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Abstract� In this paper we prove global existence and uniqueness
for solutions of the ��dimensional Navier�Stokes equations with small
initial data in spaces which are H�i in the i�th direction� �� � �� � �� �
���� ���� � �i � ��� and in a space which is L� in the 	rst two

directions and B
���
��� in the third direction� where H and B denote the

usual homogeneous Sobolev and Besov spaces


R�esum�e� Dans cet article on montre l�existence et l�unicit�e globale
des solutions des �equations de Navier�Stokes tridimensionnelles pour
des donn�ees initiales petites dans des espaces qui sont H�i dans la i�eme

direction� �� � �� � �� � ���� ���� � �i � ��� ou dans un espace

qui est L� dans les deux premieres directions et B
���
��� dans la troisieme

direction� ou H et B sont les espaces de Sobolev et de Besov homogenes
habituels


�� Introduction�

In this paper we study the problem of global existence and unique�
ness for solutions of the ��dimensional Navier�Stokes equations
 These

�
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equations are the following

�N�S�

�����
�tU � U � rU � � �U � �rP �

divU�t� �� � � � for all t � � �

U jt�� � U� �

Here� U�t� x� is a time�dependent three�dimensional vector�	eld

The goal of this work is to solve these equations in the spaces

H�������� � �� � �� � �� �
�

�
� �

�

�
� �i �

�

�
�

and in the space
HB������� �

where the 	rst space is H�i in the i�th direction and the second space is

L� in the 	rst two directions and B
���
��� in the third direction� where Hs�

respectively Bs
p�q� denote the usual homogeneous Sobolev� respectively

Besov� spaces
 We are using homogeneous spaces because they are
more easy to handle in the case of the Navier�Stokes equations and�
in addition� they are larger than the classical ones� so we obtain more
general results


By solving �N�S� in the space X we mean proving the global ex�
istence and uniqueness of solutions for small initial data in X and the
local existence and uniqueness of solutions for arbitrary initial data in
X


The 	rst paragraph is devoted to the study of the spaces Hs��s��s� �
essentially the proof of a product theorem in these spaces
 A some�
what similar theorem was proved by M
 Sabl�e�Tougeron in ��� for the
H�ormander spaces


The second paragraph contains the resolution of �N�S� in

H�������� � �� � �� � �� �
�

�
� �

�

�
� �i �

�

�
�

The methods used here are inspired from a paper of J
�Y
 Chemin and
N
 Lerner �see ����
 The case when one of the �i equals ��� is important
but it cannot be studied through our results because H����R� is not an
algebra
 This di�culty is partially avoided by replacing H����R� with

B
���
��� �R� which has the property to cancel this critical case
 And this

is how we come to solve �N�S� in the space HB������� during the third
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paragraph
 The same method of replacing Hs with Bs
��� may be used in

the resolution of general hyperbolic symmetric systems
 These systems
can be solved in the space Hs�Rd �� s 	 d���� but the case s � d����

cannot be proved unless we replace Hd���� with B
d����
��� �a short proof

is given in the Appendix�

Finally� the last paragraph makes a comparison between this article

and the results which are known
 We shall see there that the space
HB������� is not imbedded in any of the spaces introduced by H
 Kozono

and M
 Yamazaki in ���� N
�����p
p�q�� � provided that � � q � p � � q���

p 	 �
 We are not able to prove an imbedding or a nonimbedding
if p � � q��
 The space H�������� is also interesting if we remark� for
instance� that we allow negative values for �i


The results of this article can be easily extended to an arbitrary
dimension� here we consider R� only for sake of simplicity
 In fact� if
we work in R

d � we can solve �N�S� in the spaces

H�����������d � �� � �� � � � �� �d �
d

�
� � � �

�

�
� �i �

�

�
�

and in the space

HB����������� �

where the 	rst space is H�i in the i�th direction and the second space

is L� in the 	rst n�� directions and B
���
��� in the last one
 For instance�

we can solve the �D Navier�Stokes equations with small initial data
in H����� � � � � ���� that is in a space of functions which are not
square�integrable


�� Study of the anisotropic spaces and preliminary results�

We work in R� and we denote by x � �x�� x�� x�� the variable in
R� 
 If q � �q�� q�� q�� � Z� and s � �s�� s�� s�� � R� then we de	ne
q � s � q�s� � q�s� � q�s�
 Also� if 
 � �
�� 
�� 
�� then we note



s

� j
�j
s� j
�j

s� j
�j
s� 


Let

Lp � Lp��p��p�

� fu such that kukLp
def
� k k ku�x�� x�� x��kLp�

x�
kLp�

x�
kLp�

x�
��g
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and �p be the analogous space for sequences
 Also� when p � q � r we
shall note �p�p�p � �p and Lp�p�p � Lp
 If u is a function u � ��� T � �
R
n �� C then we note

kukLp
T �L

q	
def
� k ku�t� x�kLq�Rn	kLp���T 	 �

The order of integrations is important� as the following remark shows
it�

Remark ���� Let �X�� ���� �X�� ��� be two measure spaces� � � p � q
and f � X � Y �� R
 Then

k kf��� x��kLp�X����	kLq�X����	 � kkf�x�� ��kLq�X����	kLp�X����	 �

Indeed

k kf��� x��kLp�X����	kLq�X����	 �
����Z

X�

fp��� x�� d��

���
Lq�p�X����	

���p
�
�Z

X�

kfp�x�� ��kLq�p�X����	 d��
���p

� k kf�x�� ��kLq�X����	kLp�X����	 �

The H�older and Young inequalities for the Lq spaces take the form

kf gkLp � kfkLq kgkLr �

where
�

pi
�

�

qi
�

�

ri
�

for all i � f�� �� �g� and

kf 	 gkLa � kfk
Lb
kgkLc �

where

� �
�

ai
�

�

bi
�

�

ci
�

for all i � f�� �� �g

We can prove a variant of the Littlewood�Paley lemma for the Lq

spaces�
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Lemma ���� If

supp �u 
 B��� r 
�� r 
�� r 
��

def
� f � R

� such that j�j � r 
�� j�j � r 
�� j�j � r 
�g

and a� � b�� a� � b�� a� � b�� � � ���� ��� ��� is a multi�index� then

k��uk
Lb
� C 


�����a����b�
� 


�����a����b�
� 


�����a����b�
� kukLa �

Proof� Let � � C�� �R�� � equal to � near the ball of center � and
radius r� g � F�����
 Then

�u�� � �
� �

�

�
�
� �

�

�
�
� �

�

�
�u�� �

and thus

u�x� � 
� 
� 
�

Z
R�

g�
� y�� g�
� y�� g�
� y��u�x� y� dy �

Di�erentiating and using Young�s inequality ends the proof


Before introducing our functional spaces let us recall that the ho�
mogeneous Besov spaces are de	ned to be the closure of compactly
supported smooth functions under the norm

kukBs
p�q

def
� k�isk�iukLpk�q �

The need of taking the closure of compactly supported smooth func�
tions comes from the fact that the quantity above is only a semi�norm
since the �norm� of a polynomial vanishes
 Another way of de	ning
these homogeneous spaces is to take equivalence classes of distributions
modulo polynomials and to remark that we obtain in that way a real
norm
 For further details on Besov spaces �homogeneous or not� see
����


De�nition ���� We denote by Hs��s��s� � Hs the closure of compactly

supported smooth functions under the norm

jujs��s��s�
def
� jujs

def
� k

s
�u��kL� �
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The space Hs��s��s� is a Banach space of distributions if s� � ����
s� � ��� and s� � ���


We denote by � a dyadical partition of unity in R� that is a smooth
function supported in the ring of center �� small radius ���� large radius
��� and such that

P
q�Z����q � � � for all  �� � �see ���� ����
 De	ne

�i
q � ����qDi� �

Siq �
X

p�q��

�i
p �

Sq � Sq��q��q� � S�
q�
S�
q�
S�
q�
�

�q � �q��q��q� � ��
q�

��
q�

��
q�
�

Sq � Sq�q�q �

�q � Sq�� � Sq �

The following lemmas are easy to prove�

Lemma ���� If u � Hs then

jujs � k�q�s k�q ukL�k�� �

Lemma ��	� If up is a sequence of functions such that

supp �up



n �

�
�p� � j�j � � �p� �

�

�
�p� � j�j � � �p� �

�

�
�p� � j�j � � �p�

o
and

k�p�s kupkL�k�� �� �

then

u �
X
p

up � H
s��s��s�

and

jujs��s��s� � C k�p�s kupkL�k�� �
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If s� 	 � it is enough to assume that

supp �up 

n
j�j � � �p� �

�

�
�p� � j�j � � �p� �

�

�
�p� � j�j � � �p�

o
�

If s� 	 � and s� 	 � it is enough to assume that

supp �up 

n
j�j � � �p� � j�j � � �p� �

�

�
�p� � j�j � � �p�

o
�

If s� 	 �� s� 	 � and s� 	 � it is enough to assume that

supp �up 
 fj�j � � �p� � j�j � � �p� � j�j � � �p�g �

The next theorem studies the problem of products in the Hs��s��s�

spaces


Theorem ���� Let u � Hs� v � Ht such that si � ���� ti � ����
si � ti 	 �� i � f�� �� �g� Then

u v � Hs�t�������������	

and

ju vjs�t�������������	 � C jujs jvjt �

Proof� We shall give a proof which imitates the argument for the clas�
sical Sobolev spaces
 This will be done by introducing ��dimensional
paraproduct operators
 We recall the de	nition of Bony�s decomposi�
tion

u v � T �u� v� � R�u� v� � eT �u� v� �

where

T �u� v� �
X
q

Sq��u�qv �

R�u� v� �
X

jp�qj��

�pu�qv �

eT �u� v� � T �v� u�
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�see ���� ����
 It is well�known that T � Hs�R��Ht�R� �� Hs�t�����R�
is well�de	ned and continous if s � ���
 The same is true for R if
s � t 	 �
 Here we use the analogous of this decomposition

u v � �T � � R� � eT �� �T � � R� � eT �� �T � � R� � eT ���u� v�

understood as the sum of �� terms
 The de	nition of each term is a
straightforward extension of the classical paraproduct and remainder

The reader may give the de	nition of each term we give� for instance�
the one of the term T �R� eT ��u� v�

T �R� eT ��u� v� �
�X

i���

X
p

S�
p��� ��

p�
��
p�
u��

p�
��
p��i S

�
p���v �

We shall prove that each of the �� operators we 	nd is continuous

Hs �Ht �� Hs�t�������������	 �

under weaker hypothesis than those given in the theorem
 More pre�
cisely� the conditions to assume are given by the composition of the
term in the following manner� if the term contains T i then we have
to assumme si � ��� if the term contains Ri then we have to assume

si � ti 	 � if the term contains eT i then we have to assume ti � ���


For instance if we want the term T �R� eT � to be continous then we have
to assume that s� � ���� s� � t� 	 �� t� � ���
 This term is the most
di�cult to handle so we prove the assertion only on it
 We have

T �R� eT ��u� v� �
�X

i���

X
p

wi
p �

where

wi
p � S�

p��� ��
p�

��
p�
u��

p�
��
p��i S

�
p���v �

Using several times the anisotropic form of H�older�s inequality� the de	�
nition of the operators S� and S� as well as the anisotropic Littlewood�
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Paley Lemma �
� one can show that

k�q w
i
pkL�

� �q��� kwi
pkL�����

� �q��� kS�
p��� ��

p�
��
p�
ukL�����k��

p�
��
p��i S

�
p���vkL�����

� �q���
X

r��p���
r��p���

k��
r�

��
p�

��
p�
ukL�����k��

p�
��
p��i ��

r�
vkL�����

��
��

� �q���
X

r��p���

r��p���

�r����r���k��
r� ��

p� ��
p�ukL�k��

p� ��
p��i ��

r�vkL� �

Let us introduce
a q � �q�s k�q ukL�

and
b q � �q�t k�q vkL� �

Since s� � ��� and t� � ���� inequality ��
�� implies

��
��
k�q w

i
pkL� � C �q��� �p������s��t�	 ��p��s��t�	 �p������s��t�	

� ka pk��p� kbp��p��i�p�k�
�

p�
�

whence

��
��

�q��s�t�������������		 k�q w
i
pkL�

� C ��q��p�	�s��t�����	 ��q��p�	�s��t�����	

� ��q��p�	�s��t�	 ka pk��p�
kbp��p��i�p�k��p�

�

Since jp� � q�j � �� q� � p�� jp� � q�j � � we obtain

�q��s�t�������������		 k�qT
�R� eT ��u� v�kL�

� C
�X

i���

X
jp��q�j��

jp��q�j��

X
p��q�

��q��p�	�s��t�	ka pk��p�
kbp��p��i�p�k��p�

�
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Taking the ��q��q� norm gives

k�q��s�t�������������		k�qT
�R� eT ��u� v�kL�k��q��q�

� C
�X

i���

X
p��q�

��q��p�	�s��t�	ka pk��p��p�
kbp��p��i�p�k��p��p�

�

Taking the ��q� norm� applying Young�s inequality and using that s� �
t� 	 � yields

k�q��s�t�������������		k�qT
�R� eT ��u� v�kL�k��

� C
�X

i���

k ka pk��p��p�
kbp��p��i�p�k��p��p�

k��p�
�

Finally� H�older�s inequality implies

k�q��s�t�������������		k�qT
�R� eT ��u� v�kL�k�� � C kapk�� kbpk�� �

that is
jT �R� eT ��u� v�js�t�������������	 � C jujs jvjt �

This completes the proof


We shall now adjust this study to the case of the spaces HBs��s��s�

� HBs de	ned as the closure of compactly supported smooth functions
under the norm

jujHBs
def
� k�q�sk�q ukL�k������ �

Remark ���� In this de	nition� when we apply the ������ norm� we
	rst take the �� norm and afterwards the others� but all the work we
do is valid for the spaces HB obtained by appling the ������ norm in an
arbitrary manner
 We choosed this order because� according to Remark
�
�� this space is the largest


Remark ���� For all real numbers s�� s�� s� the space HBs is strictly
included into the space Hs
 Moreover� HBs is a Banach space of dis�
tributions for s� � ���� s� � ��� and s� � ���




The resolution of the Navier�Stokes equations ��

The lemmas �
� and �
� will modify in an obvious way� only the
product theorem is relevant for the �N�S� equations


Theorem ���� Let u � HBs� v � HBt such that si � ���� ti � ����
si � ti 	 �� i � f�� �g and s� � ���� t� � ���� s� � t� 	 �� Then

u v � HBs�t�������������	

and

ju vjHBs�t�������������� � C jujHBs jvjHBt �

Proof� The proof is almost identical to the preceding one� the mod�
i	cation� which allows us to take into account the case s� � ��� or
t� � ��� is that the classical paraproduct T � Bs

����R� � Bt
����R� ��

B
s�t����
��� �R� is well�de	ned and continous if s � ���
 Hence� we shall

prove that each of the �� operators is continous under the same as�
sumptions as above� with the modi	cation that if a paraproduct in the
third direction is involved� then we can allow s� or t�� depending on
the paraproduct� to be equal to ���
 The only problem in the proof is
that at the end we have to commute some norms which give raise to
the wrong inequality
 We have to restart from inequality ��
��

��
��

k�q w
i
pkL� � �q���

X
r��p���
r��p���

�r����r���k��
r�

��
p�

��
p�
ukL�

� k��
p� ��

p��i ��
r�vkL� �

Recall that
a q � �q�s k�q ukL�

and
b q � �q�t k�q vkL� �

We use that jp�� q�j � �� jp�� q�j � � to rewrite the last inequality as

��
��

�q��s�t�������������		 k�q w
i
pkL�

� C ��s��t�	�q��p�	
X

r��p���
r��p���

��r��p�	�����s�	��r��p�	�����t�	

� ar��p��p� bp��p��i�r� �
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Now we sum on i� p and q� to obtainX
q�

�q��s�t�������������		k�qT
�R� eT ��u� v�kL�

� C
�X

i���

X
jp��q�j��
p��q�

��s��t�	�q��p�	

�
X

r��p���

��r��p�	�����s�	

�
X
p�

X
r��p���

��r��p�	�����t�	

� ar��p��p� bp��p��i�r�

� C
�X

i���

X
jp��q�j��
p��q�

��s��t�	�q��p�	
X

r��p���

��r��p�	�����s�	

� kar��p��p�k��p�
kbp��p��i�r�k��r�

� C
�X

i���

X
jp��q�j��
p��q�

��s��t�	�q��p�	 k kar��p��p�k��p�
k��r�

kbp��p��i�r�k��r�
�

Since jp� � q�j � �� applying Hold�er�s inequality gives

k k�q��s�t�������������		 k�qT
�R� eT ��u� v�kL�k��q�

k��q�

� C
�X

i���

X
p��q�

��s��t�	�q��p�	 k kap��p��p�k��p�
k��p�

k kbp��p��i�p�k��p�
k��p�

�

��
!�

Using that q� � p� and applying Young�s inequality yields

k�q��s�t�������������		 k�qT
�R� eT ��u� v�kL�k������

� C
�X

i���

k k kap��p��p�k��p�
k��p�

k kbp��p��i�p�k��p�
k��p�

k��p�
�
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Finally� we apply H�older�s inequality to obtain

k�q��s�t�������������		 k�qT
�R� eT ��u� v�kL�k������

� C kap��p��p�k������kbp��p��p�k������ �

which implies

jT �R� eT ��u� v�jHBs�t�������������� � C jujHBs jvjHBt �

This completes the proof for T �R� eT �

Since the third variable plays a special role in the de	nition of the

HB spaces� we show how the same estimates can be modi	ed for other
terms
 We consider 	rst the term T �R�R�
 We have

T �R�R��u� v� �
�X

i�j���

X
p

zi�jp �

where
zi�jp � S�

p��� ��
p�

��
p�
u��

p�
��
p��i ��

p��j v �

As above� we deduce the following inequalities

k�q z
i�j
p kL�

� �q����q��� kzi�jp kL�����

� �q����q��� kS�
p��� ��

p�
��
p�
ukL�����k��

p�
��
p��i ��

p��jvkL�����

� �q����q���
X

r��p���

k��
r�

��
p�

��
p�
ukL�����k��

p�
��
p��i ��

p��jvkL�����

��
��

� �q����q���
X

r��p���

�r��� k��
r�

��
p�

��
p�
ukL�k��

p�
��
p��i ��

p��jvkL� �

Since jp� � q�j � �� it follows that

�q��s�t�������������		 k�q z
i�j
p kL�

� C ��s��t�	�q��p�	��s��t�	�q��p�	

�
X

r��p���

��r��p�	�����s�	 ar��p��p� bp��p��i�p��j �
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Now we sum on i� j� p and q� to obtain

X
q�

�q��s�t�������������		 k�qT
�R�R��u� v�kL�

� C
�X

i�j���

X
jp��q�j��
p��q�

��s��t�	�q��p�	

�
X

r��p���

��r��p�	�����s�	

�
X
q�

X
p��q�

��s��t�	�q��p�	

� ar��p��p� bp��p��i�p��j �

Applying Young�s inequality gives

X
q�

X
p��q�

��s��t�	�q��p�	 ar��p��p� bp��p��i�p��j

� C kar��p��p� bp��p��i�p�k��p�

� C kar��p��p�k��p�
kbp��p��i�p�k��p�

�

It follows that

X
q�

�q��s�t�������������		 k�qT
�R�R��u� v�kL�

� C
�X

i���

X
jp��q�j��
p��q�

��s��t�	�q��p�	

�
X

r��p���

��r��p�	�����s�	 kar��p��p�k��p�
kbp��p��i�p�k��p�

� C
�X

i���

X
jp��q�j��
p��q�

��s��t�	�q��p�	 k kar��p��p�k��p�
k��r�

kbp��p��i�p�k��p�
�
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Since jp� � q�j � �� applying Hold�er�s inequality gives

k k�q��s�t�������������		k�qT
�R�R��u� v�kL�k��q�

k��q�

� C
�X

i���

X
p��q�

��s��t�	�q��p�	

� k kap��p��p�k��p�
k��p�

k kbp��p��i�p�k��p�
k��p�

�

This inequality is similar to ��
!�� so we can continue likewise to obtain
the result on T �R�R�


Finally� we give the proof for the term T � eT �R�
 As above we have

T � eT �R��u� v� �
�X

i���

X
p

�ip �

where
�ip � S�

p��� ��
p�

��
p�
u��

p�
S�
p��� ��

p��iv �

As above� we deduce the following inequalities

k�q �
i
pkL�

� �q��� k�ipkL�����

� �q��� kS�
p��� ��

p�
��
p�
ukL�����k��

p�
S�
p��� ��

p��ivkL�����

� �q���
X

r��p���
r��p���

k��
r�

��
p�

��
p�
ukL�����k��

p�
��
r�

��
p��ivkL�����

��
��

� �q���
X

r��p���

r��p���

�r����r��� k��
r�

��
p�

��
p�
ukL�k��

p�
��
r�

��
p��ivkL� �

Since jp� � q�j � � and jp� � q�j � � it follows that

�q��s�t�������������		 k�q �
i
pkL�

� C ��s��t�	�q��p�	
X

r��p���
r��p���

��r��p�	�����s�	��r��p�	�����t�	

� ar��p��p� bp��r��p��i �
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Now we sum on i� p and q� to obtainX
q�

�q��s�t�������������		 k�qT
� eT �R��u� v�kL�

� C
�X

i���

X
jp��q�j��

jp��q�j��

X
r��p���
r��p���

��r��p�	�����s�	��r��p�	�����t�	

�
X
q�

X
p��q�

��s��t�	�q��p�	 ar��p��p� bp��r��p��i �

Applying Young�s inequality givesX
q�

X
p��q�

��s��t�	�q��p�	 ar��p��p� bp��r��p��i

� C kar��p��p� bp��r��p��ik��p�

� C kar��p��p�k��p�
kbp��r��p�k��p�

�

It follows thatX
q�

�q��s�t�������������		 k�qT
� eT �R��u� v�kL�

� C
X

jp��q�j��

jp��q�j��

X
r��p���
r��p���

��r��p�	�����s�	��r��p�	�����t�	

� kar��p��p�k��p�
kbp��r��p�k��p�

� C
X

jp��q�j��

jp��q�j��

k kar��p��p�k��p�
k��r�

k kbp��r��p�k��p�
k��r�

�

Using again that jp� � q�j � �� jp�� q�j � � and taking the ��q��q� norm
yields

k�q��s�t�������������		 k�qT
� eT �R��u� v�kL�k������

� C ka pk������kb pk������ �

that is

jT � eT �R��u� v�jHBs�t�������������� � C jujHBs jvjHBt �
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This completes the proof


�� Resolution of 
N�S� in the Hs��s��s� spaces�

Let ���� � �i � ���� i � f�� �� �g� �� � �� � �� � ���
 Then there
exist nonnegative numbers a�� a�� a� such that

��
�� � � �i � ai �
�

�
� for all i � f�� �� �g and a� � a� � a� �

�

�

�one can choose ai � �����i���
 We shall prove the following theorems�

Theorem ��� 
global existence and uniqueness�� There exists

C 	 � such that if divu� � �� u� � H� and juj� � C � then the �N�S�
equations have a unique solution in

L
������  H��a�  L�������  H�� �

Moreover� the solution satis�es u � C������  H���

Theorem ��� 
local existence and uniqueness�� If divu� � � and

u� � H� then a time T 	� and a unique solution of �N�S� on ��� T �
exist so that

u � L
���� T �  H��a�  C���� T �  H�� �

The uniqueness is proved at the end
 The global existence is proved
in the same time with the local existence
 In fact� we shall prove a
better result valid for the space HT de	ned as the closure of compactly
supported smooth functions under the norm

kukHT

def
� k k�q����a	�q ukL�

T �L
�	k�� �

Theorem ��	� Let divu� � � and u� � H�� Then there exist T 	 �
and a solution of �N�S� on ��� T � which veri�es u � HT �

Remark ���� We have HT �� L
���� T �  H��a�
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Indeed� from Remark �
� we infer

kuk
L�����T �H��a	

� k k�q����a	k�q ukL�k��kL�

� kk�q����a	�q ukL�
T �L

�	k��

� kukHT
�

Proof of Theorem ���� We approach u� with the sequence un� �
Snu�� where Sn is the classical Sn in R� 
 Let un be the local regular
solution of �N�S� with initial data un� �for the existence of un see �!��
�����
 For each n we apply �q at �N�S� and we multiply by �q un to
obtain

d

dt
k�q unk

�
L� � � kr�q unk

�
L� � C jh�q �unrun�j�q unij

� C jh�q �div �un � un��j�q unij ���
��

The localization of the Fourier transform of �q un enables us to say
that

kr�q unk
�
L� � k���q unk

�
L� � k���q unk

�
L� � k���q unk

�
L�

� C �q� k�q unk
�
L� � C �q� k�q unk

�
L� � C �q� k�q unk

�
L�

� C ��q� � �q� � �q�� k�q unk
�
L� �

Moreover� we have from Theorem �
� that if un � H
��a� then un�un �

H����a�������������	
 Thus we can write

div �un � un� �
�X

j��

wj �

where

jw�j����a�������������	 � C jun � unj����a�������������	 � C junj
�
��a

�

jw�j����a�������������	 � C jun � unj����a�������������	 � C junj
�
��a

�

jw�j����a�������������	 � C jun � unj����a�������������	 � C junj
�
��a

�
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It follows that

jh�q �unrun�j�q unij

� C ���q������a�������������		 � ��q������a�������������		

� ��q������a�������������		� aq k�q unkL� junj
�
��a

�

where

aq �
�q������a�������������		 k�q w�kL�

jw�j����a�������������	

�
�q������a�������������		 k�q w�kL�

jw�j����a�������������	

�
��q������a�������������		 k�q w�kL�

jw�j����a�������������	

so kaq���k�� � � for all � 
 Using this in ��
�� leads to

d

dt
k�q unk

�
L� � C � ��q� � �q� � �q�� k�q unk

�
L�

� C ���q������a�������������		 � ��q������a�������������		

� ��q������a�������������		�

� aq junj
�
��a

k�q unkL� �

By Gronwall�s lemma we have

k�q un�t�kL�

� k�q u
n
�kL� exp ��C � ��q� � �q� � �q�� t�

� C ���q������a�������������		 � ��q������a�������������		

� ��q������a�������������		�

��
��

�

Z t

�

exp ��C � ��q� � �q� � �q�� �t� ��� aq��� jun���j�
��a

d� �
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Taking the L
��� T � norm and using Young�s inequality gives

k�q un�t�kL�
T �L

�	

� C ����
 ��q� � �q� � �q�����
 k�q u
n
� kL�

� ��� exp ��C � T ��q� � �q� � �q������


� C ���q������a�������������		 � ��q������a�������������		

� ��q������a�������������		�

� k exp ��C � ��q� � �q� � �q������kL������T 	 kaq junj
�
��a

kL����T 	

� C ����
 ��q� � �q� � �q�����
 k�q u
n
� kL�

� ��� exp ��C � T ��q� � �q� � �q������


� C ����
 ���q������a�������������		 � ��q������a�������������		

� ��q������a�������������		�

� ��q� � �q� � �q�����
 kaq junj
�
��a

kL����T 	 �

Young�s inequality along with relation ��
�� imply

�q�a � �q�a� �q�a� �q�a�

� � a� ��q� � � a� ��q� � � a� ��q�

� ��q� � �q� � �q�� �

�q������a����	��	 �q��������a����	��	 �q��������a����	��	

�
�

��
�

�
�a� � ���

�
�q� �

��

�
�

�

�
�a� � ���

�
�q�

�
��

�
�

�

�
�a� � ���

�
�q�

� �q� � �q� � �q� �

and two similar inequalities
 Therefore

��q� � �q� � �q�����
 � ��q�a �
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��q������a�������������		 ��q� � �q� � �q������

� ��q������a�������������		 ����q������������	���a��	��		��

� ��q��a��	 �

��q������a�������������		 ��q� � �q� � �q������

� ��q������a�������������		 ����q������������	���a��	��		��

� ��q��a��	 �

��q������a�������������		 ��q� � �q� � �q������

� ��q������a�������������		 ����q������������	���a��	��		��

� ��q��a��	 �

It follows that

�q��a��	 k�q unkL�
T �L

�	 � C ����
 �q�� k�q u
n
�kL�

� ��� exp ��C � T ��q� � �q� � �q������
��
��

� C ����
 kaq junj
�
��a

kL����T 	 �

Taking the �� norm gives

kunkHT

� C ����
 k�q�� k�q u
n
�kL���� exp ��C � T ��q� � �q� � �q������
k��

� C ����
 kun���k�
L�����T �H��a	

��
��

� ����
fn�T � � C ����
 kunk
�
HT

�

where

fn�T � � C k�q�� k�q u
n
�kL� ��� exp ��C � T ��q� � �q� � �q������
k�� �

We shall need to have fn�T � small
 In order to obtain that� we use
Lebesgue�s dominated convergence theorem
 The particular form of un�
implies

k�q u
n
�kL� � k�q Sn u�kL� � kSn �q u�kL� � k�q u�kL�
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and the estimate

�q�� k�q u
n
�kL� ��� exp ��C � T ��q� � �q� � �q������
 � �q�� k�q u�kL�

ful	lls the domination requirement since the right side is an �� sequence
that is independent of T and n
 As for the pointwise convergence� for
	xed q one has

�q�� k�q u
n
�k

�
L� ��� exp ��C � T ��q� � �q� � �q������


� ju�j� ��� exp ��C � T ��q� � �q� � �q������

T��
�� � �

So� by Lebesgue� limT�� fn�T � � � uniformly with respect to n
 We
choose T small enough such that fn�T � � ����C�� where C is the
constant from inequality ��
��
 It follows that

kunkHT
�

���


�C
� C ����
 kunk

�
HT

�

We deduce that kunkHT
� ���
���C� if we take into account that

kunkHT
is continuous in T � kunkH�

� � and

���


�C
�

���


�C
� C ����


����

�C

��
�

This allows us to take the limit and to 	nd the existence of the solution
on ��� T �


Proof of the global existence� We start again from inequality
��
�� and we estimate fn�t� � Cju�j�
 We 	nd in the same way the

existence of a solution in L
������  H��a�
 Next we prove that such a

solution belongs to L�������  H��

We start again from inequality ��
��� we apply the L� norm and

making similar computations we 	nd

��
!�
�q�� k�q ukL�T �L�	

� C �q�� k�q u�kL� � C ����� kaq juj
�
��a

kL����T 	 �

Taking the �� norm yields

��
�� kuk
L�������H�	

� ju�j� � C ����� �kuk
L�������H��a	

�� �
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Finally� the continuity in time follows from Lebesgue�s dominated con�
vergence theorem since the map t �� k�q unkL� is continous and the
domination requirement is given in relations ��
!� and ��
��


Let us now prove the uniqueness


Theorem �� 
uniqueness�� Let u� and u� be two solutions of �N�S�

which belong to the space L
���� T �  H��a�C���� T �  H�� with the same

initial data in H�� Then u� � u��

Proof� We subtract the equations veri	ed by u� and u� to obtain

�t�u��u���� ��u��u���u� �r�u��u����u��u��ru� � r�p��p�� �

The same computations as in Theorem �
� yield

ku� � u�kL�����t�H��a	

� C ku� � u�kL�����t�H��a	
�ku�kL�����t�H��a	

� ku�kL�����t�H��a	
� �

Thus� if t is small enough� we have

ku� � u�kL�����t�H��a	
�

�

�
ku� � u�kL�����t�H��a	

�

so we get local uniqueness that is global uniqueness� since the map
t �� ku� � u�kL�����t�H��a	

is continuous


	� Resolution of 
N�S� in the HBs��s��s� spaces�

Let us introduce the spaces HBT�p�s��s��s� � HBT�p�s de	ned as
the closure of compactly supported smooth functions under the norm

kukHBT�p�s

def
� k k�q�s�q ukLp

T �L
�	k������ �

As for the Hs spaces we shall prove a theorem of global existence and
uniqueness and a local existence and uniqueness one
 Let a and b be
two positive real numbers such that a � b � ���


Theorem 	�� 
global existence and uniqueness�� There exists

C 	 � such that if divu� � �� u� � HB������� and jujHB������� � C �
then the �N�S� equations have a unique global solution which belongs to

HB��
�a�b����  L�������  HB��������  C������  HB�������� �
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Theorem 	�� 
local existence and uniqueness�� If divu� � � and

u� � HB������� then there exist T 	 � and a unique solution of �N�S�
on ��� T � which belongs to HBT�
�a�b����  C���� T �  HB���������

Remark� We have HBT�
�a�b���� �� L
������  HBa�b�����


Indeed� Remark �
� implies

kukL�������HBa�b����	 � k k�q�a�q�b�q��� k�q ukL�k������kL�

� kk�q�a�q�b�q���k�q ukL�kL�k������

� kukHBT���a�b��
�

We 	rst prove

Lemma 	��� Let si � ���� ti � ���� si � ti 	 �� for all i � f�� �g�
s� � ���� t� � ���� s� � t� 	 � and p� q � �� r � p q��p� q� � �� Then

ku vkHBT�r�s�t��������������
� kukHBT�p�s

kvkHBT�q�t
�

Proof� We shall copy the proof of Theorem �
� and prove this lemma
for each of the �� terms of the Littlewood�Paley decomposition
 Let us
take� for instance� the T �R� eT � term
 We start again from inequality
��
��

k�q w
i
p �t�kL� � �q���

X
r��p���
r��p���

�r����r��� k��
r�

��
p�

��
p�
u�t�kL�

� k��
p�

��
p��i ��

r�
v�t�kL� �

Taking the Lr��� T � norm and applying H�older�s inequality gives

k�q w
i
p �t�kLr

T �L
�	 � �q���

X
r��p���
r��p���

�r����r��� k��
r� ��

p� ��
p�u�t�kLp

T �L
�	

� k��
p� ��

p��i ��
r�v�t�kLq

T �L
�	 �

If we de	ne
Aq � �q�s k�q ukLp

T �L
�	
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and
Bq � �q�t k�q ukLq

T �L
�	 �

it follows that

�q��s�t�������������		 k�q w
i
p �t�kLr

T �L
�	

� C �q��s�����	��s��t�	�q��p�	�q��t�����	

�
X

r��p���

r��p���

�r������s�	�r������t�	Ar��p��p� Bp��p��i�r� �

This inequality is entirely similar to ��
�� so the proof continues in
exactly the same way we did after that inequality


Proof of the local existence� It is obvious that if � � ��� �� ����
and a� � a� a� � b� a� � � then hypothesis ��
�� is veri	ed excepted
for the condition �� � a� � ���
 This is precisely where we use that

B
���
��� �R� is an algebra
 Hence� we can follow the same line of proof as

in Theorem �
�� replacing the �� norms by the ������ norms and the
Hs spaces with the HBs spaces
 There is one fact which doesn�t allow
us to give an identical proof� the deduction of inequality ��
�� from
inequality ��
�� which is not possible because the switch of the L� and
������ norms yields an inequality in the opposite sens of the wanted one

To avoid that we have to give up the estimate

k�q �uru�kL� � C ���q������a�������������		 � ��q������a�������������		

� ��q������a�������������		� aq juj
�
����������� �

and to use� for the deduction of inequality ��
��� Lemma �
�
 As in
Theorem �
� we 	nd the following inequality

d

dt
k�q unk

�
L� � C � ��q� � �q� � �q�� k�q unk

�
L�

� k�q �unrun�kL� k�q unkL� �

Gronwall�s lemma implies

k�q un�t�kL�

� k�q u
n
�kL� exp ��C � ��q� � �q� � �q�� t�

� C �exp ��C � ��q� � �q� � �q������ �k�q �un���run����kL����t� �
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Taking the L
��� T � norm and using Young�s inequality gives

k�q un�t�kL�
T �L

�	

� C ����
 ��q� � �q� � �q�����
 k�q u
n
�kL�

� ��� exp ��C � T ��q� � �q� � �q������


� C k exp ��C � ��q� � �q� � �q������kL������T 	 k�q �unrun�kL�
T �L

�	

� C ����
 ��q� � �q� � �q�����
 k�q u
n
�kL�

� ��� exp ��C � T ��q� � �q� � �q������


� C ����
 ��q� � �q� � �q�����
 k�q �unrun�kL�
T �L

�	 �

Again by Young�s inequality we have

��q� � �q� � �q�����
 � �q��� ��q��a�b����	 �

It follows that

��
��

�q��a�b����	k�q un�t�kL�
T �L

�	

� C ����
 �q��� k�q u
n
�kL�

� ��� exp ��C � T ��q� � �q� � �q������


� C ����
 ��q� � �q� � �q�����
 �q��a�b����	

� k�q �unrun�kL�
T �L

�	 �

Now we use the Lemma �
� to deduce that

k�q �unrun�kL�
T �L

�	

� k�q div �un � un�kL�
T �L

�	

� C c q ���q���a������b��������	 � ��q���a������b��������	

� ��q���a������b���������	� kunk
�
HBT���a�b����

�

where kc qk������ � �
 Young�s inequality implies

��q� � �q� � �q�����
 �q��a�b����	 ��q���a������b��������	 � � �

��q� � �q� � �q�����
 �q��a�b����	 ��q���a������b��������	 � � �

��q� � �q� � �q�����
 �q��a�b����	 ��q���a������b���������	 � � �
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Hence inequality ��
�� may be written as

�q��a�b����	 k�q unkL�
T �L

�	

� C ����
 �q��� k�q u
n
�kL� ��� exp ��C � T ��q� � �q� � �q������


� C ����
 c q kunk
�
HBT���a�b����

�

Taking the ������ norm gives

kunkHBT���a�b����

� C k�q��� k�q u�kL� ��� exp ��C � T ��q� � �q� � �q������
k������

� C kun���k�HBT���a�b����

� gn�T � � C kunk
�
HBT���a�b����

�

where

gn�t��C k�q��� k�q u�kL� ���exp ��C � T ��q� � �q� � �q������
k������ �

We conclude as in Theorem �
�
 The fact that u � C���� T �  HB��������
is proved as in the case of Hs spaces


Proof of the global existence� Same proof as above by estimat�
ing

gn�t� � C ju�jHB������� �

The uniqueness theorem is also similar to the one of the case Hs


Theorem 	�	 
uniqueness�� Let u� and u� be two solutions of �N�S�
which belong to HBT�
�a�b����C���� T �  HB�������� with the same initial

data in HB�������� Then u� � u��

Proof� Making the same computations as in Theorem �
�� replacing
the �� norms with the ������ norms and using Lemma �
� as shown above
we 	nd

ku� � u�kHBt���a�b����

� C ku� � u�kHBt���a�b����
�ku�kHBt���a�b����

� ku�kHBt���a�b����
� �

We conclude as in Theorem �
�
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� Some imbeddings and nonimbeddings�

In this section we prove some imbeddings and some nonimbeddings
which are used to compare the results from the previous sections with
the results already known
 We recall that one can solve �N�S� in the

spaces H���� B
�����p
p�� � � � p �� �see ���� ���� ���� ���� and it seems very

di�cult to do it in C�� �kukBs
p�q

def
� k�is k�iukLpk�q and C�� � B������


It is also proved by H
 Kozono and M
 Yamazaki in ��� that one can

solve �N�S� in the homogeneous spaces N ��p��
p�q�� � � � q � p ��� p 	 ��

where N s
p�q�r is de	ned to be the closure of the compactly supported

smooth functions under the norm

kukN s
p�q�r

� k�sj sup
x��R�

sup
R��

R��p���q k�jukLq�B�x��R		k�r �

where B�x�� R� denotes the closed ball in R
� with center x� and radius

R
 Let us remark that Bs
p�r � N s

p�p�r
 We can prove the following
proposition�

Proposition ��� i� If �� � �� � �� � ���� ���� � �i � ��� for all

i � f�� �� �g and p 	 max��i�������� � �i�� then

H� �� B�����p
p�� �� C�� �

ii� L� H������� �
 C���

iii� If � � q � p � � q��� p 	 �� then HB������� �
 N
��p��
p�q�� hence

HB������� �
 B
�����p
p�� for all � � p ���

iv� HB������� �� C���

Property i� shows that solutions of �N�S� were already constructed
by M
 Cannone ���� F
 Planchon ��� and H
 Kozono� M
 Yamazaki ���

Property ii� suggests that the space H������� is very interesting as space
of initial data unfortunately we cannot include it in our results
 Fi�
nally� property iii� shows that HB������� is not included in the space
considered by H
 Kozono and M
 Yamazaki at least for some p and q it
implies that it is not included in any of the spaces used by M
 Cannone
and F
 Planchon
 The author doesn�t know if the non�imbedding of iii�
still holds for the other values of p and q
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Proof of Proposition ���� i� First we remark that if s � �� then we
can replace �i with Si in the de	nition of the Bs

p�� space
 By Lemma
�
� we have

�q������p	 kSq ukLp

� C �q������p	
X
q��q
q��q
q��q

k�q ukLp

� C �q������p	
X
q��q
q��q
q��q

�q��������p	�q��������p	�q��������p	 k�q ukL�

� C �q������p	
X
q��q
q��q
q��q

�q��������p���	�q��������p���	�q��������p���	

� �q�� k�q ukL�

� C �q������p	
X
q��q
q��q
q��q

�q��������p���	�q��������p���	�q��������p���	 juj� �

As ���� ��p� �i 	 � for any i � f�� �� �g� one deducesX
q��q
q��q
q��q

�q��������p���	�q��������p���	�q��������p���	

� C �q�������p���������	

� C �q�����p	 �

Hence kuk
B
�����p
p��

� C juj� and the 	rst imbedding is proved
 In or�

der to obtain the second imbedding it is enough to apply the classical
Littlewood�Paley inequality

k�qukL� � ��q�p k�qukLp �

to multiply by ��q and to take the upper bound on q


ii� As L�  H������� and C�� are distribution spaces� the closed
graph theorem shows that it is enough to prove L�  H������� ��� C��

Assume by absurd that L�  H������� �� C��
 Then

��q kSqukL� � C kukL��H������� � for all q �
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We choose u � f � g where f � R� �� C � g � R �� C 
 It is obvious
that Squ � Sqf � Sqg and kukL��H������� � kfkL�kgkH���� where in
Sqf � Sq is the �D Sq and in Sqg� Sq is the �D Sq
 Hence

��
�� ��q kSqfkL�kSqgkL� � C kfkL� kgkH��� � for all q �

For each 	xed q we use the function fq�x� � f���
q x�� where f� is

chosen with supp bf� su�ciently small to get Sqfq � fq� that gives
kSqfqkL� � kfqkL� � kf�kL� and kfqkL� � ��q kf�kL� since we
work in two dimensions
 Therefore� it comes from relation ��
��

kSqgkL� � C kgkH��� �

that is H����R� 
 L� which is false


iii� As above we assume by absurd that HB������� �� N
��p��
p�q�� and

we remark that if s � �� then we can replace �j with Sj in the de	nition
of the norm of the space N s

p�q��

Again� we choose u � f � g where f � R� �� C � g � R �� C 
 It is

not di�cult to see that the norm

sup
x��R�

sup
R��

R��p���qkf � gkLq�B�x��R		

is equivalent to the norm

sup
x��R�

sup
R��

R��p���qkfkLq�B��x���R		 kgkLq�B��x���R		 �

where B� and B� denote the one�dimensional� respectively two�dimen�
sional balls
 This is done by including a cube of size R into the ball
B�x�� R�� applying Fubini�s theorem� then including balls of radius R��
into the one�dimensional and the two�dimensional cubes of size R and
	nally taking the upper bound on R


It follows that

�j������p	 sup
x��R�

sup
R��

R��p���qkSjfkLq�B��x���R		 kSjgkLq�B��x���R		

� C kfkL� kgk
B
���
���

�

for all j� where the constant C does not depend on j
 Choosing x� � �
yields

�j������p	 sup
R��

R��p���qkSjfkLq�B����R		 kSjgkLq�B����R		

� CkfkL� kgk
B
���
���

�
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for all j
 Now we 	x j and we choose fj�x� � f���
j x�� the same example

as above
 We also choose g to be a function whose Fourier transform is
a compactly supported smooth function
 This implies that Sjfj � fj
and Sjg � g for j large enough
 Moreover� we have that

kSjfjkLq�B����R		 � kfjkLq�B����R		 � ���j�qkf�kLq�B�����jR		 �

and
kfjkL� � ��j kf�kL� �

It follows that� for j large enough� we have

�j���p���q	 sup
R��

R��p���qkf�kLq�B�����jR		 kgkLq�B����R		

� C kf�kL� kgk
B
���
���

�

which implies

�j���p���q	 sup
R��

R��p���qkf�kLq�B����R		 kgkLq�B����R		

� C kf�kL� kgk
B
���
���

�

for all j 	 j�
 Taking the limit on j ��� gives a contradiction


iv� We write

��q kSqukL� � ��q
X
q��q
q��q
q��q

k�q ukL�

� ��q
X
q��q
q��q
q��q

�q����q����q��� k�q ukL�

� ��q
X
q��q
q��q

�q����q��� k�q��� k�q ukL�k��q�

� k�q��� k�q ukL�k������

� k�q��� k�q ukL�k������

� kukHB������� �

This completes the proof
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One could ask whether the divergence free condition has an in"u�
ence on the choice of the spaces where we can take the initial data or
not
 The answer is negative because� if we look to the proofs above�
we see that the scalar counterexamples f we deduce have the property
that ��f and ��f are again good counterexamples �di�erentiating f�
only diminishes the support of its Fourier transform�� so we can take
as initial data u� � ���f����f� ��


Appendix�

In this paragraph we show how a general d�dimensional hyperbolic

symmetric system can be solved in B
��d��
��� �Rd�� By general hyperbolic

symmetric system we mean a system of the form

�S�

�
�tU � A�U� � rU � � �

U jt�� � U� �

where
A�U� � �Aj�U����j�d

and� for all j� Aj�U� is a symmetric smooth globally Lipschitz matrix
and U is a time dependent vector 	eld in Rd 


Proposition� Assume that U� � L� B��d��
��� � Then there exist a time

T and a unique solution of �S� on ��� T � in the space L����� T �  B
��d��
��� ��

Moreover� there exists a constant C 	 � such that the maximal time

existence of such a solution may be bounded from below by

T 	
C

kU�kB��d��
���

�

Proof� The proof relies on the fact that B
d��
��� is imbedded in L� and

on the following estimate�

Lemma� For all vector �elds U in B
��d��
��� there exists a sequence

fcqgq�N such that

jh�q�A�U��rU�j�qUij�C ��q�d����	cq k�qUkL� kUk
B
��d��
���

krUkL� �
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where X
q

cq � � �

This lemma is well�known in the case of the Sobolev spaces and
the extension to the Besov spaces is simple
 Decomposing the product
A�U� � rU in the usual sum of two paraproducts and a remainder�
using the classical product theorem for Besov spaces� we see that the
only term where a critical case appears is

h�q�TA�U	rU�j�qUi �

Some easy computations done integrating by parts show that

h�q�TA�U	rU�j�qUi

�
X
p�j

h��q� Sp��Aj�U���j�pU��qUi

�
�

�

X
p

Sp�� divA�U� �q �pU �qU

�
�

�

X
p�p��j

�Sp�� � Sp����Aj�U� �q �pU �j �q �p�U �

The last two terms are very easy to estimate� we need only to apply the
de	nition of the Besov spaces
 The 	rst term is estimated by remarking
that �q is an operator of convolution with the function

�qd h��q�� �

where h � F���
 Therefore

�Sp��Aj�U���q� a�x�

� �qd
Z

�Sp��Aj�U��x�� Sp��Aj�U��y��h��q�x� y�� a�y� dy �

Hence

j�Sp��Aj�U���q� a�x�j � C �q�d��	 krUkL� jy hj ��
q�� jaj �

Young�s inequality now gives

k�Sp��Aj�U���q� a�x�kL� � C ��q krUkL�kakL� �
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This proves the lemma


We return to the proof of the proposition
 We apply �q to �S� and
we take the scalar product with �qU to obtain

d

dt
k�qUk

�
L� � jh�q�A�U� � rU�j�qUij

� C ��q�d����	 cq kUkB��d��
���

krUkL�k�qUkL� �

It follows that

�q�d����	 k�qU�t�kL�

� �q�d����	 k�qU�kL� � C

Z t

�

cq��� kU���k
B
��d��
���

krU���kL� d� �

Summing on q yields

kU�t�k
B
��d��
���

� kU�kB��d��
���

� C

Z t

�

kU���k
B
��d��
���

krU���kL� d� �

Applying Gronwall�s lemma we 	nd

kU�t�k
B
��d��
���

� kU�kB��d��
���

exp
�
C

Z t

�

krU���kL�
�
d� �

Next we use that Bd�� 
 L� to write

krU�t�kL� � kU�t�k
B
��d��
���

� kU�kB��d��
���

exp
�
C

Z t

�

krU���kL� d�
�
�

If we note

f�t� � C

Z t

�

krU���kL� d� �

we obtain
f ��t� � C kU�kB��d��

���

exp �f�t�� �

Again by Gronwall�s lemma it follows

exp ��f�t�� � exp ��f����� C t kU�kB��d��
���

�
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Hence� as long as

C t kU�kB��d��
���

� � �

we have Z t

�

krU���kL� d� �� �

Standard L� estimates and the inequality above imply uniqueness of
solutions
 This completes the proof
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Construction of non separable

dyadic compactly supported

orthonormal wavelet bases

for L
�

�R
�

� of arbitrarily

high regularity

Antoine Ayache

Abstract� By means of simple computations� we construct new classes
of non separable QMF�s� Some of these QMF�s will lead to non separa�
ble dyadic compactly supported orthonormal wavelet bases for L��R��
of arbitrarily high regularity�

�� Introduction�

In the most general sense� wavelet bases consist of discrete families
of functions obtained by dilations and translations of well chosen fun�
damental functions �	
� ��
� In this paper we will focus on compactly
supported dyadic orthonormal wavelet bases for L��R��� they are of the
form

f�j �i��jx� � ki� �
jx� � li�  j� ki� li � Z� i � �� �� �g �

I� Daubechies has constructed compactly supported wavelet bases for
L��R� of arbitrarily high regularity� generalising the classic Haar basis

��
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��
� The most commonly used method to construct compactly sup�
ported wavelet bases for L��R�� of arbitrarily high regularity� is the
tensor product method ��
� It leads to the scaling function ��x�� x�� �
���x�����x�� and to the fundamental wavelets

�a�x�� x�� � ���x�����x�� �

�b�x�� x�� � ���x�����x�� �

and
�c�x�� x�� � ���x�����x�� �

�where �� �respectively ��� is a scaling function for L��R� and �� �re�
spectively ��� is the corresponding fundamental wavelet�� The scaling
functons and the wavelets that result from the tensor product method
are called separable� In this paper� we will also call separable the scaling
functions and the wavelets that are the images of separable scaling func�
tions and wavelets by an isometry of L��R�� of the type f�x� ��� f�Bx�
�B � SL���Z���

Let us now give an outline of the present article�
In the second section� by means of simple computations we con�

struct new classes of bidimensional non separable QMF�s �Theorems
��� and �����

In the third section� we show that some of these QMF�s gener�
ate non separable� compactly supported� orthonormal wavelet bases for
L��R�� of arbitrarily high regularity� These wavelets will be constructed
by two methods

The �rst method consists in perturbing the separable I� Daubechies
QMF�s �Theorem ����� Thus it leads to wavelets that are close to the
I� Daubechies separable wavelets with the same number of vanishing
moments �for the L� norm��

The second method permits to construct wavelets that are not near
to the I� Daubechies separable wavelets �Theorem �����

All the results of the second section and some of the results of the
third section may be adapted to multidimensional compactly supported
orthonormal wavelets bases for L��Rd� � R

d� � of dilation matrix�
A� �
� A�

�
�

where for i � �� �� Ai is a matrix di� di such that all the eigenvalues �
of Ai satisfy j�j � � and Ai Z

di � Z
di ��
�
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�� New classes of non separable QMF�s�

A d�dimensional QMF is a trigonometric polynomial on Rd � M����
such that

�����

���
��

M���� � � �X
s�f���gd

jM��� � 	 s�j� � � �

The conjugate �lters are �d � � trigonometric polynomials on Rd �

M����� � � � � M�d�����

such that the matrix

U��� � �Mk�� � 	s��s�f���gd�k�f�������d��g �

is unitary for all � � Rd �
When d � �� we will take M���� � �e�i�M��� � 	��
If ��x� is a compactly supported scaling function with d vari�

ables� there exists a unique d�dimensional QMF M���� such that the
Fourier transform of ��x� satis�es ����� � M���

���� ��������� Thus�
we have a one�to�one correspondance between the multiresolution anal�
yses for L��Rd� with a compactly supported scaling function and the
d�dimensional QMF�s that satisfy the A� Cohen�s criterion ��
� ��
�

A� Cohen�s criterion is satis�ed when jM����j � �� for all � �
��	
�� 	
�
d�

One can notice that� in general� it is not clear that one may always
associate compactly supported wavelets to a multidimensional multires�
olution analysis� even if its scaling function is compactly supported ��
�
In this paper this di�culty will be solved by ad hoc constructions �The�
orems ��� and �����

The bidimensional QMF that corresponds to a separable wavelet
basis is also said separable� It can be written

����� M���� ��� � m��a�� �� � a�� ���m��a�� �� � a�� ��� �

where �aij� belongs to SL���Z� and m��x��m��x� are two monodimen�
sional QMF�s�

Let us now study a class of bidimensional QMF�s � which is rather
easy to construct� This class seems to be a natural extension of the
class of the separable QMF�s for �aij� � I��
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���� The class of the semi separable QMF�s�

Theorem ���� Let a�x�� b�x�� m�x� be three monodimensional QMF�s
and �a�x���b�x�� �m�x� their conjugate �lters� If c�x� is a trigonometric

polynomial� we set

ce�x� �
�

�
�c�x� � c�x� 	��

and

co�x� �
�

�
�c�x�� c�x� 	�� �

Then

����� M����� ��� � a����me���� � b����mo���� �

is a bidimensional QMF called a semi separable QMF and its conjugate

�lters are

�����

���
��

M����� ��� � a���� f �mge���� � b���� f �mgo���� �
M����� ��� � �a����me���� � �b����mo���� �

M����� ��� � �a���� f �mge���� � �b���� f �mgo���� �

If a �� b and if m�x� has at least three non vanishing coe�cients� then

M����� ��� is non separable�

Proof� An obvious calculus shows that M����� ��� is a QMF and that
M����� ���� M����� ���� M����� ��� are its conjugate �lters�

It is a bit technical to prove that M����� ��� is non separable� Sup�
pose that M����� ��� � m��a�� �� � a�� ���m��a�� �� � a�� ��� where
�aij� belongs to SL���Z� and m��x�� m��x� are two monodimensional
QMF�s�

Taking �� � �� we get

�	� m���� � m��a�� ���m��a�� ��� �

If a�� 
 a�� � � �mod ��� we will suppose that a�� is even and a�� is
odd� the other case being similiar� then

jm��a�� ���j� � jm����j� � jm��� � 	�j� � � �
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thus we have a�� � ��
If a�� 
 a�� �mod ��� since �aij� � SL���Z� then a�� and a�� are

odd and

jm��a�� ���j� jm��a�� ���j� � jm��a�� �� � 	�j� jm��a�� �� � 	�j�
� jm����j� � jm��� � 	�j� � � �

but this cannot be true since

�jm��a�� ���j��jm��a�� ���	�j�� �m��a�� ���j��jm��a�� ���	�j�� � � �

Therefore �	� implies that a�� a�� � ��
We will only study the case�

�� �
a�� ��

�
� �i � �� �

the case �
a�� ��
�� �

�

is similar� We have m�x� � m���� x�� thus

M����� ��� � m���� ���m��� a�� �� � ��� �

Taking �� � � and then �� � 	 we get

�

�
�a���� � b����� � m���� ���m��� a�� ��� �

�

�
�a����� b����� � m���� ���m��� a�� �� � 	� �

hence

a���� � �m���� ���me��� a�� ��� �

b���� � �m���� ���mo��� a�� ��� �

Since we must have

ja����j� � ja��� � 	�j� � � �

jb����j� � jb��� � 	�j� � � �
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it follows that

� jme�a�� ���j� � � �

� jmo�a�� ���j� � � �

If a�� �� � the trigonometric polynomials me�a�� ��� and mo�a�� ��� are
inversible and thus of the type

me�a�� ��� �
�

�
eik��

and

mo�a�� ��� �
�

�
eil�� �

If a�� � � we have a � b�

When the QMF�s a�x� and m�x� satisfy A� Cohen�s criterion and
when the norm ka� bk� is small enough� the corresponding semi sep�
arable QMF satis�es obviously this criterion� However� the constraint
on ka� bk� does not seem necessary� Indeed� if for example

a�x� � m�x� �
�

�
�� � e�ix�

and

b�x� �
�

�
�� � e�i�x� �

We have ka � bk� � � but the corresponding semi separable QMF
satis�es A� Cohen�s criterion ��
� This example also shows that it is
even not necessary that both a�x� and b�x� satisfy A� Cohen�s for the
associated semi separable QMF satis�es it� In ��
 we have however
established that m�x� must satisfy this criterion�

���� Other classes of non separable QMF�s�

It is clear that many QMF�s are not semi separable� even in the
weak sense� This means that they are not of the form

a�c�� ���c�� ���me�c�� ���c�� ����b�c�� ���c�� ���mo�c�� ���c�� ��� �
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where a�x�� b�x�� m�x� are three monodimensional QMF�s and �cij� is
a matrix of SL���Z��

Let � � 
�� �� and ��x�� ���x� the two trigonometric polynomials
in one variable de�ned by

����� ��x� � �� � q�x� �

where q�x� is a trigonometric polynomial vanishing in zero� with values
in ��� �
 and such that q �� �� and by

����� j��x�j� � j���x�j� � � �

The existence of ���x� is given by the Fejer�Riesz Lemma�

Theorem ���� Let S����� ��� � a���� b���� be a separable QMF and let

S����� ���� S����� ���� S����� ��� be its conjugate �lters ��a�x� �
�e�ix a�x� 	� and �b�x� � �e�ix b�x� 	� will be the conjugate �lters

of a�x� and b�x��� If ����� ��� and ����� ��� are two trigonometric poly�

nomials 	�periodic in �� and in �� and such that�
���� �� � � �

j����� ���j� � j����� ���j� � � �

Then

����� R����� ��� � ����� ���S����� ��� � ����� ���S����� ��� �

is a QMF and its conjugate �lters are

���	�

���
��

R����� ��� � ����� ���S����� ���� ����� ���S����� ��� �

R����� ��� � ����� ���S����� ��� � ����� ���S����� ��� �

R����� ��� � ����� ���S����� ���� ����� ���S����� ��� �

Moreover

i� If ����� ��� � ��� ��� and ����� ��� � ���� ��� �as de�ned by

����� and ������� the QMF R����� ��� is non separable when S����� ���
is not the �lter �a���� b���� and R����� ��� has zeros of order greater or

equal than � in �	� ��� ��� 	� and �	� 	��

ii� If ����� ��� � ��� ��� � ���� and ����� ��� � ���� ��� � ���� or
if ����� ��� � ��� ��� � ���� and ����� ��� � ���� ��� � ����� then the

QMF R����� ��� is non separable�
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iii� If S����� ��� � �a���� b����� ����� ��� � ��� ��� and ����� ��� �
���� ��� e

�i��� � then the QMF R����� ��� is non separable�

Proof� One sees immediately that R����� ��� is a QMF and that
R����� ���� R����� ���� R����� ��� are its conjugate �lters�

Let us show i��
We will begin by the case where S����� ��� � a�����b����� Suppose

that

R����� ��� � m��c�� �� � c�� ���m��c�� �� � c�� ��� �

where �cij� belongs to SL���Z� and m��x�� m��x� are two monodimen�
sional QMF�s� Taking successively ���� ��� � �x� ��� ��� x� and �x� 	�
where x is an arbitrary real one obtains

��x� a�x� � m��c�� x�m��c�� x� ��a�

b�x� � m��c�� x�m��c�� x� ��b�

���x� a�x� � m��c�� x� c�� 	�m��c�� x� c�� 	� ��c�

Since the product of two QMF�s in the same variables is never a QMF
�see the proof of the Theorem ����� it results from �b� that c�� c�� � ��
This implies that

�cij� �

�
�� �
c�� ��

�
or

�cij� �

�
c�� ��
�� �

�

with �i � ��� We will suppose that we are in the �rst case� the second
case being similar�

We notice that whatever the value of the integer c�� may be� one
cannot have for all x� j��x�j� � jm��c�� x�j�� Indeed� if c�� � �
then � � � and else ��	
c��� � �� In both cases the hypotheses are
contradicted�

It follows from �a� and �c� that

ja�x�j� � j��x�j� ja�x�j� � j���x�j� ja�x�j�

� jm���� x�j� jm��c�� x�j� � jm���� x�j� jm��c�� x� 	�j�

� jm����x�j� �
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Thus by using �a� we obtain the contradiction j��x�j� � jm��c�� x�j�
for all x � R�

Let us study now the case where S����� ��� � �a�����b����� As pre�
viously� we will suppose that

R����� ��� � m��c�� �� � c�� ���m��c�� �� � c�� ��� �

Taking successively ���� ��� � �x� ��� ��� x� and �x� 	� where x is an
arbitrary real� one obtains

��x� a�x� � m��c�� x�m��c�� x� ��a�

b�x� � m��c�� x�m��c�� x� ��b�

���x� �a�x� � m��c�� x� c�� 	�m��c�� x� c�� 	� ��c�

It follows from �b�� as previously� that c�� c�� � � and we can suppose
that

�cij� �

�
�� �
c�� ��

�

with �i � ��� �a� and �c� imply then that

��x� a�x� � ���x� �a�x� � �m���� x�m��e�c�� x� �

��x� a�x�� ���x� �a�x� � �m���� x�m��o�c�� x� �

where

m��e�c�� x� �
�

�
�m��c�� x� �m��c�� x� 	��

and

m��o�c�� x� �
�

�
�m��c�� x��m��c�� x� 	�� �

As

j��x� a�x� � ���x� �a�x�j� � j��x� a�x� 	� � ���x� �a�x� 	�j� � � �

j��x� a�x�� ���x� �a�x�j� � j��x� a�x� 	�� ���x� �a�x� 	�j� � � �

we have

� jm��e�c�� x�j� � � �

� jm��o�c�� x�j� � � �
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If c�� �� �� it follows from the two last equalities that the QMF m��x�
has only two non vanishing coe�cients� This is impossible since
R����� ��� has zeros of order greater or equal than � in �	� ��� ��� 	�
and �	� 	�� If c�� � �� it follows from �c� that for all x� ���x� �a�x� � ��
This is impossible�

Let us show ii��
As the variables �� and �� play the same role we will only study the

case where S����� ��� � e�����b���� with e � �a or e � a� As previously�
we will suppose that

R����� ��� � m��c�� �� � c�� ���m��c�� �� � c�� ��� �

Taking successively ���� ��� � �x� ��� ��� x� and �x� 	� one obtains

��x� a�x� � m��c�� x�m��c�� x� ��a�

��x� b�x� � m��c�� x�m��c�� x� � when e � �a ��b�

��x� b�x� � ���x��b�x� � m��c�� x�m��c�� x� � when e � a ��b��

���x� e�x� � m��c�� x� c�� 	�m��c�� x� c�� 	� ��c�

When e � �a� it follows from �a� and �b� that c��� c��� c�� and c�� are all
odd� Indeed� suppose for example that c�� is even� c�� would necessarily
be odd and then �a� would imply that

j��x�j� � j��x�j� ja�x�j� � j��x�j� ja�x� 	�j�

� jm��c�� x�j� jm��c�� x�j� � jm��c�� x�j� jm��c�� x� 	�j�

� jm��c�� x�j� �

But we never have j��x�j� � jm��c�� x�j� for all x� Thus it results
from �c� that

j���x�j� � j���x�j� je�x�j� � j���x�j� je�x� 	�j�

� jm��c�� x�	�j� jm��c�� x�	�j� � jm��c�� x�j� jm��c�� x�j� �

and it results from �a� that

j��x�j� � jm��c�� x�j� jm��c�� x�j�� jm��c�� x� 	�j� jm��c�� x�	�j� �

This leads to the contradiction jj� � j�j��
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When e � a� since ��x� b�x� � ���x��b�x� is a QMF� it follows
from �b�� that c�� c�� � �� So� as previously we can suppose that

�cij� �

�
�� �
c�� ��

�

with �i � ��� Moreover �a� implies that c�� is odd�
It results then from �a� and �c� that

ja�x�j� � j��x�j� ja�x�j� � j���x�j� ja�x�j�

� jm���� x�j� jm��c�� x�j� � jm���� x�j� jm��c�� x� 	�j�

� jm���� x�j� �

Thus �a� implies that j��x�j� � jm��c�� x�j� for all x� which is impos�
sible�

We can prove by the same method that

R����� ��� � ��� ��� � ����S����� ��� � ���� ��� � ����S����� ��� �

where S����� ��� is any conjugate �lter of S����� ���� is non separable�
Let us show iii��
As previously� we will suppose that

�	� R����� ��� � m��c�� �� � c�� ���m��c�� �� � c�� ��� �

Taking ���� ��� � �x� 	� one obtains

R��x� 	� � m��c�� x� c�� 	�m��c�� x� c�� 	� � � �

and it follows that c�� c�� � �� Thus we may suppose that

�cij� �

�
� ��
�� c��

�
�

where �i � ��� the other case being similar� Then taking successively
in �	�� ���� ��� � �x� �� and ��� x� one obtains

��x� a�x� � ���x� �a�x� � m���� x� �

b�x� � m���� x�m��c�� x� �
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The last equality implies that c�� � � and b�x� � m���� x�� Thus we
have

R����� ��� � m���� ���m���� ��� � b���� ��� ��� a���� � ��� ��� �a����� �

and it follows that

b���� ��� ��� a���� � ��� ��� �a���� e
�i����

� b���� ��� ��� a���� � ��� ��� �a����� �

which leads to the contradiction for all ��� e
�i��� � ��

�� Some of the previous QMF�s lead to wavelet bases for

L��R�� of arbitrarily high regularity�

In this section we give two methods for constructing non separable
orthonormal compactly supported wavelet bases for L��R�� of arbitrar�
ily high regularity�

In all this section the norm on R�will be j���� ���j � sup fj��j� j��jg�

���� The method by perturbing the I� Daubechies QMF�s�

Proposition ���� For all L � �� let DL���� ��� � dL���� dL���� be the

separable I� Daubechies QMF such that

jdL�x�j� � c
L

Z �

x

sin�L�� t dt �

For all � � �� one can construct a non separable QMF DL������ ��� that
satis�es

i� kDL�� �DLk�  ��

ii� DL������ ��� has zeros of order L on �	� ��� ��� 	� and �	� 	��

iii� the size of DL������ ��� is independent on ��

Moreover DL������ ��� may be chosen of the type ����� or of the

type ������ �L and �L�� will be the scaling functions that correspond to

DL���� ��� and DL������ ����
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Proof� See ��� Chapter �
 and see also ��
�

It is clear that for � � � small enough DL������ ��� will satisfy the
A� Cohen�s criterion�

Proposition ��� remains valid� if we replace the QMF DL���� ���
by any other separable QMF a���� b���� that has zeros of order L on
�	� ��� ��� 	� and �	� 	��

We can now state the main result of this subsection�

Theorem ���� The QMF�s DL������ ��� generate for � � � small

enough non separable orthonormal compactly supported wavelet bases

for L��R�� of arbitrarily high regularity� We will say that these wavelets

are obtained by perturbing the I� Daubechies QMF�s�

Proof� The critical Sobolev exponent of f � L��R�� is by de�nition

�f� � sup
n
 

Z
R
�

j �f���j� �� � j�j��� d� ��
o
�

R� Q� Jia has shown in �	
 that if M��� is a QMF that satis�es A�
Cohen�s criterion and that has zeros of order L in �	� ��� ��� 	� and
�	� 	�� then the critical Sobolev exponent of � the corresponding scaling
function is

�	� ��� � � log�

�
�
�TM
��L

		
�

where ��TM
��L� is the spectral radius of the restriction of the transfer
operator

TMf��� �
X

	�f���g�




M��
�
� 	 �

	


� f��
�
� 	 �

	

to the vector space ��L of the trigonometric polynomials that have a
zero of order greater or equal than �L in ��� ���

Let ��L� and ��L��� the critical Sobolev exponent of the scaling
functions �L and �L�� �as de�ned in the Proposition ����� Since the
regularity of the I� Daubechies scaling function �L can arbitrarily high
when L is big enough� we have limL�� ��L� � ��� At last� it
follows from �	� and from the continuity of the spectral radius� that
lim��� ��L��� � ��L�� which implies the Theorem ����



	� A� Ayache

We have solved the open theorical problem of establishing the
existence of non separable orthonormal compactly supported wavelet
bases for L��R�� of arbitarily high regularity� However the wavelets we
have obtained are probabely very similar to the I� Daubechies separable
wavelets since lim��� �L�� � �L �for the L� norm� �see ��� Chapter �
��

���� Another method of construction�

The aim of this subsection is to construct non separable orthonor�
mal compactly supported wavelets of arbitrarily high regularity that
are not near to the I� Daubechies bidimensional wavelets with the same
number of vanishing moments �for the L� norm��

Let us �rst give a condition ensuring the decrease at in�nite of the
Fourier transform of a scaling function�

Theorem ���� Given two reals � � 
�� �� and C � ��	���� there exists

an exponent  � ��� C� � � having the following property� If M���� ���
is a QMF that satis�es for some integer N � �

a� jM���� ���j  �N when �� � ��	
�� �	
�
 or �� � ��	
�� �	
�
�

b� jM���� ���j  CN j��� � s� 	� �� � s� 	�jN for all ��� �� for all

�s�� s�� � f�� �g� and �s�� s�� �� ��� ���

c� jM���� ���j � jM���������j for all ��� ���
Then � the scaling function that corresponds to M���� ���� satis�es

������ ��� � O �j���� ���j��N ��

To prove the Theorem ��� we need the following lemma�

Lemma ���� Given two reals � � 
�� �� and C � �� there exists an

exponent  � ��� C� � � having the following property� If f�s� t� is

a continuous function from R
� to ��� �
� ��periodic in s and t� which

satis�es

i� �  f�s� t�  � � �� when s � ��
�� �
�
 or t � ��
�� �
�
�

ii� f�s� t�  C j�s � ��
�� t � ��
��j� for all s� t� for all ���� ��� �
f�� �g� and ���� ��� �� ��� ���

iii� f�s� t� � f��s��t�� for all s� t�
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Then if j � � and if �s�t� satis�es �
�  j�s� t�j  �
� we have the
inequality

f�s� t� f�� s� � t� � � �f��j s� �j t�  ���j �

Proof� First we set h�s� t� � f�s� t� f�� s� � t�� The function f�s� t�
satis�es the property ii� and the inequality i� when s � ��
�� �
�
 or
when t � ��
�� �
�
� Moreover this function being with values in ��� �

we have

j��Y
k��

h��k s� �k t� �
� jY
k��

f��k s� �k t�
	�

�

thus it is su�cient to show that for some � � ���� C� � � for all j � �

j��Y
k��

h��k s� �k t�  ��
j �

Consider now �s� t� satisfying j�s� t�j � jsj � ��
�� �
�
� Because of the
periodicity of f�s� t� and because of iii�� one can suppose that �s� t� �
��
�� �
�
� ��� �
� It follows that

s �
�

�
�
�
	

� � � � � t �
��
�
�
��
�

� � � � �

where j � �j � f�� �g�
We then de�ne q�� � � � � qr the transition indices of the �nite vectorial

sequence ��� ���� � � � � �j��� �j��� where ��� ��� � ��� �� as follows r
will be the number of the indices q that satisfy� �  q  j � � and
�q��� �q��� �� �q��� �q���� q� � � and for all l� �  l  r�

ql � min fn  ql�� � n  j � � and �n��� �n��� �� �n��� �n���g �

For m � �� � � � � r we set lm � qm���qm �qr�� � j by convention�� thus
we have

Pr
m�� lm � j�

We have introduced the transition indices in order to get the in�
equalities

h��qm s� �qm t�  � ��M��

h��qm s� �qm t�  C ��lm ��M��
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We have �qms � ��
�� �
�
 or �qm t � ��
�� �
�
 therefore i� implies
�M��� To prove �M�� we will suppose that qm�� �� qm��� we then
have j�qms � �
�j  ���lm��	� So� if �qm�� � �qm�� it follows that
j�qmt��qm��j  ���lm��	 and else that j�qmt� �
�j  ���lm��	� in the
both cases ii� implies �M���

At last� for all j � � we have

h�s� t�h�� s� � t� � � �h��j�� s� �j�� t�  h��q� s� �q� t� � � �h��qr s� �qr t� �

So� if A and � are two reals such that �A � C� ��
A � � and �A���
	 �
C �for example A � log�C � log���
�� and � � log���
��
A� then we
will have

�	� h��qm s� �qm t�  ��
lm �

indeed� when lm � A �M�� implies that h��qms� �qmt�  ��
A � ��
lm

and when lm � A �M�� implies that h��qms� �qmt�  C ��lm  ��
lm �
Since

Pr
� lm � j it results from �	� that

h��q� s� �q� t� � � �h��qr s� �qr t�  ��
j �

Proof �Of the Theorem ����� If M���� ��� is a QMF satisfying
�a�� �b� and �c� the function f�s� t� � jM��	 s� �	 t�j��N satis�es the
conditions i�� ii� and iii� of the Lemma ���� Let ���� ��� � R� such that
j���� ���j � �	 and let j � � the integer such that �j	  j���� ���j 
�j�� 	� Thus� if

�s� t� �
�

�j��	
���� ��� �

we have �
�  j�s� t�j  �
� and it results from the Lemma ��� that

j ��M ���� ���j  �f�s� t� f�� s� � t� � � �f��j s� �j t��N

 ���Nj

 C��N� j���� ���j��N �

From now on� our aim will be to construct a sequence of non sep�
arable QMF�s fAL���� ���gL�� such that for all L big enough�

i� AL���� ��� satis�es the conditions �a�� �b� and �c� of the Theorem
����



Construction of non separable dyadic 	�

ii� AL���� ��� satis�es A� Cohen�s criterion�

iii� AL���� ��� is not near to the I� Daubechies QMF DL���� ��� as
de�ned in the Proposition ���� More precisely we will have

lim inf
L��

kAL �DLk� � �

�
�

Let AL������ ��� be a QMF of the form

����� AL������ ��� � dL���� ���� ��� dL���� � ���� ��� �dL���� e
�i���� �

where�

� � � 
�� �� �
� dL�x� is the monodimensional I� Daubechies QMF such that

jdL�x�j� � c
L

Z �

x

sin�L�� t dt

and �dL�x� � �e�ix dL�x� 	� is its conjugate �lter�

� ��x� � �� � q�x� and ���x� are the trigonometric polynomials
as de�ned by ����� and ������

Let us �rst give some useful properties of the QMF dL�x��

Proposition ���� The monodimensional I� Daubechies QMF dL�x�
satis�es 

i� for all real  � 
�� 	
�� � one can �nd a real � � 
�� �� such that

for all L big enough� for all x � �	
� � � �	
�� 
� jdL�x�j  �L�

ii� there exists a real C � ��	��� such that for all x � R� jdL�x�j 
CL jx� 	jL�

iii� for all x � 
� 	
�� 	
�� �

lim
L��

jdL�x�j � � and lim
L��

j �dL�x�j � � �

Proof� The function jdL�x�j being even one can suppose that x �
��� 	
� One can notice that cL � O �

p
L�� For all  � �� we have for

all x � �	
� � � 	
� jdL�x�j�  j	
�� j cL j sin�L�� �	
� � �j which
implies i��
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We have obviously ii� since

jdL�x�j�  c
L

Z �

x

�	 � t��L�� dt  C � jx� 	j�L �

iii� is a consequence of i� and of jdL�x�j� � jdL�x� 	�j� � ��

The following proposition will permit us to make an appropriate
choice of the real � that occurs in ������

Proposition ��	� If �� � �
� then for all L � � the QMF AL������� ����
as de�ned by ����� satis�es A� Cohen�s criterion�

Proof� Let us show that for all ���� ��� � ��	
�� 	
�
� and for all
L � � we have jAL������� ���j � �� As jdL����j � � it is su�cient to
show that

j���� ��� dL���� � ����� ���
�dL���� e

�i��� j � � �

We have

j���� ��� dL���� � ����� ���
�dL���� e

�i��� j

�
p
�

�
�j���� ���j � j����� ���j� �

At last� since j���� ���j � �
� and j���� ���j� � j����� ���j� � �� it
follows that j���� ���j � j����� ���j�

The following lemma will permit us to make an appropriate choice
of the trigonometric polynomial q�x� that occurs in ������

Lemma ��
� For all reals � and  satisfying � � 
�� �� and  � 
�� 	
��
there exists fqL�x�gL�� a sequence of trigonometric polynomials in one

variable with values in ��� �
 and with real coe�cients� having the fol�

lowing properties 

i� kq
L
k� � ��

ii� q
L
��x�  �L for all x � ��� 	
� �	
�� �	
�
�

iii� q
L
��x� converges uniformly to � on �	
� � � �	
�� 
�

iv� there exists a real C � � such that q
L
��x�  C�L jxj�L for all

x�
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Proof� Consider T an even� 	�periodic� C� function with values on
��� �
 such that

a� T ��� � � and for all x � ��� 	
�
� �  T ��x� � � �where � 	
� �p
� ��

b� for all x � �	
� � � 	
�
� T �x� � ��

c� for all x � �	
�� 	
� T �x� � T �	 � x��

Let KN �x� be the Fejer kernel� KN �x� is the trigonometric poly�
nomial

KN �x� �
�

�	 �N � ��




 NX
k��

eikx



� � �

�	 �N � ��

sin�
� �N � ��

�
x
	

sin�
�x
�

	 �

For every function f � L���� �	
�

KN 	 f�x� �
Z �

��

KN �x� y� f�y� dy

will be the convolution product of KN and f� Let QN �x� � KN 	T �x��
KN 	 T ��� and

RN �x� �
QN

kQNk� �x� �

Since T is even and 	�periodic the trigonometric polynomial RN is with
real coe�cients and 	�periodic�

The sequences fRNg and fR�Ng converge uniformly to the functions
T and T �� Thus it follows from a� that

� There exists C � � such that for all x� for all N � jRN �x�j  C jxj�
� For all N � N� and for all x � ��� 	
� �	
�� �	
�
� jRN �x�j 

p
��

At last� one can extract a sequence fRNL
gL�� satisfying N� � N�

and kT �RNL
k�  e�L� We will take q

L
��x� � jRNL

�x�j�L�

De�nition ���� AL���� ��� will be a QMF of the type ����� such that

� � �
� and q�x� � q
L
�x�� where q

L
�x� is the trigonometric polynomial

we have constructed in the Lemma ����

We can now state the main result of this subsection�
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Theorem ��� The QMF�s fAL���� ���gL�� generate non separable

orthonormal compactly supported wavelet bases for L��R�� of arbitrarily
high regularity� Moreover these wavelets are not near to the separable I�

Daubechies wavelets with the same number of vanishing moments since

lim infL�� kAL �DLk� � �
��

Proof� It follows from the Proposition ���� the Lemma ��� and the
inequality

jAL���� ���j  jdL����j jdL����j�
s
q
L
�� ���

�
j �dL����j jdL����j �

that� for L big enough the QMF AL���� ��� satis�es the conditions a�
and b� of the Theorem ���� This QMF also satis�es the condition c� of
the same theorem since its coe�cients are reals�

Let us show that lim infL�� kAL �DLk� � �
��
We have

�

�
q
L
�� ��� jdL����j jdL����j � j������ ���j j �dL����j jdL����j

 jAL���� ����DL���� ���j

 �

�
q
L
�� ��� jdL����j jdL����j� j������ ���j j �dL����j jdL����j �

It follows from the Propositions ����iii� and from the Lemma ����iii�
that for all ���� ��� � �	
� � � 	
� �� 
� 	
�� 	
� �

lim
L��

jAL���� ����DL���� ���j � �

�
�

therefore

lim inf
L��

kAL �DLk� � �

�
�

�� Conclusion�

Some of the techniques we have used to construct non separable�
dyadic� compactly supported� orthonormal� wavelet bases for L��R�� of
arbitrarily high regularity� may be adapted to other types of wavelet
bases�
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In ��
 we have constructed non separable� dyadic� compactly sup�
ported� biorthogonal wavelet bases for L��R�� of arbitrarily high regu�
larity by perturbing separable biorthogonal �lters�

We have found recently a method for constructing QMF�s that
generate compactly supported� orthonormal wavelet bases for L��R��
of dilation matrix

R �

�
� ��
� �

�

�R is a rotation of 	
� and a dilation of
p
��� This method is inspired

from the Theorem ��� Let �x� and ��x� two trigonometric polynomials
in one variable such that ��� � � and j�x�j��j��x�j���� Letm�x� be
a monodimensional QMF �i�e� m��� � � and jm�x�j�� jm�x�	�j� � ��
and �m�x� its conjugate �lter � �m�x� � �e�ixm�x� 	��� If P ���� ��� is
one of the trigonometric polynomials

u���� ��� � �� ���m���� � ��� ��� �m���� �

v���� ��� � ��� � ���m���� � ���� � ��� �m���� �

w���� ��� � ��� � ���m���� � ���� � ��� �m���� �

then we have �
P ��� �� � � �

jP ���� ���j� � jP ��� � 	� �� � 	�j� �

This means that when P ���� ��� satis�es A� Cohen�s criterion it gener�
ates a compactly supported� orthonormal wavelet basis for L��R�� of
dilation matrix R� We do not know yet whether the regularity of such
wavelets could be made arbitrarily high�

Acknowledgements� I would like to thank A� Cohen� P� G� Lemari�e�
Rieusset and Y� Meyer for fruitful discussions�
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Some Dirichlet spaces

obtained by subordinate

re�ected di�usions

Niels Jacob and Ren�e L� Schilling

In this paper we want to show how well�known results from the
theory of �regular� elliptic boundary value problems� function spaces

and interpolation� subordination in the sense of Bochner� and Dirichlet

forms can be combined and how one can thus get some new aspects in
each of these �elds�

Let A � L�x�D� be a second�order elliptic di�erential operator
with smooth coe	cients on a bounded domainG with smooth boundary
�G and with Dirichlet or Neumann boundary conditions� Assume that
the operator is symmetric� Under Neumann boundary conditions
 it
generates a re�ected di�usion process fXtgt�� which is associated with
a Dirichlet form E with domain H��G�� It is clear that A de�ned on

D�A� � H�
f����g�G� ��

n
u � H��G� �

�

��
u
���
�G

� 
o

is also the generator of a sub�Markovian semigroup fTtgt�� on L��G��
Denote by f�
  � � � �
 the Bernstein function f��x� � x�� By sub�
ordination in the sense of Bochner it is possible to construct for each

� � �� �� four new objects
 A��� �� ���A��
 fT
���
t gt��
 the semigroup

generated by A���
 E������ ��
 the Dirichlet form associated with A���

�and also with fT
���
t gt���
 and the subordinate �with respect to the

Bernstein function x�� stochastic process fX
���
t gt��� These construc�

tions are of a somewhat abstract nature and some work has to be done

��
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if one wants to determine D�A���� and D�E���� explicitly in terms of
function spaces� In fact
 this work has already been done by R� Seeley
���� for D�A����
 and for D�E���� the results are even longer known
 cf�
J� L� Lions and E� Magenes ����
 and
 as reference for both cases
 the
monograph ���� by H� Triebel�

In our �rst section we collect some fundamental results on the
Dirichlet and Neumann problems for second�order elliptic di�erential
operators �with smooth coe	cients in a domain with smooth boundary�
and the associated di�usion processes� Subordination in the sense of
Bochner will be discussed in Section �
 both from the analytic and
probabilistic point of view� In the third section we study D�A���� and
D�E���� under Dirichlet and Neumann conditions� In both cases the
domains are certain fractional order Sobolev spaces� Under Neumann
boundary conditions we have

D�E���� � H��G� � if � � �� ��

and

D�A���� � H��
f����g�G� � if � �

��
�
� �
�
�

D�A���� � H���G� � if � �
�
�

�

�

�
�

under Dirichlet boundary conditions we have

D�E���� � H��G� � if � �
�
�

�

�

�
�

D�E���� � H�
� �G� � if � �

��
�
� �
�
�

and

D�A���� � H���G� � if � �
�
�

�

�

�
�

D�A���� � H��
D �G� � if � �

��
�
� �
�
�

Here

Hs
D�G� �� fu � Hs�G� � � u � g
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with the trace operator �� One should note that these are well�known
results in the theory of elliptic boundary value problems
 but they seem
to be rather ignored in the theory of Dirichlet forms�

Section � deals with the decomposition of the �Neumann� Dirichlet

space �E
���
� � H��G��� We show that H��G� can be written as an or�

thogonal sum H�
� �G��H�

��G� where the functions u � H�
��G� are the

harmonic functions with respect to the form E
���
� � i�e� E

���
� �u�w� � 

for all w � H�
� �G�� Moreover
 we show that there is an isomorphism

�
���
� fromH�������G� toH�

��G�� This map establishes a unitary equiv�

alence between �E
���
� �H��G�� and �C

���
� � H�������G��
 where C

���
� is �

at least for 	 �  � the analogue of the classical Douglas integral� This
correspondence is further investigated in Section �� In particular
 we

show that �C
���
� � H�������G�� is a regular Dirichlet space and that C

���
�

is equivalent to the canonical scalar product on H�������G� which it�

self is a Dirichlet form� The precise knowledge of D�C
���
� � allows us


for example
 to derive certain Lp�estimates for C
���
� and thus L��L��

estimates for the associated semigroup�

In Section � we construct the associated boundary processes and

show that the process generated by �C
���
� � H�������G�� can indeed be

obtaind by an appropriate time�change of the process generated by
�C�� H

�����G���

The �nal section takes up the Skorokhod representation of the re�
�ected di�usion which was already discussed in the �rst section� We
use now Bochner�s subordination �with respect to fractional powers� in
order to derive a representation for the subordinate re�ected process�
Note
 that subordination is one possibility to construct a re�ected sym�
metric stable process in a unique and natural way� However
 in ���� S�
Watanabe pointed out that there are several methods of getting pro�
cesses which one could call re�ected symmetric stable processes�

�� Dirichlet forms generated by elliptic di�erential operators
with boundary conditions�

