�y�j

and the claim follows from ���
� and ���
�� This proves the H�older
continuity of w�

Then we prove that w � W ��p�X�� To this end� it su�ces to
show that w � Lp�X� and that for g � D�u� 
 Lp�X� we have Mg �
D�w� 
 Lp�X��

First we observe that

���
��

Z
E�

jwjp d� � c
�X
i��

Z
B�xi��ri�

juB�xi��ri�j
p d� � c

Z
E�

jujp d� �

In both inequalities we applied the uniform bound for the overlapping
number of the balls B�xi�  ri� � E� �Lemma ������ and �������� Since
w�x� � u�x� for every x � X nE�� we see that w � Lp�X��

Let g � D�u� 
 Lp�X�� Then for almost every x� y � X n E� we
have

jw�x�� w�y�j � ju�x�� u�y�j � d�x� y� �g�x� � g�y�� �

For almost every x� y � E� with d�x� y� � � �cf� ���
��� the calculation
as in ���
�� gives

���
�� jw�x�� w�y�j � c d�x� y�
X

i�Ix�Iy

r��i
��u�x�� uB�xi��ri�

�� �
Since d�x� y� is small enough� we have B�xi�  ri� � B�x� 
�� ri� when�
ever i � Ix  Iy� Then by the Poincar�e inequality and the doubling
condition we obtain

���
��
��u�x�� uB�xi��ri�

�� � c riMg�x� �
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Since the cardinality of Ix  Iy is bounded� by ���
�� we obtain

jw�x�� w�y�j � c d�x� y�Mg�x� �

For almost every x� y � E� with d�x� y� � �� using the same argument
as in ���
��� we have

jw�x�� w�y�j �
��� �X
i��

�
�i�x�

�
uB�xi��ri� � u�x�

�
� �i�y�

�
uB�xi��ri� � u�y�

��
� �u�x�� u�y��

���
�
X
i�Ix

��u�x�� uB�xi��ri�
���

X
i�Iy

��u�y�� uB�xi��ri�
��

� ju�x�� u�y�j

� c dist �x�X nE��Mg�x� � c dist�y�X nE��Mg�y�

� d�x� y� �g�x� � g�y��

� c d�x� y� �Mg�x� �Mg�y�� �

If either x � X n E� or y � X n E�� then the proof is similar� We
conclude that

���
�� jw�x�� w�y�j � c d�x� y� �Mg�x� �Mg�y�� �

for almost every x� y � X� By the Hardy�Littlewood theorem �Propo�
sition ��� we obtain Mg � Lp�X�� This shows that u �W ��p�X��

Claim ��� Then we prove that w �	 u in W ��p�X� as 
 �	 ��
Since ��E�� �	 � as 
 �	 �� we conclude using inequalities ���
��
and ����� that ku�wkLp�X� �	 � as 
 �	�� Now we take care about
the �gradient� estimates�

Let g � D�u� 
 Lp�X�� Inequalities ���
�� and ���
�� imply that
for a suitable constant c the function g� � c �Mg��

E�
satis�es g� �

D�u�w�
Lp�X�� Since kg�kLp�X� �	 �� as 
 �	 � we conclude that
ku� wkL��p�X� �	 � as 
 �	��

Claim ��� The claim follows from Lemma �� and the fact that for

 � 
� we have

���
�� E� �
�
x � B�x�� � � M�����p��g

p�x� � c
p
�
�
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for some c � �� see ���� and ������ This completes the proof in the
case when the support of u lies in a ball�

The case of general u � W ��p�X� will be deduced from the case
when u has the support in a ball via a partition of unity� First we need
a lemma which shows that the multiplication by a bounded Lipschitz
function is a bounded operator in the Sobolev norm� The following
lemma is in some sense a generalization of the Leibniz di�erentiation
rule�

Lemma 
��	� Let u �W ��p�X� and � be a bounded Lipschitz function�

Then u� � W ��p�X�� Moreover� if L is a Lipschitz constant of � and

supp� � K� then�
gk�k� � Ljuj

�
�
K
� D�u�� 
 Lp�X� �

for every g � D�u� 
 Lp�X��

Proof� The triangle inequality implies that

ju�x���x�� u�y���y�j � d�x� y�
��
g�x� � g�y�

�
j��x�j� Lju�y�j

�
and

ju�x���x�� u�y���y�j � d�x� y�
��
g�x� � g�y�

�
j��y�j� Lju�x�j

�
�

Now it su�ces to consider four easy cases depending on whether each
of the points x� y belongs to K or not� This completes the proof�

Now we are ready to complete the proof of Theorem ���� Let
B�xi� 
���� i � 
� � � � � � be a maximal family of pairwise disjoint balls
in X� Then by maximality X �

S�
i��B�xi� 
��� Let f�ig

�
i�� be a

partition of unity such that supp�i � B�xi� 
�� � � �i�x� � 
 for every
x � X�

�X
i��

�i�x� � 
 �

for every x � X� and �i� i � 
� � � � � � are Lipschitz continuous with the
same Lipschitz constant�

Suppose that u �W ��p�X�� Then

u�x� �
�X
i��

u�i�x� �
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for every x � X� Lemma ��� implies that the series converges also in
the Sobolev norm� Let  � �� Clearly supp u�i � B�xi� 
�� i � 
� � � � �
Let wi � W ��p�X�� i � 
� � � � � � be a H�older continuous function with
the exponent � such that

Hn������p
�

��
x � X � wi�x� �� u�i�x�

��
� �i  �wi � u�i


W ��p�X�

� �i �

and
suppwi � B�xi� � �

Then it is easy to see that

w �
�X
i��

wi

has the desired properties� The proof of Theorem ��� is complete�

Remarks ����� 
� The case � � 
 of Theorem ��� has been previously
proved in 	H
�� This case is much easier� since it su�ces to use the
McShane extension 	Mc�� Indeed� a locally Lipschitz function belongs
to the Sobolev space W ��p�X� by the de�nition�

� Using Lemma ��
� and ���
�� we see that estimate ��� in The�
orem ��� may be replaced by

C�����p�O� �  �

provided � � 
� 
�p�

�� If the measure is Ahlfors	David regular� which means that there
are n � � and c � 
 so that

���� c�� rn � ��B�x� r�� � c rn � x � X � � � r � diam �X� �

then the function w in Theorem ��� can be chosen to be globally H�older
continuous on X� Indeed� then the boundedness assumption in Lemma
�� is not needed� In addition� observe that we do not require that the
space is bounded in �����
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Subnormal operators of �nite

type II� Structure theorems

Dmitry V� Yakubovich

Abstract� This paper concerns pure subnormal operators with �nite
rank self�commutator� which we call subnormal operators of �nite type�
We analyze Xia�s theory of these operators ��	
����
 and give its alterna�
tive exposition� Our exposition is based on the explicit use of a certain
algebraic curve in C � � which we call the discriminant curve of a subnor�
mal operator� and the approach of dual analytic similarity models of
���
� We give a complete structure result for subnormal operators of ��
nite type� which corrects and strenghtens the formulation that Xia gave
in ���
� Xia claimed that each subnormal operator of �nite type is uni�
tarily equivalent to the operator of multiplication by z on a weighted
vector H��space over a quadrature Riemann surface� �with a �nite
rank perturbation of the norm�� We explain how this formulation can
be corrected and show that� conversely� every quadrature Riemann
surface� gives rise to a family of subnormal operators� We prove that
this family is parametrized by the so�called characters� As a departing
point of our study� we formulate a kind of scattering scheme for normal
operators� which includes Xia�s model as a particular case�

�� Introduction�

This paper is devoted to an alternative exposition of some aspects
of Xia�s theory of subnormal operators from a di�erent viewpoint� We
make use of the results of ���
 and the approach of ���
 and give new

���
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results and new connections� The ideas of Xia are exploited much
throughout the paper� but our exposition is independent�

We develop a scattering scheme for normal operators� whose par�
ticular case is Xia�s model� explain the role of the discriminant curve
and the involution on it� and prove a complete structure result� which
gives a two�sided connection between subnormal operators of �nite type
and real algebraic curves of a certain class�

The structure theorem we obtain in this paper allows one to prove
an interesting relationship between subnormal operators of �nite type
and a certain class of vector analytic Toeplitz operators� This relation�
ship gives rise to a new characterization of quadrature domains� These
results will be presented elsewhere�

Let H be a Hilbert space and L�H� the space of bounded linear
operators on H� An operator S � L�H� is called subnormal if there is
a Hilbert space K� K � H and a normal operator N � L�K� such that
NH � H and S � N jH� S is called pure if it has no nonzero reducing
subspace on which it is normal� We will say that S is of �nite type if it
is pure and rank �S�� S
 �� �here �S�� S
 � S�S � SS���

Let S be pure subnormal� and put

���	�

M � closRange �S�� S
 �

C � �S�� S
jM �

� � �S�jM�� �

Xia has shown in ��	
 that M is invariant for S� and that the pair
of operators C� � on M completely determines S up to the unitary
equivalence� Operators C� � play an essential role in Xia�s model�
For the case of a subnormal operator of �nite type� the set of matrix
parameters �C��� has been described completely in ���
� The answer
was formulated in terms of the algebraic curve

����� � �
�
�z� w� � det

�
C � �w � ��� �z � ��

�
� �

�
�

If C� � correspond to a subnormal operator S� then � is called the

discriminant curve of S�
Here we de�ne a certain class of algebraic curves in C � � which we

call admissible separated curves� An algebraic curve � is in this class
if it has a prescribed behavior at in�nity and the real linear manifold
w � �z divides each of its irreducible components into two connected
parts� For such curve �� there is a canonical way to de�ne its halves�
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��� ��� Let b� be the blow�up of �� Each connected component of b�
is a compact Riemann surface� obtained from an irreducible component
of � by deleting its singular points and then adding a �nite number of
ideal� points �		
�

For any admissible separated algebraic curve b� and a matrix�
valued function � on � b�� with integrable log k�k� log k���k� we intro�

duce the weighted Hardy class H��b������ We show that the operator

of multiplication by the variable z on H��b����� is subnormal of �nite
type and that its discriminant curve is �� �We call such subnormal op�
erators simple�� We deduce from this fact that an algebraic curve is the
nondegenerate part of the discriminant curve of a subnormal operator
of �nite type if and only if this curve is admissible and separated�

The main structure result we get shows that any subnormal op�
erator of �nite type is obtained from a simple subnormal operator by
glueing� �nitely many points of b�� and then performing a �nite rank
perturbation of the Hilbert space structure� Conversely� any such pro�
cedure gives a subnormal operator of �nite type�

A criterion for unitary equivalence of subnormal operators of �nite
type is given� Roughly speaking� it consists in equality of certain char�
acters �homeomorphisms of fundamental groups of the components ofb�� into suitable groups of unitary matrices�� This criterion general�
izes a result by McCarthy and Yang �	�
� who considered the rationally
cyclic case�

In order to understand better Xia�s model� in sections 	�� we in�
troduce its generalization� It has an operator theory face and a complex
analysis face� and we study them separately�

The operator theory part of the construction has the form of a
scattering type scheme for normal operators� We say that a tuple
�N�K�H �� H�M� is a scattering tuple if K is a Hilbert space� H �� H� M
are its subspaces� the operator N � K �� K is similar to a normal op�
erator� a direct sum decomposition K � H � uH holds� and NH � H�
NH � � H � � M � M � H� dimM � �� With each such tuple we
associate the operator S � N jH�

To formalize the complex analysis context� we introduce what we
call mosaic tuples� A mosaic tuple consists of three matrix�valued func�
tions and a scalar measure� interrelated in a certain way� Each mosaic
tuple gives rise to a projection�valued mosaic � and serves as a pre�
requisite for de�ning functional model spaces� which consist of analytic
and antianalytic M �valued functions on C n ��N�� The conclusion of
sections 	�� is that the two settings are equivalent� to each mosaic tu�
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ple corresponds a unique scattering tuple� and vice versa� In a sense�
the mosaic tuple plays the role of the characteristic function in these
constructions� The consideration of a generalized Xia�s model has the
advantage that one can understand well the freedom in choosing pa�
rameters of the mosaic tuple �see Section ��� The class of operators
S which one gets in this way is much more general than the class of
subnormal operators of �nite type� For instance� the essential spectrum
of a subnormal operator of �nite type always lies on an algebraic curve�
whereas the essential spectrum of an operator of the type considered in
sections 	�� can be any reasonable �nite union of piecewise C��smooth
curves�

In sections 	��� the ideas and approach of dual bundle shift models
���
 are used� The connection with dual bundle shift models is explained
in Section �� These models have been used in ���
 for studying Toeplitz
operators and in ���
 to study hyponormal operators� The results of
Section � are not used in the sequel�

Then we use the scattering scheme of sections 	�� to study Xia�s
original model� We show how the properties H � � H�� M � �S�� S
H�
which distinguish it� are connected with the existence of the antianalytic
involution on b�� One of the outcomes of our exposition is a concrete
explicit construction of a subnormal S of �nite type from matrices C
and �� if it exists�

The proof of the structure results we give consists in two reduc�
tions �whose idea is due to Xia�� First we replace the mosaic model
space E���� of functions on C n ��N� by a space of cross�sections of

a certain analytic bundle over b��� Then� after trivializing this bun�
dle and characterizing the space of its cross�sections �Section 	��� we
obtain our main structure results in Section 	�� Necessary facts about
weighted vector Hardy spaces over Riemann surfaces� characters and
related topics are given in Section ��

The relationship between subnormal operators and separated alge�
braic curves is most clear from Lemma 		�� and its proof� The reader
who just wishes to get an idea of the subject can �rst look at this
lemma�

It is worth noticing that subnormal operators of �nite type turn
out to be unexpectedly close to Toeplitz operators with rational and
similar symbols� which were studied in �	�
� ���
� In particular� the
results about spectral multiplicity �	�
 and invariant and hyperinvariant
subspaces ���
 extend to subnormal operators of �nite type�

Algebraic curves and Hardy classes over these curves also have been



Subnormal operators of finite type II� Structure theorems ���

used intensively in works of Alpay� Fedorov� Liv sic� Vinnikov and others
�see ��
� ��
� ��
� �	�
�� It would be interesting to know a connection
between subnormal operators and the subject of those works�

At the end of the paper� an index of mathematical notation is
given�

�� Mosaic tuples and mosaic model spaces�

Suppose we are given a compactly supported positive Borel mea�
sure � on the complex plane� a �nite�dimensional Hilbert space M and
L�M��valued measurable functions F � E � G on C such that E � E� � �
��almost everywhere� Put 	 � supp ��

de��� � E��� d���� �

and

�	�	� p�u� � F �u� E�u�G�u� �

Consider the space

L��e� �
n
f � kfk� �

Z
hE�u� f�u�� f�u�i d��u���

o
�

After factoring by the set of functions f with kfk� � �� L��e� becomes
a Hilbert space� Each element of L��e� has a unique representative f
such that f��� � Range E��� ��almost everywhere� Two functions f � g
are equal in L��e� if and only if Ef � Eg�

In the setting of sections 	��� there will be no loss of generality if
we assume that E is a projection�valued function and F � FE � G � EG�
Then L��e� is the direct integral of the spaces E���M � We choose the
formally more general setting in order to include the original Xia�s
mosaic�

We make the following assumptions�

M	� The function

�	��� ��z� �

Z
�

p�u�

u� z
d��u� � z � C n 	 �

is projection�valued�
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M�� F ����m � L��e� and G���m � L��e� for any m �M � The op�
erators F �u�jE�u�M � G��u�jE�u�M are one�to�one for ��almost every
u�

M�� The family of functions �� � 
���G���m� m � M � 
 � C n 	
and the family of functions ��� � �
���F ����m� m � M � 
 � C n 	 are
complete in L��e��

The function � is piecewise analytic�� that is� it is analytic on
C n 	� We call it a generalized Xia�s mosaic� Since ���� � �� it follows
that � 	 � in the unbounded component of C n 	�

De�ne the Cauchy integral

Kf�z� �

Z
�

f�t�

t� z
d��t� � z � C n 	 �

By �M�� and �M��� the map f 
�� KFEf � f � L��e� is one�to�one� Let
KFEL��e� � fKFEf � f � L��e�g be the image of this map� with the
norm inherited from L��e�� We need also the following assumption�

M�� The operator

�	���
�
P�u

�
�z� � ��z�u�z� � z � C n 	

acts on KFEL��e� and is bounded�

De�nition� We say that �M�F� E � G� �� �� is a mosaic tuple if M	��
M�� hold�

Example� Let M � C
� � � � jdzj on � D � where D � fjzj � 	g�

p�z� � z���� so that ��z� � 	 for jzj � 	 and ��z� � � for jzj  	� Put
E 	 	���� Then F � G have to satisfy F �z�G�z� 	 z on � D � Let P� be
the Riesz projection� that is� the orthogonal projection of L��� D � onto
H�� Then� obviously� P�K � KP�� Therefore M�� holds in this case if
and only if P� extends to a bounded operator on jF jL��d��� that is� if
and only if jF j satis�es the Muckenhoupt condition �A���

So M�� has the sense of a vector Muckenhoupt condition� It implies
that P� is a bounded projection on KFEL��e�� In a recent work ���

by Treil and Volberg� a very explicit form of this condition on � D has
been found�

To construct more general mosaic tuples� one has to start from a
piecewise analytic projection�valued function � and then �nd F � E � G�
� �see Section � below��
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We introduce the following Smirnov type �closed� subspaces of
KFEL��e�� which will be called mosaic model spaces

E���� � P�KFEL
��e� �

�
u � KFEL��e� � u � �u on C n 	

�
�

E�
��	� �� � �I � P��KFEL

��e�

�
�
u � KFEL��e� � u � �	� ��u on C n 	

�
�we use the notation j � j� 	 for the norm and the identity operator on a
�nite�dimensional space��

Functions in E���� and E�
��	� �� are analytic on C n 	 and take

value � at in�nity! moreover� the functions in E���� are identically

zero in the unbounded component of "C n 	� In general� spaces E�����
E�
��	� �� depend on the whole mosaic tuple rather than only on ��

Associated to �	�	� is the factorization

p��u� � G��u� E��u�F ��u� �

Put

Kg�z� �

Z
g�t�

t� z
d��t� � g � G�EL��e�

and KG�EL��e� � fKG�Eg � g � L��e�g� Then

KG�EL��e� �
�
KFEL��e�

��
if we use the pairing

�	��� hKFEf�KG�Egid
def
� hf� gi � f� g � L��e� �

The following fact will be proved later�

Proposition ���� The projection P �� � KG�EL��e� �� KG�EL��e� is
given by �

P ��v
�
�z� � �	� ���z�� v�z� � z � C n 	 �

The subspaces

E
�

��	� ��� � P ��KG
�EL��e�

�
�
u � KG�EL��e� � u � �	� ���u on C n 	

�
�

E
�
���� � �I � P �� �KG

�EL��e�

�
�
u � KG�EL��e� � u � ��u on C n 	

�
�
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are completely analogous to the model spaces E����� E�
��	� ��� Func�

tions in E
�
����� E

�

��	� ��� are antianalytic on C n 	� Since the maps
f 
�� KFEf � f 
�� KG�Ef � f � L��e� are one�to�one� we will regard
the four mosaic model spaces as embedded into L��e��

The most simple case is the above example� where one puts F �z� 	

z� G�z� 	 	� Then E���� � H�� E�
��	 � �� � H�

� �
"C n clos D �

def
�

fz��f�z��� � f � H�g� E
�
���� � �H�� E

�

��	� ��� � �H�
� �"C n clos D ��

De�nition� Subspaces K��E����� K��E�
��	 � �� of FEL��e� and

K
��
E
�
����� K

��
E
�

��	 � ��� of G�EL��e� will be called the spaces of

boundary values of functions in corresponding model classes E�����

E�
��	� ��� E

�
����� E

�

��	� ����

Put

�	��� L�z� � �	� ��z��M � L��z� � ��z�M �

then
L�z�� � ���z�M � L��z�� � �	� ���z��M �

and for each z � C n 	� we have direct sum decompositions

�	��� M � L�z�u L��z� � L�z�� u L��z�� �

Xia uses the notation M�z�� M ��z� instead of L�z�� L��z��
The functions

�	��� �t�m�z� �
��z�� ��t�

z � t
m � ���t�n�z� �

���z�� ���t�

z � t
n �

t � C n 	� m�n �M � will be called the Cauchy reproducing kernels�

Basic facts we need about the model spaces are collected in the
following theorem�

Theorem ���� Let �M�F� E � G� �� �� be a mosaic tuple� Then

a� Direct sum decompositions

KFEL��e� � E�
��	� ��u E���� ��	���

KG�EL��e� � E
�
����u E

�

��	� ��� ��	���
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hold� P� is the parallel projection onto E���� with respect to the decom�

position �	��� and P �� is the parallel projection onto E
�

��	 � ��� with

respect to the decomposition �	����

b� The following equalities with respect to duality �	��� hold for

annihilator spaces

E����� � E
�
���� � E�

��	� ��� � E
�

��	� ��� �

c� The duality �	��� gives rise to the following representations of

duals �
E����

��
� E

�

��	� ��� �
�
E�
��	� ��

��
� E

�
���� �

d� The Cauchy kernels �t�m� t � C n 	� m � M are in KFEL��e�
and generate it� The Cauchy kernels ���t�n generate KG�EL��e�� The

reproducing formulas

�	�	�� hu� ���t�nid � hu�t�� ni � h�t�m� vid � hm� v�t�i �

hold for all t � C n 	� m�n �M � u � KFEL��e�� v � KG�EL��e��

e� Moreover�

�	�		�

span
�
�t�m � t � C n 	� m � L��t�

�
� E�

��	� �� �

span
�
�t�m � t � C n 	� m � L�t�

�
� E���� �

span
�
���t�m � t � C n 	� m � L�t��

�
� E

�

��	� ��� �

span
�
���t�m � t � C n 	� m � L��t��

�
� E

�
���� �

f� The operators Mzu�z� � z u�z� on E���� and Mzu�z� � z u�z�

on E
�
���� are subnormal� Their adjoints are given by

�	�	�� M�
z v�z� � z v�z�� �	� ���z��

�
z v�z�

��
z��

�
�

where v � E
�

��	� ����

�	�	�� M�
z v�z� � z v�z�� �	� ��z��

�
z v�z�

��
z��

�
�

where v � E�
��	� ���
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Proofs of Proposition ��� and Theorem ���� It follows from
�	��� and �	��� that

�	�	��
�t�m�z� �

Z
p�s�m

�s� z� �s� t�
d��s�

� K
�
F ��� E��� �� � t���G���m

�
�z� �

Since G���m � L��e� by M��� it follows that �t�m � KFEL��e�� Sim�
ilarly� ���t�m � KG�EL��e�� Take any v � K � G�EL��e�� then
v � KG�Eg for some g � L��e�� and by �	�	�� we have

h�t�m� vid �
�
�� � t���Gm� g

�
L��e�

�

Z �
E�s� �s� t���G�s�m� g

�
d��s�

� hm� v�t�i �

which gives the second identity in �	�	��� Now suppose that v is orthog�
onal to all reproducing kernels �t�m� Then v�z� 	 � on C n 	� so that
G�Eg 	 �� which implies g 	 � by M��� This shows the completeness
of the �t�m� The �rst equality in �	�	�� and the completeness of the
���t�m are proved in the same way� Thus� d� holds true�

Next� one gets from �	��� that

P��t�m � �t������t��m �

For every v � KG�EL��e� and m �M � t � C n 	�

hm� �P ��v��t�i � h�t�m� P
�
�vi

� h�t������t��m� vi

� hm� �	� ���t�� vi �

which proves Proposition 	�	�
Now assertion a� of Theorem 	�� is a direct consequence of the

de�nitions of the model spaces� Next� it is obvious that

�t�m�z� �
��z�� ��t�

z � t
m � �

�	� ��z��� �	� ��t��

z � t
m

is in E���� if m � L�t� and in E�
��	� �� if m � L��t� �see �	����� Since

f�t�mg generate KFEL��e�� fP��t�mg generate E���� and so on! in this
way we obtain �	�		��
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Next� v � E����� if and only if hv�t��mi � hv� �t�mi � �� t � C n 	
�m � L�t�� if and only if v�t� � L�t�� � ��t��M � t � C n 	� if and only

if v � E
�
����� Similarly� E�

��	��� � E
�

��	������ so that b� has been
checked� The �rst equality in c� is a direct consequence of b� and the
identity

E����� �
�
KFEL��e�

���
E����� �

We obtain that E�
��	� ��� � E

�
���� in the same way�

To prove f�� we observe that

Mz �Mz

��
E����

� P�MzP� �

where
MzKf

def
� K�zf� � f � FEL��e� �

One sees that M�
z �Mz� where

MzKg
def
� K�z g� � g � G�EL��e� �

Since Mz and Mz are normal� Mz and Mz are subnormal� Let v �

Kg � E
�

��	� ���� Then

M�
z v�z� � P ��M�zP

�
�v�z�

�
�
P ��K�z g�

�
�z�

� P ��
�
z v � �	� ���z�� �z v�

��
z�	D�

�
�

which proves �	�	��� One proves �	�	�� in the same way�

�� A scattering type scheme�

Suppose that K is a Hilbert space and N � K �� K is a linear

operator� We will apply our scheme only to situations when ��N�
def
� 	

has empty interior� Suppose that

Sc	� K � H � uH� where NH � H�

Sc�� There exists a �nite�dimensional subspace M of H such that

���	� NH � � H � uM �

We put S � N jH�
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In this section� we discuss tuples �N�K�H �� H�M� subject to Sc	��
Sc��� Two more requirements will be added in Section �� Our aim is
to establish a relationship between tuples �N�K�H �� H�M� and mosaic
tuples from Section 	�

The original Xia�s model corresponds to the case when S � L�H� is
pure subnormal� N � L�K� is its minimal normal extension� H � � H�

and M � �S�� S
H �see Section �����

If R is a linear space and W an open subset in bC � then we denote
by Hol�W� R� the space of all holomorphic functions f �W �� R and
by Hol�W� R� the corresponding space of antiholomorphic functions� If
� � W� then we put Hol��W� R� � ff � Hol��W� R� � f��� � �g and
de�ne Hol��W� R� similarly�

Any linear operator B � K �� R gives rise to an operator WB �
K �� Hol��C n 	�R�� de�ned by

�WBx��z� � B�N � z���x � x � K� z � C n 	 �

The operator WB almost diagonalizes� N in the sense that

����� �WBNx��z� � z �WBx��z��
�
z �WBx��z�

��
z��

�
�

In what follows� we will see how to obtain almost diagonalization�
operators WB with good additional properties with respect to the de�
composition K � H � uH�

We put

L�z� � fm �M � �N � z���m � Hg �

L��z� � fm �M � �N � z���m � H �g �z � C n 	� �

Lemma ���� For each z � C n 	�

M � L�z�u L��z� �

Proof� By the de�nition� L�z��L��z� � �� Take any m �M � and let
�N � z���m � g� � g�� where g� � H� g� � H �� Put lj � �N � z� gj�
then l�� l� � m� and l� � H� l� � H ��M � It follows that l� � m� l� �
�H � �M� �H � M � l� �M � and we are done�
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���� Transform eU �
Let PH � K �� H� PH� � K �� H � be the coordinate projections

with respect to the decomposition given in Sc	�� then PH � PH� � I�
Put

����� A � PHNPH� � K ��M

and de�ne ��z� � K ��M by

����� ��z� � A�N � z��� � z � C n 	 �

We de�ne a transform eU � K �� Hol�C n 	�M� by

����� �eUx��z� � ��z�x � x � K� z � C n 	

�note that eU � WN�A��

Lemma ���� For all z � C n 	� ��z�� � ��z�PH �

Proof� This is a straightforward calculation� Using that

PH��N � z�PH� � PH��N � z� �

we get

��z�� � PHNPH��N � z����I � PH�� �N � z�PH��N � z���

� PHNPH��N � z���

� PHNPH��N � z���PH��N � z�PH��N � z���

� PHNPH��N � z��� � PHNPH��N � z���PH�

� ��z�PH �

Now we de�ne the mosaic �� associated to the tuple �N�K�H ��
H�M�� by

����� ��z� � ��z�jM � M ��M � z � C n 	 �
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It follows from the above lemma that ��z�� � ��z�� that is� ��z� is a
projection� It also follows that

�����

�eUPHx��z� � ��z�
�eUx��z� ��eUPH�x

�
�z� � �	� ��z��

�eUx��z� � x � K �

Set

Hol
�
fLg

�
�
�
u � Hol�C n 	�M� � u�z� � L�z�� z � C n 	

�
�

and de�ne similarly spaces Hol
�
fL�g

�
� Hol

�
fL�g

�
� etc�

Lemma ����

	� If x � H� then eUx � Hol
�
fL�g

�
�

�� If x � H �� then eUx � Hol
�
fLg

�
�

�� The operator eU almost diagonalizes� N � that is� it satis�es

������

�� It diagonalizes S � N jH

�����
�eUSx��z� � z

�eUx��z� � x � H �

Proof� Assertions 	�� �� follow from ������ Equality eU � WN�A implies
��� Since � 	 � in the unbounded connected component of C n 	� it
follows that

�eUNx
�
�z� � z eUx�z�� �z eUx�z����

z��
� z eUx�z� � x � H �

Lemma ���� One has

Ker��z� � L�z� � Range��z� � L��z� �

Proof� Obviously� ��z�m � � for m � L�z�� If m � L��z�� then

��z�m � PHN�N � z���m � PH�N � z��N � z���m � m�
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It follows from Lemma ��	 that ��z� is the parallel projection onto L��z�
that corresponds to the decomposition ������

So the transform eU almost diagonalizes� N and has good prop�
erties with respect to the decomposition K � H � uH �see ������� Now
we shall construct a good almost diagonalization� operator for N��

���� Transform eV �
The decomposition K � H �uH gives rise to a dual decomposition

����� K � H �
� uH� �

where we have put H �
�
def
� H�� H�

def
� H ��� We will consider H �

�� H� as
realizations of the duals to H �� H� respectively� and assume S� to be
de�ned on H�� Then P

�
H� � P �H are parallel projections onto H �

�� H� with
respect to the decomposition ������ Since A� � P �H�N�P �H � we have

���	�� M�
def
� RangeA� � H �

� �

It is easy to see that

N�H �
� � H �

� � N�H� � H� �M� �

Therefore there is a certain symmetry� the tuple �N�K�H �� H�M�
can be replaced by �N�� K�H �

�� H��M��� which has the same proper�
ties Sc	�� Sc��� We break �a little� this symmetry and associate with
�N�� K�H �

�� H��M�� an operator

���		�
�eV y��z� � PM �N� � z���y � y � K � z � C n 	 �

here PM is the orthogonal projection onto M �

Lemma ��	�

i� y � H �
� implies ��V y � V y�

ii� y � H� implies �	� ���V y � V y�

iii� The following intertwining formula holds

�eV N�y�z�
�
�z� � z

�eV y�z���z� � y � H �
� � z � C n 	 �
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Proof� If y � H� and m �M � then �N � z�����z�m � H � by Lemma

���� which gives hm���z��
�eV y��z�i � h�N � z�����z�m� yi � �� so that

ii� holds� Similarly� one checks that
�
	 � ��z��

�eV y�z� 	 � if y � H �
��

which gives i�� Assertion iii� follows from i� in the same way as in
Lemma ����

The following formulas are immediate

���	��
eU�N � 
���m � ���m �

eV �N� � 
���P �H�A�m � �����m � 
 � C n 	� m �M �

�� A model theorem�

In addition to Sc	�� Sc��� let us assume the following conditions�

Sc�� Spaces �N�z���M� z � C n	� as well as spaces �N��z���M��
z � C n 	� are complete in K�

Sc�� N is similar to a normal operator� there exists a scalar mea�
sure d�� a L�M��valued Borel function E��� � E���� and a linear iso�
morphism W � K �� L��e�� where de � E d�� that transforms N into
Mz

���	� WN � MzW �

A condition similar to Sc�� appears in ���
 as a hypothesis� which is
necessary for constructing dual analytic models�

Observe that W ��� � K �� L��e� is an isomorphism that satis�es

����� W ���N� � MzW
��� �

De�nition� We say that �N�K�H �� H�M� is a scattering tuple if Sc	��
Sc�� hold�

Choose �any� L�M��valued matrices F ���� G��� such that

�����
�
Wm

�
��� � G���m�

�
W ���A�m

�
��� � F ����m� m �M �

Next theorem gives a relationship between scattering tuples� mosaic
tuples and corresponding mosaic model spaces�
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Theorem ���� Let �N�K�H �� H�M� be a scattering tuple� Let W �
K �� L��e� be the operator from Sc��� and let F ���� G��� satisfy ������
Then the mosaic �� given by ������ ����� coincides with the function

�	���� and �M�F� E � G� �� �� is a mosaic tuple� The operators ������
���		� admit representations

����� eU � KFEW � eV � KG�EW ��� �

Moreover�

P� � eUPH eU�� ������

heUx� eV yid � hx� yi � x� y � K ������

eUH � � E�
��	� �� � eUH � E���� ������

eV H � � E
�
���� � eV H � E

�

��	� ��� ������

In particular� S � N jH is similar to the model operator

eUS eU�� � �
Mz on E����

�
�

The meaning of this theorem is re#ected in the following commu�
tative diagram�

�����

K

�
KFEL��e�

H �

�
E�

�
��� ��

H

�
E����L��e� ��

�

eU eU eU
W

KG�EL��e� E
�

���� E
�

�
�� � ���L��e� ��

K H �

�
H�

�
eV

�

�

�
�

�

�
�

�

�
�

�

�
�

eV
�
eV

Y

W
���

��

��

��

��

Here
�

�� links spaces that are dual to each other�
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Using the construction of Section �� one can give many examples of
subnormal operators S with dim �S�� S
H ��� for which this theorem
produces a model with �nite�dimensional base� space M �

Proof of Theorem ���� By ���	��������

���	��
W �N � 
���m � �� � 
���G���m�

W ����N� � 
���A�m � �� � 
���F ����m� m �M �

Hence for any m�n �M �

h��
�m�ni � h�N � 
���m�A�ni

� hW �N � 
���m�W ���A�ni

�

Z
hE�z�G�z� �z � 
���m�F ��z�ni d��z�

�
D	Z

p�z� �z � 
��� d��z�


m�n

E
�

This implies that �	��� holds and gives M	��
Let us show that F ���

��Range E��� is one�to�one ��almost every�
where� Suppose it is not so� Then there exists f � L��e�� f � � such
that FEf � �� By ���	��� this implies

hEf�W ����N� � 
���A�miL��e� � � �

for all 
 � C n 	�m � M � Then Sc�� gives that f � RangeW ���� a
contradiction�

The second part of M�� is proved in the same way�
Condition M�� follows from Sc�� and ���	��� Also� ���	�� and ���	��

show that

���		� �eUx��z� � �
KFEWx

�
�z� � z � C n 	 �

whenever x � �N � 
���m� m � M � 
 � C n 	� Therefore ���		� holds
for all x � K� We obtain the second equality in ����� in the same way�
In particular�

eU � K �� KFEL��e� � eV � K �� KG�EL��e�

are isomorphisms�
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Formula ����� follows from ������ Hence M�� holds� Formula �����

is immediate from ����� and �	���� It follows that eV � eU���� and

therefore P �� � eV P �H eV ��� Now ������ ����� follow from the results of
Section 	�

Remark� Any mosaic tuple �M�F� E � G� �� �� can appear as a result
of an application of the above theorem� If su$ces to put K � L��e��
H � E����� H � � E�

��	� �� and to embed M into E���� according to

the rule m 
�� ����m� m �M � Then eU and eV are identity maps�

�� Connection with dual bundle shift models�

Let us recall brie#y the construction of ���
� Let S � H �� H be
a linear operator� and choose an auxiliary operator J � H �� R� where
dimR ��� Assume that

A	� Ker�S � z� � � for all z in C n �ess�S��

A�� J jKer�S� � z� is one�to�one for all z in C n �ess�S��

Then the ultraspectrum F of S is de�ned as the antianalytic family
of spaces F �

�
H�z� � z �� �ess�S�

�
� where H�z� � J Ker�S� � z��

In the setting of ���
� the ultraspectrum is an analytic family be�
cause we used there bilinear products� See ���
 for a reformulation for
sesquilinear products�

Next� let H� be a realization of the dual space to H� Diagonalizing
transforms

U � H �� Hol
�
fH�z��g

�
� V � H� �� Hol�

�
f�H�z����g

�
were de�ned via the formulas

h�Ux��z��mi � hx� hz�mi � h�V x��z�� li � hx� gz�li �

x � H� z � C n �ess�S�� m � H�z�� l � H�z�� �

where fhz�mg� fgz�lg are families of vectors in H�� H� respectively� that
are uniquely determined by the conditions

���	�
hz�m � Ker�S� � z� � Jhz�m � m � H�z� �

�z � S� gz�l � J�l � l � H�z�� �
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The vectors gz�l were called almost�eigenvectors of S� If the families
fhz�mg and fgz�lg are complete� then U and V are one�to�one� It has
been shown in ���
 that U transforms S into the operator of multi�
plication by the independent variable on the model space UH and V
transforms S� into the operator v 
�� z v � �z v���� on the model
space V H�� There is a natural duality between UH and V H�� which is
de�ned in an intrinsic way�

Now let us set up the relationship between the dual analytic models
and the construction of sections 	��� Assume that �N�K�H �� H�M� is
a scattering tuple� and let S � N jH� Put

H� � H �� � R � M � J � PM �

Proposition ���� For this choice of R� J � A	�� A�� are satis�ed� The
ultraspectrum of S is given by