In this section we summarize some results on Dirichlet forms that
are generated by second�order elliptic di�erential operators satisfying
Neumann or Dirichlet boundary conditions� In particular
 we recall
some conditions that allow to associate stochastic processes to these
Dirichlet forms
 re�ected di�usions under Neumann boundary condi�
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tions and absorbing di�usions under Dirichlet boundary conditions�
Since we want to present our ideas as clearly as possible �and do not
want to get entangled in technical details� we will restrict our consid�
erations to rather smooth objects � thus getting at best sub�optimal
conditions from the point of view of Dirichlet forms
 but keeping full

compatibility with existing �analytic� literature� Our exposition will

later on
 rely heavily on results from the theory of function spaces and
interpolation theory�

The main reference for this section is the monograph ��� by M�
Fukushima
 Y� Oshima
 and M� Takeda� For the Neumann problem we
refer especially to the paper ��� by M� Fukushima and M� Tomisaki� We
should
 however
 mention that the crux of that paper was to consider a
situation with rather weak regularity assumptions � which is somehow
an opposite point of view� Nevertheless we think it might be convenient
for the reader to have a state�of�the�art and easily accessible reference�

Let G � Rn be a bounded domain with smooth boundary �G
 i�e�

�G is assumed to be a C��manifold� We consider the second order
di�erential operator

����� L�x�D� �
nX

k����

�

�xk

�
ak��x�

�

�x�

�
�

with coe	cients ak� � a�k � C��G�� Moreover
 we assume that

����� 	��� j
j� �
nX

k����

ak��x� 
k 
� � 	� j
j
� �

for some 	� �  and all x � G
 
 � Rn � It is well known that the
quadratic form

����� E�u� v� ��

Z
G

nX
k����

ak��x�
�u

�xk
�x�

�v

�x�
�x� dx �

with domain H��G� � L��G� is a regular Dirichlet form
 see ��
 Ex�
ample ������
 where the regularity problem is carefully discussed if
ak��x� � �k�� Therefore
 cf� ���
 there exists a conservative di�usion
process X � �fXtgt���Px� fFtgt��� on G which is associated with the
Dirichlet form ������ For each t �  and x � G the transition func�
tion pt�x� �� of X is known to be absolutely continuous with respect to
Lebesgue measure
 and X is a strong Feller process�
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Due to our regularity assumptions
 the domain D�A� of the gener�
ator A of the Dirichlet form E is given by

D�A� �
n
u � H��G� �

�

��
u � 

o
�

where ��� denotes the derivative in direction of the outer normal
� � ���� � � � � �n� to the boundary �G� Sometimes we will also write

H�
f����g�G� � D�A� �

On D�A� we have A � L�x�D� which can be interpreted to hold in
strong L��sense
 but
 of course
 also in the sense of distributions� Let
us observe for later applications that �L�x�D�� ���� forms a regular

elliptic boundary value problem in the sense of S� Agmon
 A� Douglis

and L� Nirenberg ���
 see also ���� which will be our standard reference�

The general theory of Dirichlet forms shows that we can always as�
sociate a sub�Markovian semigroup fTtgt�� on L��G� with �E � H��G���
In our case
 this semigroup enjoys the strong Feller property
 it is con�
servative
 i�e� Tt� � �
 and its transition kernels have densities with
respect to Lebesgue measure on G
 i�e�
 we have

Ttu�x� � Ex�u�Xt�� �

Z
G

pt�x� y�u�y� dy �

We call fTtgt�� the Neumann semigroup associated with the Dirichlet
form �E � H��G���

One of the major aims in ��� was to obtain a Skorokhod representa�

tion of the process X under minimal smoothness conditions� Of course

this result remains valid in the situation considered here and reads as
follows� Let Xk

t denote the k�th coordinate of Xt
 � � k � n� For t � 
and x � G one has almost surely �Px�

�����

Xk
t �Xk

� � Mk
t �

nX
���

Z t

�

�ak�
�x�

�Xs� ds

�
nX
���

Z t

�

ak��Xs� ���Xs� dLs �

Here
 Mk
t 
 � � k � n
 are continuous additive functionals in the strict

sense
 see ��
 p� ���
 p� ���� for the de�nition
 satisfying

����� Ex�Mk
t � �  and Ex�Mk

t M
�
t � � � Ex

�Z t

�

ak��Xs� ds
�
�
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for t �  and x � G� The processes Mk
t are continuous martingales

�under Px� with co�variation

�����
�
Mk�M �

�
t
� �

Z t

�

ak��Xs� ds � almost surely �Px� �

for all x � G� Moreover
 Lt is a unique positive continuous additive
functional in the strict sense with Revuz measure � and supported by
�G and one has

Lt �

Z t

�

��G�Xs� dLs �

Let G � Rn and L�x�D� be as above� We consider now the quadratic
form ED �� E on the domain H�

� �G�


H�
� �G� �� C�

� �G�
k�k�

� where k � k� � k � kL� � kr � kL� �

Clearly
 �ED� H
�
��G�� is a regular Dirichlet form and its generator AD

has the domain

D�AD� � fu � H��G� � � u � g �

where � � H��G� 	 H�����G� is the trace operator� As usual
 � is the
continuous extension of the map u 
�	 u

��
�G

when u � C��G�� Thus


� u �  means that u attains  as boundary value� The space H�
� �G�

can now be characterized by

H�
� �G� � fu � H��G� � � u � g �

�In Section � below
 we will have a closer look at the trace operator��
The Markov process associated with the Dirichlet form �ED� H

�
��G��

is known to be an absorbing �elliptic� di�usion process� Since G is
bounded
 the following Poincar�e inequality holds

Z
G

ju�x�j� dx � c�

Z
G

jru�x�j� dx � u � H�
� �G� �

By �����
 ����� we get

	���

Z
G

jru�x�j� dx � E�u� u� �
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and therefore

����� �c� 	��
��

Z
G

ju�x�j� dx � E�u� u� �

This
 however
 means that on H�
� �G� the form E��� �� is a scalar product

which is equivalent to the canonical one ��� ����
Let us return to the Dirichlet form �E � H��G��� We introduce the

space

H��G� ��
�
u � H��G� � E�u� �� �  for all � � C�

� �G�
�
�

or
 equivalently


����� H��G� �
�
u � H��G� � E�u� v� �  for all v � H�

� �G�
�
�

Since H��G� is a closed subspace of H��G� there is an orthogonal de�
composition

����� H��G� � H��G��E H
�
� �G� �

and it is clear that H��G� consists of all solutions of the equation
L�x�D�u �  in G such that u and its �rst order partial derivatives
belong to L��G�� In particular
 the elements of H��G� are arbitrarily
often di�erentiable on G�

If ak��x� � �k�
 ����� is exactly the Weyl decomposition� Let us
mention a special case when n � � and G � B��� is the open unit disk
with boundary �G � S�� It is well known that one can construct a
Dirichlet space �C� D�C�� on the boundary such that there is a one�to�
one correspondence between �C� D�C�� and the classical Dirichlet space
�E��H��G��� Here

E�u� v� �

Z
B����

ru�x� � rv�x� dx �

and the form C is explicitly given by the Douglas integral

C��� ��

�
�

���

Z �	

�

Z �	

�

	
����� �����


 	
����� �����



sin��

�� � ��

�

�
d� d�� �

compare ��
 pp� ������� In Section � we will give a generalization of this
result�
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�� Subordination in the sense of Bochner�

De�nition ���� An arbitrarily often di�erentiable function f � ����
�	 R is called Bernstein function if f �  and ����nf �n� �  hold for

all n � N�

Bernstein functions can be fully characterized by a L�evy�Khinchin
formula


����� f�x� � a� b x�

Z �

�

��� e�sx���ds� �

with a� b �  and a non�negative measure � on ���� such that

Z �

�

s �s� ���� ��ds� �� �

The representation ����� shows that f has an analytic continuation onto
the complex half�plane Re z �  and is continuous up to the boundary�
These and many other properties can be found in the monograph ���
by C� Berg and G� Forst� We will need one more fact about Bernstein
functions �e�g� ��
 Theorem ������

Theorem ���� Every convolution semigroup f�tgt�� of sub�probability

measures on ���� is uniquely characterized by some Bernstein func�

tion f � and vice versa� This correspondence is given by

Z �

�

e�sx �t�ds� � e�tf�x� �

Some of the most prominent Bernstein functions are the fractional
powers


x� �
�

���� ��

Z �

�

��� e�sx� s���� ds � x �  �  � � � � �

The corresponding convolution semigroup is the one�sided stable semi�

group of order ��

De�nition ���� Let fTtgt�� be a sub�Markovian semigroup on

L��X�m� where X is a locally compact Hausdor� space andm is a Borel
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measure such that suppm � X� Denote by f�tgt�� the convolution

semigroup with Bernstein function f � The semigroup fT ft gt�� de�ned

on L��X�m� by the Bochner integral

T ft u �

Z �

�

Tsu �t�ds�

is called the subordinate semigroup of fTtgt�� with respect to f�tgt��
or with respect to f �

It is known that the subordinate semigroup is sub�Markovian and�
or Fellerian if the original semigroup is� A lot of results concerning
the domain of the �subordinate� generator Af of fT ft gt�� and related
functional calculi are known
 see e�g� ����
 ���
 ����
 ����� In the next
section we will use a characterization of D�A�

�

� as interpolation spaces�
Assume that fTtgt�� is a sub�Markovian semigroup with genera�

tor �A�D�A�� and corresponding Dirichlet form �E � D�E��� By subor�
dination � as above f is a Bernstein function � we get the subordi�
nate objects
 fT ft gt��
 its generator �Af � D�Af��
 and Dirichlet form
�Ef � D�Ef��� Let us assume that f is a complete Bernstein function

which means that the representing measure � in ����� is of the form

��ds� �

Z �

�

e�sr ��dr� ds �

where � is a measure on ���� such thatZ �

�

��dr�

r �� � r�
�� �

Note that fractional powers are complete Bernstein functions� �Some�
times complete Bernstein functions are also called operator monotone

functions
 see E� Heinz ����� From ���
 Theorem ���� it follows that

����� kuk�L� � c E�u� u� implies kuk�L� �
c

f���
Ef �u� u� �

for all u � D�E�� The latter holds also on D�Ef �
 since we have the
dense inclusions D�A� � D�E� and D�A� � D�Ef ��

Let us now discuss some probabilistic aspects of subordination�
Denote again by f a Bernstein function
 by f�tgt�� the associated con�
volution semigroup on ����
 and assume that f�� � 
 thus �� � ���
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We may interpret f�tgt�� as transition probabilities of a stochastic pro�
cess fYtgt�� with stationary and independent increments and c adl ag
trajectories� Since �� � �� and since the measures �t are supported
on ����
 we have almost surely Y� �  and almost surely increasing
paths t 
�	 Yt� The converse assertion is also true� every such process
de�nes �uniquely� a convolution semigroup of probability measures on
����� We will call fYtgt�� subordinator�

Let fXt�Ftgt�� be a Markov process with Polish state space �E�B�
and fYtgt�� be a subordinator which is stochastically independent of
fXtgt��� Then

����� Xf
t ��� �� XYt��� �� XYt�
���� � t �  �

de�nes a new process fXf
t gt�� with �ltration

�
FYt

�
t��

� We say that

fXf
t gt�� is obtained from fXtgt�� by subordination with respect to

fYtgt�� and call it subordinate process to fXtgt���

Theorem ��	� Let fXtgt�� be a Markov process� fTtgt�� the as�

sociated operator semigroup� fYtgt�� a subordinator �independent of

fXtgt���� and f the corresponding Bernstein function� For all Borel

sets B � B� x � E� and t �  we have

Px�XYt � B� � T ft �B�x� � Px�Xf
t � B� �

where fXf
t gt�� stands for the Markov process corresponding to the sub�

ordinate semigroup fT ft gt���

This result can be found in ����

�� Subordinate Neumann and Dirichlet semigroups�

Let us return to the situation of Section � and consider the Dirichlet
form E on H��G� � L��G� and generator A � L�x�D� with domain

D�A� �
n
u � H��G� �

�

��
u � 

o
�

The semigroup associated with it
 the Neumann semigroup
 is denoted
by fTtgt���
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For any Bernstein function f the subordinate semigroup fT ft gt��
is again sub�Markovian� Thus
 by the general theory of Dirichlet forms

there exists a corresponding Dirichlet form Ef with domain D�Ef � and
generator �Af � D�Af ��� As usual


D�Ef � � D���Af ����� �

and
 if f is written in terms of its representation �����
 the subordinate
generator Af is given by

Afu � �a u� bAu�

Z �

�

�Tsu� u���ds� � u � D�A� �

This formula is due to R� Phillips ���� and re�nements thereof are

e�g�
 given in ����
 ���
 ����� These results are
 however
 of an abstract
nature� We want to determine D�Af � and D�Ef � in terms of function
spaces� To do so
 we will restrict ourselves to the case where f�x� � x�


 � � � �
 and write fT
���
t gt��
 E

���
 A��� instead of the clumsier
fT �

�

t gt�� etc� In fact
 we have to deal with fractional powers of the
operator �A� Using complex interpolation
 R� Seeley determined in
���� the domains of fractional powers of elliptic di�erential operators
under regular boundary conditions�

For G � Rn 
 �G smooth
 and s �  we de�ne the space

Hs�G� �
�
u
��
G
� u � Hs�Rn�

�
normed by

kukHs�G� � inf
�
kwks � w

��
G
� u in D�� w � Hs�Rn�

�
�

where Hs�Rn �
 s � 
 is the space

Hs�Rn� �
n
u � L��Rn� � kuk�s �

Z n

R

�� � j
j��s jbu�
�j� d
 ��
o
�

For any s � 
 Hs�G� is a Hilbert space and C��G� is a dense subspace�
Let us �nally de�ne for s � ��

����� Hs
f����g�G� ��

n
u � Hs�G� �

�

��
u � 

o
�
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Observe that H�
f����g�G� coincides with D�A�� Denote by �� ! ��� com�

plex interpolation between the spaces inside the brackets
 see e�g� ����

����� It is well known that

����� D�A���� � �L��G�!D�A��� �  � � � � �

holds� The following precise characterization is due to R� Seeley ���

Theorem �����

Theorem ���� Let fT
���
t gt��� A

���� and E��� be as above�

A� For  � � � � we have D�E���� � H��G��

B� For �� � � � � we have D�A���� � H��
f����g � �G��

C� For  � � � �� we have D�A���� � H���G��

There is a similar result for the Dirichlet form �ED� H
�
� �G��� Denote

by fStgt�� the sub�Markovian semigroup given by this Dirichlet form�

As above
 let fS
���
t gt�� be the subordinate semigroup with respect to

fractional powers x�
  � � � �� We will need some facts on Sobolev
spaces
 see ����
 ���
 ���� as standard references� For any s �  let

Hs
��G� �� C�

� �G�
k�ks

� Then

����� Hs�G� � Hs
��G� � if  � s �

�

�
�

If s � ��
 we de�ne

����� Hs
D�G� ��

�
u � Hs�G� � � u � 

�
and one has
 cf� ���
 p� ���


Hs
D�G� � Hs

��G� � if
�

�
� s � � �

Here � � Hs�G� �	 Hs������G� is again the trace operator
 cf� Section
�� We can now state the analogue of Theorem ��� which is also due to
R� Seeley ���
 Theorem �����

Theorem ���� Let E
���
D and A

���
D be the Dirichlet form and the gener�

ator associated with the sub�Markovian semigroup fS
���
t gt���
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A� For �� � � � � we have D�E
���
D � � H�

D�G��

B� For  � � � ��� we have D�E
���
D � � H��G��

C� For �� � � � � we have D�A
���
D � � H��

D �G��

D� For  � � � �� we have D�A
���
D � � H���G��

In view of ����������� we may restate the above assertions in the

form D�E
���
D � � H�

� �G� for  � � � � but � �� ��
 and D�A
���
D � �

H��
� �G� for  � � � � but � �� ��� The values � � ��� �� � and also

the case � � �� of Theorem ��� � must be treated separately� We will
not do this here�

Recall that on H�
� �G� the form E satis�es Poincar�e�s inequality

������ By ����� we see that

����� kuk�L� � c� 	� E
����u� u�

holds for all u � H�
� �G�� Thus
 E��� de�nes a scalar product that is

equivalent to the canonical one ��� ��� of H�
� �G��

Suppose �just for the next few lines� that the coe	cients of L�x�D�
are de�ned on the whole space Rn and that the fractional powers of this
operator � i�e� acting on functions de�ned on Rn � are considered� One
should note that
 in this case
 the Dirichlet problem for the fractional
powers of L�x�D� is di�erent from the subordinated Dirichlet problem

discussed above
 see �����

	� A Weyl decomposition of �E���� H��G���

Let E be the Dirichlet form ����� with domainH��G� and generator
A under Neumann boundary conditions
 i�e�
 with domain H�

f����g�G��

For  � � � � denote by E��� the Dirichlet form obtained by subordina�
tion with respect to the fractional powers f��x� � x�! by Theorem ���
its form domain is the space H��G�� The aim of this section is to show
how one can get a Weyl�type decomposition of H��G� with respect to
the Dirichlet form�

We put

E
���
� �u� v� ��

	
�	� A����u� �	� A����v



L� � 	 �  �
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and identify E
���
� and E���� Clearly
 �E

���
� � H��G�� is again a Dirichlet

form
 and for 	 �  the form E
���
� ��� �� is a scalar product
 cf� �����


that is equivalent to the one on H��G�� Moreover
 the quadratic forms

E
���
� ��� �� and

	
A����� A��� �



L� � 	

	
�� �


L� are equivalent� On the space

H�
� �G� this remains true even for E

���
� ��� ��
 cf� ������

For  � � � � and 	 �  we call the functions in

����� H�
��G� ��

�
u � H��G� � E

���
� �u� v� �  for all v � H�

� �G�
�

E
���
� �harmonic functions� Since C�

� �G�
k�k�

� H�
� �G�
 one has also

H�
��G� �

�
u � H��G� � E

���
� �u� �� �  for all � � C�

� �G�
�
�

We can now state the main result of this section�

Theorem 	��� Let �E
���
� � H��G�� be as above� For all  � � � � and

	 �  one has the orthogonal decomposition

����� H��G� � H�
��G��

E
���
�

H�
� �G� �

If � � ��� this decomposition is non�trivial in the sense that H�
��G� �

fg and there is a canonical isomorphism

����� �
���
� � H�������G� �	 H�

��G� �

Proof� We will
 �rst of all
 consider the case  � � � ��� Then
H��G� � H�

� �G�
 and the condition in �����

E
���
� �u� v� �  � for all v � H�

� �G�

implies that u  � This means that we cannot expect any non�trivial
decomposition of type ����� if � � ���

Assume now that �� � � � � � as already mentioned
 the limiting
case � � �� will not be considered here� Note
 however
 that � �
� does not play any special r"ole and will always be included in the
following considerations� Now H�

� �G� and H�
��G� are closed subspaces

of H��G�
 and since for all u � H��G� the condition

E
���
� �u� v� �  � for all v � H�

� �G�
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implies that u  
 the decomposition ����� is orthogonal� �These
considerations are still valid for � � ����

In order to show that �
���
� is an isomorphism we have to recall some

properties of the trace operator �� Again
 ���
 in particular Section ����
will be our standard reference� For �� � s � �� we de�ne � as above

cf� Section �� Then � � Hs�G� �	 Hs������G� is continuous and onto

and there exists a bounded linear operator #� � Hs������G� �	 Hs�G�
such that � � #� � id on Hs������G�� The kernel of �
 i�e�
 its null�
space is just Hs

��G�� Thus
 for any u � Hs�G�
 �� � s � ��
 the
trace � u � Hs������G� exists and � u �  implies that u � Hs

��G��
Conversely
 for � � Hs������G� there is a u� �� #� � � Hs�G� such that
� u� � �� However
 the mappings are not canonical
 in the sense that
� u � � w does not imply u � w�

Our aim is to construct a continuous
 bijective linear map from
H�
��G� to H�������G�
 � � ��� By the results of the preceding para�

graph we �nd for every � � H�������G� some f � H��G� such that
�f � �� De�ne a linear functional $���f on H��G� by

$���f �v� �� E
���
� �f� v� � v � H��G� �

By our assumptions
 E
���
� ��� �� is for all 	 �  a scalar product which

is equivalent to ��� ��� on H�
� �G�� An application of the Lax�Milgram

theorem shows that there exists a unique element ���f � H�
� �G� such

that
E
���
� ����f � v� � $���f �v� � v � H�

� �G� �

holds� We de�ne
u��f �� ���f � f �

Claim �� u��f is contained in H�
��G�� Indeed
 for any v � C�

� �G� we
get

E
���
� �u��f � v� � E

���
� ����f � v�� E

���
� �f� v�

� $���f �v�� E
���
� �f� v�

� E
���
� �f� v�� E

���
� �f� v�

�  �
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Claim �� u��f depends only on � � �f and the map � 
�	 u��� �� u��f
is linear� Let f�� f� � H��G� such that f� �� f� but �f� � �f� � ��
Thus
 f� � f� � H�

� �G� and each fj has an orthogonal decomposition

����� fj � u��fj � ���fj � j � �� ��

where u��fj � H
�
��G� and ���fj � H�

� �G�� For every v � H�
� �G� we get

E
���
� �f� � f�� v� � E

���
� �u��f� � u��f� � v� � E

���
� ����f� � ���f� � v�

� E
���
� ����f� � ���f� � v� �

Since f� � f� � H�
� �G� and ���f� � ���f� � H�

� �G�
 we �nd f� � f� �
���f�����f� 
 hence u��f� � u��f� � The linearity of � �	 u��� is obvious�

We have seen so far
 that

�
���
� � H�������G� �	 H�

��G� � � 
�	 u��� �

is a well�de�ned linear operator�

Claim �� The mapping �
���
� is bijective� Suppose that �

���
� ��� �  for

some � � H�������G�� But  � �
���
� ��� � H�

� �G�
 thus � � 
 i�e�

�
���
� is injective�

In order to see surjectivity
 choose any u � H�
��G� � H��G� and

observe that there is a � � H�������G� such that � u � �� We can

thus de�ne u��� �� �
���
� ���� Since � u��� � �
 we �nd u��� � u �

H�
� �G� � H�

��G�
 therefore u��� � u� This is but to say that �
���
� is

onto�

Claim �� The mapping �
���
� � H�������G� �	 H�

��G� is continuous

�the Hilbert spaces are equipped with their canonical
 respectively
 in�
duced canonical scalar products�� Since the Hilbert space H��G� is the
orthogonal sum of two closed subspaces
 the projections

�� � H
��G� �	 H�

� �G� and �� � H
��G� �	 H�

��G�

are orthogonal projections
 hence continuous� By de�nition
 #� is also

continuous
 and so is the composition �
���
� � �� � #��
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� An analogue of the Douglas integral�

As in the preceding sections
 G denotes a bounded domain with
boundary �G which shall be a C��manifold� Let us have a closer
look at the spaces H�������G�
 �� � � � �� Following J� Wloka
���
 Chapter ���� we can de�ne on H�������G� an equivalent norm in
the following way� Choose a �nite cover fUjg

M
j��
 Uj � �G
 of �G by

coordinate patches
 and denote by f�jg
M
j�� a partition of unity relative

to this covering� For any � � H�������G� we put �j �� �j�� Then
k � kH�������G� is equivalent to the norm jjj � jjjH�������G� which is given
by

����� jjj�jjj�H�������G� ��
MX
j��

jjj�jjjj
�
H�������G� �

Here


�����

jjj�jjjj
�
H�������G� ��

Z
�G

j�j�x�j
� ��dx�

�

Z
�G

Z
�G

j�j�x�� �j�y�j
�

jx� yjn�����
��dx���dy� �

where � is the surface measure on �G� Let us denote by
	
S���� D�S���



� H�������G� the quadratic form

S������ ��

��
MX
j��

Z
�G

�j�x��j�x���dx�

�
MX
j��

Z
�G

Z
�G

��j�x�� �j�y�� ��j�x�� �j�y��

jx� yjn�����
��dx���dy� �

�����

It is obvious from ����� that �S���� D�S����� is a regular Dirichlet form
on L���G�� In particular
 the unit contraction operator N�G��� ��
� � �� � � � leaves the form domain D�S���� � H�������G� invariant
and operates continuously thereon
 i�e�


S����N�G���� N�G���� � S������ �� � � � D�S���� �
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Denote by NG
 NG�u� �� � � u� � �
 the unit contraction de�ned for
functions u � G �	 R� Since H��G� is a Dirichlet space with respect
to its canonical scalar product
 we �nd as above that NG � H��G� �	
H��G� is continuous and operates on any Dirichlet form with domain
H��G��

Lemma 
��� Let � be the trace operator and N�G� NG unit contractions

on �G and G� For u � H��G� we have

����� ��NG�u�� � N�G�� u� �

Proof� For h � C�G� �H��G� the assertion ����� is straightforward�
Since �
 N�G
 and NG are continuous operators
 so are their compo�
sitions � � NG � H��G� �	 H�������G� and N�G � � � H��G� �	
H�������G�
 and ����� follows from the density of C�G� � H��G� in
H��G��

Let E
���
� ��� ��
 �

���
� 
 andH�

��G� be as in the preceding section� Then

C
���
� ��� �� �� E

���
�

	
�
���
� �����

���
� ���



� �� � � H�������G� �

de�nes on H�������G� a bilinear form� We know already that �
���
� �

H�������G� �	 H�
��G� is a linear
 continuous
 and bijective operator�

Since
	
H�
��G�� ��� ���



is a closed subspace of H��G�
 it is itself a Hilbert

space and there exist constants c�� c� �  such that

����� c� k�kH�������G� � k�
���
� ���kH��G� � c� k�kH�������G�

holds� Hence
 C
���
� is a closed form on H�������G��

Theorem 
��� The bilinear form �C
���
� � H�������G�� is a Dirichlet

form�

Proof� C
���
� being a closed form
 it remains to prove the contraction

property for the unit contraction N�G


C
���
� �N�G���� N�G���� � C

���
� ��� �� � � � H�������G� �

In order to see this
 we show �rst that

����� NG��
���
� ���� � �

���
� �N�G���� � g� � � � H�������G� �
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where �
���
� �N�G���� � H

�
��G� and g� � H�

� �G�� Since the decomposi�
tion ����� is necessarily unique
 it is su	cient to prove that the traces
satisfy

��NG��
���
� ����� � ���

���
� �N�G����� �

that is
 since � ��
���
� � id on H�������G�


��NG��
���
� ����� � N�G��� �

This
 however
 is just the assertion of Lemma ���� Using ����� we �nd

C
���
�

	
�� �



� E

���
�

	
�
���
� �����

���
� ���



� E

���
�

	
NG��

���
� ����� NG��

���
� ����



� E

���
�

	
�
���
� �N�G������

���
� �N�G����



� � E

���
�

	
�
���
� �N�G����� g�



� E

���
�

	
g�� g�



� C

���
�

	
N�G���� N�G���



�

and we are done�

Let us return to the Dirichlet form �S���� H�������G��� Since S���

is a closed form on H�������G�
 S
���
� ��� �� �� S������ �� � ���� ��L� is

for any � �  a scalar product which is equivalent to ��� ��H�������G��

Similarly
 C
���
������ �� �� C

���
� ��� ��� ���� ��L� is also a scalar product which

is equivalent to ��� ��H�������G�
 thus S
���
� and C

���
��� are equivalent to

each other� Since both are Dirichlet forms
 we can associate with each
of them a Hunt process with state space �G� One may expect that the
comparability of the forms carries over to the processes� Let us brie�y
explain this point for L��L��estimates of the semigroups

n
T
S���
�

t

o
t��

and
n
T
C
���
���

t

o
t��

�

It is known that on the spaces H�������G� a Sobolev inequality holds

that is

����� kukLp��G� � c kukH�������G� � p �
� �n� ��

n� ��
�

�

�
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Note that p � � if �� � � � �� By ����� we get for � � 

kuk�Lp��G� � cS���� �u� u� and kuk�Lp��G� � c� C
���
����u� u� �

This implies
 cf� Varopoulos et al� ����
 that both semigroups satisfy
the estimates

�����

���TS���
�

t

���
L��L�

� c��
e�t

t���n�����������

and

���T C������

t

���
L��L�

� c���
e�t

t���n�����������
�

In this section we have constructed the boundary Dirichlet form asso�

ciated with the subordinate process fX
���
t gt�� and
 likewise
 with the

Dirichlet form �E���� H��G��� In the case of a Brownian motion
 this
was �rst done by M� Fukushima ���
 and in a rather general �but ab�
stract� way for general regular symmetric Dirichlet forms by M� Silver�
stein ����� Here
 as in the whole paper
 we provide explicit constructions
which allow us to determine precisely the domains in terms of function
spaces� This yields additional information for studying the Dirichlet
forms and�or the corresponding �boundary� process�

�� The process associated with C
���
� �

We will now study the stochastic process which is generated by

the Dirichlet form C
���
� on the boundary �G� We will closely follow

the ideas of ���
 in particular Chapter ���� Notice
 however
 that the
process fX��tgt�� generated by L�x�D� � 	 under Neumann bound�
ary conditions is a nice Feller process with smooth densities� We may

therefore
 do without the exceptional sets which frequently occur within
the framework of Dirichlet forms � for a discussion of this point in
the general theory we refer to M� Fukushima�s paper ���� In order to
avoid technical complications we will always assume 	 � � We con�
clude from this
 that the extended Dirichlet space and the original one

�E
���
� � H��G�� coincide�

Let us begin with � � �
 i�e�
 the re�ected di�usion process

fX��tgt��
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�with �ltration fF��tgt��� associated with the Dirichlet form

�E�� H
��G�� �

where 	 �  and E���� �� �� E��� �� � 	��� ��L� with E as in ������ If �G
is smooth
 the surface measure � is a smooth measure in the sense of
��
 p� ��
 because by ������ � take � � � � and the �niteness of � the
surface measure � is even a measure of �nite energy integral ��
 p� ���

hence smooth� Thus
 there is a unique positive continuous additive
functional fL��tgt�� such that � is its Revuz measure
 see ��
 pp� ����
����� One can check that fL��tgt�� is the boundary local time
 i�e�


����� L��t �

Z t

�

��G�X��s� dL��s

holds
 and that the support of fL��tgt�� equals �G� Write f���tgt�� for
the generalized right�inverse of fL��tgt��


����� ���t��� �� inf
�
s �  � L��s��� � t

�
�

Clearly
 f���tgt�� is a subordinator� We may now apply ��
 Theo�
rem �������

Theorem ���� Let L�x�D� be as before and denote by fX��t�F��tgt��
the Feller process corresponding to the Dirichlet form �E�� H

��G��� The
time�changed process fX����t �F����tgt�� is given by the Dirichlet form

�C�� H
�����G��� 	 � �

This theorem implies
 in particular
 that the boundary process
fX����tgt�� is comparable �on the level of Dirichlet forms� with the
process on �G being associated with the form	

��� ��H�����G� � 	��� ��L�� H�����G�


�

The latter
 however
 should be thought of as a perturbation of a Cauchy
process on the boundary�

Let us now discuss the subordinate processes
 i�e�
 the processes

associated with �E
���
� � H��G�� and �C

���
� � H�������G��
 � � �� and

	 � � Denote by fY
���
t gt�� a one�sided ��stable subordinator with

Bernstein function f��x� � x�
  � � � �� As for ����� we may choose

a version of fY
���
t gt�� that is independent of fX��tgt��� Then

X
���
��t ��� �� X

��Y
���
t

��� �� X
��Y

���
t �
�

��� � t � 




� N� Jacob and R� L� Schilling

is the subordinate �re�ected di�usion� process �in the sense of Section

�� given by �E
���
� � H��G��� Its �ltration is

�
F
��Y

���
t

�
t��

�

Due to a result of St� Orey
 ���
 p� ����
 �G will be a zero�capacity
set if and only if � � ��� Therefore
 the assumption � � �� is
necessary in order to obtain a smooth boundary measure � and
 thus
 a

positive continuous additive functional fL
���
��t gt�� with Revuz measure

�� As above
 the �niteness of � and ����� prove that for � � ��

the measure � is indeed smooth� Again
 L
���
��t can be identi�ed with

the boundary local time for X
���
��t � i�e�
 ����� holds with some obvious

changes � with support in �G
 and f�
���
��t gt�� will be its generalized

right�inverse�

Theorem ���� Let
�
X

���
��t �F��Y ���

t

�
t��

be the subordinate re�ected

di�usion process corresponding to the Dirichlet form �E
���
� � H��G���

� � ��� The time�changed process
�
X

���

��
���
��t

�F
��Y

���
�

�
���
��t

�
t��

is given

by the Dirichlet form �C
���
� � H�������G��� 	 � �

Starting with �E�� H
��G�� and fX��tgt�� we have
 so far
 con�

structed three new Dirichlet forms and stochastic processes�

� The associated boundary Dirichlet form�process

�C�� H
�����G�� and X����t � t �  �

where ���t is the generalized inverse of the boundary local time Lt of
the original process�

� The subordinate Dirichlet form�process

�E
���
� � H��G�� and X

���
��t �� X

��Y
���
t

� t �  �

where � � �� and Y
���
t is a one�sided ��stable subordinator�

� The boundary Dirichlet form�process associated with the subordinate
form�process

�C
���
� � H�������G�� and X

���

��
���
��t

�� X
��Y

���
�

�
���
��t

� t �  �

where � � �� and �
���
��t is the generalized inverse of the boundary local

time L
���
��t of X

���
��t �
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It is natural to ask
 whether the boundary process X
���

��
���
��t

of the

subordinate process can be directly obtained as subordinate process to
X����t 
 i�e�
 to the boundary process of the original process� A partial
answer to this question is given below�

Theorem ���� Let L��t� ���t� L
���
��t � �

���
��t � and Y

���
t be as above� Denote

by fX����tgt�� and
�
X

���

��
���
��t

�
t��

the boundary processes induced by

the Dirichlet forms �C�� H
�����G�� and �C

���
� � H�������G��� � � ���

Then

����� ���t �� L��� � Y
���
� � �

���
��t � t � 

de�nes a time�change for the process fX����tgt��� and we have

����� ���� � ���t � Y
���
� � �

���
��t and X

���

��
���
��t

� X���������t �

i�e�� the boundary process of the subordinate process can be represented

as time�changed boundary process of the original process�

Proof� Clearly
 the process ���t is an almost surely positive
 increasing

c adl ag process such that ���� �  almost surely� Note that Y
���
� � �

���
��t

is an F��t�stopping time� Once ����� is established
 we see from

f���t � sg � f���� � ���t � ���sg � fY
���
� � �

���
��t � ���sg � F����s �

where s � 
 that f���tgt�� is a family of F����t�stopping times
 hence
a time�change�

It is therefore enough to prove ������ Since ���t is a right�inverse

we have always L��� � ���t � t
 but ���� �L��t � t holds only at increase

times t of L��t� In order to check that Y
���
� � �

���
��t is almost surely an

increase time of L��t we have to prove that

X
��Y

���
�

�
���
��t

� supp fL��tg �� fx � G � Px����� � � � �g �

For any #� � % and t � 

P
X
��Y

���
�

��
���
��t

��
�	
�
���
��� � 
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� P
	
���
Y

���
�

�
���
��t

f�
���
��� � g jF

��Y
���
�

�
���
��t �



� P

	
inf fs �  � L

���

��s�
���
��t

� L
���

��
���
��t

g � � jF
��Y

���
�

�
���
��t �



� P

	
inf fs �  � L

���

��s�
���
��t

� tg �  jF
��Y

���
�

�
���
��t �



� �

since �
���
��t is by its de�nition the right endpoint of every interval of

constancy of L
���
��t � We have thus seen that up to an exceptional �i�e�

capacity zero� set
 say N�


X
��Y

���
�

�
���
��t

� supp fL
���
��t g �

Since supp fL
���
��t g is a quasi�support of the Revuz measure �
 cf� ��


Theorem ������
 we have supp fL
���
��t g � �G up to another exceptional

set
 N
���
� 
 say� Thus


X
��Y

���
�

�
���
��t

� supp fL��tg �N� �N
���
� �N

���
� �

The set N � N� � N
���
� � N

���
� is again exceptional and
 under our

smoothness assumptions
 even polar with respect to fX
���
��t gt��
 see ��


Theorem ������� Therefore we have for all t �  and x � G

Px
	
X

���

��
���
��t

� N


� Ex

	
�N �X

���

��
���
��t

�


� Ex

	
sup
s��

�N �X
���
��s �



�  �

Consequently
 X
��Y

���
�

�
���
��t

� supp fL��tg holds almost surely �Px� for

every x
 and ����� follows�

In general
 it seems to be wrong that the boundary process of a

subordinate process is some subordinate to the boundary process of the

original process
 since
 in general
 ���t is neither a L�evy process nor an
independent process�
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�� The subordinate reected di�usion process�

Let fXtgt�� be the re�ected di�usion considered in Section � abo�
ve� Recall that the corresponding Dirichlet space is �E � H��G�� where
H��G� � L��G�
 and that one has the Skorokhod representation �����


�����

Xk
t �Xk

� � Mk
t �

nX
���

Z t

�

�ak�
�x�

�Xs� ds

�
nX
���

Z t

�

ak��Xs� ���Xs� dLs �

As in the preceding section
 let fY
���
t gt�� denote an ��stable subordi�

nator and X
���
t � X

���
��t the subordinate re�ected di�usion�

Theorem ���� Let fX
���
t gt�� be the process that is obtained from

the re�ected di�usion fXtgt�� through subordination with respect to a

one�sided stable subordinator fY
���
t gt�� of order � � �� ��� Then the

following Skorokhod representation holds	
X

���
t


k
�
	
X

���
�


k
� �N

���
t �k �

nX
���

X
r�t

Z �

�

�ak�
�x�

	
X
Y

���
r� �s	Y

���
r



ds�Y

���
r� � s&Y ���

r �

�
nX
���

X
r�t

Z �

�

ak�
	
X
Y

���
r� �s	Y

���
r



��
	
X
Y

���
r� �s	Y

���
r



dsLY ���

r� �s	Y
���
r

�

�����

where N
���
t � M

Y
���
t

is a pure jump martingale �with respect to the

time�changed �ltration�� Mt is the continuous martingale part of the

Skorokhod representation of fXtgt��� and Lt is the boundary local time

of the di�usion fXtgt���

Proof� In order to keep notation to a minimum
 we will sometimes
omit the superscripts ���� A change of time in ����� with respect to the
subordinator fYtgt�� yields	

X
���
t


k
�
	
X

���
�


k
� Mk

Yt
�

nX
���

Z Yt

�

�ak�
�x�

�Xs� ds�
nX
���

Z Yt

�

ak��Xs� ���Xs� dLs �
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where MYt 
 t � 
 is just the subordinate to the continuous martingale
Mt in the Skorokhod representation of fXtgt��
 see �����
 ������ It
is obvious that MYt is again a martingale �with respect to the time�
changed natural �ltration of fXtgt��� and that it is of pure jump type
�since the subordinator is of this type��

In order to study the integral expressions in the above formula

we need a change�of�variable formula for Stieltjes integrals� Recall that
fXtgt�� is a continuous process and that t 
�	 Lt��� is a continuous

almost surely increasing function� The main di	culty is that Yt may
have almost surely countably many jumps in �nite time� By a well�
known approximation technique for L�evy processes � cf� L� Breiman
��
 Theorem ����� and Proposition ����� � we can approximate Yt by
processes Y �

t whose paths are almost surely step functions with �nitely
many jumps in �nite time


lim
�	�

Y �
t ��� � Yt��� � almost surely �P�� �

�Y �
t can be chosen to be the subordinator with

c�

Z �

�

��� e�x��x���� dx �	 
� � � �	  �

as characteristic exponent�� Therefore


����� lim
�	�

Z Y �
t

�

�ak�
�x�

�Xs� ds �

Z Yt

�

�ak�
�x�

�Xs� ds �

almost surely �Px� and

����� lim
�	�

Z Y �
t

�

ak��Xs� ���Xs� dLs �

Z Yt

�

ak��Xs� ���Xs� dLs �

almost surely �Px��
Assume that s 
�	 As��� is a function which is for almost all �

continuous and increasing � this includes
 in particular
 the functions
s 
�	 s and s 
�	 Ls��� of �����
 ������ We consider the pathwise
de�ned Stieltjes integral

Z Y �
t �
�

�

u��� s� dAs��� �
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for those � where s 
�	 As��� is continuous and increasing! u��� �� is
any continuous function� For �xed � and t we may assume �if necessary

we remove another negligible ��set� that the function s 
�	 Y �

s has only
�nitely many jumps ��� 
 � � �� �� � � � � k����
 on �� t�� Thus


Z Y �
t �
�

�

u��� s� dAs��� �

k��
�X
���

Z Y �
	�


�
�

Y �
	�


�
�
�

u��� s� dAs��� �

where Y �
��
�

��� � limr
��
 �
�
Y �
r ��� denotes the left limit� In an ap�

pendix we will prove the following technical Lemma�

Lemma ���� Denote by &Y �
r � Y �

r � Y �
r�� Then

�����

Z Y �
	�


�
�

Y �
	�


�
�
�

u��� s� dAs���

�

Z �

�

u��� Y �
��
�

� s&Y �
��

� dsAY �

	�


�
�s	Y �

	�



��� �

An application of Lemma ��� shows

Z Y �
�

�

u��� s� dAs���

� lim
�	�

k��
�X
���

Z �

�

u��� Y �
��
�

� s&Y �
��

� dsAY �

	�


�
�s	Y �

	�



��� �

Since fY �
t gt�� is a pure jump process
 we obtain

k��
�X
���

Z �

�

u��� Y �
��
�

� s&Y �
��

� dsAY �

	�


�
�s	Y �

	�



���

�
X
r�t

Z �

�

u��� Y �
r� � s&Y �

r � dsAY �
r��s	Y

�
r
���

and the proof of Theorem ��� is �nished by the following lemma�
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Lemma ����

�����

lim
�	�

X
r�t

Z �

�

u��� Y �
r� � s&Y �

r � dsAY �
r��s	Y

�
r
���

�
X
r�t

Z �

�

u��� Yr� � s&Yr� dsAYr��s	Yr ��� �

Proof of Lemma ���� We �x r � �� t� and set

v�s� �� �� u��� Y �
r� � s&Y �

r � �

a�s �� AY �
r��s	Y

�
r
�

v�s� �� u��� Yr� � s&Yr� �

and

as �� AYr��s	Yr �

Then

��� Z �

�

v�s� �� da�s �

Z �

�

v�s� das

���
�
��� Z �

�

v�s� �� da�s �

Z �

�

v�s� �� das

���� ��� Z �

�

v�s� �� das �

Z �

�

v�s� das

���
� sup

��Yt�
�

ju��� 
�j

Z �

�

d�as � a�s� �

Z �

�

jv�s� ��� v�s�j das �

where we have used the fact that &Y �
s ��� � &Ys���
 hence a�s � as�

Since s 
�	 u��� s� is continuous
 the second integral tends to  as
� �	 � The �rst integral tends also to  as � �	 
 because a�s
increases to the continuous function as
 hence
 by Dini�s theorem
 this
convergence is uniform� Therefore


lim
�	�

Z �

�

u��� Y �
r� � s&Y �

r � dsAY �
r��s	Y

�
r
���

�

Z �

�

u��� Yr� � s&Yr� dsAYr��s	Yr ��� �
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SinceZ �

�

u��� Y �
r� � s&Y �

r � dsAY �
r��s	Y

�
r
���

� sup
��Yt�
�

ju��� 
�j

Z �

�

dsAYr��s	Yr ��� �

and since

X
r�t

Z �

�

dsAYr��s	Yr ��� �
X
r�t

�AYr �AYr�� �� �

we may invoke Lebesgue�s dominated convergence theorem which en�
ables us to interchange the limit � �	  and the summation on r � t
on the left hand side of ������ This �nally shows Lemma ��� and also
Theorem ����

�� Concluding remarks�

Many of our results do extend in an obvious way to subordination
with respect to the larger class of complete Bernstein functions �cf� ����
for a de�nition� containing the fractional powers f��x� � x� which were
considered throughout our paper� This greater generality has to be paid
for by the fact that it is not possible to obtain exact characterizations
of domains etc� in terms of function spaces� If
 however
 a �complete�
Bernstein function f is comparable from above or below or from both
sides with some fractional power f� or f�
 that is
 if for some �� � �
�� �� and large x

f�x� � Cf��x� �

cf��x� � f�x� �

or
cf��x� � f�x� � Cf��x� �

are satis�ed
 one can use some comparison result from ���� in order to
identify for suitable values of � and � the domains D�Af � or D�Ef �

etc� with subspaces of H��G� �or H�
� �G�� or to prove that they contain

the space H��G� or H�
� �G��
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Furthermore
 this allows us to give some rough characterization of
the Dirichlet form for the corresponding boundary process � provided
it exists
 i�e�
 � � ���

A� Appendix�

We will give here the proof of Lemma ���� To keep notation to a
minimum we will write Y �t�� A�t�� ��� � � � instead of Y �

t � At� �
�
� � � � �

It is clearly enough to check ����� for �xed � and for �deterministic�
indicator functions u�s� �� � ��a�b
�s�

�A���

Z Y ��
�

Y ��
��

��a�b
�s� dA�s� �

Z �

�

��a�b
�s���Y ��
���Y ��
�
 dA�s�

�
	
A�b � Y ������A�a � Y ������



�  �

On the other hand
 we have �with the convention that �a� b � � � if
a � b�Z �

�

��a�b
 �Y ����� � s&Y ����� dsA�Y ����� � s&Y �����

�

Z �

�

���a�Y ��
�����Y ��
��Y ��
�����b�Y ��
�����Y ��
��Y ��
���
�s�

� dsA�Y ����� � s&Y �����

�

Z �

��

���a�Y ��
�����Y ��
��Y ��
�������b�Y ��
�����Y ��
��Y ��
�����
�s�

� dsA�Y ����� � s&Y �����
�A���

� A
�
Y ����� � &Y ����

b� Y �����

Y ����� Y �����
� �

�

�A
�
Y ����� �

	
a� Y �����



� 

�
�

It remains to check �A��� � �A��� for all admissible permutations of
�a� b� Y ������ Y ������ These are

�� a � Y ����� � Y ���� � b � �� a � Y ����� � b � Y ���� �

�� a � b � Y ����� � Y ���� � �� Y ����� � a � b � Y ���� �

�� Y ����� � a � Y ���� � b � �� Y ����� � Y ���� � a � b �
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and this is an elementary � but somewhat tedious � exercise�
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The angular distribution of

mass by Bergman functions

Donald E� Marshall and Wayne Smith

Abstract� Let D � fz � jzj � �g be the unit disk in the complex plane
and denote by dA two�dimensional Lebesgue measure on D � For � � �
we de�ne 	� � fz � j arg zj � �g� We prove that for every � � � there
exists a � � � such that if f is analytic
 univalent and area�integrable
on D 
 and f��� � �
 thenZ

f������

jf j dA � �

Z
D

jf j dA �

This problem arose in connection with a characterization by Hamilton

Reich and Strebel of extremal dilatations for quasiconformal homeo�
morphisms of D �

�� Introduction�

Let D � fz � jzj � �g be the unit disk in the complex plane and
denote by dA two�dimensional Lebesgue measure on D � The Bergman
space L�

a consists of functions that are analytic on D and integrable
with respect to dA� It is a Banach space with norm

kfk� �
Z
D

jf j dA �

Each f � L�
a induces a Borel measure �f on the plane de�ned by

�f �E� �

Z
f��E

jf j dA �

��
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The problem considered in this paper concerns the angular distribution
of mass by such a measure� For � � � we de�ne

	� � fz � j arg zj � �g �

Theorem ���� For every � � � there exists a � � � such that if f � L�
a

is univalent and f��� � �� then

�����

Z
f������

jf j dA � � kfk� �

Since ����� will then hold for all rotations of 	�
 Theorem ��� says
that the measure �f cannot be too asymmetric� This theorem can not
be extended to Lpa for any p � � Example ��� at the end of the paper
shows that ����� fails when p � �
 jf j is replaced by jf jp
 and kfk� is
replaced by kfkpp�

As is explained below
 it is known that there exist positive con�
stants C and � such that

����� C

Z
f����������

jf j dA � kfk� 	 for all f � L�
a with f��� � � 	

and it is an open problem to prove ����� without the restriction that
f be univalent� This is equivalent to a conjecture regarding quasicon�
formal mappings made by M� Ortel and the second author in �OS�� We
now brie�y review the relevant parts of this theory
 and indicate the
consequences that a solution to the open problem would have�

A bounded area�measurable function 
 on D with k
k� � � is said
to be a dilatation� It is a theorem in Ahlfors �A�� that to any dilatation

 there is associated a unique quasiconformal homeomorphism f� of D
that �xes the points �
 i
 and ��
 and satis�es �f� � 
 �f�� We say that

 is an extremal dilation if 
 is a dilatation and k
k� � k
�k� whenever
f��ei�� � f���ei��
 �� �  � �� The following characterization of
extremal dilatations is due to R� Hamilton
 S� L� Krushkal
 E� Reich
and K� Strebel�

Theorem ��� ��Ha�
 �K�
 �RS��� Suppose 
 is a dilatation� Then 
 is an

extremal dilatation if and only if one of the following statements holds�

�� There exist f � L�
a and k � ��	 �� such that 
�z� � k f�z��jf�z�j

almost everywhere dA�z��
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�� There is a sequence ffng � L�
a� converging to � uniformly on

compact subsets of D � such that kfnk� � � and

lim
n��

Z
D

fn 
 dA � k
k� �

Checking whether condition �� holds for a particular dilatation
can be di�cult
 and for this reason a more explicit characterization of
extremal dilatations would be valuable� In this regard
 we note it is not
di�cult to construct extremal dilatations that assume only countably
many values and satisfy condition ��� Such a construction
 based on
an example in �OS�
 appears below� M� Ortel and the second author
investigated the arguments of an extremal dilatation
 and proved the
following theorem�

Theorem ��� ��OS��� Suppose 
 is a bounded measurable function on

D � ��� �  � ��� � arctan ����C��� and 
�z� � 	� � f�g for almost

all z � D � Then 
 is an extremal dilatation if and only if there exist

k � ��	 �� and f � L�
a such that 
�z� � k f�z��jf�z�j for almost all

z � D �

Here C� is the in�mum of those constants C such thatZ
D

jf j dA � C

Z
D

jRe f j dA 	

for all f � L�
a satisfying Im f��� � �� Subsequently
 X� Huang �Hu�

showed that this theorem remains valid when the number ��� �
arctan ����C�� is replaced by the larger number ����arcsin �����C��
���� It was conjectured in �OS� that in the theorem
 the number ��� �
arctan ����C�� can in fact be replaced by �� In other words
 if 
 is
an extremal dilatation not of the form k f�jf j
 with f � L�

a
 then the
arguments of 
 were conjectured to be dense in the unit circle�

This conjecture is equivalent to the extension of Theorem ��� from
univalent functions to all functions in L�

a� To see this
 �rst suppose that
����� holds for all f � L�

a and that 
 is a dilatation satisfying


�z� � C n 	�� 	

for almost all z � D � Let f be such that kfk� � � and f��� � �� If
f�z� � 	�
 then f�z�
�z� � C n 	�� Thus

Re

Z
f������

f 
 dA � cos ��� k
k�
Z
f������

jf j dA 	
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and so

Re

Z
D

f 
 dA � k
k� � �cos ���� �� k
k�
Z
f������

jf j dA

� k
k� � �cos ���� �� k
k� �

� k
k� 	

where � � � comes from ������ Thus
 condition ��� of Theorem ��� can
not hold and 
 is not extremal unless it is of the form k f�jf j
 where
f � L�

a� Hence if the arguments of 
 are not dense in the circle
 then
condition �� of Theorem ��� fails� For the converse
 suppose there is a
sequence ffng � L�

a with kfnk� � �
 fn��� � �
 and such that

lim
n��

Z
f��n ����

jfnj dA � � �

It is easy to check that if f is a normal limit of ffng
 then
Z
f������

jf j dA � � �

Since also f��� � �
 it follows that f is identically �
 and so ffng
converges to zero uniformly on compact subsets of D � Then
 by ap�
proximating fn�jfnj on an appropriate sequence of annuli in D while
omitting values in 	�
 it is possible to construct a dilatation 
 that
satis�es condition �� of Theorem ��� and which assumes no values in
	��

Thus we have shown that the conjecture from �OS� of the density
in the unit circle of the arguments of an extremal dilatation 
 not of
the form k f�jf j
 with f � L�

a
 is equivalent to the conjecture that the
conclusion of Theorem ��� is valid for all f � L�

a with f��� � �� We
also note that the argument sketched above
 together with the theorem
quoted from �OS�
 shows that there exist positive constants C and �
such that ����� holds�

In the next section we collect facts and background material on
the hyperbolic metric and harmonic measure that will be used to prove
Theorem ��� in Section �� Finally
 some examples have been included in
the last section� These examples illustrate how some of the di�culties
encountered were addressed in the proof
 and that Theorem ��� can not
be extended to Lpa for any p � ��
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�� Background�

The main tools we will use in the proof of Theorem ��� are the
hyperbolic distance and harmonic measure� The hyperbolic distance on
D is de�ned by �see �A�
 p� ���

�
D
�z�	 z�� � inf

nZ
�

� jdzj
�� jzj� � � is an arc in D from z� to z�

o
�

For example
 the shortest distance from � to any other point is along a
radius
 and

�
D
��	 jzj� � log

�� � jzj
�� jzj

�
�

This distance is invariant under conformal self�maps of D and thus
the hyperbolic geodesics are diameters of the disk together with circles
orthogonal to the unit circle� This distance also transfers to a natural
conformally invariant distance on any simply connected proper subset
G � C � If � � D �� G is any conformal map
 the hyperbolic distance

on G is given by �
G
�w�	 w�� � �

D
�z�	 z��
 where wi � ��zi� for i � �	 ��

The shortest arc in D from z� to z� is the arc of the unique circle
orthogonal to � D passing through z� and z�� The shortest arc in G
from w� to w� is the image of this arc in D by the map �� If E � G

then the hyperbolic distance from z� to E will be denoted by �

G
�z�	 E��

The harmonic measure of a set E contained in the closure of a
region � evaluated at z � � is denoted by ��z	 E	��� It is �roughly�
the function which is harmonic on � nE
 equal to � on E and equal �
on �� nE� See �GM� for a precise de�nition�

���� Area Estimates�

We can use both the hyperbolic distance and harmonic measure to
estimate the Euclidean area A�E� of a measurable set E � D �

����� A�E� � Ce��D ���E����	 E	 D � 	

for some universal constant C � 	� To see this
 let E� � fz�jzj � z �
Eg denote the radial projection of E onto � D � Then E is contained in
the set n

z � D � �
D
��	 z� � �

D
��	 E� and

z

jzj � E�
o
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which has area at most � e��D ���E� jE�j
 where jE�j denotes the length
of the projection E�� Equation ����� now follows from Hall�s Lemma
�GM��

If E is a hyperbolic ball
 then a similar lower estimate is available
for the area� If E is a hyperbolic ball with hyperbolic radius at least
��
 then

����� A�E� � C ��� e����� e��D ���E� ���	 E	 D � 	

for some universal constant C � �� Each quantity in the right�hand side
of ����� can be computed explicitly using conformal invariance� Another
way to make the lower estimate in ����� is to set d � inf fjzj � z � Eg

so that

e��D ���E� �
�� d

� � d
�

Inequality ����� is easy to prove if � � E
 so assume that � 
� E
 and let
� denote the circle orthogonal to the unit circle separating E from �
with �

D
��	�� � �

D
��	 E�
 and let I denote the subarc of � D subtended

by � and separated from � by �� Then

��z	 I	 D � � �

�
	

for all z � �
 and hence

���	 E	 D � � ���	�	 D � � ����	 I	 D � �
jIj
�
� C ��� d� �

A short computation shows that

diam�E� � C ��� d� ��� e���� 	

for some universal constant C� Since A�E� is comparable to diam �E��

inequality ����� follows�

To use the inequalities ����� and ����� we shall need some estimates
of hyperbolic distance and harmonic measure�

���� Distortion theorems�

A fundamental result about univalent functions is the Koebe Dis�
tortion Theorem� The following estimates
 which we have stated in a
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form convenient for our purposes
 are easy consequences of this theo�
rem see �P
 pp� �
 ���� We warn the reader that the hyperbolic metric
de�ned in �P� di�ers from � by a factor of �� For w � G
 let �G�w�
denote the Euclidean distance from w to �G�

Theorem ��� �Koebe�� Let f � D �� G be a Riemann map and let

a	 b � G� Then

�� �G�f���� e
��

D
���z� � �� � jzj�� jf ��z�j � � �G�f���� e

��
D
���z��

and

�� jb� aj � � �G�a� e
��

G
�a�b��

The hyperbolic distance is not explicitly computable in terms of the
geometry of G alone� A useful substitute is the quasi�hyperbolic distance
on G
 introduced by Gehring and Palka �GP�� The quasi�hyperbolic
distance from w� to w� in G is de�ned to be

kG�w�	 w�� � inf
nZ

�

jdwj
�G�w�

� � is an arc in G from w� to w�

o
�

It is an easy consequence �see �P
 p� ���� of the Koebe Distortion The�
orem that

�����
�

�
�
G
� k

G
� � �

G
�

���� Estimates of Harmonic Measure�

One estimate of harmonic measure which will be used in the proof
of Theorem ��� is the following Theorem� Let Cr � fz � jzj � rg be the
circle of radius r centered at �� If Cr � �� 
� �
 de�ne �r� to be the
angular measure of the longest component of Cr � �� In other words

r �r� is the length of the longest arc in Cr � �� If Cr � �� � �
 set
�r� �	�

Theorem ��� �Carleman�Tsuji�� For � � � and r � �� � ��� jzj�

��z	 Cr	�� � C��� exp
�
��

Z r������

�����jzj

dr

r �r�

�
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where C��� is a constant depending only on ��

The above result is based on �C�� Tsuji �T
 p� ���� gave the explicit
polar coordinate version above
 but using the total length of Cr � �

and � jzj for the lower limit in the integral
 with C��� comparable to
������ The same proof
 using �� � �� jzj as the lower limit
 gives the
result above with C��� comparable to ��� � ��������� Several authors
have observed that the proof depends only on the length of the longest
arc in Cr � �� See
 for instance �HW
 p� ���� or �GM�
 which contains
improvements of this theorem�

Another related estimate is based on extremal distance
 and is due
to Beurling� Let � be the collection of curves in a region � which
connect sets E � � and F � �� The extremal distance in � from E to
F is de�ned to be

d	�E	F � � sup
�

�
inf
��


Z
�

� jdzj
��

R
	 �

� dA 	

where the supremum is taken over all non�negative Borel functions �
with � �

R
	 �

� dA � 	� Extremal distance is a conformally invariant
method of measuring the distance between two sets�

Theorem ��� �Beurling�� Suppose � is simply connected and E � ��
Let � be an arc in � connecting z� to ��� Then

��z�	 E	�� � �

�
e�	d��
�E� �

See
 for example �GM�� We will apply this result with � replaced by
a disk containing z� which intersects ��� Since the extremal distance
decreases as � is increased
 the inequality remains true�

These two preceding theorems are closely related
 though there
are circumstances where one gives better estimates than the other� For
example
 the extremal distance between two circles centered at the
origin is not changed if radial slits are removed from the region
 though
this may greatly reduce �r�� In this case the Carleman�Tsuji Theorem
gives a better estimate� On the other hand
 if a curve increasing in
modulus and connecting the two bounding circles of the annulus
 is
removed from the annulus
then the Carleman�Tsuji estimate has �r� �
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��� However
 if this curve is not a radial slit
 then the Beurling extremal
distance estimate gives a better estimate �see the proof below��

The proof of Theorem ��� also requires the following elementary
estimate� Suppose �� is a circle orthogonal to � D separating � from
a set E � D 
 and with e��D ���
�� � ���� If R � ��	 ei�� is the radius
orthogonal to ��
 let �� be the circle orthogonal to � D and orthogonal
to R with

e��D ���
�� � � e��D ���
�� �

Thus �� separates � from �� and E� Let �� � ���R
 so that �D ��	 ��� �
�
D
��	����

Proposition ���� There is a universal constant C �	 so that

����� sup
��
�

���	 E	 D � � C ����	 E	 D � �

Proof� By conformal invariance
 we may suppose that e��D ���
�� �
��� and �� � �
 which determines �� and ��� Note that the Euclidean
distance from �� � D to �� � D is positive� �This is easiest to see using
orthogonality and a self�map of the disk which sends �� � �� � R to
��� Let U denote the region in D bounded by � D and ��
 containing
��� Let � be a conformal map of U onto D with ����� � � and set
I � ���� � D � � � D � Note that the Euclidean distance from ���� � D �
to I is positive� Since ������z�	 E	 D � is a positive harmonic function
on D 
 vanishing on � D n I
 we have

������z�	 E	 D � �

Z
I

�� jzj�
jei� � zj� d��� 	

for some positive measure d�� Since the distance from ���� � D � to I
is positive
 if z � ���� � D � and ei� � I
 then

�� jzj�
jei� � zj� � C 	

for some positive constant C� Integrating over I proves �����
 since
�� � �������
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�� Proof of Theorem ����

Let � � f�D � and
 for z � �
 de�ne �	�z� to be the Euclidean
distance from z to ��
 the boundary of �� Multiplying f by a constant

we may assume that �	��� � �� For n � �
 we de�ne

An � fz � �� � ��n�� � jzj � �� � ��ng

and A� � D 
 the unit disk� The size of the annuli was chosen so that the
intersection An � 	� is roughly a rectangle with Euclidean dimensions
comparable to � �� � ��n��� Choose
 if possible
 a Euclidean square
Qn � An � 	� � � with

����� diam�Qn� � �

�
�� � ��n��

and

�����
�

�
� dist �Qn	 ��An � 	� � ���

diam�Qn�
� � �

Note that there are constants Cj���
 depending only on � so that

C���� � dist �Qn	 ���

diam�Qn�
� C���� �

Squares satisfying the inequalities in the display above are called Whit�

ney squares� We call the fQng dominant Whitney squares
 as it turns
out that the integral of jf j over their inverse images dominates kfk�
see Lemma ��� below� We remark that many annuli may not contain
one of these dominant Whitney squares� Let zn denote the center of
Qn�

De�ne a covering f�ng
 n � �
 of � as follows� For z � �
 let
�z denote the curve from z to �
 lying on a hyperbolic geodesic� Let
N�Qn� denote the hyperbolic neighborhood of Qn given by

N�Qn� �
n
z � �	�z	 zn� �

���

�

o
�

Put z in �n if N�Qn� is the �rst such neighborhood encountered while
tracing the path �z starting at z� More precisely
 z � �n provided

�� �	�zn	 �z� � ����� and
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�� if �nz denotes the component of �z nN�Qn� containing z
 then
either �	�zm	 �

n
z � � ����� for all m 
� n or else �nz is empty�

If there is no Qn in An
 set �n � ��

A few remarks are in order at this point�

i� N�Qn� � �n� In particular
 the regions �n are not necessarily
pairwise disjoint�

ii� �n�n � �� Since �	��� � �
 it is easy to check that there is
a dominant Whitney square Q� � A� � D 
 with diam�Q�� � ���� If
z � Q�
 then �	�z� � ����
 from ������ Thus �	�w� � ���� for w on the
radial line segment from � to z� Integrating the quasi�hyperbolic metric
jdwj��	�w� along this segment we have that supz�Q�

�	��	 z� � ����

and so N�Q�� contains a neighborhood of �� Hence each �z eventually
passes through N�Q��
 which means that f�ng covers ��

iii� The need for the large hyperbolic radius of ����� will become
apparent in the proof
 and in Example ��� in the last section� It is
comparable to the quasi�hyperbolic length in An of a central circle
separating the two bounding circles of An�

Perhaps it is easier to picture the corresponding sets on D � The sets
ff���N�Qn��g are disks in D � Let U � �nf���N�Qn��� If z � D n U
then z � �n if the radial line segment from z to � �rst meets �U at a
point of �f���N�Qn���

Since �nQn � 	� and D � �nf����n�
 Theorem ��� is as imme�
diate consequence of the following lemma�

Lemma ���� There exists a constant C��� such that if f � L�
a is

univalent with f��� � �� then

�����

Z
f���	n�

jf j dA � C���

Z
f���Qn�

jf j dA �

Proof� Fix � � �
 with � � ����� Throughout the proof we will
use C to denote various constants that may change from one use to
the next
 but are independent of any parameters� Similarly
 C��� will
denote various constants depending only on �� We emphasize that C
and C��� will always be positive�

First we will prove the lemma when n � �� We saw in ii� above
that �	��	 z� � ����
 for z � Q�� Thus

inf
z�f���Q��

��� jzj� � C��� � � �
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By Theorem ������

jf ��z�j � C���

on f���Q��� Also by ����� and ����� we have that jf j � C��� on Q��
Combining these observations


Z
f���Q��

jf j dA � C���

Z
f���Q��

dA

� C���

Z
f���Q��

jf �j� dA

� C���A�Q��

and hence

�����

Z
f���Q��

jf j dA � C��� �

To estimate the left side of ����� when n � �
 note that by ����� and
the de�nition of Aj 


Z
f���	��

jf j dA � C
�X
j��

�� � ��j e������Aj�	�� ���	 Aj � ��	�� �

Thus it su�ces to show that

����� e������Aj�	�� ���	 Aj � ��	�� � C��� �� � ���j���C�� �

Let f�z� � Aj � Then
 using Theorem ������ with a � � and the nor�
malization �	��� � �


�� � ��j�� � jf�z�j � � e������f�z�� �

Thus

����� e������Aj� � C �� � ���j�� �

To prove the estimate ����� we consider several cases� In the �rst case
we will use the extremal length estimate of harmonic measure in The�
orem ���
 in the second case we will estimate harmonic measure using
the Carleman�Tsuji Theorem ���
 and in the remaining case hyperbolic
distance alone will increase rapidly enough to obtain ������
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For � � k � j � �
 put k in K if there exists a component Ek of
�� �Ak and k � ��	 ��� such that

����� Ek � fr ei� � � � r �	g 
� � 	 when j � kj � �

���
�

Case �� Cardinality�K� � �j � �����
For k � K
 let Sk denote a small polar coordinate square centered

in the annulus along the ray arg z � k� More precisely
 set

Sk �
n
r ei� � j � kj � �

���
and

��� log r

�� � ��k����

��� � �

���

o
�

For k 
� K
 set Sk � �� We claim that if �k is any curve in Ak n Ek

connecting the two boundary circles of Ak
 then

�����

Z

knSk

�

jzj jdzj � log �� � �� �

Inequality ����� is clearly true if �k � Sk � �� If �k � Sk 
� �
 then by
�����
 for at least one component ��k of �k n Sk
 we have

sup
z�w�
�k

j arg z � argwj � �

���
� �

���
�

Thus

Z

knSk

�

jzj jdzj �
r�

log �� � ��� � �

���

��
�
� �

���
� �

���

��
� log ����� 	

which establishes ������ The above inequality is perhaps easiest to see
by using the change of variable w � log z
 so that jdzj�jzj � jdwj�

Now de�ne a metric � on � � �j��k��Ak by

��z� �
�

jzj
� j��X
k��

�
Ak

�z��
X
k�K

�
Sk
�z�
�
	

where �
F
denotes the characteristic function of a set F � If � � � is a

curve connecting � D to Aj then by �����

Z



��z� jdzj � �j � �� log �� � �� �
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Because Z
Sk

�

jzj� dA�z� � C �� 	

and Cardinality �K� � �j � ����
 we have that
Z
	������j��D

���z� dA�z� � �j � �� ��� log �� � ��� C ��� �

Thus

d	�� D 	 Aj � �

�
inf



Z



��z� jdzj
��

Z
	

��z�� dA
� j � �

��
�� � C �� log �� � �� �

By Theorem ���

����� ���	 Aj � ��	�� � C e�	d��D�Aj � � C �� � ����j������C�� 	

and from this and ����� we conclude that ����� holds in this case�

Recall that �r� is the angular measure of the longest component
of fz � jzj � rg � �� For � � m � j � �
 set

Fm �
n
r � �� � ��m�� � r � �� � ��m and �r� � �� � �

���

o
�

and

M �
n
m � � � m � j � � and jFmj � � �� � ��m��

���

o
�

Case �� Cardinality �M� � �j � �����
By the de�nition of M
 if m � M then

Z �����m

�����m��

�

r �r�
dr �

Z �����m

�����m��

�

��r
dr �

Z
Fm

� �

�� � �����
� �

��

�dr
r

� �

��
log �� � �� � C �� �

Since Cardinality �M� � �j � ����
 we have that

Z �����j��

�

�

r �r�
dr � �

��
�j � �� log �� � �� � j C �� �
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Thus by the Carleman�Tsuji Theorem ���


������
���	 Aj � ��	�� � C��� exp

�
� �

Z �����j��

�

�

r �r�
dr
�

� C��� �� � ����j������C�� �

By ����� and ������ we conclude that ����� holds in this case�

Case �� Cardinality �K� � �j � ���� and Cardinality �M� � �j � �����
Set

I � fi � � � i � j � �	 i 
� K and i 
� Mg �
Then Cardinality �I� � �j � ����� Let i � I� Choose a continuum
Li � �� � Ai such that Li connects the two bounding circles of Ai�
Since i 
� K
 there is a i such that

Li � ei�i	����� �

Then �� does not intersect most of the middle of Ai� Indeed
 let V
denote the annular region given by

V �
n
z � �� � ��i��

�
� �

�

���

�
� jzj � �� � ��i��

�
� �

�� �

���

�o

and suppose
a � �� � �V n ei�i	����� �

Then there is a component �i of �� � Ai connecting a to one of the
bounding circles of Ai� Since i 
� K


�i � ei� 	����� 	

for some � Note that since i �� K the angular distance from �i to Li is
at least

�

��
�
� �

��
�

�

���

�
�

�

��
�

Since the length of �i is at least �����
i�� �����
 this contradicts i 
� M�

Thus
�� � Ai � ei�i 	���� � �Ai n V � �

Since i �� M
 ��Ai 
� ei�i 	����
 and hence there exists a Qi � Ai ���
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By �����

�	�z�	 Ai� � �	��	 Ai�� �	�z�	 �� �
���

�
	

for i su�ciently large� This implies that Ai � N�Q�� � � for i � i�

where i� depends only on ��

Suppose z � Aj ��� and suppose �z is the curve from z to � lying
on a hyperbolic geodesic� We claim that if w � �z �Ai
 with i � i� and
�Ai�w� � ������ �� � ��i��
 then

������ �	�w� � �

��
�� � ��i�� �

By ����� and �����
 dist �Qi	 ��� � � �� � ��i���� and hence Qi �
V n ei�i	����� Suppose such a w does not satisfy ������� Let � be the

curve in V nei�i	���� connecting w to zi �the center of Qi�
 consisting of
a radial line segment from w to the circle of radius ��� ��i�� ��� ����

then an arc on this circle
 followed by a radial line segment to zi� Note
that on �
 the distance to ��Ai � �� is at least ������ �� � ��i��
 and
along most of the circle this distance is ����� �� � ��i��� Hence by the
comparison of the hyperbolic and quasi�hyperbolic distance �����

�	�w	 zi� � �Ai�	�w	 zi� � �

Z



jd�j
�Ai�	���

�
���

�
�

Thus w � N�Qi� � Ai� Now Ai � N�Q�� � �
 since i � i�
 and thus
N�Q�� cannot be the �rst such neighborhood encountered along �z�
This contradicts z � �� and completes the proof of �������

Now when i � i�
 by ������


Z
�z�Ai

jd�j
�	���

�
Z �����i����������

�����i����������

jd�j
�

��
�� � ��i��

� � �

Using the lower estimate in �����
 this implies that for z � Aj � ��


������ �	��	 z� � �

�

X
i�I
i�i�

Z
�z�Ai

jd�j
�	���

� �
�j � �

�
� i�

�
�

Hence

e������Aj�	�� ���	 Aj ���	�� � e���j��i������ � C��� ��� ���j���C�� 	
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since i� depends only on �
 and ����� holds� This completes the proof
of the case n � ��

The proof of Lemma ��� for n � � is very similar� To begin with

we see from ����� that Qn contains a disk of Euclidean radius at least
� �����n����

p
�� Thus the quasi�hyperbolic length of any curve � from

the center of this disk to its boundary is at least

Z
�

jdzj
�	�z�

� C

�� � ��n
j�j � C � �

Hence Qn contains a hyperbolic ball of radius at least C �
 by �����

and so we get from ����� that

������

Z
f���Qn�

jf j dA � �� � ��n��A�f���Qn��

� C �� � ��n �� e������Qn� ���	 Qn	�� �

Next we consider the integral over f����n�Aj�
 where allowance must
be made for both j � n and j � n� We have

Z
f���	n�Aj�

jf j dA � �� � ��j A�f����n � Aj��

� C �� � ��j e������	n�Aj� ���	�n � Aj 	�� 	������

by ������ Using the triangle inequality and the de�nition of �n
 we see
that

�	��	 Qn� � �	�zn	�n �Aj� � �	��	�n � Aj� � C��� 	

and hence

������ e������	n�Aj� � C��� e������Qn� e����zn�	n�Aj� �

To estimate ���	�n � Aj	��
 �rst suppose that �	��	 zn� � C���� We
observed above that Qn contains a hyperbolic ball of radius at least
C �
 and so ���	 Qn	�� � C���� Hence

������ ���	�n � Aj	�� � C������	 Qn	����zn	�n �Aj 	�� 	

by Harnack�s inequality� We now show that ������ holds for all n�
We may assume that exp ���	��	 N�Qn��� � ���
 since ������ has
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been established when �	��	 zn� � C���� Let �n denote the hyper�
bolic geodesic in D that separates � from f���N�Qn��
 is orthogonal
to the radius of D through f���zn� and satis�es exp ���

D
��	�n�� �

� exp ���
D
��	 N�Qn���� Then

���	�n �Aj 	�� � ���	 f����n �Aj�	 D �

� ���	�n	 D � sup
��
n

���	 f����n �Aj�	 D � 	

by the maximum principle� For the �rst factor
 observe that

���	�n	 D � � C������	 f���Qn�	 D � � C������	 Qn	�� 	

since the harmonic measures of these sets in D are comparable to the
diameters of the sets� Next
 we use �rst Proposition ��� and then
Harnack�s inequality to get that

sup
��
n

���	 f����n � Aj�	 D � � C ���n	 f
����n �Aj�	 D �

� C�����f���zn�	 f
����n � Aj�	 D �	

where �n � �n is determined by �
D
��	 �n� � �

D
��	�n�� The last three

displayed inequalities now combine to complete the proof of �������
Putting together ������
 ������
 ������ and ������
 we get that

Z
f���	n�Aj�

jf j dA � C��� �� � ��j e������Qn� ���	 Qn	��

 e����zn�	n�Aj� ��zn	�n �Aj 	��

� C��� �� � ��j�n
Z
f���Qn�

jf j dA������

 e����zn�	n�Aj� ��zn	�n �Aj 	�� �

We claim that
 for all positive integers j and n
 we have the inequality

������ e����zn�	n�Aj� ��zn	�n � Aj	�� � C��� �� � ���jj�nj���C�� �

This has been proved when n � � and zn is replaced by �
 and the proof
for n � � is similar�
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For n � � the estimate of hyperbolic distance
 as for n � �
 is
based on the Distortion Theorem� Let z � Aj 
 and assume �rst that
j � n� �� Then

� �� � ��j

�
� �� � ��j�� � �� � ��n

� jz � znj
� � �	�zn� e

����zn�z�

� C � �� � ��n e����zn�z� 	

where the upper bound for jz� znj came from applying Theorem ������
with a � zn and b � z� For j � n we estimate

� �� � ��n � C diam�Qn� � C jz � znj � C �� � ��j e����zn�z� 	

where now Theorem ������ was used with a � z
 noting that �	�z� �
� � �� � ��j 
 to get the last inequality� Hence

������ e����zn�	n�Aj� � C��� �� � ���jj�nj�� 	 � � j �	 	

after an increase in the constant C��� to handle the cases j � n and
j � n� ��

The harmonic measure estimates we need for the general case are
also very similar to those made in the case n � �� As before
 we
consider cases �
 � and � separately� The Case � estimate involving
extremal distance is made in exactly the same way
 yielding

������ ��zn	�n �Aj 	�� � C �� � ���jj�nj���C���� 	

in place of ������ As above
 the absolute values are required in the
exponent to allow for the possibility that j � n�

When we use the Carleman�Tsuji estimate for harmonic measure
in Case � with j � n
 the integral in ������ is replaced by

Z �����j��

�����n��

�

r �r�
dr �

When j � n
 we �rst invert � using the map z �� ��z �which preserves
harmonic measure� to put � in the proper form to apply Theorem ����
This results in the estimate

������ ��zn	�n � Aj	�� � C��� �� � ���jj�nj���C���� 	
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in place of �������
The estimates ������
 ������
 and ������ now combine to prove claim

������ in cases � and �� Finally
 the hyperbolic distance estimate in Case
� is made just as before to get

�	�zn	 Aj � �n� � �

�
�jj � nj � � i� � ��

instead of ������� Hence

e����zn�Aj�	n� � e���jj�nj��i������ � C��� �� � ���jj�nj���C�� 	

and ������ has been established in this last case as well�
Combining ������ and ������
 we now get

Z
f���	n�

jf j dA �
�X
j��

Z
f���	n�Aj�

jf j dA

� C���

Z
f���Qn�

jf j dA
�X
j��

�� � ��j�n�jj�nj���C��

� C���

Z
f���Qn�

jf j dA 	

and the proof is complete�

�� Examples�

Our �rst example shows that
 in general
 in�nitely many dominant
Whitney squares Qn are required in the proof of Theorem ���
 and
also that N�Qn� must be de�ned so that its hyperbolic radius tends to
in�nity as � �� ��

Example ���� For R � �
 let �R � fz � jzj � Rgn ��	 R� and let fR be
the Riemann map from D onto �R such that fR��� � � and f �R��� � ��
Clearly fR � L�

a
 and limR�� kfRk� � 	
 since as R �� 	
 fR
converges uniformly on compact subsets of D to f�z� � � z �� � z��� ��
L�
a� It is clear that there is a dominant Whitney square Qn in every

annulus An with �� � ��n � R� SinceZ
f��R �Qn�

jfRj dA � �� � ��nA�D �
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and limR�� kfRk� �	
 as R ��	 we must use Qj with j arbitrarily
large in the proof of Theorem ����

Next
 we show that it was necessary to have the hyperbolic radius
of N�Qn� tending to in�nity as � �� �� We show that if M � � is any
�xed constant
 then the neighborhoods N �Qn� � fz � �	�z	 zn� � Mg
will not work in the proof� Let z � �R be a point with Re z � �� Then
jzn � zj � jznj
 and ��zn� is comparable to � jznj
 and so

�

�
� C

jzn � zj
�	�zn�

� C e����zn�z� 	

by Theorem ������� Thus
 if � is su�ciently small
 independent of R

then N �Qn� is contained in the right half plane for all n � �� This
means that if ��R�n is de�ned using N �Qn� in place of N�Qn�
 then
f��R�ng does not cover �R
 and so the proof of Theorem ��� does not
work� We now show that even if Q� is replaced by D �	�
 so that now
f��R�ng covers �R
 there still is a problem�

Since fR maps ���	 �� to ��R	 ��
 it follows that a hyperbolic neigh�
borhood in D of ���	����� must belong to f��R ���R���
 when ��R�n is
de�ned using N �Qn� in place of N�Qn�� This hyperbolic neighborhood
contains an angle

� �
n
z � D � j� � zj � �� � �� ��� jzj� and j� � zj � �

�

o
	

where � � �
 in D with vertex at ��� Since fR converges uniformly on
compact subsets of D to � z �� � z���
 which has a pole of order � at
��
 it follows that

lim
R��

Z
f��R ��	R���

jfRj dA � lim
R��

Z



jfRj dA �	 �

Thus
 if N�Qn� is replaced by N �Qn�
 then there is no constant C���
depending only on � such that

Z
f��R ��	R���

jfRj dA � C���

Z
f��R �Q��

jfRj dA 	

since the integral on the right is bounded by �  A�D � � ��

Example ���� It might seem at �rst thought that the proof of Theorem
��� could be simpli�ed by using circular symmetrization� However
 this
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does not seem to be the case� One problem is that the symmetrization
of an L�

a function may not be in L�
a� For example
 let g�z� � �f�z������

be the square root transform of the function f from Example ���� Then
g�z� � � z��� � z��
 and g maps the disk onto the plane slit along the
real axis from �	 to �� and from � to 	� Clearly g � L�

a
 since its
poles are simple
 but its circular symmetrization is f �� L�

a�
Let g

R
be the Riemann map of D onto

fz � jzj � Rg n ���R	��� � ��	 R��

with

g
R
��� � �

and

g�R��� � � �

Then kg
R
k� � kgk�
 since gR is subordinant to g
 and so the integrals

of jg
R
j over the inverse image of 	� are uniformly bounded by kgk��

The symmetrization of g
R
is fR
 and

lim
R��

Z
f��R ����

jfRj dA � lim
R��

�

Z
D

jfRj dA �	 	

where Theorem ��� was used to get the inequality� Thus even when the
symmetrized function is in L�

a
 its integral over the inverse image of 	�

cannot be bounded by the integral of the original function�

Example ���� This example shows that in Theorem ���
 L�
a can not

be replaced by Lpa
 for any p � �� Let p � � be �xed and set

�n � �
�p� �

p

�
�

�

n
	

for all n su�ciently large so that �n � �� Let

fn � D �� C n �� � 	�n�

be the Riemann map with fn��� � � and f �n��� � �� It is easy to verify
that fn � Lpa
 since �n � � �p� ���p
 but

kfnkp ��	 	 as n ��	 �



The angular distribution of mass by Bergman functions ���

On the other hand
 some elementary trigonometry shows that

		�p�����p � �C n �� � 		�p����p��

is contained in the disk of radius � centered at the origin� Hence

Z
f��n ����p�����p�

jfnjp dA � �pA�D � � �p � 	

and this can not be used to dominate kfnkp as n ��	�
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Local limit theorems on

some non unimodular groups

Emile Le Page and Marc Peign�e

Abstract� Let Gd be the semi�direct product of R�� and Rd � d � �
and let us consider the product group Gd�N � Gd � RN � N � �� For
a large class of probability measures � on Gd�N � one proves that there
exists ���� � 	
� �	 such that the sequence of �nite measures

nn�N�����

����n
��n

o
n��

converges weakly to a non�degenerate measure�

R�esum�e� Soit Gd le produit semi�direct de R�� et de Rd et Gd�N le
groupe produit Gd � RN � N � 
� Pour une large classe de mesures de
probabilit�e sur Gd�N nous montrons quil existe ���� � 	
� �	 tel que la
suite de mesures �nies

nn�N�����

����n
��n

o
n��

converge vaguement vers une mesure non nulle�

�� Introduction�

Fix two integers d � �� N � 
 and choose a norm k � k on Rd and
RN �when N � ��� Let Gd�N be the connected group R�� � Rd � RN

���
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with the composition law

for all g � �a� u� b�� for all g� � �a�� u�� b�� � G �

g � g� � �a a�� a u� � u� b� b�� �

We will note g � �a�g�� u�g�� b�g�� �or g � �a� u� b� when there is no
ambiguity�� The group �Gd�N � �� is a non unimodular solvable group
with exponential growth and the right Haar measure mD on Gd�N is

mD�da du db� � � �dbN � � da du db� � � �dbN
a

�

Note that Gd�� is the semi�direct product of R�� and Rd � in particular
G��� is the a�ne group of the real line�

We consider a probability measure � on G� we denote by ��n its
nth power of convolution� Under quite general assumptions on � we
show that there exists ���� � 	
� �� such that the sequence

nn�N�����

����n
��n

o
n��

converges weakly to a non�degenerate measure� This problem has al�
ready been tackled by Ph� Bougerol in ��	 where were established local
limit theorems on some solvable groups with exponential growth� in
particular� for a class R of probability measures � on the a�ne group
of the real line �that is d � � and N � 
� he showed that the sequence

n n���

����n
��n

o
n��

converges weakly to a non�degenerate measure� In ��	 we extend this
result to a quite large class of probability measures� the new ingredient
in our proof was the fact that there exists closed connections between
this problem and the theory of the �uctuations of a random walk on
the real line� In the present paper� we extend this result to the case
N � �� we �rst obtain uniform upperbounds in the Local limit theorem
for a random walk on Rd and� secondly� we use a generalisation of the
Wiener�Hopfs factorisation due to Ch� Sunyach ��	�

This study is also related with the work by N� T� Varopoulos ��
	�
���	 where upperbounds and lowerbounds for the asymptotic behaviour
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of the convolution powers ��n of a large class of probability measures
are given�

From now on� we will suppose that N � � and we set G � Gd�N �
We introduce the following conditions on ��

Hypothesis G�� There exists � � 
 such thatZ
G

�e�j log aj � kuk� � kbk����da du db� � �� �

Hypothesis G��

Z
G

Log a ��da du db� � 
 and

Z
G

b ��da du db� � 
�

Hypothesis G�� The support of � is included in R�� � �R��d � RN �

the image of � by the mapping �a� u� b� ��� �Log a� b� is aperiodic in

RN�� �see De�nition ���� and there exists 	 � 
 such thatZ
G

kuk�� ��da du db� � �� �

Hypothesis G��� The measure � is absolutely continuous with respect

to the Haar measure mD on G and its density 
� satis�es

Z
������RN

q

sZ
R


q��a� u� b� du
da db

a�
� �� �

for some � and q in 	������

We have the

Theorem ���� Let � be a probability measure on G satisfying hypothe�

ses G�� G� and G� �or G��� Then� the sequence of �nite measures

fn�N�������ngn�� converges weakly to a non�degenerate Radon mea�

sure on G�

Note that the asymptotic behavior of the sequence f��ngn�� does
not depend on d�

When � is not centered� that isZ
G

Log a ��da du db� 	� 
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or Z
G

b ��da du db� 	� 
 �

we bring back the study to the centered case as in ��	� We introduce
the following conditions on ��

Hypothesis G��� There exists � � 
 such thatZ
G

�at � kuk� � exp �t kbk����da du db�� ��

for any t � R�

Hypothesis G��� One hasZ
G

Log a ��da du db� 	� 


with �fg � G � a�g� � �g � 
 and �fg � G � a�g� � �g � 
�

When � satis�es these two conditions� there exists a unique �s�� t��
� R � RN such thatZ

G

as�eht��bi��da du db� � inf
�s�t��R�RN

Z
G

as eht�bi ��da du db� �

Furthermore�

���� �

Z
G

as�eht��bi��da du db�

belongs to 	
� �	� Note that the probability measure

���dg� �
�

����
a�g�s� eht��b�g�i ��dg�

satis�es hypotheses G� and G�� The following condition is the equiva�
lent of Hypothesis G� in the non centered case�

Hypothesis G��� The measure � is absolutely continuous with respect

to the Haar measure mD on G and its density 
� satis�es

Z
������RN

q

sZ
R


q��a� u� b� du
da db

a�
� ��
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for some q � 	����� and � � 	�� s����� �

Theorem ���� Let � be a probability measure on G satisfying condi�

tions G��� G�� and G� �or G��� and let

���� � inf
�s�t��R�RN

Z
G

as eht�bi ��da du db� �

Then� the sequence of �nite measures

nn�N�����

����n
��n

o
n��

weakly converges to a non�degenerate Radon measure on G�

The demonstration of Theorem ��� is closely related to the study
of the �uctuations of a random walk �Xn

� � Y
n
� �n�� on RN�� � In Section

�� we �rst state the classical local limit theorem on RN�� but we add
in its statement uniform upperbounds relatively to the starting point of
the random walk �Xn

� � Y
n
� �n��� This result is thus very usefull to obtain

a precise equivalent in Theorem ��� of the joint law of the random walk
�Xn

� � Y
n
� �n�� with its �rst entrance time T� in the half space R� �RN �

a local limit theorem for the process

�Xn
� �max f
� X�

� � � � � � X
n
� g� Y n

� �n��

is thus obtained �Theorem ����� In Section � we give the main steps of
the proof of Theorem ����

�� Fluctuations of a random walk on RN�� �

Fix an integer N � � and let �X�� Y��� �X�� Y��� � � � be indepen�
dent R � RN �valued random variables with distribution p de�ned on a
probability space ���F �P�� Let �Xn

� � Y
n
� �n�� be the associated random

walk on R�RN starting from �
� 
� and de�ned by X�
� � 
� Y �

� � 
 and
Xn

� � X��� � ��Xn� Y
n
� � Y��� � ��Yn for n � �� the distribution of the

couple �Xn
� � Y

n
� � is the n

th power of convolution p�n of the measure p�
Denote by Fn the ��algebra generated by �X�� Y��� � � � � �Xn� Yn�� n � ��

Let us �rst recall the
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De�nition ���� Let p be a probability measure on Rk � k � �� The

measure p is aperiodic on Rk if there is no closed and proper subgroup

H of Rk and no � � Rk such that p���H� � ��

Denote by �p the characteristic function of p de�ned by �p�u� v� �
E �eiuX��ihv�Y�i	 for any �u� v� � R � RN � Recall that the probability
measure p is aperiodic if and only if j�p�u� v�j � � for �u� v� 	� �
� 
��

For any A 
 R � RN let fT �k�
A gk�� be the the successive times

of visit of the random walk �Xn
� � Y

n
� �n�� to the set A� one has T ���

A �


� T
���
A � inf fn � � � �Xn

� � Y
n
� � � Ag and T

�k���
A � inf fn � T

�k�
A � � �

�Xn
� � Y

n
� � � Ag� Note that the T �k�

A are stopping times with respect to
the �ltration fFngn��� We will associate to �p�A� the transition kernel
PA de�ned by

PA��x� y��B� �
Z
R�RN

�Ac�B�x� x�� y � y�� p�dx�dy�� �

for any Borel set B in R � RN � note that for any k � � one has
P k
A��
� 
��B� � E ��TA � k	� �Xk

� � Y
k
� � � B	� In order to simplify the no�

tations we will set T� � TR��RN � P� � PR��RN and T
�k�
� � T

�k�
R��RN �

similar notations will hold� with obvious modi�cations� when A �
R�� � RN �R� � RN and R�� � RN �

Troughout this paragraph� for any k � �� we denote by k the
Lebesgue measure on Rk � Furthermore� for any � � 
� H��R

k � is the
space of C �valued functions � on Rk such that

sup
x�Rk

�� � kxk��k j��x�j � �� �

���� Preliminaries�

The local limit theorem gives the asymptotic behaviour of the se�
quence fp�n���gn�� for any continuous function � with compact sup�
port on RN�� � we state it here and we precise some uniform upperbound
for the sequence fp�n���gn�� when � belongs to H��R

N��� with � � ��

Theorem ���� Assume that �

i� the common distribution p of the variables �Xn� Yn�� n � �� is
aperiodic on RN�� �
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ii� E �jX� j� � kY�k�	 � �� and E �X� 	 � 
� E �Y� 	 � 
�

Then �

i� for any continuous function � with compact support on RN��

one has

lim
n��	

n�N����� E ���Xn
� � Y

n
� �	

�
�

�����N�����
pjCj

Z
RN��

��x� y���dx�N�dy� �

where jCj denotes the determinant of the positive de�nite quadratic form

C�u� v� � E ��uX� � hv� Y�i��	 �

ii� For any function � in H��R
N��� with � � �� the sequence

fn�N����� E ���x � Xn
� � y � Y n

� �	gn�� is bounded uniformly in �x� y� �
R � RN �

Proof� The �rst assumption is the classical local limit theorem� To
obtain the second claim� �x a non negative function 
 whose Fourier
transform has a compact support K��
�� Recall that

�p�u� v� � �� �

�
C�u� v� �� � ��u� v��

with lim�u�v������� ��u� v� � 
� so there exists � � 
 such that for juj�
kvk � � one has

j�p�u� v�j � �� �

�
C�u� v� � e�C�u�v��	 �

On the other hand� by the aperiodicity of p there exists � � ��p�K��
��

such that j�p�u� v�j � � as soon as �u� v� belongs to K��
� and juj�kvk �
�� It follows that

��� n��N����� E �
�Xn
� � Y

n
� �	

� n�N�����

Z
juj�kvk	�

j�
�u� v�j j�p�u� v�jn ��du�N�dv�

� n�N�����

Z
juj�kvk��

j�
�u� v�j j�p�u� v�jn ��du�N �dv�
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� n�N�����

Z
juj�kvk	�n�N�����

����
� up
n
�
vp
n

����e��n�	�C�u�
p
n�v�

p
n�

� ��du�N �dv�
� n�N����� �n k�
k�

� k�
k	
Z
R�RN

e�C�u�v��	��du�N �dv� � n�N����� �n k�
k� �

Now set 
x�y�x
�� y�� � 
�x�x�� y�y�� for any �x� y� � R�RN and note

that �
x�y�u� v� � eiux�ihv�yi �
�u� v�� the functions �
x�y and �
 thus have

the same compact support and satis�es the equalities k�
x�yk� � k�
k�
and k�
x�yk	 � k�
k	� For any �x� y� � R � RN one thus has

j��� n��N����� E �
x�y �X
n
� � Y

n
� �	j

� k�
k	
Z
R�RN

e�C�u�v��	 ��du�N�dv� � n�N����� �n k�
k� �

The assertion ii� thus holds for any function 
 whose Fourier transform
has a compact support� To achieve the proof of ii� it su�ces to show
that for any function � in H��R

N��� with � � � there exists a function

 whose Fourier transform has a compact support and j�j � 
� It is
an immediate consequence of the following result� we thank here J� P�
Conze for helpfull discussions about this fact�

Lemma ���� Set

h
�x� �
�

� � jxj	�
 �

for any x � R� If � � 
 there exists a function h
 greater than h
 and

whose Fourier transform has a compact support in R�

Proof� Set

h
�x� � C
� sin� x

x�
�

sin� �x

x�

�
for some � and C in R�� which will depend on �� Assume � �� Q � the
function h
 is strictly positive on R� it thus su�ces to show that there
exists � �� Q such that

lim
x��	

x��
�sin� x� sin���x�� � �� �
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If such a real did not exist� then for any � �� Q there should exist a
sequence fxngn�� which tends to �� and a constant C
 � 
 such that
for all n � ��

sin� xn � sin���xn� � C

x��
n

�

So there should exist two strictly increasing sequences of integers
fkngn�� and flngn�� such that

jxn � kn �j � C �

x
��
��
n

� j�xn � ln �j � C �

x
��
��
n

which implies ����� ln
kn

��� � C ��

k
��
��
n

for some positive constants C � and C ��� This leads to a contradiction
because for almost all � � R �with respect with the Lebesgue measure��
this last inequality has at most a �nite number of solutions in N� ��	�
The lemma is proved�

���� A local limit theorem for a killed random walk on a half

space�

In ��	� we proved the following

Theorem ��	� Let the hypotheses of Theorem ��� hold� Then for any

continuous function with compact support � on R� we have

lim
n��	

n��� E ��T� � n	���Xn
� �	 �

�

��X��
p
��

Z �

�	
��x��� � U���dx� �

where �� denotes the restriction of the Lebesgue measure on R� and

U�� is the ���nite measure on R� de�ned by

U���B� �
�	X
k
�

E ��B�X
T
�k�
��

� �	

for any Borel set B� In the same way� one has

lim
n��	n��� E ��T�� � n	���Xn

� �	 �
�

��X��
p
��

Z �

�	
��x��� � U��dx� �
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where U� is the ���nite measure on R� de�ned by

U��B� �
�	X
k
�

E ��B �X
T
�k�
�

� �	

for any Borel set B�

Recall that the random walks fXT
�k�
�

� gk�� and fXT
�k�
��

� gk�� are tran�

sient on R� � it follows that the series
P�	

k
� E ��T� � k	���x�Xk
� �	 andP�	

k
� E ��T�� � k	���x�Xk
� �	 do converge� Furthermore one has

�	X
k
�

E ��T� � k	���x�Xk
� �	 �

Z �

�	
��x�U���dx�

and
�	X
k
�

E ��T�� � k	���x�Xk
� �	 �

Z �

�	
��x�U��dx� �

Let us now state the following

Theorem ��
� Let the hypotheses of Theorem ��� hold� Then �

i� For any continuous function � with compact support on R��RN
one has

lim
n��	

n�N����� E ��T� � n	���Xn
� � Y

n
� ��	

�
�

�����N�����
pjCj

Z
R��RN

��x� y��� � U���dx�N�dy� �

ii� For any continuous function f with compact support on R and

any g in H��R
N � with � � �� the sequence

fn�N����� E ��T� � n	� f�Xn
� � g�y � Y n

� �	gn��

is bounded� uniformly in y � RN �

In the same way� one has

lim
n��	

n�N����� E ��T�� � n	���Xn
� � Y

n
� �	

�
�

�����N�����
pjCj

Z
R��RN

��x� y��� � U��dx�N �dy�
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and the sequence

fn�N����� E ��T� � n	� f�Xn
� � g�y � Y n

� �	gn��

is bounded� uniformly in y � RN �

Proof� We prove this theorem by induction overN � Theorem ��� deals
with the case N � 
� we will suppose that this result hold for some N �

 and we consider a sequence �Xn� Yn� Zn�n�� of independent identically
distributed random variables on R � RN � R� By a classical argument
in probability theory� it su�ces to show the above convergence hold
for ��x� y� z� � eax �R��x�
�y���z� where a � R�� and 
� � are C �
valued functions whose Fourier transform are continuous with compact
supports� By the inverse Fourier transform one has

In � E ��T� � n	� eaX
n
� 
�Y n

� ���Z
n
� �	

�
�

�����N�����

Z
RN�R

�
�v� ���w��n�a� v� w�N�dv���dw�

with �n�a� v� w� � E ��T� � n	� eaX
n
� �ihv�Y n

� i�iwZn
� 	�

The Spitzers factorisation for random walks on R gives for all
a � 
� for all s � �
� ��

�	X
n
�

sn E ��T� � n	� eaX
n
� 	 � exp

� �	X
n
�

sn

n
E ��Xn

� � 
	� eaX
n
� 	
�
�

Using the fact that R� � RN�� and R�� � RN�� are semi�groups in
RN�� � Ch� Sunyach extended this factorisation to the multidimension�
nal case ���� Corollary �� p� ��� and Theorem �� p� ���	�� for any a � 
�
v � RN � w � R and s � �
� �� one thus has

�	X
n
�

sn E ��T� � n	� eaX
n
� �ihv�Y n

� i�iwZn
� 	

� exp
� �	X
n
�

sn

n
E ��Xn

� � 
	� eaX
n
� �ihv�Y n

� i�iwZn
� 	
�

that is

�n� ���n���a� v� w� �
nX

k
�

	n���k�a� v� w��k�a� v� w�
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with 	n�a� v� w� � E ��Xn
� � 
	� eaX

n
� �ihv�Y n

� i�iwZn
� 	� Finally

In �
�

n� �

nX
k
�

In�k

with

In�k �
�

�����N�����

Z
RN�R

	n���k�a� v� w��k�a� v� w�

� �
�v� ���w�N�dv���dw� �

Set

I �
�

�����N�����
pjCj

Z
RN�R

�	X
k
�

E
h
�T� � k	�

eaX
k
�

a

i

� 
�y���z�N�dy���dz� �

since
I � �� � U���ea
�N �
����� �

it su�ces to show that fn�N�	���Ingn�� converges to I� that is

�� for all k � 
� lim
n��	

n�N�����In�k � I�k�

��
�	X
k
�

jI�kj � �� and
�	X
k
�

I�k � I�

�� lim sup
l��	

lim sup
n��	

n�N�����
nX
k
l

jIn�kj � 
�

To prove the assertion ��� note that

In�k � E ��T� � k	  �Xn��
k�� � 
	� eaX

n��
� 
�Y n��

� ���Zn��
� �	 �

by the local limit theorem on RN�� the assertion �� follows with

I�k �
�

���N�����
pjCj E ��T� � k	� eaX

k
� 	

a

�
Z
RN


�y�N �dy�

Z
R

��z���dz� �
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The fact that the series
P�	

k
� jI�kj converges is a direct consequence of
Theorem ���� To prove the assertion ��� note that

jIn�kj � E ��T� � k	  �Xn��
k�� � 
	� eaX

n��
� j
�Y n��

� �j j��Zn��
� �j	

� E
h
�T� � k	� eaX

k
�

Z
R��RN�R

eax j
�y � Y k
� �j

� j��z � Zk
� �j p��n���k��dx dy dz�

i

� C�a� 
� ��

�n� �� k��N�����
E ��T� � k	� eaX

k
� 	 by Theorem ����ii�

� C�

�n� �� k��N����� k���
by Theorem ����

On the other hand

jIn�kj � k�k	
Z
R��RN�R

E ��T� � k	� eaX
k
� j��y � Y k

� �j

� eax p��n���k��dx dy dz�	

� k�k	C�a� 
�

k�N�����

� E ��Xn��
k�� � 
	� eaX

n��
k�� 	 by hypothesis of induction

� C�

k�N�����
p
n� �� k

�

The assertion �� follows since for any � � 
 one has

n�N�����
nX
k
l

jIn�kj � C�

�n���
��X
k
l

n�N�����

k��� �n� �� k��N�����

� C�

nX
�n���
����

n�N�����

k�N�����
p
n� �� k

� C�

��N�����

�n���
��X
k
l

�

k���

�
C�p

n ��� ���N�����

nX
�n���
����

�p
n� �� k
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� C
� �

��N�����
p
l
�

p
�

��� ���N�����

�
�

Since � is arbitrarily small� the assertion �� follows�
The proof of ii� is also made by induction over N � If g � H��R

N���
there exist 
 � H��R

N � and � � H��R
�� such that jgj � 
��� We set

In�y� z� � E ��T� � n	� eaX
n
� 
�y � Y n

� ���z � Zn
� �	

and we have

In�y� z� �
�

n� �

nX
k
�

In�k�y� z�

with

In�k�y� z� � E ��T� � k	 �Xn��
k�� � 
	� eaX

n��
� 
�y�Y n��

� ���z�Zn��
� �	 �

As above� one has

jIn�k�y� z�j � inf
n C�

�n� �� k��N����� k���
�

C�

k�N�����
p
n� �� k

o

which proves that the sequence

n
n�N�����

nX
k
�

jIn�k�y� z�j
o
n��

is uniformly bounded in y� z� This achieves the proof of ii��
The convergence of the sequence

fn�N�����E ��T�� � n	���Xn
� � Y

n
� �	gn��

is obtained with similar arguments�

���� Behaviour of the process ��Xn
� �maxf
� X�

� � � � � � X
n
� g� Y n

� ��n���

For any n � 
 set X n
� � max f
� X�

� � � � � � X
n
� g and let Tn be the

random variable de�ned on ���F �P� by Tn � inf f
 � k � n � X n
� �
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Xk
� g� for any continuous function � with compact support on RN�� we

have

E ���X n
� �X n

� �Xn
� � Y

n
� �	

�
nX

k
�

E ��Tn � k	���Xk
� ��Xn

k��� Y
n
� �	

�
nX

k
�

E ��
 � Xk
� � X

�
� � Xk

� � � � � � X
k��
� � Xk

� �

Xk��
� � Xk

� � � � � � X
n
� � Xk

� 	���X
k
� ��Xn

k��� Y
n
� �	

�
nX

k
�

E ��X�
� � 
� � � � � Xk

� � 
	  �Xk��
k�� � 
� � � � � Xn

k�� � 
	�

��Xk
� ��Xn

k��� Y
n
� �	 �

One obtains the following factorisation

E ���X n
� �X n

� �Xn
� � Y

n
� �	 �

nX
k
�

Jn�k���

with

Jn�k���

�

Z
RN��

��x��x�� y � y��P k
���
� 
�� dx dy�P

n�k
�� ��
� 
�� dx� dy�� �

The behaviour of the process �X n
� �X n

� �Xn
� � Y

n
� � is thus closely related

to the one of the iterates of the transition kernels P� and P��� Using
this factorisation one proves the

Theorem ���� Suppose that the hypotheses of Theorem ��� hold�

Then� for any continuous function with compact support on R� �
R� � RN the sequence

fn�N����� E ���X n
� �X n

� �Xn
� � Y

n
� �	gn��
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converges to

�

�����N�����
pjCj

Z
R��R��RN

��s��t� y�U���ds��� � U��dt�N �dy�

�
�

�����N�����
pjCj

�
Z
R��R��RN

��s��t� y�� � U���ds�U��dt�N�dy� �

Furthermore� for any continuous function f with compact support on

R� � R� and any g in H��R
N �� the sequence

fn�N����� E �f�X n
� �X n

� �Xn
� � g�y � Y n

� �	gn��

is bounded� uniformly in y � RN �

Proof� We only proof the �rst assertion� the second one may ob�
tained with obvious modi�cations as in Theorem ���� Set ��x� t� y� �
���x����t����y� where ��� �� and �� are continuous with compact
support� Fix k � 
� by Theorem ���� the sequence

n
n�N�����

Z
R��RN

���x
�����y � y��Pn�k

�� ��
� 
�� dx� dy��
o
n��

is bounded uniformly in y � RN and converges to

�

�����N�����
pjCj

Z �

�	
����t��� � U��dt�N���� �

By the dominated convergence theorem� one thus obtains� for any �xed
i � �

lim
n��	

n�N�����
iX

k
�

Jn�k���

�
�

�����N�����
p
jCj

iX
k
�

E ��T� � k	����X
k
� �	

�
Z �

�	
����t��� � U��dt�N ���� �



Local limit theorems on some non unimodular groups ���

In the same way one has

lim
n��	

n�N�����
nX

k
n�i��

Jn�k���

�
�

�����N�����
p
jCj

iX
k
�

E ��T�� � k	�����Xk
� �	

� �� � U������N ���� �

Note that the sums
Pi

k
� E ��T� � k	����X
k
� �	 and

Pi
k
� E ��T�� �

k	����X
k
� �	 converges respectively to U������ and

R �

�	 ����t�U��dt��
To obtain the theorem it su�ces to check that

lim sup
i��	

lim sup
n��	

���n�N�����
n�iX

k
i��

Jn�k���
��� � 
 �

one has

���n�N�����

�n���X
k
i��

Jn�k���
���

� n�N�����

�n���X
k
i��

E ��T� � k	� j���X
k
� �j	

�
Z
R��RN

j���x
��j j���y � y��jPn�k

�� ��
� 
�� dx� dy��

� C���� ���

�n���X
k
i��

E ��T� � k	� j���X
k
� �j	

� n�N�����

�n� k��N�����
by Theorem ����ii�

� C���
�	X
k
i��

�

k���
�

The same upperbound holds for the term

n�N�����
n�iX

k
�n�����

Jn�k��� �
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This achieves the proof�

�� A local limit theorem for a particular class of solvable

groups�

Recall that G � Gd�N � R�� �Rd �RN with the composition law

g � g� � �a a�� a u� � u� b� b�� �

for all g � �a� u� b�� for all g� � �a�� u�� b�� � Gd�N �
The proof of Theorem ��� is closed to the one of the local limit

theorem for the a�ne group of the real line given in ��	� we just give
here the main steps of the demonstration�

Let us �rst introduce some helpfull notations� Let gn��an� un� bn��
n � �� �� � � � be independent and identically distributed random vari�
ables with distribution �� Denote by Fn the ��algebra generated by
the variables g�� g�� � � � � gn� n � �� For any n � �� set Gn

� � g� � � � gn �
�An

� � U
n
� � B

n
� �� we have An

� � a� � � �an� Un
� �

Pn
k
� a� � � �ak�� uk and

Bn
� � b� � � � �� bn� More generally� if � � m � n� set An

m � am � � �an�
Un
m �

Pn
k
m am � � �ak�� uk� B

n
m � bm � � � � � bn and set An

m � ��
Un
m � 
� Bn

m � 
 otherwise�
Let �� be the image of � by the map

g � �a� u� b� ��� �g �
��
a
�
u

a
� b
�
�

if �gn � ��an� �un��bn�� n � �� �� � � � are independent and identically dis�
tributed random variables with distribution �� on G� set �Gn

m � �gm � � � �gn
� � �An

m� �U
n
m� �B

n
m��

In order to obtain the asymptotic behaviour of the power of con�
volution ��n we use the fact that the sequence fUn

� gn�� behaves like
the maximum of the variables A�

�� � � � � A
n
� � These idea was already used

in ��	� Set A � fg � �a� u� b� � G � a � �g and consider the transition
kernel PA associated with ���A� and de�ned by

PA�g�B� �
Z
G

�Ac�B�g h���dh�

for any Borel set B 
 G and any g � G� The probabilistic interpretation
of PA is the following one� if TA � inf fn � � � Gn

� � Ag is the �rst
entrance time in A of the random walk fGn

�gn�� then

Pn
A�e�B� � P ��TA � n	  �Gn

� � B		 � for all n � � �
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In the same way� set A� � fg � G � a�g� � �g� let �PA� be the operator
associated with ����A�� and denote by �TA� the �rst entrance time in A�

of the random walk f �Gn
�gn��� one has

�Pn
A��e�B� � P �� �TA� � n	  � �Gn

� � B		 � for all n � � �

As in Section ���� we introduce the �rst time at which the random walk
fAn

�gn�� reaches its maximun on R�� � for any continuous function �
with compact support on G� we thus obtain

E ���Gn
� �	 �

nX
k
�

In�k��� �

where

In�k����

Z
G�G

�
�a�
a
�
u�u�

a
� b�b�

�
�P k
A��e� da du db�Pn�k

A �e� da� du� db�� �

We now give the main steps of the proof of Theorem ��� under hypoth�
esis G�� G� and G��

First step� Control of the central terms of the sum
Pn

k
� In�k����

We show here that

lim sup
i��	

lim sup
n��	

n�iX
k
i

In�k��� � 
 �

Without loss of generality� one may suppose that the support of � is
included in R�� � �R���d � RN � for any � � 
 there exist a constant
C � 
 and a positive function 
 with compact support on RN such that

��a� u� b� � C
a


kuk�
 
�b� �

it follows that for any ��� 	� in R�� � RN

E
h
�TA � l	��

�Al
�

�
�
u� U l

�

�
� 	 � Bl

�

�i

� C �
 E
h
�a� � �	 

h
maxfA�

�� � � � � A
l
�g �

�

a�

i
�

�Al
��



ku� U l
�k�



�	 �Bl
��
i

� C �

Z
G

E
h �Al

��



maxfA�
�� � � � � A

l
�g�



�	 � b� Bl
��
i ��da dv db�

a
 kvk�
 �
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the last inequality being a consequence of the fact that ku�U l
�k � ku�k

P�almost surely and

�fmaxfA�
������A

l
�g���a�g �

�

a�
� max fA�
�� � � � � A

l
�g�


�

By Theorem ��� one obtains

l�N����� E
h
�TA � l	��

�Al
�

�
�
u� U l

�

�
� 	 � Bl

�

�i
� C�����


 �

The same upperbound holds under hypotheses G�� G� and G� �see ���
Lemma ���	��

It readily follows that

n�N�����

�n���X
k
i

In�k��� � ��N�����

�n���X
k
i

�n� k��N�����In�k���

� C����

�n���X
k
i

E �� �TA� � k	� � �Ak
��

	

� C����

�n���X
k
i

�

k���

and so

lim sup
i��	

lim sup
n��	

n�N�����

�n���X
k
i

In�k��� � 
 �

The control of the sum
Pn�i

k
�n��� In�k��� goes along the same lines�

Second step� Convergence of the sequence

l�N����� E
h
�TA � l	��

�Al
�

�
�
u� U l

�

�
� 	 �Bl

�

�i
for any ��� u� 	� � 	
� �	� �R���d � RN �

It is the more technical part of the proof and it uses and idea due
to Afanasev ��	� Without loss of generality� one may suppose � � ��
u � 
 and 	 � 
� For any n � �� set

En ��� � n�N����� E ��TA � n	���An
� � U

n
� � B

n
� �	 �
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Fix i � N such that � � i � n�� and consider

En��� i� � n�N����� E ��TA � n	���An
� � U

i
� � An�i

� Un
n�i��� B

n
� �	 �

To obtain the claim� it su�ces to prove that

a� lim sup
i��	

lim sup
n��	

jEn���� En ��� i�j � 
�

b� for any �xed n � N � the sequence fEn��� i�gn�� converges to a
�nite limit�

Proof of convergence a�� We use the equality

Un
� � U i

� � Ai
� U

n�i
i�� �An�i

� Un
n�i�� �

without loss of generality one may suppose that � is continuously dif�
ferentiable� and so� for any � � 
 there exists C � 
 and a positive
function 
 with compact support on RN such that

j��a� u� b�� ��a� v� b�j � C a
ku� vk

�b� �
consequently

jEn���� En��� i�j
� C n�N����� E ��TA � n	� �An

� �

 �Ai

��

 kUn�i

i�� k
 
�Bn
� �	

� C n�N�����
n�iX

k
i��

E ��TA � n	� �An
� �

 �Ak��

� �
 kukk
 
�Bn
� �	 �

Note that for i � k � �n��	 one has

E ��TA � n	� �An
� �

 �Ak��

� �
 kukk
 
�Bn
� �	

� E ��TA � k � �	 
h
max fAk��

k��� � � � � A
n
k��g �

�

Ak
�

i
�

�An
� �

 �Ak��

� �
 kukk
 
�Bn
� �	

� E ��TA � k � �	� �Ak��
� �
�� a

�
��
k kukk


�maxfAk��
k��� � � � � A

n
k��g��
�� �An

k���

 
�Bn

� �	 �

By Theorem ����

�n� k��N����� E �max fAk��
k��� � � � � A

n
k��g��
�� �An

k���

 
�	 � Bn

k���	
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is bounded� uniformly in 	 � RN and so

�n� k��N�����E ��TA � n	� �An
� �

 �Ak��

� �
 kukk
 
�Bn
� �	 �

C�

k���
�

When �n��	 � k � n� i one obtains by a similar argument

k�N����� E ��TA � n	� �An
� �

 �Ak��

� �
 kukk
 
�Bn
� �	 �

C�

�n� k����
�

Finally one has

jEn���� En��� i�j � C�
�p
i
�

convergence a� follows�

Proof of convergence b�� Fix an integer i� we have

En��� i�

�

Z
G

En��� g� h�� h�� � � � � hi�P
i
A�e� dg���dh����dh�� � � ���dhi�

with

En��� g� h�� h�� � � � � hi�

� E
hh

max fAi��
i��� � � � � A

n�i
i��g �

�

a�g�

i


h
An�i
i�� � min

n �

a�g�
�

�

a�g�a�h��
� � � � �

�

a�g�a�h�� � � �a�hi�
oi

�

��a�g�An�i
i�� a�h�� � � �a�hi�� u�g� � a�g�An�i

i�� u�h� � � �hi��
Bn�i
� � b�h�� � � � �� b�hi�	 �

Using Theorem ���� one may see that� for any g� h�� � � � � hi � G� the
sequence

fn�N�����En��� g� h�� h�� � � � � hi�gn��

converges to a �nite limit� To obtain the convergence b�� we have to
use Lebesgue dominated convergence theorem and therefore� we have to
obtain an appropriate upperbound for n�N�����En��� g� h�� h�� � � � � hi��
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Using the fact that for any � � 
 there exist C � 
 and a pos�
itive continuous function 
 with compact support on RN such that
j��a� u� b�j � C a

�b�� one thus obtains

n�N�����En��� g� h�� h�� � � � � hi� � C� a�g�
��
�� a�h��


 � � �a�hi�


which allows us to use the Lebesgue dominated convergence theorem
for � small enough� convergence b� follows�

Consequently� fn�N����� In�����gn�� converges to a �nite limit�
furthermore� for any i � � and any compact set K 
 R�� � RN � the
dominated convergence theorem ensures the existence of a �nite limit
as n goes to �� for

n
n�N�����

iX
k
�

In�k���K�
o
n��

�

where

In�k���K� �

Z
G

�K�g�

�
�Z

G

�
�a�h�
a�g�

�
u�g� � u�h�

a�g�
� b�g� � b�h�

�
Pn�k
A �e� dh�

�
� �P k

A��e� dg� �

The following step shows that the indicator function �K does not dis�
turb too much the behaviour of theses integrals�

Third step� Control of the residual terms�

In the �rst step of the present proof� we have shown that� for any
� � 
 there exists C� � 
 such that

�n� k��N����� E
h
�TA � n� k	��

�An�k
�

�
�
u� Un�k

�

�
� 	 � Bn�k

�

�i
� C�����


 �

It follows that for any 
 � � � �

iX
k
�

Z
fg�G�a�g���g

�Z
G

�
�a�h�
a�g�

�
u�g� � u�h�

a�g�
� b�g� � b�h�

�
Pn�k
A �e� dh�

�
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� �P k
A��e� dg�

� C�

iX
k
�

�

�n� k��N�����
E �� �TA� � k	� � �Ak

��

	

� C�

iX
k
�

�

�n� k��N����� k���
�

On the other hand for any �xed U � 
� one has

iX
k
�

Z
fg�G�ku�g�k�Ug

�Z
G

�
�a�h�
a�g�

�
u�g��u�h�

a�g�
� b�h��b�g�

�
Pn�k
A �e� dh�

�

� �P k
A��e� dg�

� C�

U
��

iX
k
�

�

�n� k��N�����
E �� �TA� � k	� � �Ak

��

 k �Ukk
��	

� C�

U
��

iX
k
�

�

�n� k��N����� k���
�

The last inequality being guaranteed by standart estimations� �see ���
Lemma ���	 for more details��
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Harnack inequalities on a

manifold with positive or

negative Ricci curvature

Dominique Bakry and Zhongmin M� Qian

Summary� Several new Harnack estimates for positive solutions of the
heat equation on a complete Riemannian manifold with Ricci curvature
bounded below by a positive �or a negative� constant are established�
These estimates are sharp both for small time� for large time and for
large distance� and lead to new estimates for the heat kernel of a man�
ifold with Ricci curvature bounded below�

�� Introduction and main results�

The main purpose of this paper is to present several new Harnack
estimates for non�negative solutions of the heat equation on a complete
manifold with Ricci curvature bounded below by a constant which may
be positive or negative� To obtain Harnack inequalities� we �rst deduce
gradient estimates� that is upper bounds of the gradient of the logarithm
of a solution of the heat equation by a concave function of the time and
the time derivative of the same quantity� Then� by standard methods�
these bounds lead to Harnack inequalities and then to bounds on the
heat kernel�

In this context� we obtain quite strong Harnack inequalities� which
are improvements of the famous Li�Yau�s estimate in 	
�� 	��� Although

���
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our methods are similar in both cases of positive and negative lower
bound on the Ricci curvature� our results are completely new in the
positive case� and are improvements of previous results in the negative
one�

In order to state our results� we �rst introduce some basic nota�
tions� let M be a complete Riemannian manifold of dimension n� and
let � be the Laplace�Beltrami operator� Let u be a positive solution of
the heat equation

��� ��� �t�u � � � on 	�����M

and let f � logu� Denote by rf the gradient of the function f and by
ft the time derivative of f �

In ����� Yau 	��� proved a Harnack inequality via Ricci curva�
ture bounds for harmonic functions on a complete manifold� In their
paper 	
�� Li and Yau have established a sharp Harnack inequality for
parabolic harmonic functions on a complete manifold with non�negative
Ricci curvature� Namely�

�� jrf j� � ft � n

 t
� for all t � � �

They also proved the following gradient estimate for a manifold with
Ricci curvature bounded below by �K� K � �

��� jrf j� � � ft � n��

 t
�

n��K

 ��� ��
� for all t � � � � � � �

In his book 	
�� Davies improved the previous inequality under the same
assumption to the following one

��� jrf j� � �ft � n��

 t
�

n��K

� ��� ��
� for all t � �� � � � �

Recently Yau 	�� �also see Yau 	���� further established� among other
things� the following gradient estimate� if Ric � �K� K � �� then

��� jrf j� � ft �
p

nK

r
jrf j� �

n

 t
� nK �

n

 t
� for all t � � �

With the method described in Section �� it is standard to deduce from
this a Harnack inequality close to ��� �see below�� but with di�erent
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constants� In Appendix A� with the method described in this paper�
and under the same assumption� we will improve this inequality to

�
� jrf j� � ft �
p
nK

r
jrf j� �

n

 t
�
nK

�
�

n

 t
� for all t � � �

which yields a Harnack inequality essentially similar to ��� for small
time and large distance�

Let us also mention that Hamilton 	�� has obtained a Harnack
inequality for negative curvature manifolds�

The path to obtain Harnack inequalities is to �rst establish gradi�
ent estimates as ��� or ���� To begin with� let us state the main results

of this paper� To this end� we �rst introduce two functions X and eX
as follows� let K � �� n � � be two constants� Then the functions X
and eX are de�ned on ������ R by

��� X�t� Y � �

�������������������������������������������

�nK


� Y

�
p
nK

r
nK

�
� Y

�cotanh
 t

n

p
nK

r
nK

�
� Y � Y � nK

�
�

�nK


� Y

�
p
nK

r
Y � nK

�

�cotan
 t

n

p
nK

r
Y � nK

�
� Y �

nK

�
�

��� eX�t� Y � �

�������������������������������������������

nK


� Y

�
p
nK

r
Y �

nK

�

�cotanh
 t

n

p
nK

r
Y �

nK

�
� Y � �nK

�
�

nK


� Y

�
p
nK

r
�Y � nK

�

�cotan
 t

n

p
nK

r
�Y � nK

�
� Y � �nK

�
�
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respectively� Indeed� as we will see later� X and eX are solutions of
some simple di�erential equations� The key inequalities obtained in
this paper are the following gradient estimates

Theorem �� Suppose the Ricci curvature is bounded below by a con�

stant �K� K � �� then we have �

�� jrf j� � eX�t� ft�� on ft � �nK���
� For any Y� � �nK��� we have

jrf j� � �Y eX�t� Y�� �ft � Y�� � eX�t� Y�� � for all t � � �

�� There is a universal constant c � �� such that

jrf j� � eX�t� ft� � for all � � t � c

K
�

See Theorem � below for the precise value of the constant c�
As a consequence� if Ric � �K� K � �� then

�ft � n

 t
�
nK

�
� for all t � � �

which is very close to the best possible one could expect� since �n �
��K�� is the spectral gap of the space form with Ricci curvature �K�
Indeed we will prove a better but slightly more complicated estimate
than ����

Then� by standard methods� we deduce from Theorem � the fol�
lowing Harnack inequality

����
u�t� x�

u�t� s� y�
� exp

� 	�
� s

�

Z t�s

t

�
C
�

�

	�

� s�

�
� A

�

�

	�

� s�

��
d

�
�

for all t � �� s � �� x� y �M � where 	 � d�x� y� is the geodesic distance
from x to y� and

C�t� Y � � eX�t� Y �� Y

�
nK


�
p
nK

r
Y �

nK

�
cotanh

 t

n

p
nK

r
Y �

nK

�
�

A�t� Y � �
�Y C�t� Y � �C�t� Y �� Y �Y C�t� Y ��

� � �YC�t� Y �
�
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In particular� since A�t� Y � � � when Y � �� we have

����

u�t� x�

u�t� s� y�
�
�

sinh
� 

n
�t� s�

p
nK

r
	�

� s�
�
nK

�

�
sinh

� 

n
t
p
nK

r
	�

� s�
�
nK

�

�
	n��

� exp
� 	�

� s
�
nK


s
�
�

By an elementary computation� inequality ���� yields the following

���

u�t� x�

u�t� s� y�
�
� t� s

t

�n��
� exp

� �	�
p
K n s��

� s
�

p
nK

�
min f	�

p
nK sg

�
�

for all s � �� x� y � M � We will give an independent proof of this
in Section �� We have been informed by Professor S� T� Yau that he
already obtained a Harnack inequality in this context� see 	���� 	����

As usual� Harnack inequalities lead to lower bounds of the heat
kernel� Let H�t� x� y� be the heat kernel� the fundamental solution of
the heat equation ���� Then ��� implies that

H�t� x� y� � �

��� t�n��

� exp
�
� �	�

p
K n t��

� t
�
p
nK

�
min f	�

p
nK tg

�
�����

for all �t� x� y� � ������M �M � 	 � d�x� y�� See 	��� 	�� for a com�
parison theorem for heat kernels�

Notice that the leading term in ���� for small time is

�

��� t�n��
exp

�
� 	�

� t

�
�

for large time is

exp
�
� nK

�
t
�
�

for large distance is

exp
�
� 	�

� t
�
p
nK


	
�
�
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They are all very close to those best possibles we could expect�
For positive Ricci curvature manifolds� we will prove the following

gradient estimate

Theorem �� Let Ric � K�K � �� Then

�� jrf j� � X�t� ft�� on ft � nK���

� If t � �K� then jrf j� � X�t� ft� and �n�� t� � ft � nK���

�� If t � �K� then

jrf j� � X�t� ft� � on ft � Y� �

and

jrf j� � �YX�t� Y�� �ft � Y�� � X�t� Y�� � on ft � Y� �

where

Y� �
�

� �
��


�

�nK
�

�

It turns out that both jrf j� and ft are uniformally bounded for
each t � �K if Ric � K � ��

We could also deduce from this a Harnack inequality� but it takes
a more complicated form than in the negative curvature case� and we
will therefore omit it in this paper�

The main tool used in this paper is the maximum principle� which
plays a fundamental r�ole in Partial Di�erential Equations theory� see
for example 	��� Although the basic idea adopted in this paper is to
apply the maximum principle and Bochner identity to some nice test
functions� this has been developed in a series of papers by Yau 	��� 	����
	��� Cheng and Yau 	��� Li and Yau 	
� etc� �see 	�� for more references��
the main di�culty with this method relies on the fact that� for any
family of test functions� one gets di�erent kind of results� and therefore
the test functions in use are related to the results one is looking for� But
it is not always easy �and indeed quite hard in general� to device what is
the best estimate one could expect from a given di�erential inequality�
Our main contribution in this context is to develop a method which
produces the best possible estimates and to show how to construct
good test functions in order to prove the expected estimates via the
maximum principle� This method applies to a more general setting
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than the one described here� and it could be used in di�erent contexts
for more general equations�

Let us explain our main idea as following� Everything relies on the
three following equations satis�ed by jrf j� and ft

�f � ft � jrf j� �����

�e�� �t�ft � � �����

and
�e�� �t� jrf j� �  jHessf j� �  Ric �rf�rf� �

where e� � � � rf which is an elliptic operator� See Section  for
detail�

��
� comes from the Bochner identity� Therefore� if K is a lower
bound of the Ricci curvature� then we have the following inequality

���� �e�� �t� jrf j� � 

n
��f�� � K jrf j� �

Inserting ���� into ����� we end up two di�erential inequalities

����
�e�� �t� jrf j� � 

n
�jrf j� � ft�

� � K jrf j� �

�e�� �t�ft � � �

The main point of this paper is to compare �jrf j�� ft� with the solution
�X�Y � of the following system of di�erential equations

����
� �tX �



n
�X � Y �� � KX �

� �tY � � �

with the condition that X��� � �� Since Y � constant� we regard it
as a parameter� and write the solution as X � X�t� Y �� It is easy to
see that if K � �� then X�t� Y � is the function de�ned by ���� and if

K � �� then X�t� Y � � eX�t� Y � with �K in ����
In fact� we were not able to prove �and we do not think it is true�

that jrf j� � X�t� ft� everywhere� and this comes from the lack of
concavity of the curve Y �� X�t� Y �� What we show is that this
inequality holds on the most part of the curve� More precisely� our
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main result asserts that if Ric � K� then the most part of the curve
�X�t� ft�� ft� is above the curve �jrf j�� ft�� In other words� jrf j� �
X�t� ft� for most of the values of ft� and we have a linear upper bound
on the remaining part�

The paper is organised as follows� In Section  we establish gradi�
ent estimates and some consequences for manifolds with Ricci curvature
bounded below� Section � deals with the case of positive Ricci curvature
manifolds� We deduce Harnack inequalities in Section �� In Section ��
we describe several extensions to other di�usion operators� and� in the
end� we give an improved form of Yau�s gradient estimate�

The results obtained in this paper have been announced in 	��

�� Gradient estimates for complete manifolds�

The main purpose of this section is to prove Theorem �� Thus
throughout this section it will be assumed that Ric � �K� where K � �
is a constant�

Let u be a positive solution of the heat equation

��� ��� �t�u � � � on 	�����M

and let f � logu� One can easily see that

��� ��� �t� f � ���f� f� �

where ��f� f� � jrf j�� In general� if � is replaced by any sub�elliptic
di�erential operator� we may de�ne

��g� h� �
�


���hg�� h�g � g�h� � for all g� h � C��M� �

and therefore ��g� h� will stand for hrg�rhi�
Di�erentiating ��� in t� we obtain the �rst fundamental equation

�� �ft �  hrf�rfti � �tft � � �

Then� de�ne the bilinear operator �� by iterating the previous de�nition
of �

��� ���g� h� �
�


����g� h�� ��g��h�� ���g� h�� �
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for all g� h � C��M�� Using ��� we may rewrite the classical Bochner
identity as

��� ���g� h� � hHess g�Hesshi� Ric �rg�rh� �

for all g� h � C��M�� Since Ric � �K and jHess gj � ��g���n�
Bochner identity yields the following curvature�dimension inequality

��� ���g� g� � �

n
��g�� �K ��g� g� � for all g � C��M� �

This is the only form in which the Ricci curvature will appear in what
follows� Then� the fundamental remark is that� using ��� and ��� and
the previous de�nition of ��� we get another fundamental equation

�
� ���f� f� �  hrf�r��f� f�i � �t��f� f� �  ���f� f� �

For simplicity� introduce a di�erential operator� L � � � rf � �t�
Then the basic equations �� and �
� can be rewritten

��� Ljrf j� �  ���f� f� � Lft � � �

If we notice that ��� can be rewritten as

��� ��f � jrf j� � ft �

then the curvature�dimension inequality� implies that

��� L jrf j� � 

n
�jrf j� � ft�

� � K jrf j� �

We next look for a smooth function B on ������ R such that

jrf j� � ft � B�t� ft� � for all t � � �

To this end� we set F � jrf j�� ft�B�t� ft�� and G � t F � By the fact
that Lft � �� we have

LB�t� ft� � ��tB�t� ft� � � �
YB�t� ft� jrftj� �

Therefore

����

LF � L jrf j� � LB�t� ft�

� L jrf j� � � �
YB�t� ft� jrftj� � �tB�t� ft�

�  ���f� f�� � �
YB�t� ft� jrftj� � �tB�t� ft� �
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Thus if � �
YB � � �which means B is concave in Y �� then

LF � 

n
�jrf j� � ft�

� � K jrf j� � �tB�t� ft�

�


n
�F � B�� � K jrf j� � �tB�t� ft�

�


n
F � �

�

n
BF �



n
B� � K jrf j� � �tB�t� ft�����

�


n
F � �

� �

n
B � K

�
F � �tB �



n
B� � K �ft � B� ����

Hence

����

LG � �F � t LF

�  t

n
F � �

�� t

n
B � K t� �

�
F

� K t �ft �B� �
 t

n
B� � t �tB�t� ft� �

Next we specify the function B� so that

jrf j� � ft � B�t� ft� � for all t � � �

More precisely� for any Y� � �nK��� we shall produce a function B
depending on the parameter Y� for which we shall prove the above
upper bound�

To this end� consider the solution C of the di�erential equation on
the half line ����� with a parameter Y � R

���� �tC �


n
C� � K �Y � C� � � � C��� � � �

Then if Y � �nK��� we �nd that

���� C�t� Y � � eX�t� Y �� Y �
nK


�

n

 t

b�t� Y �


cotanh

b�t� Y �


�

where

��
� b�t� Y � �
� t

n

p
nK

r
Y �

nK

�
�
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It is easily seen that

���� �Y b�t� Y � �
�� t

n

�� nK


�

b�t� Y �
�

so that

�Y C �
n

� t

�
�Y b�

 �Y b

eb � �
�  b �Y b e

b

�eb � ���

�
� K t

��

b
�



b �eb � ��
�  eb

�eb � ���

�
�

Therefore

���� lim
Y��nK��

C�t� Y � �
n

 t
�
nK



and

���� lim
Y��nK��

�YC�t� Y � �
K

�
t � lim

b��
�Y C�t� Y � � � �

Moreover� for each t � �� the function Y �� C�t� Y � is concave on the
interval ��nK������

Taking derivative with respect to Y in ���� we get that

���� �t �Y C �
�

n
C�Y C � K �� � �YC� � � �

Let Y� � �nK��� and take B to be the linearization of C at Y�� i�e�

���� B�t� Y � � �YC�t� Y�� �Y � Y�� � C�t� Y�� �

Then
�tB � �t �Y C�t� Y�� �Y � Y�� � �tC�t� Y�� �

and



n
B� �



n
��YC�t� Y�� �Y � Y�� � C�t� Y����

�


n
��YC�t� Y�� �Y � Y���� �

�

n
C�t� Y�� �YC�t� Y�� �Y � Y��

�


n
C�t� Y��� �

K �Y � B� � K �Y� � C�t� Y��� � K �Y � Y�� �� � �Y C�t� Y��� �
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Therefore� by ���� and ����� we get that

��� �tB �


n
B� � K �Y �B� �



n
��YC�t� Y�� �Y � Y���� �

Now de�ne F � jrf j�� ft�B�t� ft�� where the constant Y� � �nK��
in the de�nition of the function B� Let G � t F � Then by ����� we have

LG � 

n t
G� �

��B

n
� K � �

t

�
G� t

�
�tB �



n
B� � K �ft �B�

�
�



n t
G��

� �

n
�Y C�t� Y�� �ft � Y��

�
G�

� �

n
C�t� Y��� K � �

t

�
G

�
 t

n
��YC�t� Y�� �ft � Y����

����

�


n t
�G� t �YC�t� Y�� �ft � Y���� �

� �

n
C�t� Y��� K � �

t

�
G �

However�

� t

n
C�t� Y��� K t � b�t� Y�� �

 b�t� Y��

eb�t�Y�� � �
�

and therefore by the elementary inequality

b�
 b

eb � �
�  � for all b � � �

we have

����
�

n
C�t� Y��� K � �

t
� �

t
� for all t � �� Y� � �nK

�
�

Hence by ����

���� LG � 

n t
�G� t �YC�t� Y�� �ft � Y���� �

�

t
G �

If the manifold is compact� consider a point �t�� x� at which the maxi�
mum of G on 	�� t��M is attained� then� at this point� by the maximum

principle� e��G� � �� Moreover� �G��t � � and rG � �� From these
we conclude that G � �� In this case we have

jrf j� � ft � �YC�t� Y�� �ft � Y�� � C�t� Y�� �
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In the case where the manifold M is non�compact� we will get the same
conclusion with a slight modi�cation in the arguments� Since Ricci cur�
vature is bounded below� we may use a generalised maximum principle
�see 	��� 	��� as following� replace K by any eK � K in the de�nition of
the function C� Then the same argument yields the following inequality

��
�

LG � 

n t
�G� t �YC�t� Y���� �

�

t
G�  t � eK �K� jrf j�

� �

t
G �  t � eK �K� jrf j� �

Using then the Li�Yau�s estimate ���� we may check that

G�t� �� � n


�� � �YC�t� Y���� �

nK

�
�� � �YC�t� Y����

t

�Y C�t� Y��
�

However�

lim
t��

t

�YC�t� Y��
�

�

 eK �

Therefore for any t � ��

sup
���t��M

G �� �

Thus we can use the generalised maximum principle to the function G
on 	�� t��M for any �xed t � �� if sup���t��M G � �� then we may �nd
a point t� � 	�� t� and a sequence of points fxkg �M � such that

�G�t�� xk� � �

k
� jrGj�t�� xk� � �

k
�

G��� �� � �� and therefore t� � �� Also�

�tG�t�� xk� � � � lim
k��

G�t�� xk� � sup
���t��M

G �

Hence we have

LG�t�� xk� � �

k
�



k
jrf j �

which together with ��
� implies that

�

k
� LG�t�� xk�� 

k
jrf j

� �

t�
G�xk� �  t� � eK �K� jrf j� � 

k
jrf j

� �

t�
G�xk�� �

 � eK �K� t�

�

k�
�
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Letting k ��� we get that

� � �

t�
sup

���t��M
G �

which is a contradiction to the assumption that sup���t��M G � ��

Therefore G � �� Since eK � K is arbitrary� we have proved the main
result of this section�

Theorem �� Let Ric � �K� K � �� and let f � logu� where u is a

positive solution of the heat equation� Then

jrf j� � eX�t� ft� � on ft � �nK
�

�����

jrf j� � ft � K

�
t
�
ft �

nK

�

�
�

n

 t
�
nK



� n

 t
�
nK


� on ft � �nK

�

����

and

���� jrf j� � ft � inf
Y���nK��

��YC�t� Y�� �ft � Y�� � C�t� Y��� �

Proof� We have proved ����� By taking Y� � ft and noticing thateX�t� Y � � Y �C�t� Y � we get ����� Letting Y� �� �nK�� we get �����
So we completed the proof�

Remark� In the above proof� we in fact used a �parabolic version� of
Yau�s generalised maximum principle� Indeed� if we apply Yau�s argu�
ment in 	�� to the product manifold 	�� t��M �with boundary�� and use
the Hopf�s maximum principle by Hopf �i�e� maximum principle with
boundaries�� since 	�� t� is compact� we can easily obtain the parabolic
version of the generalised maximum principle�

Corollary �� Let Ric � �K� K � �� and let f � logu� where u is a

positive solution of the heat equation� Then we have

���� �ft � �

� �


�
K t

� n
 t

�
nK

�

�
�
nK

�
� n

 t
�
nK

�
�
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Proof� For any Y� � �nK��� we have

���� �ft � C�t� Y��� Y� �Y C�t� Y��

� � �Y C�t� Y��
�

By letting Y� �� �nK��� we get the conclusion�

We note that

n

 t
� �

� �


�
K t

� n
 t

�
nK

�

�
�
nK

�
�

that is� the upper bound of �ft would not be better than n�� t� for
negative curvature manifolds� However one would expect that the best
upper bound of �ft should be n�� t� � �n� ��K��� as �n� ��K�� is
the spectral gap of the heat semi�group of the constant curvature space
form with Ricci curvature �K� But we can see that

n

 t
�

�n� ��K

�
� �

� �


�
K t

� n
 t

�
nK

�

�
�
nK

�

if and only if t � �n � ����K�� Therefore� if the dimension of M is
bigger than �� then our upper bound is even better than the expected
one� n�� t� � �n� ��K��� within the time range ��� �n� ����K���

Corollary �� Let Ric � �K� K � �� and let H�t� x� y� be the heat

kernel� Then

��� H�t� x� x� � �

��� t�n��

�
� �



�
K t
�n�	

e�nKt�� �

for all t � �� x �M �

Proof� By Corollary �� we have

��t log ��� t�n��H � ��t logH � n

 t

� �

� �


�
K t

� n
 t

�
nK

�

�
� n

 t
�
nK

�

� �nK
�

�

�� � K t�
�
nK

�
�
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Using the fact that

lim
t��

��� t�n��H�t� x� x� � � �

and integrating both sides over 	�� t�� we get the conclusion�

Corollary �� Let Ric � �K� K � �� Then

���� jrf j��ft �
p
nK

r
ft �

nK

�
�

n

 t
�
nK


� on ft � �nK

�
�

and

���� jrf j� � ft � K

�
t
�
ft �

nK

�

�
�

n

 t
�
nK


�

Proof� We only need to prove the �rst inequality� Since

eX�t� Y � � Y �
nK


�

n

 t

�
� �

b



�
� Y �

n

 t
�
nK


�
p
nK

r
Y �

nK

�
�

���� follows immediately from Theorem ��

By estimate ����� we have

�ft � n

 t
�
nK

�
�

With this estimate� we can prove a better gradient estimate�
Indeed� let C be the solution of the di�erential equation ���� on

the half line ����� with a parameter Y � �nK�� and C��� � ��
Then

���� C�t� Y � �
nK


�

n

 t

b�t� Y �


cotan

b�t� Y �



with

b�t� Y � �
�t

n

p
nK

r
�Y � nK

�
�
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Note that the function C� de�ned by ���� for Y � �nK�� and by ����
for Y � �nK�� and

C
�
t��nK

�

�
�
nK


�

n

 t
�

is a smooth function on ����� � R� However� Y �� C�t� Y � is not
concave on �����nK����

It is easy to see that eX�t� Y � � Y � C�t� Y � for all Y � R�
Up to now� we restricted our attention to the part Y � �nK�� of

the curve Y �� C�t� Y �� In what follows� we are going to improve the
previous estimate for any value of Y provided that the time t is not too
big�

Let cK be the positive constant

��

�

�

K
�

Then� we have

Theorem �� Let Ric � �K� K � �� and let f � logu� where u is a

positive solution of the heat equation� Then for any � � t � cK �

��
� jrf j� � eX�t� ft� �

In fact� �x any � � t � cK � and let s � ��� t�� Let

Y� �
h
� n

 t
� nK

�
��nK

�

�
�

and let
B�s� Y � � �YC�s� Y�� �Y � Y�� � C�s� Y�� �

De�ne a test function as usual� F � jrf j�� fs�B�s� fs� and G � sF �
Then the same argument as above yields that

���� LG � 

n s
�G�s �YC�s� Y�� �fs�Y�����

� �

n
C�s� Y���K��

s

�
G �

Notice that

� s

n
C�s� Y��� K s � b�s� Y�� cotan

b�s� Y��


�
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as Y� � �nK��� where

b�s� Y��


�

 s

n

p
nK

r
�Y� � nK

�
�

Since s � t � cK � we have

b�s� Y��


�  s

n

p
nK

r
n

 t
�  t

n

p
nK

r
n

 t
� �

�
�

Therefore� for any s � t � cK � and

Y� �
h
� n

 t
� nK

�
��nK

�

�
�

we have

b�s� Y�� cotan
b�s� Y��


�  cos

b�s� Y��


�
p

 �

Hence� for those s and Y�� we have

LG � 

n s
�G� s �YC�s� Y�� �fs � Y���� �

p
� �

s
G �

and by applying the maximum principle to G on 	�� t��M � we conclude
that

���� jrf j� � fs � �Y C�s� Y�� �fs � Y�� � C�s� Y�� �

for any � � s � t � cK and

Y� �
h
� n

 t
� nK

�
��nK

�

�
�

In particular if ft � �nK��� t � cK � since ft � �n�� t�� nK��� we
can take Y� � ft in ���� to get that

jrf j� � ft � C�t� ft� �

Thus we completed the proof�

By the above proof� we also proved in fact the following
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Theorem �� Let Ric � �K� K � �� and let f � logu� where u is a

positive solution of the heat equation� Then for any Y� � �nK���

���� jrf j� � ft � �YC�t� Y�� �ft � Y�� � C�t� Y�� �

for any

t � � n

�
p
nK

r
�Y� � nK

�

�

Corollary �� Let Ric � �K� K � �� and let f � logu� where u is a

positive solution of the heat equation� Then

�� If � � t � cK� then ft � Y
�t�� where Y
�t� is the unique solution

of the equation

Y � C�t� Y � � � � Y � � �

� For any t � ��

�ft � C�t� Zt�� Zt �Y C�t� Zt�

� � �YC�t� Zt�
�

where

�Zt �
nK

�
�
��


�

n

K t�
�

�� Positive curvature manifold�

The goal of this section is to prove Theorem � The method fol�
lows exactly the same lines as in the previous section� although the
conclusions are quite di�erent�

Let M be a Riemannian manifold with dimension n� such that
Ric � K� where K is a positive constant�

Let f � logu� and u be a positive solution of the heat equation�
In this case we have Li�Yau�s estimate

�
�� jrf j� � ft � n

 t
�

Let U�t� Y � be the solution of the di�erential equation on the half line
����� with a parameter Y

�
�� �tU �


n
U� � K �Y � U� � � � U��� � � �
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If Y � nK��� then

�
� U�t� Y � � X�t� Y �� Y � �nK


�
n

 t

h�t� Y �


cotanh

h�t� Y �


�

with

h�t� Y � �
� t

n

p
nK

r
nK

�
� Y �

If Y � nK��� then

U�t� Y � � X�t� Y �� Y � �nK


�
n

 t

h�t� Y �


cotan

h�t� Y �



with

h�t� Y � �
� t

n

p
nK

r
Y � nK

�
�

Therefore

lim
Y�nK��

U�t� Y � �
n

 t
� nK


�

and

lim
Y�nK��

�Y U�t� Y � � �K t

�
�

Moreover� U is a smooth function on ����� � R� and for any t � ��
the function Y �� U�t� Y � is concave on ���� nK���� But it is not
concave on �nK������

For any Y� � nK��� we de�ne a test function G � t F � F �
jrf j� � ft � B�t� ft�� where

B�t� Y � � �Y U�t� Y�� �Y � Y�� � U�t� Y�� �

Then by Bochner inequality� we get that

LG � 

n t
G� �

��B

n
� K � �

t

�
G� t

�
�tB �



n
B� � K �ft � B�

�

�


n t
�G � t �Y U�t� Y�� �ft � Y���� �

� �

n
U�t� Y�� � K � �

t

�
G �

�
��

By the fact that

�

n
U�t� Y�� � K � �

t
� �

t
� for all Y� �

nK

�
� t � � �
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we conclude by the maximum principle that G � �� Therefore we have

Theorem �� Let Ric � K � �� and let f � logu� where u is a positive

solution of the heat equation� Then

�
�� jrf j� � ft � inf
Y��nK��

��Y U�t� Y�� �ft � Y�� � U�t� Y��� �

for any t � �� In particular� we have

�
�� jrf j� � X�t� ft� � on ft � nK

�
�

and

�

� jrf j� � ft � 

�
K t

�nK
�

� ft
�

�
n

 t
� nK


�

De�ne a function V �t� Y � by

V �t� Y � � X�t� Y �

� �nK


� Y

�
p
nK

r
nK

�
� Y cotanh

 t

n

p
nK

r
nK

�
� Y �

when Y � nK��� and

V �t� Y � � �nK


� Y � K t

�

�
Y � nK

�

�
�

when Y � nK��� Then we can rewrite the estimates in Theorem 
 to
be

�
�� jrf j� � V �t� ft� � for all t � � �

It is easily seen that there is a unique zero point of V �t� Y � in ���� ��
for each t � �� denoted it by Y
�t�� Then by the fact that jrf j� � ��
we have ft � Y
�t��

If n�� t�� nK�� � �� that is� if t � �K� then there is a unique
zero point of V �t� Y � in ��� nK���� denoted by Y��t�� and again by the
fact that jrf j� � �� the estimate �
�� yields that ft � Y��t��
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If n�� t�� nK�� � � and �K t�� � � � �� that is� if ���K� �
t � �K� then we can see that the unique zero point of V �t� Y � in �����
is

nK

�
�
�K t

�
� �

��
� n
 t

� nK

�

�
and by the same reasoning as the above� we have

ft � nK

�
�

�
K t

�
� �

� n
 t

� nK

�

�
�

In these two cases� that is� if t � ���K�� there is a unique maximum
value of V �t� Y �� attending at some point in �Y
�t�� nK���� which is
denoted by V��t�� Then by �
��� we have jrf j� � V��t��

Thus we have proved the following

Theorem 	� Let Ric � K � �� and let f � logu� where u is a positive

solution of the heat equation� Then

Y
�t� � ft � Y��t� � nK

�
� for all t �



K
��
��

Y
�t� � ft � nK

�
�

�
K t

�
� �

� n
 t

� nK

�

�
� for all t �

�

K
��
��

and

���� jrf j� � V��t� � for all t �
�

K
�

Now let us estimate Y
�t�� To this end� let eU be the solution of the
di�erential equation

�t eU �


n
eU� �  eK �Y � eU� � � � eU��� � � �

Then eU is given by the formula as for U instead of K by eK�
Let W � t �U � eU�� Then for any Y � nK��� we have

��tW �


n t
W � �

� �

n
U � K � �

t

�
W �  �K � eK� �Y � eU� t

� 

n t
W � �

�

t
W �  �K � eK� �Y � eU� t �
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In particular� if K � eK � �� then eU � n�� t�� and

��tW � 

n t
W � �

�

t
W � K

�
Y �

n

 t

�
t �

Applying the maximum principle to W on 	�� t� � R for any � � t �
��n��Y �� 	 �� we conclude that W � � for any t � ��n��Y � 	 ��
Therefore we have proved the following

Proposition �� If K � �� then for any Y� t � � such that Y � nK���
Y � n�� t� � �� we have

U�t� Y � � n

 t
�

As a consequence� we have

Y
�t� � � n

 t
� for all t � � �

Our next goal is to bound jrf j� � ft for small time t�

Theorem 
� Let Ric � K � �� and let f � logu� where u is a positive

solution of the heat equation� Then for any Y� � nK��� we have

���� jrf j� � ft � �Y U�t� Y�� �ft � Y�� � U�t� Y�� �

for

� � t � n�

�
p
nK

r
Y� � nK

�

�

Proof� Let G � t F � F � jrf j� � ft �B�t� ft�� where

B�t� Y � � �Y U�t� Y�� �Y � Y�� � U�t� Y�� �

Then by �
��� we have

LG � 

n t
�G� t �Y U�t� Y�� �ft � Y���� �

� �

n
U�t� Y�� � K � �

t

�
G �

However� when Y� � nK�� and

t � n�

�
p
nK

r
Y� � nK

�

�
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we have

� t

n
U�t� Y�� � K t

� h cotan
h



�
� t

n

p
nK

r
Y� � nK

�
cotanh

 t

n

p
nK

r
Y� � nK

�

�  cos
 t

n

p
nK

r
Y� � nK

�

�  cos
�

�

�
p

 �

Therefore

LG �
p

� �

t
G �

and by the maximum principle� we get the conclusion�

Corollary �� Let

Y� �
�

� �
��


�

�nK
�

�

Then for any � � t � �K� we have

��� jrf j� � ft � U�t� ft� � on ft � Y� �

and

���� jrf j� � ft � �Y U�t� Y�� �ft � Y�� � U�t� Y�� �

Therefore� if

E�t� Y � � X�t� Y � � Y � U�t� Y � � if Y � Y� �

and

E�t� Y � � �Y U�t� Y�� �Y � Y�� � U�t� Y�� � Y � if Y � Y� �
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then

���� jrf j� � E�t� ft� � for all t � 

K
�

where Y� is de�ned in Corollary ��
Putting all discussions together� we have the following

Theorem �� Let Ric � K � �� and let f � logu� where u is a positive

solution of the heat equation� Then we have the following conclusions�

�� If t � �K� then jrf j� � X�t� ft� and �n�� t� � ft � nK���

� If t � �K� then we have

jrf j� � X�t� ft� � on ft � Y� �

and

jrf j� � ft � �Y U�t� Y�� �ft � Y�� � U�t� Y�� � on ft � Y� �

where

Y� �
�

� �
��


�

�nK
�

�

�� Harnack inequalities�

In this section we �rst show how to deduce a Harnack inequality
from a gradient estimate� although it is very standard� see 	��� Then
we prove the main Harnack estimates�

The link between Harnack inequalities and gradient estimates is
given in the following

Proposition �� Let M be a complete Riemannian manifold� and let

f � logu� where u is a positive solution of the heat equation� Suppose

that

���� jrf j� � ��t� ft� � for all t � � �

where � � ������ R �� R is a continuous function� then

��
�
u�t� x�

u�t� s� y�
� exp

� Z t�s

t

K
�

�
	

s

�
d

�
�
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where 	 is the geodesic distance between x and y� and

K�t� �� � sup
fY ���t�Y ���g



�
p
��t� Y �� Y

�
�

Proof� The proof of this proposition is straightforward� Let  be a
minimal geodesic joining x and y� so that ��� � y and ��� � x� If
	 � d�x� y�� then j  j � 	� De�ne

p�
� � ��
�� ��� 
� t� � t
 
� � t� � t� s � t
 � t �

Then p��� � �y� t�� and p��� � �x� t
�� Set ��
� � f�p�
��� It is clear
that

f�t
� x�� f�t�� y� � ����� ���� �

Z 


�

 ��
� d
 �

Z 


�

�hrf�  i� s ft� d
 �

with t � ��� 
� t� � t
 
� We end up with

f�t
� x�� f�t�� y� �
Z 


�

�	 jrf j � s ft� d


�
Z s

�

�	
s
jrf j � ft

�
d


�
Z s

�

K
�

�
	

s

�
d
 �

From this result and the previous gradient estimates� we may now
prove Harnack inequalities� we shall �rst establish the simplest one� for
which the computations are easy� it follows from the gradient estimate
�����

Theorem ��� Let Ric � �K� K � �� and let u be a positive solution

of the heat equation� Then

u�t� x�

u�t� s� y�
�
� t � s

t

�n��
� exp

� �	�
p
nK s��

� s
�

p
nK


min

n
�
p

��� 	�

p
nK


s
o�

�����

for all s � �� t � �� x� y �M � where 	 � d�x� y��
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Proof� Let f � logu� and � � � be �xed�
If ft � �nK��� then the gradient estimate ���� yields that

���� jrf j� �
�
 �

r
nK

�

��
�

n

 t
�

where  �
p
ft � nK��� so that

�ft �
nK

�
� � �

Denote by

u �

s�
 �

r
nK

�

��
�

n

 t
� � �

Then jrf j � u and

�ft �
nK

�
�
�r

u� � n

 t
�
r
nK

�

��
� �u� �

n

 t
�
p
nK

r
u� � n

 t

� �u� �
n

 t
�
p
nK u �

Hence in this case we have

���� � jrf j � ft � ���
p
nK �u� u� �

n

 t
� ���

p
nK ��

�
�

n

 t
�

If ft � �nK��� then on one hand the estimate ���� implies that

�ft � �jrf j� �
n

 t
�
nK


�

so that

����

� jrf j � ft � ��

�
�

n

 t
�
nK



�
���

p
nK ��

�
�

n

 t
�
nK

�
�
p
nK


�
 �
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On other hand� by the estimate ����� we have

jrf j� � ft � K t

�

�
ft �

nK

�

�
�

n

 t
�
nK


�

Therefore

� jrf j � ft � j�rf j � �

� �
K

�
t
jrf j�

�
�

� �
K

�
t

� n
 t

�
nK

�

�
�
nK

�

� ��

�
�

�
�� �r

� �
K

�
t

	
� jrf j

�
�

� �
K

�
t

� n
 t

�
nK

�

�
�
nK

�

� ��

�
�

�
�� �r

� �
K

�
t

	r
n

 t
�
nK


�

�
n

 t
�
nK

�
� nK

�

�

� �
K

�
t

� ��

�
�

K

�
t

r
n

 t
�
nK

r
� �

K

�
t
�

� �

r
� �

K

�
t
� � �

n

 t
�
nK

�

� ��

�
�

r
nK


� �

n

 t
�
nK

�

�
���

p
nK ��

�
�

n

 t
�

p
� �



p
nK � �

Hence� if ft � nK�� � �� then we have

����

� jrf j � ft � ���
p
nK ��

�
�

n

 t

�

p
nK


min

n
�
p

� ����

p
nK



o
�
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Therefore� by ���� and ����� we always have the following estimate

���

� jrf j � ft � ���
p
nK ��

�
�

n

 t

�

p
nK


min

n
�
p

� ����

p
nK



o
�

for any � � ��
Using now the previous proposition� we get

f�t
� x�� f�t�� y�

�
Z 


�

� �	�
p
nK s��

� s
�
n

 t
s�

p
nK


min

n
�
p

��� 	�

p
nK


s
o�

d
 �

which yields the Harnack inequality�

Remark� As we pointed out in the introduction� S� T� Yau mentioned
to us that he obtained a similar Harnack inequality�

Now we turn to prove the main Harnack estimate� Let Ric � �K
for some constant K � �� We have seen that the main point is to
estimate � jrf j � ft for � � ��

For any Y� � �nK��� we have

jrf j� � ft � C�t� Y�� � �Y C�t� Y�� �ft � Y�� �

and therefore

�ft � � jrf j�
� � �Y C�t� Y��

�
C�t� Y��� Y� �YC�t� Y��

� � �YC�t� Y��
�

Hence for any � � �� we have

� jrf j � ft � � �

� � �YC�t� Y��
jrf j��� jrf j�C�t� Y��� Y�C�t� Y��

� � �Y C�t� Y��

� ��

�
�� � �Y C�t� Y��� �

C�t� Y��� Y� �Y C�t� Y��

� � �Y C�t� Y��

�
��

�
�
�
�YC�t� Y��

���

�
� Y�

�
� C�t� Y��

�
����

� �Y C�t� Y��

� � �Y C�t� Y��
�C�t� Y�� � �YC�t� Y�� ��� Y��� �
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Letting Y� � ��� in ����� we get that

���� � jrf j � ft � ��

�
� C

�
t�
��

�

�
�A

�
t�
��

�

�
�

where

A�t� Y � �
�Y C�t� Y � �C�t� Y �� Y �Y C�t� Y ��

� � �YC�t� Y �
�

Notice that A�t� Y � � � when Y � �� Therefore we have proved the
following

Theorem ��� Let Ric � �K� K � �� and let u be a positive solution

of the heat equation� Then

����
u�t� x�

u�t� s� y�
� exp

� 	�
� s

�

Z t�s

t

�
C
�

�

	�

� s�

�
� A

�

�

	�

� s�

��
d

�
�

for any t � �� s � � and x� y � M � where 	 is the geodesic distance

between x and y�

Remark� Although we have the simple fact that

C�t� Y � �
p
nK

r
Y �

nK

�
�

n

 t
�
nK


�

for any Y � �nK��� however� unlike C�t� Y � whose linearization at any
point Y � �nK�� is an upper bound of jrf j�� ft� the linearization of

p
nK

r
Y �

nK

�
�
nK


�

n

 t

at some points may not be an upper bound of jrf j� � ft� In this
sense� therefore� the analysis via C�t� Y � is even simpler and yields
much stronger conclusions� This is also the reason why we give an
independent proof of Theorem ���
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Since

C�t� Y � �
nK


�

n

 t

b�t� Y �


cotanh

b�t� Y �



�
nK


�
p
nK

r
Y �

nK

�
cotanh

� t

n

p
nK

r
Y �

nK

�

�
�

Z t�s

t

C�
� Y � d
 �
nK


s�

n



Z ���n��t�s�
p
nK
p
Y�nK��

���n�t
p
nK
p
Y�nK��

cotanh
 d


�
nK


s�

n


log

�
sinh



n
�t� s�

p
nK

r
Y �

nK

�

sinh


n
t
p
nK

r
Y �

nK

�

	
�

so that we have the following

Corollary �� Let Ric � �K� K � �� and let u be a positive solution

of the heat equation� Then

u�t� x�

u�t� s� y�

�
�

sinh
� 

n
�t� s�

p
nK

r
	�

� s�
�
nK

�

�
sinh

� 

n
t
p
nK

r
	�

� s�
�
nK

�

�
	n��

E�	� s� t� �

��
�

where

E�	� s� t� � exp
� 	�

� s
�
nK


s�

Z t�s

t

A
�

�

	�

� s�

�
d

�
�

Applying Corollary 
 to the heat kernel we have

H�t� x� y� �
� 

n

p
nK

r
	�

� t�
�
nK

�

�� sinh
� t

n

p
nK

r
	�

� t�
�
nK

�

�
	n��

E�	� t� ���


�
�

��� t�n��

� r
K

n

p
	� � nK t�

sinh
�rK

n

p
	� � nK t�

�
	n��

E�	� t� ���
 �����
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where

E�	� t� ���
 � exp
�
� 	�

� t
� nK


t�

Z t

�

A
�

�

	�

� t�

�
d

�
�

Remark� Proposition  together with the gradient estimates for the
positive Ricci curvature manifolds yields a Harnack inequality� How�
ever� its form is quite complicated� Since the upper bound function
��t� Y � is in general nonlinear � we can improve the Harnack inequal�
ity in Proposition  by varying the time speed� that is� replacing the
straight line joining t and t � s by a curve� Therefore we decided to
write down the explicit Harnack inequalities for positive Ricci curvature
manifolds together with the compact manifold case in a separate paper�

�� Extensions�

The same arguments in previous sections can be applied to the
case when the manifold M with convex boundary �M � the second fun�
damental form � of the boundary �M is nonnegative� This is because
of the fact that if �u��� � � on the boundary� where � denotes the
pointed out normal vector �eld� then

�jruj�
��

� �� �ru�ru� �

so that we can use the Hopf maximum principle when � � �� We only
write down a theorem in this case�

Theorem ��� Let M be a complete Riemannian manifold with a convex

boundary �M � and let u be a positive solution of the heat equation

��� �t�u � � � on 	�����M �

��u � � � on ������ �M �

Let f � log u� Then

���� jrf j� � ft � C�t� ft� � on ft � �nK
�

�

and

jrf j� � ft � �YC�t� Y�� �ft � Y�� � C�t� Y�� �
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for all t � �� Y� � �nK���

There is a further generalisation of our gradient estimates and Har�
nack inequalities to a general elliptic operator� We only state a result�

Let M be a complete manifold �without or with a convex bound�
ary�� and let �B � ��B be an elliptic operator� where B is a C��vector
�eld� Assume that �B satis�es a curvature�dimension inequality �see
	���

���g� g� � �

m
��Bg�� �K ��g� g� � for all g � C��M� �

for some constants m � � and K � �� where by de�nition ��f� g� �
hrf�rgi� and

���f� g� �
�


��B�fg�� ���Bf� g�� ��f��B g�� �

This condition is satis�ed if and only if

Ric�rs
B �

�

m� n
B 
 B � �K �

where m � n� n � dimM � Ric denotes the Ricci curvature and

rs
B��� �� �

�


�hr�B� �i� hr	B� �i� � for all �� � � TM �

If f � logu� u is a positive solution of the heat equation

��B � �t�u � � � on 	�����M �

�in the case that the boundary �M �� �� we further assume that u
satis�es the Neumann boundary condition�� then

jrf j� � ft � C�t� ft� � on ft � �mK

�
�

and

jrf j� � ft � �YC�t� Y�� �ft � Y�� � C�t� Y�� � for all Y� � �mK

�
�

where C is the solution of the di�erential equation

�tC �


m
C� � K �Y � C� � � � C��� � � �
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�� Appendix�

The goal of this appendix is to give a proof of Yau�s estimate �
��
We will use the same notations as in Section �

Let F � jrf j��ft�Q�t� jrf j�� for some positive function Q which
will be given later� and G � t F �

It is easily seen that

LF � ��� �XQ�L jrf j� � �tQ� � �
XQ jrjrf j�j�

�  ��� �XQ� ���f� f�� � �
XQ jrjrf j�j� � �tQ �

and therefore if � �
XQ � �� �� �XQ � �� then we have

LG � �F �  t ��� �XQ� ���f� f�� t ��XQ jrjrf j�j� � t �tQ

� �F �  t ��� �XQ�
� �

n
�jrf j� � ft�

� �K jrf j�
�

� t �tQ �

However jrf j� � ft � F �Q� so that

LG � �F �  t ��� �XQ�
� �

n
�F �Q�� �K jrf j�

�
� t �tQ

�  t ��� �XQ�
F �

n
�
�
� � �  t ��� �XQ�

Q

n

�
F

�  t ��� �XQ�
�Q�

n
�K jrf j�

�
� t �tQ �

Thus� if

� �
XQ � � � lim

t��
tQ�t�X� � � �����

� tQ

n
��� �XQ� � � � �� �XQ � � �����

and

���� �tQ�  ��� �XQ�
�Q�

n
�KX

�
� � �

for all t � �� X � �� then� if the manifold is compact�

��� jrf j� � ft � Q�t� jrf j�� � for all t � � �
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Theorem ��� Let Ric � �K for some non�negative constant K� and

let u be a positive solution of the heat equation and f � logu� Then

���� jrf j� � ft �
p
nK

r
jrf j� �

n

 t
�
nK

�
�

n

 t
�

Proof� For simplicity� let a � n�� t� � nK��� Then

Q�t�X� � m
p
X � a�

n

 t
� m �

p
nK �

Therefore
� �
XQ � � m

� �X � a�
p
X � a

� � �

and

�tQ�  ��� �XQ�
�Q�

n
�KX

�
�

m
p
X � a

t
� m�

t
� nm

� t�
p
X � a

� 
�

�� m


p
X � a

� a
n

� m

t

�
�
p
a�m�� n

� t
p
a

�
�
m

t

� � a�m�


p
a� m

� n

� t
p
a

�
�
m

t

� n

t �
p
a� m�

� n

�
p
a t

�
� m

t

� n

t ��
p
a�
� n

�
p
a t

�
� � �

Thus condition ���� is satis�ed�
Let us now check the condition ����� It is easily seen that

�Q

n
��� �XQ� �

�m

n

�p
X � a� m



�
�

�

t

�
� mp

X � a

�
� �m

n

�r n

 t
�
nK

�
�
p
nK



�
�

�

t

�
� mr

n

 t
�
nK

�

	
�
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Therefore� when n�� t� � �nK���

� mr
n

 t
�
nK

�

� �

so that
�Q

n
��� �XQ� � �

t
�

and when n�� t� � �nK���

�Q

n
��� �XQ� � m

t

�r
n

 t
�
nK

�
�

p
nK



� �

� t
�

�

t
�

Hence condition ���� is satis�ed� Therefore we proved Theorem �� for
compact manifolds� If the manifold is non�compact� we may use the
generalised maximum principle to go through the proof�
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Parabolic Harnack inequality

and estimates of Markov

chains on graphs

Thierry Delmotte

Abstract� On a graph� we give a characterization of a parabolic Har�
nack inequality and Gaussian estimates for reversible Markov chains by
geometric properties �volume regularity and Poincar�e inequality��

�� Introduction�

Consider the standard random walk with kernel pn�x� y� on a graph
� with polynomial volume growth� Under which conditions does one
have the following Gaussian estimates	

c

V �x�
p
n�

e�Cd�x�y�
��n � pn�x� y� � C

V �x�
p
n�

e�cd�x�y�
��n �

where V �x� n� is the cardinal of the ball of center x and radius n� Note

rst that pn�x� y� may be null for d�x� y� � n or for d�x� y� �� n �mod ���
Thus we will consider only d�x� y� � n and graphs where all vertices are
loops� With these precisions� the Gaussian estimates were proved when
� is a group in ���� They were also proved for linear volume growth
in ��� and it was there conjectured that they were true for polynomial
growth under an isoperimetric assumption such as Poincar�e inequality�
Indeed in the continuous setting of Riemannian manifolds� they were

���
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proved 
rst for non�negative Ricci curvature in ��� and then under
Poincar�e inequality assumption in ���� ����� All these proofs are based
on a parabolic Harnack inequality and ���� shows that the Poincar�e
inequality is the good isoperimetric assumption�

The aim of this paper� which is announced in ���� is to prove
the conjecture in ��� and more precisely to give a characterization of
the parabolic Harnack inequality or the Gaussian estimates by geomet�
ric properties �volume regularity and Poincar�e inequality� which is the
discrete counterpart of the main result in ����� A precise statement is
proposed in Section �� after some de
nitions� The main part� the proof
of the Harnack inequality� is an application of J� Moser�s method ����
����� ����� His approach is presented on Euclidian spaces Rn but shows
clearly the contribution of Poincar�e and Sobolev inequalities� That�s
why it has been adapted to many di�erent settings�

As far as graphs are concerned� elliptic versions �without the time
variable� of the Harnack inequality have been proved in ���� with a
special isoperimetric assumption and in ���� ���� ���� by J� Moser�s iter�
ative method with Poincar�e inequality� The discretization of the space
raised some technical problems but the proof could go through� It is
much more intricate to deal with both discretizations �space and time��
especially to obtain Cacciopoli inequalities� Section �� is an attempt to
show these di�culties and their origin� Because of these criss�crossing
discretizations di�culties� we have tried to prove a continuous�time
parabolic Harnack inequality on graphs and this raised only solvable
technical problems like the elliptic version�

One application of the Harnack inequality is another proof of H�ol�
der regularity �see Section ��� for solutions of the elliptic�parabolic
equation �theorem of J� Nash ������ Another application is that it yields
Gaussian estimates� The study of these estimates in the mixed setting
�discrete geometry� continuous time� in ���� ���� has been helpful because
at 
rst we only prove the Harnack inequality in this setting�

At this Gaussian estimates step� it is possible to deduce discrete�
time results from the continuous�time ones� This is the crucial point of
this paper because all other steps are more or less adaptations of known
technics which are fully reviewed in ����� This strategy �to work on the
continuous�time setting and to compare with the discrete�time setting�
is also employed in ��� Section ����� One side of the comparison is
stated in Theorem ��� and may be used again� The other side will
depend closely on the problem considered�

To deduce Gaussian estimates from the Harnack inequality is the
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classical �chronological after J� Moser�s work� way to introduce this
theory� The reverse order based on J� Nash�s ideas ���� and completed
in �� is also useful here because our discrete�time Gaussian estimates
yield the discrete�time Harnack inequality� which is 
nally proven after
a return trip to Gaussian estimates�

Let us note that we aimed at not using any algebraic structure
�and we get an equivalence� which proves that this structure plays no
role in fact�� Similarly� the authors of ��� tried to extend related results
to a more general class than Cayley graphs �strongly convex subgraphs
of homogeneous graphs� and in ���� some estimates are obtained still on
the particular graphs Zn �with a continuous time� but for non�uniform
transitions�

���� The geometric setting�

Let � be an in
nite set and �xy � �yx � � a symmetric weight on
���� It induces a graph structure if we call x and y neighbours �x � y�
when �xy �� � �note that loops are allowed�� We will assume that this
graph is connected and locally uniformly 
nite �this means there exists
N � such that for all x � �� �fy � y � xg � N and it is implied by
the geometric conditions �see below� DV �C�� or ����� Vertices are
weighted by m�x� �

P
y�x �xy� The graph is endowed with its natural

metric �the smallest number of edges of a path between two points��
We de
ne balls �for r real� B�x� r� � fy � d�x� y� � rg and the volume
of a subset A of �� V �A� �

P
x�Am�x�� We will write V �x� r� for

V �B�x� r���
We shall consider the following geometric conditions�

De�nition ���� The weighted graph ��� �� satis�es the volume regu�

larity �or doubling volume property� DV �C�� if

V �x� � r� � C� V �x� r� � for all x � � � for all r � R� �

This implies for r � s that �the square brackets denote the integer
part�

V �x� r� � V �x� ��log �r�s�� log ���� s�

� C�C
log �r�s��log �
� V �x� s�

� C�

�r
s

�logC�� log �

V �x� s� �
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De�nition ���� The weighted graph ��� �� satis�es the Poincar�e in�

equality P �C�� ifX
x�B�x��r�

m�x� jf�x�	 fBj� � C� r
�

X
x�y�B�x���r�

�xy �f�y�	 f�x��� �

for all f � R� � for all x	 � �� for all r � R� � where

fB �


V �x	� r�

X
x�B�x��r�

m�x� f�x� �

Some methods to obtain this Poincar�e inequality on a graph are
proposed in ����

De�nition ���� Let � � �� ��� �� satis�es ���� if

x � y implies �xy � �m�x� � for all x � � � x � x �

Two assertions are contained in this de
nition� The fact that
�xy �� � implies �xy � �m�x� is a local ellipticity property �it may
be understood as a local volume regularity if we see the graph as a net�
work� It implies that the graph is locally uniformly 
nite with N � ��
�so does also DV �C�� with N � C�

� �� Only this 
rst assertion is needed
for continuous�time results �such as Theorem ���� The second asser�
tion is that �xx � �m�x� �or p�x� x� � � with the notations of next
section�� It will be used in Section ��� to compare the discrete�time and
continuous�time Markov kernels� This condition appears in ��� where
the authors prove that it implies the analyticity of the Markov operator�
This fact is used for instance in �� � to obtain temporal regularity�

If one considers a weighted graph ��� �� which satis
es only the

rst assertion� for instance the standard random walk on Z ��mn � 
if jm 	 nj � � �mn � � otherwise�� one can study the graph ��� �����
where

����xy �
X
z

�xz �zy
m�z�

�

With the notations of next section� this gives the iterated kernel

p����x� y� � p��x� y� and m����x� � m�x� �
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The point is that

����xx �
X
z

��xz�
�

m�z�
�
X
z�x

��xz � �m�x� �

Thus ��� ����� satis
es the complete assumption ������ Indeed� if

�
���
xy �� �� there exists z	 such that �xz� �� � and �z�y �� � and

����xy �
�xz� �z�y
m�z	�

� ��xz� � ��m�x� �

To extract afterwards from the results for ��� ����� some consequences
for ��� ��� we must be careful that ��� ����� may not be connected �see
the standard random walk on Z��

���� Markov chains and parabolic equations�

To the weighted graph we associate discrete�time and continuous�
time reversible Markov kernels� Set p�x� y� � �xy�m�x�� the discrete
kernel pn�x� y� is de
ned by

���

�
p	�x� z� � ��x� z� �

pn���x� z� �
P

y p�x� y� pn�y� z� �

This kernel is not symmetric but

pn�x� y�

m�y�
�

pn�y� x�

m�x�
�

We keep this notation which represents the probability to go from x to
y in n steps but it may also be interesting to think to the density

hn�x� y� �
pn�x� y�

m�y�

which is symmetric and is the right analog of a kernel on a continuous
space�

We will say that u satis
es the �discrete�time� parabolic equation
on �n� x� if

���� m�x�u�n! � x� �
X
y

�xy u�n� y� �
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It is the case of p��
� y��
Note that we have a weighted geometry and we consider only the

canonic parabolic equation on it� Imagine we had a non�weighted ge�
ometry �this means volume regularity and Poincar�e inequality without
the weights m�x� and �xy� and any parabolic equation with a uniform
ellipticity constant� then we would consider the geometry weighted by
the coe�cients of the equation� Because of the ellipticity� the geomet�
ric assumptions on the non�weighted geometry would yield those on the
weighted geometry� Our background is a little more general since the el�
lipticity constant ������ is not uniform but above all� as A� Grigor�yan
pointed out to us� its presentation is cleaner because these geometric
assumptions are always applied with the weights�

Note also that every reversible Markov chain can be obtained as
above� starting from the Markov kernel p and its invariant measure m�
one constructs �xy � p�x� y�m�x��

De�nition ���� The weighted graph ��� �� satis�es the Gaussian esti�

mates G�cl� Cl� Cr� cr� �all constants are positive� if

d�x� y� � n implies
clm�y�

V �x�
p
n�

e�Cld�x�y�
��n � pn�x� y�

� Crm�y�

V �x�
p
n�

e�crd�x�y�
��n �

Of course� if d�x� y� � n then pn�x� y� � �� On Euclidian spaces�
these estimates were 
rst proved for fundamental solutions of parabolic
equations in ���

The continuous�time Markov kernel may be de
ned by

Pt�x� z� � e�t
��X
k
	

tk

k"
pk�x� z� �

Like the discrete kernel� it satis
es

Pt�x� y�
m�y�

�
Pt�y� x�
m�x�

�

It is also the solution for �t� x� � R� � � of���
��
P	�x� z� � ��x� z� �

m�x�
	

	t
Pt�x� z� �

X
y

�xy �Pt�y� z�	 Pt�x� z�� �
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Indeed�

	

	t
Pt�x� z� � e�t

� ��X
k
�

k tk��

k"
pk�x� z�	

��X
k
	

tk

k"
pk�x� z�

�

� e�t
� ��X
k
�

tk��

�k 	 �"

X
y

p�x� y� pk���y� z�	
��X
k
	

tk

k"
pk�x� z�

�

�
X
y

p�x� y� �Pt�y� z�	 Pt�x� z�� �

Therefore we will say that u satis
es the �continuous�time� parabolic
equation on �t� x� if

���� m�x�
	

	t
u�t� x� �

X
y

�xy �u�t� y�	 u�t� x�� �

���� Parabolic Harnack inequalities�

These inequalities apply to positive solutions of the parabolic equa�
tions on cylinders �products of a time interval and a ball�� Let us make
this precise on the boundary of the cylinders� We shall say that u
is a non�negative solution on Q � I � B�x	� r� if it is the trace of a
non�negative solution on I � B�x	� r ! � which satis
es ���� or ����
everywhere on Q� For instance in the continuous case� this implies� for
all �t� x� � Q�

u�t� x� � � �

for all t � I� for all x � B�x	� r 	 ��

m�x�
� 	
	t

u�t� x� ! u�t� x�
�
�
X
y

�xy u�t� y� �

for all t � I� d�x	� x� � �r� imply

���� m�x�
� 	
	t

u�t� x� ! u�t� x�
�
�

X
y�B�x��r�

�xy u�t� y� �
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De�nition ���� Set 
 � ��� � and � � �� � �� � �� � ��� ��� ��
satis�es the continuous�time parabolic Harnack inequality

H�
� ��� ��� ��� ��� C�

if for all x	� s� r and every non�negative solution on Q � �s� s! ��r
���

B�x	� r�� we have

sup
Q�

u � C inf
Q�

u �

where Q� � �s! �� r
�� s! �� r

�� � B�x	� 
 r� and Q� � �s! �� r
�� s!