����� H�z� � L�z�� � ���z�M �

It follows that the direct sum decompositions �	��� give rise to
isomorphisms

H�z�� �
�
L�z��

��
� M�L�z� �� L��z� ��

H�z��
��

� L�z�� � M�L�z�� �� L��z�� �

We denote them as iz �
�
L�z��

��
�� L��z�� i��z � L�z�� �� L��z���

Then instead of U � V we can consider the transforms

eU � H �� Hol
�
fL��z�g

�
� eV � H� �� Hol�

�
fL��z��g

�
�

acting by

����� eUx�z� � iz�Ux��z� � eV y�z� � i��z�V y��z� �

Proposition ���� Operators ����� coincide with the transforms eU � eV
from Section ��

To prove Propositions ��	 and ���� we need the following fact�
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Lemma ���� Let z � C n �ess�S�� and put

hz�m � ��z��m� m � L�z�� �

Then Ker�S� � z� �
�
hz�m � m � L�z��

�
and Jhz�m � m� so that

fhz�mg is exactly the family de�ned in ���	��

Proof� For any h � Ker�S� � z�� �N� � z�h � H �
�� which gives

�N� � z�h � PH�

�

N�h � A�h � A�PMh �

Therefore h � ��z��PMh � ��z����z��PMh � hz�m� where m
def
�

��z��PMh � L�z��� Next� by ���	���

�S� � z�hz�m � PH�
�N� � z�hz�m � PH�

A�m � � �

for all m � L�z��� At last� Jhz�m � PM��z��m � ��z��m � m for
m � L�z���

Proof of Propositions ��� and ���� Since S � N jH� A	� holds�
Lemma ��� implies A�� and ������ Therefore

hUx�z��mi � h��z�x�mi � heUx�z��mi �
hV y�z�� li � hy� �z �N���li � heV y�z�� li �

for m � H�z� � L�z��� l � H�z�� � L�z�� This proves Proposition
����

We also obtain the following fact�

Proposition ���� Eigenvectors hz�m of S� �z � C n �ess�S�� are com�

plete� Almost�eigenvectors gz�l of S �z � C n�ess�S�� are also complete�

Proof� eU � H �� E���� and eV � H� �� E
�

��	��
�� are isomorphisms�

Therefore U and V are one�to�one�
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	� How to construct mosaic tuples


The method we give here is not the most general� but it shows how
much freedom we have�

Let 	 be a �nite union of arbitrary C��smooth arcs� intersecting
only in their endpoints� such that C n 	 has at least two connected
components� Denote the components of C n	 by ��� � � � ��t� We assume
for simplicity that for any of the arcs � that compose 	� one has � �
��j � ��k for some j � k� Let � � C n 	 �� L�M� be a projection�
valued analytic function such that � 	 � in the unbounded component
and for each �k� � extends to a continuous function on clos�k� Fix an
orientation of each of the arcs of 	� For a function f in Hol�C n 	�� we
denote by fi� fe its interior and exterior limit values on 	�

Put d� � jdzj
��
�
and p� � �i � �e� Then �	��� holds for

p �
	

��i
p�

dz

jdzj

���
�
�

Assume additionally that rank p is constant on each of the arcs ��j �
��k and that

���	� kp�z�
���Ker p�z���k  �  � �

for z in the interior of these arcs� where � does not depend on z� To
assure that p satis�es this property one can take for �� for instance� a
small perturbation of a locally constant mosaic �� in general position��

Next let us �x a factorization �	�	� of p� By ���	�� we may assume
that F � F��� G� G�� are in L��	!M� and that E is projection�valued�
We will use the Smirnov classes E���j�! we refer to ��
� �	�
 for their
de�nition� The corresponding classes E���j !M� of M �valued functions
are de�ned componentwise�

It is easy to see that

KFEL��e� �
�
u � �jE

���j !M� �

u��� � � and ui���� ue��� � p���M

almost everywhere on 	
�
�

Let u � KFEL��e�� then ui � ue � p�f for some f � L��d�!M��
Therefore �u � �jE���j!M�� and we have

�i ui � �e ue � p�
�
ui � �	� �i�f

�
�
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Hence M�� holds� It follows that all conditions M	��M�� hold�
In this example� E���� does not depend on the choice of factoriza�

tion �	�	� of p� and

E���� �
�
fizu�z�g � u � Mod��F�

�
�

E
�

��	� ��� �
�
fi��zv�z�g � v � Mod���F��

�
�

where Mod��F�� Mod���F�� are� essentially� the Smirnov type model
spaces from ���� Section �
 �one has to de�ne Mod���F�� as a space of
antianalytic functions� see ���
��

We can make the following r%esum%e� If only the family fH�z�g �
f��z��Mg is given� then only the dual model spaces UH� V H� appear
that correspond to the operators S on H and S� on H�� If the whole

mosaic � is given� then all four model spaces E�
��	���� E����� E

�
�����

E
�

��	� ��� appear� They serve to model spaces H �� H� H �
�� H��

�� Xia�s model�

Here we show how to specialize the constructions of sections � and
� in order to obtain Xia�s results�

���� The discriminant surface�

For the reader�s convenience� we remind the de�nitions and results
from ���
 we will need� Some of the notions discussed are re#ected on
the Figure�

Let S � H �� H be a subnormal operator of �nite type and
N � K �� K its minimal normal extension� De�ne M � C� � by ���	�

�		
� Let � be the discriminant curve ������ b� its blow�up �		
 andb� � b���� � �� b�T the decomposition of b� into irreducible components�
In order to re#ect the multiplicities of b�j � sometimes we will writeb� � b�k�

� � � � � � b�kT
T ���
� Each of b�j is a compact Riemann surface�

and we consider them as branched coverings of the z�plane�
Let �� be the set of regular points of �� Then �n�� is �nite� andb� is obtained from �� by adding a �nite number of points� There is a

natural projection of b� onto �� which is identical on ��� The point inbC � that corresponds to a point � � b� will be denoted as
�
z���� w���

�
�

and we write � �
�
z���� w���

�
�
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Let

�C��� �
�
z � C � det

�
C � �w � ��� �z � ��

�
� � � for all w � C

�
�

Figure�

It is immediate that �C��� � ����� For any z� � �C���� b� has
irreducible components z 	 z� and w 	 z�� These irreducible compo�
nents of b� were called degenerate and all other irreducible components
were called nondegenerate� Let b�deg be the union of degenerate com�

ponents of b� and b�ndeg the union of nondegenerate components�
Let

b�� � f� � b�ndeg � j�j � 	g � b�� � f� � b�ndeg � j�j  	g �

where � is a meromorphic function on b�ndeg� de�ned by � � �dz�dw�
The map � � �z� w� 
�� �� � �w� z� is an antianalytic involution on ���

and it naturally extends to b�� It interchanges b�� and b��� because

����� � ������� � � b�ndeg�

The curve b� was called separated if the set b� � f�z� z� � z � C g

divides each nondegenerate component b�k into two connected com�
ponents! then these two connected components are b�k � b�� and b�k �
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b��� In this case� � b�� � f� � b�� � � ��g �we refer to ���
 for more
details��

Let b�� � b�ndeg �
�

���C�
�

�
�z� w� � w 	 �


�

be the algebraic curve obtained from b� by excluding from it the ver�
tical� components z 	 
� A projection�valued meromorphic function
� 
�� Q��� on b�� is de�ned by

Q
�
�z� w�

�
� �

	

��i

Z
�Dw

�
C �z � ���� � �� � u

���
du � z �� ���� �

where Dw is a small disc centered in w such that Dw ��
�
C�z������

��
�
� fwg� We have

���	�

Q����Q���� � � � �� � ��� z���� � z���� �X
z�����

Q��� � I � for all � � C n ���� �

Put
	c � z�� b��� � C � 	 � fz � C � �z� z� � �g �

Then 	c is a union of analytic arcs and 	 n 	c is �nite� It follows from
��	
����
 that

	c � ��N� � 	 �

Orient the curve 	c according to the positive orientation of the boundary
� b�� of b��� One can de�ne a function � on 	c �except for a �nite
number of points� so that dz � i ��z� jdzj and j�j 	 	 almost everywhere
on 	c� Then �

�
�z� z�

�
	 ��z�� almost everywhere on 	c�

Denote by �� the delta�measure at a point � of C � The following
theorem collects some of the results of ���
� ���
�

Theorem A� Let �C��� correspond to a subnormal operator S of �nite

type� Then b� is separated and all Jordan blocks of C �z�������� that

correspond to eigenvalues w such that �z� w� � b�ndeg are trivial for all

but a �nite number of values of z� The involution � 
�� �� maps each

of the nondegenerate components of b� onto itself� The mosaic �����
has a representation

����� ��z� �
X

�z�w��b��

Q
�
�z� w�

�
�
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Moreover� rankQ��� � kj� � � b�j ����

There is a �nite subset R of C and matrices As� s � R such that

de��� � E��� d����� where d� � jdzj
��
�c

�
P

��R �� and

����� E�s� �

�
�

	

��
��s� �s� ����Q

�
�s� �s�

�
� s � 	c nR �

As � s � R �

���� Xia�s model as a particular case of mosaic model spaces�

Let S� N be as in Section ��	� and put H � � H�� M � �S�� S
H�
It is known that S� � N�jH � also is a subnormal operator of �nite
type� Let E��� be the spectral measure of N � and de�ne e by e��� �
PME���jM � In ��	
� Xia considers a unitary operator

W � K �� L��e� �

given by

����� Wf�N�m � f���m� m �M �

where f is any bounded Borel function on ��N�� In our terminology� we
get the situation of sections � and �� where nowH � � H andW ��� � W
satis�es both ���	�� ������

Lemma ���� �K�N�H �� H�M� is a scattering tuple�

Proof� Properties Sc	� and Sc�� are obvious� It is easy to see that
�S�� S
 � A�A� where A is de�ned by ������ Therefore PHNH � �
�S�� S
H� which gives �Sc��� It follows� for instance� from �	�� Chap�
ter �� Theorem 	��
 that spanfSnM � n � �g � H� This implies the
�rst part of Sc��� The second part of Sc�� is proved in ���� Lemma 	
�

Since

WA�m � W �N� � S��m � �� � ���m� m �M �

we see that ����� holds if we put

����� F �z� � z � � � G�z� 	 I �
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So now the model spaces are K�� � ��EL��e� and KEL��e�� We arrive
at the following result� which� besides the representation ����� of �� is
essentially contained in Xia�s works ��	
 and ���
�

Theorem ���� Let S be any subnormal operator of �nite type� De�ne

F � G by ������ �� E� � from Theorem A and W by ������ Then W is

unitary� and all conclusions of Theorem ��	 hold� In particular� � is

alternatively given by

����� ��z� �

Z
�t� �� de�t�

t� z
�

Now we have H �
� � H �� H� � H� so that diagram ����� acquires

the form

�����

K�� ���EL��e�

�

K

E�

�
��� ��

�

H �

E����

�

HL��e��

�
eU eU eU

�

KEL��e� E
�

���� E
�

�
�� � ���

� � �s

� eV eV

W

eV

��

��

��

Xia calls the function eUx�z� the analytic representation of a vector

x � K and the function eV x�z� the dual analytic representation of x�
Theorem ��� gives an explicit construction of a �nite type subnor�

mal operator from matrices C��� The set of possible pairs �C��� has
been completely described in ���
� If a pair �C��� satis�es the criterium
that was given there� de�ne E � de and � from Theorem A and F � G
from ������ Then S will be unitarily equivalent to the operator Mz on
E�����

Looking at diagram ������ one notices an interesting phenomenon�
The operator j � K�� � ��EL��e� �� KEL��e�� given by

����� jK�� � ��h
def
� Kh � h � EL��e� �

is obviously an isometric isomorphism� One sees from diagram �����
that

j � eV eU�� �
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Therefore the multiplication operator

h 
�� �� � ��h

maps isomorphically �K��E
�
���� onto K��E�

��	��� and �K��E
�

��	��
��

onto K��E����� So the multiplication by a linear analytic matrix bino�
mial maps certain spaces of boundary values of antianalytic functions
onto spaces of boundary values of analytic functions�

The subsequent exposition is organized as follows� In Section �� we
replace the model operator Mz on E���� �see Theorem ��	� with the
operator of multiplication by z��� on a function space H�

��X��� which

consists of analytic cross�sections of a bundle X� over b��� In Section
�� we relate the above�described phenomenon with the involution on
�� In Section �� we will give a necessary background on weighted
Hardy classes over Riemann surfaces� These facts will permit us to give
a complete characterization of H�

��X�� and to prove main structure
results�

� External Riemann surface models�

Put

X��� � RangeQ��� � Y ��� � RangeQ���� � � � b�� �

For any component b�j of b��� Xjb�j �Y jb�j� can be considered as an
analytic �antianalytic� vector subbundle of dimension kj of the trivial

bundle b�j�M � where kj is the multiplicity of b�j � This can be deduced
from the following simple fact�

Proposition ��� Let � be a domain in C � 
� � �� k � N� and

r�� � � � � rk � � � M be analytic functions such that r��
�� � � � � rk�
�
are linearly independent for some 
 � �� Then there exist analytic

functions q�� � � � � qk� de�ned in some disk D� with 
� � D � �� such
that spanfr��
�� � � � � rk�
�g � spanfq��
�� � � � � qk�
�g for 
 � D n f
�g
and q��
�� � � � � qk�
� are linearly independent for all 
 � D�

Proof� The family frjg can be transformed into the family fqjg by
taking linear combinations with constant coe$cients and dividing sev�
eral times by 
� 
�� We omit the details�
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We put b��
� � b�� �

S
���C�
�

f� � w��� � �
g� then b�� decomposes
into a disjoint union

b�� � b�� � b��
� � � b�� �

Let

X� � Xjb�� � Y� � Y jb�� � X� � Xjb��
� � Y� � Y jb��

� �

Set

a u��� � Q���u�z���� � u � K�� � ��EL��e� �

b v��� � Q���� v�z���� � v � KEL��e� �

�� � b���� and

H�
��X�� � aE���� � H�

��X�� � aE�
��	� �� �

H
�

���Y�� � bE
�
���� � H

�

���Y�� � bE
�

��	� ��� �

It follows from ����� that functions in H�
��X��� H

�

���Y�� vanish on b��
�

and functions in H�
��X��� H

�

���Y�� vanish on b��� We have

aK�� � ��EL��e� � H�
��X�� �H�

��X�� �

bKEL��e� � H
�

���Y�� �H
�

���Y�� �

We will need notation for several exceptional sets� Let PolQ be the set

of all poles of Q on b�� and &� the maximum of orders of these poles� Let

B � z �PolQ� � z �b�� n��� �R �

where R is the set from ������ and put B� � z���B� � b��� The sets
PolQ� B and B� are �nite�

Lemma ��� Each function in aK�����EL��e� �bKEL��e�� is analytic

�antianalytic� on b�n�� b���PolQ� and has poles in points of PolQ n� b��

at most of order &� �
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A priori� functions in aK�� � ��EL��e� and bKEL��e� may have
jumps on the whole preimage curve z���	c�� This lemma shows that

they have jumps only on � b��� Hence the model spaces H�
��X���

H�
��X�� consist of meromorphic cross�sections of X�� X�� respectively�

andH
�

���Y���H
�

���Y�� consist of conjugate meromorphic cross�sections
of Y�� Y�� Lemma ��� will be proved at the end of this section�

Operations a and b are invertible� By ���	�� the inverses are given
by�
a��f

�
��� �

X
z�����

f��� �
�
b��g

�
��� �

X
z�����

g��� � � � C n 	 �

De�ne Hilbert norms on aK�� � ��EL��e� and bKEL��e� so that a� b
become unitary operators� We arrive at the following fact�

Proposition ��� S is unitarily equivalent to the operator of multipli�

cation by z��� on H�
��X��� and S

� is unitarily equivalent to the operator

of multiplication by z��� on H
�

���Y���

We call these representations the external Riemann surface rep�

resentations of S� S�� By ���	�� projections P� and I � P �� in these
representations are expressed as

aP�a
�� �

�
M	

�
on aK�� � ��EL��e�

�
�

b �I � P�� b
�� �

�
M	

�
on bKEL��e�

�
�

where �� � 	 on b�� and �� � � on b��
��

Proof of Lemma ���� For any domain W in C � bounded by a piece�
wise smooth Jordan curve� the Smirnov class E��W� has the following
properties ��
� �	�
�

��

f��� �
	

��i

Z
g�z� ����� z��� dz

is in E��W� for every g � L���W� jdzj��

�� Each f � E��W� has boundary values almost everywhere on
�W� and

	

��i

Z
f�z� �z � w��� dz
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gives f�w� for w � W and � for w � C n closW�

�� For any smooth arc 	 � W� the map f 
�� f j	 from E��W�
into L��	� jdzj� is bounded�

Let f � L��e� and g � K�� � �� Ef � u � a g� By ����� and the
Privalov�Plemelj jump� formula �	�
�

ui���� ue��� � Q���Q
�
�z� �z�

�
f�z� � � � �z� w� � z���	c� �

Bearing in mind ���	�� we see that ui � ue almost everywhere on

z���	c� n � b��� Note that E�
�f j	c n B is in L��jdzj
��	c�M� and �� �

�� E�
� is bounded on 	c n U for any neighbourhood U of B� It follows

that any �� � z���	c� n
�
� b�� � B�

�
� �� � �z�� w��� has a small neigh�

bourhoodW in b� that projects homeomorphically onto a disc centered
in z� such that u��z

��W ���� � E�
�
z�W ��

�
for any connected component

W � of W n z���	c�� The above fact �� easily implies that u is a restric�
tion of a function� analytic in a neighbourhood of ��� So u is analytic
on �� n

�
� b�� �B�

�
�

Now let �� � B�n� b��� �� � �z�� w��� Take a small neighbourhood
W of �� with analytic boundary such that closW�B � f��g� The above
proof and �� show that the map u 
�� uj�W is bounded from aK�� �
��EL��e� into L���W� jdzj�M�� Pick any function s� holomorphic on
closW� such that sQ is also holomorphic on closW� We assert that
functions su are analytic at �� for all u � aK�� � ��EL��e�� Indeed� it
su$ces to check that this is true for u in a complete set� By �	�		�� the
functions

�t�m�z� �
��z�

z � t
m �

where t � C n 	 and m � M are complete in K�� � ��EL��e�� There�

fore the functions u��� � Q���
�
z��� � t

���
m are complete in aK�� �

��EL��e�� For every such u� s u is analytic at ���
It follows that the statement of Lemma is true for aK�����EL��e��

The proof for bKEL��e� is similar�

�� The role of the symmetry on b��
Lemma ��� The identity

���	� �z � ����Q��� � ������Q����� �w � ����� � � � �z� w�
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holds on b�ndeg�

Proof� We use arguments similar to those of Xia ���� p� ���
� Let

�� � �z�� w�� � b�ndeg��� and V be a small neighbourhood of �� in C � �
We assume that V�� is given by equations w � ��z�� z � ��w�� where
�� � are analytic functions� Then the equation of f�� � � � V � �g is
w � ��z�� Since all Jordan blocks of C�z�������� that correspond to
eigenvalue ��z� are trivial by Theorem A� analytic perturbation theory
��
 gives

�
w���z�

��
C��w���� �z���

�����
�z�w��V��

� ��z�����Q
�
�z� ��z��

�
�

the matrix on the left hand side being in fact analytic in V� Let us
apply this equality to a neighbourhood of ��� � pass to the adjoints and
then substitute w 
�� z� z 
�� w� We obtain that

�
z � ��w�

��
C � �w � ��� �z � ��

�����
�z�w��V��

� �Q�
�
�w� ��w��

�
�w � ����� �

It remains only to remark that ��z�� � w�� ��w�� � z�� and

lim
�z�w��C�n�

�z�w����

w � ��z�

z � ��w�
� �

dw

dz

����
��

� �����
�� �

Let v � H
�

���Y�� and u � H�
��X��� We de�ne symmetries ��� ��

by

���v���� � �������z���� �� v���� ������

���u���� � �������w���� ��u���� ������

for � � b�� �notice that then �� � b�� � b���� By ���	� and Lemma
���� ��v is a meromorphic cross�section of X� and ��u is a conjugate
meromorphic cross�section of Y��

Theorem ���� Let S be a subnormal operator of �nite type� De�ne F �
G by ������ Let �� E� �� e be as in Theorem ��� and j be de�ned by
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������ Then the diagram

H�
��X��

H
�

���Y��

E����

H
�

���Y��

�

�

�
�

a

b

�� j

E�
���� ��

E
�
����

H�
��X�

�

E
�

��� � �
��

�

�
� �

a

b

j ��L��e�
j

�

�

Y

is commutative �the embeddings of the mosaic model spaces into L��e�
are de�ned by diagram ������� In partucular� j maps isometrically

E���� onto E
�

��	 � ��� and E�
��	 � �� onto E

�
����� Spaces E����

and E
�

��	 � ��� coincide as subspaces of L��e�� Spaces E�
��	� �� and

E
�
���� also coincide as subspaces of L��e��

The symmetries ��� �� also explain the existence of the formulas

for action of S and S� in both model spaces E����� E
�

��	���� �see ����
Theorems � and �
��

Proof� Let � � b��� � � �z� w�� m �M � and 
 � C � �z� 
� �� �� Sinceb�� � b�ndeg� the assertion about Jordan blocks in Theorem A implies
that �

C�z � ���� � �� � 

�
Q��� � Q��� �w � 
� �

and together with ���	� and the formula ����� � ������ this gives

�����

Q����
�
C � �z � ��� �
� ��

���
m

� �w � 
���Q���� �z � �����m

� �w � 
�������� �w � ����Q����m�

By the results of Section 	� the elements ���m span K�� � ��EL��e��
Since ���m � K�� � �� �� � 
���m�

����� j ���m�z� �

Z
de�t�

�t� 
� �t� z�
m�

We will make use of Xia�s formula

�����

Z
de�t�

�t� 
� �t� z�
� ��z���C � �z � ��� �
� ��

���
� �C � �z � ��� �
� ��

���
�	� ��
�� �
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which is valid whenever 
� z �� ��N� and �
� z� �� � �see ���
�� Consider
two subfamilies of the family of functions f���mg�

	� Let 
 �� ��N� and m � �	 � ��
��M � Then ���m � �z �

�����z�m by �	���� and by ������ ������

j ���m�z� � ��	� ��z���
�
C � �z � ��� �
� ��

���
m�

Since j ���m � KEL��e�� it follows that j ���m � E
�

��	����� Moreover�

by ������ Q����
�
	� ��z�����

�
� Q���� for � � �z� w� � b��� By ������

�
b j ���m

�
��� � Q����

�
C � �z���� ��� �
� ��

���
m

� �w � 
�������� �w � ����Q����m�

so that

�
��b j ���m

�
��� � �z � 
���Q���m �

�
a���m

�
��� � � � b�� �

Since the family of functions ���m we are considering is complete in

E����� we conclude that jE���� � E
�

��	��
�� and that the left rectangle

in the diagram is commutative�

�� Let 
 �� ��N� and m � ��
�M � ���m � ��z�
���
�
	���z�

�
m�

Then
j ���m�z� � ��z��

�
C � �z � ��� �
� ��

���
m�

so that j ���m � E
�
����� Now we obtain from ����� that for � � b���

� � �z� w��

�
b j ���m���

�
� Q����

�
C � �z � ��� �
� ��

���
m

� �w � 
�������� �w � ����Q����m

� �� a���m��� �

This proves that jE�
��	� �� � E

�
���� and that the right rectangle in

the diagram is commutative�
At last� note that K�� � ��EL��e� � E���� � E�

��	 � �� implies

KEL��e� � jE���� � jE�
��	 � ��� Since jE���� � E

�

��	 � ��� and

jE�
��	� �� � E

�
����� we have jE���� � E

�

��	� ��� and jE�
��	� �� �

E
�
�����
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Remarks� Suppose we start from a pair �C��� that satis�es the cri�
terium of ���� Theorem �
 and our aim is to construct the correspond�
ing S� Then ������ ����� de�ne the same function �� and model spaces

E����� E
�
����� etc� arise� The proof of ����� in ��	
 uses only ����� and

the formula �
C � �z � ��� �z � ��

�
de�z� 	 � �

which follows from the hypotheses on C� �� So the fact that E���� and

E
�

��	� ��� de�ne the same subspace of L��e� can be deduced directly
from the hypotheses of ���� Theorem �
� Therefore we can put S to be
equal to Mz on E����� and we will get all its necessary properties�

It is easier to understand the sense of Theorem ��� when b� has
no degenerate components� Then formulas ������ ����� permit us to
de�ne ���� � ���� as well� But ��� �� are isomorphisms even if there
are degenerate components� In this case� we conclude from ������ �����

that the value of every function in H
�

���Y�� or H
�
��X�� on degenerate

components w 	 const is determined by its values on other components�

�� Analytic functional classes over Riemann surfaces�

This section has an auxiliary character� Our exposition uses the
approaches of �	
� �	�
�

Let R be a �connected� branched Riemann surface over C � whose
boundary �R is a �nite union of analytic arcs� We assume that R �
R � �R is compactly imbedded into a larger Riemann surface eR and
that �R � �R� Let � 
�� z��� be the projection of R onto C � We
assume that z�R� is a compact set in C �

From now on� let us �x a base point �� � R� and let � be the
harmonic measure for �R at ��� It is easy to see that � and the arc
length measure jdz���j are mutually absolute continuous�

The Nevanlinna class of R is de�ned as

N �R� �
�
f � Hol�R� � log jf j has a harmonic majorant

�
�

The hypotheses on R imply that the unit disc D is its universal covering
space� Let

T � D �� R

be a covering map� normalized so that T��� � ��� The boundary of
R has a �nite number of connected components� and the fundamental
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group ���R� of R is �nitely generated� It follows that there exists a
relatively open and dense subset A of � D such that T extends con�
tinuously to a map from A onto �R� �see ��
�� This map will be also
denoted by T� Moreover� ��E� � ������m��T

���E�� for each Borel
subset E of �R! here m� is the arc length measure on � D �

It is easy to see �using the techniques of �	�� Section ���
� that
f � N �R� if and only if f � T � N �D �� Since f � N �R� implies
f jD � N �D� for every connected subdomain D of R� it follows that each
function f inN �R� has non�tangential limit values ��almost everywhere
on �R� and that T lifts these boundary values to boundary values of
f �T on � D � Let

N��D � �
�
gh�� � g� h � H�� g is outer in D

�
be the Smirnov subclass of the Nevanlinna class on D � and de�ne the
Smirnov class of R by

N��R� �
�
f � N �R� � f �T � N��D �

�
�

For each natural number k� we denote by N��R� C k � the set of C k �
valued functions on R� whose components are in N��R��

Let � be a Borel measurable selfadjoint nonnegative k � k matrix
function on �R� which is log�integrable� that is�

���	�

Z
log�max

�
k�k� k���k

�
d� ��

�here log���� � max
�
log���� �

�
�� Consider the weighted space

L���R� ����

with the norm given by kfk� �
R
h�f� fi d� and the corresponding

weighted H��space

H��R! �� �
�
f � N��R� C k � � f j�R � L���R� ����

�
�

Let e� � ��T be the matrix weight on � D that corresponds to �! then
���	� gives Z

log�max
�
ke�k� ke���k� jdzj �� �
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Hence there exists a matrix function O on D such that O�O�� �
N��D � C k	k � and

����� e� � O�O on � D

�see �	�� Chapter �� Section �
�� The matrix function O is determined
uniquely� up to a constant left unitary factor�

Let M'ob �D � be the group of all linear fractional transformations
of D � and let G be the group of deck transformations� that is�

G �
�
� � M'ob �D � � T � � � T

�
�

It is known that G is a discrete group and is isomorphic to ���R��
Denote by U�C k � the group of unitary linear transformations of C k �

Since e� � � � e� for all � � G� one deduces from ����� that for every
� � G there exists a constant matrix ���� � U�C k � such that

O � � � ����O �

It follows that � � G �� U�C k � is a group homomorphism�

De�nition� � is called the character that corresponds to the matrix

weight ��

Denote by Chark�R� the set of all group homomorphisms � � G ��
U�C k ��

Let � be an arbitrary element of Chark�R�� If an analytic C k �
or C k	k � valued function f satis�es f � � � ����f � � � G� then f is
called ��automorphic� Put

H�
��R� �

�
f � H��D � C k � � f is ��automorphic

�
�

it is a closed subspace ofH��D � C k �� Informally� we interpret an element
of H�

��R� as a multivalued analytic function f on R such that jf j is
single�valued�

Lemma ���� Let �� e�� O be as above� and let � be the character that

corresponds to �� Then the map

f 
�� O � �f �T�

de�nes an isometric isomorphism of H��R��� onto H�
��R��
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Proof� Let f � Hol�R� C k �� Then f � N��R� C k � if and only if
O � �f �T� � N��D � C k �� Since for f � N��R� C k ��

Z
�R

h�f� fi d� �

Z
� D

he��f �T�� �f �T�i
jdzj

��
�

Z
� D

kO � �f �T�k�
jdzj

��
�

the above map is an isomorphic isomorphism ofH��R��� onto its image
in H��D � C k �� A function g � N��D � C k � is ��automorphic if and only
if g � O � �f � T� for some f � N��R� C k � �here we use that the
least harmonic majorant of a G�invariant subharmonic function is also
G�invariant�� Therefore the image of our map is exactly H�

��R��

Lemma ���� The operator Mz�
� of multiplication by z��� on

L���R� ����

is the minimal normal extension of the operator of multiplication by

z��� on H��R����

It su$ces to prove that

����� span
�
�z��R�

��
z���� 


���
f
���R � f � H��R���

�
� L���R� ���� �

Let � � L���R� ���� be orthogonal to all functions in the left hand
part� Then� by the Hartogs�Rosenthal theorem �	�
�

X
���R

z�����

�
��������� f���

�
� � �

for almost every � � z��R� and all f � H��R���� Take any g �
H��R��� and put here f � � g� � � H��R�� Since for each � � z��R�
we can choose � which is analytic on a neighbourhood of R and has
arbitrarily prescribed values in points of z�������R� we conclude that
� � � almost everywhere on �R�

De�ne an operator SR�� on H�
��R� by

SR��f � �z �T� � f �
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It is obviously subnormal� In our interpretation of H�
��R� as a space of

multivalued functions on R� SR�� acts as multiplication by z���� Some�
times we will write SR����� to show the dependence on the base point
���

Functions in H�
��R�� considered as multivalued functions on R�

have boundary limit values on �R� which are also multivalued� Let us
�x a Borel subset E of � D such that TjE is an isomorphism of E onto
�R� and put T��� � �TjE���� We associate with each f � H�

��R� the
single�valued function f �T��� on �R�

One has

kfk�H�
��R�

�

Z
�R

jf �T���j� d� �

�we use here the norm in H�� given by kxk� � ������
R
jxj� jdzj�� So

the map f 
�� f � T��� allows us to consider H�
��R� as embedded

isometrically into L���R� �� C k ��

With this agreement� the map f 
�� O � T��� � f extends the
map of Lemma ��	 to an isometric isomorphism of L���R� ���� onto
L���R� �� C k �� Therefore� by Lemma ���� the operator Mz�
� of multi�

plication by z��� on L���R� �� C k � is the minimal normal extension of
the operator SR���

From now on� we assume that the Riemann surface eR� which con�
tains �R� is such that the imbedding R � eR induces an isomorphism
between the fundamental groups ���R� and ��� eR��
Lemma ���� For any � � Chark�R�� there exists an ��automorphic

function A � D �� C
k such that kAk� kA��k are bounded in D �

The proof of Lemma ��� will be given a little bit later�

Let Ibe the unit element of Chark�R�� that is� I��� � I for all � �
G� Then H�

I
�R� is the set of G�invariant functions in H��D �! this space

is naturally isometrically isomorphic to the unweighted Hardy space
H��R� � H��R� I�� In the situation of Lemma ���� the map f 
�� A �f �
f � H�

I
�R�� de�nes a �not necessarily isometric� isomorphism of H�

I
�R�

onto H�
��R�� Since this isomorphism commutes with Mz�
�� we obtain

the following fact�

Corollary� All the operators SR��� � � Chark�R�� are mutually simi�

lar�
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Putting O � A in the construction preceding Lemma ��	� we also
see that each operator SR�� is unitarily equivalent to an operator Mz�
�

on H��R��� for a matrix weight � such that k�k� k���k are uniformly
bounded on R�

De�nition� Characters �� � in Chark�R� are called equivalent �� � ��
if there is a constant u in U�C k � such that ���� � u����u� for all

� � G�

The following statement is in a sense analogous to �	� Theorem �
�

Lemma ���� Suppose that there is a point in C whose preimage on R
consists of exactly one point� Let �� � � Chark�R�� The operators SR��
and SR�� are unitarily equivalent if and only if � � ��

Proof of Lemma ���� Let P � A �� eR be a universal covering
map for eR! we assume A to be a simply connected domain in C � PuteD � P���R�� then eD is connected and simply connected and P j eD is

the universal covering map for R� If � � D �� eD is a conformal map
such that P

�
����

�
� ��� then we can set T � P � �� Let eG be the

group of deck transformations of eR� It is easy to see that the map
g 
�� ��� � �gj eD � � � is an isomorphism of eG onto G! it gives rise to a

canonical isomorphism between Chark�R� and Chark� eR��
Let 	 be the element of Chark� eR� that corresponds to �� There

exists a C k	k �valued 	�automorphic function ( onA such that det ( � �
in A! this assertion in fact is a restatement of the fact that every two
analytic bundles over eR are isomorphic� This fact follows from the

Grauert theorem �	�
� The function A
def
� ( � � is ��automorphic on

D � Since the functions k( � P��k� k(�� � P��k are single�valued and
continuous on R� it follows that A� A�� are in H��D � C k	k ��

Proof of Lemma ���� Let A� B be the matrix functions that corre�
spond to characters �� � as in the above proof of Lemma ���� so that
H�
��R� � AH�

I
�R�� H�

��R� � BH�
I
�R�� Let ) � H�

��R� �� H�
��R� be

the isometric isomorphism such that )SR�� � SR��)� De�ne a func�
tion � in H��D � C k	k � by )�Ac� � � � Ac� c � C n � The hypothesis
implies that there exists a subdomain W in D such that each point in
�z �T��W� has only one preimage on R� For any � � W� if g � H�

��R�
and g��� � �� then g �

�
z �T� �z �T����

�
h for a certain h � H�

��R��
which implies �)g���� � �� It follows that )�f�jW � � � f jW for all
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f � H�
��R�� One easily deduces that

)�f� � � � f � f � H�
��R� �

Since � �A is ��automorphic� it follows that

����� � � � � ���� ������� � � � G �

The map ) extends to a unitary equivalence of minimal normal exten�
sions ��
� We see from Lemma ��	 that there exists a unitary operator *
on L���R� �� C k � such that *jH�

��R� � ) and *Mz�
� � Mz�
�*� Look�

ing at the action of * on functions
�
z���� 


���
�f �T����� f � H�

��R�

and bearing in mind ������ we conclude that *f � �� �T����f for all
f � L���R� �� C k �� Therefore � � T��� is unitary almost everywhere
on �R� that is� � is unitary almost everywhere on E� Since

S
�G ��E�

has a full measure in � D � it follows that � is unitary almost everywhere
on � D �

We can repeat the whole argument for the operator )��f � ��� �
f � f � H�

��R�� Hence �� ��� � H��D � C k	k �� and ��� 	 I on � D �

Consider &��z ��� � �����z�� z � D � We conclude that ��z� 	 u� z � D

for a unitary constant u � U�C k �� Then ����� gives ���� � u����u��
� � G�

The converse if� part of the statement is obvious�

Lemma ��	� Suppose � satis�es ���	� and
R
k�k d� � �� Then the

set of functions on eR that are holomorphic on R is dense in H��R! ���

Proof� Let f � H��R! �� and �  �! then f � T � H��R! e��� wheree� � � �T� We can assume that eR is contained in the double bR of R
��
� We make use of the conditional expectation operator E ��
� It is

easy to see that E maps H��D � e�� onto H��R��� u N � where N is a
�nite�dimensional defect space ��
� If g � H��R! ��� then E�g �T� � g�

Let &r be a rational function on bC � analytic on bC n D � with k&r� f �
TkH��R�e�� � �� Then E&r � H��R���uN � Put r to be the component

of &r in H��R���� Then E&r is meromorphic on R and r is analytic on
R� We have kE&r�fkH��R��� � � and kr�E&rk � dist

�
E&r�H��R! ��

�
�

kE&r � fk � �� Hence kr � fkH��R��� � C�� where C is an absolute
constant�



��� D� V� Yakubovich

��� Characterization of H�
��X���

We assume here that the spectral measure of N has no point
masses� Then d� � jdzj

��	c� We will use the following notation� If

f is a function on 	c and g its lifting to � b��� that is� g
�
�z� z�

�
	 f�z��

then we will write g � f�� f � g� �note that z�projections of di�erent

subarcs of � b�� cannot coincide�� If g is a function on b� or b��� we put

g� � �gj� b���
�! in the latter case gj� b�� denotes the boundary limit

values of g� By ������ de��� � E��� jdzj� and

�	��	�

E���� �
	

��
�
�
z���

��
z���� �

���
Q���

�
	

��
�����
�

�
z���� �

���
Q��� �

for � � � b��� Since j�j 	 	 on � b��� the last expression allows us to con�
sider E� as a function� de�ned and meromorphic on a neighbourhood
of � b�� in b�� We use the sets B� B�� PolQ and the natural number &�
that were introduced in Section ��

Proposition �����

	� For each f � L��e�� the equality f � Q�f holds in L��e��

�� If � � � b�� n PolQ and m � M � m � Q���m� then E���m � �
implies m � ��

Proof� By �	��	�� Ef � EQ�f � which gives 	�� Statement �� also is
obvious from �	��	��

Proposition ����� The embedding H�
��X�� �� L��e�� which is the

composition of the isomorphism a�� � H�
��X�� �� E���� with the

canonical embedding of E���� into L��e�� de�ned by ������ is given by

f � H�
��X�� 
�� f ��

Proof� Let f � a g� g � E����� and h be the image of g in L��e��
that is� g � K �� � �� E h� By �	��	� and the Plemelj jump� formula�

gi � ge � Q�h� Therefore the boundary values of f on � b�� are given
by

�	���� f � � Q�gi � Q��gi � ge� � Q�h �
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By Proposition 	��	� h � Q�h � f � in L��e��

From now on� let us �x points pj on nondegenerate componentsb��
j � and let �j be the harmonic measure for b��

j at pj � We de�ne the

harmonic measure � for � b�� by �j� b��
j � �j �

Lemma ����� For each �� � � b��� there exists c � 	 such that

kQ���k � jz���� z����j�c in a neighbourhood of ���

Proof� By �	��	�� kE����k � jz���� z����j
�c for some rational c� ButR

E�z� jdzj � I� which implies that c � 	� Now we remark that

Q��� � ������
�
�
z���� �

�
E���� �

which gives the statement of the Lemma�

De�nition� Any branching point � of b�� has a neighbourhoodW such

that W nf�g projects j�to�one onto the z�plane for some j � �� We put

the order of the branching point � to be equal to j � 	�

Let Br be the set of branching points of b��� Choose � � N such
that the orders of these points do not exceed � � and � � &� � Put

P � Br� �PolQ � b��� �

Fix an analytic function q on a neighbourhood of clos b��� which has

simple zeros in points of P and no other zeros on clos b���

Let b�j be a nondegenerate component of b� of multiplicity kj � Fix a

function eXj � Hol
�b��

j �L �C kj �M�
�
such that eXj��� C

kj � X��� for all

� � b��
j � Since analytic vector bundles Xj

b��
j are trivial by the Grauert

theorem �	�
� such an eXj exists� Moreover� we will assume eXj to be

analytic on a neighbourhood of clos b��
j in b�j � The map f 
�� eXjf

is an isomorphism between analytic cross�sections of the trivial vector
bundle b��

j � C kj and analytic cross�sections of the bundle X�jb��
j �

De�ne the weight �j by

�j � eX�
j E

� eXj j� b��
j �

We put

H�
� �b��

j ��j��
�
f �q��N��b��

j ! C
kj � � �f j� b��

j �
��L��z�� b��

j �� ���j�
�
�
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It follows from �	��	� that �j j� b��
j is real analytic� except for a �nite

number of power�type singularities� The well�known formula

d� � �������
�g

�n
ds �

which expresses the harmonic measure in terms of the Green function
��
� �	�
 implies that the same is true for the function d���d�� By

Proposition 	��	���� �j is invertible in points of � b��
j nB

�� Put

e�j � jqj�
d��

d�
�j �

Then there is a scalar function s� analytic in a neighbourhood of
clos b��

j � such that s e�j and s e���j are bounded on � b��� This

implies that e�j meets the log�integrability condition ���	�� Therefore
we can rewrite the above de�nition as

�	���� H�
� �b��

j ��j� � q��H�
	b��

j � jqj
� d�

�

d�
�j


�

Functions in this class may have at most poles of order � in points of
P�

Let f�jg be all nondegenerate components of �� We de�ne eX� �
by eXjb��

j � eXj � �j� b��
j � �j �

and put

Hol�b����
M
j

Hol�b��
j � C

kj � � eXH�
� �b������

M
j

eXjH
�
� �b��

j ��j� �

We give eXH�
� �b����� the Hilbert direct sum norm� de�ned by norms

of H��spaces that �gure in �	�����

Theorem ����� Suppose that the spectral measure of N has no point

masses� Let K be a compact subset of b�� such that P � intK� z��K��
z�P� � �� Then

H�
��X�� �

�
f � eXH�

� �b����� �

�f�K�z�
def
�

X
z����z

��K

f��� is bounded near z�P�
�
��	����
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and the norms in these two spaces coincide�

Some of the points of z��
�
z�P�

�
may lie on � b��� but the values

of f in neighbourhoods of such points are not taken into account in the
above expression for �f�K� Therefore for each f � eXH�

� �b������ �f�K
is meromorphic on z�P� and has on it at most poles of order � � So the
above condition on f reduces to a �nite number of linear conditions�

Spaces H�
��X�� and H

�

���Y�� can be characterized in the same
way�

Denote the right hand part of �	���� by eH�
��X���

Proposition ���	� The map f 
�� f � de�nes isometries of H�
��X���eH�

��X�� into L
��e� �the norm in eH�

��X�� is inherited from H�
� �b�������

Proof� The �rst map is an isometry by Proposition 	���� The second
map is isometric because for f � eXv � eXH�

� �b������

kfk�
eH�
��X��

�

Z
h��v� vi d� �

Z
hEf� fi d� � kfk�L��e� �

Proof of Theorem �	��� By the above proposition� to prove that
H�
��X�� � eH�

��X��� it su$ce to check that a complete subset of

H�
��X�� is contained in eH�

��X��� and vice versa�

�� By �	�		�� the functions

�t�m�z� �
��z�

z � t
m �

with t � C n 	 and ��t�m � � are complete in E����� Therefore the
corresponding functions

f��� � �a�t�m���� � Q���
�
z���� t

���
m

are complete in H�
��X��� Take any such f � Fix a point z� � z�P�� and

let us prove that �f�K does not have pole in z� �the most di$cult case
is when z� � 	c�� We have

�	���� �t�m�z� � a��f�z� � �f�K�z� � �f�
b��nK

�z� � z � C n 	 �

By Lemma 	���� j�f�
b��nK

�z�j � jz � z�j�c in a neighbourhood of z�
for some c � 	� On the other hand� from ����� and the fact that
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�z � ��E � L��jdzj� one can conclude that j�t�m�z�j � o
�
dist�z� 	c�

�
�

z �� z�� By �	����� �f�K�z� cannot have a pole in z��

Let f � eXg� then g is meromorphic on a domain containing
clos b��� Therefore f � q�N �N��b��

j � C
kj �� Since

kgkL��� b���d����
�
����� � t

���
m
��
L��e�

�� �

we get that f � eH�
��X���

�� To prove the converse inclusion� take any f � eH�
��X��� which

has the form f � eXg for a function g � q�N � Hol�e��
j � C

kj �� wheree��
j are neighbourhoods of clos b��

j � Then� obviously�Z
h��g�� g�i d� �

Z
hE eX�g�� eX�g�i d� �� �

By Lemma ���� such functions f � eXg are dense in eH�
��X���

The function a��f is bounded and analytic on C n	c and takes value
� at�� Writing down its Cauchy representations in the components of
C n 	c and summing them up� we arrive at the formula

a��f �
	

��i
K�i � f �� �

because f � is the jump of a��f on 	c� Since f
� � L��e� and �a��f���� �

���� �a��f���� on C n 	c �see ���	��� we conclude that a��f � E�����
Thus f � aE���� � H�

��X���

��� Simple subnormal operators�

De�nitions� A polynomial P �z� w� will be called admissible if it has a

form

P �z� w� �
nX
i��

nX
j��

aij z
iwj �

where n  � is an integer� ann � 	� and aji � aij� � � i� j � n� and P
has no irreducible factors of the type z�z�� w�w�� An algebraic curve

� in C P � is called admissible if it is given by an equation P �z� w� � �
for some admissible P � We put rank� � n�
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If � � �k�
� � � � � � �kT

T is the decomposition of � into the union
of irreducible curves� then rank� �

P
kj rank�j �

One sees from ���	� that each discriminant curve of the type studied
above without degenerate components is admissible� Also� the product
of two admissible polynomials is admissible�

Lemma ����� For each admissible algebraic curve �� the sets z�b���

and w�b��� are bounded�

Proof� Let w � wk�z� be all �possibly multivalued� analytic functions
that are de�ned in a neighbourhood of z �� by the implicit equation
P �z� w� � �� Put K �

P
i�j jaij j� Then �z� w� � � and jzj  K imply

jwj � K �by the triangle inequality�� It follows that

wk�z� � 
k � �k �k�z
���ck �

where 
k� �k � C � ck  � are rational and �k are analytic in �� with
�k��� � � and ��k��� � 	� An easy calculus now shows that

��
�
�z� w�

���
�

dw

dz
�� �

if w � wk�z� and z �� �� This shows that z�b��� is bounded� The

set w�b��� is also bounded� because w�b��� � z�����

Now let b� be the discriminant surface of a subnormal S of �nite
type such that the spectral measure of N has no point masses �but

we allow b� to have degenerate components�� As before� let b�j be the

nondegenerate components of b�� pick points pj � b��
j and denote by �j

the harmonic measures of b��
j with respect to pj � Put � �

P
j �j � The

corresponding measure �� on 	c is absolutely continuous with respect
to the arc length measure�

We can de�ne an H��b����calculus for N � we put

�		�	� f�N� � �f jb���
��N� � f � H��b��� �

De�nition� Let N have no point masses� Then S is called simple

if it admits the H��b����calculus� that is� f�N�H � H for all f �

H��b����
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Choose a function r� which is holomorphic on a neighbourhood of
clos b�� and has zeros exactly in branching points of b�� of orders that

are equal to orders of these points� Let K be the subset of b�� from
Theorem 	����

Proposition �����

i� For any f � Hol�b���� �r
��f�K is bounded near z�P��

ii� If f is meromorphic on b�� and ��f�K is bounded near z�P�

for all � � H��b���� then rf � Hol�b����

The proof of i� is elementary� When proving ii�� one can use the

fact that if ��� � � � � �l are points of b�� that project into the same point
z� and W�� � � � �Wl are their small neighbourhoods and � is analytic in
W�� then for any s � N there is � in H��b��� such that ���jW� and
�jWj � j � 	 have zeros of orders � s in �j � We omit the details�

Note that Proposition 		�� is true for vector�valued functions f �
Hol�b���M� as well�

Proposition ����� The following are equivalent�

	� S is simple�

�� rQ is analytic on b���

�� H�
��X�� � r�� eXH��b����

��� where

�� � jrj
d��

d�
� �

Proof� �� implies 	�� If �� holds� then for every f � H�
��X��� rf

is analytic on b�� �because functions Q���
�
z��� � t

���
m with m � M �

t � C n 	� ��t�m � � are complete in H�
��X���� By Proposition 		���i�

and �	����� H��b��� acts by multiplication on H�
��X��� Therefore S

is simple�

	� implies ��� By Proposition 		���i� and �	�����

r�� eXH��b����
�� � H�

��X�� �
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If f � H�
��X��� then ��f�K has to be bounded near z�P� for all � �

H��b���� By Proposition 		���ii�� f is in r��Hol�b���� and so by

Theorem 	���� f � r�� eXH��b����
���

�� implies ��� Trivially� because Q���m � H�
��X�� for all m �M �

These arguments imply that for a simple subnormal S� the order
of pole of Q at each branching point of b�� equals to the order of this
branching point�

We remark that if 	���� hold� then the range norm on

r�� eXH�
	b��� jrj

d��

d�
�



coincides with the norm on H�
��X���

The following lemma extends a result by McCarthy and Yang �	��
Theorem 	�	�
�

Lemma ����� Let � be any irreducible admissible separated algebraic

curve� and � a matrix C
k	k �valued log�integrable weight� De�ne an

operator S on H��b����� by Sf��� � z��� f��� �to de�ne the harmonic

measure� we choose any base point�� Then S is a simple subnormal

operator of �nite type and rank �S�� S
 � k rank��

Proof� Lemma 		�	 implies that S is bounded� By Lemmas ��	
and ���� it is subnormal� and its minimal normal extension is given by
Nf��� � z��� f���� f � L��� b��� ����� The operator S� acts by

S�f � PH��b�����
�z f� � f � H��b����� �

which gives

�		���

Ker�S�� S
 �
�
f � kSfk � kS�fk

�
�
�
f � H��b����� � z f � H��b�����

�
�
�
f � H��b����� � w��� f��� � Hol�b��� C

k �
�
�

The sum of orders of all poles of w��� on b� equals rank�� By Lemma

		�	� w��� has no poles on b��� Hence the last expression in �		��� gives
CodimKer�S�� S
 � k rank�� By the remark in ���� Section �
� the
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nondegenerate part of the discriminant surface of S coincides with ��
As S trivially admits H��b����calculus� it is simple�

Xia�s exposition in ���
 uses the notion of a quadrature domain
on a Riemann surface�� He de�nes it as a domain D with a boundary�
consisting of recti�able Jordan curves on a branched Riemann surface
equipped with a projection z��� onto C such that w��� � z��� for some
function w���� meromorphic on closD� It is easy to see that