�� r
��� B�x	� 
 r��

Let us explain the choice of the boundary condition� For r � � Q
has no interior so we just have ���� but this is su�cient to obtain the
inequality since it gives a lower bound for �	�	t�u�t� x	��

If we assume ���� and H�
� ��� ��� ��� ��� C�� then for all 
� � ��� �
and � � ��� � ��� � ��� � ���� there exists C � such that

H�
�� ���� �
�
�� �

�
�� �

�
�� C

��

is true� Take two points �t�� x�� and �t�� x�� in Q�� and Q��� For
r big enough� there is a decomposition x� � x	� � � � � xn � x� and
t� � t	 � 
 
 
 � tn � t� �where n depends only on the 
� 
�� �i and
��i�s� such that we can obtain u�ti� xi� � C u�ti��� xi���� So we can take
C � � Cn� For r bounded� the condition ���� gives the inequality� For
simplicity� we will denote

H�CH� � H������ ���� ��� ��� ��� CH� �

These coe�cients have been chosen for convenience when we apply
this inequality �see typically Propositions �� or ����� We will write
u�t�� x�� � CH u�t�� x�� as soon as x� and x� are in the contraction
of a ball on which u is a solution and #there is time$ between t� and
t� as well as before t�� We will not have to bother with technical
coe�cients if they don�t exceed ��

De�nition ���� Set 
 � ��� � and � � �� � �� � �� � ��� ��� �� satis�
�es the discrete�time parabolic Harnack inequality H�
� ��� ��� ��� ��� C�
if for all x	 � �� s � R� r � R

� and every non�negative solution on

Q � �Z� �s� s! ��r
���� B�x	� r�� we have

�n�� x�� � Q�� �n�� x�� � Q� and d�x�� x�� � n� 	 n�
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implies

u�n�� x�� � C u�n�� x�� �

where Q� � �Z� �s! �� r
�� s! �� r

����B�x	� 
 r� and Q� � �Z� �s!
�� r

�� s! �� r
���� B�x	� 
 r��

If the condition d�x�� x�� � n� 	 n� is not satis
ed� u�n�� x��
has no in%uence on u�n�� x��� It is always satis
ed if r � � 
����	 ���
and in this case we can write

sup
Q�

u � C inf
Q�

u �

The same remark as above holds for this inequality and we will denote

H�CH� � H������ ���� ��� ��� ��� CH� �

���� Statement of the results�

Here is our main result�

Theorem ��	� The three following properties are equivalent�

i� There exist C�� C�� � � � such that DV �C��� P �C�� and ����
are true�

ii� There exists CH � � such that H�CH� is true�

iii� There exist cl� Cl� Cr� cr � � such that G�cl� Cl� Cr� cr� is true�

Theorem ��� states that i� implies iii�� Theorem ��� that iii� im�
plies ii� and Theorem �� that ii� implies i��

The 
rst part � i� implies iii� � is the most di�cult and an interme�
diate result is�

ii�� There exists CH � � such that H�CH� is true�

which is proven in Section � by a Moser type iteration argument� In
fact� ii�� is also equivalent to the three properties� since we can prove ii��
implies i� the same way we prove ii� implies i�� In Section �� we complete
the proof� First ii�� implies estimates for Pt� which yield estimates iii�
for pn by comparison� Then iii� implies ii� and ii� implies i�� In the last
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section� two properties about H�older regularity and Green function are
deduced for graphs which satisfy these properties�

Let us note that it is straightforward that ii� and iii� imply the
hypothesis ����� For iii�� just apply the lower bound to p��x� y� where
y � B�x� �� And for ii�� set n � 	��� to obtain p	�x� x� � CH p��x� y��

This result connects with ��� and ��� since in groups or in graphs
with linear volume growth� Poincar�e inequality is always satis
ed� In
Euclidian graphs Zn� the estimates which are well�known for uniform
transitions �this is for instance a consequence of the result in groups� are
here proved for non�uniform transitions ��xy doesn�t depend on y	 x��

��
� Continuous or discrete time�

To prove the Harnack inequality� we will use analytic methods
which yield Cacciopoli inequalities� For these methods� the continuous
time is naturally more convenient� We may have an idea of the problems
if we look what happens on the two points graph � � fa� bg� Choose
p�a� a� � p�b� b� � � and p�a� b� � p�b� a� � 	 �� this may be done if
we set �aa � �bb � � and �ab � 	 �� This gives

����
���

pn�a� a� �
 ! ���	 �n

�
�

pn�a� b� �
	 ���	 �n

�
�

����
���
Pt�a� a� �  ! e������t

�
�

Pt�a� b� � 	 e������t

�
�

Of course if � � � there is no link between the two points� Now� if
� �� � P is always a simple relaxation �Pt�a� a� � Pt�a� b�� whereas�
for � � ��� p is an oscillating relaxation or worse �for � � �� a pure
oscillation�

The 
rst conclusion is that we have to force a minimum value on
the diagonal of the Markov kernel if we want a discrete�time parabolic
Harnack inequality or estimates from below� Indeed� they are not satis�

ed by this example for � � �� This has nothing to do with the fact that
the graph is 
nite� take the standard random walk on Z and observe
its e�ect on u��� z� � z mod �� We obtain u�n� z� � �n! z� mod ��

What plays a role is condition ���� and particulary the fact that
p�x� x� � �� We have extended this condition to p�x� y� � � for x � y
so that our results are true for low values of n� think for instance to the
lower bound of p��x� y� � p�x� y�� Besides� lower bounds for d�x� y� � n
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are the consequence of lower bounds for n � � see the proof of Theorem
����

The second conclusion is that the behaviour of the discrete�time
Markov chain is more di�cult to control� In addition to the usual
heat relaxation� there may be another phenomenon of relaxation of the
oscillating errors due to the discretization of the time�

One more attempt to show the di�culty of adapting the analytic
methods to the discrete time� Consider the proof of the Cacciopoli
inequality� When time and space are continuous� take u such that
	u�	t � �u and a compactly supported cut�o� function  to integrate
by parts�



�

ZZ
� 	�u

��

	t
�

ZZ
� u�u

� 	
ZZ

r�� u� 
 ru

� 	
ZZ

� jruj� 	
ZZ

� ur 
 ru �

Since

	
ZZ

�r uru � 

�

ZZ
� jruj� ! �

ZZ
jrj� u�

one gets



�

ZZ
� 	�u

��

	t
!



�

ZZ
� jruj� � �

ZZ
jrj� u� �

This inequality is essential to estimate kruk� with kuk�� which with the
Sobolev inequality gives estimates between mean values for exponents
of the same sign� Let us try to adapt this argument to discrete time�
Note that ���� may be written in the following way

m�x� �u�n! � x�	 u�n� x�� �
X

�xy �u�n� y�	 u�n� x�� �

For simplicity� we will forget about the cut�o� function �take u�n� 
�
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compactly supported�� Write

�
X
x

m�x�u�n� x� �u�n! � x�	 u�n� x��

� �
X
x�y

�xy u�n� x� �u�n� y�	 u�n� x��

�
X
x�y

�xy u�n� x� �u�n� y�	 u�n� x��

!
X
x�y

�yx u�n� y� �u�n� x�	 u�n� y��

� 	
X
x�y

�xy �u�n� y�	 u�n� x��� �

This is nice but we have not taken the exact time di�erentiation ofP
xm�x�u��n� x�� that is�X

x

m�x� �u��n! � x�	 u��n� x��

� �
X
x

m�x�u�n� x� �u�n! � x�	 u�n� x��

!
X
x

m�x� �u�n! � x�	 u�n� x���

� 	
X
x�y

�xy �u�n� y�	 u�n� x���

!
X
x

m�x� �u�n! � x�	 u�n� x��� �

Fortunately� if we suppose that �xx � �m�x�� thenX
x

m�x� �u�n! � x�	 u�n� x���

�
X
x



m�x�

�X
y

�xy �u�n� y�	 u�n� x��
��

�
X
x



m�x�

�X
y 	
x

�xy

��X
y

�xy �u�n� y�	 u�n� x���
�

� �	 ��
X
x�y

�xy �u�n� y�	 u�n� x��� �



Parabolic Harnack inequality �	�

This yieldsX
x

m�x� �u��n! � x�	 u��n� x�� � 	�
X
x�y

�xy �u�n� y�	 u�n� x��� �

The constant � has been used to control the errors due to the dis�
crete time� But these manipulations seem far more intricate when we
deal with subsolutions or the logarithm of u �and cut�o� functions��
Therefore� we won�t try to apply Moser�s iterative technique directly to
solutions of the discrete�time parabolic equation�

�� Harnack inequality for solutions of the continuous�time

parabolic equation�

Theorem ���� Assume ��� �� satis�es DV �C��� P �C�� and �����
Then� there exists CH such that H�CH� is true�

The proof is an adaptation of ����� The strategy is Moser�s iterative
technique ����� that is to prove inequalities involving the mean values

M�u� p� �s�� s��� B� �
� 

�s� 	 s��V �B�

X
x�B

Z s�

s�

m�x�u�p�t� x� dt
���p

�

The idea is we get the in
mum when p 	 	� and the supremum
when p 	 !�� Thus we want to prove a series of inequalities between
	� and !�� To improve the exponent of a mean value� the Sobolev
inequality proved in Section �� is helpful� One application of this
inequality yields an elementary step of the iterative technique proved
in Section ���� The iteration gives inequalities between the extrema and
mean values as stated in Section ���� The most di�cult step is between
negative and positive values� Here we use an improvement of the initial
version ���� proposed in ���� with an idea of E� Bombieri ���� This is the
object of Section ��� and needs a weighted Poincar�e inequality stated
in Section ���

Throughout this section devoted to the proof of Theorem ���
DV �C��� P �C�� and ���� are assumed and u � �� The theorem for
u � � is then straightforward�
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���� Poincar�e and Sobolev inequalities�

Proposition ��� �Weighted Poincar�e inequality�� There exists C de�

pending on C�� C� and � such that for all x	 � �� R � N and f �
R
B�x� �R��X
x�B�x��R�

m�x���x� �f�x�	 fB��
�

� C R�
X

x�y�B�x��R�

�xy min f��x�� ��y�g �f�y�	 f�x��� �

where �x� � 	 d�x	� x��R and fB� is such that the term on the left

is minimal� that is

fB� �

X
x�B�x��R�

m�x���x� f�x�

X
x�B�x��R�

m�x���x�
�

Proof� We refer to the proof in ���� based on � �� Consider F a
collection of balls with the following tree structure� denote one ball B�

�the root of the tree� and assume that there is a function B �	 B
from F n fB�g to F �denote B�i� its iteration� such that for all B � F �
rgB � inf fk � B�k��� � B�g � �� Denote r�B� the radius of B�
A�B� � f &B � F � exists k � N � &B�k� � Bg and B
 � ���B� For our
discrete setting� we will need this version of Poincar�e inequality where
C �� depends on C�� C� and ��X
x�B�x��r�

m�x� jf�x�	 fBj� � C �� r
�

X
x�y�B�x����		�r�

�xy �f�y�	 f�x��� �

for all f � R
� � for all x	 � �� for all r � R

� � It is obtained by an easy
covering argument� Again� there may be some problems for small r but
then ���� gives the inequality�

The following lemma will be applied to

��xy � �xy min f��x�� ��y�g �

The notations m� or f �B should be understood with respect to ���
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Lemma ���� Assume there exists C such that� for all B � F � there
exists cB such that

���
��

cB
C

m�x� � m��x� � C cB m�x� � for all x � B
 �

cB
C

�xy � ��xy � C cB �xy � for all x� y � B
 �
�����

�fB � F � x � B
g � C � for all x � � ������

��B �B� � max f��B�� ��B�g
C

� for all B � F ���� �

Then for every function f �

X
x��B�FB

m��x� �f�x�	 f �B�
�� � �C ��C

 sup
B�F

�
r��B�

X
�B�A�B�

�� &B�

��B�
rg &B

�



X

x�y��B�FB�
��xy �f�x�	 f�y��� �

Proof� In fact condition ��� � is needed for �� but because of ������
��� � implies that

���B � B� � max f���B�� ���B�g
C�

� for all B � F �

First note that

�f �B 	 f �
B
��

�

X
x�B�B

m��x� ��f �B 	 f�x�� ! �f�x�	 f �
B
���

���B �B�

� �

���B �B�

�X
x�B

m��x� �f�x�	 f �B�
� !

X
x�B

m��x� �f�x�	 f �
B
��
�
�

These terms
P

x�Bm��x� �f�x�	 f �B�
� satisfy

X
x�B

m��x� �f�x�	 f �B�
� �

X
x�B

m��x� �f�x�	 fB�
�
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� C cB
X
x�B

m�x� �f�x�	 fB�
�

� C cB C �� r
��B�

X
x�y�B�

�xy �f�x�	 f�y���

� C� C �� r
��B�

X
x�y�B�

��xy �f�x�	 f�y��� �

We can now prove the lemma�X
x��B�FB

m��x� �f�x�	 f �B�
��

�
X
B�F

X
x�B

m��x� rgB
�
�f�x�	 f �B�

� !

rgB��X
i
�

�f �B�i��� 	 f �B�i��
�
�

�
X
B�F

� X
�B�A�B�

���� &B� rg &B
�

���B��C�

�X
x�B

m��x� �f�x�	 f �B�
�

� �C�
X
B�F

� X
�B�A�B�

��� &B�

���B�
rg &B

�
C� C �� r

��B�
X

x�y�B�
��xy �f�x�	 f�y���

� �C ��C
�

X
x�y��B�FB�

C sup
B�F

�
r��B�

X
�B�A�B�

��� &B�

���B�
rg &B

�


 ��xy �f�x�	 f�y��� �

To 
nish the proof� we replace ��� &B� and ���B� by �� &B� and ��B� so
that another factor C� appears�

End of proof of Proposition ���� We will construct F as a Whit�
ney covering of B�x	� R	� by selecting Wn � fx � d�x	� x� � R	 �ng
for � � n � N � �logR� log ���

F �
n
B�x� r� � exists n� x �Wn and r �

�n

��

o
� fB�g �

where B� � B�x	� R����� For these balls� ����� is satis
ed� The tree
structure will be constructed this way� if B � B�x� r� with x �Wn we
will choose B of center x �Wn�� such that d�x� x� � ����� �n �see the
construction of the Wn�s below�� Thus� B�x� �����	���� �n� � B�B
and condition ��� � is satis
ed�
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We must check� in order to apply Lemma ���� that it was possible
to select Wn so that

fx � R	 �n�� � d�x	� x� � R	 �ng �
	

x�Wn��

B
�
x�

�

�
�n
�
�

while ����� is satis
ed� It is a standard Besicovitch covering argument�
we choose a minimalWn�� for this property� The key is that the radius
of any ball B
 such that x � B
 is comparable to R	 d�x	� x��

Now let us consider the term

sup
B�F

�
r��B�

X
�B�A�B�

�� &B�

��B�
rg &B

�
�

The 
rst point is that d�x� x� � ����� �n implies that �B � �B� For
B � F n fB�g� set n � N such that Wn contains B�s center� If we
denote Fk � f &B � &B�k� � Bg and Ak �

S
�B�Fk �

&B� Ak�� � Ak�

But there is more than this inclusion� a ball &B � B�&x� &r� in Fk is
such that d�x	� &x� � R 	 �n�k and &r � �n�k���� so that there is
a ball of radius &r��� which is included in � &B and in the area fy �
d�x	� y� � R	 �n���k 	 � 
 �n���k���g never reached by Ak��� This
yields ��Ak nAk��� � � ��Ak� and consequently ��Ak� � e�ck ��A	� �
C e�ck ��B�� Thus�

r��B�
X

�B�A�B�

�� &B�

��B�
rg &B � ��n

X
k	

C e�ck �N!	n!k��C ��N�C R� �

For the case B � B�� the proof is identical but we refer to A� instead
of A	�

To 
nish the proof� let us compare m�x���x� and m��x�� For
x �� x	� the condition ���� gives m�x���x� � m��x���� we just have
to consider y � x such that d�x	� x� � d�x	� y� ! �

Proposition ��� �Sobolev�Poincar�e inequality�� There exist � � 
depending on C� and S depending on C�� C� and � such that for every

function f on B of radius r�� 

V �B�

X
x�B

m�x� f���x�
����

� S

V �B�

�
r�

X
x�y�B

�xy �f�y�	 f�x��� !
X
x�B

m�x� f��x�
�
�
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In the setting of manifolds� this result which was proven in ����
was the key of the proof of the Harnack inequality after the work �����
It is adapted to graphs in ���� A nice abstract version can also be
found in ���� In the notation of this paper� the chain condition will be
satis
ed for � � � �like the preceding section where � � ����� Indeed�
consider x next to the boundary of B� the smallest ball Bi of the chain
not centered at x must contain x and satisfy �Bi � B�

���� Elementary step of Mosers iterative technique�

As in Section ��� we will say that u is a positive sub�supersolution
onQ � I�B�x	� r� if it is the trace of a positive function on I�B�x	� r!
� which is a sub�supersolution everywhere on Q� Precisely� we say that
u is a positive subsolution on Q if it is positive and

m�x�
	

	t
u�t� x� �

X
y

�xy �u�t� y�	 u�t� x�� �

for all t � I� for all x � B�x	� r 	 �� And u is a positive supersolution
on Q if it is positive and

m�x�
	

	t
u�t� x� �

X
y

�xy �u�t� y�	 u�t� x�� �

for all t � I� for all x � B�x	� r 	 ��

m�x�
� 	
	t

u�t� x� ! u�t� x�
�
�

X
y�B�x��r�

�xy u�t� y� �

for all t � I� for all x such that d�x	� x� � �r�� Let us show the elemen�
tary step of Moser�s iterative technique� If Q � I�B where I � �s�� s��
and B � B�x� r�� note

B� � �	 ��B � B�x� �	 �� r� �

I� � ��	 ��� s� ! ��s�� s�� �

I �� � �s�� �
� s� ! �	 ��� s�� �

I ��� � ��	 ��� s� ! �� s�� �
� s� ! �	 ��� s�� �

Q� � I� � B�� Q
�
� � I �� � B� and Q��� � I ��� �B� �
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Note that

����� Q����� � �Q����� � Q
�
����� � �Q����

�
��

and Q������� � �Q�����
��
��

�

Lemma ��
� There is an exponent � � � 	 �� and a constant A �
A�C�� S� � A�C�� C�� �� such that if B � B�x	� r�� Q � ��� r��� B� u
a positive subsolution in Q and �r � � � ��� then

M�u� ��Q�� �
� A
��

���	
M�u� � Q� �

If u is a supersolution with the same assumptions� then

M�u� ��Q��� �
� A
��

���	
M�u� � Q� �

Proof� Consider the 
rst part� u is a subsolution� Let  be a non�
negative function in B� with d�x	� x� � r implies �x� � �� thenX

x�B
m�x���x�u�t� x�

	

	t
u�t� x�

�
X
x�y�B

�xy 
��x�u�t� x� �u�t� y�	 u�t� x��

�


�

X
x�y�B

�xy �
��x�u�t� x�	 ��y�u�t� y�� �u�t� y�	 u�t� x��

�


�

X
x�y�B

�xy 
��x� �u�t� x�	 u�t� y�� �u�t� y�	 u�t� x��

!


�

X
x�y�B

�xy �
��x�	 ��y��u�t� y� �u�t� y�	 u�t� x�� �

In the last term� we use the inequality a b � a��� ! b��

���x�	 ��y��u�t� y� �u�t� y�	 u�t� x��

� �x� ��x�	 �y��u�t� y� �u�t� y�	 u�t� x��

! �y� ��x�	 �y��u�t� y� �u�t� y�	 u�t� x��

� 

�
���x� ! ��y�� �u�t� y�	 u�t� x���

! �u��t� y� ��x�	 �y��� �
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Note that because of the symmetry of the weights �xy�X
x�y�B

�xy 
��y� �u�t� y�	u�t� x��� �

X
x�y�B

�xy 
��x� �u�t� y�	u�t� x��� �

Thus� ����� yields

X
x�B

m�x���x�u�t� x�
	

	t
u�t� x� !



�

X
x�y�B

�xy 
��x� �u�t� y�	 u�t� x���

�
X
x�y�B

�xy u
��t� y� ��x�	 �y��� ������

For u supersolution� the result would be

X
x�B

m�x���x�u�t� x�
		
	t

u�t� x�

!


�

X
x�y�B

�xy 
��x� �u�t� y�	 u�t� x���

�
X
x�y�B

�xy u
��t� y� ��x�	 �y��� �

And then� the same arguments work dealing with I �� instead of I��
Return now to ������ if � is a smooth function of t� we obtain

	

	t

�X
x�B

m�x� ���t��x�u�t� x���
�

!
���t�

�

X
x�y�B

�xy 
��x� �u�t� y�	 u�t� x���

� ����t�
X
x�y�B

�xy u
��t� y� ��x�	 �y���

!
X
x�B

m�x�
� 	
	t

���t�
�
u��t� x� �

Now we choose ��t� � t��� r�� �  and  so that d�x	� x� � r implies
�x� � � and  �  in B�� For this purpose� we took �r � ��
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Integrating over I yields�����������
����������

sup
t�I�

� X
x�B�

m�x�u��t� x�
�
� �

�� r��

Z
I

X
x�B

m�x�u��t� x� dt �



�

Z
I�

X
x�y�B�

�xy �u�t� y�	 u�t� x��� dt

� �

�� r��

Z
I

X
x�B

m�x�u��t� x� dt �

We have used j��j � ��� r�� and j�x�	 �y�j � ���� r� when x � y�
This result �of Cacciopoli type� allows us to use Proposition ���

�Sobolev�� Note �� such that �� ! ��� �  and � �  ! ����

M�u� ��Q��
	 �



V �B�� r� �	 ���

Z
I�

X
x�B�

m�x�u�	�t� x� dt

� 

r� �	 ���

Z
I�

� 

V �B��

X
x�B�

m�x�u��t� x�
�����



� 

V �B��

X
x�B�

m�x�u���t� x�
����

dt

�
sup
t�I�

� X
x�B�

m�x�u��t� x�
�����

r� �	 ���V �B�����
�



Z
I�

S

V �B��

�
r�

X
x�y�B�

�xy �u�t� y�	 u�t� x���

!
X
x�B�

m�x�u��t� x�
�
dt

� 

r��	 ���

� �

�� r��

������ ��
��

! 
� S

V �B�����
���



�Z

I

X
x�B

m�x�u��t� x� dt
�������

�

This yields

M�u� ��Q�� �
� A
��

���	
M�u� � Q� �
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for a constant A� because � � �� so that V �B� � C� V �B�� and
	 �� � ����

���� Mean value inequalities�

Lemma ���� If u is a positive solution on I �B� then

� up is a subsolution on I � B for p � � and p � �

� up is a supersolution on I � B for � � p � �

Proof� Let f�x� � xp� if p � � or p � � f is convex and

f ��a� �b	 a� � f�b�	 f�a� �

This yields

m�x�
	

	t
f�u�t� x�� � m�x� f ��u�t� x��

	

	t
u�t� x�

�
X
y

�xy f
��u�t� x�� �u�t� y�	 u�t� x��

�
X
y

�xy �f�u�t� y��	 f�u�t� x��� �

Lemma ��	� Let B be a ball of radius r� Q � ��� r��� B� u a positive

solution on Q and � � � � ��� Then� for all p � ��

M�u�	p�Q� � C �C ��
���p inf
Q�

u� �����

sup
Q��
�

u� � C �C ��
���pM�u� p�Q� ������

where C and � depend only on C�� C� and ��

Proof� We will prove ����� Consider 
rst the case � r � � �the
di�erence between B�s radius and B��s is less than �� this includes the
cases B � B� when one can not apply the elementary step� Lemma �����
Take u��t� z� � infQ�

u� and note that� for all � � � � �� r�� t	 � � I
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and u��t 	 �� z� � e�� u��t� z� � e infQ�
u�� This is a consequence of

����� Counting only these values�

M�u�	p�Q��p � m�z� �� r�

r� V �B�



e inf

Q�

u�
��p

implies

M�u�	p�Q� � e
� V �B�

V �z� ��� ��

���p
inf
Q�

u� �

Applying 
rst DV �C�� between B�z� � r� � B and B�z� ��� then r �
� ���� we obtain �����

Consider now � r � �� Set �i � ��i�� Q��� � Q and Q�i� �
Q�i 	 ��i so that for all i� Q� � Q�i�� Fix n the integer such that
�n�� � � r � �n��� We can apply Lemma ��� between Q�i 	 � and
Q�i� for i � n since u�q is a subsolution� the radius of the cylinder
Q�i	 � is bigger than r�� and �i � ��r�

M�u�	q ��Q�i�����q �
� A
��i

���	
M�u�	q�Q�i	 �����q

implies

M�u�	q�Q�i	 �� �
� A
��i

����q	�
M�u�	q ��Q�i�� �

This yields

M�u�	p�Q� �
� nY
i
�

� A

���i���

���	i���p
M�u�	p �n� Q�n�� �

To obtain ����� we may 
rst check that

��Y
i
�

� A

���i���

���	i
� C ��
 �

Then� we estimate M�u�	p �n� Q�n�� as in the case � r � �� Take
u��t� z� � infQ�n��� u

� and note that for all � � � � ��n�� r���
��

t 	 � � I�n� and u��t 	 �� z� � e�� u��t� z� � e� infQ�n��� u
�� We use

 � �n�� r � �� This yields

M�u�	p �n� Q�n�� � e�
�
r� V �B�

m�z�


�

���p	n�

inf
Q�

u� �
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Since n � log �� r����log �� we may estimate�
r� V �B�

m�z�


�

��	n

� e����� r��
c log �C rC� �

Again C is a constant which depends on C� and C�� To obtain C � ��


as in ����� we must check� �

� r

�c
log �C rC� � C � 	 � log � �

for � r � �� This may be done this way� either � � r���� and it su�ces
to note that ���� r� � ��� and use the term 	� log �� either � � r����

and we use

C � �
� �

r���

�c
log �C rC� �

The proof of ����� is identical� except that uq may be a superso�
lution� that�s why we take Q��� instead of Q�� We also use u�t! �� z� �
e��u�t� z�� that�s another reason to cut I by the highest values� In fact�
having in mind the all�continuous result ����� Corollary �� p� �� ��� we
could keep Q�� First� we should use a covering argument ����� p� �����
to avoid the use of Lemma ��� on uq for q � � Then� instead of picking
up the sup on the values u�t! �� z�� we could get it from the u�t	 �� z��
where z� � z� But this is only possible when � r � � Taking Q��� is
somehow arti
cial but it has the great technical advantage that at this
point of the proof� we have no more conditions like � r �  in Lemma ���
which compel us to treat separately cases when it is no longer possible
to cut the space�

���� About log u� linking negative and positive exponents�

Let us de
ne the measure � on R � � as the product of Lebesgue
measure and V � The next lemma states that the values of log u are
glued to their �space� mean value at a time � somehow like functions
with BMO norm bounded� they cannot be much bigger on a large part
before or much lower after� J� Moser�s improvement in ���� is that
this property and the �time and space� mean value inequalities are
su�cient to link extrema to the �space� mean value of log u at a 
xed
time between Q� and Q�� and thus to link extrema together� This last
idea is the meaning of the abstract Lemma ����
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Lemma ���� Let 
� � � ��� � � B � B�x	� r� and u any positive super�

solution on Q � �s� s ! r�� � B� there is a constant m�u� �� such that

for all � � ��

��f�t� z� � K� � logu�t� z� � m	 �g� � C ��Q�

�
and

��f�t� z� � K� � log u�t� z� � m! �g� � C ��Q�

�
�

where K� � �s ! � r�� s ! r�� � 
 B� K� � �s� s ! � r�� � 
 B and C
depends only on 
� � � C� and C��

Proof� Let

�z� � 	 d�x	� z�

�r� ! 

��r� denotes the integer part of r� and m�x� �
P

y 	�B �xy so that for all
x � B�

m�x�
	

	t
u�t� x� �

X
y�B

�xy �u�t� y�	 u�t� x��	m�x�u�t� x� �

	

	t

X
x�B

m�x���x� �	 logu�t� x��

�
X
x�B

	��x�
m�x�

	

	t
u�t� x�

u�t� x�

�
X
x�y�B

�xy
	��x�

u�t� x�
�u�t� y�	 u�t� x�� !

X
x�B

��x�m�x������

�


�

X
x�y�B

�xy

� ��y�

u�t� y�
	 ��x�

u�t� x�

�
�u�t� y�	 u�t� x��

!
X
x�B

��x�m�x� �

Now we show that� ��y�

u�t� y�
	 ��x�

u�t� x�

�
�u�t� y�	 u�t� x��

� �� ��y�	 �x��� 	 

�
min f��x�� ��y�g �u�t� y�	 u�t� x���

u�t� x�u�t� y�
�

�����
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We may assume u�t� x� � u�t� y� for that purpose�

Either

��x� � ��y�

�

�
 !

u�t� x�

u�t� y�

�
�

then

� ��y�

u�t� y�
	 ��x�

u�t� x�

�
�u�t� y�	 u�t� x��

�
�
��y�

u�t� y�
	

��y�

�

�
 !

u�t� x�

u�t� y�

�
u�t� x�


�u�t� y�	 u�t� x��

� 	

�
��y�

�u�t� y�	 u�t� x���

u�t� x�u�t� y�
�

and there is no need to use the other non�negative term �� ��y� 	
�x����

Or

��x� � ��y�

�

�
 !

u�t� x�

u�t� y�

�
�

First we estimate u�t� y�	 u�t� x� with �y�	 �x��

u�t� x�	 u�t� y�

u�t� y�
�

u�t� x�

u�t� y�
	 

� ���x�

��y�
	 �

� �
�x� ! �y�

��y�
��x�	 �y�� �

Thus�

��y�
�u�t� x�	 u�t� y���

u�t� x�u�t� y�
� ��y�

�u�t� x�	 u�t� y���

u��t� y�

� ��y�
�
�
�x� ! �y�

��y�
��x�	 �y��

��
� �� ��x�	 �y��� �
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Because the function  is such that �y� � �x� � ��y� when x � y�
We also obtain� ��y�

u�t� y�
	 ��x�

u�t� x�

�
�u�t� y�	 u�t� x��

�
� ��y�

u�t� y�
	 ��x�

u�t� y�

�
�u�t� y�	 u�t� x��

� ��x� ! �y��
u�t� x�	 u�t� y�

u�t� y�
��x�	 �y��

� �
��x� ! �y���

��y�
��x�	 �y���

� � ��x�	 �y��� �

Inequality ����� is proven because � ��x�	 �y��� controls the two
other terms�

We can now change ����� using the inequality ������

	

	t

X
x�B

m�x���x� �	 logu�t� x��

!


�

X
x�y�B

�xy min f��x�� ��y�g �u�t� y�	 u�t� x���

u�t� x�u�t� y�

� C
X
x�y�B

�xy ��y�	 �x��� !
X
x�B

��x�m�x� �

Since

�log u�t� y�	 log u�t� x��� � �u�t� y�	 u�t� x���

u�t� x�u�t� y�

�just check �log a�� � �a	 ���a by di�erentiating two times�� x � y
implies j�y� 	 �x�j � �r and m�x� �� � implies j�x�j � �r� this
yields

	

	t

X
x�B

m�x���x� �	 logu�t� x��

!


�

X
x�y�B

�xy min f��x�� ��y�g �logu�t� y�	 log u�t� x���

� C
V �B�

r�
�
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Now use the weighted Poincar�e inequality of Proposition ��� to estimateX
x�B

m�x���x� �	 logu�t� x�	W �t���

� C r�
X
x�y�B

�xy minf��x�� ��y�g �logu�t� y�	 logu�t� x��� �

where

W �t� �

X
x�B

m�x���x� �	 logu�t� x��

X
x�B

m�x���x�
�

Use also

X
x�B

m�x���x� �
X

x�B��
m�x�

�
�

��
� C V

�B
�

�
� C � V �B�

and x � 
 B implies �x� � 	 
� This way� we obtain two constants
c and C depending only on 
� C� and C� such that

	

	t
W �t� !

c

��Q�

X
x�B

m�x� �	 log �u�t� x��	W �t�� � C r�� �

Setting m � 	W �s! � r��� this yields the result �for precisions� follow
litterally the argument on ���� p� ������

Lemma ���� Let U� for � � � � � � �� be subsets of a space with a

measure � such that � � �� implies U� � U�� and ��U	� � C��U��� f
a positive measurable function on U	 which satis�es

����� sup
U��

f� � C �C ��� 	 ���
���pM�f� p� U�� �

for all � � � � �� � � and p � � and

��flog f � �g� � C

�
��U	� �

for all � � �� Then
sup
U�

f � A �
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where A depends only on �� � and C�

Proof� Set ��� � log �supU� f
��� Dividing U� into two sets log �f��

� ����� and log �f�� � ����� yields

M�f� p� U��
p � �e�������p !



��U��

C

�����
��U	� sup

U�

f�p

� ep������ !
�C�

���
ep����

� � ep������ �

if we choose

p �
�

���
log

���

�C�

so that the two terms are equal� Then we apply ������

���� � logC !


p
log ��C ��� 	 ���
e�������

� logC !
���

�

� log ��C ��� 	 ���
�
log �������C���

! 
�
�

If
���

�C�
� ��C ��� 	 ���
��

and

logC � ���

�

then

���� �  

�
��� �

Thus� we always have

���� �  

�
��� ! C ���� 	 ����
 �

Take a positive decreasing sequence � � �	 � 
 
 
 � �i � �i�� � 
 
 
 �

��� � C �
��X
i
	

� 
�

�i
��i�� 	 �i�

��
 � constant �� log �A���
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if we set �i � ��� ! i��

��
� Proof of Theorem ����

Recall the notations of De
nition �� and Lemma ���� we set 
 �
��� 
 � ���� �� � ��� �� � ��� � � ��� �� � ��� and �� � �
Lemma ��� gives a reference value m so that one can apply Lemma
��� to f � e�mu on U	 � �s� s ! � r�� � 
 B with U� � �U	�

��
� for

� � � � 
	
 � ��� This way� Q� � U� and ����� is satis
ed because
of Lemma �� and ������ This yields supQ��e

�mu� � A� Applying

again Lemma ��� to f � em u�� on U	 � �s! � r�� s! �� r
��� 
 B with

U� � �U	�� yields supQ��e
mu��� � A and the Harnack inequality�

�� Kernel estimates� discrete�time Harnack inequality and

necessity of Poincar�e inequality�

���� Continuous�time estimates�

First� we give on�diagonal estimates� The regularity coming from
the Harnack inequality shows that if one starts at x� one di�uses after
a time t on the ball B�x�

p
t�� This is well known since the papers of

D� G� Aronson �� or of P� Li and S� T� Yau ����

Proposition ��� �On�diagonal estimates�� Assume ��� �� satis�es

H�CH�� then

Pt�x� y� � CHm�y�

V �x�
p
t�
� for all x� y� t �

d�x� y�� � t implies Pt�x� y� � C��
H m�y�

V �x�
p
t�

�

Proof� Applying the Harnack inequality to P��
� y� yields Pt�x� y� �
CHP�t�z� y� for z � B�x�

p
t�� Thus�

Pt�x� y� � CH
V �x�

p
t�

X
z�B�x�

p
t�

m�z�P�t�z� y�
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�
CHm�y�

V �x�
p
t�

X
z�B�x�

p
t�

P�t�y� z�

� CHm�y�

V �x�
p
t�
�

For the lower bound� we will use similarly Pt���z� y� � CHPt�x� y� for
z � B�x�

p
t�� But 
rst� we de
ne a function u��� �� solution of the

parabolic equation in ��� t�� B�x�
p
t� this way

u��� �� �  � for all � �
h
��
t

�

i
�

u��� �� �
X

z�B�x�
p
t�

P��t����� z� � for all � �
h t
�
� t
i
�

Applied to u the Harnack inequality yields

C��
H � C��

H u
� t
�
� x
�
� u�t� y�

�
X

z�B�x�
p
t�

Pt���y� z�

�
X

z�B�x�
p
t�

m�z�

m�y�
Pt���z� y�

�
X

z�B�x�
p
t�

CHm�z�

m�y�
Pt�x� y�

�
CHV �x�

p
t�

m�y�
Pt�x� y� �

These on�diagonal estimates yield the volume regularity�

Proposition ���� Assume ��� �� satis�es H�CH�� Then DV �C�
H� is

true�

Proof�

C��
H m�x�

V �x� r�
� Pr��x� x� � CHP�r��x� x� � CH

CHm�x�

V �x� � r�
�
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Now we prove an o��diagonal upper bound which is more precise for
x and y far apart� We still use the parabolic Harnack inequality as in
Lemma �� to estimate one term by a mean value and a second tool is
the integrated maximum principle �see �����

Theorem ��� �Integrated maximum principle�� If u is a solution on

I � � and K�t� x� a positive and decreasing in t function such that for

all t � I and x � y�

�����
�K�t� x� !K�t� y���

�
�	K
	t

�t� x�	 �K�t� x�
��	K

	t
�t� y�	 �K�t� y�

�
�

then the quantity

I�t� �
X
x��

m�x�u��t� x�K�t� x�

is decreasing in t � I�

Proof�

I ��t� �
X
x��

m�x�u��t� x�
	K

	t
�t� x�

!
X
x�y��

��xy �u�t� y�	 u�t� x��u�t� x�K�t� x� �

Since the weights �xy are symmetric�

X
x��

m�x�u��t� x�
	K

	t
�t� x�

�
X
x�y��

�xy
�

�
u��t� x�

	K

	t
�t� x� ! u��t� y�

	K

	t
�t� y�

�

andX
x�y��

��xy �u�t� y�	 u�t� x��u�t� x�K�t� x�

�
X
x�y��

�xy �u�t� y�	 u�t� x�� �u�t� x�K�t� x�	 u�t� y�K�t� y�� �
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This yields

I ��t� �
X
x�y��

�xy
�u��t� x�

�

�	K
	t

�t� x�	 �K�t� x�
�

! u�t� x�u�t� y� �K�t� x�!K�t� y��

!
u��t� y�

�

�	K
	t

�t� y�	 �K�t� y�
��

� � �

because of ������

Construction of a function K� Take ��t� x� � log �K�t� x��� �����
becomes

��� � � ���t� x�	 ��t� y�� !
	�

	t
�t� x� !

	�

	t
�t� y� � 

�

	�

	t
�t� x�

	�

	t
�t� y� �

where ��s� � cosh �s� 	 � Note that ��s� � s��� for s small so that
��� � may be connected to the following eikonal inequation for the heat
equation on a continuous geometry

	�

	t
!



�
jr�j� � � �

with a solution K � e� � ed
��t where d is a distance function of x� Our

parabolic equation should have been normalized to obtain the same
coe�cients� This di�erence and di�erential inequation ��� � contains
only 
rst�order terms� that�s why we get nice solutions considering its
Legendre associate� For instance�

��t� x� � ��t� d�x�� � max
�
f� d�x�	 ���� tg

is a solution if x � y implies jd�x� 	 d�y�j � � Indeed� note ��t� x� a
value for which the maximum is reached�

	�

	t
�t� x� � 	����t� x��

and
j��t� x�	 ��t� y�j � max f��t� x�� ��t� y�g �
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We obtain

��t� x� � arg sinh
�d�x�

t

�
�

��t� d� � d arg sinh
�d
t

�
	 t
�r

 !
d�

t�
	 
�
�

It will be useful to note that� since 	��	d � ��

�����

����
���

��t� d� � 

�

d�

t
�

d � C t implies ��d� t� � arg sinhC

�C

d�

t
�

Denote E�t� d� � e��t�d� in the sequel� This function has already been
introduced by E� B� Davies in ��� with his semigroup perturbation argu�
ment �see � ��� With this argument and Harnack inequality� L� Salo��
Coste proves Gaussian upper bounds in ���� using ideas of ����� �����
We adapt this proof to the use of the integrated maximum principle in
the next proposition�

Proposition ��� �O��diagonal upper bound�� Assume ��� �� satis�es
H�CH�� then for all x� y� t�

Pt�x� y� � C m�y�q
V �x�

p
t�V �y�

p
t�E �� t� d�x� y��

�

where C depends only on CH�

Proof� Consider the following solution of the parabolic equation�

u��� �� �
X

�B�y�
p
t�

pt�
� x� p� ��� 
� �

This will be useful to estimate A�t� �
P

�B�y�
p
t�m�
� p�t �
� x�� Indeed

we apply Theorem ��� between � and � t to

I��� �
X
���

m���u���� ��E �t! �� d�y� ��� �
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Since u��� �� � � if � �� B�y�
p
t� and u��� �� � pt��� x� if � � B�y�

p
t��

we have

I��� �
X

��B�y�
p
t�

m��� p�t ��� x�E �t� d�y� ��� � C A�t� �

Just note that d � pt implies E �t� d� � e���� see ������
In order to give a lower bound for I�� t�� we use

p�t��� 
� � C��
H pt�x� 
�

so that

u�� t� �� � C��
H

m�x�
A�t�

for � � B�x�
p
t�� This yields

I�� t� �
X
���

m���u��� t� ��E �� t� d�y� ���

� C��
H

X
��B�x�

p
t�

m���

m�x��
A�t��E �� t� d�y�B�x�

p
t��� �

Since I�� t� � I���� we get

A�t� � C m�x��

V �x�
p
t�E �� t� d�y�B�x�

p
t���

�

Again the Harnack inequality gives

p�t �x� y� �
m�y��

m�x��
p�t �y� x�

� C�
Hm�y��

m�x�� V �y�
p
t�

X
�B�y�

p
t�

m�
� p��t�
� x�

�
C�
Hm�y��

m�x�� V �y�
p
t�
A�� t�

� C m�y��

V �x�
p
� t�V �y�

p
t�E �� t� d�y�B�x�

p
� t���

�
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The proposition follows because of the volume regularity and

E �� t� d�y�B�x�
p
� t��� � cE�� t� d�x� y�� �

Remark �� Instead of E �� t� d�x� y��� we could get E �� t� d�x� y�� for
any � � � the constant C depending also on �� We would just have
to apply the Harnack inequality between t and � ! ��t� Furthermore�
we could have been more precise for the choice of a function E �using
both ����x�� and ����y�� instead of only the biggest�� All of these

manipulations tend to obtain the analog of ed
��������t� for d�t small�

Don�t forget the normalization of the parabolic equation to compare�

Remark �� One might 
nd the function E too complicated� but ����
explained that it is not purely technical� To understand it� one can take
it as ecd

��t for d�t small and �d�t�d e�d for d�t huge glued together� The
second value is adapted to the fact that when t 	 ��

Pt�x� y� �
pd�x�y��x� y� t

d�x�y�

d�x� y�"
�

so at least in this case the function E gives an optimal upper bound�

���� Discrete�time estimates�

Assume ���� is true so that we can consider the positive sub�
markovian kernel p � p	 �� �this means p�x� y� � p�x� y�	 � ��x� y��
then pn�x� y� is de
ned as in ����� Now compute Pn and pn with p

Pn�x� y� � e�����n
��X
k
	

nk

k"
pk�x� y� �

��X
k
	

ak pk�x� y� ������

pn�x� y� �

nX
k
	

Ck
n �

n�k pk�x� y� �
nX

k
	

bk pk�x� y� �

To compare the two sums we study ck � bk�ak for � � k � n�

ck �
n"�n�k

�n	 k�" e�����n nk
�
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Lemma ��
�

� � k � n implies ck � C��� �

n � a�

��
and jk 	 �	 ��nj � a

p
n imply ck � C�a� �� � � �

The condition n � a���� ensures that a
p
n � �n� We shall consider

only � � �� so that we always have n�� � k � n in the second

assertion�

Proof� The ck�s follow the recurrence formula ck�� � ck�n	k����n��
so they reach a maximum for k around the real �	��n� Let us use the
Gamma function� ��n!� � n" and tt e�t

p
t�C � ��t!� � C tt e�t

p
t�

Set ct � ��n! ��n�t���n	 k ! � e�����t nt� Similarly� it reaches its
maximum for t � �	 ��n� Thus�

ck � ��n! ���n

���n! � e�����n n�����n

�
��n! �

nn e�n
��n��n e��n

���n! �

� C
p
n

Cp
�n

�
C�

p
�
�

Next� we prove the second assertion of the lemma� Again� because of
ck�s variations� we only check this for k � �	��n�apn� For instance�
for �	 ��n	 a

p
n � k � �	 ��n�

ck �
n"�n�k

�n	 k�" e�����n nk

� ��n! ���n�a
p
n

���n! a
p
n! � e�����n n�����n�a

p
n

� 

C�

ea
p
n�

 !
a
p
n

�n

��n�apn
p
np

�n! a
p
n

� 

C�
ea
p
n���n�a

p
n� log���a���

p
n�� 
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� 

C�
ea
p
n���n�a

p
n�a���

p
n�

�


C�
e�a

��� �

This technical result is the key to compare p and P� One side is easy
now�

Theorem ���� Assume ��� �� satis�es p�x� x� � � � � for all x in ��
Then� for all x� y� n�

pn�x� y� � C���Pn�x� y� �

It is the case when ���� is true� This theorem may be applied in
many other situations �with any volume growth� when it is easier to
work on P� When no hypothesis is assumed on p�x� x�� see the comment
after De
nition �� about ��� ������ For instance� on a locally uniformly

nite �by N� non�weighted graph ��xy � f�� g�� p��x� x� � �N �

The other side of the comparison is more intricate�

Proposition ��	 �On�diagonal estimates�� Assume ��� �� satis�es

DV �C��� P �C�� and ����� Then� there exist cd� Cd � �� depending
only on C�� C� and �� such that

pn�x� y� � Cdm�y�

V �x�
p
n�

� for all x� y� n �

d�x� y�� � n implies pn�x� y� � cdm�y�

V �x�
p
n�

�

Proof� The 
rst assertion follows from Theorem ��� and the upper
bound in Proposition ��� To deduce the second assertion from the
lower bound in Proposition ��� we will have to prove that in the sum
������ the terms for jk 	 � 	 ��nj � a

p
n contain half of the whole

sum� First we will set � � ��� �this will be useful later when we apply
the upper bound to a Markov kernel p��� Now� to prove that the lower
bound for P implies one for p� it will be su�cient to prove that for all
� � �� there exists a�

X
jk������nj�apn

ak pk�x� y� �
�m�y�

V �x�
p
n�

�
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We will take � � C��
H ��� the desired lower bound will be proved for

n � N � a����� For n � N � the condition ���� gives pn�x� y� � �N �
We can apply the upper bound to the Markov kernel p� � p��	���

Indeed� it is generated by weights ��xy

��xx �
�xx 	 �m�x�

	 �
� �m�x� �

��xy �
�xy
	 �

� if x �� y �

m��x� � m�x� �

Thus� the volume is identical and P �C�� is still satis
ed because weights
�xy for x �� y have increased� This yields p�k�x� y� � C �dm�y��V �x�

p
k��

hence pk�x� y� � C �dm�y� �	 ��k�V �x�
p
k�� Next� we have to get the

estimate

X
jk������nj�apn

e�����n ��	 ��n�k

k"



V �x�
p
k�
� ��

V �x�
p
n�

�

The sum for k � � 	 ��n ! a
p
n is easier because we simply use

V �x�
p
k� � V �x�

p
n��� � V �x�

p
n��� � V �x�

p
n��C�� Then� we

obtain the k ! th term of the sum if we multiply the kth term by
�	 ��n��k ! �� So we estimate this part by a geometric sum�

X
k������n�apn

e�����n ��	 ��n�k

k"



V �x�
p
k�

� e�����n ��	 ��n������n�a
p
n

���	 ��n! a
p
n! �

C�

V �x�
p
n�



	 �	 ��n

�	 ��n! a
p
n

� C C� e
a
p
n�������n�apn� log ���a�������pn��


 

V �x�
p
n�

p
�	 ��n! a

p
n

�	 ��n! a
p
n

a
p
n� �z �

� �
a
because n a�

��

� ����
V �x�

p
n�

�
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with a good choice of a� Indeed� since log � ! u� � u��u ! �� the
argument of the exponential function appears to be negative�

To deal with k � � 	 ��n 	 a
p
n� we must be careful with the

factors V �x�
p
k��V �x�

p
k 	 � when we compute the k	th term from

the kth� A rough application of the volume regularity gives V �x�
p
k� �

C�V �x�
p
k 	 �� So for the terms k � � 	 ��n���C��� the k 	

th term is less than one half of the kth term and the estimation is
straightforward� Now for the other terms we bound all �V �x�

p
k�

by �V �x�
p
�	 ��n���C���� then the same computation as for k �

� 	 ��n ! a
p
n shows the estimate with �V �x�

p
�	 ��n���C���

which is less than C�V �x�
p
n� if we apply many times the volume reg�

ularity�
Now we prove o��diagonal upper and lower bounds�

Theorem ��� �O��diagonal estimates�� Assume ��� �� satis�es

DV �C��� P �C�� and ����� Then� there exist positive cl� Cl� Cr and cr
depending only on C�� C� and � such that G�cl� Cl� Cr� cr� is true�

Proof of the upper bound� It is a consequence of Theorem ��� and
Proposition ����

pn�x� y� � C m�y�p
V �x�

p
n�V �y�

p
n�E ��n� d�x� y��

� C m�y�p
V �x�

p
n�V �y�

p
n�

e�cd�x�y�
��n �

for d�x� y� � n because of ������
Now use

V �x�
p
n� � V �y� d�x� y� !

p
n�

� C�

�d�x� y� !pnp
n

�logC�� log �

V �y�
p
n� �

pn�x� y� � C
p
C� m�y�

V �x�
p
n�

�d�x� y� !pnp
n

�logC��� log �


 e��c���d�x�y���n e��c���d�x�y���n �

It is clear that the factor�d�x� y� !pnp
n

�logC��� log �

e��c���d�x�y���n
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is bounded�

Proof of the lower bound� It is well�known that the Gaussian
lower bound follows from the on�diagonal one� So let us apply many
times the second assertion of Proposition �� � We set n � n�! 
 
 
!nj �
x � x	� x�� � � � � xj � y and B	 � fxg� Bi � B�xi� ri�� Bj � fyg such
that���������
��������

j 	  � C
d�x� y��

n
�

ri�cpni�� � so that z � Bi imply V �z�
p
ni����AV �Bi� �

sup
z�Bi��

z��Bi

d�z� z��� � ni � so that pni�z� z
�� � cdm�z��

V �z�
p
ni�

�

We will see below how to construct this decomposition� It is a purely
technical problem �cutting in a discrete context��

It will be su�cient to prove the Gaussian lower bound since

pn�x� y�

�
X

�z������zj����B������Bj��

pn��x� z�� pn��z�� z�� 
 
 
pnj �zj��� y�

�
X

�z������zj����B������Bj��

cdm�z��

V �x�
p
n��

cdm�z��

V �z��
p
n��


 
 
 cdm�y�

V �zj���
p
nj�

� cjdA
��j X

�z������zj����B������Bj��

m�z��

V �x�
p
n��

m�z��

V �B��

 
 
 m�y�

V �Bj�

�
cdm�y�

V �x�
p
n��

� cd
A

�j��

�

We just have to choose Cl � C log �A�cd��

Decomposition� Consider three cases�

If d�x� y� � n���� then we can set j � n� ni � � Bi � fxig �for
instance� ri � ��� and choose d�xi� xi��� � �

If d�x� y�� � n� then we can set j �  �in fact Proposition �� has
not to be iterated��
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Otherwise� set

j �
h
�

d�x� y��

n

i
� � �

This way� n�j and d�x� y��j are bigger than � and

�d�x� y�
j

��
� n

� j
�

so we can choose ni � n�j �i�e� �n�j� or �n�j� ! � and

d�xi� xi ! � � ri � d�x� y�

j
�

���� Discrete�time Harnack inequality�

We will prove the discrete�time Harnack inequality thanks to the
Gaussian estimates� The method is based on �� Section ��� Denote
B � B�x	� R� where R � N
 � with boundary 	B � fx � d�x	� x� � Rg�
The idea of the proof is that for ��� �� � 	Q and �n� x� � Q� or Q��
pn���x� ���s lower and upper bounds di�er only by a constant� The
di�culty is that the solution u on Q is not a combination of pn���x� ��
but of Un���x� �� where Un�x� y� is the solution for �n� x� � N � B
satisfying U	�x� y� � ��x� y� and Un�x� y� � � for n � � and x � 	B�
Obviously Un�x� y� � pn�x� y�� so only the lower bound needs some
work�

Lemma ���� Assume ��� �� satis�es G�cl� Cl� Cr� cr�� Then� there exist
�� c � � depending only on cl� Cl� Cr and cr such that

Un�x� y� � cm�y�

V �x	� � �R�
�

whenever ������
�����

��R�� � n � �� �R�� �

x � B�x	� � R� �

y � B�x	� � �R� �

d�x� y� � n �
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Proof� The idea �see �� Lemma ���� is that if d�x� 	B� is big enough�
p	 U is small and the lower bound for p applies to U � First note that

pn�x� y� � � cm�y�

V �x	� � �R�
�

where c � cl e
��Cl��� Now� write

r�n� x� � pn�x� y�	 Un�x� y� �
X
���B
��n

a��� �� pn���x� �� �

where a��� �� � �� These coe�cients may be constructed by recur�
rence on �� Another point of view is that �m����m�y�� a��� �� is the
probability to reach 	B for the 
rst time at � after � steps� That�s whyX

���

m���

m�y�
a��� �� �  �

We can check it this way

 �
X
x

m�x�

m�y�
pn�x� y�

�
X
x

m�x�

m�y�
r�n� x�

�
X
x����

m�x�

m�y�
a��� �� pn���x� ��

�
X
���

�
a��� ��

X
x

m�x�

m�y�
pn���x� ��� �z �


m����m�y�

�
�

To estimate r�n� x� we use the Gaussian upper bound�

m�y�

m���
pn���x� �� � Crm�y�

V �x�
p
n	 ��

e�crd�x�y�
���n���

�
�
Cr

V �x� � �R�

V �x�
p
n	 ��

e�cr������R����n���
� m�y�

V �x� � �R�

� cm�y�

V �x	� � �R�
�



��� T� Delmotte

with a good choice of �� The lemma follows�

Theorem ����� Assume ��� �� satis�es G�cl� Cl� Cr� cr�� then there

exists CH � � such that H�CH� is true�

Proof� Let us 
rst point out that the Gaussian lower bound yields a
volume regularity� The following argument�

 �
X

y�B�x��r�

pr��x� y�

�
X

y�B�x��r�

clm�y�

V �x� r�
e�Cl��r�

��r�

� cl e
��Cl

V �x� � r�

V �x� r�
�

is correct for r integer and r � � �because we need d�x� y� � r���
This extends to other values thanks to ���� �which is an immediate
consequence of G�cl� Cl� Cr� cr���

Now we prove the Harnack inequality for 
 � �� �� � ����� �� � ���
�� � � ��� �� � � �� and r � R � N
 in the notations of De
nition ���

Let u be a solution on Q� there is a decomposition

v�n� x� �
X
��n

���B�x����R�

or

�
	
��B�x����R�

a��� ��Un���x� �� �

with non�negative a��� �� such that u�n� x� � v�n� x� if x � B�x	� � �R��
Again the coe�cients may be constructed by recurrence on �� the key
is to keep v � u everywhere�

Thus� it will be su�cient to prove the Harnack inequality for
the terms U����
� ��� this means Un����x�� �� � C Un����x�� �� for
�n�� x�� � Q�� �n�� x�� � Q�� � � ��R

� and d�x�� x�� � n� 	 n��
The lower bound is a consequence of Lemma ��� if d�x�� �� � n� 	 ��

Un����x�� �� �
cm���

V �x	� � �R�
�
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for x� � B�x	� 
R� � B�x	� � R� and ��R
� � n� � ��R

�� If d�x�� �� �
n� 	 �� then

d�x�� �� � d�x�� ��	 d�x�� x�� � �n� 	 ��	 �n� 	 n�� � n� 	 �

and Un����x�� �� � ��
The upper bound looks alike either because of time regularization

in the case � � � and � � B�x	� � �R� or because of space regularization
in the case � � 	B�x	� � �R�� In the 
rst case� for x� � B�x	� � R� and
��R

� � n� � ��R
��

Un��x�� �� � pn��x�� ��

� Crm���

V �x��
p
n��

� Crm���

V �x�� ��R�

� C m���

V �x	� � �R�
�

where C � Cr C
N
� � we must apply the volume regularity N times�

N depending on � and ��� In the second case� we use the Gaussian
coe�cient and d�x�� �� � �� �R�	 ��R��

Un����x�� �� � pn����x�� ��

� Crm���

V �x��
p
n� 	 ��

e�cr d�x����
���n����

� C m���

V �x	� � �R�
�

���� Poincar�e inequality�

Theorem ����� Assume H�CH�� then there exist C�� C� and � � �
such that DV �C��� P �C�� and ���� are true�

Proof� In the comments after Theorem � � we already mentioned
that H�CH� implies a property ����� Then DV �C�� is proven as in
Section ��� The discrete version raises new di�culties only for small
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radii but then ���� is su�cient� Thus we also obtain� as in Proposition
���

d�x� y�� � n implies pn�x� y� � cm�y�

V �x�
p
t�
�

The fact that parabolic Harnack inequality implies Poincar�e inequality
is proven on manifolds in ���� with ideas of ���� Take f de
ned on
B�x	� � r� and consider the Neumann problem on B�x	� � r�� It may
be de
ned this way� consider the graph B�x	� � r� with the restriction
�jB�x���r��B�x���r�� it gives a kernel p��x� y�� The crucial point is that
p��x� y� has increased �comparing to p�x� y�� for x � 	B�x	� � r�� Set P
the Markov operator

Pg�x� �
X
y

p��x� y� g�y�

and denote the iteration Q � P ��r��� For any positive g� Png�x� is a
positive solution on B�x	� � r� of the parabolic equation �of ��� Thus�
for x � B�x	� r��

�Q�f 	 �Qf��x�����x� �
X

y�B�x��r�

cm�y�

V �x� � r�
�f�y�	 �Qf��x���

� c

V �x	� � r�

X
y�B�x��r�

m�y� �f�y�	 fB�x��r��
�

because
P

y�B�x��r�
m�y� �f�y�	 ��� is minimal for � � fB�x��r�� This

yieldsX
y�B�x��r�

m�y� jf�y�	 fB�x��r�j� � C
X

x�B�x���r�

�Q�f 	 �Qf��x�����x�

� C �kfk�� 	 kQfk���������

� C �� r� krfk��� ������

where
kfk�� �

X
x�B�x���r�

m��x� f�x��

and
krfk�� �

X
x�y�B�x���r�

�xy jf�x�	 f�y�j� �
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The line ������ is a variance formula and the line ����� is justi
ed by
the two properties

kPfk�� � kfk�� and kfk�� 	 kPfk�� � krfk�� �

We give the proof of the second one which is not so widely known as
the 
rst� Note that a� 	 b� � � a �a	 b��

X
x

�
m��x�

�
f�x�� 	

�X
y

p��x� y� f�y�
����

�
X
x

�
�m��x� f�x�

�
f�x�	

�X
y

p��x� y� f�y�
���

� �
X
x�y

�
m��x� p��x� y�� �z �

�xy

f�x� �f�x�	 f�y��
�

�
X
x�y

��xy �f�x�	 f�y�� �f�x�	 f�y��� �

This ends the proof of Theorem � �

�� Some consequences of Harnack inequality and Gaussian

estimates�

���� H�older regularity�

Among the immediate consequences of Harnack inequality are Li�
ouville theorem stated in ��� because only the elliptic version is needed
and H�older regularity of solutions of the discrete parabolic equation�

Proposition ���� Assume ��� �� satis�es the properties of Theorem

� � Then there exists h � � and C such that for all x	 � �� n	 � Z

and R � N� if u is a solution on Q � �Z� �n		 �R�� n	���B�x	� �R��
x�� x� � B�x	� R� and n�� n� � Z� �n	 	 R�� n	�� then

ju�n�� x��	 u�n�� x��j � C
� sup fpjn� 	 n�j� d�x�� x��g

R

�h
sup
Q
juj �
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Proof� Fix n� � n� and set Q�i� � �Z � �n� 	 ��i� n	�� � B�x�� �
i��

M�i� � supQ�i� u� m�i� � infQ�i� u and ��i� � M�i� 	 m�i�� �i��� �
sup fpjn� 	 n�j� d�x�� x��g � �i� and �i� � R � �i���� This way�
��i�� � ju�n�� x��	 u�n�� x��j and ��i�� � � supQ juj�

Set m��i� � u�n� 	 ��i��� x�� and apply Harnack inequality in
Q�i! � to u	m �i! � and M �i! �	 u

m��i�	m�i! � � CH �m�i�	m�i! �� �

M�i! �	m��i� � CH �M�i! �	M�i�� �

This yields ��i� � �	 C��
H ���i! �� Thus�

��i�� � �	 C��
H �i��i� ��i��

and the proposition follows�

���� Green function�

With the Gaussian estimates for pn� one easily proves estimates for
the Green function�

Proposition ���� Assume ��� �� satis�es the properties of Theorem

� � Then the Green function G�x� y� �
P��

n
	 pn�x� y� is �nite if and

only if

������
��X
n
	

n

V �x� n�
� !� �

and it satis�es the estimates

������

C��m�y�
��X

n
d�x�y�

n

V �x� n�
� G�x� y�

� C m�y�
��X

n
d�x�y�

n

V �x� n�
�

Note that condition ������ is satis
ed or not uniformly for x � ��
Indeed� for n � d�x� x��� C��

� V �x� n� � V �x�� n� � C� V �x� n�� On
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manifolds� the necessity of ������ was proved in �� �� The su�ciency and
the estimates ������ were studied in ���� ����� ����� ���� with assump�
tions on the curvature� With the work ����� L� Salo��Coste obtained
them with Poincar�e inequality assumption�

Proof� We use the Gaussian estimates G�cl� Cl� Cr� cr�� They yield

������

C��m�y�
��X

n
d��x�y�



V �x�
p
n�
� G�x� y�

� C m�y�
��X

n
d��x�y�



V �x�
p
n�

�

The lower bound is a consequence of

G�x� y� �
��X
n
	

pn�x� y� �
��X

n
d��x�y�

pn�x� y� �
��X

n
d��x�y�

clm�y�

V �x�
p
n�

e�Cl �

The upper bound is obtained by dividing the sum G�x� y� into two parts

��X
n
d��x�y�

pn�x� y� � Crm�y�
��X

n
d��x�y�



V �x�
p
n�

�

and

d��x�y�X
n
	

pn�x� y� �
d��x�y�X
n
d�x�y�

Crm�y�

V �x�
p
n�

e�crd
��x�y��n

� Crm�y�

d��x�y�X
n
d�x�y�



V �x� � d�x� y��


 C�

�� d�x� y�p
n

�logC�� log �

e�crd
��x�y��n

� �z �
�constant

� C m�y�

�d��x�y�X
n
d��x�y�



V �x�
p
n�

�
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The proposition follows from ������ since

��X
n
d��x�y�



V �x�
p
n�

�
��X

k
d�x�y�

�fn � N � k � pn � k ! g� �z �

�k��



V �x� k�
�
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Singular integral operators

with non�smooth kernels

on irregular domains

Xuan Thinh Duong and Alan McIntosh

Abstract� Let X be a space of homogeneous type� The aims of this
paper are as follows�

i� Assuming that T is a bounded linear operator on L��X �� we give
a su�cient condition on the kernel of T so that T is of weak type ��� ���
hence bounded on Lp�X � for � � p � �	 our condition is weaker than
the usual H
ormander integral condition�

ii� Assuming that T is a bounded linear operator on L���� where
� is a measurable subset of X � we give a su�cient condition on the
kernel of T so that T is of weak type ��� ��� hence bounded on Lp���
for � � p � ��

iii� We establish su�cient conditions for the maximal truncated
operator T�� which is de�ned by T�u�x�  sup��� jT�u�x�j� to be Lp
bounded� � � p ��� Applications include weak ��� �� estimates of cer�
tain Riesz transforms� and Lp boundedness of holomorphic functional
calculi of linear elliptic operators on irregular domains�

�� Introduction�

Let �X � d� �� be a space of homogeneous type� equipped with a
metric d and a measure �� Let T be a bounded linear operator on

���
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L��X � with an associated kernel k�x� y� in the sense that

��� �Tf��x� 

Z
X

k�x� y� f�y� d��y� �

where k�x� y� is a measurable function� and the above formula holds for
each continuous function f with compact support� and for almost all x
not in the support of f �

One important result of Calder�on�Zygmund operator theory is the
well known H
ormander integral condition on the kernel k�x� y�� see
�H
or�� which is a su�cient condition for the operator T to be of weak
type ��� ��� It states that T satis�es weak ��� �� estimates if there exist
constants C and � � � so thatZ

d�x�y���d�y��y�

jk�x� y�� k�x� y��j d��x� � C �

for all y� y� � X �
In practice� many operators satisfy the H
ormander integral con�

dition� but there are numerous examples of operators which do not�
and certain classes of such operators can be proved to be of weak type
��� ��� See� for example �F�� �Ch��� �CR�� �Hof�� �Se�� However� in these
papers� the authors investigate speci�c classes of operators and do not
give su�cient conditions on kernels for general operators to be of weak
type ��� ���

A natural question is whether one can weaken the H
ormander inte�
gral condition and still conclude that T is of weak type ��� ��� Although
Calder�on�Zygmund operator theory is now well established� to our best
knowledge� no such condition is known� Our �rst aim is to give a posi�
tive answer to this open question�

There is another limitation of the usual Calder�on�Zygmund theory�
It is only established for spaces of homogeneous type� The main feature
of these spaces is that they satisfy the doubling property� Measurable
subsets of Rn which do not possess any smoothness of their boundaries�
do not satisfy the doubling property� hence they are not spaces of ho�
mogeneous type� Such measurable sets� however� do appear naturally
in partial di�erential equations� Our second aim is to present a su��
cient condition on the kernel of a bounded operator T on L����� where
� is a measurable subset of a space of homogeneous type� so that T is
of weak type ��� �� on ��

The paper is organised as follows� In Section �� we assume that T is
a bounded linear operator on L��X �� where X is a space of homogeneous
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type� We then prove a su�cient condition on the kernel k�x� y� of T
so that T is of weak type ��� �� �Theorem ��� Roughly speaking� T is
of weak type ��� �� if there exists a class of operators At with kernels
at�x� y�� which play the role of approximations to the identity� so that
the kernels kt�x� y� of the composite operators TAt satisfy the conditionZ

d�x�y��ct��m
jk�x� y�� kt�x� y�j d��x� � C �

for some positive constants m� c� C� uniformly in y � X and t � �� The
freedom in choosing At is important� In particular circumstances we
may require them to commute with T � or we may wish to allow the
kernels at to be discontinuous�

It is not di�cult to check that our condition is a consequence of
the H
ormander integral condition �Proposition ���

In Section �� we assume that � is a measurable subset of a space
of homogeneous type with no smoothness on the boundary� We then
present a su�cient condition on the kernel k�x� y� which is somewhat
stronger than that of Theorem �� so that the operator T is of weak type
��� �� on � �Theorem ��� Our result gives new criteria to investigate the
Lp boundedness of singular integrals on measurable sets� The results
on � are made possible by the fact that no smoothness is required on
the kernels at�x� y� in Theorem ��

In Section �� we extend the results in sections � and � to estab�
lish su�cient conditions on the kernel k�x� y� which ensure the Lp
boundedness of the maximal truncated operator T�� where T�u�x� 
sup��� jT�u�x�j and

T�u�x� 

Z
d�x�y���

k�x� y�u�y� d��y� �

Our assumptions on the kernel k�x� y� are somewhat stronger than those
used in Theorems � and �� but are essentially weaker than the usual
ones on spaces of homogeneous type �Theorem ��� The result is new
for measurable subsets of spaces of homogeneous type �Theorem ���

Applications are given in Section �� We �rst establish weak ��� ��
estimates for certain Riesz transforms and similar types of operators
�Theorem ��� This allows us� for example� to simplify the proof of the
Lp boundedness of the Riesz transforms on Lie groups which was given
by Salo��Coste when � � p � � �SC��

Finally� we prove that every operator L with a bounded holomor�
phic functional calculus in L����� which generates a semigroup with
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suitable upper bounds on its heat kernels� also has a bounded holo�
morphic functional calculus in Lp��� when � � p � � �Theorem ���
Here � is a measurable subset of a space X of homogeneous type� It
is this result which prompted our investigation� so let us outline its
background�

In the case when the heat kernels also satisfy H
older bounds� then
this result follows from the usual Calder�on�Zygmund theory� because
the operators f�L� in the functional calculus satisfy standard Calder�on�
Zygmund bounds� This is the approach developed by Duong in the case
of those elliptic operators having such heat kernels� which are de�ned
by boundary conditions on strongly Lipschitz domains� See his thesis
�Du� and also �DMc�� This method does not work for those elliptic
operators whose heat kernels satisfy pointwise bounds but not H
older
bounds� In �DR�� Duong and Robinson showed how to proceed in such
cases� provided still that the operators are de�ned on strongly Lipschitz
domains� There they proved the �rst part of Theorem � of this paper in
the case when � is a space of homogeneous type� though the last part�
namely the Lp boundedness of the maximal truncated operators� is
new� In �AE�� Arendt and ter Elst applied this theorem to the Dirichlet
problem for certain elliptic operators de�ned on subsets of Rn whose
boundary has null measure� by extending the functional calculus to that
of an operator de�ned on all of Rn � They asked whether the assumption
concerning the null measure of the boundary could be dropped� This
is what we do in Theorem ��

As can be seen� our investigations into removing the assumption
of H
older continuity from the kernels have led to the formulation of
general conditions on singular integral operators which are applicable
in a variety of situations�

�� Weak ����� estimates of singular integral operators�

Let X be a topological space equipped with a measure � and a
metric d which is a measurable function on X �X � We de�ne X to be a
space of homogeneous type if the balls B�x	 r�  fy � X � d�x� y� � rg
satisfy the doubling property

��B�x	 � r�� � c ��B�x	 r�� � �� �

for some c � � uniformly for all x � X and r � �� A more general
de�nition can be found in �CW� Chapter ���
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Note that the doubling property implies the following strong ho�
mogeneity property�

��B�x	� r�� � c �n��B�x	 r�� �

for some c� n � � uniformly for all � � �� The parameter n is a measure
of the dimension of the space� There also exist c and N � � � N � n so
that

�U� ��B�y	 r�� � c
�
� �

d�x� y�

r

�N
��B�x	 r��

uniformly for all x� y � X and r � �� Indeed� the property �U� with
N  n is a direct consequence of triangle inequality of the metric d and
the strong homogeneity property� In the cases of Euclidean spaces Rn

and Lie groups of polynomial growth� N can be chosen to be ��
Let T be a bounded linear operator mapping L��X � into L��X ��

Assume the operator T is given by a kernel k�x� y� in the sense of ����
We shall work with a class of integral operators At� t � �� which

plays the role of approximations to the identity� We assume the opera�
tors At can be represented by kernels at�x� y� in the sense that

Atu�x� 

Z
X

at�x� y�u�y� d��y� �

for every function u � L��X � � L��X �� and the kernels at�x� y� satisfy
the following conditions

��� jat�x� y�j � ht�x� y� �

for all x� y � X where ht�x� y� is a function satisfying

��� ht�x� y�  ���B�x	 t��m�����s�d�x� y�m t���

in which m is a positive constant and s is a positive� bounded� decreas�
ing function satisfying

lim
r��

rn�� s�rm�  � �

for some 	 � N � where N is the power which appeared in property �U��
and n the �dimension� entering the strong homogeneity property�
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It then follows that

ht�x� y� � cmin
n �

��B�x	 t��m��
�

�

��B�y	 t��m��

o

	
�
� �

d�x� y�

t��m

�N
s�d�x� y�m t������

� cmin
n �

��B�x	 t��m��
�

�

��B�y	 t��m��

o
s��d�x� y�

m t��� �

where s� is a function similar to s with some 	 � ��
We also note that there exist positive constants c� and c� so that

c� �

Z
X

ht�x� y� d��x� � c�

uniformly in t and y�
The existence of such a class of operators At in a space of homoge�

neous type� is not a problem� We can �rst choose a function s satisfying
the decay condition in ���� de�ne ht as in ���� and let at  ht� hence
conditions ��� and ��� are automatically satis�ed� The kernels at then
possess the smoothness of the function s�

For any m � �� we can also construct at�x� y� with the following
additional properties

at�x� y�  � � when d�x� y� � c� t
��m ���� Z

X

at�x� y� d��x�  � ����

for all y � X � t � �� This can be achieved by choosing

at�x� y�  ���B�y	 t��m�����

B�y�t��m�

�x� �

where 

B�y�t��m�

denotes the characteristic function on the ball

B�y	 t��m�� Then let At be the operators which are given by the kernels
at�x� y��

These operators At constructed as above exist in the space X in�
dependently of the operator T � However� for certain operators T � it
is useful to construct operators At which are related to T � This is of
interest since the analysis of At� TAt and AtT is useful for establishing
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the boundedness of T in an Lp space� Examples of this are given in
Section ��

The following lemma is needed in the proof of Theorem �� For its
proof� see �DR� Proposition �����

Lemma �� Given functions ht�x� z� which satisfy ���� and � � �� there
exist positive constants c and � such that

sup
z�B�y�r�

ht�x� z� � c inf
z�B�y�r�

h�t�x� z�

uniformly for x� y � X � and r� t � � with rm � � t�

We now present the main result of this section� The proof is based
on that used by Duong and Robinson in proving �DR� Theorem �����
It relies upon the idea of Hebisch �He� of using L��estimates to obtain
weak type ��� �� bounds� Related ideas also appeared earlier in �F��

Theorem �� Let T be a bounded linear operator from L��X � to L��X �
with an associated kernel k�x� y�� Assume there exists a class of op�

erators At� t � �� which satisfy the conditions ��� and ��� so that the

composite operators TAt have associated kernels kt�x� y� in the sense

of ��� and there exist constants C and c � � so that

���

Z
d�x�y��ct��m

jk�x� y�� kt�x� y�j d��x� � C �

for all y � X �

Then the operator T is of weak type ��� ��� Hence� T can be ex�

tended from L��X � � Lp�X � to a bounded operator on Lp�X � for all

� � p � ��

Proof� We need to prove that T satis�es weak type ��� �� estimates�
Boundedness of T on Lp�X � then follows from the Marcinkiewicz inter�
polation theorem�

Our proof makes use of the Calder�on�Zygmund decomposition to
decompose an integrable function into �good� and �bad� parts �see� for
example� �CW��� then each part is analysed separately�

Given f � L��X ��L��X � and  � kfk����X ����� then there exist
a constant c independent of f and � and a decomposition

f  g � b  g �
X
i

bi �
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so that

a� jg�x�j � c  for almost all x � X �

b� there exists a sequence of balls Qi so that the support of each
bi is contained in Qi andZ

jbi�x�j d��x� � c ��Qi� �

c�
X
i

��Qi� �
c



Z
jf�x�j d��x� �

d� each point of X is contained in at most a �nite number N of
the balls Qi�

Note that if ��X � �� then kfk����X ���� means �� Besides that�
the functions bi are usually chosen to satisfy

R
bi d��x�  � as well� but

we do not need this property�
Conditions b� and c� also imply that kbk� � c kfk� and hence that

kgk� � �� � c� kfk��
We have

��fx � jTf�x�j � g�

� �
�n

x � jTg�x�j �


�

o�
� �

�n
x � jTb�x�j �



�

o�
�

It is not di�cult to check that g � L��X �� Using the facts that T is
bounded on L��X � and that jg�x�j � c � we obtain

��� �
�n

x � jTg�x�j �


�

o�
� ��� kTgk�� � c� 

��kgk�� �
c�

kfk� �

Concerning the �bad� part b�x�� we temporarily �x a bi whose support is
contained in Qi� then choose ti  rmi where m is the constant appearing
in ��� and ri is the radius of the ball Qi� We then decompose

Tbi�x�  TAtibi�x� � �T � TAti� bi�x� �

To analyse TAtibi�x�� we �rst estimate the function Atibi� Since

Atibi�x� 

Z
X

ati�x� y� bi�y� d��y� �
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it follows from Lemma � that

jAtibi�x�j �

Z
X

hti�x� y� jbi�y�j d��y�

� kbik� sup
y�Qi

hti�x� y�

� c ��Qi� inf
y�Qi

h�ti�x� y�

� c 

Z
X

h�ti�x� y�
i�y� d��y� �

where 

i
denotes the characteristic function of the ball Qi�

Denoting by M the Hardy�Littlewood maximal operator� we then
have for any u � L��X �

jhjuj� Atibiij � c 

Z
X

Z
X

ju�x�jh�ti�x� y�
i�y� d��y� d��x�

� c  hM juj� 

i
i �

Note that the second inequality follows from properties �� and ���� Since
the Hardy�Littlewood maximal operator is bounded on L��X �� �see for
example �Ch���� it follows that

� �
���X

i

Atibi

���
�
� c 

���X
i



i

���
�
�

We now use properties c� and d� of the Calder�on�Zygmund decompo�
sition to obtain the estimate

����
���X

i

Atibi

���
�
� c 

�X
i

��Qi�
����

� c ���kfk
���
� �

Therefore

����

�
�n

x �
���X

i

TAtibi�x�
��� � 

�

o�
� ����

���X
i

TAtibi

����
�

� c ��
���X

i

Atibi

����
�

�
c


kfk� �
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On the other hand

�
�n

x �
���X

i

�T � TAti� bi�x�
��� � 

�

o�

�
X
i

��Bi� �
X
i

�



Z
cBi

j�T � TAti� bi�x�j d��x� �

where cBi denotes the complement of Bi which is the ball with the same
centre yi as that of the ball Qi in the Calder�on�Zygmund decomposition
but with radius increased by the factor �� � c�� where c is the constant
in ���� Because of property c� of the decomposition and the doubling
property of X � we have

����
X
i

��Bi� � c
X
i

��Qi� � c ��kfk� �

By assumption ���� we have

Z
cBi

j�T � TAti� bi�x�j d��x�

�

Z
cBi

��� Z
X

k�x� y�� kti�x� y� bi�y� d��y�
���d��x�

�

Z
X

jbi�y�j
�Z

d�x�y��ct
��m
i

jk�x� y�� kti�x� y�j d��x�
�
d��y�

� C kbik� �

because B�y	 c t
��m
i � 
 Bi�

Therefore

����
X
i

�



Z
cBi

j�T � TAti� bi�x�j d��x� �
X
i

C


kbik� �

C kfk�


�

Combining the estimates ���� ����� ���� and ����� the theorem is proved�

Remark�

i� It is straightforward from the proof of Theorem �� that the exis�
tence of both the kernels k�x� y� of T and kt�x� y� of TAt is not neces�
sary� We only need to assume that the di�erence operator T �TAt has
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an associated kernel so that this kernel �in place of k�x� y� � kt�x� y��
satis�es Condition �� This remark also applies to Theorem ��

ii� In Theorem �� the assumption on boundedness of T on the space
L��X � can be replaced by boundedness of T on a space Lpo�X � for some
p� � �� The proof would need only minor changes to show that T is of
weak type ��� ��� hence bounded on Lp�X � for all � � p � po�

iii� Theorem � and a standard duality argument give the following
result�

Let T be a bounded linear operator from L��X � into L��X � with
an associated kernel k�x� y� in the sense of ���� Assume there exists a
class of operators Bt whose kernels satisfy the conditions ��� and ���
so that the composite operators BtT have associated kernels Kt�x� y�
in the sense of ���� and there exist constants c � � and C so that

����

Z
d�x�y��ct��m

jk�x� y��Kt�x� y�j d��y� � C �

for all x � X �

Then the adjoint operator T � is of weak type ��� ��� Hence� T can
be extended from L��X � � Lp�X � to a bounded operator on Lp�X � for
all � � p ���

Natural questions about Theorem � are how strong is the assump�
tion ���� and what is its relation with the H
ormander integral condition�
We shall show that� for suitably chosen At� our condition ��� is actu�
ally a consequence of the H
ormander integral condition for spaces of
homogeneous type�

Proposition �� Assume that T has an associated kernel k�x� y� which
satis�es the H�ormander integral condition� i�e� there exist constants C
and � � �� so that

Z
d�x�y���d�y�z�

jk�x� y�� k�x� z�j d��x� � C �

for all y� z � X � Let At be approximations to the identity which are

represented by kernels at�x� y� satisfying conditions ���� ���� ��� and

����
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Then the kernels kt�x� y� of TAt satisfy condition ��� of Theorem
�� More precisely� there exist constants c and � so thatZ

d�x�y��	t��m
jk�x� y�� kt�x� y�j d��x� � c �

for all y � X �

Proof� Choose � � � and let �  c�� where c� is the constant so
that at�x� y�  � when d�x� y� � c� t

��m� Then� for x� y � X so that
d�x� y� � � t��m�

kt�x� y� 

Z
X

k�x� z� at�z� y� d��z� �

For all y � X �Z
d�x�y��	t��m

jk�x� y�� kt�x� y�j d��x�



Z
d�x�y��	t��m

���k�x� y�� Z
X

k�x� z� at�z� y� d��z�
��� d��x�



Z
d�x�y��	t��m

	
���k�x� y� Z

d�z�y��c�t��m
at�z� y� d��z�

�

Z
d�z�y��c�t��m

k�x� z� at�z� y� d��z�
��� d��x�

� sup
d�z�y��c�t��m

�Z
d�x�y��	t��m

jk�x� y�� k�x� z�j d��x�
�

	
�Z

d�z�y��c�t��m
jat�z� y�j d��z�

�

� c� sup
d�z�y��c�t��m

�Z
d�x�y���c�t��m

jk�x� y�� k�x� z�j d��x�
�

� c �

Note that the second equality follows from property ���� the second
inequality is using the estimateZ

X

jat�z� y�j d��z� �

Z
X

ht�z� y� d��z� � c� �
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and the last inequality follows from the H
ormander integral condition�

�� Singular integral operators on measurable subsets of a space
of homogeneous type�

We assume in this section that � is a measurable subset of a space
of homogeneous type �X � d� ��� An example of � is an open domain
of the Euclidean space Rn � If � possesses certain smoothness on its
boundary� for example Lipschitz boundary� then it is a space of homo�
geneous type and results of Section � are applicable� However� a general
measurable set � needs not satisfy the doubling property� hence it is
not a space of homogeneous type� Such a measurable set � appears
naturally in boundary value problems� for example partial di�erential
equations with Dirichlet boundary conditions�

Given a bounded linear operator T on L���� with an associated
kernel k�x� y�� the question is to �nd a su�cient condition on k�x� y�
for T to be of weak type ��� ��� The main problem in this case is the
fact that the Calder�on�Zygmund theory is not directly applicable� For
example� the Calder�on�Zygmund decomposition is not valid on �� nor
is the Hardy�Littlewood maximal operator bounded� as was needed in
proving the estimate � ��

A key observation to solve this problem is surprisingly simple�
Given a linear operator T which maps Lp��� into itself for some p�

de�ne an associated operator eT on Lp�X � by

eT �u��x�  � T �

�
u��x� � x � � �

� � x �� � �

where 

�

is the characteristic function on �� Then T is bounded on

Lp��� if and only if eT is bounded on Lp�X �� also T is of weak type

��� �� on � if and only if eT is of weak type ��� �� on X �
It is straightforward to check the above equivalences� so we leave

them to reader� Note that if T has an associated kernel k�x� y� in the

sense of ���� then eT also has an associated kernel !k�x� y� in the sense of
���� given by

!k�x� y� 

�
k�x� y� � when x � � and y � � �

� � otherwise �

We can see immediately that the condition that the kernel k�x� y� of T
satis�es the H
ormander condition is not su�cient for the kernel !k�x� y�
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of eT to satisfy the H
ormander condition� By using eT � what we do is to
transform the question of boundedness of T on a measurable set � to
the boundedness of eT on a better space �of homogeneous type� X � but

the kernel of eT could be discontinuous� However� the proof of Theorem
� makes use of the upper bounds on at�x� y� and condition ���� and
does not require any continuity assumptions on k�x� y��

From now on� to di�erentiate between a ball in X and a ball in ��
we use the notations BX and B��

The main theorem of this section is the following�

Theorem �� Let T be a bounded linear operator from L���� to L����
with an associated kernel k�x� y� in the sense of ���� Assume there

exists a class of operators At� t � �� with kernels at�x� y� de�ned on

L���� so that�

a�

Atu�x� 

Z
X

at�x� y�u�y� d��y� �

for any function u � L�����L����� and the kernels at�x� y� satisfy the
following conditions

���� jat�x� y�j � ht�x� y� �

for all x� y � �� where ht�x� y� is de�ned on X � X by

���� ht�x� y�  ���BX �x	 t��m�����s�d�x� y�mt��� �

and s is a positive� bounded� decreasing function satisfying

lim
r��

rn�� s�rm�  � �

for some 	 � � with n the �dimension� entering the strong homogeneity

property of X �

b� the composite operators TAt have associated kernels kt�x� y� in
the sense of ��� and there exist constants C and c � � so that

����

Z
d�x�y��ct��m

jk�x� y�� kt�x� y�j d��x� � C �

for all y � ��
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Then the operator T is of weak type ��� ��� Hence� T can be ex�

tended from L���� � Lp��� to a bounded operator on Lp��� for all

� � p � ��

Proof� First observe that gTAt  eT eAt where eT � eAt and gTAt are
de�ned on L��X � as described above� Moreover eT andgTAt have kernels
!k�x� y� and !kt�x� y� in the sense of ���� where !k was de�ned above and

!kt�x� y� 

�
kt�x� y� � when x � � and y � � �

� � otherwise �

Further� eAt is represented by the kernel

!at�x� y� 

�
at�x� y� � when x � � and y � � �

� � otherwise �

which is readily seen to satisfy conditions ��� and ��� on X � X �

Conditions ����� ����� and ���� imply that the operator eT satis�es
the hypotheses of Theorem �� hence it is of weak type ��� �� on X �
Therefore� T is of weak type ��� �� on � and Theorem � is proved�

Remark� Assume there exist Bt which satisfy ���� and ���� so that
the composite operators BtT satisfy property ����� A standard duality
argument shows that the adjoint operator of T is bounded on Lp���
for � � p � �� hence T is bounded on Lp��� for � � p ���

	� Boundedness of maximal truncated operators on Lp spaces�

	�� The case of spaces of homogeneous type�

In this subsection� we assume that X is a space of homogeneous
type equipped with a metric d and a measure �� Let T be a bounded
operator on L��X � with an associated kernel k�x� y� in the sense of ����
Our aim is to investigate the maximal truncated operator T� which is
de�ned by

T�f�x�  sup
���

jT�f�x�j �

where T� is the truncated singular operator de�ned by

T�f�x� 

Z
d�x�y���

k�x� y� f�y� d��y� �
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The main result of this section is the following theorem�

Theorem �� We assume the following conditions�

a� T is a bounded operator on L��X � with an associated kernel

k�x� y��

b� There exists a class of operators At which satisfy the conditions

��� and ��� so that the composite operators TAt have associated kernels

kt�x� y� in the sense of ���� Also assume that there exist constants c�
and � � � so that

���

Z
d�x�y���t��m

jk�x� y�� kt�x� y�j d��x� � c� �

for all y � X �

c� There exists a class of operators Bt represented by kernels

bt�x� y� which satisfy the upper bounds ht�x� y� de�ned by ���� and the

composite operators BtT have kernels Kt�x� y�� Also assume that there

exist positive constants � c�� c	 and c
 so that

���� jKt�x� y�j � c� ���B�x	 t��m����� � when d�x� y� � c	 t
��m

and

�� � jKt�x� y�� k�x� y�j � c
 ���B�x	 d�x� y������
t
�m

d�x� y�

�

when d�x� y� � c	 t
��m� Then T� is bounded on Lp�X � for all p� � �

p ���

Proof� It follows from conditions ��� and �� �� Theorem � and a
duality argument that T is bounded on Lp�X � for � � p ��� Without
any loss of generality� we prove the theorem with c	  �� For a �xed
� � �� we write

T�u�x�  B�mTu�x�� �B�mT � T��u�x� �

Since the class of operators Bt satis�es conditions ��� and ���� we have

���� jB�mTu�x�j � cM �jTu�x�j� �
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whereM is the Hardy�Littlewood maximal operator� and c is a constant
independent of ��

The kernel of the operator �B�mT � T�� is given by �K�m�x� y��
k��x� y�� where k��x� y�  k�x� y� if d�x� y� � � and k��x� y�  � other�
wise� There are two cases�

Case �� d�x� y� � �� then k��x� y�  � and it follows from ���� that

jK�m�x� y�� k��x� y�j  jK�m�x� y�j � c�
�

��B�x	 ���
�

Case �� d�x� y� � �� then k��x� y�  k�x� y� and it follows from �� �
that

jK�m�x� y�� k��x� y�j � c

�

��B�x	 d�x� y���

� �

d�x� y�

�

�

for some  � ��
Therefore

j�B�mT � T��u�x�j

� c

Z
d�x�y���

�

��B�x	 ���
ju�y�j d��y�

� c

Z
d�x�y���

�

��B�x	 d�x� y���

� �

d�x� y�

�

ju�y�j d��y�

� c
�

��B�x	 ���

Z
d�x�y���

ju�y�j d��y�

� c
�X
k��

�

�k

�

��B�x	 �k�� ���

Z
d�x�y���k���

ju�y�j d��y�

� cM �juj�x�� �

where again M is the Hardy�Littlewood maximal operator� and c is a
constant independent of �� Therefore

���� sup
���

j�B�mT � T��u�x�j � cM �juj�x�� �

Combining estimates ����� ���� with boundedness of T and the Hardy�
Littlewood maximal operator on Lp�X �� we obtain boundedness of T�
on Lp�X �� � � p ���
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In the next proposition� we show that� for suitably chosen Bt� our
condition �� � is a consequence of the H
older continuity estimates on
the kernel�

Proposition �� Assume that for some  � � and c� � �� the kernel

k�x� y� associated with T satis�es the condition

���� jk�z� y�� k�x� y�j � c
�

��B�x	 d�x� y��

�d�x� z�
d�x� y�

�

�

when d�x� y� � c� d�x� z�� Let Bt be approximations to the identity

which are represented by kernels bt�x� y� which satisfy ���� ��� andR
X
bt�x� y� d��y�  �� for all x � X � t � ��
Then the kernels Kt�x� y� associated with BtT satisfy condition

�� �� i�e� there exists a constant c so that

jKt�x� y�� k�x� y�j � c ���B�x	 d�x� y�����
t
�m

d�x� y�

�

for d�x� y� � c� c� t
��m where c� is the constant appearing in condition

����

Proof� Suppose that d�x� y� � c� c� t
��m� Then

jk�x� y��Kt�x� y�j


���k�x� y�� Z

X

k�x� z� bt�z� y� d��z�
���


���k�x� y� Z

d�z�y��c�t��m
bt�z� y� d��z�

�

Z
d�z�y��c�t��m

k�x� z� bt�z� y� d��z�
���

�

Z
d�z�y��c�t��m

jk�x� y�� k�x� z�j jbt�z� y�j d��z�

� c ���B�x	 d�x� y�����
t
�m

d�x� y�


Z
d�z�y��c�t��m

jbt�z� y�j d��z�

� c ���B�x	 d�x� y�����
t
�m

d�x� y�

�
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Note that the second equality is using condition ��� and the second
inequality follows from �����

Remark� Propositions � and � show that conditions ��� and �� �
are weaker than the usual conditions which guarantee Lp boundedness
of maximal truncated operators� See� for example �St�� Chapter ���
However� we need the extra assumption ����� In the case of functional
calculi of generators of semigroups with suitable heat kernel bounds�
condition ���� is satis�ed without extra regularity conditions on the
kernel of T � See Theorem ��

	��� The case of measurable subsets of a space of homogeneous
type�

We now assume that � is a measurable subset of a space of homoge�
neous type �X � d� �� as in Section �� By strengthening the assumptions
on the kernel of T in Theorem �� we can obtain boundedness of maximal
truncated operators on Lp spaces as follows�

Theorem 	� Let T be a bounded operator on L���� with an associated

kernel k�x� y�� We assume the following conditions�

a� There exists a class of operators At� t � �� represented by kernels
at�x� y� which satisfy conditions ���� and ���� so that the composite

operators TAt have associated kernels kt�x� y� in the sense of ���� and
there exist constants c and c� so that

����

Z
d�x�y��ct��m

jk�x� y�� kt�x� y�j d��x� � c� �

for all y � ��

b� There exists a class of operators Bt� t � �� represented by kernels
bt�x� y� which satisfy conditions ���� and ���� so that the composite

operators BtT have kernels Kt�x� y�� and Kt�x� y� satisfy the following

conditions

���� jKt�x� y�j � c ���BX �x	 t��m����� �

for all x� y � � such that d�x� y� � c� t
��m�

���� jKt�x� y�� k�x� y�j � c ���BX �x	 d�x� y�����
t
�m

d�x� y�

�
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for all x� y � � such that d�x� y� � c� t
��m�

Then T� is bounded on Lp��� for all p� � � p ���

Proof� There is no loss of generality in proving the theorem with
c�  ��

It follows from Theorem � and a duality argument that T is bound�
ed on Lp��� for � � p ���

Given a function u � L���� � L���� and � � �� write

T�u�x�  B�mTu�x� � �B�mT � T��u�x� �

Consider the term B�mTu�x�� Let v be the extension of Tu from �
to X by putting v�x�  � for x �� �� then kTukLp���  kvkLp�X � for
� � p � �� Similarly� let w� be the extension of B�mTu from � to X
by putting w�x�  � for x �� �� Since

B�mTu�x� 

Z
X

b�m�x� y�Tu�y� d��y�

and the kernels bt�x� y� of Bt�x� y� satisfy ���� and ����� we have for
x � X �

���� jw��x�j � cM �jvj�x�� �

whereM is the Hardy�Littlewood maximal operator� and c is a constant
independent of �� This gives

���� sup
���

jw��x�j � cM �jvj�x�� �

The next step is to extend u to X by putting u�x�  � for x �� ��
and denote the extension by uX � Then kukLp���  kuXkLp�X �� It then
follows from assumption b� and the argument of ���� that

���� sup
���

j�B�mT � T��u�x�j � cM �juX j�x�� �

Estimates ���� and ���� imply the boundedness of T� on Lp��� for all
p� � � p ���

A consequence of the boundedness of the maximal truncated op�
erator T� is pointwise almost everywhere convergence of the limit

lim
���

T�u�x� �
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More precisely� we have the following lemma�

Lemma �� Assume that the operator T satis�es the conditions of Theo�

rem �� Let � � p ��� and assume that lim��� T�u�x� exists almost ev�

erywhere for every u in a dense subspace of Lp���� then lim��� T�u�x�
exists almost everywhere for every function u � Lp����

Proof� Lemma � follows from a standard argument of proving the
existence of almost everywhere pointwise limits as a consequence of the
corresponding maximal inequality� See� for example �St�� p� ����


� Applications� Riesz transforms and holomorphic functional
calculi of elliptic operators�


�� De�nitions�

We �rst give some preliminary de�nitions� References are �Mc��
�CDMcY�� �ADMc��

For � � � � � � �� de�ne the closed sector in the complex plane
C

S�  f� � C � j arg �j � �g � f�g

and denote its interior by S���
We employ the following subspaces of the space H�S�� � of all holo�

morphic functions on S�� �

H��S�� �  ff � H�S�� � � kfk� ��g �

where kfk�  sup fjf���j � � � S�� g�

"�S�� �  f� � H�S�� � � exists s � �� j����j � C j�js �� � j�j�s���g

and

F �S�� �  ff � H�S�� � � exists s � �� jf���j � C �j�j�s � j�js�g �

so that
"�S�� � 
 H��S�� � 
 F �S�� � �

Let � � � � �� A closed operator L in Lp�X � is said to be of type � if
��L� 
 S� and� for each � � �� there exists C� such that

k�L� �I���k � C� j�j
�� � � �� S� �
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By the Hille�Yoshida Theorem� an operator L of type � with � � ��� is
the generator of a bounded holomorphic semigroup e�zL on the sector
S�� with �  ���� ��

Suppose that L is a one�one operator of type � with dense domain
and dense range in Lp�X �� We can de�ne a functional calculus of L as
follows�

If � � "�S�� �� then

���� ��L� 
�

��i

Z


�L� �I��� ���� d� �

where � is the contour f�  r e�i� � r � �g parametrised clockwise
around S�� and � � � � �� Clearly� this integral is absolutely conver�
gent in L�X �� and it is straightforward to show� using Cauchy�s theorem�
that the de�nition is independent of the choice of � � ��� ���

Let f � F �S�� �� so that for some c and k� jf���j � c �j�jk � j�j�k�
for every � � S�� � Let

���� 
� �

�� � ���

�k��
�

Then �� f � � "�S�� � and ��L� is one�one� So �f ���L� is a bounded
operator on X � and ��L��� is a closed operator in X � De�ne f�L� by

�� � f�L�  ���L���� �f ���L� �

An important feature of this functional calculus is the following Con�
vergence Lemma�

Convergence Lemma� Let � � � � � � �� Let L be an operator

of type � which is one�one with dense domain and range� Let ff
g be

a uniformly bounded net in H��S�� �� which converges to f � H��S�� �
uniformly on compact subsets of S�� � such that ff
�L�g is a uniformly

bounded net in L�X �� Then f�L� � L�X �� f
�L�u � f�L�u for all

u � X � and kf�L�k � sup
 kf
�L�k�

For the proof of the Convergence Lemma� see �Mc�� or �ADMc��
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��� Lp boundedness of Riesz Transforms�

In this subsection� we assume that � is a measurable subset of a
space of homogeneous type �X � d� �� in Section �� Let L be a linear
operator of type � on L���� with � � ���� so that ��L� generates a
holomorphic semigroup e�zL� � � jArg �z�j � �� �  ���� �� Assume
that for real t � �� the distribution kernels at�x� y� of e�tL belong to
L���� �� and satisfy the estimate

jat�x� y�j � ht�x� y� �

for x� y � � where ht is de�ned on X � X by ��� and�
For � �  � �� � � �� de�ne F
�S

�
� � as follows

F
�S
�
� �  ff � H�S�� � � exists c� jf���j � C j�j�
g �

Assume that g � F
�S
�
� � for some � � ���� and that D is a densely

de�ned linear operator on L���� which possesses the following two prop�
erties�

a� Dg�L� is bounded on L�����

b� the function Dat� t � �� obtained by the action of D on at�x� y�
with respect to the variable x� satis�es the estimate

jDat�x� y�j � c t�
ht�x� y� �

for all x� y � ��
The main result of this section is the following theorem�

Theorem 
� Under the above assumptions a� and b�� the operator

Dg�L� is of weak type ��� ��� hence it can be extended to a bounded

operator on Lp��� for � � p � ��

Before giving the proof of the theorem� we give examples which are
applications of our results� Some speci�c operators which satisfy the
assumptions of Theorem � are as follows�

i� Let g be a �nite dimensional nilpotent Lie algebra� Assume that

g 
mM
i��

gi
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as a vector space� where �gi� gj� � gi�j for all i� j� and g� generates g

as a Lie algebra�
Let G be the associated connected� simply connected Lie group�

Then G has homogeneous dimension d given by the formula

d 
mX
j��

j dim �gj� �

where dim �gj� denotes the dimension of gj �
Consider any �nite basis fXkg of g�� Each Xk can be identi�ed

with a unique left invariant vector �eld on G� De�ne

L  �
X
k

X�
k �

Then the sub�Laplacian L is a left invariant second order di�erential
operator� which is a non�negative self�adjoint operator in L��G�� The
Banach spaces Lp�G� are de�ned with respect to Haar measure�

Note that G is a Lie group of polynomial growth� hence it is a
space of homogeneous type� Consider the Riesz transforms XkL

����

which are special cases of our operator Dg�L� when D  Xk and
g�L�  L����� It is not di�cult to check that XkL

���� is bounded
on L��G�� Gaussian upper bounds on heat kernels and their space
derivatives are well known �see� for example �SC��� hence our condi�
tion b� is satis�ed with   ���� It follows that the Riesz transforms
XkL

���� are bounded on Lp�G� for � � p � � and are of weak type
��� ��� Thus we have simpli�ed the proof of the Lp boundedness of the
Riesz transforms given by Salo��Coste �SC�� because we have not used
the smoothness of the heat kernels in the variable y�

In the same setting of G� we can also consider the case when L
is a �m�th order strongly elliptic operator with constant coe�cients
�plus a su�ciently large constant c��� and D  Xi�Xi� 	 	 	Xin for some
n � �m� Then the operator DL�n��m is bounded on L��G�� The
condition �b� is also satis�ed with   n��m� See� for example� �R�
Chapter ��� Our theorem then shows that DL�n��m can be extended
to a bounded operator on each Lp�G� for � � p � ��

ii� Let X be a complete Riemannian manifold with non�negative
Ricci curvature� L the Laplace�Beltrami operator� and D a vector �eld�
Then the Riesz transform DL���� is bounded on L��X �� Upper bounds
on the heat kernels and their derivatives can be found� for example� in
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�CLY�� �Da��� Thus the assumptions of Theorem � are satis�ed �with
  ����� so DL���� can be extended to a bounded operator on each
Lp�X � for � � p � ��

We now proceed to prove Theorem �� The following o��diagonal
estimate is proved in �DR� Proposition �����

Lemma �� Let ht�x� y� be given by ���� then for each �� � � � � 	�N��
where 	�N� are the constants in ���� there exists c � � so that

Z
d�x�y��r

ht�x� y� d��x� � c �� � rm t����� �

uniformly for all r � �� t � � and y � X �

Proof of Theorem �� Observe that� for each positive integer k� the
powers of the resolvent �L� � I��k are given by

�L� � I��k  ck

Z �

�

tk�� e�t e�tL dt �

when � � �� Therefore� the operators �L � � I��k are represented by
kernels gk��x� y� where

gk��x� y�  ck

Z �

�

tk�� e�t at�x� y� dt �

It follows from this representation and the estimates ��� and ��� on the
heat kernels that for a su�ciently large integer k� the kernels gk��x� y�
possess upper bounds which are similar to those of the heat kernels�
More speci�cally� there exist ht�x� y� satisfying ��� and ���� possibly
with a di�erent function s� so that

j�kgk��x� y�j � ht�x� y� �

for all x� y � �� where t  ��j�j�
Similarly� we also have the bound

jD�kgk��x� y�j � c t�
 ht�x� y� �

for all x� y � ��
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Choose the class of operators At  �t L� I��k� By Theorem �� it
su�ces to show that condition ���� is satis�ed� The kernels �k�x� y��
kt�x� y�� in condition ���� are associated with operatorsDg�L��I��t L�
I��k�� Let g�L��I � �t L� I��k�  f�L� where f�z�  g�z� ��� �t z �
���k�� Using the upper bounds on g�z�� we see that f belongs to the
class "�S�� ��

We next represent the operator f�L� by using the semigroup e�zL�
By ����� f�L� �acting on L��X �� is given by

f�L� 
�

��i

Z


�L� � I���f��� d� �

where the contour �  �� � �� is given by ���t�  t ei� for t � � and
���t�  �t e�i� for t � �� and � � ����

For � � �� substitute

�L� � I��� 

Z �

�

e�s e�sL ds �

Changing the order of integration gives

���� f�L� 

Z �

�

e�sL n�s� ds �

where

���� n�s� 
�

��i

Z


e�s f��� d� �

Consequently� the kernel kf �x� y� of f�L� is given by

���� kf �x� y� 

Z �

�

as�x� y�n�s� ds �

It follows from the upper bound on g�z� and assumption b� thatZ
d�x�y��ct��m

jk�x� y�� kt�x� y�j d��x�

� c

Z �

�

s�

�Z �

�

j��
 es� ��� �t �� ���k�j

	
�Z

d�x�y��ct��m
hs�x� y� d��x�

�
dj�j

�
ds

� c

Z �

�

s�

�Z �

�

j��
 es� ��� �t �� ���k�j �� � t s����� dj�j
�
ds �
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by Lemma �� Observe that j�� �t �����kj � c and j�� �t �����kj �
c t j�j when t j�j � �� We then split the integral on the right hand side
into two parts� I� and I�� corresponding to integration over t j�j � �
and t j�j � �� Then

I� �

Z �

�

s�

Z �

��t

v�
 e�	sv �� � t s����� dv ds

with � � �� Changing variables t v � v and s�t � s� and choosing
a positive � � �� we have

I� � c

Z �

�

s�

�Z �

�

v�
 e�	sv �� � s����� dv
�
ds

 c

Z �

�

s�

�� � s��

�Z �

�

�

s���
�

v���
�s v�����
 e�	sv dv

�
ds

� c

Z �

�

s�

�� � s�� s���

�Z �

�

�

v���
dv
�
ds

�since �s v�����
 e�	sv is bounded�

� C �

Similarly�

I� � c

Z �

�

s�

Z ��t

�

v�
 t v e�	sv dv �� � t s����� dv ds

� c

Z �

�

s�
 �� � s�����
Z �

�

v��
 e�	sv dv ds

� c

Z �

�

dv

Z �

�

w�
 e�	w dw

� C �

Therefore� condition ���� is satis�ed and Theorem � follows from The�
orem ��

Remarks�

� In the assumption b�� we do not assume any regularity of at�x� y�
in the variable y�
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�� The theorem is still true for g � F
�S
�
� � with � � ��� if the

upper bounds on at�x� y� in condition b� hold for all complex t � S��
with � � ��� � �� This can be achieved by �rst choosing �  � � ��
�with � to be speci�ed later�� using the formula

f�L� 
�

��i

Z


�L� � I��� f��� d� �

where the contour �  �� � �� is given by ���t�  t ei� for t � � and
���t�  �t e�i� for t � ��

We then substitute

�L� � I��� 

Z
�

e�z e�zL dz �

for � � ��� where # is given by #�t�  t ei����� for t � �� and � is
chosen su�ciently small so that ������� � ���� We also have similar
expression for � � ��� Thus we obtain a similar representation of f�L�
to that of ����� and the rest of the proof is the same as before�

�� The pointwise bound in condition �b� can be replaced by a
weaker condition on the L� norm with a suitable weight of Dat �with
respect to x variable�� See �CD��


�� Holomorphic functional calculi of elliptic operators�

We again assume that � is a measurable subset of a space of ho�
mogeneous type �X � d� �� as in Section ��

Let L be a linear operator of type � on L���� with � � ���� hence
L generates a holomorphic semigroup e�zL� � � jArg �z�j � ���� ��

Theorem � Assume the following two conditions�

a� The holomorphic semigroup e�zL� jArg �z�j � ��� � �� is rep�

resented by kernels az�x� y� which satisfy� for all � � �� an estimate

jaz�x� y�j � c� hjzj�x� y� �

for x� y � � and jArg �z�j � ���� �� where ht is de�ned on X � X by

����
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b� The operator L has a bounded holomorphic functional calculus

in L����� That is� for any � � � and f � H��S�� �� the operator f�L�
satis�es

kf�T �k� � c� kfk� �

Then the operator L has a bounded holomorphic functional calculus in

Lp���� � � p ��� that is�

kf�L�kp � cp�� kfk� �

for all f � H��S�� ��
When p  �� the operator f�L� is of weak�type ��� ���
If we denote T  f�L�� then the maximal truncated operator T� is

bounded on Lp��� for all p� � � p ���

Proof� Given ��� � � � �� choose � and � such that � � � � � � ��
For f � "�S�� �� represent the operator f�L� by using the semigroup
e�zL as before� This gives

f�L� 

Z
��

e�zL n��z� dz �

Z
��

e�zL n��z� dz �

where we choose the contour #��s�  s ei������� for s � � and #��s� 
�s e�i������� for s � �� The functions n��z� are given by

n� 
�

��i

Z
�

e�z f��� d� �

where ���s�  s ei� for t � � and ���t�  �t e�i� for t � ��
This implies the bound

jn��z�j � c kfk� jzj�� �

Consequently� the kernel kf �x� y� of f�L� is given by

kf �x� y� 

Z
��

az�x� y�n��z� dz �

Z
��

az�x� y�n��z� dz �

Choose operators At  e�tL� Using the upper bounds on the heat
kernels and Lemma �� similar estimates to the terms I� and I� in the
proof of Theorem � shows that condition ���� of Theorem � is satis�ed�
Therefore� f�L� is bounded on Lp���� The Convergence Lemma then
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allows us to extend Lp boundedness of f�L� to all f � H��S�� �� hence
the operator L has a bounded holomorphic function calculus in Lp����
Although the extension of the weak type ����� estimates from f�L� for
f � "�S�� � to f�L� for f � H��S�� � does not follow from the Conver�
gence Lemma� it is not di�cult� See for example �ADMc� Lecture ��
Section N��

To prove the Lp boundedness of the maximal truncated operator
T�� �rst choose Bt  At  e�tL� We then just need to verify conditions
���� and ���� of Theorem ��

To verify ����� we use the commutative property of functional cal�
culus�

e�tL f�L�  e�tL�� f�L� e�tL�� �

Since e�tL maps L���� into L���� with the operator norm less than
a constant� and e�tL maps L���� into L���� with the operator norm
less than ���BX �x	 t���m������ interpolation and duality gives

ke�tL��kL�����L����  ke�tL��kL�����L����

� c ���BX �x	 t���m������� �

These estimates� combined with the fact that f�L� is bounded on L�����
imply condition �����

The proof of ���� is straightforward� Consider d�x� y� � c t��m� we
have

jk�x� y�� kt�x� y�j � c

Z �

�

jhz�x� y�j djzj

Z �

�

j��
 ez� ��� e�t�� jdj�j �

Observe that j�� e�t�j � c since Re ��� � � and j�� e�t�j � c t j�j �
c �t j�j�
 for � �  � � when t j�j � �� We then split the integral on the
left hand side into two parts� I� and I�� corresponding to integration
over t j�j � � and t j�j � �� Using the heat kernel bounds and elemen�
tary integration� similar estimates to those of I� and I� of Theorem �
show that

jKt�x� y�� k�x� y�j � c ���BX �x	 d�x� y�����
t	�m

d�x� y�	
�

for some � � �� x� y � �� d�x� y� � t��m� We leave details of these
estimates to reader�
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Remarks�

a� Condition a� of Theorem � can be replaced by a more general
condition as follows� Assume that L is an operator of type � and that
there exists a positive integer k so that the kernels gk��x� y� of the power
of the resolvents ��L� I��k satisfy the following estimate

jgk��x� y�j � ���BX �x	 j�j���m����� s�d�x	 y�mj�j� �

where s is a function which satis�es the decay condition in ���� The
proof under this assumption is still the same as that of Theorem �� with
the operators ��L�I��k replacing the semigroup e�zL� The advantage
of this assumption is that the operator L can be of type � with � � ����
or of type � on a double sector�

b� When X is a space of homogeneous type� the result on bounded�
ness of holomorphic functional calculi of Theorem � was �rst presented
in �DR� Theorem ����� Note that the H
ormander integral condition is
not applicable when we have no control on smoothness of heat kernels
in the space variables�

c� Heat kernel bounds are known for a large class of elliptic and sub�
elliptic operators� Also see �AMcT�� �A� for recent results on heat kernel
bounds for second order elliptic operators with non�smooth coe�cients�

d� Theorem � gives new results when � is a measurable set with
no smoothness on its boundary� An example of an operator on such
a domain� which possesses Gaussian bounds on its heat kernels� is the
Laplacian on an open subset of Euclidean space Rn subject to Dirichlet
boundary conditions� Gaussian upper bounds can be obtained in this
case by a simple argument using the comparison principle� More gen�
eral operators on open domains of Rn which possess Gaussian bounds
can be found in �Da�� and �AE�� Indeed Theorem � can be applied to
prove the general statement of Theorem ��� in �AE� on boundedness
of holomorphic functional calculi in Lp spaces� without the assumption
that the boundary has null measure�
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Catching sets with quasicircles

Paul MacManus

Abstract� We show how certain geometric conditions on a planar set
imply that the set must lie on a quasicircle� and we give a geometric
characterization of all subsets of the plane that are quasiconformally
equivalent to the usual Cantor middle�third set�

�� Introduction�

Theorem �� For a subset E of C the following are equivalent�

i� E has empty interior and uniform complement�

ii� E is uniformly disconnected�

iii� E is quasiconformally equivalent to a porous subset of R�

The various constants depend only on each other�

One immediate consequence of this theorem is that any set E sat�
isfying either i� or ii� lies on a quasicircle� Indeed� the main part of the
proof consists of demonstrating this fact�

An NUD set is a compact set having no interior and whose com�
plement is a uniform domain� V�ais�al�a considered the family of NUD
sets in �V	� where he showed that if such a set is removed from a uni�
form domain� then the domain that remains is still uniform� Hence the
name� NUD stands for nullsets for uniform domains� As a corollary of
Theorem 
� we obtain the following characterisation of NUD sets in the
plane�

���
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Corollary �� E is an NUD set in C if and only if E is quasiconformally

equivalent to a compact� porous subset of R�

We can also characterize those sets that are quasiconformally equi�
valent to the usual Cantor middle�third set�

Theorem �� For a compact set K in C whose interior is empty the

following are equivalent�

i� K is uniformly perfect and has uniform complement�

ii� K is both uniformly perfect and uniformly disconnected�

iii� K is quasiconformally equivalent to the usual Cantor

middle�third set�

The various constants depend only on each other�

A result of David and Semmes �DS	 says basically that any uni�
formly disconnected� uniformly perfect� compact metric space can be
mapped quasisymmetrically to the middle�third set� In particular� if K
satis�es ii� above then there is a quasisymmetric map from K to the
Cantor set� The preceding theorem extends this by showing that the
map can actually be taken to be a quasiconformal map of C �

�� Preliminaries�

By a quasiconformal map of C we mean a quasiconformal map
from C onto itself� Such maps can also be viewed as maps of C onto
itself that �x in�nity� Two subsets of C are said to be quasiconformally
equivalent if there is a quasiconformal map of C that maps one onto
the other� A quasiconformal arc is the image of a closed sub�interval of
R under a quasiconformal map of C � If this map is L�quasiconformal�
then we will say that the quasiconformal arc is an L�quasiconformal
arc�

We call a set A c�uniform �
 � c� under the following condition�
A contains at least two points and for each pair of distinct points a
and b of A� there exists a continuum F containing a and b such that
diamF � c ja� bj and such that

�
z�Fnfa�bg

B�z� c�� r�z�� � A �
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where r�z�  minfjz�aj� jz�bjg� A set is c�uniform if and only if there
is a c�uniform domain D for which D � A � D� See �V	 for a proof of
this last remark and for alternative de�nitions of uniformity�

Let 
 � m� A subset E of C that contains at least two points
is said to be m�uniformly perfect if at each point z� of E the closed
annulus

A 
n
z �

r

m
� jz � z�j � r

o
has non�empty intersection with E whenever � � r � diamE�

A subset E of R is said to be ��porous �
 � �� if every interval I
centred on E contains an interval of length jIj�� that lies in R nE�

We say that E is � �uniformly disconnected �� � 
� if for each x � E
and each r � � we can �nd a subset A of E containing x� of diamter
no more than r� and for which d�A�E n A� � ���r� This concept was
introduced recently in �DS	�

M�M�� � � � and 	� 	�� � � � will denote constants that depend only on
the relevant data �e�g� uniformity constants� associated to the set in
question� the former are used for constants that are at least 
� and the
latter are used for constants that are less than 
� The same symbol may
be used to denote di�erent constants� When we write A � B� we mean
that the ratio of A to B is bounded above and below by a constant that
depends� once again� only on the relevant data�

We are going to use a result from �M	 on building quasiconformal
arcs� In order to state this result we need to introduce the idea of a
chain� A standard rectangleR is a closed rectangle whose major axis lies
on the real line� Let fRig

N
i�� be a family of disjoint standard rectangles

of height h with each Ri at least a distance h to the left of Ri��� Take
I to be a closed interval in R whose left endpoint is at least a distance
h to the left of R� and whose right endpoint is at least a distance h
to the right of RN � The union of I with the Ri is called a standard
h�chain� Each Ri is referred to as a rectangle of the chain� The closed
intervals joining Ri to Ri��� along with the two closed intervals joining
the endpoints of I to the nearest rectangle� are called the links of the
chain� and the points where the links meet the rectangles are called the
weld points of the chain� An �M�h��chain is any M bi�Lipschitz image
of a standard h�chain� The various parts of an �M�h��chain are given
the same names as their pre�images in the standard chain�

These chains can be used to build quasiconformal arcs� Assume
that for each n we have a family Fn of �M�hn��chains with the following
properties�

i� F� contains only one chain�
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ii� Each chain in Fn�� is contained in one of the rectangles of some
chain in Fn� and the endpoints of a chain in Fn�� are the same as the
weld points of the associated rectangle�

iii� Each rectangle of each chain in Fn contains exactly one chain
from Fn���

iv� The hn converge to zero�

Take Tn to be the union of every chain in Fn with the links of every
chain in Fk for 
 � k � n� 
� Each Tn is a continuum and Tn�� � Tn�

Theorem� Under the assumptions i��iv�� �� 
T�
n�� Tn is a C�M�

quasiconformal arc�

This is �M� Theorem ��
	 and it can be read independently of the
rest of that paper�

�� Proofs of the Theorems�

We start with Theorem 
� It is easily con�rmed that any quasicon�
formal map of C preserves both uniform domains and the property of
being uniformly disconnected� It is also easy to check that a subset of
the line is porous �as a subset of the line� if and only if its complement
in the plane is uniform� and if and only if it is uniformly disconnected�
Thus� iii� implies both i� and ii�� Furthermore� in order to prove the
opposite implications it su�ces to show that E lies on a quasiconformal
arc�

G� is the square grid whose vertices are the points �m
� n 
� where
m and n are any integers� and �� is the associated family of �closed�
squares� A useful way of thickening up a set is the following� Let W be
a bounded subset of the plane� W � is the union of the elements of ��

that intersect W � Let T��W �  �W ����� The following facts are easily
con�rmed�

Lemma ���� If W is a bounded subset of the plane� then the boundary

of T��W � is a �nite� disjoint union of Jordan curves� each of which is

a subset of G�� Furthermore� the distance from any boundary point of

T��W � to W is less than � 
 and greater than 
�
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The next lemma will allow us to break the set up into manageable
chunks at all scales�

Lemma ���� Suppose that E satis�es i� or ii� in Theorem 
� Then

for any x � E and any positive �� there is a loop � separating x from

in�nity for which diam � � d�E� �� � ��

Proof� Let us �rst assume that E satis�es i�� Fix x � E and � � ��
Set r  ���� Choose points fy�� y�� � � � � yng that are equally spaced
with distance 	 r on the circle Cr of radius r centred at x� We will
see as we go along how small an 	 we need to choose� We will use the
convention that yn��  y��

For each yi there is zi � Ec whose distance to E is at least M��	 r
and whose distance to yi is at most 	 r� There is a path �i joining zi
to zi�� whose diameter is at most M	r and whose distance to E is at
least M��	 r� Let � denote the loop �i�e�� closed curve� obtained by
joining up the �i in the obvious way� The next few statements hold for
small enough 	� The diameter of � is at most � r� which is less than ��
and the distance from � to E is least M��	 r  M��

� �� Furthermore�
each �i is freely homotopic to the segment �yi� yi��	 in C n fxg� and so
� is freely homotopic in C n fxg to the circle Cr� As a result� � must
separate x from in�nity�

Now let us assume that E satis�es ii�� Once again �x x � E and
� � �� There is a subset A of E containing x� of diameter no more
than �� and for which d�A�E n A� � ����� Let 
  ��� ������ and set
X  T��A�� Then X contains x� has diameter comparable to �� and
all of its boundary points are at least a distance 
� and no more than
� 
� from A� This information about the boundary combined with the
estimate on the distance between A and E nA implies that the distance
to E of every point on the boundary is comparable to �� The boundary
of X is a �nite� disjoint� collection of Jordan curves� One of these must
enclose the point x and this is the loop we seek�

It is clear that if E satis�es ii�� then any subset of E also satis�es
ii� with the same constant� This also holds for i�� and depends on the
simple observation that the complement of E is uniform and dense in
C � These facts combined with a standard limiting argument imply that
it su�ces to prove Theorem 
 for sets consisting of a �nite number of
points� We will assume from here on that that E contains only a �nite
number of points� This is by no means necessary but it means that we
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do not have to worry about possible technical di�culties�
Set D� to be the set of closures of all Jordan domains whose bound�

aries are both subsets of G� and at least a distance 
 from E�

Lemma ���� Suppose that E satis�es i� or ii� in Theorem 
� Then

for any positive 
 there is a �nite� disjoint collection f������ � � �g of

elements of D� with the properties listed below�

i� E ��k 	 � for all k� and E �
S
�k�

ii� diam�k �M� 
� for all k�

Proof� Fix 
 � �� It follows from Lemma ��� that for each x � E
there is a loop �x of diameter comparable to 
 that separates x from
in�nity and whose distance to E is at least 
� 
� The diameter of Cx�
the component of �cx that contains x� is no more than M 
�

Let G 
S
x�E �x� The distance from G to E is at least 
� 
� The

boundary of T��G� is a �nite� disjoint union of Jordan curves� each of
which lies on G� and is at least a distance 
 from E� As a result� the
set

C  fU � U is the bounded domain determined

by some component of �T��G�g

is contained in D�� and any two elements of C are either disjoint or one
is contained in the other�

Now� the boundary of any bounded component V of �T��G��c is a
union of components of �T��G� and so there is a unique element of C
that contains V and whose boundary is contained in the boundary of
V �

For each x � E� de�ne Vx to be the component of �T��G��c that
contains x� and �x to be the element of C that corresponds to Vx� Let
f������ � � �g be the maximal elements among the �x� It is clear that
they have the required properties� except perhaps ii�� Each Vx must be
a subset of Cx� as �x � T��G�� Thus the diameter of Vx is less than
M
� Consequently� we have that diam�x  diamVx � M 
� which is
ii��

We are now ready to build the quasiconformal arc containing the
set E� For convenience� we will assume that E lies in the unit disc�
Let 	 be a suitably small constant� Abbreviate D�n to Dn� For n � 
�
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the subset of Dn obtained in Lemma ��� by setting 
  	n is called
Sn� We de�ne S� to be the square of sidelength � that is centred at
the origin� Every element of Sn�� is a subset of some element of Sn�
and every element of Sn contains at least one element of Sn��� For any

S � Sn� we have diamS � 	n� Furthermore� if bS � Sn�� lies in S�

then d��S� bS� � 	n� If we set En to be the union of the elements of
Sn� then E 

T
nEn� We now have nicely nested coverings of E� whose

in�nite intersection is E� All that remains in the proof of Theorem 
 is
to use the Sn to construct families of chains satisfying conditions i��iv�
on pages ���� For all n� and for each S � Sn� choose two boundary
points whose distance apart is the diameter of S� We will refer to these
as the distinguished points of S�

Lemma ���� Suppose that S � Sn��� Denote the elements of Sn that

lie in S by C�S�� Then S contains an �M� 	n��chain whose endpoints

are the distinguished points of S� whose rectangles are precisely C�S��
and whose weld points are the distinguished points of the elements of

C�S��

This result is just a special case of �M� Corollary ���	� but since
this case is particularly simple we brie�y outline the proof here�

Sketch of Proof� S and the elements of C�S� are all elements of
Dn� Their boundaries are disjoint and each has at most M� edges�
Take Q to be either Sc or one of the elements of C�S� and de�ne �Q
to be the 	n�� neighbourhood of Q� There is a bi�Lipschitz map that
is the identity outside �Q� that sends �Q to the boundary of a square�
and that sends the distinguished points to the midpoints of opposite
sides� The bi�Lipschitz constant will depend only on M�� The regions
�Q are disjoint� so the composition of all the maps just described does
not increase the bi�Lipschitz constant and it yields a bi�Lipschitz map
F that sends S and all the elements of C�S� to squares and that also
sends the distinguished points to the midpoints of opposite sides� It is
easy to �nd a suitable chain for F �S� and F �C�S��� and the pullback
of this chain by F�� is the chain we seek�

Now let Fn be the family of chains obtained by applying the pre�
vious lemma to each element of Sn��� These satisfy conditions i��iv��
Consequently� E is contained in an M �quasiconformal arc�
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We turn next to the proof of Theorem �� Quasiconformal maps of C
preserve uniform domains� uniformly disconnected sets� and uniformly
perfect sets� As the middle�third set is uniformly perfect� uniformly
disconnected� and has uniform complement� part iii� implies both parts
i� and ii�� Suppose now that K is compact and satis�es either i� or ii��
Theorem 
 implies that we can assume thatK is a porous and uniformly
perfect subset of the real line� We need to �nd a quasiconformal map of
C that maps K onto the middle�third Cantor set� We will only sketch
the proof as the details are quite routine�

Set O to be the collection of disjoint open intervals that make
up R nK� We will say that we split an interval I when we remove the
largest subinterval that is an element of O� De�ne K� to be the smallest
closed interval containing K� Let K� be the union of the two intervals
obtained by splitting K�� Next split each of these to obtain another
set� K�� that is the union of four closed intervals� Continue inde�nitely
in this way� We summarize the properties of the sets Kn�

i� Each Kn is a �nite union of disjoint closed intervals with end�
points in K� and K� consists of just one interval�

ii� Kn�� � Kn�

iii� Each of the intervals I that make up Kn contains exactly two
of the intervals� Il and Ir� that make up Kn��� and jIj � jIlj � jIrj �
d�Il� Ir��

iv� K 
T�
n��Kn�

The key property is iii�� and this is a consequence of K being
porous and uniformly perfect� Suppose that I is a component of Kn

and that J is a component of Km� Let us say that I � J if either
n � m or n  m and J lies to the right of I� Label the collection of
all components of all the Kn as I�� I�� I�� � � � where Ik � Ik�� for all k�
Then I�  K�� I� 
 I�  K�� and so on�

From iii� above we deduce that there is a small constant 	� which
we �x now� that ensures the validity of the statements that follow� To
any Ik  �x � r� x � r	 we associate the rectangle �x � �
 � 	� r� x �
�
� 	� r	� ��r� r	� Rectangles from the same level are disjoint� and the
families consisting of the rectangles from each level are nested and nest
nicely down to K� The next lemma is an easy consequence of iii� above�
Here I� Il� and Ir are as in iii�� and R� Rl� and Rr are the corresponding
rectangles�
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Lemma ���� There is an M��quasiconformal map of C � which is the

identity in Rc� is a similarity on Rl and on Rr� and which maps Il to
the left third of I and Ir to the right third of I�

Denote by gi the map we get from the lemma when I  Ii� Let �
be a similarity mapping K� onto ��� 
	� Set G  � � g� � g� �    � Then
G is an M��quasiconformal map of C that maps K onto the Cantor set�
The composition does not increase the dilatation because the maps gi
only have non�trivial dilatation in the doubly connected region between
the three corresponding rectangles and these regions are disjoint�

A natural question now is� do Theorems 
 and � hold in higher di�
mensions� The �rst point to note is that sets with uniform complement
are no longer the same as uniformly disconnected sets� As an example�
consider the compact set in R

� consisting of the line segment joining
��� �� �� and ��� �� 
� and the family of line segments joining ���n� �� ��
and ���n� �� 
� for n � 
� This set is obviously not uniformly discon�
nected� yet its complement is a uniform domain� However� it is always
true that any uniformly disconnected set has a uniform complement�
This can be shown by the compactness method of V�ais�al�a� see �V� The�
orem ���	� Thus we have that ii� always implies i� in Theorem 
�

It is not reasonable to ask for quasiconformal equivalence in higher
dimensions as topological issues complicate and cloud the issue� We
saw in the planar case that the key to the whole problem is showing
that the given set lies on a quasiconformal arc� A concept that makes
sense in all dimensions and that agrees with that of a quasiconformal
arc in the plane is that of an arc of bounded turning� i�e�� an arc with
the property that the diameter of every sub�arc is comparable to the
distance between its endpoints� Such arcs are precisely the quasisym�
metric images of line�segments �see �TV� Section �	�� Thus a better
formulation of the problem is� do uniformly disconnected sets or sets
with uniform complement lie on an arc of bounded turning� The exam�
ple in the previous paragraph shows that there are sets with uniform
complement that do not lie on any Jordan arc� In contrast� it turns
out that the answer is yes for uniformly disconnected sets� It follows
immediately that a subset E of Rn is uniformly disconnected if and
only if there is a quasisymmetric map from ��� 
	 into Rn that maps a
porous subset of ��� 
	 onto E� Once we have this theorem� we �nd�
following the planar case� that a subset of Rn is uniformly disconnected
and uniformly perfect if and only if there is quasisymmetric map from
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��� 
	 into Rn that maps the middle�third Cantor set onto E�
The proof that a uniformly disconnected set in any Euclidean space

lies on an arc of bounded turning follows essentially the same scheme
as that of the planar case� We give a brief justi�cation of this result�
Lemma ��� will hold with D� being those sets which are �nite unions of
cubes from the grid of sidelength 
� and which have connected interiors
and complements� This part is straightforward� De�ne the families Sn
as in the discussion preceding Lemma ���� We can uniformly bound
the number of cubes in each element of any Sn� Using the notation of
Lemma ���� we de�ne A to be

S n
�

��C	S


� �

The uniform bound on the number of cubes that make up both S and
the elements of C�S� and the fact that these latter have connected
interiors and complements allow us to show that S contains an arc � of
bounded turning with the following properties� the endpoints of � are
the distinguished points of S� the intersection of � with any element �
of C�S� consists of a sub�arc of � whose end points are the distinguished
points of �� and for any point on any component of � �A the distance
to the nearest endpoint �of the component� and the distance to the
boundary of A are comparable� We will refer to the union of � and
C�S� as a chain� although it does not �t our former de�nition� We now
de�ne Fn as before� The proof of �M� Theorem ��
	 shows that when
such chains are nested �as described earlier in Section 
� they converge�
as in the planar case� to an arc of bounded turning�
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Hardy space H
�

associated

to Schr�odinger operator

with potential satisfying

reverse H�older inequality

Jacek Dziuba�nski and Jacek Zienkiewicz

Abstract� Let fTtgt�� be the semigroup of linear operators generated
by a Schr�odinger operator �A � � � V � where V is a nonnegative
potential that belongs to a certain reverse H�older class� We de�ne a
Hardy space H�

A be means of a maximal function associated with the
semigroup fTtgt��� Atomic and Riesz transforms characterizations of
H�
A are shown�

�� Introduction and main results�

Let A � �� � V be a Schr�odinger operator on Rd � d � 	� where
V �� 
 is a nonnegative potential� We will assume that V belongs to
reverse H�older class Hq for some q � d��� that is� V is locally integrable
and

��
�
� 

jBj

Z
B

V q dx
���q

� C
� 

jBj

Z
B

V dx
�
� for every ball B �

Trivially� Hq � Hp provided  � p � q ��� It is well known� cf� �Ge��
that if V 	 Hq� then there is � � 
 such that V 	 Hq��� Moreover� the

���
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measure V �x� dx satis�es the doubling conditionZ
B�y��r�

V �x� dx � C

Z
B�y�r�

V �x� dx �

We note that if V is a polynomial then V 	 Hq for every  � q ���
Let fTtgt�� be the semigroup of linear operators generated by �A

and Tt�x� y� be their kernels� Since V is nonnegative the Feynman�Kac
formula implies that

��� 
 � Tt�x� y� � �Tt�x� y� � ��� t��d�� exp
�
�
jx� yj�

� t

�
�

Obviously� by ��� the maximal operator

���� Mf�x� � sup
t��

jTtf�x�j

is of weak�type ����
We say that a function f is in the Hardy space H�

A if

kfkH�
A
� kMfkL� �� �

The aim of this article is to present an atomic characterization of H�
A�

For n 	 Z we de�ne the sets Bn by

��	� Bn � fx � �n�� � m�x� V � � ��n�����g �

where

���� m�x� V � �
�
sup

n
r � 
 �



rd��

Z
B�x�r�

V �y� dy � 
o���

�

For more details concerning the function m�x� V � and its applications
in studying the Schr�odinger operator A we refer the reader to �Fe� and
�Sh��

Since 
 � m�x� V � ��� we have Rd �
S
Bn�

A function a is an atom for the Hardy space H�
A associated to a

ball B�x�� r� if

supp a � B�x�� r���i�

kakL� �


jB�x�� r�j
��ii�

if x� 	 Bn then r � ���n�� ��iii�

if x� 	 Bn� and r � ����n�� then

Z
a�x� dx � 
 ��iv�
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The atomic norm in H�
A is de�ned by

kfkA�atom � inf
nX

jcjj
o
�

where the in�mum is taken over all decompositions f �
P

cj aj� where
aj are H

�
A atoms�

The main result of this article is the following

Theorem ���� Assume that V �� 
 is a nonnegative potential such that

V 	 Hd��� then the norms kfkH�
A

and kfkA�atom are equivalent� that

is� there exists a constant C � 
 such that

C�� kfkH�
A
� kfkA�atom � C kfkH�

A
�

For j � � �� � � � � d� let us de�ne the Riesz transforms Rj setting

���� Rjf �
	

	xj
A���� �

It was proved in �Sh� that if V 	 Hd�� then the operators Rj are are
bounded on Lp for  � p � d� It turns out that these operators char�
acterize our Hardy space H�

A� that is the following theorem holds�

Theorem ���� If V 	 Hd�� is a nonnegative potential� V �� 
� then
there is a constant C � 
 such that

���� C�� kfkH�
A
� kfkL� �

dX
j��

kRjfkL� � C kfkH�
A
�

�� Auxiliary lemmas�

Lemma ���� There is a constant C such that for every R � � and

every n if x 	 Bn� then

fk � B�x� ��n��R� 
 Bk �� �g � �n� C log�R� n� C log�R� �
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Proof� �Sh� Lemma ��� asserts that there exist constants C � 
�
c � 
� and k� � 
 such that for every x� y 	 Rd we have

���� m�y� V � � C � � jx� yjm�x� V ��k� m�x� V �

and

����� m�y� V � �
cm�x� V �

� � jx� yjm�x� V ��k���k����
�

If x 	 Bn and y 	 B�x� ��n��R� then jx�yjm�x� V � � �R and by ����

m�y� V � � C � � �R�k� �n�� � C ��n�C log� R��� �

On the other hand applying ������ we obtain

m�y� V � �
c �n��

� � �R�k���k����
� c ��n�C log�R��� �

This completes the proof of the lemma�

Lemma ��	� There is a constant C and a collection of balls B�n�k� �

B�x�n�k�� �
��n���� n 	 Z� k � � �� � � � � such that x�n�k� 	 Bn� Bn �S

k B�x�n�k�� �
�n���� and

�f�n�� k�� � B�x�n�k�� R ��n��� 
 B�x�n��k��� R ��n
���� �� �g � RC �

for every �n� k� and R � ��

From Lemma ��	� we deduce

Corollary ��
� There exist constants C � 
 and l� � 
 such that for

l � l� and every x�n��k�� we have

X
�n�k�

���n��jx�n��k���x�n�k�j�
�l�

X
�n�k�

���n
���jx�n��k���x�n�k�j�

�l � C �

Another consequence of Lemma ��	 is
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Lemma ���� There are nonnegative functions 
�n�k� such that


�n�k� 	 C�
c �B�x�n�k�� �

��n���� ������ X
�n�k�


�n�k��x� �  ������

kr
�n�k�kL� � C �n�� ������

	� Local maximal functions�

Lemma 	��� For ever l � 
 there is a constant Cl such that

�	�� Tt�x� y� � Cl ��m�x� V � jx�yj��l jx�yj�d � for x� y 	 Rd �

Moreover� there is an � � 
 such that for every C � � 
 there exists C
such that

�	��� jTt�x� y�� �Tt�x� y�j � C
�jx� yjm�x� V ���

jx� yjd
�

for jx� yj � C �m�x� V ����

Proof� Let ��x� y� ��� ���x� y� �� be the kernels of the operators �A �
i ���� and ��� � i ����� � 	 R� It is proved in �Sh� �see �Sh� Theo�
rem ����� that for every l � 
 there is a constant Cl such that

�	�	�

j��x� y� ��j �
Cl

� � j� j��� jx� yj�l � �m�x� V � jx� yj�l

�


jx� yjd��
�

By the functional calculus� Tt�x� y� � c
R
R
eit� ��x� y� �� d� � Thus �	��

is easily deduced from �	�	��
It follows from �Sh�� see �Sh� Lemma ��� and its proof�� that for

every l� C � � 
 there exists a constant C � 
 such that

�	��� j��x� y� ������x� y� ��j �
Cl

� � j� j��� jx� yj�l
�jx� yjm�x� V ���

jx� yjd��
�
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for jx� yj � C �m�x� V ���� Now the estimate �	��� is a consequence of
�	��� and the formula Tt � �Tt � c

R
R
eit� ��� ��� d� �

Since Tt�x� y� is a symmetric function� we also have

�	��� Tt�x� y� � Cl ��m�y� V � jx�yj��l jx�yj�d � for x� y 	 Rd �

We de�ne the local maximal operators Mn
fMn� and Mn putting

Mnf�x� � sup
��t���n

j �Ttf�x�� Ttf�x�j ��	���

fMnf�x� � sup
��t���n

j �Ttf�x�j ��	���

Mnf�x� � sup
��t���n

jTtf�x�j ��	���

Lemma 	��� There exists a constant C � 
 such that for every �n� k�

kMn�
�n�k�f�kL� � C kf 
�n�k�kL� �

Proof� Set B�
�n�k� � B�x�n�k�� �

���n����� Then by �	���

kMn�
�n�k� f�kL��B�
�n�k�

� � C�n�k� k
�n�k� fkL� �

where

C�n�k� � sup
y�B�n�k�

Z
B�
�n�k�

�jx� yjm�x� V ���

jx� yjd
dx �

It is easy to check that C�n�k� � C�
The task is now to estimate kMn�
�n�k�f�kL���B�

�n�k�
�c�� According

to ���� we obtain

kMn�
�n�k� f�kL���B�
�n�k�

�c� � C �
�n�k� kf 
�n�k�kL� �

where

C �
�n�k� � � sup

y�B�n�k�

Z
�B�

�n�k�
�c

�
sup

��t���n

�Tt�x� y�
�
dx � C � �
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This �nishes the proof of the lemma�

Let

�	�
� M�n�k�f�x� � sup
��t���n

jTt�
�n�k� f��x�� 
�n�k��x�Ttf�x�j �

Lemma 	���� There is a constant C such that

�	���
X
�n�k�

kM�n�k�fkL� � C kfkL� �

Proof�

�
�n�k�� Tt�f�x� �
X

�n��k��

Tt��n�k���n��k��f�x� �

where

Tt��n�k���n��k��f�x� �

Z
f�y�Tt�x� y��
�n�k��x��
�n�k��y��
�n��k���y� dy �

Let
M�n�k���n��k��f�x� � sup

��t���n
jTt��n�k���n��k��f�x�j �

Set J�n�k� � f�n�� k�� � jx�n��k�� � x�n�k�j � C � ��n��g� and I�n�k� �

f�n�� k�� � jx�n��k�� � x�n�k�j � C � ��n��g� Note that the number of
elements in J�n�k� is bounded by a constant independent of �n� k��
Moreover� taking C � is su�ciently large we see that if �n�� k�� 	 I�n�k�
then B��

�n�k� 
 B��
�n��k�� � �� where B��

�n�k� � B�x�n�k�� �
��n���� Further�

more� jx� yj � jx�n�k� � x�n��k��j for x 	 B�n�k�� y 	 B�n��k��� provided
�n�� k�� 	 I�n�k��

Obviously�

kM�n�k���n��k��fkL� � C�n�k���n��k�� kfkL��B�n��k���
�

where

C�n�k���n��k��

� sup
y�B�n��k��

Z �
sup

��t���n
jTt�x� y� �
�n�k��x�

� 
�n�k��y��
�n��k���y�j
�
dx �
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If �n�� k�� 	 J�n�k� then� by ��� and ������ we have

C�n�k���n��k�� � C sup
y�B�n��k��

Z �
sup

��t���n
�n�� jx� yj �Tt�x� y�

�
dx � C �

If �n�� k�� 	 I�n�k� then using �	��� we get

C�n�k���n��k��

� sup
y�B�n��k��

Z
C�l 
�n�k��x�
�n��k���y� dx

jx� yjd � �m�x� V � jx� yj��l

� sup
y�B�n��k��

Z
C�l 
�n�k��x�
�n��k���y� dx

jx� yjd � � �n�� jx� yj�l � � �n�� jx�n�k� � x�n��k��j�l

�
C

� � �n�� jx�n�k� � x�n�k��j�l
�

Applying the above estimates� we obtain

X
�n�k�

kM�n�k�fkL�

�
X
�n�k�

X
�n��k��

kM�n�k���n��k��fkL�

� C
X
�n�k�

X
�n��k���J�n�k�

kfkL��B�x�n�k��C��n����

� C
X
�n�k�

X
�n��k���I�n�k�

� � �n�� jx�n�k� � x�n��k��j�
�l kfkL��B�n��k���

�

Finally� by Corollary ���� we get �	����


� Proof of Theorem ����

In this section we prove our main theorem� First we recall some
results from the theory of local Hardy spaces� cf� �Go��

We say that a function f is in the local Hardy space h�n if

���
� kfkh�n � kfMnfkL� �� �
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A function �a is an atom for the local Hardy space h�n if there is a ball
B�x�� r�� r � ���n�� such that

supp �a � B�x�� r������

k�akL� � jB�x�� r�j
�� ������

if r � ����n��� then

Z
�a�x� dx � 
 ����	�

The atomic norm in h�n is de�ned by

����� kfkh��a�n � inf
�X

j

jcj j
�
�

where the in�mum is taken over all decompositions f �
P

cj �aj� where
�aj are h

�
n atoms�

Theorem 
�� ��Go��� The norms k � kh�n and k � kh��a�n are equivalent

with constants independent of n 	 Z�
Moreover� if f 	 h�n� supp f � B�x� ���n���� then there are h�n

atoms �aj such that supp �aj 	 B�x� ���n��� and

����� f �
X
j

cj �aj �
X
j

jcj j � C kfkh�n

with a constant C independent of n�

Proof of Theorem ���� We �rst assume that f 	 H�
A� Lemma 	��

implies

kfMn�
�n�k�f�kL�

� C �kMn�
�n�k�f�kL� � k
�n�k�fkL��

� C �k
�n�k��Mnf�kL� � kM�n�k�fkL� � k
�n�k�fkL�� �

From Lemma 	� we conclude that

�����
X
�n�k�

kfMn�
�n�k�f�kL� � C �kMfkL� � kfkL�� �
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Application of Theorem ��� gives

����� 
�n�k�f �
X
j

c
�n�k�
j a

�n�k�
j � where a

�n�k�
j are H�

A atoms �

and

�����
X
j

jc
�n�k�
j j � C kfMn�
�n�k�f�kL� �

Finally� using ����� and ������ we obtain the required H�
A atomic de�

composition

���
� f �
X
�n�k�

X
j

c
�n�k�
j a

�n�k�
j and

X
�n�k�

X
j

jc
�n�k�
j j � C kMfkL� �

and the inequality kfkA�atom � C kfkH�
A
is proved�

In order to prove the converse inequality we need only to show that
that there exists a constant C � 
 such that for every H�

A atom a

���� kMakL� � C �

Let a be an H�
A atom associated to a ball B�x�� r�� Assume that x� 	

Bn� Then� by de�nition� r � ���n��� Theorem ��� combined with
Lemma 	�� implies that kMnakL� � C� Therefore what is left is to
show that �� sup

t���n
jTta�x�j

��
L��dx�

� C �

If x 	 B�x�� �
���n���� then

sup
t���n

jTta�x�j � sup
t���n

Z
�Tt�x� y� ja�y�j dy � C �nd�� �

and� consequently��� sup
t���n

jTta�x�j
��
L��B�x������n�����

� C �

If x �	 B�x�� �
���n���� and y 	 B�x�� �

��n��� then jx � yj � ����n����
Moreover� m�y� V � � �n��� Applying �	��� we getZ

B�x������n����c
sup
t���n

jTta�x�j dx

�

Z
B�x������n����c

Z
ja�y�jCl � �m�y� V � jx� yj��l



jx� yjd
dy dx

� Cl

Z
�dn��� � �n�� jxj��l dx � C �
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�� Characterization of H�
A by the Riesz transforms�

In this section we prove Theorem ��� Our proof of it is very much
in the spirit of the proof of Theorem ���

First we recall the characterization of the local Hardy spaces h�n
by means of local Riesz transforms� Let � be a C� function on Rd such
that ��x� � 
 for jxj �  and ��x� �  for jxj � ��� We de�ne the

local Riesz transforms R
	n

j by

���
� R
	n

j f � f  R

	n

j �

where
R

	n

j �x� � cd ���

n�� x�
xj

jxjd��
�

We have

Theorem ��� There is a constant C � 
 such that for every integer n

����� C�� kfkh�n � kfkL� �
dX

j��

kf  R
	n

j kL� � C kfkh�n �

Throughout this section we shall assume that V 	 Hd�� is a non�
negative potential� V �� 
�

Let us denote by Rj�x� y� the integral kernel of the operator

	

	xj
A���� �

Lemma ��	 There exists a constant C � 
 such that for every �n� k�

C�n�k� � sup
y�B�n�k�

Z
B�x�n�k�����n���c

jRj�x� y�j dx � C �

Proof� By �Sh� p� �	�� we have that for every l � 
 there is a constant
Cl such that

jRj�x� y�j �
Cl

� �m�y� V � jx� yj�l

�
� 

jx� yjd��

Z
B�x�jx�yj���

V �z�

jz � xjd��
dz �



jx� yjd

�
������
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Let us note that if y 	 B�n�k� and x �	 B��
�n�k� � B�x�n�k�� �

��n���� then

jx� yj � jx� x�n�k�j� Thus

C�n�k� � Cl sup
y�B�n�k�

Z
�B��

�n�k�
�c



� � �n�� jx� x�n�k�j�l jx� x�n�k�jd��

�

Z
B�x�jx�yj���

V �z�

jz � xjd��
dz dx

� Cl

Z
�B��

�n�k�
�c



� � �n�� jx� x�n�k�j�l jx� x�n�k�jd
dx

� C �
�n�k� � C ��

�n�k� �

Obviously C ��
�n�k� � C� We now turn to estimate C �

�n�k��

C �
�n�k� � Cl

Z
�B�

�n�k�
�c

� V �z�

� � �n�� jz � x�n�k�j�l jz � x�n�k�jd��

�

Z
B�z�jx�n�k��zj���



jz � xjd��
dx
�
dz

� Cl

Z
�B�

�n�k�
�c

V �z�

� � �n�� jz � x�n�k�j�l jz � x�n�k�jd��
dz �

�Sh� Lemma ��� asserts that if m�x� V � �  then

�����


d��

Z
B�x���

V �z� dz � C �m�x� V ��k� �

for some k� � 
� Therefore

C �
�n�k� � Cl

�X
i��

Z
B�x�n�k���i���n���

V �z�

� � �i�l ��i�n���d��
dz

� Cl

�X
i��



� � �i�l
��i���n�� �n���k�

� C �
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Corollary ���� There is a constant C � 
 such that for every �n� k�
we have

����� kRj�
�n�k�f�kL���B��
�n�k�

�c� � C k
�n�k�fkL� �

Lemma ��� There exists a constant C such that

�����
X
�n�k�

kRj�
�n�k�f�� 
�n�k�RjfkL� � C kf�x�kL��dx� �

Proof� For �xed �n� k� we have

���
� k�
�n�k�� Rj�fkL� �
X

�n��k��

C�n��k�� kfkL��B�n��k���
�

where

����
C�n��k�� � sup

y�B�n��k��

Z
jRj�x� y��
�n�k��x�

� 
�n�k��y��
�n��k���y�j dx �

Let J�n�k� and I�n�k� be as in the proof of Lemma 	��

If �n�� k�� 	 J�n�k� then� by Lemma ����

C�n��k�� � sup
y�B�n�k�

Z
�B��

�n�k�
�c
jRj�x� y�j dx

� sup
y�B�n��k��

Z
B��
�n�k�

C jRj�x� y�j �
n�� jx� yj dx

� S� � S� �

Lemma ��	 clearly forces S� � C�
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Applying ����� and the theorem on fractional integrals we obtain

S� � sup
y�B�n��k��

Z
B��
�n�k�

Cl

� �m�y� V � jx� yj�l
�n�� jx� yj

jx� yjd��

�

Z
B�x�jx�yj���

V �z�

jz � xjd��
dz dx

� sup
y�B�n��k��

Z
B��
�n�k�

Cl

� �m�y� V � jx� yj�l
�n�� jx� yj

jx� yjd
dx

� sup
y�B�n��k��

C

Z
B��
�n�k�

� 

jx� yjd��

Z
B�x�jx�yj���

V �z�

jz � xjd��
dz

�
�n��

jx� yjd��

�
dx

� sup
y�B�n��k��

C

Z
B�x�n�k��C��n���

V �z�

jz � yjd��
dz

� sup
y�B�n��k��

C

Z
B��
�n�k�

�n��

jx� yjd��
dx �

Let us note that the H�older inequality and the fact that V 	 Hd����

for some � � 
 imply that

�����

Z
B�x���

V �z�

jz � xjd��
dz �

C

d��

Z
B�x���

V �z� dz �

Therefore S� � C�
If �n�� k�� 	 I�n�k�� then

C�n��k�� � sup
y�B�n��k��

Z
B�n�k�

jRj�x� y�j dx �

Using ����� we get

C�n��k�� � sup
y�B�n��k��

Z
B�n�k�

Cl

� �m�y� V � jx� yj�l jx� yjd��

�

Z
B�x�jx�yj���

V �z�

jz � xjd��
dz dx

� sup
y�B�n��k��

Z
B�n�k�

Cl

� �m�y� V � jx� yj�l jx� yjd
dx �
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Since jx� yj � jx�n�k� � x�n��k��j for x 	 B�n�k�� y 	 B�n��k��� we have

C�n��k�� �
Cl

� � �n��� jx�n�k� � x�n��k��j�l

� sup
y�B�n��k��

Z
B�x�n�k��jx�n�k��yj���

V �z�

jy � zjd��
dz

�
Cl

� � �n��� jx�n�k� � x�n��k��j�l
�

It is not di�cult to check that B�x�n�k�� jx�n�k��yj��� � B�y� Cjx�n�k��
x�n��k��j� for y 	 B�n��k��� with C independent of �n� k� and �n�� k��� Thus

C�n��k�� �
Cl

� � �n���jx�n�k� � x�n��k��j�l

�
�
 � sup

y�B�n��k��

Z
B�y�Cjx�n�k��x�n��k��j�

V �z�

jy � zjd��
dz
�
�

Now using ����� we obtain

C�n��k��

�
Cl

� � �n��� jx�n�k� � x�n��k��j�l

�
Cl

� � �n��� jx�n�k� � x�n��k��j�l

� sup
y�B�n��k��



jx�n�k� � x�n��k��jd��

Z
B�y�Cjx�n�k��x�n��k��j�

V �z� dz �

By virtue of ����� we get

C�n��k�� �
Cl

� � �n��� jx�n�k� � x�n��k��j�l

� � � C ��n
��� jx�n��k�� � x�n�k�j�

k��

�
Cl

� � �n��� jx�n�k� � x�n��k��j�l�k�
�

Now ����� follows easily from ���
�� Corollary ���� and Lemma ��	�
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Let �Rjf � �	�	xj��
����f denote the classical Riesz transforms

and let �Rj�x� y� be their kernels�

Lemma ���	� There exists a constant C � 
 such that

����� kRj��B�n�k�
f�� �Rj��B�n�k�

f�kL��B��
�n�k�

� � C k�
B�n�k�

fkL� �

Proof� The left�hand side of ����� is estimated by

C�n�k� k�B�n�k�
fkL� �

where

C�n�k� � sup
y�B�n�k�

Z
B��
�n�k�

jRj�x� y�� �Rj�x� y�j dx �

�Sh� Estimate ������ says that for every C � � 
 there is a constant C � 

such that

jRj�x� y�� �Rj�x� y�j �
C

jx� yjd��

�Z
B�x�jx�yj���

V �z�

jz � xjd��
dz

�


jx� yj
�jx� yjm�y� V ���

�
�

for jx�yj � C ��m�y� V � and some � � 
� �In �Sh� this estimate is shown
with C � � � Actually the proof works for any C ��� The theorem on
fractional integrals leads to

C�n�k� � C sup
y�B�n�k�

Z
B�y�C��n���

V �z�

jy � zjd��
dz

� C sup
y�B�n�k�

Z
B��
�n�k�

��n�� jx� yj��

jx� yjd
dx �

By virtue of ����� we have C�n�k� � C� and the proof is complete�

Proof of Theorem ���� Assume �rst that kfkL��
Pd

j�� kRjfkL� �
�� Lemmas ��� and ��	 imply that

X
�n�k�

k �Rj�
�n�k�f�kL��B��
�n�k�

� � C �kfkL� � kRjfkL�� �
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Now using Theorem ��� we obtain the required atomic decomposition

f �
X
�n�k�


�n�k�f �
X
�n�k�

X
i

c
�n�k�
i a

�n�k�
i �

X
�n�k�

X
i

jc
�n�k�
i j � C

� dX
j��

kRjfkL� � kfkL�

�
�

where a
�n�k�
i are H�

A atoms�
To prove the converse inequality we only� by Theorem ��� need to

show that
kRjakL� � C �

for every H�
A atom a with a constant C independent of a� Assume

that a is an H�
A atom associated to a ball B�x�� r�� If x� 	 Bn

then by de�nition r � ���n�� and there exists k such that B�x�� r� �
B�x�n�k�� �

��n���� By Lemma ��	 we have

kRjakL���B��
�n�k�

�c� � C �

On the other hand� since a is an atom for h�n� Theorem �� implies that
k �RjakL��B��

�n�k�
� � C� Applying Lemma ��	� we get

kRjakL��B��
�n�k�

� � C �

which �nishes the proof of the theorem�
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�estimates for the wave

equation on the Heisenberg group

Detlef M�uller and Elias M� Stein

Abstract� Let L denote the sub�Laplacian on the Heisenberg group
Hm � We prove that ei

p�L���� L���� extends to a bounded operator
on Lp�Hm�� for � � p � �� when � � �d� �� j��p� ���j�

�� Introduction�

On the Heisenberg group Hm � which is Cm � R endowed with the
group law

�z� t� � �z�� t�� 	

�
z � z�� t� t� � �

�
Im z � z�

�
�

the vector �elds

Xj 	

�

�xj
� �

�
yj

�

�t
� Yj 	


�

�yj
�

�

�
xj

�

�t
�

j 
 �� � � � �m� and T 	
 ���t form a natural basis for the Lie algebra of
left�invariant vector �elds� The only non�trivial commutation relations
among those are Xj� Yj� 
 T� j 
 �� � � � �m� Due to these relations�
the non�elliptic sub�Laplacian

L 	

mX
j��

�X�
j � Y �

j �

���
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on Hm is still hypoelliptic� and provides one of the simplest examples
of a non�elliptic �sum of squares operator� in the sense of H�ormander
�see e�g� K�� H�o��� Moreover� L takes over in many respects of analysis
on Hm the role which the Laplacian plays on Euclidian space�

Consider the following Cauchy problem for the wave equation on
Hm � R associated to L

�CP�
��u

���
� Lu 
 � � uj��� 
 f �

�u

��

���
���


 g �

where � � R denotes time�
If we put L 	
 �L� then the solution to this problem is formally

given by

u�x� �� 

� sin �� pL�p

L
g
�
�x� � �cos ��

p
L�f��x� � �x� �� � Hm � R �

In fact� if Lp�Hm�� � � p � �� denotes the Lp�Lebesgue space on Hm

with respect to the bi�invariant Haar measure �which incidentally agrees
with the Lebesgue measure on Cm � R�� then the above expression
for u makes perfect sense at least for f� g � L��Hm�� if one de�nes
the functions of L involved by the spectral theorem �notice that L is
essentially selfadjoint on C�� �Hm���

If one decides to measure smoothness properties of the solution
u�x� �� to �CP� for �xed time � in terms of Sobolev norms of the form
kfkLp� 	
 k�� � L����fkLp � one is naturally led to study the mapping
properties of operators such as

ei�
p
L

�� � L����

or
sin ��

p
L�p

L�� � L����

as operators on Lp�Hm� into itself�
For the classical wave equation on Euclidian space� sharp estimates

for the corresponding operators have been established by Peral P� and
Miyachi Mi��

In particular� if � denotes the Laplacian on Rd � then

��������� ei�
p��
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is bounded on Lp�Rd �� if � � ��d� p� 	
 �d � �� j��p � ���j� for � 	

p 	�� Moreover� ��������d�������� ei�
p�� is bounded from the real

Hardy space H��Rd � into L��Rd��
Local analogues of these results hold true for solutions to strictly

hyperbolic di�erential equations �see e�g� CF�� P�� B�� Mi�� SSS���
Indeed� as has been shown in B� and SSS�� the estimates in P�

and Mi� locally hold true more generally for large classes of Fourier
integral operators� and solutions to strictly hyperbolic equations can
be expressed in terms of such operators�

The problem in studying the wave equation associated to the sub�
Laplacian on the Heisenberg group is the lack of strict hyperbolicity�
since L is degenerate�elliptic� and Fourier integral operator technics do
not seem to be available any more�

Interesting information about solutions to �CP� have been obtained
by Nachman N�� Among other things� Nachman showed that the wave
operator on Hm admits a fundamental solution supported in a �for�
ward light cone�� whose singularities lie along the cone � formed by
the bicharacteristics through the origin� Moreover� he computed the
asymptotic behaviour of the fundamental solution as one approaches
a generic singular point on �� His method does� however� not provide
uniform estimates on these singularities� so that it cannot be used to
prove Lp�estimates for solutions to �CP�� What his results do reveal�
however� is that � is by far more complex for Hm than the correspond�
ing cone in the Euclidian case� This is related to the underlying� more
complex sub�Riemannian geometry�

Nevertheless� in this article we shall prove the following theorem	
Let d 
 m� � denote the Euclidian dimension of Hm �

Theorem� ei
p
L��� � L���� extends to a bounded operator on Lp�Hm��

for � � p � �� when � � �d� �� j��p� ���j�

Remark� One can see below that the same result holds for

sin
p
Lp

L �� � L��������
�

or with the factors �� �L����� �respectively �� �L���������� replaced
by �� �

p
L���� �respectively �� �

p
L���������

Notice that the restriction to time � 
 � in our theorem is inessen�
tial� since L is homogeneous of degree � with respect to the automorphic
dilations �z� t� 	�
 �r z� r� t�� r � ��
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Our theorem is slightly weaker than what one would expect in
direct analogy with the afore mentioned result of Peral and Miyachi� It
would be interesting to know whether the condition � 
 ��d� p� does
already su�ce� if � 	 p 	 �� and if there is an endpoint result for
p 
 ��

Finally we would like to mention that the spectral multiplier theo�
rem for L in MS� �see also H�� can easily be deduced from our theorem
by means of the method of subordination�

Our approach to the theorem is based on harmonic analysis on Hm �
in the sense expressed by Strichartz in St�� as the joint spectral theory
of the two operators L and iT � We shall closely follow the notation in
St�� and freely make use of the results of that paper� as well as of those
in MRS�����

�� Basic reductions and dyadic decomposition of ei
p
L�

In order to prove the theorem and the subsequent remark� we �rst
observe that it su�ces to prove the case p 
 �� This follows from a
standard interpolation argument� Namely� if we assume that the case
p 
 � was true� and de�ne the analytic family of operators T� 	


ei
p
L��� � L����� then we had

kT�fk� � C� kfk� � if Re� 
 � �

kT�fk� � C� kfk� � if Re� �
d� �

�
�

The latter inequality remains true even if Im� �
 �� since the operators
���L����i� � 
 real� are known to be bounded on L�� for any � � �� with
norm growing at most polynomially in 
� This can in fact also be seen
by a slight modi�cation of the proof of Corollary ��� to follow� Hence
one can use the analytic interpolation theorem in S�� and a standard
duality argument to deduce the theorem for arbitrary p �the results in
the remark can be obtained similarly��

For any bounded function � on R� we de�ne the operator ��L� by
the spectral theorem� and denote by M� � S ��Hm� the corresponding
Schwartz convolution kernel� so that ��L� 
 f �M� whenever f � S�
We also write M� 
 ��L� �� where � is the Dirac measure at the
origin�

The results for the case p 
 � are proved by showing that the
corresponding convolution kernels belong to L��Hm��
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���� Reduction to an estimate for the local part of the convo�
lution kernel�

Let � be an even C�� �R� function� so that ���� 
 � for small j�j�
and ���� 
 �� if j�j � �� For some large constant N � �� to be chosen
later� put �N ��� 	
 ����N�� Consider the function

����� h��� 	
 ��� �N ���� ����� ei
p
� � � � � �

We letM denote the corresponding convolution kernel� so that h�L�f 

f �M �

Proposition ���� To prove the theorem� it su�ces to show that �
B�
M

belongs to L��Hm��

Here Br denotes the ball of radius r centered at � with respect to
the optimal control distance on Hm � �For the de�nition of this distance
see e�g� VCS���

The proof of the proposition is based on the following two facts�
The �rst deals with the speed of propagation of the wave equation and
can be found in Me��

����	� The support of the distribution cos �t
p
L� � is contained in Bjtj�

The second fact guarantees that for certain multipliers � the cor�
responding kernel M� is in L��Hm��

���
	� Suppose � � C�k��R��� with k assumed to be su�ciently large�

If � satis�es the inequalities� j�	 ��	����j � A���� � when � 	 � � � �

j�	 ��	����j � A����� � when � � � 	� �

for � � � � k� then M� 
 ��L� � is in L��Hm��

Remarks� �� It actually su�ces to take k � �d � ����� also the ex�
ponent ��� can be reduced to � � �� However the above special case
su�ces for our purposes�

�� The proof gives the bound kM�kL��Hm � � constantA� with A
as in ������
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To prove ������ we let

� 

�X

j���
�
j
�x�

be a standard dyadic partition of unity for R� � with �
j
�x� 	
 ����j x��

where � � C�� �R� is non�negative and supported in ���� ���

We write �j 	
 �jjj�� �
j
�� Then ���� 


P
j �

�jjj�� �j���� and

kM�jkL��Hm � � A� uniformly in j�

In fact� with ��j��� 	
 �j��
j ��� each ��j is supported in ���� ���

and the ��j satisfy the inequalities

sup
j
�

j ���	�j ���j � A � for � � � � k �

Thus the key step in the proof of the Marcinkiewicz�Mikhlin�H�ormander
multiplier theorem for Hm �for which see e�g� FoS�� C�� MM�� also
MS�� H�� MRS����� shows that

sup
j
kM�jkL��Hm � 
 sup

j
kM 	�j

kL��Hm � 	� �

and the assertion ����� is proved� since M� 

P

��jjj��M�j �
Now for � � � and jtj � � set

f�
t��� 	
 ��� �N ���� ����� cos �t
p
�� �

g�
t��� 	
 ��� �N ���� ����� sin �t
p
�� �

so that by ����� h��� 
 f�
���� � i g�
�����
It is easily seen that for � � �

��� �N ���� j�j���� 

Z

���� cos ��
p
�� d� �

where � is such that � � � L� and ��� ��� � S�
Hence

f�
t��� 


Z
�� ����� cos ��

p
�� cos�t

p
�� d� ���

p
�� cos �t

p
�� �
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with � � S�
Now the support of the distribution corresponding toZ

�� ����� cos��
p
L� cos �t

p
L� d�

lies in B�� This is because � cos ��
p
L� cos�t

p
L� 
 cos ��� � t�

p
L� �

cos ��� � t�
p
L� and the result of fact ������ However the kernel cor�

responding to ��
p
L� cos �t

p
L� is in L��Hm�� uniformly for jtj � �� as

long as � � S�
This can be seen by applying the result ����� to the function ���� 	


��
p
�� cos �t

p
������� e��� and recalling that the kernel corresponding

to e�� is the heat�kernel� which is in L��Hm��
Thus we have that the f�
t�L� � are uniformly in L��Hm� in the

complement of the ball B��
As for g�
�� we observe that

����� g���
���� 


Z �

�

f�
t��� dt �

and thus g���
��L���� is in L��Hm� outside the ball B�� if � � �� As
a result

h�L� � 
 f�
��L� � � i g�
��L� � 
 M

is in L��Hm� outside the ball B�� if � � �� Thus� if we knew that �
B�
M

was in L��Hm�� we could conclude that M � L��Hm��

The conditional assertion for ���L����� ei
p
L can now be obtained

as follows� We write �� � ������ ei
p
L as

�N ��� �� � ������ ei
p
� �

����

�� � �����
��� �N ���� ����� ei

p
� �

The function �N ��� �� � ������ ei
p
� � e�� satis�es the hypothesis of

������ and e�� corresponds to the heat kernel� thus

�N �L� �� � L����� ei
p
L

has an L��Hm� kernel� Next the function ������� � ��������e�� sat�
is�es the hypothesis of ������ thus L������ � L���� is the identity oper�
ator plus a convolution operator whose kernel is in L��Hm�� Combining

this with the previous assertion about �� � �N ��L�L���� ei
p
L proves
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the proposition� The further conclusions in the remark are proved sim�
ilarly�

We have reduced the proof of our theorem to showing that

k�
B�
MkL��Hm � 	� �

with M 
 Mh and h given by ������ provided � � m 
 �d� �����
A further reduction is given as follows	 We let ��

B�
be a smooth

variant of �
B�

� that is� ��
B�

is in C�� �Hm�� with ��
B�

�x� 
 �� if x � B��

Corollary ���� To prove the theorem� it su�ces to prove that the

operator f 	�
 f � ���
B�
M� is bounded on Lp�Hm� to itself� for all p�

� 	 p 	��

Proof� Write M 
 M� to indicate the dependence on �� Now� if
� � �d � ����� we can write � 
 �� � �� � � �� �� � �d � ����� We
know from the above that �� � ��

B�
�M�� is in L��Hm�� so if f 	�


f � ���
B�
M��� is bounded on Lp� � 	 p 	 �� so is f 	�
 f �M�� � But

M� 
 M�� � ��� � L��� ���
However� �� � L��� � is in Lp�Hm� for some p � �� if � � � �we

shall prove this momentarily�� We would then have M� � Lp�Hm�� and
hence �

B�
M� � L��Hm�� However� ����

B�
�M� was already shown to

be in L��Hm�� and so this would imply that M� � L��Hm��
To see that �� � L��� � � Lp�Hm� for some p � �� we write

�� � L��� � 

�

����

Z �

�

e�s s�m�� p�s����z� s�� t� s���� ds �

where p�z� t� denotes the heat kernel associated to L at unit time� As
is well�known� p�z� t� 
 O ��� � jzj� � jtj��N �� for every N � �� and as
a result

�� � L��� ��z� t�




�
O ��jzj� � jtj��m����� � if jzj� � jtj � � �

O ��jzj� � jtj��N � � if jzj� � jtj � � � for all N � � �

From this it follows that �� � L���� � Lp�Hm�� if ��m � � � �� p �
�m� ��
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In order to verify the assumption in the corollary� we shall invoke
the Gelfand transform G for the algebra of radial functions on Hm

�compare MRS���� For f � L��Hm� radial� we have

G�h�L�f���� n� 
 h��m� �n� j�j�Gf��� n� �

� � R
� 	
 R n f�g� n � N�
If �

j
� j � Z� denotes again our dyadic decomposition of unity on

R� � we put

��k
j��� n� 	
 h��m� �n�j�j��
�k�j �� ���j �m� �n� �

for j � �� k � Z� � � f��� �g� We also set

K�
k
j 
 G�����k
j� �

By MRS��� since ��k
j is smooth and supported away from the axes�
one has K�

k
j � S� Observe also that

����� �k�� �
p

�m� �n� j�j � �k�� on supp��k
j �

so that ��k
j 
 �� unless �k � N��� So� if we �x any k�  �� we may
choose N su�ciently large so that

����� M 

X
����
k�k�
j��

K�
k
j �

for instance in the sense of distributions�
The proof of the theorem is then reduced to showing the following

Proposition ��
� If � � m� then

X
����
k�k�
j��

k��
B�
Kk
jk�p
p� 	� �

for every p� � 	 p 	 �� where kKk�p
p� denotes the norm of the con�

volution operator f 	�
 f �K on Lp�Hm��



��
 D� M	uller and E� M� Stein

���� Formulas for Kk
j�

In order to compute K�
k
j � we �rst observe that

���k
j��� n� 
 ��k
����� n� �

hence K��
k
j �z� u� 
 K�

k
j�z��u� �compare MRS���� This allows us to
reduce to the case � 
 �� and we shall from now on suppress the su�x
�� assuming that it is ��

Next� observe that G�iLT��f���� n� 
 �m��n�Gf��� n�� if � � ��
Therefore� by St� Corollary �����

��iLT��� f 

X
n

��m� �n� f � �Pn �

for any bounded multiplier �� if Gf is supported in � � �� where �Pn 

cn � � p�v�Pn� and where Pn is the Calder�on�Zygmund kernel

Pn�z� t� 
 �m�� ��m�� ����n �m� n��

n�

� �jzj� � � i t�n

�jzj� � � i t�m���n

�
� �

n

m� n

jzj� � � i t

jzj� � � i t

�

�see St� Lemma ��� and ���������
If we de�ne �polar coordinates� by putting

r 	
 �jzj
 � �� t����
 � � t� i jzj� 
	 r� ei��� � � � � 	 �� �

then we have

��� �a� Pn 
 cm �Qn �Qn��� �

with

��� �b�

Qn 	

�m� n��

n�

ei�m��n������

r�m��



�m� n��

n�

�� t� i jzj��n
�� t� i jzj��m�n��


 im�� ����n �m� n��

n�

�jzj� � � i t�n

�jzj� � � i t�m���n
�
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Next� observe that

�k
j��� n� 	
 ��k
j��� n�


 ��m� �n� j�j����� �
�k�j ����j �m� �n� ei

p
�m��n�j�j �

if k is su�ciently large �in that case we may in fact delete the factor
��� �� ���N� in h�� which we may assume� Putting

���x� 	
 x���� ��x� �

this may be written as

�k
j��� n� 
 ���k ��
�k�j ��� ��j �m� �n� ei

p
�m��n�j�j �

Since �� is of similar type as �� we shall again write � in place of ��� and
then get� for k� j �xed�

�k
j��� n
�� 
 ���k

X
n

�
j
�m� �n� 
n��� n�n

�� �

where n�n
�� 
 � if n 
 n� and n�n

�� 
 � otherwise� with


n��� 	
 �
�k�j ��� e

i
p
�m��n�j�j �

This implies

f �Kk
j 
 ���k
X
n

�
j
�m� �n� 
n��i T � n

� iLT�� �m

�

�
f


 ���k
X
n

�
j
�m� �n� 
n��i T � �f � �Pn� �

In the sequel� we shall often use the following abbreviation

� 	
 � k � j �

We put

�	
n�t� 	

�

��

Z �

��
ei
p
�m��n�� �

	
��� ei�t d� �
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Then� away from z 
 �� Kk
j is given by

���!� Kk
j�z� t� 
 ���k
X
n

�
j
�m� �n�

Z
Pn�z� t� s� ��k�j
n�s� ds

�we do know that Kk
j � S� although this is not evident from this
formula��

Putting � 
 �	 x� in the integral de�ning �	
n� we write

�	
n�t� 

�	

�

Z �

��
ei�
p
�m��n� ��x���tx�� ��x�x dx �

which shows that the asymptotics of �	
n can be computed by the
stationary phase method of

Lemma ���� Let f � C�� �R� be supported in ���� ��� For every N �
N there exist functions f�� � � � � fN � C�� �R� supported in ���� �� and
EN � C��R��� such that for �a� b� � R

� with j�a� b�j � �

Z �

��
ei�ax�bx

����f�x� dx 
 eia
����b�

NX
��

b����� f
�a
b

�
� EN �a� b� �

where EN satis�es

E
���
N �a� b� 
 O �j�a� b�j�N����� �

for every � � N� �

Proof� We haveZ �

��
ei�ax�bx

���� f�x� dx 
 eia
����b�

Z �

��
e�ibx

��� f
�
x�

a

b

�
dx �

Now� in the region where ��� � a�b � �� the result follows easily from
the proof of S�� Proposition �� Chapter VIII� and the remarks in S��
Chapter VIII� ������� since the critical point in the integral on the right
is x 
 �� The functions f do in fact arise as linear combinations of
derivatives of f �

In the remaining region� the result is obtained by integrating by
parts in the integral on the left�
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We may apply the Lemma to �	
n�t�� since
p
�m� �n� �	 � �k 

�� and obtain

���"�

�	
n�t� 
 ei�m��n���
t�
NX
��

��	�� t������ �	 f
�rm� �n

�	
�

� t

�

� �	EN

�q
�m� �n� �	� �	�� t

�
�

with f and EN as in the lemma�
Put

an
	 	

q
�m� �n� �	 �

Since an
	 � �k� and since

��	�� t������ 
 a
�����
n
	

�rm� �n

�	
�

� t

�����
�

the ��th term in ���"� is of the form

c �f

�rm� �n

�	
�

� t

�
�

with c 
 O ���������k�� �f�x� 
 x���� f�x��
Consequently� we may reduce in ���!� to the case where �	
n is

either of the form

�a� �	
n�t� 
 �	 a
�����
n
	 f

�rm� �n

�	
�

� t

�
ei�m��n���
t�

with f � C�� �R� supported in �#!��� and � � �� or of the form

�b� �	
n�t� 
 �	EN �an
	� �
	��t�

with EN as in the lemma and N su�ciently large�
Case �b� is easily dealt with by the Marcinkiewicz multiplier the�

orem in MRS�� Theorem �����
If �	
n is of the form �b�� then its inverse Fourier transform �	
n is

of the form
�	
n��� 
 $�an
	� �

�	 �� �

where

$�a� �� 	


Z �

��
EN �a� t� e�i�t dt



��� D� M	uller and E� M� Stein

is of class CM for M 
 N���� � and satis�es

������ ��a �
�
� $�a� �� 
 O �a�M�� �� � j�j��K� �

for every �� K � N and every � �M � as can easily be seen by integra�
tion by parts�

Now� since our �original� function �	
n had its Fourier transform
supported where � � �	� we may also localize the support of �	
n in
this region� And� in the region where n � �j and � � �	 
 ��k�j � we
see from ������ that �	
n��� 
 ��

p
�m� �n� ��k�j� �j��k �� satis�es

estimates of the form

j��n ��� �	
n���j � C�
� �
�Mk�������j�k� � C�
� �

��j �����k�j� �

if �� � �M �
Thus� if we de�ne Kk
j by ���!�� with �	
n as in �b�� but Fourier

transform localized in � � �	� and choose N su�ciently large� we see
that for any � � � in ���!�

K 	

X
k�k�
j��

Kk
j

is a kernel whose Gelfand transform satis�es the multiplier condition in
MRS�� Theorem ����� and thus satis�es the kernel estimates of MRS��
Theorem ����� for su�ciently many derivatives� But then one checks
easily that the same is true of the truncated kernel ��

B�
K� and conse�

quently the operator f 	�
 f � ���
B�
K� is Lp�bounded for � 	 p 	 �

by MRS�� Theorem �����
Moreover� since

a
����
n
	 �

j
�m� �n� 
 ��k�� ��

j
�m� �n�

with ���x� 
 x���� ��x�� by modifying � we may assume that the factor
an
	 in �a� equals �k� We thus �nd that� in order to prove Proposition
���� it su�ces to prove the following

Proposition ���� Suppose that Kk
j is given by

Kk
j�z� t� 
 ��mk
X
n

�
j
�m� �n�

Z
Pn
�
z�
t� s

�

�
�k
j
n�s� ds
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with

�k
j
n�t� 	
 �k���k�jf
�rm� �n

��k�j
�

t

�
ei�m��n��t �

f � C�� �R� supported in �#!���� k � � su�ciently large� ThenX
j��

kKk
jkL��B�� 
 O �k�� �

�� Integral formulas for Kk
j�

In order to sum the series for Kk
j in Proposition ���� we �rst
observe that �

j
�m��n� �k
j
n�s� 
 �� unless ��� � �k�j s � ��� Thus�

if we choose �� � C�� �R� such that ���x� 
 � for ��� � x � �� and
supp �� � ��!� ���� then we may replace �k
j
n�t� by ����k�j t� �k
j
n�t��

Moreover� writing

f
�rm� �n

��k�j
�

t

�

 g
�
log
�m� �n

��k�j
t��
��

�

with g smooth on log ����� log �� � ��� �� and� say� supported in
�� �� � � and developping g into a Fourier series on ��� ��� we see
that

�����

�k
j
n�t� 

X
�Z

a

�m� �n

��k�j t�

�i
��k���j ����k�jt� ei�m��n��t


	
X
�Z

a �k
j
n
�t� �

where

����� a 
 O �j�j�N � � for every N � N �

We also put

Kk
j
 	
 ��mk
X
n

�
j
�m� �n�

Z
Pn
�
z�
t� s

�

�
�k
j
n
�s� ds �

so that
Kk
j 


X


aKk
j
 �
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Writing
��
��

�t� 	
 t��i ���t� �

we still have ��
��

� C�� �R� with supp ��
��

� ��!� ����

Moreover�

����� k�����
��
k� 
 O ��j�j� ���� � � � N �

and

�k
j
n
�t� 
 ��k���j �ij �m� �n�i ��
��

��k�j t� ei�m��n��t �

Consequently� by ��� �b��

X
n

�
j
�m� �n�Qn

�
z�
t� s

�

�
�k
j
n
�s�


 �ij ��k���j
X
n

�
��
j

�m� �n�
�m� n��

n�
ei�m����n���������s�

� e�i�s

r��m�� ��
��

��k�j s� �

where r� and �� are de�ned by

t� s� i jzj� 
 r�� ei�
��� �

and where �
��
j

�x� 
 �
��

���j x�� with

�
��

�x� 	
 xi ��x� �

Let us put

�
j��� 	

X
n

�
��
j

�m� �n�
�m� n��

n�
��mj ei��n�m���� �

For �xed �� �j 	
 j�
j j has the following properties� as can easily be
seen by applying Poisson%s summation formula	

i� �j is ��periodic �

ii� �j��� � CN
�j

�� � �j j�j�N � for j�j � �

�
������
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for every N � N � j � N � ii� means that �
j is essentially supported in
fj�j � ��jg� and implies that k�
jk� is uniformly bounded in j� Notice
also that the constants CN in �����ii� will grow with �� however� only
polynomially� namely

����� CN 
 O ��j�j� ��N��� �

With �
j as above� we have

X
n

�
j
�m� �n�Qn

�
z�
t� s

�

�
�k
j
n
�s�


 �ij ��k����m���j �
j
���
�
�

�

s

� e�i�s

r��m�� ��
��

��k�j s� �

And� since
��

�

 arctan

� jzj�
t� s

�
�

where arctan denotes the branch of tan�� taking values in �� ��� we
obtain

���mk
X
n

�
j
�m� �n�

Z
Qn

�
z�
t� s

�

�
�k
j
n
�s� ds


 �ij �k�� ��m����j�k�������

�
Z �
j

�
arctan

� jzj�
t� s

�
�

�

s

�
�jzj
 � �t� s���m����

e�i�s ��
��

��k�js� ds �

Since Pn 
 cm�Qn�Qn���� this allows to establish an integral formula
for Kk
j
 �

In order to simplify the notation� we shall do this only for the
case � 
 �� In fact� we shall see that the estimates of Kk
j
 will only
depend on the constants CN in ����� for a �nite number of N %s and on
the norms of a �nite number of derivatives of ��

��
� Therefore� in view

of ����� and ������ we shall get the same type of estimate for kKk
j
k�
as for kKk
j
�k�� except possibly for a factor which grows like a power
of j�j� �� But� because of ������ it will then be clear that

kKk
jk� �
X


ja j kKk
j
k� �
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which leads to an estimate of the same type as for kKk
j
�k��
So� from now on we shall assume that �k
j
n 
 �k
j
n
�� i�e� that

��� � �k
j
n�t� 
 ��k���j ���k�j t� ei�m��n��t �

with � � C�� �R� supported in ��!� ���� Then� by �������

��mk
X
n

�
j
�m� �n�

Z
Qn

�
z�
t� s

�

�
�k
j
n�s� ds


 �ij �k�� ��m����j�k������

�
Z �j

�
arctan

� R

t� s

�
�

�

s

�
�R� � �t� s����m�����

e�i�s ����k�js� ds �

where we have used the abbreviations �j 
 ��
j and

R 	
 jzj� �

Now� observe that if we replace Qn by Qn�� in the left hand side of
������ we have to sum

X
n

�
j
�m� �n�Qn��

�
z�
t� s

�

�
�k
j
n�s�


 �ij ��k���j
X
n

�
j
�m� �n�

�m� n� ���

�n� ���
ei�m�����n������������s�

� ei�s

r��m�� ���
k�js� �

Replacing �
j
�m� �n� in this sum by �

j
�m� � �n� ��� � ��j ��j�m�

� �n� ���� with

��
j
�m� � �n� ��� 
 �j

�
�
�m� �n

�j

�
� �
�m� �n� �

�j

��


 ��
Z �

�

��
�m� �n� � t

�j

�
dt
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having similar properties as �
j
� we �nd that

X
n

�
j
�m� �n�Qn��

�
z�
t� s

�

�
�k
j
n�s�


 �ij �k�� ��m����j�k�

�
�Z �j

�
arctan

� R

t� s

�
�

�

s

�
�R� � �t� s����m�����

ei�s ���k�js� ds

� ��j
Z ��j

�
arctan

� R

t� s

�
�

�

s

�
�R� � �t� s����m�����

ei�s ���k�js� ds

�
�

with the same �j as in ������ and ��j of the same type as �j�
Writing Kk
j�R� t� instead of Kk
j�z� t�� we then get

Kk
j�R� t� 
 Cm �ij �k�� ��m����j�k�

�
�Z �j

�
arctan

� R

t� s

�
�

�

s

�
�R� � �t� s����m�����

�e�i�s � ei�s����k�js� ds���!�

� ��j
Z ��j

�
arctan

� R

t� s
�

�

s

��
�R� � �t� s����m�����

ei�s ���k�js� ds

�
�

Formula ���!� will be useful in the region where R� � �t� s�� is large�
To deal with the region where R� � �t � s�� is small� we establish a
second formula for Kk
j�

To this end� we put

Rn�z� t� 	

�m� n� ���

n�

�� t� i R�n

�� t� i R�m�n



�m� n� ���

n�

ei�m��n����

r�m
�

and observe that
�tRn 
 �Qn�� � �Qn �

so that by ��� �

���"� Pn 
 �cm
�
�tRn �
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Integrating by parts in the formula for Kk
j in Proposition ���� we thus
obtain

Kk
j�z� t� 
 �cm ��mk
X
n

�
j
�m� �n�

Z
Rn

�
z�
t� s

�

�
��k
j
n�s� ds �

And� one realizes easily that

��k
j
n 
 �	 ��k
j
n �

with ��k
j
n similar to �k
j
n �only �� has to be modi�ed in the de�nition

of ��k
j
n��
Arguing now similarly as before� we �nd that

������

Kk
j�R� t� 
 Cm �ij �k�� ��m����j�k�

�
Z �j

�
arctan

� R

t� s

�
�

�

s

�
�R� � �t� s���m��

���k�js� ds �

with functions �j and � similar as in ���!�� but not necessarily identical�
Notice that in passing from ���!� to ������ we �gain� a factor

���k�j� �R� � �t � s������� In addition we should point out that the
right�side of ���!� contains factors of e�i�s� which do not appear in
������� this is due to the extra factor ei��� occuring in the formula
��� �b� for Qn� which is not present in the formula for Rn�

We shall now specialize these formulas in the cases j � k and j � k�

A� The case j � k �M � Fix M � N to be chosen later� If j � k �M �
then the variable s in ���!� is of the order �j�k � �M � so that no
cancellation in the factor e�i�s � ei�s can be expected� We therefore
estimate each of the terms appearing in ���!� � which are all of similar
type� seperately�

In order to exploit formulas ���!� as well as ������� we choose a
cut�o� function � � C�� �R� such that ��x� 
 � for jxj � ���� ��x� 
 �
for jxj � ���� and split Kk
j into

Kk
j�z� t�


 ��mk
X
n

�
j
�m� �n�

Z
��� �� ��
�k�j� �R� � �t� s����
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� Pn
�
z�
t� s

�

�
�k
j
n�s� ds

� ��mk
X
n

�
j
�m� �n�

Z
���
�k�j� �R� � �t� s����

� Pn
�
z�
t� s

�

�
�k
j
n�s� ds �

Using ���"�� and performing an integration by parts in the second term�
we then �nd that Kk
j will be made up of a �nite number of terms of
the following types

�Fk
j�z� t� 	
 �k����m����j�k�

�
Z �j

�
arctan

� R

t� s

�
�

�

s

�
�R� � �t� s����m�����

��A���

� ��� �� ��
�k�j� �R� � �t� s���� ei�s ���k�js� ds �

the complex conjugate of �Fk
j �

�Gk
j�z� t� 	
 �k�� ��m����j�k�

�
Z �j

�
arctan

� R

t� s

�
�

�

s

�
�R� � �t� s���m��

��A���

� ���
�k�j��R� � �t� s�������k�js� ds �

and

�Hk
j�z� t� 	
 �k����m����j�k��j

�
Z �j

�
arctan

� R

t� s

�
�

�

s

�
�R� � �t� s���m��

�t� s���A���

� ����
�k�j� �R� � �t� s�������k�js� ds �

Notice also that �j��� e
�i� 
	 ��j��� is a function of the same type as

�j � and that

�j

�
arctan

� R

t� s

�
�

�

s

�
ei�s
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�
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� R

t� s

�
�

�

s

� t� s� i R
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This shows that we may put �Fk
j also into the form

�Fk
j�z� t� 
 �k�� ��m����j�k�

�
Z

��j

�
arctan

� R

t� s

�
�

�

s

� t� s� i R

�R� � �t� s����m�����
��A����

� ��� �� ��
�k�j� �R� � �t� s�������k�js� ds �

Now observe that there is some A � N such that

B� � f�z� t� � Hm 	 jzj� � �A� jtj � �Ag 
	 Q �

This is clear since j�z� t�j 	
 �max fjzj�� jtjg���� is a homogeneous norm
on Hm � hence equivalent to the optimal control norm� Thus kfkL��B�� �
kfkL��Q��

Moreover� replacing R by �j�kR� t by �j�kt and s by �j�ks� we
see that k �Fk
jkL��B�� � kFk
jkL���k�jQ
dRdt�� with

Fk
j�R� t� 	
 �k���m�j�k�

�
Z

�j

�
arctan

� R

t� s

�
�

�k�j

s

� Rm���t� s� i R�

�R� � �t� s����m�����
�A���

� ��� �� ����k�j� �R� � �t� s������s� ds �

Similarly� instead of estimating the L��B���norms of �Gk
j and �Hk
j � we
may estimate the L���k�jQ��norms of Gk
j and Hk
j� de�ned by

Gk
j�R� t� 	
 �k�� ��m����j�k�

�
Z

�j
�
arctan

� R

t� s

�
�

�k�j

s

� Rm��

�R� � �t� s���m��
�A���

� �����k�j��R� � �t� s������s� ds �

Hk
j�R� t� 	
 �k�� ��m����j�k��j

�
Z

�j
�
arctan�

R

t� s

�
�

�k�j

s

� �t� s�Rm��

�R� � �t� s���m��
�A���

� ������k�j� �R� � �t� s������s� ds �

Notice that we are interested in these functions in the region

������ � � R � �k�j�A � jtj � �k�j�A �
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By kfk we shall denote the L��norm of f restricted to this domain�

B� The case j � k�M � In this case� we have s � �j�k�� in the integral
for �Fk
j � and so� if �R� t� � Q� then

�
�k�j� �R� � �t� s��� � C ���k�j� � � �

if M is choosen su�ciently large� Thus� in this case �Fk
j 
 �� and
consequently we shall here entirely make use of formula �������

After scaling� we are thus lead to estimating the L��norm of

Gk
j�R� t� 	
 �k�� ��m����j�k�

�
Z

�j

�
arctan

� R

t� s

�
�
�k�j

s

� Rm��

�R� � �t� s���m��
��s� ds�B�

on the region given by �������


� The change of coordinates�

In the estimates to come� the following change of coordinates turns
out to be useful

����� x 	

R

t� s
� y 	


R� � �t� s��

t� s
� s 	
 s �

with inverse transformation

����� t 

y

hxi� � s � R 

x y

hxi� � s 
 s �

where we have put

hxi 	
 �� � x����� �

Then one veri�es easily the following formulas

dRdt ds 

jyj
hxi
 dy ds dx ������

R� � �t� s�� 

y�

hxi� � t� s 

y

hxi� ������
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Put

�k
j�x� s� 	

����j� arctanx�

�k�j

s

���� �
Let A � N be as in ������� and �x M � N such that M � A� ���

We shall frequently make use of the following

Lemma 
��� a� If j � k �M � thenZ
�k
j�x� s� j��s�j ds � C �

with C independent of j� k and x�

b� If j � k �M � thenZ
jxj	����A�k�j

�k
j�x� s� dx � C �

with C independent of k� j and s�

Proof� Put u 	
 arctanx � �� ��� Since supp� � ��!� ���� we have

Z ����j�u�
�k�j

s

�
��s�

��� ds � C� �
j�k
Z �k�j��

�k�j��
j�j�u� s�j ds �

And� if k � j � �M � then it follows easily from ����� that

Z �k�j��

�k�j��
j�j�u� s�j ds � C� �

k�j �

This covers parts a� of the lemma�
As for b�� assume now that �� � A� k � j � �� � A�M � ����

and jxj � ����A�k�j 
	 L� ��
Since arctan ��x� 
 � � arctanx� and since j�jj is ��periodic� we

have Z �

�L
�k
j�x� s� dx 


Z L

�

����j�� arctanx�
�k�j

s

���� dx �
Thus� choosing u 
 tan�� x with juj � tan���L� � L as variable of
integration in place of x� where tan�� denotes the branch with values
in ����� ����� then we getZ

jxj	L
�k
j�x� s� dx � C �

Z
juj	L

����j�u�
�k�j

s

���� du � C �
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again by ������

�� Estimates for j � k �M �

���� Estimation of Hk
j�

Since � � � for � � supp ��� we get by �A��� and Lemma ��� that

kHk
jk � C �k����m����j�k��j

�
Z
y
�j�khxi

j�k
j�x� s�j
�����

y

hxi�
� x y

hxi�
�m��

� y

hxi
�m

����� jyjhxi
 dy ds dx

� C �k���m�j�k��j
Z jxjm��
hxim��

dx

� C �k���mk��m���j �

Consequently�

�����
X

j	k�M
kHk
jk� � C ��k�� �

Remark� In the above estimate� we did not make use of the condi�
tion ������� Notice that in the �x� y� s��coordinates� this condition is
equivalent to

�����
jyj
hxi � C �k�j �

This condition will be of importance in the estimations of kFk
jk and
kGk
jk�

In fact� arguing similarly as for Hk
j and using ������ one �nds that

kFk
jk � C ��k � j� �M� �k���m�j�k� � kGk
jk � C �k���m�j�k� �

Thus� if one choose any � � �� one �nds that

�����
X

j������������m�k

�kFk
jk� kGk
jk� � C� �
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In order to deal with the remaining values of j � k�M � we shall have
to perform another integration by parts�

Notice� however� that by ����� we may from now on assume that j
is su�ciently large� so that ��j � ��

���� Estimation of Fk
j�

For R and t �xed� let us put

a�s� 	
 �R� � �t� s������ 
 jt� s� i Rj �
Notice that ����� just means that

������ a�s� � C �k�j �

and that for s in the support of the integrand of �A��� we have a�s� �
�j�k� so that

����� �j�k � a�s� � C �k�j �

In the discussion to follow� we shall always assume that the estimates
we shall establish are valid for s in the support of the integrals under
examination without further mentioning�

We shall say that a function h of R� t and s is a symbol of order ��
if it satis�es estimates of the form

j��j�s hj � Cj a
��j � j � N �

at least for j 
 �� �� �� where Cj is independent of R� t and s� Evidently
a is a symbol of order �� Similarly� arctan �R��t � s�� is a symbol of
order �� For R and t �xed� let us write

��s� 	
 arctan
� R

t� s

�
�

�k�j

s
�

��s� 	

t� s� i R

�R� � �t� s����m�����
��� �� ���k�j a�s���� �

One checks easily that � is a symbol of order �m � �� We may then
write

����� Fk
j�R� t� 
 �k���m�j�k�Rm��
Z

�j � ��s���s���s� ds �
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In the latter integral� we can perform an integration by parts� if we
observe that

����� �j 
 ���j �� �j �

where ��j is a function of the same type as �j � so that �j 
 j��jj satis�es
in particular ������ ����� can in fact easily be obtained by going back
to the de�nition of �j� Since

�j���s�� 
 ���j d

ds
���j � ���s� �

���s�
�

we may write Fk
j also in the form

��� � Fk
j�R� t� 
 �k���m�j�k�Rm��
Z

��j � ��s� ��j
���
��

��
�s� ds �

Since

��j
���
��

��
��



��j ��

�� �
�

��j ��

�� �
� ��j

���

���
�

we shall gain by the integration by parts if these terms are bounded�
say by �#�� Now� if �� is formed as �� only with � replaced by a function
�� of slightly smaller support� then

���!�a�
��� ��
�� ��

��� � C
a��

j��j �

and similarly� since arctan �R��t� s�� is a symbol of order ��

j���j � C �
�
a�� �

�k�j

s�

�
� C ���k�j��� � a���� �

hence

���!�b�
��� ���
���

��� � C
���k�j��� � a��

��

��
�

Finally� if �� is similar to �� only with a slightly larger support� then

���!�c�
��� ��
�� ��

��� � C
�

j��j �
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The natural condition in order to gain by the integration by parts is
thus

���"� � 	
 ��j
���k�j��� � a��

��

��
� � �

Under this condition� we get

������
�����j���

��

����� � C j�� � ���j ������ �� ��j �

In fact� we have

������ ��j � �
���j a��

��

��
�

so that �����j ��

�� ��

��� � C ���j ����� �

Moreover�

���s� 

R

R� � �t� s��
� �k�j

s�
�

so that by �����

j���s�j � C � �a���s� � �k�j� � C �k�j �

But then

� � �k��j

���
� C

��j

j��j �

so that �����j ��

�� ��

��� � C � �

In order to simplify the notation� we shall often replace again �� by
� and �� by � in the estimates to follow�
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Let us now express the relevant functions in the coordinates �x� y� s�
of Section �� Some easy computations based on ����� yield

������

a�s� 

jyj
hxi �

��s� 
 arctanx�
�k�j

s
�

���s� 

x

y
� �k�j

s�
�

Rm�� ��s� � C
jxjm��
hxim��

�

y�
��� ��

��
�k�j

y

hxi
���

�

��s� 
 ��j
���k�j��� �

hxi
jyj

x

y
� �k�j

s�

��


 s

�
��j��

��j�k��� jyj� �j�k hxi
y � �j�ks� x

��
�

Observe now that� due to the choice of �� jyj � � � �j�ks�hxi for any s
with �����s� �
 �� so that

������ ��s� � ��j
�
��j�k��� �

�k�j hxi
jyj

��
� C ��j � � �

hence

������ ��s� � ���j ��s����� � C ��j �

We shall therefore estimate kFk
jk by means of formula ��� �� which� in
combination with ������� ������� ������ and ����� yields

kFk
jk � C �k���m�j�k�

�
Z
�j�k	a	C�k�j

�k
j�x� s�R
m�� j�� � ���j ��������j�s� ds

� C �k���m�j�k��j

�
Z
�j�khxi	jyj	C�k�j

�k
j�x� s�
jxjm��
hxim��

�

jyj dy ds dx

� C �k���m�j�k��j k �
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again by Lemma ����a�� This implies

������
X

j	k�M
kFk
jk � C k� ��k�� �

��
� Estimation of Gk
j�

We shall proceed similarly as in the preceding section� We de�ne
��s� and a�s� as before� only � has to be replaced here by

��s� 	
 �R� � �t� s����m�� �����k�j� �R� � �t� s���� �

so that now � is a symbol of order �m� Notice also that for ��s� �
 �
we have

������ a�s� � C �j�k

in place of ������
Then

Gk
j�R� t� 
 �k����m����j�k�Rm��
Z

�j � ��s���s���s� ds �

We may perform an integration by parts as in the preceding section�
and the gain by this can be estimated by the same function � de�ned
in ���"�� However� here we may have �  �� Therefore we �x a cut�o�
function �� supported in jxj � � and with ���x� 
 � for jxj � �� and
write

Gk
j�R� t� 
 �k����m����j�k�Rm��

�
�Z

�j � ��s���s���s� �����s�� ds

�

Z
�j � ��s���s���s� ��� ��� ���s�� ds

�
�

Performing the integration by parts in the �rst integral� we �nd that

���� � jGk
jj � C �G�
k
j �G�

k
j �G�
k
j� �
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with

G�
k
j�R� t�

	
 �k����m����j�k��j Rm��
Z
�	�	�

�����j � ��s� ��
��

�s����s�
��� ds �

G�
k
j�R� t�

	
 �k����m����j�k�Rm��
Z
�	�

j��j � ��s� ��� � ���j����������s�j ds �

G�
k
j�R� t� 	
 �k����m����j�k�Rm��

Z
���

j�j � ��s� �����s�j ds �

Notice that in the second term we have already estimated j��j �������j
by C j�� � ���j ������ �� ��j� This is justi�ed� since ������ remains valid
here & the only property of � made use of here is that j�����j � C a���

If one expresses the functions arising in these integrals in the
�x� y� s��coordinates� formulas ������ remain the same except for the
estimate for Rm����s�� which here is to be replaced by

������� Rm�� ��s� � C
jxjm��
hxim��

�

jyj �
��

�k�j
y

hxi
���

�

Observe also that

����!� j��j � C �j j��j � if ��s� � � �

In fact� if ��s� � �� then by ���!�b�

j��j � C ��j�� j�j���
�a��
j��j � ���k�j��� � a���

��� ���
���

����

� C
��

��j
a��

���
�
�j�� � ��j��

���k�j��� � a��

j��j
���

j��j

� C ��j�� � � �j ����� j��j �

And� since jyj � C �j�k hxi� by ������� we see that

����"� ��s� �
���j���j�k hxi
y � �j�k s� x

��
�
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This implies

������ jy � �j�k s� xj � C ��j���j�k hxi � if ��s� � � �

Now� observe that� due to ����!�� we have jG�
k
j j � C jG�

k
j j� Therefore

kG�
k
jk� kG�

k
jk � C �k����m����j�k�

�
Z
���
s
�

�k
j�x� s�
jxjm��
hxim��

�

jyj
jyj
hxi
 dy ds dx �������

which� by ������ and Lemma ����a�� can be estimated by

C �k����m����j�k��j���j�k
Z jxjm��
hxim��

dx �

This yields

������ kG�
k
jk� kG�

k
jk � C ��m������j�k� �

Finally� putting B 	
 ��j���j�khxi� by ����"� we have

��s� �
� B

y � �j�k s� x

��
�

Thus� if ��s� � C�� then this and ������ imply

B

C
� jy � �j�k s� xj � C � �j�k hxi �

and thenZ
�	�
a	C�j�k

j�j dy

�
p
�

Z
�	�
a	C�j�k

j�j��� dy

�
p
�

Z
B�C	jy��j�ks�xj	C��j�khxi

B

jy � �j�k s� xj dy

� CB log
�c �j�k hxi

B

�
� C ��j���j�k j hxi �
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Similarly�

Z
�	�
a	C�j�k

j��j �j��� dy � C ��j�� ��j���j�k j hxi �

This implies

kG�
k
jk � C �k����m����j�k�

�
Z
s
�

Z
�	�
a	�j�k

�k
j�x� s� �j��x� y� s�j� j��j ��x� y� s�j����

� dy jxj
m��

hxim��
dx ds

� C k ��m������j�k�
Z jxjm��
hxim��

dx

� C k ��m������j�k� �

In combination with ������ and ���� � we thus �nd

X
j	k�M

kGk
jk � C k �

Put together� the estimates of this section yield

������
X

j	k�m
kKk
jkL��B�� � C k �

�� Estimates for j � k �M �

In order to estimate the norm of Gk
j � now given by �B�� we follow
the same scheme as in the preceding Section ��� and split Gkj as in
���� � by performing an integration by parts on the region where � �
C� Notice� however� the following di�erences compared to the case
j � k �M 	

Firstly� since ��! � s � �� in �B�� by ������ we have

����� ��� � a�s� � �
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in place of ������� Moreover� since

���s� 

R

R� � �t� s��
� �k�j

s�
� ����s� 


R �t� s�

�R� � �t� s����
�
�k�j��

s�
�

by ������ and ����� we now have

��� ���
���

��� � C
�k�j

���
� j��j � C �k�j �

so that

����� ��j
���� ��
�� ��

���� ��� ��
�� ��

���� ��� ���
���

���� � C
�k��j

���
�

We shall therefore put

� 	

�k��j

���

here� Then ������ remains valid�
With this function �� and with � 
 �R� � �t� s����m�� � � here�

we may de�ne G	
k
j � � 
 �� �� �� as before� where� because of ������ we

may even assume that G�
k
j is given by

�k����m����j�k�Rm��
Z
�	�

j�j � ��s� �� ����s�j ds �

Then ���� � remains true�
Since

j��j 

����k��j��

���
���
��� � �����k��j

���

��� � C �k�� ���� � C �j j��j �

if � � �� also ����!� remains true� so that again jG�
k
jj � C jG�

k
j j� We

thus only have to estimate kG�
k
jk and kG�

k
jk�
Now� by ������

���hxi � jyj � � hxi �
Given this� ������ implies jx�hxij � ���A�k�j � hence

����� jxj � ����A�k�j � � �
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as well as ��� y

hxi� � s
��� � �A�k�j �

hence

����� jy � s hxi�j � C �k�j �

In particular� we �nd that

����� jyj � hxi � � �

In view of the de�nition of �� this implies that� in place of ����"��

����� � � ��k

�y � �j�k s� x��
�

Now� if � � �� then

��� � jy � �j�k s� xj � C ��k�� �

Let D denote the domain given by ������ ������ ��� � and s � �� Then�
similarly as in ������� we get

kG�
k
jk � C �k����m����j�k�

Z
D
�k
j�x� s� jxjm�� dy dx ds

� C �k��
Z
D
�k
j�x� s� dy dx ds �

And� by ������ ��� �� we have

Z
�x
y
s��D

dy � Cminf�k�j � ��k��g �

Moreover� by Lemma ����b��

Z
jxj	����A�k�j
s
�

�k
j�x� s� dx ds � C �

hence

���!� kG�
k
jk� kG�

k
jk � Cmin f��k���j� �g �
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There remains to estimate kG�
k
jk� which can be done similarly as in

the preceding section	
If � � �� then we have

���"�
�

c
��k�� � jy � �j�k s� xj � c �

for some c � �� hence

Z
�	�
jyj
�

j�j dy �
p
�

Z
��k���c	jy��j�ks�xj	c

��k��

jy � �j�k s� xj dy

� C k ��k�� �

Moreover� by ������Z
�	�
jy�shxi�j	C�k�j

j�j dy �
Z
jy�shxi�j	C�k�j

� dy � C �k�j �

Thus� if E denotes the domain given by ������ ������ ����� and ���"��
then

kG�
k
jk � C �k����m����j�k�

Z
E
�k
j�x� s� j�j jxjm�� dy dx ds

� C k�k��min f��k��� �k�jg
Z
jxj	����A�k�j
s
�

�k
j�x� s� dx ds

� C kmin f�� ��k���jg �

In combination with ���!� and ���� � we thus obtain

������
X

j�k�M

kKk
jk � C k� �

Together with ������� this proves Proposition ���� which completes the
proof of the theorem�
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Regularity estimates via

the entropy dissipation

for the spatially

homogeneous Boltzmann

equation without cut�o�

C�edric Villani

Abstract� We show that in the setting of the spatially homogeneous
Boltzmann equation without cut�o�� the entropy dissipation associated
to a function f � L��RN � yields a control of

p
f in Sobolev norms as

soon as f is locally bounded below� Under this additional assumption
of lower bound� our result is an improvement of a recent estimate given
by P��L� Lions� and is optimal in a certain sense�

�� Introduction�

The Boltzmann equation in the kinetic theory of gases is one of the
fundamental models for nonequilibrium statistical mechanics� The gas
is modelled by a density function f�t� x� v� � � on the extended phase
space of particles� such that

�	�
�f

�t

 v � rxf � Q�f� f� � t � � � x � R

N � v � R
N �

���
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where Q�f� f� is the Boltzmann collision operator� which acts only on
the velocity variable v� If f is a function of v � R

N � it is de�ned by

�� Q�f� f� �

Z
RN

dv�

Z
SN��

d� B�v � v�� �� �f �f �� � ff�� �

where SN�� is the unit sphere in R
N � f � � f�v��� and so on� and

���

�
v� � v � �v � v�� ����

v�� � v� 
 �v � v�� ��� �

The kernel� or cross�section� B � RN �SN�� �� R� is a weight function
modelling the interaction� such that B�z� �� depends only on jzj and
�z�jzj� ���

The great majority of mathematical works upon the Boltzmann
equation is based on the assumption that B is locally integrable on
R
N �SN��� However� this assumption is often unsatisfactory from the

physical point of view� since it is always false if the particles interact
through forces of in�nite range ���� ���� ���� In particular� for inverse
power laws� B�z� �� � jzj� b�cos�� with cos� � �z�jzj� ��� � � �s �
�N�	����s�	�� and if N � �� b has a singularity of order �s
	���s�	�
as cos� �� �� In this work� we shall precisely focus on the case where
B is singular�

We shall only be concerned with the spatially homogeneous case�
i�e� when the unknown in �	� is assumed not to depend on x� so that
�	� simply reads

���
�f

�t
� Q�f� f� � t � � � v � R

N �

�we refer to �	�� for partial results in the inhomogeneous case�� For
this equation� there is by now a fairly complete theory of existence in
an L� setting for non cut�o� potentials� which covers all the physically
interesting potentials ���� �	��� ���� In the last reference� we also showed
how one could rigorously derive the �spatially homogeneous� Landau
equation for plasmas� which is the equation corresponding to ��� in the
case of Coulomb interactions�

Apart from existence results� very little is known from the analyt�
ical point of view� However� it is conjectured that� due to the nonin�
tegrable singularity in B� solutions to ��� become smooth for positive
times �which is false for cut�o� kernels�� The likelihood of this conjec�
ture is reinforced by the study of the Landau equation �	��� ���� �	���



Regularity estimates via the entropy dissipation ���

which is obtained from the Boltzmann equation by �concentrating on
grazing collisions�� and has de�nite smoothing �and compactifying� ef�
fects� In particular� �in the homogeneous case� its solutions become
C� for positive times� at least for the so�called �hard potentials� �see
�	�� for precise statements and complete proofs��

The smoothing conjecture for the Boltzmann equation was tackled
by Desvillettes �	��� �		�� �	� and Prouti�ere �	�� in rather particular
cases� with the help of Fourier representations� The proofs are however
very technical� and depend highly upon the dimension N � In the afore�
mentioned works� the case of radially symmetric data in  dimensions is
treated �or non radially symmetric if � � �� for more complicated cases�
the proofs have still not been written down� Moreover� some unnatural
smoothing of the kinetic cross�section is needed �while jzj� � � 	 � 	 	�
is not smooth near z � ���

In �	��� a di�erent strategy was followed for proving smoothness
in the Landau equation� The proof is at the same time simpler and
independent on the dimension� Our aim here is to give a �loosely re�
lated� possible startpoint for a complete study of regularization e�ects
in the Boltzmann equation� by showing that the usual estimate on the
entropy dissipation automatically entails such an e�ect�

More precisely� let us de�ne

��� D�f� �
Z
R�N

dv dv�

Z
SN��

d� B�v � v�� ��
�p

f �f �� �
p
ff�

�� � � �

The functional D is well�de�ned �possibly in�nite� on L��RN �� for in�
stance by the use of the joint convexity of �x� y� �� �

p
x�py�� on R

� �

It is clear that D is related to the usual entropy dissipation functional�

��� D�f� � 	

�

Z
R�N

dv dv�

Z
SN��

d� B�v�v�� �� �f �f ���ff�� log
f �f ��
ff�

�

since� by the classical inequality �x� y� log �x�y� � � �
p
x�py��� one

has

D�f� � D�f� �

Our main result is essentially the following� Let f � L�
��RN �� such that

D�f� is �nite� and assume that

��� B�z� �� � ��jzj� b�cos�� �
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where � is smooth and bounded below away from � and in�nity� and b
has a singularity of order 	 
 
� 
 � �� Then� if f is locally bounded
from below�

���
p
f � H

���
loc �

As an immediate consequence of this estimate� solutions of ��� for an
initial datum which has �nite entropy� and is locally bounded below�
will satisfy for all R� T � �Z T

�

dt
��pf �t� �����

H����jvj�R� 	� �

since a lower bound is known to exist for these solutions ��� �see also
�� in the cut�o� case��

Closely related results have been obtained recently by Lions �	���
Before we comment on them� it may be of interest to brie�y track
the idea that smoothness estimates for the Boltzmann equation should
be obtained naturally for

p
f instead of f � First of all� such estimates

have been sought for a long time in the context of Maxwellian potentials
�when B depends only on �z�jzj� ���� Indeed� it is now known that in
this case� the Fisher information

I�f� � �
��pf

���
�H� � �

Z
RN

��rpf
���

is a Lyapunov functional �	��� ���� ���� ���� Complete proofs are given
in the last reference�

In a more general setting� regularity estimates for
p
f and entropy

dissipation estimates are associated together in works by Lions �	��� �	��
and the author ��� �see also Cercignani ����� In ���� it is shown that
D�f� yields su�cient regularity on the tensor product

p
ff� to give

a meaning to ��� even for very singular and very soft potentials �i�e�
� 	 ��� More generally� D�f� gives some control on the regularity
of
p
ff�� It is then a natural question whether this estimate for

p
f

implies a control of f itself� A �rst strategy to answer this problem is
to introduce a well�chosen arti�cial weight�function �B�v � v�� ��� and
integrate the estimate for

p
f �f ���

p
ff� in v� and � after multiplication

by �B� thus obtaining an estimate on

�Q�
p
f�
p
f� �

Z
dv� d� �B�v � v�� ��

�p
f �f �� �

p
ff�

�
� �Q��

p
f�
p
f�� �Q��

p
f�
p
f� �
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Then one uses the regularity properties of Q� in L� �cf� �	��� ���� �����
which is of course the natural space for

p
f � and the simple form of Q��

This is what Lions does in �	�� �to characterize equilibria distributions
for �	� under very little assumptions� and in �	��� to prove an estimate
of the same kind as ���� namely

���
p
f � Hs

loc � for all s 	 s� �





�
	

	 




N � 	

�
�

The exponent is hence not so good as the one in ���� but a lower bound
is not needed for it� The proof by Lions is very simple� but relies on the
deep result of smoothing of the positive part of Boltzmann s collision
operator� It is possible that a better knowledge of the explicit constants
in this result �see ��� for some of them� could lead to ���� In any case�
our proof implies that 
� is the optimal exponent� in the sense that
for all � � � one can �nd a function f such that

D�f� 	� and
��pf

���
�H����� � � �

Moreover� our proof is elementary and relies only upon careful changes
of variables� As far as the physical meaning is concerned� it is another
illustration of the general principle that the entropy dissipation yields
regularity �along the collisions�� either in the tensor phase space R�N

�via estimates on
p
f �f ���

p
ff� �� or in RN �via estimates on

p
f ��pf ��

See �	�� for still another manifestation of this principle�
The only drawback of this method is the need for a lower bound�

It is possible that our computation can be re�ned in such a way to
dispend with this assumption� maybe at the loss of the optimal exponent

�� In the end of the paper� we give possible hints for this� However�
we shall not go further� since on one hand Lions s result is general
enough to cover all the cases when one is not interested in the exact
exponent �in particular for compactness properties associated to the
complete equation �	��� and on the other hand a pointwise lower bound
is available for f in realistic problems �in the homogeneous case only��

The plan of the paper is as follows� In Section � we give a decom�
position of D�f� in two terms� one of which includes cancellations� and
the other is nonnegative� The former is shown to be controlled by L��
type estimates in Section �� and the latter is shown to give the desired
estimate via the so�called Carleman representation in Section �� Fi�
nally� in Section �� we give some remarks about the role of intermediate
collisions�
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�� Splitting of D�f� and main result�

Let us write

�	��

p
f �f �� �

p
ff� �

	


�
p
f � �

p
f� �

p
f �� 


p
f��



	


�
p
f � 


p
f� �

p
f �� �

p
f�� �

Accordingly�

�		�

�
p
f �f �� �

p
ff���

�
	

�
��
p
f � �

p
f�� �

p
f �� 


p
f���


 �
p
f � 


p
f�� �

p
f �� �

p
f����



	


�
p
f � �

p
f� �

p
f �� 


p
f���

p
f � 


p
f� �

p
f �� �

p
f�� �

Reporting in ��� and using the classical change of variables �v� v�� ��
�v�� v���� involutive and with unit Jacobian� we obtain

D�f� � S�f� 
 T �f� �

where

�	�

	




�





�

S�f� �
	



Z
dv dv� d� B�v � v�� ��

� �pf � �pf�� �
p
f �� 


p
f��� �

T �f� �
	



Z
dv dv� d� B�v � v�� �� �f � � f� �f �� � f�� �

It is clear that in T �f� one can expect strong cancellation e�ects� while
S�f� is nonnegative� We shall prove that T �f� is well�de�ned without
any regularity assumptions on f � while S�f� is �locally� bounded below
by a multiple of the square of some Sobolev norm of

p
f �

Before we state our results� let us discuss the assumptions for B�
First of all� since D�f� is monotonic in B� it is su�cient� to obtain a
general result� to treat the case when B is �small�� We shall therefore
assume� without real loss of generality�
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Assumption A� B�v � v�� �� � ��jv � v�j� b�cos��� where

�	�� cos� � k � � � k �
v � v�
jv � v�j �

Assumption B� � �W ����R�� is a positive function with a bounded

derivative� and is bounded from below uniformly� except maybe near �
and 
��

The last assumption means of course that for all numbers �� R � �
there exists K��� R� � � such that ��jzj� � K ��� R� � � if � 	 jzj 	 R�
This assumption is perfectly realistic from a physical point of view�

Now� we assume b to be singular only for grazing collisions� in the
sense

Assumption C� b � C���	� 	� n f�g�� and

�	�� b�cos�� � C

j cos�j��� 

C


� �

���� � � 	 
 	  �

Here � � ���� ��� C stands for arbitrary positive constants�
and the sign 
 only denotes similar asymptotic behaviour near the
singularity �cos� � ��� Note in particular that b is bounded below�

It is clear that the parameter 
 measures the strength of the singu�
larity of B �note that if � 
 �� d� and d� are roughly proportional��
Let us comment on the assumption 
 	 � In order to do so� we in�
troduce another �classical� representation for the collision operator ���
based on the unit vector � such that

�	��

	
�

�

v� �
v 
 v�




jv � v�j


� �

v�� �
v 
 v�


� jv � v�j


� �

In this representation� Boltzmann s collision operator keeps the same
form as in ��� except that d� is changed into d�� and B�v� v�� �� into

eB�v � v�� �� � � jk � �j���N���B�v � v�� �� �

Now� grazing collisions correspond to k � �� i�e k �� � 	� Assumptions
A and C have to be replaced by their counterparts
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Assumption A�� eB�v � v�� �� � ��jv � v�j�eb�k � ���

Assumption C�� eb � C���	� 	��� and

�	�� eb�cos �� � C

sinN�� �

	

����

 C

�cos � � 	��N�������
� � 	 
 	  �

Here � � ��� �� Note that � � ����� Since d� is proportional
to sinN�� � d�� we see that

! �
Z
SN��

d�eb�k � �� �	� k � �� � CN

Z �

�

d�eb�cos �� sin�
�



is �nite if and only if 
 	 � Since ! has the physical meaning of a
total cross�section for momentum transfer� we see that our assumption
on 
 is physically justi�ed� This is consistent with the state of the art
concerning the existence theory for the Boltzmann equation ����

We can now state our main result� We use the classical notation

kfkL�
�

�

Z
RN

jf�v�j �	
 jvj� dv � L�
� � ff � L��RN � � kfkL�

�
	�g �

Theorem �� Let f � L�
��RN �� and let B be a cross�section satisfying

assumptions A� B� C� Then

i� There exists a constant C� independent of f � such that

�	�� jT �f�j 	 C kfkL�
�
kfkL� �

ii� Assume in addition that there exists a strictly positive function

��R� such that

jvj 	 R implies f�v� � ��R� � for all v � R
N � for all R � � �

Then there exists a strictly positive function K�R�� depending only on

kfkL�
�
� ��R� and the cross�section� such that

�	�� S�f� � K�R�
��pf

���
�H����jvj�R� �

As an immediate consequence of the monotonicity of the entropy
dissipation� we then deduce the
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Corollary ���� Let f � L�
��RN � such that D�f� 	 �� and f satis�es

the additional assumption of lower bound� Assume that B � B�� where

B� is a cross�section satisfying assumptions A� B� C� Then
p
f � H

���
loc �

Remark� After completion of this work� we became aware of two
Notes by Alexandre on the same subject �	�� ��� where the Carleman
representation is also used� but no splitting of the entropy dissipation as
ours� It seems very di�cult to understand whether the results therein
are comparable to ours� but Alexandre kindly informed us that he had
used this splitting independently in recent work� and obtained a bound
very similar to ours� as well as related results in the �very di�cult�
inhomogeneous case� The proofs by Alexandre rely on the theory of
pseudo�di�erential operators� Desvillettes has also shown us some of
his partial results in collaboration with Wennberg� which are consistent
with both our conclusions and our method of proof� but do not start
from the entropy estimate�

�� Cancellation e�ects for grazing collisions�

In this section� we prove the estimate �	��� First� by the usual
change of variables �v� v�� �� �v�� v����

T �f� �

Z
dv dv� d� B�v � v�� �� f �f� � f ��� �

Z
RN

dv f�v�G�v�

with

G�v� �

Z
RN�SN��

dv� d� B�v � v�� �� �f� � f ��� �

We now proceed to estimate G� We turn to the ��representation �	��
and use Assumption A�

G�v� �

Z
RN�SN��

dv� d���jv � v�j�eb�k � �� �f� � f ��� �

Now� for �xed �� the change of variables v� �� v�� is valid� and an easy
computation yields

�	�� dv�� �
	

N
�	 
 �k � ��� dv� �

	

N
�	 
 cos �� dv� �
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Let k� � �v � v����jv � v��j� An elementary geometric argument shows
that

��� 	 
 �k � �� � 	 
 cos � �  cos�
�


�  �k� � ��� �

By symmetrization� one can assume that b�cos �� is supported in ���
	 � 	 ��� i�e� �k � �� � � �this can be seen as a consequence of the
indiscernability of the particles�� so that the Jacobian in �	�� is bounded
below�

For given �� let us introduce

�� � v�� ��� v� �

It is easy to check that for given �v� v��� �� such that �v� v��� �� � �� the
equation with unknown v� � R

N

���v��� � v�

is uniquely solvable �note that if v�� is given by �	��� then  �v�v��� �� �
�v � v�� �� 
 jv � v�j � ��� Moreover� the condition �v � v�� �� � � is
equivalent to

�k�� �� �
 v � v��
jv � v��j

� �
�
�

	p

�

See the geometric interpretation of �� in Figure 	�

σ

v * =ψσ ( * )v’

Δ

θ ’
v

v’*

θ

Figure �� " is the mediatrix of �v� v���� cos � � k � �� cos �� � cos �����
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Accordingly� we write �using �	�� and ����

G�v� �

Z
k��	�

dv� d���jv � v�j�eb�k � �� f�v��

�
Z
k���	��

p
�

dv�� d�
N��

�k� � ���
��jv � ���v���j�

�eb� �k� � ��� � 	� f�v��� �

Since the integration variable in the second integral is a dummy one�
we conclude that

�	� G�v� �

Z
RN

dv� f�v��C�v� v��

with

C�v� v�� �

Z
SN��

d�


��jv � v�j�eb�k � ���fk��	�g

� ��jv � ���v��j� N��

�k � ���
eb� �k � ��� � 	� 	fk��	��

p
�g
�

��

� ��jv � v�j�
Z
SN��

d�eb�k � ���f��k�����
p
�g���


 ��jv � v�j�
Z
SN��

d�
eb�k � ��� N��

�k � ���
eb� �k � ��� � 	�

�
� �fk��	��

p
�g���




Z
SN��

d� ���jv � v�j�� ��jv � ���v��j��

� N��

�k � ���
eb� �k � ��� � 	��fk��	��

p
�g ����

As an immediate consequence of Assumptions B and C� the expression
��� is bounded by a constant� independently of v� v�� Let us now
consider the last term ���� Still using the notation cos � � k � �� we
see that

jv � ���v��j �
jv � v�j

cos �
�

so that

j��jv � v�j�� ��jv � ���v��j�j 	 k��k� jv � v�j
 	

cos �
� 	

�
�
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Therefore� as a consequence of Assumption C� the integral ��� is boun�
ded by

CN k��k� jv � v�j
Z ���

�

d�eb�cos  �� �cos � � 	� sinN�� �

	 CN k��k� �jvj
 jv�j�
Z ���

�

d� ����

	 C �jvj
 jv�j� �
for some 
 	 � where the constant C depends only on N and the
constants in Assumptions B� C�

Finally� we estimate the integral in ���� By a spherical change of
variables� this is

CN

Z ���

�

d� sinN�� �
eb�cos ��� N��

cos� �
eb�cos  ��

�

� CN

Z ���

�

d� sinN�� �eb�cos ��

� CN

Z ���

�

d� sinN��
�



� N��

cos�
�



� eb�cos �� �

By the formula sinN������ N�� cosN������ � sinN�� �� we get

CN

Z ���

�

d� sinN�� �eb�cos ��

�
	� 	

cosN
�



�
�

� CN

Z ���

���

d� sinN��
�



� N��

cos�
�



� eb�cos �� �

The second integral is convergent by Assumption C� and so is also the
�rst� since for N � �

	� 	

cosN
�



� � O ���� � as � �� � �

In the end� we �nd

��� jC�v� v��j 	 C �jvj
 jv�j� �
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whence the conclusion�

	� The Carleman representation�

We now transform S�f� into an expression looking like the square
of a �fractional� Sobolev norm� To this purpose� we use the so�called
Carleman representation� which was actually introduced by Carleman
in ���� and later reformulated by Wennberg ���� It should be noted that
the purpose of Wennberg is also to obtain regularity estimates� though
in a very di�erent context�

The idea of the Carleman representation is to replace the set of
variables �v� v�� �� by the set �v� v�� v���� where v � R

N � v� � R
N and

v�� � Evv�� the hyperplane going through v and orthogonal to v � v��
Let us recall brie�y the argument� Following Wennberg� we intro�

duce the variable q � jv � v�j and note that

���

�
v� � v 
 q � �

v� � v�� 
 q � �

Since � and Evv� are orthogonal� the second relation entails dv� �
dv�� dq� where dv�� denote the Lebesgue measure on Evv� � On the other
hand� dv� � qN��dq d�� Hence�

dv� d� � dv�� dq d� �
dv�� dv

�

qN��
�

dv�� dv
�

jv � v�jN��
�

Note that dv�� is a �N � 	��dimensional measure� while dv� is N �dimen�
sional�

By Assumption A� and since cos� � jv � v�j�jv � v�j� jv � v�j �
jv� � v��j� we obtain

S�f� �
	



Z
R�N

dv dv�

jv � v�jN��

�
Z

Evv�

dv�� ��jv� � v��j� �
p
f �� 


p
f��� b

 jv� � vj
jv� � v��j

��

� �
p
f � �

p
f�� �

���

Note that �for given v� v�� v�� and v� describe parallel planes �in fact�
v� � �v� � v� 
 v����
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Using Assumption C� for some positive constant K�

b
 jv� � vj
jv� � v��j

�
� K

jv� � v��j���
jv� � vj��� �

Thus� we can write

��� S�f� � K

Z
R�N

dv dv�A�v� v��
�
p
f�v���pf�v���

jv� � vjN��

with

A�v� v�� �

Z
Evv�

dv�� ��jv� � v��j� �f �� 
 f�� jv� � v��j��� �

Let us set #�jzj� � jzj��� ��jzj�� By Assumption B� # can vanish only
near � and �� We note that

A�v� v�� �

Z
Evv�

dv�� #�jv� � v��j� f�v��� 


Z
Ev�v

dv� #�jv � v�j� f�v�� �

The estimate ��� is a Sobolev estimate as soon as A is bounded from
below� This is clearly true locally if f is locally bounded from below
�it su�ces in fact that all integrals of f upon bounded portions of
hyperplanes going through v be bounded from below� locally in v��
This completes our proof�

Remark� The coe�cients A�v� v�� are given by Radon transforms� and
therefore are likely to be smooth� in some sense� this remark� combined
with the method of the next section� could help relax the assumption
of local lower bound�


� The role of intermediate collisions�

In this section� we only want to emphasize how the method applied
above can be re�ned by the use of intermediate collisions� Indeed� the
coe�cients A�v� v�� of the previous section measure� in some sense� the
number of collisions in which the particles change their velocity from v
to v�� The �gain of regularity� therefore depends upon these coe�cients�
But particles can also gain an arbitrary velocity v�� � R

N before they
gain the velocity v�� We shall see how to make this vague physical idea
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more precise� Even though we did not �nd any application for it� we
think it likely that this method could be useful for related problems�

Let us rewrite the estimate ��� with v� replaced by w� up to a
constant� Z

R�N

dv dwA�v� w�
�
p
f�v��

p
f�w���

jv � wjN��
	 S�f� �

As a consequence� for any C� � � ��Z
R�N

dv dw dv�A�v� w��fjv�wj�Cjv�v�j�Cg
�
p
f�v��pf�w���

jv � v�j�N���


	 C�S�f�� C� ��
����

	� �

Indeed� in the domain of integration� jv� � wj 	 �	 
 C�� so that the
integral ���� is bounded by

CN��
Z

R�N

dv dwA�v� w�
�
p
f�v��pf�w���

jv � wjN��

�
�
 Z

jv��wj���C

dv�
	

jv� � wjN�

�
�

Similarly�

��	�

Z
R�N

dv dv� dwA�w� v���fjw�v�j�Cjv�v�j�Cg

� �
p
f�w��pf�v����

jv � v�j�N���
 	� �

Since

�
p
f�v��

p
f�v���� 	  �

p
f�v��

p
f�w��� 
  �

p
f�w��

p
f�v���� �

we get by adding up ���� and ��	�Z
R�N

dv dv� �fjv�v�j��g

�
Z

jv�wj�jv��wj�Cjv�v�j
dw min fA�v� w�� A�w� v��g

�

� �
p
f�v��pf�v����

jv � v�j�N���
 	� �
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Since� of course�

Z
R�N

dv dv� �fjv�v�j��g
�
p
f�v��pf�v����

jv � v�jN��
	 C kfkL� 	� �

we see that� up to an arbitrarily small degradation in the Sobolev ex�
ponent� the coe�cients A�v� v�� can be replaced by

A�v� v��

� 	

jv � v�jN
Z
maxfjv�wj�jv��wjg�Cjv�v�j

dw min fA�v� w�� A�w� v��g �
���

Since the volume of

fw � R
N � maxfjv � wj� jv� � wjg 	 C jv � v�jg

behaves like jv�v�jN � we see that A is a kind of average of A� and hence
more likely to be bounded from below than A� Of course the procedure
can be iterated as many times as desired� We did not go further in this
investigation�

Acknowledgement� We thank P��L� Lions for showing us his Note
�	�� and discussing the results therein�

References�

�	� Alexandre R� Sur l�op�erateur de Boltzmann non lin�eaire �D sans tron�

cature angulaire� C� R� Acad� Sci� Paris ��� �	���� 	���	���

�
� Alexandre R� Sur le taux de dissipation d�entropie sans troncature

angulaire� C� R� Acad� Sci� Paris ��� �	���� �		��	��

��� Arkeryd L� Intermolecular forces of in�nite range and the Boltzmann

equation� Arch� Rational Mech� Anal� �� �	��	� 		�
	�

��� Arsen�ev A� A� Buryak O� E� On the connection between a solution

of the Boltzmann equation and a solution of the Landau�Fokker�Planck

equation� Math� USSR Sbornik �	 �	��	� ��������

��� Bouchut F� Desvillettes L� A proof of the smoothing properties of the

positive parts of Boltzmann�s kernel� Revista Mat� Iberoamericana �


�	���� ����	�



Regularity estimates via the entropy dissipation ��	

��� Carleman T� Probl�emes Math�ematiques dans la Th�eorie Cin�etique des

Gaz� Almqvist � Wiksell 	����

��� Carlen E� Carvalho M� Strict entropy production bounds and stability

of the rate of convergence to equilibrium for the Boltzmann equation�

J� Stat� Phys� �� �	��
� ��������

��� Carlen E� Desvillettes L� Work in progress �personal communication��

��� Cercignani C� A remarkable estimate for the solutions of the Boltzmann

equation� Appl� Math� Lett� � �	��
� ����
�

�	�� Desvillettes L� About the regularizing properties of the non�cut�o� Kac

equation� Comm� Math� Phys� ��� �	���� �	������

�		� Desvillettes L� Regularization for the non�cuto� 
D radially symmetric

Boltzmann equation with a velocity dependent cross section� Transp�

Theory Stat� Phys� �� �	���� ��������

�	
� Desvillettes L� Regularization properties of the 
�dimensional non ra�

dially symmetric non cuto� spatially homogeneous Boltzmann equation

for Maxwellian molecules� Transp� Theory Stat� Phys� �� �	���� ��	�

����

�	�� Desvillettes L� Villani C� On the spatially homogeneous Landau equa�

tion for hard potentials� Part I� Existence uniqueness and smoothness�

To appear in Comm� Partial Di�� Equations�

�	�� Desvillettes L� Villani C� On the spatially homogeneous Landau equa�

tion for hard potentials� Part II� H�theorem and applications� To appear

in Comm� Partial Di�� Equations�

�	�� Goudon T� On the Boltzmann equation and its relations to the Landau�

Fokker�Planck equation� in�uence of grazing collisions� C� R� Acad� Sci�

Paris ��
 �	���� 
���
���

�	�� McKean� H� P� Jr� Speed of approach to equilibrium for Kac�s caricature

of a Maxwellian gas� Arch� Rational Mech� Anal� �� �	���� ��������

�	�� Lions P� L� Compactness in Boltzmann�s equation via Fourier integral

operators and applications� J� Math� Kyoto Univ� �
 �	���� ��	��
��

�	�� Lions P� L� On Boltzmann and Landau equations� Phil� Trans� R�

Soc� Lond� �
� �	���� 	�	�
���

�	�� Lions P� L� Regularity and compactness for Boltzmann collision op�

erators without angular cut�o�� C� R� Acad� Sci� Paris ��� �	����

����	�

�
�� Maxwell J� C� On the dynamical theory of gases� Phil� Trans� R� Soc�

Lond� ��� �	���� ������

�
	� Prouti�ere A� New results of regularization for weak solutions of Boltz�

mann equation� Preprint 	����



��
 C� Villani

�

� Pulvirenti A� Wennberg B� A Maxwellian lower bound for solutions

to the Boltzmann equation� Comm� Math� Phys� ��� �	���� 	���	���

�
�� Toscani G� New a priori estimates for the spatially homogeneous Boltz�

mann equation� Cont� Mech� Thermodyn� 
 �	��
� �	����

�
�� Villani C� On a new class of weak solutions to the spatially homoge�

neous Boltzmann and Landau equations� Arch� Rational Mech� Anal�

�
� �	���� 
�������

�
�� Villani C� Fisher information bounds for the Boltzmann equation� J�

Math� Pures et Appl� �� �	���� �
	�����

�
�� Wennberg B� Regularity in the Boltzmann equation and the Radon

transform� Comm� Partial Di�� Equations �	 �	���� 
����
����

Recibido� 	 de junio de 	����

C$edric Villani
$Ecole Normale Sup$erieure� DMI

�� rue d Ulm
���� Paris Cedex ��� FRANCE

villani�dmi�ens�fr



Revista Matem�atica Iberoamericana

Vol� ��� N�
o
�� ����

Isoperimetric inequalities in

Riemann surfaces of in�nite type

Venancio Alvarez� Domingo Pestana and Jos�e M� Rodr��guez

�� Introduction�

By S we denote a hyperbolic Riemann surface� i�e� a �open and
connected� Riemann surface whose universal covering space is the unit
disk D � fz � C � jzj � �g� endowed with its Poincar�e metric �also
called the hyperbolic metric�� i�e� the metric obtained by projecting
the Poincar�e metric of the unit disk

ds �
	 jdzj
�� jzj� �

With this metric� S is a complete Riemannian manifold with constant
curvature ��
 The only Riemann surfaces which are left out are the
sphere� the plane� the punctured plane and the tori


It is convenient to remark that this de�nition of hyperbolic Rie�
mann surface is not universally accepted� since sometimes the word
hyperbolic refers to the existence of Greens function


We say that S satis�es the hyperbolic isoperimetric inequality �HII�
if S is a hyperbolic Riemann surface and there exists a constant h � �
such that for every relatively compact domain �an open and connected
set� G with smooth boundary one has that

��
�� AS�G� � hLS��G� �

where AS�G� denotes the �hyperbolic� area of G and LS��G� the �hy�
perbolic� length of its boundary
 An approximation argument gives

���
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that if S satis�es HII� then ��
�� is also true for domains with �nite
area
 We denote by h�S� the best constant in ��
��

It is clear that a �nite area hyperbolic Riemann surface does not
satisfy HII


A Riemann surface S is said to be of �nite type if its fundamental
group ���p�S�� p � S� is �nitely generated
 In other case we say that S
is of in�nite type
 It is well known that every Riemann surface of �nite
type can be obtained from a compact Riemann surface by deleting p
points �the punctures of S� and n closed disks �whose boundaries repre�
sent the ideal boundaries of S�
 It is also a known fact that a Riemann
surface of �nite type has HII if and only if n � � or� equivalently� if
S has in�nite area
 Therefore� in spite of most of our results are true
independently of the type of the considered Riemann surface� we will
be interested in Riemann surfaces of in�nite type


There are a number of natural questions concerning the HII�proper�
ty of Riemann surfaces
 Particularly interesting are the stability under
quasiconformal maps� its relation with other conformal invariants and
its characterization for plane domains
 Here the word conformal refers
to holomorphic homeomorphisms


Concerning the study of the stability of HII� in �FR� Theorem �� it
was proved that if two Riemann surfaces are quasiconformally equiva�
lent and one has HII� the other has too


One of the conformal invariants related with the HII�property is
the bottom of the spectrum of the Laplace�Beltrami operator� b�S��
which can be de�ned in terms of Rayleighs quotients as

b�S� � inf
��C�c �S�

ZZ
kr�k� dwZZ
�� dw

�

where k � k� r and dw refer to the Poincar�e metric of S

The number b�S� belongs to ��� ���� and a celebrated theorem of

Elstrodt� Patterson and Sullivan �Su� p
 ���� relates it with other im�
portant conformal invariant of S� its exponent of convergence 	�S� �see
e�g� �N� p
 	�� for basic background�� which can be de�ned as

	�S� �� inf ft � Ut�p� ��� for some p � Sg �
where

Ut�p� ��
X

�������p�S�

exp
�� t LS��
��

�
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and
LS��
�� �� inffLS�g� � �
� � �g�g �

It is easy to check that if Ut�p� � � for some p � S� then Ut�q� � �
for all q � S


It is a well known fact that � � 	�S� � � �see e�g� �N� p
 	���

The theorem of Elstrodt� Patterson and Sullivan asserts that

b�S� �

���
��
�

�
� if � � 	�S� � �

	
�

	�S� ��� 	�S�� � if
�

	
� 	�S� � � �

It is also well known �see e�g�� �Ch�� p
 ���� �Che�� �FR� Theorem 	��
that

�

�
� b�S�h�S�� and b�S�h�S� � C �

�

	
�

where C is an absolute constant

Therefore S has the HII�property if and only if b�S� � � or� equiv�

alently� 	�S� � �

A theorem of Myrberg �T� p
 �		� states that if 	�S� � � then S has

Greens function� or equivalently� that it possesses non�constant positive
superharmonic functions �see �AS� p
 	��� or �T� p
 �����
 Therefore if
S has �nite genus� S has non�constant harmonic functions with �nite
Dirichlet integral �AS� p
 	���� �SN� p
 ��	�
 In the general case� the
conclusion is also true with additional hypothesis �Ro��
 However� there
exists a Riemann surface S� having in�nite genus and HII such that
the constants are the unique positive harmonic functions in S� �Ro	�

Recall that if there exists a non�constant harmonic function with �nite
Dirichlet integral� then there exists a non�constant positive �in fact�
bounded� harmonic function


It is also known that 	�S� coincides with the Hausdor� dimension
of the conical limit set of the covering group of S �see e�g� �N� p
 �����

This says us that the HII�property must be also related with the size
of the �boundary� of S


At the moment no characterization of the HII�property is known for
hyperbolic plane domains �i�e� subsets of the Riemann sphere whose
boundary has at least three points� in euclidean terms of the size of
its boundary
 In �FR� Theorems � and �� a su�cient condition and a
necessary condition were obtained so that a hyperbolic plane domain
satis�es HII� but none of them constitutes a characterization of the
HII�property� although these conditions are quite close
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As an example of the di�culties involving the problem� recall
that a plane domain � has Green function if and only if its bound�
ary has positive logarithmic capacity �see �AS� p
 	���� �T� p
 ���� or
�SN� p
 ��	������
 But� for example� D n f�g n f��	ng�n	� has not HII�
while D nf����	ng�n	� has it �these facts are consequence of �FR� Theo�
rems � and �� or Theorem � below�
 Hence� this shows that the problem
of deciding whether a hyperbolic plane domain has the HII�property or
not is delicate
 Observe that if � is a hyperbolic plane domain and ��
has zero logarithmic capacity� then � has not HII


The main results of this paper are Theorems �� �� �� � and ��
 The�
orem � shows that for any hyperbolic Riemann surface the HII�property
is preserved by removing a su�ciently separated set
 Theorem � relates
simple euclidean conditions with the HII�property in Denjoy domains

Theorem � gives an euclidean characterization of Denjoy domains sat�
isfying the HII�property
 Finally� Theorems � and �� give localization
results for the HII�property in general planar domains


In the next section we give some de�nitions needed to state our
results


�� The main results�

We say that a domain G � �C is modulated if there is an upper
bound for the modulus of every doubly connected domain contained
in G which separates the boundary of G
 In particular� every simply
connected domain is modulated �since in this case there are not such
doubly connected domains�
 Also� if the boundary of G consists of a
�nite number of continua� G is modulated
 On the other hand� if the
boundary of G has an isolated point� G is not modulated


These are the domains in the plane that as far as Function The�
ory is concerned behave almost like simply connected domains �see for
example �BP� and the references therein�


In �FR� Theorem �� it was proved that if G � �C is modulated �and
therefore G has HII� then H � G n fang has also HII if the sequence
fang is uniformly separated in the hyperbolic metric of G� i�e� if there
exists a positive constant c such that

dG�an� am� � c � for all n �� m�

where dG denotes the hyperbolic distance in G
 This result is not true
if G is not modulated �see Theorem � below�
 Obviously� every �nite
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sequence is uniformly separated� and a sequence converging to a point
of G is not uniformly separated


Conversely� also in �FR� Theorem ��� it was proved that if H � �C
has HII� and G � H 	 I� where I is the set of isolated points of �H�
then I is uniformly separated in the hyperbolic metric of G


In this work we reduce the study of the HII�property of H to that
of G� not only for hyperbolic plane domains� but for general hyperbolic
Riemann surfaces


To state our result� we need a previous de�nition


De�nition� A subset I of a hyperbolic Riemann surface S is strongly

uniformly separated in S� if there exists a positive constant r� such that

the hyperbolic balls BS�p� r��� where p � I� are simply connected and

pairwise disjoint�

Theorem �� Let S be a hyperbolic Riemann surface� let I be a closed

and countable subset of S and R � S n I� Then� R has HII if and only

if S has HII and I is strongly uniformly separated in S�

We also have obtained a relationship between the isoperimetric
constants on R and S �see Section � below�


We want to remark that Theorem � is a new result even in the case
of plane domains


Corollary �� Let S be a hyperbolic Riemann surface� let I be a closed

and countable subset of S and let R � S n I� If I has an accumulation

point in S� then R has not HII�

Observe that Theorem � and �FR� Theorem �� give that every dis�
crete set which is uniformly separated in a modulated domain G is also
strongly uniformly separated in G


As we mentioned above� at the moment no characterization of the
HII�property is known for hyperbolic plane domains in euclidean terms
of the size of its boundary
 In �FR� it was obtained a necessary condition
and a su�cient condition so that a hyperbolic plane domain has HII�
but we know that none of them is� in fact� a characterization of the HII�
property for this type of Riemann surfaces
 In this paper we obtain a
characterization of the HII�property for the case of Denjoy domains�
i�e� hyperbolic plane domains whose boundary is contained in �R � in
euclidean terms of the size of their boundaries
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Since the HII�property is a quasiconformal invariant between gen�
eral Riemann surfaces �FR� Theorem �� our results characterize the HII�

property for subsets of �C whose boundary is contained in a quasicircle

In fact we can prove a more general result �see Section ��


De�nition� Let � be a plane domain� let I be the set of isolated points

of �� and �� � �	I� We say that � is admissible if �� is a hyperbolic

plane domain and I is strongly uniformly separated in ���

Observe that if � is admissible� then there are no isolated points in
���� therefore ��� has in�nitely many points and � has in�nite area


Now we can restate Corollary � for hyperbolic plane domains


Corollary �� If a hyperbolic plane domain is not admissible� then it

has not HII�

In what follows � � �C will usually be a Denjoy domain
 In order to
establish our characterization of the HII�property for Denjoy domains
�Theorem �� we need some preliminary background


For � � �� ��� �� denotes the set fx � R � x � � or x � �g	f�g

Also we mean that ��� �� � fx � R � x � �g and as usual ����� �
fx � R � x � �g
 Along the paper we mean that the point at in�nity is
the greatest of the numbers in �R 


De�nition� We say that a �nite subset A � fa�� � � � � a�ng �n 
 	� of
points of �� � �R is a border set of �� if A veri�es the following two

conditions�

i� A is �ordered� in �R � i�e� there exists j � Z�n � Z��	nZ� such
that aj
� � � � � � aj
�n� where the subscripts belong to Z�n�

ii� The open set 	nk	��a�k��� a�k� is contained in ��

Obviously every �nite subset A � fa�� � � � � a�ng of �R can be �or�
dered� in such a way that the condition i� is satis�ed
 So ii� is the
signi�cant condition in the de�nition above


Example� Let us consider the Denjoy domain � whose boundary is
�� � f�g 	 �	�n	��	n � �� 	n��
 It is clear that the ordered sets
f	� �� �� �� ��� ��g and f�� ���� �g are border sets of ��� but f�� �� ���g
is not
 In fact� the ordered set of real numbers fa�� � � � � a�ng is a border
set if and only if a�k � �  a�k�� and a�k�� � 	Z for k � �� � � � � n
 On
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the other hand� the ordered set fa�� � � � � a�n����g never is a border
set
 The ordered set fa�� � � � � a�n����� a�ng� with n 
 � and a� �
� � � � a�n�� is a border set if and only if fa�� � � � � a�n��g is a border set
and a�n � �


Observe that the set of four �consecutive points�� fa�k��� a�k�
a�k
�� a�k
�g with k � Z�n� of a border set of � is also a border set
of �
 Besides� observe that if �� has not any border set� then � is
some of the three following trivial domains �up conformal equivalence��

C nf�� �g �which has not HII�� C n ��� �� �which has HII�� �C n ��� �� �which
has HII�


If B � fb�� b�� b�� b�g� we denote by r�B� the cross ratio

�	
�� r�B� �
�b� � b���b� � b��

�b� � b���b� � b��
�

In the following by !��!� � ����� �� ����� we denote any �xed
continuous functions satisfying the following properties�

a� !��r� � !��r� � �

log r
as r ����

b� !��r� � log �
r
and !��r� � log log �

r
as r �� �


After these preliminaries we can state the following partial result
which gives a necessary condition and a su�cient condition for the HII�
property of a Denjoy domain �
 In many cases these conditions give
an answer to the question of whether or not � has HII� since they are
very close


Theorem 	� Let � be an admissible Denjoy domain� let I be the set

of isolated points of �� and �� � � 	 I�

a� If � has HII� then there exists a positive constant c such that

for any border set of ���� B � fb�� � � � � b�ng with n 
 �� we have that

�

n

nX
j	�

!��r�fb�j��� b�j� b�j
�� b�j
�g�� � c �

b� If there exists a positive constant c such that for any border set

of ���� B � fb�� � � � � b�ng with n 
 �� we have that

�

n

nX
j	�

!��r�fb�j��� b�j� b�j
�� b�j
�g�� � c �
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then � has HII�

Besides� we have a characterization of the Denjoy domains with HII
in euclidean terms of the size of their boundaries
 This characterization
has the disadvantage that the function which appears instead of !� and
!� �in Theorem �� is more complicated and depends on the domain


Theorem 
� Let � be a Denjoy domain� let I be the set of isolated

points of �� and let �� � � 	 I� Then� � has HII if and only if �
is admissible and there exists a positive constant c such that for any

border set of ���� B � fb�� � � � � b�ng with n 
 �� we have that

�

n

nX
j	�

"��fb�j��� b�j� b�j
�� b�j
�g� � c �

where "� is the function appearing in Theorem � �see Section ���

Roughly speaking� this function "� �counts� in some sense the
number of annuli which intersect ���


If S� is a hyperbolic Riemann surface� we will consider �open and
connected� subsurfaces S� � S�� endowed with its own hyperbolic met�
ric �recall that any subsurface of a hyperbolic Riemann surface is also
hyperbolic�
 Of course� with this metric S� is a complete Riemannian
manifold


As a direct consequence of Corollary � �see Section � below� we
obtain two localization theorems


Theorem �� Given a closed subset E of �C with in�nitely many points�

the following conditions are equivalent�

�� �C nE satis�es HII�

	� � n E satis�es HII� for any subdomain � of �C of �nite type

such that E is contained in ��

�� � n E satis�es HII� for some subdomain � of �C of �nite type

such that E is contained in ��

Theorem ��� Let E�� � � � � En be pairwise disjoint closed subsets in
�C with in�nitely many points such that � � �C n 	kEk is connected�

Then� we have that � satis�es HII if and only if �C n Ek satis�es HII
for k � �� � � � � n�
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In fact� we prove in Section � a general version of theorems � and
�� about Riemann surfaces �see Theorem ��
 We should remark that
we have also obtained other results on localization �see for example
Lemmas �
� and �
� or Corollary ��


���� Notations and background�

As usual� R and �R will denote the real line and the extended real
line
 Similarly� C and �C will denote� respectively� the complex plane
and the Riemann sphere
 The simbol A n B denotes the di�erence of
the sets A and B
 The expression A�r� � B�r� will mean that there
exists a positive constant C such that

C�� � A�r�

B�r�
� C �

for the values of r indicated in each case
 We denote by �x� the greatest
natural number which is less or equal than x


By dS and BS we shall denote� respectively� the distance and the
balls in the Poincar�e metric of S
 By d and B we shall denote� re�
spectively� the distance and the balls in the euclidean metric of C 

B�
S and B� will denote the corresponding balls without its centers

If � is a hyperbolic plane domain� 	�z� will be the euclidean dis�
tance of z to the boundary of �
 By  we shall denote the confor�
mal density of the Poincar�e metric in �� i�e� the function such that
ds � �z� jdzj is the Poincar�e metric in �
 For � � �� ��� �� de�
notes the set fx � R � x � � or x � �g 	 f�g
 Also we mean that
��� �� � fx � R � x � �g and as usual ����� � fx � R � x � �g
 We
de�ne the corresponding closed intervals in a similar way
 Along the
paper we mean that the point at in�nity is the greatest of the numbers
in �R 


Finally� we denote by c positive constants which can assume dif�
ferent values from line to line and even in the same line
 On the other
hand� the constants t� and r� will have always the same value


In order to prove our results we shall need some well known facts
concerning the Poincar�e metric�

�� A conformal map between two hyperbolic Riemann surfaces is
an isometry


	� If S� is a subsurface of the hyperbolic Riemann surface S�� then
dS��p� q� 
 dS��p� q�� for all p� q � S�
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�� Let S� be a subsurface of the hyperbolic Riemann surface S�
and let � be a simple closed curve in S�
 Denote by 
j the simple
closed geodesic �if exists� freely homotopic to � in Sj �j � �� 	�
 Then
LS��
�� 
 LS��
��


�� If � is a hyperbolic plane domain� � � C � then �z� � 	�	�z��
for all z � � �recall that 	�z� denotes the euclidean distance of z to
the boundary of ��


�� A hyperbolic plane domain �� � � C � is modulated if and only
�z� 	�z� � �� for z � � �see �BP� Corollary ���
 The constant in �
depends on �


�� For � � C � de�ne ��z� as the function

�	
	� ��z� � inf
n��� log ���z � a

b� a

��� ��� � a� b � ��� jz � aj � 	�z�
o
�

In �BP� Theorem �� it was proved that

�	
�� �z� 	�z� ��  ��z�� � � � for z � � �

up to universal constants
 See ��
�� below for a precise estimate


�� If F � D �� � is a universal covering map� then we have

�F �z�� jF ��z�j � D �z� � for all z � D �

The organization of the paper is as follows
 In sections � and � we
prove� respectively� theorems � and �
 Theorems � and � will be proved
in Section �
 Section � contains a proposition relating balls and collars
of punctures
 In Section � we develop some useful technology to prove
theorems � and �� and other further results
 In Section � we discuss
the relationship between the HII�property� polarization and circular
symmetrization
 Finally we discuss about the possibility to improve
Theorem � in sections � and ��


	� Proof of Theorem ��

Theorem �� Let S be a hyperbolic Riemann surface� let I be a closed

and countable subset of S and R � S n I� Then� R has HII if and only

if S has HII and I is strongly uniformly separated in S�
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More precisely� if r� is a positive number such that fBS�p� r��gp�I
is a family of pairwise disjoint and simply connected balls in S� then we

have that

h�R� � h�S�
tanh�

	r�
�


  	�

r� log
tanh r�

tanh
	r�
�


 �

The di�cult implication in this theorem is to prove that R has
HII
 Our proof of this consists of �nding a relationship between the
Poincar�e metrics of R and S
 Far from the points in I both metrics
are comparable �see Lemma �
� below�
 Close to these isolated points
they are not comparable but� in fact� there exists a very precise relation
between the S�balls centered at points in I and its corresponding collars
in R �see Proposition � in Section ��


We start by studying the relationship between the Poincar�e metrics
of R and S


Lemma 	��� Let S be a hyperbolic Riemann surface� let C be a closed

non�empty subset of S and S� � S n C� Let us consider a positive

number �� Then we have that

��
�� tanh
�

	
�

LS�
�

LS��
�
� � �

for every curve 
 � S with �nite length in S such that dS�
� C� 
 ��
and

��
	�
	
tanh

�

	


�
�

AS�D�

AS��D�
� � �

for every domain D � S with �nite area in S such that dS�D�C� 
 ��

Proof� We prove Lemma �
� in local coordinates

Let us �x p � S with dS�p� C� 
 � and let us consider a local chart

� � V �� C with ��p� � �

Let F � D �� S be a universal covering map with F ��� � p
 The

set C � � F���C� is a closed subset of the unit disk
 Obviously the
euclidean ball B��� tanh ���	�� � BD ��� �� is a connected component of
F���BS�p� ���� it is contained in D nC � and the mapping F � D nC � ��
S� is a covering map with F ��� � p
 Let G � D �� D n C � be a
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universal covering map with G��� � �
 We have that F G � D �� S�
is a universal covering map with �F G���� � p


Let us consider the Poincar�e metrics S�z� jdzj and S��z� jdzj in
local coordinates �z � ��V ��
 Then

S���  F ����� j��  F �����j � D ��� �

S����  F G����� j��  F G�����j � D ��� �

and this gives

S��� j��  F �����j � 	 � S���� j��  F �����j jG����j � 	 �

These last equalities give Lemma �
� if we prove that tanh ���	� �
jG����j � � since this is the in�nitesimal version of ��
�� and ��
	�


Observe that G � D �� D satis�es G��� � �
 Schwarzs Lemma
gives the inequality jG����j � �


Recall that the simply connected set B��� tanh ���	�� is contained
in D n C �
 Therefore� there exists a well de�ned local inverse G�� �
B��� tanh ���	�� �� D verifying G����� � �
 Using again Schwarzs
Lemma we obtain that

j�G�������j � �

jG����j � cotanh
	 �
	



�

This �nishes the proof of Lemma �
�


Proof of Theorem �� We begin with the proof that if R has HII
then S has it and I is strongly uniformly separated in S


We shall prove �rst that I is a discrete set
 In fact� if this is not
the case� then I is not strongly uniformly separated and� as we shall
see� this implies that R has not HII� a contradiction


Let us assume that I is not a discrete set
 Let F � D �� S be
a universal covering map and let J be the preimage of I by F 
 Then
F � D n J �� R is a covering map
 Therefore� 	�D n J� � 	�R� �see�
for example �FR� p
 �����
 Obviously� J is a closed� countable and
non discrete subset of D 
 Let z� be an accumulation point of J in D 

Then� we have that B�z�� r� � ��D n J� � B�z�� r� � J is countable� for
� � r � � � jz�j� and therefore it has zero logarithmic capacity
 �FR�
Theorem �� implies that � � 	�D n J� � 	�R� � �
 But� if 	�R� � �� a
fortiori� R has not HII
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A theorem of Patterson �P	� Theorem �
�� gives that 	�S� � 	�R��
since I is discrete
 Therefore 	�S� � � and S has HII


Suppose that the discrete set I is not strongly uniformly separated

Let us see that� then� R has not HII� a contradiction
 Denote again by
F � D �� S a universal covering map and by J the preimage of I
by F 
 As before F � D n J �� R is a covering map and therefore�
	�D nJ� � 	�R� �see� for example again �FR� p
 �����
 We have that for
each � � �� there exist points p� q � I such that either dS�p� q� � � or
BS�p� �� is not simply connected
 This implies that there exist z� w � J
such that dD �z� w� � �� i�e� that J is not uniformly separated in D 