�
D� z���

�
is

a quadrature domain on a Riemann surface if and only if D � b�� for

some irreducible admissible separated algebraic curve b� in C
� �

Theorem ���	� A Hilbert space operator is simple subnormal of �nite

type if and only if there exist an admissible separated algebraic curve

� � ��
kj
j � points pj � b��

j and homomorphisms �j � Charkj �b��
j �

such that S is unitarily equivalent to

�		���
M
j

S��

j ��j �pj

�see the notation in Section ��� In this case� rank �S�� S
 � rank��

Proof� If S is simple subnormal� then by Proposition 		��� S is uni�
tarily equivalent to the operator of multiplication by z��� on the space

H��b����
�� �

M
j

H��b��
j ��

�
j� �

where � is the discriminant curve of S and �j are its nondegenerate

components� Then ��
kj
j is an admissible separated algebraic curve� By

Lemma ��	� S is unitarily equivalent to an operator of the form �		����
The converse follows from Lemma 		���

Remark� The discriminant curve of a simple subnormal operator has
no degenerate components�

Indeed� let S be simple� and let � �
S
�
kj
j �

S
��
l
cl be the the

discriminant curve of S� where the �l are nondegenerate components
of � and ��

l are degenerate� Put n � rank�� By Lemma 		���

X
j

kj rank�j �
X
l

cl � n � rank �S�� S
 �
X
j

kj rank�j �
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The following statement answers the questions of simiarity and unitary
equivalence of simple subnormal operators�

Proposition �����

	� Two simple subnormal operators are similar if and only if their

discriminant surfaces coincide and the multiplicities of their irreducible

components also agree�

�� Let S � �jSb��

j ��j �pj
and S� � �jSb��

j ��
�

j �pj
be two simple sub�

normal operators with the same discriminant curve � � ��
kj
j and the

same choice of base points pj � b��
j � Then S and S� are unitarily

equivalent if and only if �j � ��j for all j�

Proof� 	�� The if� part follows from Theorem 		�� and Corollary to
Lemma ���� The converse follows from the Remark in ���� Section �
�

Let S� S� be as in ��� and let S� � L��SL� where L is a unitary

isomorphism� Then f�S�� � L��f�S�L for all f � H��b���� which
implies that L splits� L � �Lj � where for each j� Lj is a unitary iso�

morphism between H�
�j
�b��

j � and H
�
��

j
�b��

j �� Now the statement follows

from Lemma ����

Let S be rationally cyclic and irreducible� It is easy to see that
then b� has only one nondegenerate component b��� b��

� projects home�
omorphically into C and k� � 	� For this case� the above fact has been
proved by McCarthy and Yang ��	�� Theorem ���
��

��� Internal Riemann surface models and general structure
theorems�

����� Elimination of point masses�

Since N is unitarily equivalent to the operator of multiplication
by z on L��e�� S has no point masses if and only if e��� is absolutely
continuous with respect to the arc length measure� In general� as follows
from Theorem A� e��� � ea���� es���� where ea is absolutely continuous
and es is a �nite sum of matrix point masses� Since N is unitarily
equivalent to Mz on L��e�� we have the corresponding orthogonal sum
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decompositions

K � Ka �Ks � N � Na �Ns �

Put H� � PKa
H and consider an operator L � H � H�� given by

Lx � PKa
x � x � H �

The following simple fact will be used in the sequel� if T is a subnor�
mal operator and T� its restriction to an invariant subspace of �nite
codimension� then rank �T �� T 
 �� if and only if rank �T �� � T�
 ���

Lemma ����� The space H� is closed and L is invertible� The opera�

tor S�
def
� LSL�� on H� is pure subnormal without point masses� and

rank �S�� � S�
 ���

Proof� We have

hLx� Lxi �
�
�I � PHPKs

PH�x� x
�
� x � H �

Let t be the maximal eigenvalue of the �nite rank self�adjoint operator
PHPKs

PH � Since H � Ks � �� it follows that L is one�to�one� and
therefore t � 	� Hence L is an isomorphism onto its range� Obviously�
LSx � LNx � NLx for x � H� which implies that N jKa is a normal
extension of S� with absolutely continuous spectrum� So S� has no
point masses�

At last� put H� � H�Ka and S� � SjH�� Since rankH�H� ���
we have rankH��H� ��� and thus rank �S�� � S�
 ��� rank �S�� � S�
 �
��

So for any operator S we have de�ned in a canonical way a sub�
normal operator S� without point masses� which is similar to S�

����� Passage to a simple subnormal operator� a �nite�dimen�
sional extension�

Here we assume S to be a subnormal operator of �nite type without
point masses� De�ne a linear manifold

�	��	� eH � span
�
f�N�H � f � H��b���

�
�
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clearly� eH � H�

Proposition �����

	� eH is a closed invariant subspace of N � and dim eH �H is �nite�

�� eS def
� N j eH is a simple subnormal operator�

Proof� Let f � H��b���� and let eU � W be the operators from Section
���� By Theorem 	���� the multiplication by f sends H�

��X�� intoeXH�
� �b������ This action agrees with the action of f�N�� that is� if

x � H and u � aUx � H�
��X��� then

�	���� f �u� � Wf�N�x

�see Proposition 	����� Let

H�X�� � span
�
f u � f � H��b���� u � H�

��X��
�
�

it follows from �	��	�� �	���� that

eH �
�
W��u� � u � H�X��

�
�

Since H�
��X�� � H�X�� � eXH�

� �b������ H�X�� is closed and

dimH�
��X���H�X�� �� �

By Proposition 	���� the map u 
��W��u� is an isometry from

eXH�
� �b�����

into L��e�� This implies both assertions of 	�� Since N is a normal

extension of eS and f �H�X�� � H�X�� for all f � H��b���� we obtain
���

It is clear that eH is the minimal closed subspace of K such thateH � H and N j eH is simple subnormal�
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����� Main structure result�

Let S be a subnormal operator of �nite type� Following the above
procedures� we can construct from it an operator S� without point
masses and then a simple operator eS�� The operator eS� may be called
the canonical simple operator that corresponds to S�

Theorem ����� Let S be a subnormal operator of �nite type� Let S�
be the operator obtained from S by eliminating point masses� and eS� be
the canonical simple operator corresponding to S�� suppose that eS� acts
on a space eH�� Then

	� There exist eigenvalues 
k� 	 � k � r of eS�� and corresponding

Jordan chains f�j�kg
mk

j�� of generalized eigenvectors�
�eS�� �
k

�
���k � ���eS�� � 
k

�
�j�k � �j���k

� j � 	� � � � �mk� such that S� � eS�jH�� where

H� �
�
x � eH� � hx� �

j
�k
i � � � 	 � k � r� � � j � mk

�
�the 
k�s are not necessarily distinct��

�� There is a �nite set f�jg and operators lj � H� �� C
tj � tj � N�

	 � j � m� with
�
S�� � ��j

�
l�j � � such that the operator S coincides

with S�� acting on the renormed space �H�� k � k��� where

�	���� kxk��
def
� kxk� �

mX
j��

kljxk
� �

Conversely� let eS� be any simple subnormal operator of �nite type and

let S be obtained from eS� by applying the above procedure� where f�j�jg

and fljg are arbitrary �nite families with the above properties� Then S
is a pure subnormal of �nite type�

The �rst part of this theorem is a corrected version of Xia�s The�
orem � in ���
� Xia�s formulation is not accurate� because it would
follow from it that every subnormal operator of �nite type is simple
�see example 	� below��

If one combines this theorem with Theorem 		��� he will obtain a
functional model representation of an arbitrary subnormal operator of
�nite type� One can call it the internal Riemann surface representation�
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Remark� If S is obtained from eS� in the way described in the theorem
and S� is the canonical simple subnormal that corresponds to S� then
S� may be di�erent from eS�� For instance� if eS� is the standard shift
operator eS�f�z� � zf�z� on H�� then each its restriction S � S� to an
invariant subspace of �nite codimension is simple itself� so that S� � S
and S� � eS��
Examples� 	� Let S � Mz �Mz on H � H��D � �H��D � 	���� then
S is a simple subnormal operator with rank �S�� S
 � �� Put

h�f� g�� �i � f
	�
�



� g

	�
�



� �f� g� � H �

It is immediate that �S� � ����� � �� so that

H� � ���� �
n
�f� g� � f

	�
�



� g

	�
�


o

is an invariant subspace of S� and S� � SjH� is a subnormal of �nite
type� The discriminant curve of S is

� � fz w � 	g
�n	

z �
	

�



w � 	

o
which implies that ��� as a Riemann surface over the z�plane� consists
of two sheaves that cover in a bijective way� respectively� D and D �	���

Since H� is not H��b����invariant� S� is not simple� The canonical
simple subnormal operator that corresponds to S� coincides with S�
One can say that S� is obtained from S by glueing� the points of ��

over ����

�� Suppose S is a simple subnormal operator� b� has only one non�

degenerate component of multiplicity one� and b�� is simply connected�
By Theorem 		��� S is unitarily equivalent to the multiplication oper�
ator Mz on H��b��� �for any base point in b���� and let us identify S

with this model� Suppose b�� has a branching point �� of order 	� For
instance� one can take

Sf��� �
	
� �

	

�


�
f���

on H�� Then b�� can be identi�ed with the unit disc� with the z�
projection given by z��� � �� � 	����� � � D � Fix a branch of the
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function ���� �
�
z����z����

��
�
� then � is an analytic homeomorphism

of a neighbourhood of �� onto a neighbourhood of �� Put

l u �
�
u � ���

��
��� � u � H��b��� �

Then l
�
S� z����

�
� lM�� � �� so that we can put kuk�� � kuk�� jluj��

u � H��b��� �see �	������ This example shows that the expression for
kljxk� in �	���� may fail to have the form

X
z��s��z��t���

hest u��s�� u��t�i �

which was given in ����Theorem �
�

Proof of Theorem ����� �� We use the notation of Section 	��	�
Put kxk� � kL��xk� x � H�� By the spectral theorem� there exist
tj � N � Gj � K �� C tj and �j � C such that GjNy � �j y and
kPKs

yk� �
Pr

� kGjyk� for all y in K� Put lj � GjL
��� Then

lj�S� � �j� � Gj�S � �j�L
�� � Gj�N � �j�L

�� � � �

kxk�� � kxk� � kPKs
L��xk� � kxk� �

rX
j��

kljxk
� � x � H� �

This proves the statement�

	� By Section 	���� S� is a restriction of eS� to its invariant subspace
H� such that dim eH� �H� is �nite� Put R � eH� �H�� then eS��R � R�
So the statement follows from the linear algebra theorem on the Jordan
structure� applied to the operator eS�� jR�

Let S�� S� be two subnormals of �nite type� Let S�� � S
�
� be the

corresponding subnormals without point masses and eS�� � eS�� the corre�
sponding simple subnormals� Then S�� S� are unitarily equivalent if
and only if eS�� � eS�� are unitarily equivalent� S�� � S

�
� are obtained fromeS�� � eS�� by passing to the same invariant subspace �in the sense of the

latter unitary equivalence�� and S�� S� are obtained from S�� � S
�
� by

the same �nite rank perturbation of the norm� We remind the reader
that the question of unitary equivalence of simple subnormals has been
completely answered in Proposition 		���
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Notation �some of the entries appear several times��

M � C� �� � Section �

F � e� E � G� E����� E�
��	� ��� E

�
����� E

�

��	� ���� L��e��
L�z�� L��z�� K� K� KFEL��e�� KG�EL��e�� P�� �t�m� ���t�m�
��z�� h�� �id Section 	

A� H� H �� H�� H
�
�� K� M � M�� L�z�� L

��z�� N � PH � PH� �eU � eV � 	� ��z�� ��z� Section �

W Section �

J � H�z�� U � V Section �

Q� T � z���� w���� 	� 	c� b�j � b��� b��� b��� ��� b�deg� b�ndeg�
�C���� ��z�� ��z�� ��z� Section ��	

e� K�� � ��EL��e�� KEL��e�� j� S�� W Section ���

a� b� B� H�
��X��� H

�
��X��� H

�

���Y��� H
�

���Y��� PolQ�
X� X�� Y � Y�� &� Section �

��� �� Section �

Chark�R�� H�
��R�� H��R���� L���R� ����� M'ob �D ��

N �R�� N��R�� SR��� SR���p� T� U�C k � Section �

Br� E�� q� Q�� P� H�
� �b��

j ��j�� H
�
� �b������ eXj � eX�

� � �j � �� �j � � Section 	�

rank�� r� �� Section 		

H�� H�� Ka� Ks� L Section 	�
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