�FR� Theorem �� implies again that 	�R� 
 	�D n J� � �


Let us assume now that S has HII and I is strongly uniformly
separated in S
 We want to prove that then R has also HII


Let D be an open subset of R with �nite area
 In order to check
��
�� for D� we can assume without loss of generality that D is not
simply or doubly connected since this particular type of subsets always
satisfy HII with constant � �FR� Lemma �
��
 We can also suppose
that �D � 
� 	 
� 	 � � � 	 
k where the simple closed curves 
j are not
homotopic to the trivial loop and does not �surround� only a puncture

In fact� if this would be the case for 
j� say� we could join to D the
simply or doubly connected open set whose boundary is 
j� obtaining
by this way a new domain with greater area and whose boundary had
less length


Let us consider a positive number r� such that the balls BS�p� r��
with p � I are simply connected and pairwise disjoint
 Let #S be the
subset of R given by #S � S n 	p�IBS�p� r��	�
 Let J� J�� J�� be the
subsets of I de�ned by

J � fp � I � D � BS�p� r��	�
� �� �g �

J� � fp � J � BS�p� r��	�
� � Dg �

J� � fp � J � �D � BS�p� r��	�
� �� �g �

It is obvious that fJ�� J�g is a partition of J 

First of all we remark that

��
�� LS��D �BS�p� r��� 
 r� � for all p � J� �

To see this� suppose that LS��D � BS�p� r��� � r� for some p � J�

Then� we have that there exists a boundary curve 
j with LS�
j� � r��
such a curve must verify that 
j � BS�p� r�� since

dS

	
�BS�p� r��� �BS

	
p�
r�
	




�

r�
	
�
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But� if 
j � BS�p� r��� then 
j is homotopic in R to zero or to p� and
this is not possible


Claim� There exists a constant c� which only depends on r� and neither
on S nor I� such that
��
�� AR

	
BS

	
p�
r�
	


�

� c � for every p � I �

Then we have that

��
�� AR
	
BS
	
p�
r�
	


�

� c

�� sinh�
	r�
�


 AS	BS	p� r�
	




�

for every p � J�� since BS�p� r��	� is simply connected and then

AS

	
BS

	
p�
r�
	




� AD

	
BD

	
��
r�
	




� �� sinh�

	r�
�



�

and by ��
��

��
�� AR

	
BS

	
p�
r�
	


�

� c

r�
LS��D � BS�p� r��� �

for every p � J�
 Using ��
	�� ��
�� and ��
��� we have that

AR�D� � AR�D � #S� 
X
p�J�

AR

	
BS

	
p�
r�
	


�

 
X
p�J�

AR

	
BS

	
p�
r�
	


�


� �

tanh�
	r�
�


 AS�D � #S�

 
c

�� sinh�
	r�
�


 X
p�J�

AS
	
BS
	
p�
r�
	




 

c

r�
LS��D� �

Let H be

H � max

�
�

tanh�
	r�
�


 � c

�� sinh�
	r�
�



�
�

Therefore

AR�D� � H
	
AS�D � #S�  

X
p�J�

AS

	
BS

	
p�
r�
	





 

c

r�
LS��D�

� H AS�D�  c

r�
LS��D�

� H h�S�LS��D�  c

r�
LS��D�

�
	
H h�S�  c

r�



LR��D� �
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Then we have that R has HII with constant

��
�� h�R� � H h�S�  c

r�
�

To �nish the proof of Theorem � we only need to prove ��
�� with

c �
	�

log
tanh r�

tanh
	r�
�


 �

since we will see below that� with this value of c� we have that

H �
�

tanh�
	r�
�


 �

Lemma 	��� Let S be a hyperbolic Riemann surface and fBS�p� r��gp�I
be a disjoint family of simply connected balls in S� If R � S n I� then
we have that

AR�BS�p� r�
�� � 	�

log
tanh r�

tanh
	 r
	


 � for � � r � r� �

Proof� Let us �x a point p � I
 Let us consider a universal covering
map F � D �� S such that F ��� � p
 Let J be the preimage of I
by F 
 The intersection of the ball F���BS�p� 	 r��� � BD ��� 	 r�� �
B��� tanh r�� with the set J is exactly f�g
 Since F � D n J �� R is a
covering map� it follows that for � � r � r�

AR�BS�p� r�
�� � ADnJ �BD ��� r�

��

� AB���tanh r����BD ��� r�
��

� AB���tanh r���

	
B
	
�� tanh

	r
	



�


� AD�


B


��
tanh

	 r
	



tanh r�

���

�

Z
B���tanh�r���� tanh r���

dx dy

�jzj log jzj��

�
	�

log
tanh r�

tanh
	r
	


 �
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This �nishes the proof of Lemma �
	


The estimate ��
�� follows now from Lemma �
	 with

��
�� c �
	�

log
tanh r�

tanh
	r�
�


 �

and therefore ��
�� and ��
�� give the inequality in Theorem �� if

H �
�

tanh�
	r�
�


 �

In order to prove this� we only need to check that

�

tanh�
	r�
�


 
 �

	 sinh�
	r�
�



log

tanh r�

tanh
	r�
�


 �

and this follows from the fact that

G�x� � 	 log
tanhx

tanh
	x
�


 � �

cosh�
	x
�


 
 � � for x � � �

This inequality is a consequence of the fact that

G��x� �
�

	 sinhx coshx
� �

	 sinh
	x
�



cosh�

	x
�



�

�

sinh �	x�
� �

	 sinh
	x
	



 sinh x

� � �

and
lim
x��

G�x� � � �

Remark� The inequality ��
�� can be obtained alternatively from
Proposition �
 This proposition will be stated and proved in Section
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�
 We have used here Lemma �
	 since it gives best estimates in this
context


� Proof of Theorem 	�

Theorem 	� Let � be an admissible Denjoy domain� let I be the set

of isolated points of �� and �� � � 	 I�

a� If � has HII� then there exists a positive constant c such that

for any border set of ���� B � fb�� � � � � b�ng with n 
 �� we have that

�

n

nX
j	�

!��r�fb�j��� b�j� b�j
�� b�j
�g�� � c �

b� If there exists a positive constant c such that for any border set

of ���� B � fb�� � � � � b�ng with n 
 �� we have that

�

n

nX
j	�

!��r�fb�j��� b�j� b�j
�� b�j
�g�� � c �

then � has HII�

Theorem � is a direct consequence of Theorem � and the following
result


Theorem �� Let � be a Denjoy domain such that �� has no isolated

points� Then

�� If � has HII� then there exists a positive constant c such that

for any border set of ��� B � fb�� � � � � b�ng �n 
 ��� we have that

�

n

nX
j	�

!��r�fb�j��� b�j� b�j
�� b�j
�g�� � c �

	� If there exists a positive constant c such that for any border set

of ��� B � fb�� � � � � b�ng �n 
 ��� we have that

�

n

nX
j	�

!��r�fb�j��� b�j� b�j
�� b�j
�g�� � c �
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then � has HII�

The proof of Theorem 	 has three main ideas
 The �rst one �see
Lemma �
�� is to reduce dramatically the set of domains in which we
must check ��
��
 Secondly� we will establish a bijective correspondence
between these domains and border sets �see Lemma �
	�
 Finally� we
relate the length of each boundary curve of these domains with the
length of some curves in some extremal domains which is given by the
functions !� and !� �see Lemmas �
� and �
��


A geodesic domain in a Riemann surface S is a domain G � S
�which is not simply or doubly connected� such that �G consists of
�nitely many simple closed geodesics� and AS�G� is �nite
 G does not
have to be relatively compact since it may �surround� �nitely many
punctures �isolated points in �S in the case that S � �C �
 We can think
of a puncture as a boundary geodesic of zero length
 Recall that if 
 is
a closed curve in S and �
� denotes its free homotopy class in S� then
there is a unique simple closed geodesic of minimal length in the class�
unless 
 is homotopic to zero or surrounds only a puncture� in these
cases it is not possible to �nd such geodesic because there are curves in
the class with arbitrary small length


In �FR� Lemma �
	� it was proved that if S veri�es ��
�� for geodesic
domains� then it veri�es HII
 In fact� if hg�S� is the in�mum of the
constants h such that the inequality

AS�G� � hLS��G� �

is true for any geodesic domain G� we have that

h�S� � hg�S�  	 �

We shall prove now that if a Denjoy domain � veri�es ��
�� for
geodesic domains which are symmetric with respect to the real axis �SG�
domains�� then � veri�es ��
�� for any geodesic domain and therefore
it veri�es HII


In fact� we have the following result� which is true even if �� has
isolated points


Lemma ��� Let � be a Denjoy domain satisfying the inequality

A�G� � hL��G� �

for every SG�domain G in � and for a positive constant h�
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Then � satis�es HII with

hg��� � 	h and h��� � 	h 	 �

Proof� Let G be a geodesic domain in �
 Without loss of generality
we can suppose that G contains the point at in�nity
 Let us consider
the family F� of subarcs of �G which joins two points of the real axis
and are contained either in fz � Im z 
 �g or in fz � Im z � �g and
re$ect each of them with respect to the real axis
 We obtain in this way
a family of closed curves F�
 Let F� be the family constituted by all
simple closed geodesics in � which are freely homotopic to some curve
of F�
 We construct now a new family F� from F� in the following
way� a curve 
 of F� belongs to F� if and only if the bounded �in the
euclidean sense� Jordan domain J such that �J � 
 does not contain
any other curve in F� and J � �� is not a �nite set
 Observe that
the negative curvature implies that any two geodesics 
�� 
� in F� are
disjoint� therefore either J� and J� are disjoint� either J� � J� or
J� � J�
 Let G� be the SG�domain whose boundary is constituted by
the curves in F�


To illustrate this construction� let us consider for example the
geodesic domain G shown as the exterior of the curves in this picture


Then� the family of curves F� looks like the following

The family of simple closed geodesics F� is shown by
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Note that the dotted curves in the last picture represent the free homo�
topy classes without geodesics� they are not in F�
 Finally� the geodesic
domain G� is the exterior of the geodesics in

It is clear that
L��G�� � 	L��G� �

Let now n� p be� respectively� the number of simple closed geodesics
limiting G and the number of punctures in G
 Let also n�� p� be the
corresponding numbers for G�
 Observe that n�  p� 
 n p
 To see
this� let us consider the set %�G� of generalized geodesics limiting G�
i�e� the union of the set of n geodesics in �G and the set of p punctures
�surrounded� by G
 We want to show that

card %�G� � card %�G�� �

If a puncture is surrounded by G it is also surrounded by G�
 On the
other hand� given a geodesic 
 of �G let us consider the bounded �in
the euclidean sense� Jordan domain J with �J � 
� if the intersection
of J with the real axis has m connected components� the geodesic 

�generates� at least m generalized geodesics of �G�
 This gives that
n�  p� 
 n p


Gauss�Bonnet theorem gives that

A�G�� � 	� �n�  p� � 	� 
 	� �n p� 	� � A�G� �

since the hyperbolic metric of � has curvature ��

Therefore

A�G� � A�G�� � hL��G�� � 	hL��G� �

and so we have proved the �rst inequality in Lemma �
�
 The second
inequality is a consequence of the �rst one and �FR� Lemma �
	�
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Given a border set of �� with four points� B � fb�� b�� b�� b�g� we
denote by 
�B� the unique simple closed geodesic in � which separates
�b�� b�� from �b�� b��


Lemma ��� A Denjoy domain � such that �� has no isolated points

has HII if and only if there exists a positive constant c such that for

any border set of ��� B � fb�� � � � � b�ng with n 
 �� we have that

�

n

nX
j	�

L�
�fb�j��� b�j� b�j
�� b�j
�g�� � c �

Proof� Observe that we can establish a one to one correspondence
between border sets of �� with n 
 � and SG�domains in �
 Given
a border set B of ��� B � fb�� � � � � b�ng� let us consider the set of n
geodesics �n 
 ��

G � f
�fb�j��� b�j� b�j
�� b�j
�g� � j � �� � � � � ng �
The curves in G limit a geodesic domain G associated to B
 Observe
that if n � 	� both geodesics are the same and then obviously they do
not limit a geodesic domain


It is clear that this process has a well de�ned inverse
 Gauss�
Bonnet theorem gives that A�G� � 	� �n� 	�
 Therefore� we have that
A�G� � n
 This fact and Lemma �
� give Lemma �
	


It is clear that if we de�ne

�� � �C n ��b�j� b�j
�� 	 �b�j
�� b�j���� �
�� � �C n fb�j��� b�j� b�j
�� b�j
�g �

then we have

L��
�fb�j��� b�j� b�j
�� b�j
�g�� � L�
�fb�j��� b�j� b�j
�� b�j
�g��
� L��
�fb�j��� b�j� b�j
�� b�j
�g�� �

since �� � � � ��

In order to prove Theorem 	 we only need to relate the length in

�� and �� of the geodesic


�fb�j��� b�j� b�j
�� b�j
�g�
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with the functions !� and !� �see their de�nitions after �	
���


The following result gives an estimate of the hyperbolic length of
the imaginary axis in some normalized Denjoy domains
 This curve is
important because it is the geodesic �in many symmetric cases �see� e�g�
Lemma �
��� whose length we want to estimate


We recall that �x� denotes the greatest natural number which is
less or equal than x


Lemma �	� Let us �x a number � � a � � and let � � t � �� For

each natural number m such that

��
�� m � N �

�
�� log

a

t

log
�

a

�
�� �

let us consider the closed set

Dm � Dm�t� � fz � C � am
� � jz tj � am or am
� � jz�tj � amg �

Let � be a Denjoy domain such that f����t� t� �g � �� � �����t� 	
�t� ���

Let n� � n� � � � � � n��� be all the natural numbers in ��� N�
satisfying Dnj � �� �� �� n� � � and n� � N �

Then we have that there exists a universal constant � � t� � �
such that if we denote by � the imaginary axis with the point at in�nity

included� then

L��� �
�X

j	�

��  log �nj � nj���� � for � � t � t� �

Here the constant in � depends only on a but neither on � nor t�

Proof� The idea of the proof is to estimate the length of �dyadic�
segments of the curve
 Over each one of these segments we shall have
a precise estimate of the distance to the boundary of the domain and
the function � �see �	
	��
 These facts and �BP� Theorem �� will give
the lemma up to a technical detail involving the point at in�nity which
we solve in Lemma �
�
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Let Im � � �Dm� � � m � N 
 We are going to estimate L�Im��
the length in � of Im� under the assumptions that

�Dm�k 	Dm
k� � �� �� � �

�Dm�k
� 	Dm�k
� 	 � � � 	Dm��

	Dm 	Dm
� 	 � � � 	Dm
k��� � �� � � �

for � � k � min fm�N �mg �obviously the second condition does not
appear if k � ��


Let �� �� � n f�g� the computations in �� are easier than in �
because we can apply �BP� Theorem �� since �� � C 


Let us consider a point b � �Dm�k 	 Dm
k� � ��
 We have four
possibilities�

i� b � Dm
k and a
m
k
� � jb tj � am
k�

ii� b � Dm
k and a
m
k
� � jb� tj � am
k�

iii� b � Dm�k and a
m�k
� � jb tj � am�k�

iv� b � Dm�k and a
m�k
� � jb� tj � am�k


We consider now the case i�
 If z � Im� it satis�es inequalities
am
� � jz tj � am �in fact� z satis�es both inequalities in the de�nition
of Dm�� and then

�

ak��
�

am
�

am
k
� jz  tj
jb tj �

am

am
k
�
�

�

ak
�
�

This implies that

��
	� �  ���z� � �k  �� log �
a
�

The same result can be deduced� with similar arguments� in the cases
ii�� iii� and iv�


Using ��
	� and �BP� Theorem �� we obtain that

��
�� ��z� � �

am�k  ��
� for k 
 � �

Next we are going to estimate the euclidean length of Im

��
��

jImj �
p
a�m � t� �

p
a�m
� � t�

�
a�m ��� a��p

a�m � t�  
p
a�m
� � t�

�
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Observe that ��
�� gives t� � a�m
�
 This fact and ��
�� imply that
jImj � am� and therefore

��
�� L��Im� �

Z
Im

��z� jdzj �
Z
Im

jdzj
am �k  ��

� �

k  �
�

In order to estimate L�Im� we only need to prove that ��z� � �z�
for jzj � �


This last relation would be easy to prove �see Lemma �
� with C �
f�g� if we were not interested in obtaining constants independent of �
and t
 But� to obtain universal constants� we need a more sophisticated
argument


Lemma �� Let E be a closed subset of the closed unit disk such that

f����t� t� �g � E� Then� for each � � � there exist constants t� � ��� ��
and c � � which only depend on � such that

�CnE�z� 
 c CnE �z� �

for every � � t � t� and jzj � ��

Proof� By �He� Theorem �� we have that

�Cnf����t�t��g�z� �� �Cnf������g�z� � as t �� � �

uniformly over compact subsets of �C n f��� �� �g
 Therefore� for each
� � �� there exist constants t�� c� which only depend on �� such that if
� � t � t� and 
 is a curve contained in fw � �C � jwj 
 �g� then

L�Cnf����t�t��g�
� 
 c� L�Cnf������g�
� �

On the other hand� by �Br� Theorem ��� the set fw � �C � jwj 
 �g is
hyperbolically convex in every hyperbolic plane domain containing it

Hence�

��
�� d�C nE�w��� 
 d�Cnf����t�t��g�w��� 
 c� d�C nf������g�w��� �

if jwj 
 �
 Now� it is clear that there exists a positive constant r which
only depends on � such that

B�Cnf������g

	
��

r

c�



� fw � �C � jwj � �g �
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This fact and ��
�� says that

B�CnE��� r� � fw � �C � jwj � �g �

and so� if jzj � �� we have that d�CnE��� z� 
 r
 Therefore Lemma �
�

�with C � f�g� gives that

c � tanh
	 r
	



�

�CnE�z�

CnE �z�
� � �

This �nishes the proof of Lemma �
�


In what follows we will take the �xed value � � 	 and we will
consider the corresponding c and t�
 This t� is the constant that works
in Lemma �
�


Now Lemma �
� and ��
�� give

L�Im� � �

k  �
� if � � t � t� �

Therefore

L�Inj��	� � �	Inj � � 	
	
� 
�

	
 
�

�
 � � � 	

nj � nj��



� � log �nj�nj���

and

L�I� 	 � � � 	 IN � �
�X

j	�

��  log �nj � nj���� �

In order to �nish the proof of Lemma �
� it is enough to check that

L��� � L�I� 	 � � � 	 IN � �

where the constant in � depends only on a




��� V� Alvarez� D� Pestana and Jos�e M� Rodr�	guez

This is a consequence of the following facts


L�� � fw � �C � jwj �
p
a�N
� � t� g�

� L�Cn�t��t��� � fw � �C � jwj � aN
�g�

� L�Cn�t��t�

	
� �

n
w � �C � jwj � t

a

o


� L�Cn������

	
� �

n
w � �C � jwj � �

a

o

�

L�� � fw � �C � jwj 

p
�� t� g�

� L�Cn������

�
� � �w � �C � jwj 


q
�� t��

��
�

�X
j	�

��  log �nj � nj���� 
 �  log N � log log
	�
t



�

� � I� 	 � � � 	 IN 	 fw � �C � jwj �
p
a�N
� � t� g

	 fw � �C � jwj 

p
�� t� g �

This �nishes the proof of Lemma �
�


For a border set B � fb�� b�� b�� b�g� in order to obtain a more
symmetric situation� as in Lemma �
�� we consider the M&obius trans�
formations

��
��

T �z� � TB�z� �
�b� � b���z � b��

�b� � b���z � b��
�

T��B �z� �
b��b� � b��z � b��b� � b��

�b� � b��z � �b� � b��
�

S�z� � SB�z� �
z  ��p�  r�B�

z  �  
p
�  r�B�

�

S��B �z� �
�	

�� t�B�

z  t�B�

z � �

�
����p�  r�B� � z  ��p�  r�B�

z � � �

U�z� � UB�z� � �T
��  S����z� �
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where r�B� is de�ned by �	
�� �observe that r�B� � TB�b��� and t�B�
is de�ned by

��
�� t�B� �

p
�  r�B�� �p
�  r�B�  �

� r�B� �
� t�B�

��� t�B���
�

Observe that the images by T of b�� b�� b�� b� are ����� �� r in this
order� the images by S of ����� �� r are ������t� t also in this order
and therefore the images by U of ������t� t are b�� b�� b�� b�


Lemma �
� For r � � let Tr be the Teichm�uller annulus� i�e� Tr � C n
����� ��	 �r���� and Sr � C n f��� �� rg� Then we have that the simple

closed geodesic �r which surrounds f��� �g and does not surround frg
is equal to fz � C � jz  �j � p

�  rg in both domains� Moreover�

LTr ��r� � !��r� � LSr ��r� � !��r� � r � � �

Proof� Let us consider the images of the domains Tr and Sr un�
der the M&obius transformation S�z� �see ��
��� which maps the points
��� �� r�� to ����t� t� � in this order �if r and t are related by ��
���

It is clear� by symmetry� that the simple closed geodesic in S�Tr� and
S�Sr� corresponding to �r is in both cases the imaginary axis �with
the point at in�nity included�
 Therefore� �r � S���fw � C � Rew �
�g 	 f�g� � fz � C � jz  �j � p

�  rg

To �nish the proof we have to prove the following four facts�

�� LTr ��r� � log ���r� as r �� ��

	� LSr ��r� � log log ���r� as r �� ��

�� LTr ��r� � �� log r as r ����
�� LSr ��r� � �� log r as r ���

�� follows as a direct consequence of Lemma �
� by observing that

fn�� n�� � � � � n�g � f�� �� 	� � � � � Ng and � � N � log ���t� � log ���r�

Similarly� 	� follows also as a direct consequence of Lemma �
� since in
this case � � �


�� is a well�known fact �see sections � and 	 of �LV� Chapter II��
where �� is also proved� recall that the product of the modulus of an
annulus by the length of its simple closed geodesic is constant�
 ��
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follows from ��� �BP� Theorem �� and the fact that� as r 
 �� the ��
functions de�ned by �	
	� verify

�Tr �z� � �Sr �z� � for all z � �r �

Lemma �
� has been proved


Proof of Theorem �� Let us consider a border set of ��� B �
fb�� � � � � b�ng �n 
 ��
 We have that �C n ��b�j� b�j
�� 	 �b�j
�� b�j���� �
� � �C n fb�j��� b�j� b�j
�� b�j
�g
 Therefore� if we denote by r the
positive number

r � r�fb�j��� b�j� b�j
�� b�j
�g� �

Lemma �
� gives that

c�!��r� � L�Cnf��r�����g�
�f�� r�����g��
� L�Cnfb�j���b�j �b�j���b�j��g

�
�fb�j��� b�j� b�j
�� b�j
�g��
� L�
�fb�j��� b�j� b�j
�� b�j
�g�� �

where we should remark that in the second line of the last display�

�fb�j��� b�j� b�j
�� b�j
�g� refers to the geodesic in the domain �C n
fb�j��� b�j� b�j
�� b�j
�g� but the same symbol in the third line refers to
the geodesic in the domain �


Lemma �
� also gives that

L�
�fb�j��� b�j� b�j
�� b�j
�g��
� L�Cnf�b�j�b�j�����b�j���b�j���g

�
�fb�j��� b�j� b�j
�� b�j
�g��
� L�Cn���������r�����
�f�� r�����g��
� c�!��r� �

where we should make a remark similar to the one in the last paragraph

These inequalities and Lemma �
	 prove Theorem 	
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� Length of geodesics and characterization of the HII�proper�

ty in Denjoy domains�

In order to state the characterization of the HII�property for Den�
joy domains we need a good estimate of the length of the simple closed
geodesic 
�B� associated to any border set B of �� with four points

This estimate� which is interesting by itself� is the statement of Theorem
�


Let us �x a number � � a � � and denote by Dm the closed set

Dm � Dm�B� � U�fz � C � am
� � jz  t�B�j � am

or am
� � jz � t�B�j � amg� �

m � N 
 The intersection of Dm with the real axis is� in fact� a union of
at most four closed intervals
 Observe that the de�nition of Dm above
is consistent with the one in Lemma �
�


We need also to de�ne the following natural number

N � NB ��

�
�� log

a

t�B�

log
�

a

�
�� �

where �x� is the greatest natural number which is less or equal than x


Theorem � Let � be a Denjoy domain� � � a � � and B �
fb�� b�� b�� b�g be a border set of ���

Let n� � n� � � � � � n��� be the list of the natural numbers in

��� N� satisfying Dnj � �� �� �� n� � � and n� � N �

Then there exists a universal constant � � r� � � such that

L�
�B�� � "�B�

��

��������
�������

�

log r�B�
� if r�B� � e �

� � if r� � r�B� � e �
�X

j	�

��  log �nj � nj���� � if r�B� � r� �

Here the constant in � depends only on a and neither on � nor B�
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Observe that Theorem � gives a general procedure to obtain the
length of a symmetric simple closed geodesic in a Denjoy domain
 This
theorem is a useful tool in order to study the asymptotic behaviour of
the length of geodesics in domains which depend on a parameter
 Also�
note that the condition of admissibility of � does not appear in the
hypotheses


In the proof of Theorem � we use Theorem � and some of the
ingredients of the proof of Theorem 	
 Theorem � allows to relate the
previous ideas with euclidean conditions on the size of ��� this is the
most delicate part of our argument


We start proving an analogue of Lemma �
� but now for the �au�
thentic� geodesics
 This result will be the basic tool in the proof of
Theorem �


Lemma 
��� Let us �x a number � � a � � and let � � t � �� For

each natural number m such that

m � N �

�
�� log

a

t

log
�

a

�
�� �

let us consider the closed set

Dm � Dm�t� � fz � C � am
� � jz tj � am or am
� � jz�tj � amg �

Let � be a Denjoy domain such that B � f�t� t� ����g � �� �
�����t� 	 �t� ���

Let n� � n� � � � � � n��� be all the natural numbers in ��� N�
satisfying Dnj � �� �� �� n� � � and n� � N �

Then we have that there exists a universal constant � � t� � � �the
same constant that in Lemma ���� such that

L�
�B�� �
�X

j	�

��  log �nj � nj���� � for � � t � t� �

Here the constant in � depends only on a and neither on � nor t�

The main ideas of the proof of this lemma are the following
 First�
we shall use a polarization argument �see below� in order to reduce our
problem to some extremal cases �Lemma �
	�
 Secondly� observe that
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we do not know where is the geodesic 
�B�
 So� in order to obtain lower
bounds for its length� we shall study the length of any curve in the same
homotopy class in � by using again a �dyadic� argument �Lemma �
��

We should remark that we have already upper bounds of the length of

�B� �Lemma �
��


In order to prove Lemma �
� it is convenient to introduce some
concepts


If z is a complex number� we consider its symmetric point with
respect to the imaginary axis z� � �'z� with�� ��
 The symmetric
A� of a set A � �C is de�ned as A� � fz� � z � Ag
 The positive and
negative parts of A are

A
 � A � fz � Re z 
 �g � A� � A � fz � Re z � �g �

Let us consider a domain � as in Lemma �
�
 The polarization �p of
the Denjoy domain � is de�ned as

�p � �� 	 ���
 	 �� � ����

and the antisymmetric �as of the domain � as

�as �
�fz � Re z 
 �g n ft� �g� 	 �� � ���� �

Observe that ��p�p � �p� ��as�as � �as� ��p�as � ��as�p � �as and
�p � �as


The concept of polarization appeared in a paper by Wolontis �W��
who proved results on the behavior of certain extremal lengths under
polarization and also symmetrization results by repeated application of
polarization


We shall need the following result about polarization �So� Theo�
rem ��

��
�� p
�z� � min f�z�� �z��g � if Re z 
 � �

In particular� we have that

��
	� p
�z� � p

�z�� � as
�z� � as

�z�� � if Re z 
 � �

This last result is well�known �M� Theorem ��

The results concerning the Poincar�e metric that appear in �M� and

�So� use as symmetry axis the real axis instead of the imaginary one�
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but it is obvious �as Solynin comments in �So�� that the result is true
for polarization with respect to any �xed straight line


We can prove now

Lemma 
��� In order to prove Lemma ��� it is enough to consider the

sets �as instead of ��

Proof� If � denotes the imaginary axis with the point at in�nity� we
have that

Las
��� � Lp

��� � L��� � for � � t � t� �

where t� is the constant in Lemma �
�
 This fact is a direct consequence
of Lemma �
�� since the expression

P�
j	��� log �nj�nj���� is exactly

the same for �as��p and �


Let us consider now the simple closed geodesic 
� �respectively

p� 
as� in � �respectively �p��as� which is freely homotopic to �
 By
the de�nition of geodesic it follows that

L�
� � L��� � Lp
�
p� � Lp

��� � Las
�
as� � Las

��� �

We also have that as
�z� � p

�z� for all z � �p� since �p � �as

Therefore Las

�
as� � Lp
�
p�


In order to �nish the proof of Lemma �
	� it is enough to see that
Lp

�
p� � L�
�


Let us consider the curve #
 � 

 	 �
���
 Obviously� #
 is freely
homotopic to 
 in �
 Therefore

Lp
�
p� � Lp

�#
� � L�
� �

where the �rst inequality follows from the fact that #
 is also freely
homotopic to 
p in �p� and we have the second one by ��
��


This �nishes the proof of Lemma �
	


Lemma 
�	� Let us �x a number � � a � �� Let � be a Denjoy domain

such that f����t� t� �g � �� � �����t� 	 �t� ��� with � � t � t�� where
t� is the constant in Lemma ���� Let us consider the antisymmetric set

�as of �� Let �m be a curve contained in Bm � fz � C � � � Re z �
�� t��	� am
� � jz�tj � amg which joins Sm � fz � C � jz�tj � amg
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with Sm
�� Then� there exists a positive constant c� which only depends

on a� such that if

�Dm�k 	Dm
k� � ��as �� � �

�Dm�k
� 	Dm�k
� 	 � � � 	Dm��

	Dm 	Dm
� 	 � � � 	Dm
k��� � ��as � � �

then we have

Las
��m� 
 c

k  �
�

for � � k � min fm�N �mg �obviously the second condition over ��as
does not appear if k � ���

Proof� Let ��as �� �as n f�g� the computations in ��as are easier
than in �as because we can apply �BP� Theorem �� since ��as � C 
 We
are going to �nd bounds for ��as�z�� in order to estimate �as�z� for
z � Bm


We have that 	�as�z� � jz � tj and ��
�� gives that

��
�� t � am
� � jz � tj � for all z � Bm and m � N �

Let us consider a point b � �Dm�k 	 Dm
k� � ���as
 We have four
possibilities�

i� b � Dm
k and a
m
k
� � jb tj � am
k�

ii� b � Dm
k and a
m
k
� � jb� tj � am
k�

iii� b � Dm�k and a
m�k
� � jb tj � am�k�

iv� b � Dm�k and a
m�k
� � jb� tj � am�k


We consider �rst the cases ii� and iv�
 The conditions which de�ne
these possibilities and ��
�� give that

�

ak��
�

am
�

am
k
� jz � tj
jb� tj �

am

am
k
�
�

�

ak
�
�

in the case ii�� and

ak
� �
am
�

am�k
� jz � tj
jb� tj �

am

am�k
�
� ak�� �
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in the case iv�
 In both cases� this implies that

��as�z� � �k  �� log
�

a
�

We consider now the cases i� and iii�
 If b � � or b � t we can take �b
instead of b �since �b also belongs to �Dm�k 	Dm
k� � ���as� and we
are in the cases ii� or iv�� obviously� b �� �t
 Therefore� without loss of
generality we can assume that b � �t
 In both possibilities i� and iii�
we have that

��
�� jb� tj 
 jb tj �

In order to obtain upper bounds for jb � tj� we study separately the
cases i� and iii�


In the case iii� we have that

jb� tj � 	 t jb tj � 	 am
�  am�k � � am�k �

and
ak
�

�
�

am
�

� am�k
� jz � tj
jb� tj �

am

am�k
�
� ak�� �

This fact implies that

��as�z� � log �  �k  �� log
�

a
�

In the case i� the condition m k � N gives that

jb� tj � 	 t jb tj � 	 am
k
�  am
k � � am
k �

and
�

� ak��
�

am
�

� am
k
� jz � tj
jb� tj �

am

am
k
�
�

�

ak
�
�

This fact implies that

��as�z� � max
n��� log �

� ak��

���� log �

ak
�

o
�

Therefore� there is a constant c�� only depending on a� such that

��as�z� � c� �k  �� �
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Consequently� we have in any case

��as�z� � c� �k  �� �

Therefore �BP� Theorem �� gives that

�as�z� 

c�

jz � tj �k  �� log
	�
a


 �

and we deduce that

L�as��m� �

Z
�m

�as�z� jdzj



Z
�m

c� jdzj
jz � tj �k  �� log

	�
a






Z am

am��

c� dr

r �k  �� log
	�
a



�

c�
k  �

�

Observe that jz�tj � am � � and t � �
 These facts imply that jzj � 	

Lemma �
� �recall that we have chosen � � 	� gives that

Las
��m� 
 c

k  �
� if � � t � t� �

This �nishes the proof of Lemma �
�


Proof of Lemma ���� As Lemma �
	 states� we only need to prove
Lemma �
� for the domains �as


Let us consider any curve � freely homotopic to 
�B� in �as

We want to prove that there exists a positive constant c�� which

only depends on a� such that

Las
��� 
 c�

�X
j	�

��  log �nj � nj���� �
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If we prove this inequality� then Lemma �
� is true since 
�B� is one of
the curves � above
 The upper bound of Las

��� is a consequence of
Lemma �
�� since

Las
�
�B�� � Las

��� � c�

�X
j	�

��  log �nj � nj���� �

and the nj s are the same for �as and �

Let us consider now the curve #� � �
 	 �����
 Obviously #� is

freely homotopic to � in �as� and ��
	� gives that Las
�#�� � Las

���

Let �� be a connected component of #� contained in fz � � �

Re z � ��  t��	g which joins the interval ��� t� with fz � Re z �
��  t��	� Im z 
 �g
 The curve �� meets the vertical line fz � Re z �
��  t��	g at a point with the form i b�  ��  t��	
 We have that

����  t

	
 i b� � t

��� 
 �� t

	

 �� t�

	
�

If m satis�es

log
	

�� t�

log
�

a

� m �
log

a

t

log
�

a

then we have that am � ��� t���	 and a
m
� 
 t and so �m � �� �fz �

am
� � jz � tj � amg joins Sm � fz � jz � tj � amg with Sm
�

Therefore Lemma �
� and the same argument used at the end of the
proof of Lemma �
� give that

Las
��� 
 Las

���� 
 c�

�X
j	�

��  log �nj � nj���� �

since the terms in the last sum corresponding to

� � m �
log

	

�� t�

log
�

a

have bounded length




Isoperimetric inequalities in Riemann surfaces of infinite type ���

Proof of Theorem �� If we apply the M&obius transformation U��

�which preserves the hyperbolic metric� to � we obtain a new domain
�� with

��
�� f����t� t� �g � ��� � �����t� 	 �t� �� �

Therefore� without loss of generality we can assume that � satis�es
��
�� and so

Dm � fz � C � am
� � jz  tj � am or am
� � jz � tj � amg �

Let 
 be the simple closed geodesic in � given by 
 � 
�f�t� t� ����g�

Let us consider �rst the case � � t � t�
 Lemma �
� gives that

L�
� �
�X

j	�

��  log �nj � nj���� �

For t� � t � �� observe that �� � �C n ������t� 	 �t� ��� � � � �� �
�C n f����t� t� �g
 Then we have that

��z� 
 �z� � for all z � �� �
�z� 
 ��z� � for all z � � �

and consequently Lemma �
� gives that

!��r� � L���� 
 L�
� 
 L���� � !��r� � with r �
� t

��� t��
�

and we have that

!��r� � !��r� �
��
�

�

log r
� if r � e �

� � if r� � r � e �

with r� � � t����� t��
�
 Here the constant in � depends only on a but

neither on � nor r
 This �nishes the proof of Theorem �


Theorem 
� Let � be a Denjoy domain� let I be the set of isolated

points of �� and let �� � � 	 I� Then� � has HII if and only if �
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is admissible and there exists a positive constant c such that for any

border set of ���� B � fb�� � � � � b�ng with n 
 �� we have that

�

n

nX
j	�

"��fb�j��� b�j� b�j
�� b�j
�g� � c �

Proof of Theorem �� If ��� has isolated points� then � is not
admissible and Theorem � gives that � has not HII
 Let us assume
now that ��� has not isolated points
 Theorem � reduces the proof of
Theorem � to the following�

�� has HII if and only if there exists a positive constant c such that

for any border set of ���� B � fb�� � � � � b�ng with n 
 �� we have that

�

n

nX
j	�

"��fb�j��� b�j� b�j
�� b�j
�g� � c �

This fact is a consequence of Lemma �
	 and Theorem �


�� Collars and balls�

Let R be a hyperbolic Riemann surface with a puncture p
 A collar

in R about p is a doubly connected domain in R �bounded� by p and
a Jordan curve �called the boundary curve of the collar� orthogonal to
the pencil of geodesics emanating from p
 It is well known that the
length of the boundary curve is equal to the area of the collar


A collar in R about p of area � will be called an ��collar and it will
be denoted by CR�p� ��
 A theorem of Shimizu �S� gives that for every
puncture in any hyperbolic Riemann surface� there exists an ��collar
for every � � � � � �see also �K� p
 �������


Next� we will prove a relationship �involving universal constants�
between collars in R and balls in R 	 fpg


Proposition �� Let S be a hyperbolic Riemann surface and let

fBS�p� r��gp�I be a family of simply connected and pairwise disjoint

balls� Let us denote by R the Riemann surface R � S n I� Let k � ����
and K � ek�
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a� We have that

CR

	
p�

	�

k � log ��� e�r�



� BS�p� r�

� �

for p � I and

� � r � min
n
log

�

��K e���
� log

	

�  e��r�

o
�

b� We have that

BS�p� r�
� � CR

	
p�

	�

log ��� e��r��� log �er � ��


�

for p � I and

� � r � log ��  ��� e��r�� e���� �

Observe that� in both cases� the conditions on r imply that � �
r � r�


Proof� Let F � U �� S be a universal covering map and J � F���I�

The balls in fBU�z� r��gz�J � fF���BS�p� r���gp�I are obviously sim�
ply connected �every ball in U is simply connected�
 We also remark
that these balls are pairwise disjoint
 If we have that for some z� w � J

BU�z� r�� �BU�w� r�� �� � �

this implies that BS�F �z�� r�� is not simply connected �if F �z� � F �w��
or BS�F �z�� r�� � BS�F �w�� r�� �� � �if F �z� �� F �w��� and both con�
clusions contradict the hypothesis on fBS�p� r��gp�I 


Since

F �BU�z� r�� � BS�F �z�� r� � for z � J � � � r � r� �

and

F �CUnJ�z� ��� � CSnI�F �z�� �� � for z � J � � � � � � �

we have that Proposition � is true for all hyperbolic Riemann surface
S if and only if it is true for the case S � U �with the same constants�
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Therefore� without loss of generality we can assume that S � U

Let V be the Riemann surface V � U n I


In the following we need a precise version of �	
��
 It is well known
that if � � C is a hyperbolic plane domain then

��
�� �z� 
 �

	�z� �����  ��z��
� for z � � �

Lemma ���� Let r � �� z�� z� � U� If dU�z�� z�� 
 	 r and z �
BU�z�� a�r��� we have that

��
	� jz � z�j � jz � z�j �

where

a�r� � log
	

�  e��r
�

Proof� Since this statement is invariant under conformal automor�
phisms of U� we can assume without loss of generality that z� � i and
dU�i� z�� � 	 r


A computation gives that Lemma �
� is true if ��
	� holds for z� �
i e��r and z belongs to the segment joining i e�a�r� with i �this is the
worse case� and this follows from our election of a�r�


Using ��
�� and Lemma �
� we can prove the following result


Lemma ���� Let fBU�p� r��gp�I be a family of pairwise disjoint balls�

Then we have� for p � I� that

��
�� V�z� � B�p����e��r� � Im p���z� �

for z � B�p� ��� e��r�� Imp��� and

��
�� B�p�K Imp���z� � V�z� � for z � BU�p� a�r��� �

where a�r� is the function de�ned in Lemma �
��

Proof� The following relationship between hyperbolic and euclidean
balls is well�known


BU�x i y� r� � B�x i y cosh r� y sinh r� � for x � R � y� r � � �
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This implies that

��
�� B�z� ��� e�r� Im z� � BU�z� r� � B�z� �er � �� Im z� �

for z � U� r � �
 We deduce that

B�p� ��� e��r�� Im p� � BU�p� 	 r�� � for p � I �

Since dU�p� q� 
 	 r� for all p� q � I� p �� q� we have that B�p� �� �
e��r�� Imp�� � V
 This implies ��
��


Using again that dU�p� q� 
 	 r� for all p� q � I� p �� q� and Lemma
�
� we deduce that

��
�� jz � pj � jz � qj � for z � BU�p� a�r��� �

A computation gives that

��
�� jz � pj � Im z � for z � BU�p� a�r��� �

since ea�r�� � 	
 Hence� ��
�� and ��
�� imply that

	V�z� � jz � pj � for z � BU�p� a�r��� �

Consequently�

��
�� �V�z� � min
n��� log ��� z � p

w � p

��� ��� � w � �V
o
� log Imp

jz � pj �

since jz � pj � Im p� for z � BU�p� a�r��� �to see this it is enough to
change the roles of z and p in ��
���


Now� ��
�� and ��
�� imply that

V�z� 
 �

jz � pj log K Im p

jz � pj
� for z � BU�p� a�r��� �

This inequality and the well known fact

B�w�c���z� �
�

jz � wj log c

jz � wj
� for z � B�w� c�� �
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give ��
��
 This �nishes the proof of Lemma �
	


Next we will prove Proposition �� part a�
 First of all we observe
that K e��� � �� since k � 	�
 Secondly� the condition r � � log ���
K e���� implies that

� �
	�

k � log ��� e�r�
� �

and then we can assure that there exists the collar in R �K� p
 ������

On the other hand� ��
�� and ��
�� give� for p � I� that

��
�� B�p�K Imp���z� � V�z� �

for z � B�p� �� � e�a�r��� Im p�� � BU�p� a�r���
�
 A straightforward

computation shows that� for w � C and � � ��

��
���

CB�w�����w��� � B�w� � e����	�� � for � � � �

B�w� r�� � CB�w����
	
w�

	�

log �� log r


� for � � r � � �

Therefore ��
�� and ��
��� imply that

CV�p� �� � CB�p�K Im p���p� �� � B�p�Ke����	 Im p�� �

if

B�p�K e����	 Imp�� � B�p� ��� e�a�r��� Im p�� � BU�p� a�r���
��

If we choose

� �
	�

k � log ��� e�r�
�

we obtain that

CV

	
p�

	�

k � log ��� e�r�



� B�p�K e����	 Im p��

� B�p� ��� e�r� Im p��

� BU�p� r�
�

� BU�p� a�r���
� �
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if

r � a�r�� � log
	

�  e��r�
�

This �nishes the proof of Proposition �� part a�


Finally� to prove part b�� observe that the condition r � log ��  
��� e��r�� e���� implies that

� �
	�

log ��� e��r��� log �er � �� � � �

and then� as above� we can assure that there exists the collar in R

Now� for any p � I� ��
��� and ��
�� give that

B�p� ��� e��r�� e����	 Imp�� � CB�p����e��r� � Im p���p� �� � CV�p� �� �

for � � � � �
 In particular� if we choose

� �
	�

log ��� e��r��� log �er � ��
we obtain that

B�p� �er � �� Im p�� � CV
	
p�

	�

log ��� e��r��� log �er � ��


�

Therefore ��
�� gives that

BU�p� r�
� � CV

	
p�

	�

log ��� e��r��� log �er � ��


�

This �nishes the proof of Proposition �


We de�ne a generalized collar in a hyperbolic Riemann surface R
about a puncture p as a domain �not necessarily doubly connected� inR
�bounded� by p and a �nite number of curves �if the collar is not equal
to R� orthogonal to the pencil of geodesics emanating from p
 Observe
that if R is a punctured compact surface �with only a puncture p��
when the collar �grows� it is eventually equal to R and then there are
not such boundary curves


In the punctured disk� R � B�z� r�� we have that

dR��CR�z� ���� �CR�z� ���� �
��� log ��

��

��� �
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Then� we can de�ne for � 
 � the generalized ��collar in R about p as
the set

CR�p� �� � CR
	
p�
�

	



	
n
q � R � dR

	
q� �CR

	
p�
�

	




� log �	��

o
�

Obviously this de�nition coincides with the original one if there exists
the ��collar
 The number ��	 can be changed for any number � � � � ��
if log �	�� is substituted by log �����


If R is not a punctured disk� it is obvious that there exists an ��
such that there is an ��collar only for � � � � ��
 However there
always are generalized ��collars


With this de�nition we can extend part b� of Proposition �


Corollary 	� Let S be a hyperbolic Riemann surface and let

fBS�p� r��gp�I be a family of simply connected and pairwise disjoint

balls� Let us denote by R the Riemann surface R � S n I� If we denote

the generalized ��collar by CR�p� ��� then we have that

BS�p� r�
� � CR

	
p�

	�

log��� e��r��� log�er � ��


�

for p � I and

� � r � min flog�	� e��r��� r�g �

The proof of Corollary � is the same as the proof of Proposition
�� part b�
 We do not need now the condition � � � but we also need
� � �� the condition on r guarantees this fact


A computation and ��
��� give that

BB�w����w� r�
� � B

	
w� � tanh

	r
	



�
� CB�w����

�
w�

	�

log cotanh
	 r
	


� �
for w � C and �� r � �


We want to remark that Proposition � is sharp for r � � in the
following sense

lim
r���

	�

k � log ��� e�r�
	�

� log tanh
	 r
	


 � lim
r���

	�

log ��� e��r��� log �er � ��
	�

� log tanh
	 r
	


 � � �
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Proposition � also gives the following result


Corollary � Let S be a hyperbolic Riemann surface and let

fBS�p� r��gp�I be a family of simply connected and pairwise disjoint

balls� Let us denote by R the Riemann surface R � S n I� Let k � ����
and K � ek�

a� We have that

CR�p� �� � BS

	
p� log

�

��K e����	


�
�

for p � I� � � � � � and

� � 	�

k  log
	

�� e��r�

�

b� If we denote the generalized ��collar by CR�p� ��� then we have

that

BS�p� log ��  ��� e��r�� e����	��� � CR�p� �� �

for p � I and

� � � � 	�

log ��  e�r��� r�
�

�� Further results�

We will generalize theorems � and � in this section
 To do this� we
shall comment some remarks�

�� If the set I in theorems � and � is not contained in �R � these the�
orems are also true since Theorem � is a general result about hyperbolic
Riemann surfaces


	� If ��� is contained in a quasicircle Q �the image of a straight
line by a quasiconformal mapping of the Riemann sphere onto itself�
our characterization of the HII�property for Denjoy domains can be yet
applied �if we know the quasiconformal mapping which applies �R in Q�
since the HII�property is preserved by quasiconformal mappings �FR�
Theorem ��


We can de�ne in an obvious way a border set of a closed subset of
a quasicircle
 In this context we can generalize Theorem �
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Theorem �� Let �� be a hyperbolic plane domain whose boundary is

contained in a quasicircle and has not isolated points� let I be a strongly

uniformly separated set in ��� and let � � �� n I� Then
a� If � has HII� then there exists a positive constant c such that

for any border set of ���� B � fb�� � � � � b�ng with n 
 �� we have that

�

n

nX
j	�

!��r�fb�j��� b�j� b�j
�� b�j
�g�� � c �

b� If there exists a positive constant c such that for any border set

of ���� B � fb�� � � � � b�ng with n 
 �� we have that

�

n

nX
j	�

!��r�fb�j��� b�j� b�j
�� b�j
�g�� � c �

then � has HII�

Observe that Theorem � follows directly from Theorem �� �FR�
Theorem �� and the following facts� a� a quasiconformal map quasi�
preserves cross ratios� b� !i�s� � !i�r� for s � r� with � � r �� and
i � �� 	


Theorem � gives a necessary and a su�cient condition for � to
have HII
 We shall improve this result in the remainder of the section


If ��� is contained in a �nite union of quasicircles� we can also
characterize the HII�property of � in many cases
 We give now the
details�

Let fEjgnj	� be a collection of pairwise disjoint closed subsets of
�C such that each Ej is contained in a quasicircle and �� � �C n 	jEj is
connected
 Let I be a strongly uniformly separated set in �� and let
� � �� n I
 A necessary and su�cient condition for � to have HII is
that each �C n Ej has HII �see Theorem � below�
 By using remark 	�
or Theorem � as a test� we can verify if each one of these last domains
has HII or not


Although we are interested in plane domains and closed subsets of
quasicircles� many results in this section are true for general Riemann
surfaces instead of �C and general closed sets Ej
 We start with some
de�nitions
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De�nition� Let S be a Riemann surface and � � �� Let E�� E� be

two closed disjoint subsets of S� We say that E� and E� are weakly

��separated in S if S� � S nE�� S� � S nE� are �connected � hyperbolic
Riemann surfaces and the two following subsets are disjoint�

E��
 � fq � S� � dS��q� E�� � 	 �g �
E��
 � fq � S� � dS��q� E�� � 	 �g �

We say that E� and E� are weakly separated in S if they are weakly

��separated in S for some � � ��
We say that the closed sets E�� E�� � � � � En are weakly separated in

S if the n� � pairs of sets �E�� E��� �E� 	E�� E��� � � � � �E� 	E� 	 � � � 	
En��� En� are weakly separated in S�

Remark �� It is clear that if E�� E� are disjoint closed subsets of S� E�

is compact and S n �E� 	E�� is connected� then E�� E� are weakly sep�
arated in S
 It is also clear that if E�� E�� � � � � En are pairwise disjoint
compact subsets of S and S n	nj	�Ej is connected� then E�� E�� � � � � En

are weakly separated in S


Remark �� If E�� E� are disjoint closed subsets of a plane domain ��
it is possible that they are not weakly separated in �
 Let � be the
plane domain � � C n f�g
 Let us consider as E� a sequence fxng of
real numbers decreasing to �
 Let E� be a sequence fyng such that�

a� � � xn
� � yn � xn�

b� limn���xn�yn���yn�xn
�� � limn���xn�yn���yn���xn� �
�


Then E�� E� are not weakly separated in C n f�g


Remark �� Let E�� E� be closed sets in a domain � � C n fz�g
 Let
us assume that there is a positive constant 	� such that

jz� � z�j 
 	� jz� � z�j � for all z� � E� � z� � E� �

Then E�� E� are weakly separated in �


Proof of Remark �� Without loss of generality we can suppose
z� � �
 For w � C n f�� �g� we de�ne the function

e�w� �� max
�
� � � � BCnf���g�w� �� �BCnf��wg��� �� � �

�
�
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Observe that �BCnf���g�w� �� and �BCnf��wg��� �� vary continuously
with w� since

Cnf��wg�z� � Cnf���g

	 z
w


 �
jwj

is a real analytic function on w

Therefore� e is a continuous function e � C n f�� �g �� �����
 On

the other hand� we can deduce of ��
�� that

Cnf���g�z� 

�

jzj �k  �� log jzj��� � for z � C n f�� �g �

where k � ���� is the constant in Section �
 This is a bad estimate
if z is near �� but it is good for z in a neighborhood of � or �
 This
inequality gives

BCnf���g�w� �� � fjzj � exp ��k  log jwj� e�
 � k
�g �

and consequently�

BCnf��wg��� �� � fjzj � jwj exp �k � �k  log jwj�e�
�g �
for

jwj � � and � � � � log k  log jwj
k

�

Therefore� BCnf���g�w� �� � BCnf��wg��� �� � � for

jwj � � and � � � � log k  log jwj
k  

�

	
log jwj

�

Then� for anyM � �� there is a positive constant c� such that e�w� 
 c�
if jwj 
M 


Observe that e���w� � e�w� since the conformal map T �z� � ��z
is an isometry of C n f�� �g onto itself
 Consequently� e�w� 
 c� if
jwj � ��M 
 These facts imply that� for any 	 � �� there exists � � �
such that e�w� 
 � if jw � �j 
 	


For z�� z� � C n f�g with z� �� z�� we de�ne now the function

E�z�� z�� �� maxf� � � � BCnf��z�g�z�� �� � BCnf��z�g�z�� �� � �g �

It is clear that
E�z�� z�� � E

	
��
z�
z�



� e

	z�
z�



�
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The hypothesis on E� and E� give that there is 	� � � such that
jz� � z�j 
 	�jz�j for all z� � E� and z� � E�� i�e�� jz��z� � �j 
 	� for
all z� � E� and z� � E�
 Consequently� there is �� � � such that

E�z�� z�� 
 �� � for all z� � E� and z� � E� �

Then we have that

BCnf��z�g�z�� ����BCnf��z�g�z�� ��� � � � for all z� � E� and z� � E� �

In the following we will use the notation B�A� r� �� 	p�AB�p� r� for
a set A and a positive number r


Let us �x z� � E�
 We have that

BCnf��z�g�E�� ��� �� 	z��E�BCnf��z�g�z�� ���

and
BCnf��E�g�z�� ��� � �z��E�BCnf��z�g�z�� ��� �

Therefore

BCnf��z�g�E�� ��� � BCnf��E�g�z�� ��� � � � for all z� � E� �

Now� we have that

BCnf��E�g�E�� ��� � �z��E�BCnf��z�g�E�� ���

and
BCnf��E�g�E�� ��� � 	z��E�BCnf��E�g�z�� ��� �

Then
BCnf��E�g�E�� ��� � BCnf��E�g�E�� ��� � � �

Remark �� Let E�� E� be closed sets in a domain � � C with z� � ��

Let C�� C� be closed sets in C � such that each Cj is a �nite union of
cones with vertex in z�� Ej � Cj and C� � C� � fz�g
 Then

jz� � z�j 
 	� jz� � z�j � for all z� � E� � z� � E� �

and therefore� E�� E� are weakly separated in �


In order to prove Theorem � we shall state some previous results
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Lemma ���� Let S be a Riemann surface and � � �� Let E�� E� be two

closed weakly ��separated subsets in S� Let Sk � S nEk be �connected �
hyperbolic Riemann surfaces for k � �� 	 and let R be a connected

component of S� � S� � S n �E� 	 E��� Then�

b�R� 
 �

	
tanh� �min fb�S��� b�S��g �

Proof� Let � � C�c �R�
 Obviously � � C�c �S�� � C�c �S�� andZZ
Sk

kr�k� dwkZZ
Sk

�� dwk


 b�Sk� � k � �� 	 �

where dw� and dw� denote� respectively� the area element in S� and S�

Recall that k �k and r refer also to the corresponding Poincar�e metrics


Let us consider now the open sets

E��
 � fq � S� � dS��q� E�� � 	 �g �
E��
 � fq � S� � dS��q� E�� � 	 �g �

By hypothesis we have that E��
 � E��
 � � and therefore �S nE��
� 	
�S n E��
� � S
 On the other hand� we also have as a consequence of
��
	� that ZZ

SnE���

�� dw � cotanh��
ZZ

SnE���

�� dw�

and ZZ
SnE���

�� dw � cotanh��
ZZ

SnE���

�� dw� �

where dw is the area element in R

Therefore� we deduce that

��
��

ZZ
R

�� dw �
ZZ

SnE���

�� dw  

ZZ
SnE���

�� dw

� cotanh��
	ZZ

SnE���

�� dw�  

ZZ
SnE���

�� dw�




� cotanh��
	ZZ

S�

�� dw�  

ZZ
S�

�� dw�



�
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Recall that
RR kr�k� dw is a conformal invariant� i�e�

��
	�

ZZ
R

kr�k� dw �
ZZ

S�

kr�k� dw� �

ZZ
S�

kr�k� dw� �

We obtain from ��
�� and ��
	� that

ZZ
R

kr�k� dwZZ
R

�� dw

 �

	
tanh� �

ZZ
S�

kr�k� dw�  

ZZ
S�

kr�k� dw�ZZ
S�

�� dw�  

ZZ
S�

�� dw�


 �

	
tanh� �min fb�S��� b�S��g �

for every � � C�c �R�
 This �nishes the proof of Lemma �
�


As a consequence of this lemma one obtains the following results


Proposition �� Let S be a Riemann surface� Let E�� E�� � � � � En be

weakly separated closed sets in S such that Sk � S n Ek �k � �� � � � � n�
are �connected � hyperbolic Riemann surfaces and let R be a connected

component of �kSk � S n 	kEk� Then there exists a positive constant

c such that

b�R� 
 c min
k

b�Sk� �

Lemma ���� Let S be a hyperbolic Riemann surface� Let E�� E� be two

disjoint closed subsets of S such that Sk � SnEk are connected surfaces

for k � �� 	� let R be a connected component of S� �S� � S n �E� 	E��
and let � � � dS�E�� E��� Then�

b�R� 
 �

	
tanh� � min fb�S��� b�S��g �

Lemma �
	 is a direct consequence of Lemma �
�� since dS�E�� E��
� � � implies that E�� E� are weakly ��separated in S


Proposition 	� Let S be a hyperbolic Riemann surface� Let fEkgnk	� be
a collection of pairwise disjoint closed subsets of S such that Sk � SnEk
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�k � �� � � � � n� are connected surfaces� let R be a connected component

of �kSk � Sn	kEk and let � � minj 		k dS�Ej� Ek�� Suppose that � � ��
Then� there exists a positive constant c� which only depends on � and n
�but not on S�� such that

b�R� 
 c min
k

b�Sk� �

Remark� Let fEkgnk	� be a collection of pairwise disjoint closed sub�
sets of �C such that �C nEk is a �connected� hyperbolic plane domain for

k � �� � � � � n
 Let �� � �C n 	kEk
 Let also I be a strongly uniformly
separated set in �� and let � � �� n I
 A su�cient condition for � to
have HII is that each �C nEk has HII


De�nition� Let S be a hyperbolic Riemann surface and let 
�� � � � � 
k be
simple closed geodesics in S� We say that G is a quasigeodesic domain

in S� relatively to 
�� � � � � 
k� if G is a domain of �nite area in S and �G
consists of �nitely many simple closed curves ��� � � � � �r� where each �i
is either a simple closed geodesic or a �nite union of subarcs of simple

closed geodesics such that if two arcs meet at a point� one of these arcs

is a subarc of some 
j� We de�ne ��G as ��G � �G n f
� 	 � � � 	 
kg�

Obviously� we can have ��G � �

Quasigeodesic domains appear in a natural way as intersection of

geodesics domains� If G�� G� are geodesic domains in S� then G� �G�

is a quasigeodesic domain relatively to �G�

We need to talk about collars of geodesics in any hyperbolic Rie�

mann surface S

Given a simple closed geodesic 
 in S� a collar about 
 is a dou�

bly connected domain on S bounded by two simple closed curves �the
boundary curves of the collar� each point of which has the same dis�
tance d from 

 The distance d is called the width of the collar
 A collar
about 
 of area 	 � is called a ��collar


Randol �R� proved that there exists a collar C� of 
 with width d��
such that

cosh d� 
 coth LS�
�
	

� AS�C�� 
 	LS�
� cosech LS�
�
	

�

Moreover� if 
� is a geodesic such that 
 � 
� � �� we also have that
C� � 
� � �




Isoperimetric inequalities in Riemann surfaces of infinite type ���

Randol �R� states the Collar Lemma under the hypothesis that the
surface is compact� but the same proof� without any change� works for
any hyperbolic Riemann surface


Lemma ��	� Let S be a hyperbolic Riemann surface satisfying HII
and let f
�� � � � � 
kg be a collection of pairwise disjoint simple closed

geodesics in S� Then� there exists a positive constant c such that

��
�� AS�G� � c LS���G� �

for any quasigeodesic domain G in S� relatively to 
�� � � � � 
k� with

LS���G� � ��

Proof� By the isoperimetric inequality of S� we only need to check
��
�� for quasigeodesic domains G in S� such that � � LS���G� �
LS��G�


First of all� let us consider the compact sets Ct�i � fp � S �
dS�p� 
i� � tg for positive t and i � f�� � � � � kg
 Given a geodesic 
i we
choose a positive and a negative side of 
i� denoted respectively by 




i

and 
�i 
 We denote by C

t�i �respectively C�t�i� the set of points in S

which are in some geodesic of length t which starts orthogonally to 

i
�respectively 
�i �
 Obviously� we have that Ct�i � C


t�i 	 C�t�i
 It can

happen that C

t�i�C�t�i �� 
i if the Riemann surface S has positive genus

�of course� if S n 
 is connected�

Let G


t�i �respectively G
�
t�i � be the geodesic domain �correspond�

ing� to C

t�i �respectively C�t�i�� each puncture or boundary curve of

G

t�i is freely homotopic to a boundary curve of C



t�i
 Denote by Gt�i

the union Gt�i � 
i 	G

t�i 	G�t�i
 If for some i � f�� � � � � kg we have that

Gt�i � 
i for all positive t �the two boundary curves of Ct�i are freely
homotopic to 
i�� then k � � and S is a doubly connected domain �an
annulus�� and ��
�� is true since there are not quasigeodesic domains in
S
 Therefore we can assume without loss of generality that Gt�i is not
empty for t 
 t� and i � f�� � � � � kg
 Observe that G


t�i is non decreasing

in t
 In fact� if t� � t� are such that AS�G


t��i
� � AS�G



t��i
�� the con�

stant curvature �� and Gauss�Bonnet theorem give AS�G


t��i
�  	� �

AS�G


t��i
�
 The same is true for G�t�i


This implies that for each i � f�� � � � � kg either there exists a posi�
tive number T


i such that G


t�i � G


T�
i �i
for all t 
 T


i � or AS�G


t�i���

as t��
 The same is true for G�t�i with T�i 
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Now� let G be a quasigeodesic domain in S� such that � � LS���G�
� LS��G�
 Therefore� there exists j � f�� � � � � kg with �G � 
j �� �

We consider three possibilities�

Case �
 AS�G� 
 	h�S� �� with � ��
Pk

i	� LS�
i�
 In this case�

	h�S� � � AS�G� � h�S�LS��G� � h�S� �LS���G�  �
�

and we obtain that
� � LS���G� �

Therefore�
AS�G� � 	h�S�LS���G� �

Case 	
 AS�G� � 	h�S� �

For each i � f�� � � � � kg� let ti be a positive number verifying the

two following conditions�

a� ti 
 T

i �if there exists T


i � or AS�G


ti�i
� 
 	h�S� ��

b� ti 
 T�i �if there exists T�i � or AS�G
�
ti�i
� 
 	h�S� �


Let �i be the geodesic domain �i �� Gti�i
 We de�ne the following
positive numbers

a �� min
�
LS�
� � 
 simple closed geodesic� 
 � 	i�i

�
�

b �� max
�
LS�
� � 
 simple closed geodesic� 
 � 	ki	�f
i 	 ��ig

�
�

Recall that �G� 
j �� �
 This fact� the inequalities� AS�G� � 	h�S� ��
LS���G� � �� and the de�nition of tj give that one of the two next
possibilities holds�

Case 	
�
 There exists a simple closed geodesic 
 � �j � ��G
 Then
LS���G� 
 LS�
� 
 a �

Case 	
	
 here exists a geodesic arc � in ��G which meets some simple
closed geodesic 
 � ��j 	 �	ki	�
i�


Observe that if G is not a geodesic domain we are in this situation�
in fact� there is a geodesic arc � in �G� which meets some 
i


Collar Lemma �R� says that LS��� 
 d�� where d� �the width of
the collar C�� satis�es

cosh d� 
 coth LS�
�
	


 coth b
	
�
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and

d� 
 D �� Arg cosh
	
coth

b

	



�recall that if a geodesic 
� does not intersect 
 then 
� does not intersect
C��


Therefore�
LS���G� 
 LS��� 
 D �

In both cases �	
� and 	
	� LS���G� 
 minfa�Dg �� c�
 Then

AS�G� � h�S��LS���G�  �
� � h�S�

	
LS���G�  �

LS���G�

c�




and

AS�G� � h�S�
	
�  

�

c�



LS���G� �

Obviously� � 
 a 
 c� and �  ��c� 
 	
 Therefore� in any case�

AS�G� � h�S�
	
�  

�

c�



LS���G� �

Consequently� Lemma �
� is true with

c � h�S�
	
�  

�

c�



�

If S is a hyperbolic Riemann surface� we have considered �open
and connected� subsurfaces S� � S� endowed with its own hyperbolic
metric
 Of course� S� is a geodesically complete Riemannian manifold
with this metric
 In the following we will consider also bordered �con�
nected� Riemann subsurfaces S� � S� endowed with the restriction to
S� of the hyperbolic metric of S
 Therefore S� is not a geodesically
complete Riemannian manifold with this metric


Lemma �
� and �FR� Lemma �
	� have the following consequences


Corollary 
� Let S�� � � � �Sm be hyperbolic Riemann surfaces satisfying

HII� For j � �� � � � �m� let S�j be a bordered subsurface of Sj whose border
is a set of nj �� � nj � �� pairwise disjoint simple closed geodesics�

Let us assume that we can paste S�� � � � � �S�m along their boundaries�

obtaining a complete �without boundary� hyperbolic Riemann surface R
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�recall that we can join two surfaces identifying two boundary geodesics

if and only if they have the same length�� Then� R satis�es HII if and
only if there exists � � j � m such that ASj �S�j � ���

Proof� If ASj �S�j � is �nite for j � �� � � � �m� then R also has �nite

area �since AR�S�j � � ASj �S�j �� and therefore� it does not satisfy HII

Let us assume now that AS��S�� � � �
 Let ( be the union �for

j � �� � � � �m� of the nj geodesics in the boundary of S�j 

Let G be a geodesic domain in R
 If G was already a geodesic

domain in some S�j � it satis�es ��
�� with constant

h� � max fhg�S��� � � � � hg�Sm�g �

In other case� we consider the sets Gj � G � S�j � for j � �� � � � �m
 Let
��G � �G n ( and �jG � ��G � S�j � for j � �� � � � �m
 Let us consider
now the set J of the indices j � f�� � � � �mg such that LR��jG� � �


If J � � then �G is contained in (� and there are only a �nite
number of such G
 These domains satisfy ��
�� with a �xed constant
h�� which only depends on R


If j � J � then Lemma �
� gives that

��
�� AR�Gj� � cj LR��jG� � h� LR��jG� �

where
h� �� max fc�� � � � � cmg �

since AR�Gj� � ASj �Gj� and LR��jG� � LSj ��jG�

Otherwise� Gauss�Bonnet theorem gives that

��
��
X
j�J

AR�Gj� 
 	� �

Consequently� ��
�� and ��
�� give that

��
�� LR��G� 

X
j�J

LR��jG� 
 �

h�

X
j�J

AR�Gj� 
 	�

h�
�

Let
A ��

X
AR�S�j ���

AR�S
�
j � �
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As a consequence of ��
�� and ��
��� one deduces that

AR�G� � A 
X
j�J

AR�Gj� � Ah�
	�

LR��G�  h� LR���G� �

Therefore�

hg�R� � min
n
h�� h�� h�

	
�  

A

	�


o
�

Now �FR� Lemma �
	� �nishes the proof of Corollary �


Corollary �� Let S be a hyperbolic Riemann surface satisfying HII�
Let 
�� � � � � 
k be pairwise disjoint simple closed geodesics in S� Let S�
be any connected component of S n f
� 	 � � � 	 
kg with AS�S�� � ��

and let S� be the Schottky double of S�� Then� S� satis�es HII�

The Schottky double of S� is the union of S� and its �re$ection�
with respect to �S�
 See �AS� p
 	�� for a precise de�nition


This corollary was proved in �Ro�� p
 	���	��� with similar argu�
ments that those in Lemma �
�
 However� we need the precise state�
ments of Lemma �
� and Corollary �� which are more general than
Corollary �


We need some additional results
 The �rst one is well�known �see
e�g� �Be��


Lemma ��� Let S be a hyperbolic Riemann surface with a puncture

p� Then� we have that

CS�p� �� � 
 � � �

for any simple closed geodesic 
 in S�

We say that a function f is in the class Ck�F �� where � � k � �
and F is a closed set� if the derivatives of f up to the order k are
continuous in F where we de�ne the derivative of f in a point z � F as
the usual limit when we approach to z by taking points in F 
 We just
consider with this purpose closed sets F which are closures of open sets
with smooth boundaries


Lemma ��
� Let S be a Riemann surface and let J be a simply con�

nected domain in S whose boundary is an analytic simple closed curve
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�� Given a compact subset K of J � an open subset V of J and a point

q � V � there exists a quasiconformal automorphism f of S such that

f jSnJ is the identity map� f�K� � V and f�q� � q�

Proof� Let us consider a universal covering map � � D �� S
 Let J�
be a connected component of ����J �
 In what follows by ��� we mean
the inverse function of �jJ� 
 Let F� �respectively F�� be a conformal

map of �C n J� �respectively J�� on fz � �C � jzj � �g �respectively D �

Observe that F� and F� have an analytic extension in a neighbourhood
of �� � �J� since �� and �D are analytic curves
 Therefore h � F�F���

is a homeomorphism of �D on itself which has an analytic extension

It is well known that in this case there is a quasiconformal automor�

phism H of �C such that H�D � � D � Hj�D � h and H � C��D �
 This
fact is a consequence of the Beurling�Ahlfors theorem �see �BA� or �A�

p
 ���� where they construct a quasiconformal extension H� � �C �� �C

of a quasisymmetric map h� � �R �� �R � which preserves the di�erentia�
bility properties of h��


We de�ne a bijection u of �C on itself by

u�z� ��

�
F��z� � z � J� �
�H  F���z� � z �� J� �

This function is continuous in �C since

H  F�j� � Hj�D  F�j� � h  F�j� � F�  F���  F�j� � F�j� �
and we have that u � C���C n ��� � C��C �
 The regularity properties
of F� and H  F� in �� gives that the distributional derivatives of u
in a neighborhood of �� are equal to the classical derivatives �we use
the di�erentiability properties only for this argument�
 Therefore u is

a quasiconformal map on �C with the same quasiconformality constant
than H


Let M be a M&obius map which �xes D � and such that M��� �
u�����q�� � D 
 For any � � �� let us consider the following quasicon�

formal automorphism of �C

v	�z� �

�
z � z �� D �

z jzj	�� � z � D �

Let f	 be the following homeomorphism from S on itself


f	�p� �

�
p � p �� J �

��  u�� M  v	 M��  u  �����p� � p � J �
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Obviously� f	jSnJ � idjSnJ 
 Observe that f	 is continuous in S� since
v	j�D � idj�D implies that

��  u�� M�j�D  v	j�D  �M��  u  ����j � idj �

The same argument used to see that u is a quasiconformal map gives
that f	 is a quasiconformal automorphism of S for any � � �
 Observe
that f	�q� � q since �M��  u  �����q� � �


For a small � � � we have that ��u��M��fz � C � jzj � �g� � V
since ��  u�� M���� � q � V 
 Given the compact set K � J we can
choose � such that �v	 M��  u  �����K� � fz � C � jzj � �g� since
�M��  u  �����K� is a compact subset of D 


Therefore we obtain that f	�K� � V for this �


Lemma ���� Let w be a C� homeomorphism of �D on itself� For

each � � r � � there exists a quasiconformal automorphism f of A �
fr � jzj � �g such that f jfjzj	rg is the identity map� f j�D � w and

f � C��A��

Proof� For each � � r � �� let us consider the positive number

a �
�

	�
log

�

r

and the universal covering map

� � B � f� � Im z � ag �� A � ��z� � r e���iz �

The map � is a periodic function with period � and satis�es

��fz � Im z � �g� � fz � jzj � rg � ��fz � Im z � ag� � fz � jzj � �g �

Therefore� we only need to prove that if v is a C� homeomorphism of
fz � Im z � ag on itself with

v�x �  i a� � v�x i a�  � � x � R �

then there exists a C� quasiconformal automorphism g of B on itself
such that

gjfImz	�g � idjfIm z	�g � gjfImz	ag � v �
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and
g�z  �� � g�z�  � � z � B �

Such a function g can be constructed explicitly
 For example� let us
consider

g�x i y� � x
	
�� y

a



 
y

a
v�x i a� �

It is clear that g�z  �� � g�z�  � for z � B� that g satis�es the
boundary conditions� and that g is a C� homeomorphism from B on
itself
 It is easy to check that g is a quasiconformal map since it is a
C� sense�preserving map and g�z  �� � g�z�  � for z � B


In order to state the following lemma we need a de�nition
 Re�
call that any bordered Riemann surface S with a �nitely generated
fundamental group may be obtained from a compact Riemann sur�
face of genus g by removing p distinct points �the punctures of S��
n closed disks �whose boundaries represent the ideal boundaries of S�
and m open disks �whose boundaries are the border of S�
 The vector
�g� p� n�m� is called the quasiconformal type of S
 It is well known that
there exists a quasiconformal mapping between two bordered Riemann
surfaces with the same quasiconformal type


Lemma ���� Let S be a hyperbolic Riemann surface� Let fg�� � � � � gNg
be a family of pairwise disjoint simple closed curves such that each gi
is not homotopic to zero or to a puncture in S and they are pairwise

not homotopic�

Let S�� � � � � Sr� Sr
�� � � � � Sk �� � r � k � �� be the connected com�

ponents of S n �g�	 � � � 	 gN �� where Sr
�� � � � � Sk are �open� surfaces of
�nite type� We also require that each gj is contained in the boundary

of Sn and S� with n � r and � � r�
If gj � Sm� let 
j be the unique simple closed geodesic in Sm freely

homotopic to the ideal boundary gj�
Let Rm �m � �� � � � � r� be the bordered surface obtained by deleting

from Sm the open funnel Fj bounded by 
j and the ideal curve gj� for
every 
j � Sm�

Let Rm �m � r  �� � � � � k� be a bordered surface with the same

quasiconformal type than Sm such that the border of Rm is constituted

by simple closed geodesics with the following condition� if gj is an ideal

boundary curve of Sn and Sm �n � r� and �i is a boundary curve of

Rm corresponding to gj� we have that

LRm
��i� � LSn�
j� �
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Let R be a surface obtained by pasting R�� � � � � Rk following the

design of S�� � � � � Sk �identifying geodesics of equal length��
Then S and R are quasiconformally equivalent�

Proof� Let us �x m � r and let gj� � � � � � gji be the boundary curves
of Sm
 Let us consider Mm � Sm 	 Fj� 	 � � � 	 Fji � S


It is well�known that there is a C� quasiconformal map fm of Rm

on Mm� since Rm and Mm have the same quasiconformal type

If 
j is contained in Sn �n � r�� let us consider a �xed closed collar

Cj about 
j in Sn and let Kj be the set Kj � Cj � Rn
 The curve 
j
is contained in the border of Rn and Mm for some m � r


Lemma �
� gives that there exists a C� quasiconformal automor�
phism hj of Kj such that hj j�j � fmj�j and hj j�Kjn�j � idj�Kjn�j 


Let us consider the homeomorphism f of R on S given by f jRm
�

fm for m � r� f jKj
� hj for � � j � N � and f � id otherwise


It is easy to check that f is a quasiconformal map


We will need the two following well known facts �see for example
�C� Theorem �
�� or �FR� Lemma �
	��


Proposition A� Let S be a Riemann surface and let I and J be closed

subsets of S such that S n I is a hyperbolic Riemann surface and every

connected component of J has a non�empty intersection with I� If R is

a connected component of S n �I 	J� then we have that 	�R� � 	�S nI��

Proposition B� Let S��S� be two hyperbolic Riemann surfaces such

that S� � S� and ���q�S�� � ���q�S�� for some q � S�� Then we have

that 	�S�� � 	�S���

Observe that Proposition A is a particular case of Proposition B

The proof of this last one is elementary� it is enough to remark that in
S� there are fewer curves and they are longer


Proposition � Let S be a hyperbolic Riemann surface with in�nite

area� Let C�� � � � � Cn be pairwise disjoint compact simply connected sub�

sets of S� Then S satis�es HII if and only if S n �C�	� � �	Cn� satis�es
HII�

Remark� It is easy to �nd examples showing that the conclusion of
Proposition � is not true if some Cj is not compact
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Proof� We can assume without loss of generality that n � �
 Let p
be a point in C�
 Theorem � gives that the statement of Proposition
� is equivalent to the following one� S n fpg satis�es HII if and only if

S n C� satis�es HII

This is trivially true if C� � p
 Therefore� we can assume that C�

has in�nitely many points

Let us assume that S nfpg satis�es HII
 Observe that S nC� � S n

fpg and that the fundamental groups of the two surfaces are isomorphic

Therefore� Proposition B implies that S n C� satis�es HII


Let us assume now that S n C� satis�es HII
 Let �� be the simple
closed geodesic freely homotopic in S n C� to the ideal boundary �C�


Let F� be the open funnel in S n C� bounded by �� and the ideal
boundary �C�� and let J� be the open set J� � C� 	 F� � S
 Observe
that �J� � �� is an analytic curve


Let us consider �in S� the open set V � �fpg	CSnfpg�p� ������J�
and the compact set C�
 Lemma �
� gives that there exists a quasicon�
formal automorphism f of S such that C � f�C�� � V � f jSnJ� � idjSnJ�
and f�p� � p
 Therefore� f is a quasiconformal map of S nC� on S nC

�FR� Theorem �� implies that S n C satis�es HII
 We will prove that
S n fpg also satis�es HII


Let � be the simple closed geodesic freely homotopic in S n C to
the ideal boundary �C
 Let F be the open funnel in S nC bounded by
� and the ideal boundary �C� and let J be the open set J � C	F � S


Let us consider a geodesic domain G in S n fpg and let G� be the
corresponding geodesic domain in S n C� each boundary curve of G is
freely homotopic in S n fpg to a boundary curve of G�� if G contains
a collar about the puncture p� the curve � is a boundary curve of G�

�observe that � is freely homotopic to p in S n fpg�

Gauss�Bonnet theorem gives that

��
�� ASnfpg�G� � ASnC�G
�� �

Lemma �
� gives that there exists a positive constant c� indepen�
dent of G� such that

��
�� ASnC�G
�� � c LSnC��G

� n �� �

since S n C satis�es HII and �G� �� �� We have that �G� �� � since
there are only two domains in S n C whose boundary is exactly �� F
and S n F � and both have in�nite area in S n C
 This last fact is a
consequence of the hypothesis AS�S� ��
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We have that �G� � S n J � S n C
 Lemma �
� implies that
�G � S nCSnfpg�p� ��	� � S nC
 These facts give that �G� and �G are
far from C


Then� ��
�� implies that the hyperbolic metrics of S nfpg and S nC
are comparable in �S n J� 	 �S n CSnfpg�p� ��	��� since p � C


Therefore� LSnC��G
� n �� and LSnfpg��G� are comparable
 This

fact� ��
�� and ��
�� give that there is a constant c� � �� independent
of G� such that

ASnfpg�G� � c� LSnfpg��G� �

and then� �FR� Lemma �
	� gives that S n fpg satis�es HII


De�nition� We will say that a closed and connected subset C of a

Riemann surface S is of �nite type if C is a compact simply connected

set or� if it has �nitely generated fundamental group and �C is a union

of simple closed curves�

Proposition 
� Let S be a hyperbolic Riemann surface with in�nite

area� Let C�� � � � � Cn be pairwise disjoint closed connected subsets of

�nite type of S� Then� we have the following facts�

a� If S� is a connected component of S n �C� 	 � � � 	 Cn� and S
satis�es HII� then S� satis�es HII�

b� If S n �C� 	 � � � 	 Cn� is connected and satis�es HII� then S
satis�es HII�

Remark� It is easy to construct examples showing that b� is not true
if some Cj is not of �nite type


Proof� We can assume without loss of generality that n � � and C�

is not a simply connected set �by Proposition ��

Observe that Proposition � is trivial if S is either a simply or a

doubly connected surface
 Therefore� without loss of generality we can
assume that S is neither a simply nor doubly connected surface


Let us assume that S satis�es HII
 Let p be a point in C�
 Theorem
� gives S n fpg also satis�es HII


We have that S� � S n fpg and the fundamental group of S� is a
subgroup of the fundamental group of S n fpg
 Therefore� Proposition
B implies that S� satis�es HII since S n fpg satis�es HII


Let us assume now that S nC� satis�es HII
 Let g�� � � � � gN be the
simple closed curves in �C�
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Without loss of generality we can assume that each gj is not ho�
motopic to zero
 In other case� we have that S nC� is simply connected�
since S nC� is connected and C� is not simply connected
 Therefore� S
is of �nite type� since C� is of �nite type� then S satis�es HII� since it
has in�nite area


Without loss of generality we can assume that each gj is not ho�
motopic to a puncture pj in S
 In other case� Theorem � allows us to
consider the surface S� � S 	 fpjg instead of S
 Therefore� we would
have that gj is homotopic to zero in S�
 Using again the last argument
we obtain that S�� and consequently S� satis�es HII


Let us assume now that there exist two di�erent curves gi� gj� freely
homotopic in S
 In this case� there is a doubly connected domain D in
S such that �D � gi 	 gj
 Then we have that N � 	� since S nC� and
C� are connected
 Therefore� we have that either the set C� is equal to
D or S n C� is equal to D


The second possibility implies that S n C� is a doubly connected
domain and therefore� S is of �nite type� since C� is of �nite type� then
S satis�es HII� since it has in�nite area


If C� � D� we can take a closed subset C of �nite type of S such
that C� � C and C is not a doubly connected set �remember that S is
neither a simply nor a doubly connected surface�
 Proposition B gives
that S n C satis�es HII� since S n C� satis�es HII


Therefore� we can assume without loss of generality that there are
not two di�erent curves in �C� freely homotopic


Let 
�� � � � � 
N be the simple closed geodesics in S n C� such that

j is freely homotopic to the ideal boundary gj 


Then� we can apply to S the construction of the surface R of
Lemma �
�� relative to fg�� � � � � gNg �with r � � and k � 	�


Corollary � implies that R satis�es HII since S has in�nite area
and S nC� satis�es HII
 Finally� S satis�es HII since Lemma �
� implies
that R and S are quasiconformally equivalent


We can state now the following general version of theorems � and
��


Theorem �� Let S be a Riemann surface and let E be a closed subset

of S such that SnE is a hyperbolic Riemann surface with ASnE�SnE� �
�� Then� the following conditions are equivalent�

�� S nE satis�es HII�



Isoperimetric inequalities in Riemann surfaces of infinite type �	�

	� S� n E satis�es HII� for any subsurface S� of S such that E is

contained in S�� S� n E is connected� and S n S� is a �nite union of

closed sets of �nite type�

�� S� n E satis�es HII� for some subsurface S� of S such that E
is contained in S�� S� n E is connected� and S n S� is a �nite union of

closed sets of �nite type�

�� S n �E 	 F � satis�es HII for any closed subset F of S verifying�
a� S n F satis�es HII� b� there exists a set M � which is a �nite union

of pairwise disjoint closed sets of �nite type� such that F � M and

E �M � ��

�� S n �E	F � satis�es HII for some closed subset F of S verifying�
a� S n F satis�es HII� b� there exists a set M � which is a �nite union

of pairwise disjoint closed sets of �nite type� such that F � M and

E �M � ��

Remark� If E and F are closed subsets of a Riemann surface S and
there exists a set M which is a �nite union of pairwise disjoint closed
sets of �nite type such that F �M and E �M � �� then E and F are
weakly separated in S


Proof� Proposition � gives that ��� 	� and �� are equivalent
 Lemma
�
� and the latest remark give that �� implies ��
 Therefore� since ��
follows directly from ��� we only need to prove that �� implies ��
 But
this is a consequence of propositions B and �� Proposition B gives that
�S nE�nM satis�es HII and then Proposition � gives that S nE satis�es
HII


Patterson proved in �P�� Theorem �� a related result for Riemann
surfaces S of �nite area and discrete closed subsets E


As a consequence of Theorem � we obtain the following result


Corollary �� Given a closed subset E of �C with in�nitely many points�

the following conditions are equivalent�

�� �C nE satis�es HII�

	� �nE satis�es HII� for any subdomain � of �C of �nite type such

that E is contained in ��
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�� � n E satis�es HII� for some subdomain � of �C of �nite type

such that E is contained in ��

�� �C n �E 	 F � satis�es HII for any closed subset F of �C such that
�C n F satis�es HII and E � F � ��

�� �C n �E	F � satis�es HII for some closed subset F of �C such that
�C n F satis�es HII and E � F � ��

Finally� if we apply n � � times Corollary � �and Theorem ��� we
obtain the following result which was announced at the beginning of
this section


Theorem �� Let E�� � � � � En be pairwise disjoint closed subsets in �C
with in�nitely many points such that �� � �C n 	kEk is connected� Let

I be a strongly uniformly separated set in �� and let � � �� n I� Then�
we have that � satis�es HII if and only if �C n Ek satis�es HII for

k � �� � � � � n�

�� Isoperimetric inequality� polarization and symmetrization�

In general� symmetrization arguments are at the heart of isoperi�
metric inequalities in Riemannian manifolds of constant sectional cur�
vature� which is the case of hyperbolic Riemann surfaces �see e�g� �Ch	�
Chapter �� and the references therein�


On the other hand� the ideas used in the proof of Theorem � �see
Section �� can suggest that there is a relation between the HII�property
of a hyperbolic plane domain � and this property for its polarization �p

A similar question can be proposed for its circular symmetrization �cs
�see �B� or �H� for the de�nition and basic background�� since polariza�
tion and circular symmetrization are very regular processes
 Therefore
one could expect that some of the following relations would be true�

a� If � satis�es HII� then �p also satis�es HII


b� If �p satis�es HII� then � also satis�es HII


c� If � satis�es HII� then �cs also satis�es HII


d� If �cs satis�es HII� then � also satis�es HII


In this section we will show that all these conjectures are false even
for Denjoy domains
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�� Let us consider E � fang and F � fbng two increasing se�
quences of positive numbers converging to � such that E � F � �
 Let
� � C n �������� 	 ����� 	 E 	 ��F ��� where �F � f�bng
 We
have that �p � C n �������� 	 ����� 	 ��E� 	 ��F �� and �cs �
C n �������� 	 ��E� 	 ��F ��
 Let us assume also that E and F are
strongly uniformly separated in C n ��������	 ������ and that E	F
is not
 Theorem � gives that � satis�es HII but �p and �cs do not
satisfy HII
 This example shows that a� and c� are not true


	� Let us consider E � 	�k	���� 	��k� �� 	��k��� 	 f�g and F �
	�k	�Ik 	 f��g� where each Ik is a closed interval centered in ��  
� � 	��k�� and contained in ���  	��k�����  	��k���
 Let � �
�C n �E 	 F �
 If limk�� 	

�kjIkj � �� one can check that � does not
satis�es HII� It is enough to apply Theorem 	 to geodesic domains
�surrounding� In and In
�


If �E � 	�k	���� 	��k����� 	��k�	f��g� we have that �cs �
�C n ���E� 	 F � and �p � �cs n f�g
 The following argument as in
the proof of Proposition � �see Section �� gives that �cs satis�es HII�
�C n ��E� satis�es HII since it is a modulated domain
 Let ak be a
point in Ik for k 
 �
 Theorem � gives that �C n ���E� 	 �	�k	�fakg��
satis�es HII
 Therefore Proposition A implies that �cs � �C n���E�	F �
satis�es HII
 Theorem � gives that �p � �cs n f�g also satis�es HII

This example shows that b� and d� are not true


�� Geodesic domains�

One can think that Theorem � could be improved by studying only
border sets with six points� in the following way


Let � be a Denjoy domain� let I be the set of isolated points of ��
and let �� � �	 I� Then� � has HII if and only if � is admissible and

there exists a positive constant c such that for any border set of ���
with six points� B � fb�� � � � � b�g� we have that

��
��
�X

j	�

"��fb�j��� b�j� b�j
�� b�j
�g� � c �
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This statement seems to be reasonable since if we want to study a
border set B � fb�� � � � � b�ng� we can �divide� it in border sets with six
points


We prove now by an example that this statement is not true


Example� Let � be the Denjoy domain de�ned as the complement of
a dyadic Cantor set� � � �C nK� where K is constructed as follows


Let E� �� ��� �� and suppose that En has been de�ned and consists
of 	n closed disjoint subintervals of E�� say Jj � each of them with length
dn � r� � � � rn� with

rn ��

���
��
�

�
� for odd n �

�

n �
� for even n �

We divide each subinterval Jj in three intervals� obtaining two closed
subintervals J�j and J�j �the children of Jj�� each of them with length
dn
� � dn rn
� and removing the central interval with length dn �
	 dn
�
 If we denote by En
� the union of the intervals with length
dn
�� the Cantor set K is de�ned as K �� �nEn


Let us consider an interval J of En and the unique simple closed
geodesic 
n which �surrounds� J in �


For odd n we have

��
	� L�
n� 
 L�Cnf�����������g�
� �

where 
 is the geodesic in �C nf�� ���� 	��� �g given by 
 �� fRe z � ��	g

We also have

L�
n� � LCnf�������������������������g��� �

where � is the simple closed geodesic in C n f��������� 	 ��� ���� 	
�	�����g


If B �� f����� �� ���� 	��g� we have that r�B� � ���
 Therefore
Lemma �
� gives

��
��
L�
n� � LCnf�������������������������g���

� LCnf��������������g��� �

where � is the simple closed geodesic in C n f���� �� 	 �������g
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For even n we have

L�
n� � L
Cnf������r��n ���������r��n �����g��n�

� LCnf������n���������n���g��n� �

where �n is the simple closed geodesic in C nf���� ��n�	��� ��	�n���g

If Bn �� f�� n� �� �� ng� we have that

r�Bn� �
�n� ���
	n� � � n �

Therefore Lemma �
� gives

��
��

L�
n� � LCnf������n���������n���g��n�

� LCnf��������r�Bn����g��n�

� !��r�Bn��

� �

logn
�

where �n is the simple closed geodesic in C n f���� �� 	 �r�Bn����g

We say that a border set B of �� is n�basic if it has six points

and the three simple closed geodesics associated with it surround an
interval J � En and their two children J�� J� � En
�
 We say that a
border set B of �� is basic if it is n�basic for some n


For a n�basic border set B� we always have ��
�� since one �respec�
tively two� of the three geodesics associated with B veri�es ��
	� if n is
odd �respectively even�


Inequalities ��
�� and ��
�� give that there is a �nite upper bound
l for the length of the geodesics associated with any basic border set

Then� Collar Lemma �R� gives that every geodesic which intersects a
geodesic 
 associated with any basic border set has length at least twice
the width w of the collar C� and

w 
 Arg cosh
	
cotanh

	 l
	




�

Therefore� ��
�� is satis�ed by every border set B of �� with six points�
since at least one of the three geodesics associated with B intersects a
geodesic associated with a basic border set
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However� � does not satisfy HII
 To see this� let us consider the
geodesic domain Gk in � bounded by the 	

�k geodesics which surround
each interval of E�k


Gauss�Bonnet theorem gives A�Gk� � 	� �	�k � 	�
 Inequality
��
�� gives� for some positive constant c��

L��Gk� � c�
	�k

log �	 k�
�

Therefore

L��Gk�

A�Gk�
� c�
log �	 k�

�� � � as k ��� �

and this fact gives that � does not satisfy HII


��� An open problem�

In this section we want to discuss about the possibility to �nd a
simpler characterization of the HII�property
 In fact� we would like to
have a result of the following type�

Conjecture� Let � be a Denjoy domain� let I be the set of isolated

points of �� � �C and let �� � � 	 I� There exists a function !�
independent of �� such that � has HII if and only if � is admissible

and there exists a positive constant c such that for any border set of

���� B � fb�� � � � � b�ng with n 
 �� we have that

�

n

nX
j	�

!�r�fb�j��� b�j� b�j
�� b�j
�g�� � c �

We can say something about this function !� if it exists


Proposition �� Let ! be a function verifying the following condition�

If a Denjoy domain � has HII then there exists a positive constant

c such that for any border set of ���� B � fb�� � � � � b�ng with n 
 �� we
have that

�

n

nX
j	�

!�r�fb�j��� b�j� b�j
�� b�j
�g�� � c �
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Then ! must verify

lim sup
r��

!�r�

log
	�
r


 � � �

Proof� Let us consider the following closed subset E of ��� ��

E � 	�n	�f�	��n��� 	��n� 	 Ing 	 f�g �

where In is the set of 	n  � points fxn�kgnk	�n in �	��n��� 	��n����
with xn�
k � ��� ��� 	�k��	��n��� for k � �� �� � � � � n


Let I be the discrete set I � 	�n	�In
 Let ��� �� be the Denjoy
domains �� � �C nE and �� � �� 	 I


First we will see that �� and �� have HII�
The set �� is modulated and so �FR� Theorem �� implies that ��

has HII

Therefore� �FR� Theorem �� gives also that in order to prove that

�� has a HII� we only need to check that I is uniformly separated in
���

The hyperbolic metrics in �� and �
�
� � ��	f�g are comparable in

each euclidean ball of the complex plane
 We also have �BP� Corollary
�� that there is a positive constant c such that

	

d�x�E n I� 
 �
�
�x� 
 c

d�x�E n I� � for x � ��� �� � �� �

These two facts give that

��x� �
�

d�x�E n I� � for x � ��� �� � �� �

Then we have that

d��xn�k� xn�k
�� �
Z xn�k��

xn�k

dx

	��n�� � x

� log
	��n�� � xn�k
	��n�� � xn�k
�

� log 	 �
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A similar argument gives the same estimate for d��xn��k� xn��k���

This implies that I is uniformly separated in ��� and consequently�
that �� has HII


For each point xn�k�I� let us consider the interval Jn�k��an�k� bn�k�
such that xn�k � Jn�k and Jn�k does not meet any interval of the form
�	��m��� 	��m� or another Jm�l
 We also choose an��n � xn��n and
bn�n � xn�n
 Let J � 	n�kJn�k and � � �� n J 
 The length of these
intervals Jn�k have been chosen so small in such a way that the length
of the geodesics 
n�k in � which surrounds only Jn�k tends to zero as
n ��� �uniformly in k�


The domain � has HII �in fact 	��� � 	���� � �� as a consequence
of Proposition A �see Section ��


Let us consider now the border set Bn in � given by

Bn � f	��n��� an��n� bn�n� 	��n��g �
We have that

r�Bn� � r�f	��n��� xn��n� xn�n� 	��n��g� � 	��n

�� 	�n �

Since � has HII� the property of !� with the border set

f	��n��� an��n� bn��n� � � � � an��� bn��� � � � � an�n� bn�n� � � � � 	��n��g �
implies

�

	n 	
!
	 	��n

�� 	�n


 o ��� � c � for all n � N �

Then we have

lim sup
n��

!
	 	��n

�� 	�n



log
�� 	�n
	��n

� lim sup
n��

!
	 	��n

�� 	�n



	n log 	

 c

log 	
�

This �nishes the proof of Proposition �


Proposition � implies that the conjecture is not true for any func�
tion ! satisfying

lim sup
r��

!�r�

log
	�
r


 � � �
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In particular it is not true for the function !� in Theorem 	� but it
could be true for !�


In any case� if the conjecture would be true for ! � !�� the proof
should be more sophisticated that our arguments� because it is not true
that

!��r�B�� � L�
�B��

for any border set B of any Denjoy domain � as r � � �if � � C n
�������  r� 	 ��r� �� 	 �r� 	 r� 	 �	���� and B � f�� r�����g� then

r � r�B� �

!��r� � log
	�
r




and Theorem � gives that L�
�B�� � log log ���r��
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On radial behaviour and

balanced Bloch functions

Juan Jes�us Donaire and Christian Pommerenke

Abstract� A Bloch function g is a function analytic in the unit disk
such that ��� jzj�� jg��z�j is bounded� First we generalize the theorem
of Rohde that� for every �bad� Bloch function� g�r �� �r �� �� follows
any prescribed curve at a bounded distance for � in a set of Hausdor	
dimension almost one� Then we introduce balanced Bloch functions�
They are characterized by the fact that jg��z�j does not vary much on
each circle fjzj 
 rg except for small exceptional arcs� We show e�g�

that Z �

�

jg��r ��jdr ��

holds either for all � � T or for none�

�� Radial behaviour of Bloch functions�

Let D 
 fz � C � jzj � �g and T 
 � D � The function g analytic
in D is called a Bloch function if

����� kgkB 
 sup
z�D

��� jzj�� jg��z�j �� �

This holds if and only if the Riemann image surface of g as a cover of
C does not contain arbitrarily large unrami�ed disks� We denote the
family of Bloch functions by B�

���
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First we generalize a surprising result of Ste	en Rohde Ro����
Let c�� c�� � � � be positive absolute constants and let dimE denote the
Hausdor	 dimension Fa��� p� �� of E � T� Note that dimT 
 ��

Theorem ���� Let G � C be a domain with � � G and let g be a Bloch

function with kgkB � � and g��� 
 �� We assume that� for almost all

� � T�

����� lim
r��

g�r �� lies in C nG or does not exist �

Let � be any halfopen curve in G starting at �� If

����� c� � R � dist ��� �G� � dist ��� �G� � �R �

then there exists E� � T with

����� dimE� � ��
c�
R

such that� for � � E�� we can �nd a parametrization ���r�� � � r � �
of � with ����� 
 � such that

����� jg�r ��� ���r�j � �R � for � � r � � �

This theorem is due to Rohde Ro��� for the case that G 
 C � Thus
the radial image follows any prescribed curve with a bounded deviation
on a set of dimension almost �� Now we apply this theorem to �injective�
conformal maps f of D into C � It is well�known DuShSh���� Be��� that

�����
f conformal implies k log f �kB � � �

k log f �kB � � implies f conformal �

If the radial limit f��� exists and is �nite �which holds for almost all
� � T�� we write

�����

���� 
 lim inf
r��

arg ��r ��� f���� �

	��� 
 lim sup
r��

arg �f�r ��� f���� �

We give a partial generalization of CaPo��� Theorem ���
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Corollary ���� Let f map D conformally into C and suppose that

lim sup
r��

jf ��r ��j � � � for almost all � � T ������

lim inf
r��

jf ��r ���j 
 � � for some �� � T ������

Then� for j 
 �� �� �� �� there exist sets Ej � T with dimEj 
 �� such
that

i� ���� 
 ��� 	��� 
 ��� for � � E� �twist point��

ii� ���� 
 	��� 
 ��� for � � E� �spiral point��

iii� �� � ���� � 	��� 
 ��� for � � E� �gyration point��

iv� �� � ���� � �
 � 	��� � ��� for � � E� �oscillation point��

Moreover f��� is well�accessible for � � Ej �j 
 �� �� �� ���

The McMillan Twist Theorem Mc���� Po��� p� ���� states that�
for almost all points � � T� either � is a twist point or the angular
derivative f ���� �
 ��� exists� The three sets of points satisfying ii�� iii�
and iv� were introduced in Do��� and CaPo���� The Twist Theorem
shows that these sets have measure �� If limr�� f

��r �� fails to exist on
a set of positive measure then Plessner�s Theorem for Bloch functions
Po��� p� ���� shows that assumption ����� is automatically satis�ed�
The special case of Corollary ��� that lim f ��r �� exists almost nowhere
is contained in CaPo��� Theorem ��� The boundary point f��� is called
well�accessible Po��� p� ���� if there is a curve z�t�� � � t � � with
z��� 
 � such that

diamff�z���� � t � � � �g 
 O �dist �f�z�t��� �f�D ��� � as t �� � �

It is known CaPo��� ������� that the condition

������ �b � log jf ��r ��j � b � b � � �

implies that f��� is well�accessible and CaPo��� ������� that

������ j arg f ��r ��� arg �f�r ��� f����j � c� b �
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Proof of Corollary ���� Let n � c�� see ������ By ����� there exist
rn � � such that an 
 log f ��rn ��� satis�es Re an � ���n� We de�ne

������ n�z� 

z � rn ��

� � rn �� z
� fn 
 f 	 n � gn 


�

�
�log f � 	 n � an� �

Then gn � B with gn��� 
 � and kgnkB � � by ������ We apply
Theorem ��� with G 
 fRew � jRe anjg� R 
 n and curves

�j�t� � � � t � � �j 
 �� �� �� ��

such that �j��� 
 �� Re �j�t� 
 � and� as t �� ��

i� lim inf Im���t� 
 ��� lim sup Im���t� 
 ���

ii� lim Im���t�� 
 ���

iii� �� � lim inf Im���t� � ��� lim sup Im���t� 
 ���

iv� lim inf Im���t� 
 �� lim sup Im���t� 
 �
��n��c� bn�janj����

see ������ below� Then ����� is satis�ed� and ����� holds by �����
because jRe anj � ��n� We conclude that there are sets Ejn � T with

������ dimEjn � ��
c�
n
� for j 
 �� � � � � � and n � c� �

such that ����� holds for � � Ejn� We obtain from ������ that

������ log f �n�z� 
 an � log ���� r�n� �� � �� rn z�
��� � � gn�z� �

Since Re ���r� 
 � it follows from ����� that

������ j log jf �n�r ��j j � bn �
 jRe anj� log
� � rn
�� rn

� ��n

so that fn��� is well�accessible� see ������� We obtain from ������ ������
and ������ that

������

lim sup
r��

j arg �fn�r ��� fn����� � ���r�j

� ��n� c� bn � jImanj� �

�� �
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for � � Ejn� Finally we set

Ej 

�
n

n�Ejn� � j 
 �� �� �� � �

Then dimEj 
 � by ������� and if � � Ej then � 
 n��n� for some
�n � Ejn�

Hence f��� 
 fn��n� is well�accessible� and by the Koebe distortion
theorem it is easy to deduce from ������ and the choice of Im�j�t� that
���� and 	��� have the required properties�

Remark �� We assume now that f�D � is bounded by a recti�able
curve� Then f � � H� and thus Du��� p� ���

f ��z� 
 ei� exp
� �

�


Z
T

� � z

� � z
log jf ����j jd�j

�
exp

�
�

Z
T

� � z

� � z
d����

�
�

where � � � is a singular measure� By de�nition f�D � is a Smirnov
domain if � 
 �� Hence ����� holds if jf ����j � � for almost all � � T�
and ����� holds if f�D � is not a Smirnov domain� In particular Corollary
��� can be applied if f�D � is a Keldish�Lavrentiev domain� that is a
non�Smirnov domain for which jf ����j 
 � for almost all � � T� see
DuShSh����

Remark �� There are local versions of Theorem ��� and Corollary ����
We can replace T by an open subarc A and restrict � and our sets E to
lie in A�

�� The proof of Theorem ����

We use the martingale technique introduced by Makarov Ma���
into the theory of Bloch functions� For n 
 �� �� � � � let Dn be the
family of dyadic arcs of length �
��n on T� that is�

����� Dn 

nn

eit �
�
k

�n
� t �

�
 �k � ��

�n

o
� � � k � �n

o
�

If I and J are any dyadic arcs then I 
 J 
 � or I � J or J � I� Let
g � B and n 
 �� �� � � � We de�ne the martingale associated to g by

����� Wn��� �Wn�I� 
 lim
r��

�

jIj

Z
I

g�rs� jdsj � for � � I � Dn �
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where j � j denotes the linear measure on T� Let c�� c�� � � � denote suitable
positive absolute constants� We need two known results� The �rst is
due to Makarov Ma���� compare Po��� p� �����

Proposition ��� �Makarov�� Let g � B� kgkB � � and let Wn be the

associated martingale� Then

jg�r ���Wn���j � c � for � � T � ��
�

�n
� r � ��

�

�n��
������

jWn������Wn���j � c � for � � T ������

We also need the following technical result ON���� Do���� com�
pare Ro��� p� �����

Proposition ��� �O�Neill� Donaire�� Let Wn be the martingale asso�

ciated to g � B and let kgkB � �� � � � � 
��� Let I � Dm and

R � c����� If the stopping time

����� �I��� 
 inf fn � m � jWn����Wm���j � Rg

is �nite for almost all � � I� then

����� jf� � I � j arg �W�I��	����Wm����� �j � �gj � c���� jIj �

for every �� Here c���� and c���� only depend on ��

Proof of Theorem ���� a� Let ��t�� � � t � � be some parametriza�
tion of our given curve �� Let F� 
 fTg and t� 
 �� We shall recursively
construct families Fj of dyadic arcs such that each arc in Fj is contained
in some arc of Fj��� furthermore stopping times

����� tj��� � tj�I� � �� �� � for � � I � Fj��

constant on I such that tj����� � tj��� and

����� dist �Wm�I�� C nG� � R� c � for I � Fj 
 Dm �

where c is the constant of Proposition ����
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b� Suppose that Fj and tj have already been de�ned� Let � � I �
Fj � Then I � Dm for some m� If tj��� 
 � then we de�ne tj����� 
 ��
otherwise

����� tj����� � tj���I� 
 inf ft � tj��� � j��t��Wm�I�j � Rg �

if this set is empty we de�ne tj���I� 
 � and Aj�I� 
 I�
Now let tj���I� � �� Plessner�s theorem for Bloch functions Po���

p� ���� says that� for almost all � � T� either the radial limit g��� exists

or the limit set of g�r �� as r �� � is equal to �C � Hence it follows from
assumption ����� that

lim inf
r��

dist �g�r ��� C nG� 
 � � for almost all � � T �

so that� by ������

lim inf
n��

dist �Wn���� C nG� � c � for almost all � � T �

Therefore we obtain from ����� and ����� that� for almost all � � I� the
stopping time �I��� de�ned in ����� is �nite� By ����� we then have

������ R � jW�I��	����Wm���j � R� c �

Thus we can apply Proposition ��� with � 
 ���� We see from �����
that� for R � c� 
 maxf� c� c�g� the set

������
Aj�I� 


n
� � I � j arg �W�I��	����Wm����

� arg ��tj���I	 �Wm�I��j �
�

�

o

satis�es jAj�I�j � c� jIj� Note that Aj�I� is the union of dyadic arcs
J � Dn with n � m�

We de�ne Fj�� as the family of the dyadic arcs J of Aj�I� for all
I � Fj � Then

������
X
J�I

J�Fj��

jJ j 
 jAj�I�j � c� jIj �

Furthermore it follows from ����� and ������ that �I��� � m � R�c�
Hence

������ J � Fj�� � J � I � Fj implies jJ j � ��R�c jIj �
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Now we verify ����� for j � �� that is� we shall show that

������ dist �Wn�J�� C nG� � R� c �

for J � Fj��� � � I � Fj� n 
 �I���� see ������� This is trivial by �����
if tj���I� 
 � and thus Aj�I� 
 I� Therefore let tj���I� � �� Since
��t� is continuous we see from ����� that j��tj���I�� � Wm�I�j 
 R�
Hence it follows from ������ and ������ that the quantity

q 

Wn����Wm���

�tj���I��Wm�I�

satis�es � � jqj � � � c�R and j arg qj � ���� Since R � c� � � c we
deduce that jq � �j � ���� Hence

jWn���� ��tj���j 
 j��tj����Wm���j jq � �j �
R

�

and it follows by assumption ����� that

dist �Wn���� C nG� � dist ��� �G��
R

�
�

�R

�
� R� c �

This completes our construction�

c� We de�ne

������ E� 

�
j��

�
I�Fj

I �

It follows from ������ and ������ by a theorem Po��� p� ���� of Hunger�
ford Hu��� and Makarov Ma��� that

dimE� �
log �c� �

R�c�

log �R�c

 ��

c log
� �

c�

�

R log �
�

which proves ������
Now let � � E�� There are two cases�

i� First we assume that tj��� � � for all j� Let Ij � Fj be the arc
containing �� Then Ij � Dnj for some nj � We de�ne � � �� �� �� �� ��
by ���

�nj � 
 tj��� and linear in between� We parametrize � by
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���r� 
 ����r��� � � r � �� If � � ��nj � r � � � ��nj�� then
tj��� � ��r� � tj����� and thus

jg�r ������r�j � jg�r ���Wnj ���j� j����r���Wnj �Ij�j � c�R � �R

by ����� and ������

ii� Now we suppose that tj��� � � for j � k and tj��� 
 � for
j � k� Then we de�ne � as in �i� for j � k but linear in �� ��nk � ���
If �� ��nk � r � � then �see ������

j����r���Wn���j � R � for n � nk

and ����� follows as above�

�� Balanced Bloch functions�

Let ��� �� denote the non�euclidean disk of center � � D and
radius �� For g � B we de�ne

����� �g�r� 
 sup
r�jzj��

��� jzj�� jg��z�j � � � r � � �

Using the maximum principle for jzj � r� we see that

����� jg��z�j � max
n �g�r�

�� r�
�
�g�r�

�� jzj�

o
� for z � D � � � r � � �

By de�nition we have g � B� if �g�r� �� � as r �� ��
We call g a balanced Bloch function if there exist a � � and � ��

such that

����� sup
z�	����	

��� jzj�� jg��z�j � a �g�j�j� � for � � D �

This condition is trivially satis�ed if � � � � jg��z�j � 	 �� for z � D �
Balanced Bloch functions for the case g �� B� were �rst considered by
P� Jones Jo���� see e�g� also Ro���� BiJo���� Jones showed that if
J 
 �f�D � is a quasicircle� then log f � is balanced and not in B� if and
only if

inf
w��w��J

sup
n jw� � wj� jw � w�j

jw� � w�j
� w � J between w� and w�

o
� � �
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Curves with this property are called uniformly wiggly� The prototype of
balanced Bloch functions are su�ciently regular series with Hadamard
gaps�

Theorem ���� Suppose that

� � � �
nk��
nk

� �� �� � for k 
 �� �� � � ������

�

M

�nj
nk

��
jbj j � jbkj �M jbj j � for � � j � k�����

with constants M and � � �� Then

����� g�z� 

�X
k
�

bk z
nk � z � D �

is a balanced Bloch function�

A typical example of a balanced Bloch function is

g�z� 

�X
k
�

k�	 z�
k

� � � � �� �

Proof� Let M��M�� � � � denote constants that depend only on �� ��� �
and M � If �� ��nj � r � �� ��nj�� and jzj 
 r then� by ������

jz g��z�j �

jX
k
�

nk jbkj�
�X

k
j��

nk jbkj exp
�
�

nk
nj��

�

�M n�j jbjj

jX
k
�

n���k � ��M nj jbjj
�X

k
j��

nk
nj��

exp
�
�

nk
nj��

�

by ����� and ������ Since t e�t is decreasing for t � � we therefore obtain
from ����� that

jz g��z�j �M� nj jbj j� ��M nj jbjj
�X


�

�
 exp ���
� �M�
jbjj

��� r��
�

Using the maximum principle near z 
 �� we thus see from ����� that

����� �g�r� � sup
k�j

M� jbkj �M� jbj j � for ��
�

nj
� r � ��

�

nj��
�
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Now we apply a standard method Bi��� to estimate the coe�cients of
gap series� It follows from ������ ����� and GHPo��� Theorem �� that

nj jbj j �M� sup fjg
��z�j � z � ��� ��g �

for ��M��nj � j�j � ��M�nj� Hence

sup
z�	����	

��� jzj�� jg��z�j �M��
� ��� j�j��nj jbjj �M��

� �g�r�

by ������

Further examples of balanced Bloch functions come from auto�
morphic forms� Let � be a Fuchsian group with compact fundamental
domain F in D � Let h be an analytic automorphic form of weight
�� corresponding to a di	erential on the Riemann surface D ��� Then
��h 	 � 
 h for � � � and

g�z� 


Z z

�

h��� d� � z � D

is a balanced Bloch function because F � D � Note that inf �g�r� � ��
Now we prove two results on real convex functions needed for the

next section�

Lemma ���� Let the real�valued functions  and � be continuous and

convex in the interval I � R� If the function

����� ��s� 
 sup
t�s

��t�� ��t�� � ��s� � s � I

is �nite� then it is also continuous and convex in I�

Proof� The function sup f�t�� ��t� � t � I� t � sg is decreasing in
s � I� Let Ik 
 sk� tk� be its intervals of constancy with values ck� We
de�ne

����� �
k
�s� 


�
�s� � for s � InIk �

ck � ��s� � for s � Ik �

Since �s�� ��s� � ck for s � Ik� we have

������ �s� � ck � ��s� 
 �
k
�s� � for sk � s � tk �
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with equality for s 
 sk and s 
 tk� The convex function  has left and
right derivatives D
 in I and D
 is increasing HLP��� p� ������� If
s � sk then

D��
k
�s� 
 D��s� � D��sk� � D���sk� 
 D��

k
�sk�

by ������� If sk � s � tk then

D��
k
�sk� 
 D���sk� � D���s� 
 D��

k
�s�

by ������ Since D���tk� � D��tk� by ������� we furthermore have

D��
k
�s� � D���tk� � D��tk� � D��tk� 
 D��

k
�tk� �

Using again that D� and D�� are increasing� we deduce that D��
k

is increasing in I� Since �
k
is locally absolutely continuous it follows by

integration that �
k
is convex� Finally � 
 supk �k by ����� and �������

so � is also convex�

Lemma ���� The function

��s� 
 log �g�e
s�� log ��� e�s� � �� � s � �

is convex and the function u�z� 
 ��log jzj� with u��� 
 log�g��� is

continuous and subharmonic in D �

Proof� Let M�r� 
 maxfjg��z�j � jzj 
 rg� It follows from ����� that
����� holds with

�s� 
 logM�es� � ��s� 
 � log ��� e�s� �

The function  is convex by the Hadamard three circles theorem Co���
p� ����� and � is convex because ����s� 
 � e�s ���e�s��� � �� Therefore
� is convex by Lemma ���� It follows that u is subharmonic HaKe���
Theorem �����

�� Properties of balanced Bloch functions�

Let �g be de�ned by ������ We consider the open level sets

����� Ag��� 
 fz � D � ��� jzj�� jg��z�j � ��g�jzj�g �
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for � � � � �� We see from ����� and ����� that

jg��z�j �
� �g�r�

�� r�
� �max

j�j
r
jg����j � for z �� Ag��� � jzj 
 r �

If g� is unbounded it follows that T � Ag��� for all � � �� Otherwise
we would have jg��z�j �� � as z �� I for some arc I of T� which is
impossible by the Privalov uniqueness theorem Po��� p� �����

Let M�� � � � denote positive constants that depend only on a and �
in the de�nition ����� of balanced Bloch functions� In particular� if g�

is unbounded then Ag��� is nonempty for � � � � �� By contrast� the
example g�z� � z shows that Ag��� can be empty if g� is bounded and
� � ��

Proposition ���� Let g be a balanced Bloch function and let z� � D �

Then the harmonic measure satis�es

����� ��z���z�� ��� 
Ag�����z�� ���nAg���� �
M�

log
��
�

� �

for some z� � �z�� ���

Proof� We write r 
 jz�j� � 
 �z�� ��� and A 
 Ag���� It follows
from ����� that

����� jg��z�j �
M�

�� r�
�g�r� � for z � � �

It follows from ����� that

jg��z�j �
M�

�� r�
�g�r� � � for z � � 
A �

Hence the two�constants theorem Ah��� p� ��� implies that

����� jg��z�j �
M�

�� r�
�g�r� �

��z�	��A�	�nA	 �

for z � �nA� By ����� there exists z� � �z�� �� such that

jg��z��j �
a

�� jz�j�
�g�r� �

M��
�

�� r�
�g�r� �
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Hence ����� follows from ������

Theorem ���� Let g be a balanced Bloch function� Then there are

� � � and �� � � such that every component of Ag��� �� � � � ��� lies
in some disk �z�� �

�� �z� � D � and contains a zero of g��

Proof� a� Let B be a component of Ag���� let z� � B and let B� be the
component of B 
 �z�� ���� with z� � B�� Let  map �z�� ���nB�

conformally onto fr � jzj � �g such that ��z�� ��� corresponds to T�
Then

��z� �z�� ��� 
B���z�� ���nB�� 


log
� �

j�z�j

�

log
��
r

� �

Since B� � Ag��� it follows from Proposition ��� and the principle of
majorization for harmonic measure Ah��� p���� that

log
� �

j�z��j

�

log
��
r

� �
M�

log
��
�

� �

for some z� � �z�� ��� Since B� � �z�� ���� a normal family argu�
ment gives j�z��j � � � �� where �� � � depends only on a and ��
Hence r � ��� and therefore

B� � �z�� �
�� � for � � � � �� �

Since B is connected and contains z�� it follows that B 
 B� if �
� � ����

b� Now we prove that every component B of Ag��� with B � D

contains a zero of g�� Suppose that g��z� �
 � for z � B and thus for
z � B� Then log jg�j is harmonic in B and continuous in B� Hence it
follows from Lemma ��� that

v�z� 
 log�g�jzj�� log ��� jzj��� log jg��z�j

is subharmonic in B and continuous in B� Since B is a component of
Ag��� and since B � D � we see from ����� that v�z� 
 log ����� for
z � �B and thus v�z� � log ����� for z � B by the maximum principle
for subharmonic functions� But this contradicts ������
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Theorem ���� Let g be a balanced Bloch function and suppose that

�����
�g�r

��

�g�r�
�

�� r�

�� r
�
� �� r

�� r�

�
� for � � r � r� � � �

where ��x��� as x ���� Then there exist � � � and �� �� such

that every disk ��� ��� �� � D � contains a component of Ag����

Some �rather weak� condition like ����� is necessary as the balanced
Bloch function g�z� � z shows� Note that ����� implies that g� is
unbounded�

Proof� We claim� Given � � � there exists �� �� such that

����� ��� ��� 
 Ag��� �
 � � for every � � D �

This claim implies the assertion of Theorem ��� with �� 
 ���� �� and
� � � � �� by Theorem ����

Suppose our claim is false� Then� for � � � � �� there exist zn � D

such that

����� ��� jzj�� jg��z�j � ��g�jzj� � for z � �zn� n� � n 
 �� �� � � �

We write rn 
 jznj and consider the functions

����� hn�s� 

�� r�n
�g�rn�

g�
� s� zn
� � zns

�
� s � D �

It follows from ����� and ����� that jhn�s�j � ���� � jsj�� for s � D �
Therefore we may assume that hn �� h as n ��� locally uniformly
in D � Furthermore we may assume that zn �� � � T�

Let jsj 
 � � �� By ����� and ����� we have

�g
���� s� zn

� � zns

���� � �g
� � � rn
� � rn �

�
�

�� �

� � rn �
�
�� � rn �

�� �

�
�g�rn� �

Hence it follows from ����� and ����� that

jhn�s�j �
� j� � zn sj

�

�� � �� �� � rn ��
�
�� � rn �

�� �

�
�
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Since hn �� h and �n �� � as n ���� we conclude that

jh�s�j �
� j� � � sj�

�� � ���
�
�� � �

�� �

�
�

�

�
�
�� � �

�� �

�
�

for Re �� s� � �� Hence

jh�s�j �� � � as jsj �� � �

Re �� s� � � which contradicts the Privalov uniqueness theorem Pr���
p� ����� Po��� p� �����

Geometric interpretation� Let g be a balanced Bloch function that
satis�es condition ������ Let � � � be small but �xed� Then

����� jg��z�j � �
�g�jzj�

�� jzj�
��� � as jzj �� � � z � D nAg ���

by ������ Theorem ��� says that the components of Ag��� have small
hyperbolic diameter� each containing a zero of g�� whereas Theorem ���
says that there are many components� Hence the surface

f�x� y� u� � x� i y � D � u 
 jg��x� i y�jg

rises to in�nity at � D except for very many very small but deep holes
near the zeros of g��

Ruscheweyh and Wirths RuWi��� have studied� for any Bloch
function g� the set where �� � jzj�� jg��z�j attains its maximum and
its relation to the zeros of g��

J� Becker Be���� PoWa��� Theorem ���� has shown that� for any
g � B� the condition

������

Z �

�

�g�r�
� dr

�� r
��

implies that g � VMOA �vanishing mean oscillation� and thus has �nite
radial limits g��� for almost all � � T� It follows Pr��� p� ���� that
cap fg��� � � � T� g��� �
� existsg � ��

Now we turn to a condition stronger than ������� namely

������

Z �

�

�g�r�
dr

�� r
�� �
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It follows from ����� by integration that
R �
�
jg��r ��j dr �� for all � � T

and that g is continuous in D � We show now that exactly the opposite
happens if g � B is balanced and condition ������ is false�

Theorem ���� Let g be a balanced Bloch function with

������

Z �

�

�g�r�
dr

�� r

� �

If C is any curve in D ending on T� then

������

Z
C

jg��z�j jdzj 
� �

Furthermore g assumes every value in C in�nitely often in D �

Geometric interpretation� Let g be a balanced Bloch function that
satis�es ������ and ������� The Riemann image surface of g over C
then has many accessible boundary points� their projection to C has
positive capacity� But ������ shows that none of these boundary points
is accessible through a curve of �nite length�

Proof� Let c�� c�� � � � denote suitable positive constants� Since C goes
to T� we can �nd zn � C� rn � � and disks n such that

������ n 
 �zn� ��� � frn � jzj � rn��g �
�� rn��
�� rn

� c� �

Let n map n conformally onto D such that n�zn� 
 �� By Propo�
sition ��� there exist � � � and z�n � �zn� �� such that

M�

log
��
�

� � ��z�n�n 
Ag����nnAg���� 
 ��s�n� An� D nAn� �

where s�n 
 n�z
�
n� and An 
 n�n 
 Ag����� If pn denotes the

circular projection onto the radius from � to T opposite to s�n� then
Ah��� p� ���� Ne��� p� ����

��s�n� pn�An�� D npn�An�� �
M�

log
��
�

� �
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Since s�n � n��zn� ��� 
 fjzj � ��g with �� � � depending only on ��
we see that the linear measure satis�es jpn�An�j � M�� log ������ Since
n�C 
n� connects � and T� we conclude that

jn�C 
n�nAnj � �� jpn�An�j � ��
M�

log
��
�

� �
�

�

if � is chosen su�ciently small� It is easy to deduce that

j�C 
n�nAg���j � c� ��� jznj� � c� c� ��� rn�

by ������� Hence it follows from ����� that

Z
C�	n

jg��z�j jdzj �
� �g�rn���

�� r�n
j�C 
n�nAg���j �

� c�
�

�g�rn��� �

Since �g�r� is decreasing we have

X
n

�g�rn� � c�
X
n

Z rn��

rn

�g�r�

�� r
dr 
�

by ������ and ������� This implies �������
The last assertion is an immediate consequence of ������ and the

following proposition� where g need not be a Bloch function�

Proposition ���� Let g be analytic in D and suppose that ������ holds
for any curve C in D ending on T� Then g assumes every �nite value

in�nitely often in D �

Proof� a� For w � C let N�w� � � denote the number of zeros �with
multiplicity� of g � w in D � Let w�w� � C and let L be a recti�able
Jordan arc from w to w� that does not meet fg�z� � z � D � g��z� 
 �g
except possibly in w and w�� At each point zk of g���fwg�� we consider
the maximal Jordan arcs Ck in g���L� with initial point zk� the number
of these arcs is equal to the multiplicity of the zero zk of g�w� Therefore
there are N�w� arcs Ck altogether�

The maximal arc Ck ends either at some point z�k � D with g�z�k� 

w� or approaches T� The second case cannot arise by our assumption
because jg�Ck�j � jLj � �� The number of points z�k that coincide is
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equal to the multiplicity of g�w� in z�k� Hence N�w�� � N�w� and thus
N�w�� 
 N�w� by symmetry� Thus we have shown

������ N�w� � m � � � for w � C �

b� Now we give a proof of the known fact that� for any function g
analytic in D � it is not possible that ������ holds with m ��� Let

������ r��� 
 sup fjzj � jg�z�j 
 �g � � � � �� �

We claim that r��� � �� Otherwise there would exist w with jwj 
 �
and points zn � D with jznj �� � such that g�zn� �� w� But w is
assumed m times in D so that there exist distinct znk �k 
 �� � � � �m�
with g�znk� 
 g�zn� and znk �
 zn for large n� which would imply
N�w� � m�

It follows from ������ that jg�z�j �
 � in R��� 
 fr��� � jzj � �g�
Since g�R���� is an unbounded domain we conclude that jg�z�j � �
for z � R��� for any � � �� Hence jg�z�j �� � as jzj �� �� which
contradicts the Privalov uniqueness theorem�
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Absolute values

of BMOA functions

Konstantin M� Dyakonov

Abstract� The paper contains a complete characterization of the mod�
uli of BMOA functions� These are described explicitly by a certain
Muckenhoupt�type condition involving Poisson integrals� As a conse�
quence� it is shown that an outer function with BMO modulus need
not belong to BMOA� Some related results are obtained for the Bloch
space�

�� Introduction�

Let D denote the disk fz � C � jzj � �g� T its boundary� and m the
normalized arclength measure on T� Further� let �z be the harmonic
measure associated with a point z � D � so that

d�z���
def
	

�� jzj�
j� � zj� dm��� � � � T �

The space BMO consists� by de
nition� of all functions f � L��T�m�
satisfying

kfk� def
	 sup

z�D

Z
jf���� f�z�j d�z��� �� �

where f�z� stands for
R
f d�z� Alternative characterizations of BMO�

as well as a systematic treatment of the subject� can be found in �G�
Chapter VI� or �K� Chapter X�� Meanwhile� let us only recall that the

���
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Garsia norm

kfkG def
	 sup

z�D

� Z
jf j� d�z � jf�z�j�

����
�

de
ned originally for f � L��T�m�� is in fact an equivalent norm on
BMO�

We shall also be concerned with the analytic subspace

BMOA
def
	 BMO �H�

�as usual� we denote by Hp�  � p � �� the classical Hardy spaces of
the disk�� It is well known that

H� � BMOA �
�

��p��

Hp �

Now one of the basic facts about Hp spaces �see e�g� �G� Chapter II��
is this� In order that a function � � � living almost everywhere on T�
coincide with the modulus of some nonzero Hp function� it is necessary
and su�cient that � � Lp�T�m� and

�����

Z
log�dm � �� �

On the other hand� the very natural �and perhaps no less important�
problem of characterizing the moduli of functions in BMOA seems to
have been unsolved �or unposed�� until now� and the present paper is
intended to 
ll that gap�

Thus� we look at a measurable function � �  on T and ask whether

����� � 	 jf j � for some f � BMOA � f 	
  �

The two immediate necessary conditions are ����� and

����� � � BMO �

�To see that ����� implies ������ use the following simple fact� If for any
z � D there is a number c�z� such that

����� sup
z�D

Z
j����� c�z�j d�z��� �� �
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then � � BMO� Now� given that ����� holds� ����� is obviously ful
lled
with c�z� 	 jf�z�j�� However� we shall see that ����� and ����� together
are not yet su�cient for ����� to hold�

Assuming that ����� holds true� we consider the outer function O�

given by

O��z�
def
	 exp

� Z � � z

� � z
log���� dm���

�
� z � D �

and note that ����� is equivalent to saying that

����� O� � BMOA �

Indeed� since jO�j 	 � almost everywhere on T� the implication �����
implies ����� is obvious� The converse is also true� because the outer
factor of a BMOA function must itself belong to BMOA �in fact� if
f 	 FI with F � H� and I an inner function� then it is easy to see that
kfkG � kFkG�� The problem has thus been reduced to ascertaining
when ����� holds�

In this paper we point out a new crucial condition �reminiscent�
to some extent� of the Muckenhoupt �Ap� condition� cf� �G� Chap�
ter VI�� which characterizes� together with ����� and ������ the non�
negative functions � with O� � BMOA� this is contained in Section �
below� Further� in Section �� we exhibit an example of a BMO function
� �  with log� � L��T�m� for which our Muckenhoupt�type condition
fails� In other words� we show that the obvious necessary conditions
����� and ����� alone do not ensure the inclusion O� � BMOA� Finally�
in Section � we 
nd out when an outer function with BMO modulus
lies in the Bloch space B�

�� Outer functions in BMOA�

Given a function � � L��T�m�� � � � we recall the notation

��z�
def
	

Z
�d�z � z � D �

and introduce� for a 
xed M � � the level set

����M�
def
	 fz � D � ��z� �Mg �
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In order to avoid confusion� let us point out the notational distinction
between

��z�p
def
	 ���z��p 	

�Z
�d�z

�p
and

�p�z�
def
	 ��p��z� 	

Z
�p d�z

�here p �  and z � D �� Finally� we need the function

log� t
def
	

�
log

�

t
�  � t � � �

 � t � � �

Our main result is

Theorem �� Suppose that � � BMO� � � � andZ
log�dm � �� �

The following are equivalent�

i� O� � BMOA�

ii� For some M � � one has

sup
n
��z��

Z
log� �d�z � z � ����M�

o
�� �

Remark� The latter is vaguely reminiscent of the well�known Muck�
enhoupt �Ap� condition �G� Chapter VI� which can be written in the
form

sup
n
��z��

Z
��� d�z � z � D

o
�� �

where 	 	 �
�p� �� and � � p ���

The proof of Theorem � makes use of the following elementary fact�

Lemma �� The function

R�u�
def
	 log

�

u
� u� � � u �  �
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is nonnegative and satis�es

R�u� � � �u� ��� � for u � �

�
�

Indeed� since R�u� is the remainder term in the 
rst order Taylor
formula for log �
u� when expanded about the point u 	 �� one has

R�u� 	
�

� ��
�u� ��� �

where � 	 ��u� is a suitable point between u and ��
We also cite� as Lemma �� the �harmonic measure version� of the

classical John�Nirenberg theorem �see Section � and Exercise �� in �G�
Chapter VI���

Lemma �� There are absolute constants C �  and c �  such that

�zf� � T � jf���� f�z�j � �g � C exp
�
� c �

kfk�
�
�

whenever z � D � f � BMO and � �  �here again f�z�
def
	
R
f d�z��

Proof of Theorem �� Since � � BMO� we know that

����� k�k�G 	 sup
z�D

����z�� ��z��� �� �

Similarly� condition i� of Theorem � is equivalent to

kO�k�G 	 sup
z�D

����z�� jO��z�j�� ��

and hence� in view of ������ to

����� sup
z�D

���z�� � jO��z�j�� �� �

In order to ascertain when ����� holds� we note that

jO��z�j 	 exp
�Z

log�d�z

�
	 ��z� e�J�z� �
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where

J�z�
def
	 log��z��

Z
log�d�z �

and rewrite ����� in the form

����� sup
z�D

��z�� ��� e��J�z�� �� �

We remark that J�z� �  by Jensen�s inequality� Further� we claim
that ����� is equivalent to the following condition

����� sup f��z�� J�z� � z � ����M�g �� � for some M �  �

Indeed� to deduce ����� from ������ one uses the inequality �� e�x � x
and the obvious fact that

sup f��z�� ��� e��J�z�� � z � D n ����M�g �M� �

Conversely� to show that ����� implies ������ let K be the value of the

supremum in ����� and put M
def
	
p
�K� It then follows from ����� that

sup fJ�z� � z � ����M�g �� �

and so �� e��J�z� is comparable to J�z� as long as z � ����M��
We have thus reduced condition i� to ������ and we now proceed

by looking at ����� more closely� To this end� we 
x a point z � ���� ��
and introduce the sets

E� 	 E��z�
def
	
n
� � T � ���� � �

�
��z�

o
and

E� 	 E��z�
def
	 T nE� �

Using the function R�u� from Lemma �� we write

�����

J�z� 	

Z
log

��z�

����
d�z���

	

Z �
log

��z�

����
�
����� ��z�

��z�

�
d�z���

	

Z
R
�����
��z�

�
d�z���

	 I��z� � I��z� �
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where

Ij�z�
def
	

Z
Ej

R
�����
��z�

�
d�z��� � j 	 �� � �

Now if � � E� then ����
��z� � �
�� and Lemma � tells us that

R
�����
��z�

�
� �

������ ��z�

��z�

��
�

Integrating� we get

I��z� � �

��z��

Z
������ ��z��� d�z��� � �

��z��
k�k�G �

so that

����� I��z� 	 O
� �

��z��

�
�

In order to estimate I��z�� we observe that

�����

�z�E�� 	 �z

n
� � ���� �

�

�
��z�

o

	 �z
n
� � ��z�� ���� �

�

�
��z�

o

� �z

n
� � j��z�� ����j � �

�
��z�

o

� C exp
�
� c ��z�

� k�k�
�
�

as follows from Lemma �� Besides� for � � E� one obviously has

�����
�������� ��z�

��z�

��� 	 �� ����

��z�
� �

and

����� log
��z�

����
� log � �  �

Further� we set

E�
�

def
	 f� � E� � ���� � �g �

E��
def
	 f� � E� � ���� � �g �
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and

S�z�
def
	

Z
E�

����� ��z�

��z�
d�z��� �

Z
E�

�

log
��z�

����
d�z���

� �z�E
�
� � log��z� �

We have then

����� I��z� 	 S�z� �

Z
E�
�

log
�

����
d�z��� �

Using ����� and ������ we see that

��� Z
E�

����� ��z�

��z�
d�z���

��� � �z�E��

and

 �
Z
E�

�

log
��z�

����
d�z��� � �z�E

�
� � log��z� �

Consequently�

������

jS�z�j � �z�E�� � ��z�E
�
� � � �z�E

�
� �� log��z�

	 �z�E�� �� � log��z��

� C exp
�
� c ��z�

� k�k�
�
�� � log��z�� �

where the last inequality relies on ������ The function

t ��� t� exp ��a t� �� � log t� � t � � �

being bounded for any 
xed a � � we conclude from ������ that

S�z� 	 O
� �

��z��

�
�

Together with ������ this means that

������ I��z� 	 O
� �

��z��

�
�

Z
E�
�

log
�

����
d�z��� �
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A juxtaposition of ������ ����� and ������ now yields

������ J�z� 	 O
� �

��z��

�
�

Z
E�
�

log
�

����
d�z��� �

Finally� recalling the assumption z � ���� ��� we note that

E�� 	 f� � T � ���� � �g

�indeed� if � � T and ���� � �� then ���� � ��z�
�� so that � � E���
Thus� ������ can be rewritten as

J�z� 	 O
� �

��z��

�
�

Z
log��d�z �

and this relation has been actually veri
ed for z � ���� ���
It now follows that condition ����� �in which one can safely replace

the words �for some M � � by �for some M � ��� holds if and only if

sup
n
��z��

Z
log��d�z � z � ����M�

o
�� �

for some M � � we have thus arrived at ii�� On the other hand� we
have seen that ����� is a restatement of i�� The desired equivalence
relation is therefore established�

We proceed by pointing out a few corollaries of Theorem ��

Corollary �� Let � � BMO� � � � and
R
log�dm � ��� If O� �

BMOA and  � p � �� then O�p�	 Op
�� � BMOA�

Proof� Since � � BMO� we have also �p � BMO �this is easily
deduced from the inequality jap � bpj � ja� bjp� valid for a� b �  and
 � p � ��� By Theorem �� the inclusion O� � BMOA yields

������ sup
n
��z��

Z
log��d�z � z � ����M�

o
�� �

for some M � � and hence also for some M � �� H�older�s inequality
gives

�p�z� � ��z�p � z � D �
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whence
�p�z� � ��z� � z � ���� �� �

and
���p�Mp� � ����M� �

Therefore� ������ with M � � implies the condition

sup
n
��p�z���

Z
log��p d�z � z � ���p�Mp�

o
�� �

which in turn means� by Theorem �� that O�p � BMOA�

Corollary �� Let � � BMO� � � � and
R
log�dm � ��� Assume�

in addition� that � possesses �after a possible correction on a set of

zero measure� the following property� For some  � � the set f� �
T � ���� � g is closed and consists of continuity points for �� Then

O� � BMOA�

Proof� We may put  	 � �otherwise� consider the function ��
def
	

�
�� Thus� we are assuming that the set

K
def
	 f� � T � ���� � �g

is closed� while � is continuous at every point of K� We now claim that

������ K � clos���� �� 	 � �

Indeed� if �� � K � clos ���� ��� then one could 
nd a sequence fzng �
D such that ��zn� � � and zn �� ��� On the other hand� since
� is continuous at ��� we would have limn�� ��zn� 	 ����� � �� a
contradiction�

From ������ it follows that

�
def
	 dist �K����� ��� �  �

Hence� for z � ���� ��� one has

������

Z
log��d�z 	

Z
K

�� jzj�
j� � zj� log

�

����
dm���

� �� jzj�
��

k log�kL��T�m� �
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An easy estimate for the Poisson integral of a BMO function gives

������ ��z� 	 O
�
log

�

�� jzj
�
� z � D �

Combining ������ and ������ yields

������

��z��
Z

log��d�z

� const
�
log

�

�� jzj
�� �� jzj�

��
k log�kL��T�m� �

for all z � ���� ��� Since

��� jzj��
�
log

�

�� jzj
��

	 O��� � z � D �

the right�hand side of ������ is bounded by a constant independent of
z� Thus�

sup
n
��z��

Z
log��d�z � z � ���� ��

o
�� �

and the desired conclusion follows by Theorem ��

Corollary �� If � � BMO and ess inf
��T

���� � � then O� � BMOA�

Proof� For a suitable  �  one has f� � T � ���� � g 	 �� so it
only remains to apply Corollary ��

�� An outer function with BMO modulus that does not belong

to BMOA�

Although Theorem � provides a complete characterization of the
moduli of BMOA functions� one may still ask whether the obvious neces�
sary conditions ����� and ����� are also su�cient for O� to be in BMOA
�equivalently� whether condition ii� of Theorem � follows automatically
from ����� and ������� An a�rmative answer might parhaps seem plau�
sible in light of corollaries � and � above� However� we are now going
to construct an example that settles the question in the negative� In
other words� we prove
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Theorem �� There is a nonnegative function � � BMO withZ
log�dm � ��

such that O� 
� BMOA�

Actually� we 
nd it more convenient to deal with the space
BMO�R� of the real line� de
ned as the set of functions f �L��R� dt
���
t��� with

kfk� def
	 sup

z�C�

Z
R

jf�t�� f�z�j d�z�t� �� �

Here C � denotes the upper half�plane fIm z � g� the harmonic mea�
sure �z is now given by

d�z�t� 	
�

�

Im z

jt� zj� dt � z � C � � t � R �

and f�z� stands for
R
R
f d�z� The subspace BMOA�C � � consists� by

de
nition� of those f � BMO�R� for which f�z� is holomorphic on C � �
Using the conformal invariance of BMO �see �G� Chapter VI��� one can
restate Theorem � as follows�

Theorem ��� There is a nonnegative function � � BMO�R� withZ
R

log��t�

� � t�
dt � ��

such that the outer function

O��z�
def
	 exp

� i
�

Z
R

� �

z � t
�

t

t� � �

�
log��t� dt

�
� z � C � �

fails to belong to BMOA�C ���

The proof will rely on the following auxiliary result�

Lemma �� Let E and I be two ��nite and nondegenerate� subintervals
of R having the same center and satisfying

jEj
jIj

def
	 � � �
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�here j  j denotes length�� Then there exists a function � � BMO�R�
such that

 � � � � � almost everywhere on R ������

�jE 	 � � �jRnI 	  ������

and

����� k�k� � C
�
log

�

�

���
�

where C �  is some absolute constant�

Proof of Lemma �� By means of a linear mapping� the general case
is reduced to the special one where E 	 ���� �� and I 	 ���� ��� This
done� we de
ne the function � by ����� and by

��t� 	
log jtj
log�

� � � jtj � � �

Now ����� is obvious� while ����� follows from the well�known facts that
log jtj � BMO�R� and that BMO�R� is preserved by truncations �see
Section � and Exercise � in �G� Chapter VI���

Remark� A more general �and much more di�cult� version of Lemma
�� where E is an arbitrary measurable set contained in the middle third
of I� is due to Garnett and Jones �GJ�� see also Exercise �� in �G�
Chapter VI�� We have� nonetheless� found it worthwhile to include a
short proof of the version required�

Proof of Theorem �
�
� For k 	 �� �� � � � � set �k

def
	 exp ��k�� and let

the numbers
 	 a� � b� � a� � b� �   

be such that

bk � ak 	 �k and ak�� � bk 	 k���	 �k �

Consider the intervals Ik
def
	 �ak� bk� and Jk

def
	 �bk� ak���� Further� let

����� xk
def
	

ak � bk
�

� yk
def
	 ��k
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and

Ek
def
	
h
xk � �

�
yk� xk �

�

�
yk
i
�

Since jEkj 	 ��k 	 �k jIkj� Lemma � provides� for every k � N � a
function �k � BMO�R� such that

 � �k � � � on R �

�kjEk
	 � � �kjRnIk 	 

and

k�kk� � C
�
log

�

�k

���
�

Finally� we set

�k
def
	 k
�	 � �k

def
	 exp

�
� �

�k

�

and de
ne the sought�after function � by

�
def
	 �

Rn�kJk
�
X
k

��k �k � �k �Jk �

�here� as usual� �
A

stands for the characteristic function of the set A��
In order to show that � enjoys the required properties� we have to verify
several claims�

Claim �� � � BMO�R��

This follows at once from the inclusions

��
X
k

�k �k � L��R�

and X
k

�k �k � BMO�R� �

where the latter holds true because

X
k

�k k�kk� � C
X
k

�k

�
log

�

�k

���
	 C

X
k

k���	 �� �
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Claim �� log� � L��R� dt
�� � t����

Indeed� since ��t� � � if and only if t � Sk Jk� we have

Z
log��dt 	

X
k

Z
Jk

log
�

�
dt 	

X
k

jJkj log �

�k
	
X
k

k���	 �� �

Thus log�� � L��R� dt�� Observing� in addition� that log� 	  outside
the 
nite interval

S
def
	
�
k

Ik �
�
k

Jk

and noting that Claim � implies � � L��S� dt�� whence also

log�� �	 j log�j � log��� � L��S� dt� �

we eventually conclude that

log� � L��R� dt� �

A stronger version of Claim � is thus established�

Claim �� For every M � � one has

����� sup
n
��z��

Z
log��d�z � z � C � � ��z� �M

o
	� �

To verify ������ we set zk
def
	 xk � i yk �here xk and yk are de
ned by

������ and show that both

����� lim
k��

��zk� 	�

and

����� lim
k��

��zk�
�

Z
log��d�zk 	� �

To this end� we 
rst note that �zk�Ek� 	 const� and so

����� ��zk� 	

Z
�d�zk �

Z
Ek

�d�zk 	 ��k � ���zk�Ek� � const�k �
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which proves ������ Further� we write

�����

Z
log��d�zk �

Z
Jk

log��d�zk 	 �zk�Jk� log
�

�k
�

Together with the simple fact that

�zk�Jk� � const jJkj �

the inequality ����� gives

�����

Z
log��d�zk � const jJkj log �

�k
�

Finally� combining ����� and ������ we obtain

��zk�
�

Z
log��d�zk � const��

k jJkj log
�

�k
	 const k��	 �

This proves ������ and hence also Claim �� In view of Theorem � �which
admits an obvious restatement for BMO�R��� Claim � is equivalent to
saying that

O� 
� BMOA�C �� �

so the proof is complete�

�� Outer functions with BMO moduli lying in the Bloch space�

Recall that the Bloch space B is de
ned to be the set of analytic
functions f on D with

kfkB def
	 sup

z�D
��� jzj� jf ��z�j ��

�see �ACP� for a detailed discussion of this class�� We now supplement
Theorem � from Section � with the following result�

Theorem �� Let

����� � � BMO � � �  � and

Z
log�dm � �� �
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Suppose that� for some M � �

����� sup
n
��z�

Z
log��d�z � z � ����M�

o
�� �

Then O� � B�

The proof hinges on

Lemma �� If � satis�es ������ then

����� ��� jzj� jO���z�j � const � ���z�

Z
log��d�z �

whenever z � ���� ��� the constant on the right depends only on ��

Proof of Lemma �� Di�erentiating the equality

O��z� 	 exp
�Z � � z

� � z
log���� dm���

�
� z � D �

gives

�����

O���z� 	 O��z�

Z
� �

�� � z��
log���� dm���

	 O��z�

Z
� �

�� � z��
log

����

��z�
dm��� �

where we have also used the fact thatZ
� �

�� � z��
dm��� 	  �

From ����� one gets

����� ��� jzj� jO���z�j � � jO��z�j
Z ��� log ����

��z�

��� d�z��� �
and we proceed by looking at the integral on the right� Following the
strategy employed in the proof of Theorem �� we set

E� 	 E��z�
def
	
n
� � T � ���� � �

�
��z�

o
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and
E� 	 E��z�

def
	 T nE� �

Using the elementary inequality

j loguj � � ju� �j � u � �

�
�

we obtain

�����

Z
E�

��� log ����
��z�

��� d�z��� � �

Z
E�

�������
��z�

� �
��� d�z���

� �

��z�

Z
j����� ��z�j d�z���

� �

��z�
k�k� �

Repeating again some steps from the proof of Theorem �� we introduce
the sets

E�
�

def
	 f� � E� � ���� � �g �

E��
def
	 f� � E� � ���� � �g �

and note that� since z � ���� �� �which is assumed from now on�� we
actually have

����� E�� 	 f� � T � ���� � �g �
This done� we write

�����

Z
E�

��� log ����
��z�

��� d�z��� 	
Z
E�

log
��z�

����
d�z���

	 �z�E�� log��z� �

Z
E�

�

log
�

����
d�z���

�

Z
E�
�

log
�

����
d�z��� �

The estimate ����� from Section � says

����� �z�E�� � C exp
�
� c ��z�

� k�k�
�
�



Absolute values of BMOA functions ��	

where C �  and c �  are certain absolute constants� Besides� we
obviously have

�����

Z
E�

�

log
�

����
d�z��� � 

and

������

Z
E�
�

log
�

����
d�z��� 	

Z
log����� d�z���

�the latter relies on ������� Using ������ ����� and ������ to estimate
the right�hand side of ������ we get

������

Z
E�

��� log ����
��z�

��� d�z���
� C exp

�
� c ��z�

� k�k�
�
log��z� �

Z
log��d�z �

Since
sup
t��

t e�at log t �� �

for any a � � ������ implies

������

Z
E�

��� log ����
��z�

��� d�z��� � const

��z�
�

Z
log��d�z �

Combining ����� and ������ yields

������

Z
T

��� log ����
��z�

��� d�z��� � const

��z�
�

Z
log��d�z �

Finally� substituting ������ into the right�hand side of ����� and noting
that jO��z�j � ��z� �say� by Jensen�s inequality�� one eventually arrives
at ������

Proof of Theorem �� Let M � � be a number for which ����� holds�

Further� set �
def
	
p
�� Then � � BMO� log� � L��T�m�� and

��z�� � ��z� � z � D �



��
 K� M� Dyakonov

In particular�
����

p
M� � ����M�

�similar observations were made in the proof of Corollary � in Section
��� Condition ����� therefore yields

sup
n
��z��

Z
log�� d�z � z � ����

p
M�

o
�� �

By Theorem �� it follows that O� � BMOA� Since BMOA � B� we
also know that O� � B� In order to derive the required estimate

������ jO���z�j � const ��� jzj��� �
we distinguish two cases�

Case �� z � D n ����M��

We have then

jO��z�j � ��z� � ��z���� �
p
M �

and so

jO���z�j 	 j�O�
��
��z�j 	 � jO��z�j jO���z�j � �

p
M kO�kB ��� jzj��� �

Case �� z � ����M��

Since ����M� � ���� ��� a juxtaposition of ����� and ����� imme�
diately yields

��� jzj� jO���z�j � const �� �

Thus� ������ is established for all z � D � and the proof is complete�

Before proceeding with our 
nal result� we point out two elemen�
tary facts�

Lemma �� Let � satisfy ������ For any M � � the following are

equivalent�

sup
n
��z��

Z
log��d�z � z � ����M�

o
�� ��a�

sup
n
���z�

Z
log��d�z � z � ����M�

o
�� ��b�
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Proof� Since ��z�� � ���z�� the implication �b� implies �a� is obvious�
Conversely� let C be the value of the supremum in �a�� For z � ����M��
condition �a� implies Z

log��d�z � C

M�

and hence

����z�� ��z���

Z
log��d�z � CM�� k�k�G �

which leads to �b��

Lemma �� Let � � BMO� � � � Suppose the numbers M �  and

M� �  are related by

������ M� 	 M� � k�k�G �

Then �����M�� � ����M��

Proof� If ���z� �M�� then

��z�� 	 ���z�� ����z�� ��z��� �M� � k�k�G 	 M� �

so that ��z� �M �

Now we are in a position to prove

Theorem �� If f � BMOA is an outer function with jf j� � BMO�

then f� � B�

Proof� Set �
def
	 jf j and � def

	 ��� so that f 	 O� and f� 	 O�� Since
O� � BMOA� Theorem � yields

������ sup
n
��z��

Z
log�� d�z � z � ����M�

o
��

with some M � � By Lemma �� we can replace ��z�� by ���z� �	
��z��� by Lemma �� the arising condition will remain valid if we replace
����M� by the smaller set ����M��� where M� is de
ned by �������
Consequently� ������ implies

sup
n
��z�

Z
log��d�z � z � ����M��

o
�� �
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Since � � BMO� the desired conclusion that O� � B now follows by
Theorem ��

Remarks� �� Of course� there are outer functions f � BMOA with
f� 
� B� For example� this happens for f�z� 	 log ��� z�� where log is
the branch determined by log � 	 ��i�

�� Let � �  on T� Recalling Muckenhoupt�s �Ap� condition �see
Section � above�� we have the implications

� � BMO � �A
��� implies O� � BMOA

and
� � BMO � �A�� implies O� � B �

To see why� use Theorems � and � together with the inequality 	 log� �
� ��� �	 � �� It would be interesting to determine the full range of
p�s for which � � BMO � �Ap� implies O� � BMOA or O� � B�

�� There used to be a question whether there existed a function
lying in all Hp classes with  � p � � and in B� but not in BMOA�
Various constructions �based on di�erent ideas� of such functions were
given in �CCS�� �HT� and �D��� Our current results show how to con�
struct an outer function with these properties� Namely� it su�ces to

nd a function � satisfying ����� and ������ with some M � � but such
that

sup
n
��z��

Z
log��d�z � z � ����M�

o
	� �

for all M � � �An explicit example can be furnished in the spirit
of Section � above�� This done� one has O� � T

��p��Hp �because
� � T��p�� Lp� and O� � B nBMOA� as readily seen from Theorems
� and ��

�� While this paper deals with outer functions only� in �D�� and
�D�� we have studied the interaction between the outer and inner factors
of BMOA functions� Besides� we have characterized in �D��� �D��� �D��
the moduli of analytic functions in some other popular classes� such as
Lipschitz and Besov spaces� In this connection� see also �Sh� Chapter II��
Finally� we mention the recent paper �D��� which is close in spirit to the
current one�
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Maximal averages over

�at radial hypersurfaces

Alex Iosevich

Let Atf�x� �
R
S
f�x � t y� d��y�� where S is a smooth compact

hypersurface in R
n and d� denotes the Lebesgue measure on S� Let

Af�x� � supt�� jAtf�x�j� If the hypersurface S has non�vanishing
Gaussian curvature� then

��� kAfkLp�Rn� � Cp kfkLp�Rn� � f � S�Rn� �

for p � n��n� ��� Moreover� the result is sharp� See 	St
��� 	Gr���
If the hypersurface S is convex and the order of contact with every

tangent line is �nite� the optimal exponents for the inequality ��� are
known in R� � �see 	IoSaSe���� and in any dimension in the range p � ��
�see 	IoSa����� More precisely� the result in the range p � � is the
following�

Theorem � �	IoSa����� Let S be a smooth convex compact �nite type

hypersurface� in the sense that the order of contact with every tangent

line is �nite� Then for p � �� the following condition is necessary and

su�cient for the maximal inequality ���

��� �d�x�H���� � L��p�S� �

for every tangent hyperplane H not passing through the origin� where

d�x�H� denotes the distance from a point x � S to the tangent hyper�

plane H�

���
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In fact� the condition ��� is a necessary condition for any smooth
compact hypersurface in Rn � See 	IoSa��� Theorem ���

In this paper we shall consider convex radial hypersurfaces of the
form

��� S � fx � B � xn � ��jx�j� � �g �

where B is a ball centered at the origin� x � �x�� xn�� � is convex� ��
��� increasing� ���� � ����� � �� and � is allowed to vanish of in�nite
order�

If ��� does vanish of in�nite order� the condition ��� cannot hold for
any p � �� Since the condition ��� is necessary by Theorem � above�
our only hope is to look for an inequality of the form

��� kAfkL��Rn� � C� kfkL��Rn� �

where L��Rn� is an Orlicz space� near L��Rn �� associated to a Young
function �� with the norm given by

��� kfk� � inf
n
s � � �

Z
�
� jf�x�j

s

�
dx � �

o
�

The following result was proved in 	Bak����

Theorem �� Let S be as in ��� with n � �� Assume that for each

	 � �

���
���	 t�

���t�
is non�decreasing for t � � �

Put G�t� � t� ���t�� For 
 � � and d � � let � � 	���� �� 	����

be a non�decreasing function such that ��t� � t�� �G�t�d��
��

if t is

su�ciently large� ��t� � � if t � �� and ��t� � � if � � t � �� Let

��u� �
R u
� ��t� dt� Then for every d � ��� there exists a constant C

such that the estimate ��� holds�

The examples show �see 	Bak��� Example ����� that Theorem � is

sharp for some surfaces� for example if ��s� � e���s
b

� b � �� but not
for others� for example if ��s� � sm�

In this paper we shall give a set of simple su�cient conditions for
the inequality ��� for some classes of Orlicz functions �� We will show
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that our result is sharp for a wide class of both �nite type and in�nite
type ��s�

�� Assumptions on ��

Assume that � is a Young function such that ��s� �
R s
�
��t� dt�

where � � 	���� �� 	���� is a non�decreasing function such that
��t� � � for � � t � �� and ��t� � � for t � �� Assume that there exist
constants c � �� C�� and C� such that

���

Z u

�

��t�

tr
dt � C�

��u�

ur��
� for u � � �

and for every 	 � ��

�
� C�
��	 t�

��t�
� ��	� � for t � c �

Our main reason for making these assumptions about � is the following
generalization of the Marcienkiewicz interpolation theorem due to Bak�
See 	Bak��� Lemma �����

Lemma �� Let r � 	����� Suppose that the operator T is simul�

taneously weak type ��� �� and ������ namely there exist constants

A�B � � such that

��fx � jTf�x�j � tg� �
�A kfkr

t

�r
� for all t � � ���

kTfk� � B kfk� ����

Suppose that � satis�es the assumptions above� Then there exists a

constant C � C��� r� depending only on � and r such that

���� kTfk� � C B���
��A

B

�r�
kfk� �

Remark� Lemma � has the following interesting consequence� Let

Af�x� � sup
t��

Z
f�x� t �s� sm � ����s� ds � m � � �
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where  is a smooth cuto� function� and let Akf�x� denote the same
operator with s localized to the interval 	��k� ��k���� It was proved in
	I��� that Ak � Lp�R�� �� Lp�R��� p � �� with norm C ��k �mk�p� Let
�p���t� � tp log��t�� It follows by Lemma � that A � L�p���R�� ��
L�p���R�� if p � m and � � m�

�� Statement of results�

Our main results are the following�

Theorem �� Let S be as in ���� Let n � �� Suppose that � satis�es the

conditions ��� and �
� above� Suppose that limt����t��t
� � �� Then

the estimate ��� holds if

����
�X
j	�

��j�n��� ���
� �

����j�

�
�� �

The main technical result involved in the proof of Theorem � is the
following version of the standard stationary phase estimates�

Lemma �� Let n � �� Let

���� Fj��� �

Z
fy
��jyj��g

ei�hy��
�i��n�j�jyj�� ei�n����

�j� dy �

with �j�s� � ����j s������j�� where � is as in ���� Then

���� jFj���j � C �� � j�j��� �

where C is independent of j and ��
Moreover� if jFj���j is replaced by jrFj���j then the estimate ����

still holds with C on the right�hand side replaced by C�����j��

The main technical result used in the proof of Theorem � is the
following� See 	Bak��� Theorem �����

Lemma �� Let � � C�
� �	����� be a non�negative function that is

compactly supported in the interval �a���� where a � �� Let n � �
and let S be as in ��� where � satis�es the condition of Theorem �� Let
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FS������ denote F���� in Lemma � with ��jyj� in place of the charac�

teristic function of the annulus fy � � � jyj � �g�
Then for every multi�index � with j�j � � there exists a constant

C independent of a� �� and � such that

����
���� �

��

��
FS������

��� � C C	
ar

���a� ��
�a
�

� �� � j�j��� �

where C	 � k�k� � k��k� if � � �� and C	 � k�k� � k�k� � k��k� if

� � ��

�� Main idea�

The point is that even though a higher dimensional analog of
Lemma � may be di�cult to obtain� we get around the problem by
using Lemma �� We have to settle for the uniform decay of order
maxf��n� �������g instead of ��n� ����� but this is enough in di�
mension n � � as we shall see below� The idea is� roughly speaking� the
following� We are trying to prove L� �� L� estimates for maximal op�
erators associated to radial convex surfaces� If the surface is in�nitely
�at� then 	IoSa��� Theorem �� implies that Lp �� Lp estimates are not
possible for p � �� So we are looking for L� �� L� estimates where
L� is very close to L�� so interpolating between L� and L� in the right
way should do the trick� However� in order to obtain L� boundedness
of the maximal operator� we only need decay ����� �� � � �� If n � ��
then �n � ���� � ���� so we should be alright� If n � � a bit more
integration by parts will be required�

�� Plan�

The rest of the paper is organized as follows� In the next section we
shall prove Theorem � assuming Lemma �� In the following section we
shall prove Lemma �� In the �nal section of the paper we shall discuss
the sharpness of Theorem � and give some examples�
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�� Proof of Theorem ��

Let

Aj
tf�x� �

Z
f�x� � t y� xn � t ���jyj� � �����y� dy �

where � is a smooth cuto� function supported in 	�� ��� such thatP
j ��

j s� � �� Let �jf�x� � f���j x�� ����j�xn�� Making a change of
variables we see that

���� Aj
tf�x� � ��j�n��� ���j Bj

t �j f�x� �

where

���� Bj
t f�x� �

Z
f
�
x� � t y� xn � t

��j�jyj� � �

����j�

��
��y� dy �

We shall prove that

��
� sup
t��

Bj
t � L

��Rn� �� L��Rn� with norm
� �

����j�

����
�

By interpolating with the trivial estimate k supt��Bj
t fk� � C kfk�

using Lemma �� we shall conclude that

��� sup
t��

Bj
t � L

��Rn� �� L��Rn� with norm ���
� �

����j�

�
�

Since the Lp norms of �j and �
��
j are reciprocals of each other� it follows

that A � L��Rn� �� L��Rn� if

����
�X
j	�

��j�n��� ���
� �

����j�

�
�� �

So it remains to prove ���� The proof follows from the standard
Sobolev imbedding theorem type argument� See for example 	St
��� We
shall use the following version which follows from the proof of 	IoSa���
Theorem ���� See also� for example� 	CoMa��� 	MaRi����
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Lemma 	� Suppose that � is the Lebesgue measure on the hypersurface

S supported in an ellipsoid with eccentricities ��� � � � � �� R�� Suppose that
j�����j � C and max fjxj � x � supp ���g � ��R� Suppose that

����
�Z �

�

j���t ��j� dt
����

� C �� � j�j������
 �

and

����
�Z �

�

jr���t ��j� dt
����

� C R �� � j�j������
 �

for some � � �� Let ��t��� � ���t ��� Let Mf�x� � supt�� jf � �t�x�j�
Then

���� kMfk� � ���C
p
R kfk� �

Application of Lemma 
 immediately yields ��
� since by Lemma �
C is a universal constant and R � C�����j�� This completes the proof
of Theorem ��

�� Proof of Lemma ��

We must show that

����
jFj���j �

���
Z
fy
��jyj��g

ei�hy��
�i��n�j�jyj�� ei�n����

�j� dy
���

� C j�j�� �

with C independent of � and j�
Our plan is as follows� We will �rst show that if either j��j 	 j�nj�

or j��j 
 j�nj� then jFj���j � C �� � j�j���n������ If j�nj 
 j��j� we will
show that jFj���j � C �� � j�nj���� This will complete the proof since
�n� ���� � � if n � ��

Going into polar coordinates and applying stationary phase� we get

���� ei�n����
�j�

Z �

�

ei�n�j�r� rn�� dr

Z
Sn��

eirh�
���i d� �
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Since the Gaussian curvature on Sn�� does not vanish� it is a classical
result that

����
���
Z
Sn��

eih�
���i d�

��� � C �� � j��j���n����� �

It follows that jFj���j � C �� � j�j��n���� if either j��j 
 j�nj or j��j 	
j�nj� If j�nj 
 j��j� let h�r� � �n �j�r� � r h��� �i� Since � is convex� it
follows that jh��r�j � j�nj � j��j� Since j�nj 
 j��j� it follows by the van
der Corput Lemma that the expression in ���� is bounded by C�j�j�

The estimate forrFj follows in the same way if we observe that the
derivative with respect to �n brings down a factor of �j�r� � ������j��
and �j�r� � ������j� � ������j�� This completes the proof of Lemma
� if n � ��

To prove the three dimensional case we go into polar coordinates�
integrate in the angular variables and use the well known asymptotics
for the Fourier transform of the Lebesgue measure on the circle to obtain

����

Z
ei��r� r b�rA���r� dr �

where A � j��j� 	 � �n� b is a symbol of order ����� � is as above�
and ��r� � rA� �j�r�	�

Let

��
� G�r� �

Z �

r

ei��s� ds �

so the integral in ���� becomes

���

Z
G��r� r b�rA���r� dr �

Integrating by parts we get

����

Z
G�r� �r b�rA���r��

�
dr �

Let r� be de�ned by the relation ��j�r�� � A���	�� We have j����s�j �
j���j �s�	j � j��j�s�	j � j��j�r�	j� If r� � r this quantity is bounded

below by C jAj and the van der Corput lemma gives the decay C jAj����
for G�r�� Using the fact b is a symbol of order ���� we see that ���� is
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bounded by C jAj��� jAj large� This handles the case j	j � C jAj and
r � r��

On the other hand� j���s�j � jA � ��j�s�	j� Split up the integral
that de�nes G�r� into two pieces� s � 	r� r�� and s � 	r�� ��� The second
integral was just handled above� In the �rst integral j���s�j � j���r��j �
C jAj� The van der Corput lemma yields decay C�jAj� Taking the
properties of the symbol b into account� as before� we get the decay

C jAj�����jAj� This takes care of the case j	j � C jAj and r � r��
If j	j 
 jAj� j���s�j � C j	j and the van der Corput lemma yields

the decay C�j	j for ����� This completes the proof of the three dimen�
sional case�

	� Examples�

Example �� Let ��s� � sm� m � � �n� ��� and ��t� � tp� Theorem �
yields boundedness for p � m��n� ��� This is sharp by Theorem ��

Example �� Let ��s� � sm� m � � �n� ��� and �p���s� � sp log��s��
Then Theorem � yields boundedness for p�m��n��� and ��m��n����

Example �� Let ��s� � e���s
�

� � � �� and ��t� � et
�

� 
 � ��
Then Theorem � tells us that the maximal operator is bounded if � �

 �n� ��� Testing Atf�x� against

hp�x� � ���
� �

jxnj
� �

log
� �

jxnj
� �B �x� �

where �
B
is the characteristic function of the ball of radius ��� centered

at the origin� shows that this result is sharp� The same procedure
establishes sharpness of the estimate given in Example ��

In fact� testing Atf�x� against hp�x� shows that the summation
condition of Theorem � is pretty close to being sharp� It is not hard to
see that� at least up to a log factor� A bounded on L��Rn� implies that

����

Z
fy
jyj��g

���
� �

��jyj�
�
dy �� �

This would literally follow� without the log factor� from the proof of
	IoSa��� Theorem �� if we assumed� in addition� that ��a b� � ��a� ��b��
for every a� b � ��
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The condition ���� is equivalent �after making a change of variables
and going into polar coordinates� to

����
�X
j	�

��j�n���
Z �

�

���
� �

����j r�

�
rn�� dr �� �

The expression ���� is equivalent to the summation condition of The�
orem � if � does not vanish to in�nite order� If � vanishes to in�nite
order� the two conditions are still often equivalent� as in the Example
� above�

Remark� It would be interesting to extend the results of this paper to
a more general class of hypersurfaces� For example� one could consider
hypersurfaces of the form S � fx � R

n � xn � ����x��� � �g where
� is as above and � is a smooth convex �nite type function� Some
recent results �see e�g� 	IoSa�
�� 	IoSaSe��� and 	WWZ�
�� suggest
that such an analysis should be possible� We shall address this issue in
a subsequent paper �	I���� More generally� a bigger challange would be
to consider a hypersurface of the form S � fx � R

n � xn � G�x��� �g�
where G is a smooth function of n�� variables that vanishes of in�nite
order at the origin� At the moment� obtaining sharp Orlicz estimates�
even in the case where the determinant of the Hessian matrix of G only
vanishes at the origin� does not seem accessible�

Acknowledgements� The author wishes to thank Jim Wright for
teaching him the technique needed to prove the three dimensional case
of Lemma � above�
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Topological sectors for

Ginzburg�Landau energies

Lu��s Almeida

�� Introduction�

���� Ginzburg�Landau functionals�

Let � be the annulus fx � R� � ��� � jxj � �g � R� � For
maps u � H����R�� 	 W ������R�� we consider the Ginzburg
Landau
functional

����� E��u� 	
�

�

Z
�

jruj� � �

� ��

Z
�

��� juj��� �

where � is a small parameter� For  � R� we de�ne the energy level
set E�

� as

����� E�
� �	 fu � H����R�� � E��u� � g �

One of the main purposes of this paper is to show that given  � �� for �
small enough� E�

� may be multiply connected� Moreover� the connected
components of E�

� may be classi�ed by the degree of u �since u is not
S�
valued� we have to be careful in order to de�ne its degree � this is
the main technical problem of our work��

Functionals like E� play an important role in many low temper

ature physics phenomena like super�uidity� We can also �nd closely
related functionals in the theory of superconductivity and in two
di

mensional Higgs models� In our work we will consider one of these su

perconductivity models� the gauge
covariant Ginzburg
Landau model�

���
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where the energy functional may be written as

F��u�A� 	
�

�

Z
R�

jdAj� � �

�

Z
�

jrA uj� � �

� ��

Z
�

��� juj��� �

where u � H����R��� as before� and A � H��R� �R�� is the gauge
potential one
form�

A 	 A� dx
� � A� dx

� �	
�
A�

A�

�
	 �A�� A�� �

Here� as we will often do in this paper� we used the natural identi�cation
�given by the R� scalar product� between the one
form A and the vector
with the same components which we also denote by A� In equation
����� the expression rA u denotes the covariant derivative of u� i�e�

rA u 	 ru� �Au�
This model was introduced by Ginzburg and Landau in the ���s

for the study of phase transitions in superconducting materials �see the
remarks on physics below��

The main feature of the functional F� is its invariance under gauge
transformations� For a function 	 � W ����R� �R�� the gauge transfor

mation associated to 	 is the map �u�A� ��� �u�� A�� given by

�����

�
u� 	 exp �� 	�u � in � �

A� 	 A� d	 � in R� �

In this case we say that �u�A� is gauge
equivalent to �u�� A�� and we
denote this by �u�A� � �u�� A��� Saying that F� is gauge
invariant
means that

����� F��u�� A�� 	 F��u�A� � for all 	 �W ����R� �R� �

This gauge
invariance follows easily from the facts that

�u�� A�� � H����R���H��R� �R�� � ju�j 	 juj �
dA� 	 dA� d d	 	 dA ������

rA�
u� 	 exp �� 	�rA u � and thus jrA�

u�j 	 jrA uj ������

The only quantities which are signi�cant from the physics point of view
are those� like juj� rA u and the magnetic �eld h 	 
dA� which are in

variant under gauge transformations� Other important gauge
invariant
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quantities are the current J 	 �� u�rA u� and� the one which we are
more concerned about in this paper� the degree of u along a smooth
closed curve �� di�eomorphic to S�� such that juj 		 � on �� In integral
form� this degree is given by

����� deg �u� �� 	
�

��

Z
�

u

juj � �

� u

juj
�
d� �

where � denotes the unit tangent to ��
It is easy to see that gauge
equivalence de�nes an equivalence re


lation in H����R�� � H��R� �R��� A physical state of our system
is associated not with an individual con�guration �u�A�� but with a
whole equivalence class �u�A� �	 f�v�B� � H����R�� � H��R� �R�� �
�v�B� � �u�A�g� We denote the physical space by Hgi 	 �H����R���
H��R� �R���� �� and also consider F� as a functional de�ned on Hgi�

As in the case of E�� we de�ne the energy level sets of F� by

F�
� �	 f�v�B� � Hgi � F���v�B�� � g �

Since the functional E� does not involve the connection� it is a little
easier to deal with than the functional F�� Nevertheless� as we will see in
our work� most of the mathematical di�culties are already encountered
in the study of E�� In fact� after some additional technical arguments�
we deduce the classi�cation result for the components of the level sets
of F�� from the corresponding result for E�� Therefore� we start by
considering the functional E� given by ������

���� Degree of a map and de�nition of topological sectors�

We consider a �xed number  � �� and focus our attention on the
level set E�

� de�ned by ������ First� we remark that since the notion of
degree we de�ne is continuous in W ������
E�

� and that smooth maps
are dense in W ������ 	 H����� it su�ces to consider the case where
u � W ������ 
 C�� Hence� without loss of generality� we will always
assume that u is smooth in this paper�

Based on the work of B� White ���� �see also the work of F� Bethuel
����� for maps u � W ������ S��� i�e� for the case when juj � �� we can
de�ne the degree of u in �� deg �u���� as the degree of the restriction
of u to a one
dimensional skeleton of � � for instance� in case u is
continuous� this can be any circle Sr 	 fx � jxj 	 rg� for ��� � r � �
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�if u is not continuous we might need to move the circle slightly in
order to have a �nice� restriction�� The degree can then be written� in
integral form� as

����� deg �u��� 	 deg �u� Sr� 	
�

��

Z
Sr

u

juj � �
� u

juj
�
d� �

This de�nition of the degree will always give us an integer� and it clas

si�es the homotopy classes of W ������ S��� Our purpose is to extend
this notion to all u � E�

� for � su�ciently small� In this context� our
�rst result is given by the following Theorem�

Theorem �� Given  � R� � there exists �� � �� depending only on �
such that for � � ��� we can de�ne a continuous map

������
� � E�

� �� Z �
u ��� deg �u��� �

such that this map coincides with the classical notion of degree men�

tioned above when u has values in S� �i�e� when u �W ������ S��
E�
� ��

Usually we call the map � the global degree in � and� as above�

we denote ��u� 	 deg �u���� For each n � Z� ����n� 	 fu � E�
� �

deg �u��� 	 ng� is an open and closed subset of E�
� which we call the

nth topological sector of E�
� � and we also denote it by topn�E

�
� ��

Remark� In fact� what we prove in Theorem � is that the degree of u is
constant inside each connected component of E�

� � we do not show that
di�erent connected components correspond to di�erent values of the
degree� which would give us a complete classi�cation of the components
by the degree of its members� We will come back to this question later
on�

The asymptotic behavior� when � �� � of critical points of the
functionals E� and F� was extensively studied by many authors� Among
them we would like to single out the work of F� Bethuel� H� Brezis and
F� H elein ��� regarding the functional E�� and those of F� Bethuel and
T� Rivi!ere ��� and ���� which concern the functional F��

We will give a rough description of the proof of Theorem � at the
end of the Introduction� This proof is rather technical and will be done
in sections � to �� The Euler
Lagrange equations for the functional E�

are called the Ginzburg
Landau equations� They can be written as

������ �"u 	
�

��
u ��� juj�� � in � �
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In the context of the gauge invariant model� we can also extend the
de�nition of degree to any con�guration �v�B� � F�

� provided � is small
enough� In fact� we prove

Theorem �� Given  � R� � there exists �� � �� depending only on �
such that for � � ��� we can de�ne a continuous map

������
#� � F�

� �� Z �

�u�A� ��� deg ��u�A���� �

such that this map coincides with the classical notion of degree men�

tioned above when u has values in S� �i�e� when u �W ������ S��
F�
� ��

Usually we call the map #� the global degree in � and� as above� we de�

note #��u�A� 	 deg ��u�A�����

Minimizing E� inside each component of E�
� �or F� inside each

component of F�
� �� we will obtain solutions of ������ which are locally

minimizing� i�e� critical points of E� �respectively� F�� which are lo

cal minima� These are the solutions that should be associated with
permanent currents�

Moreover� we will show in the next subsection� that as a corollary
of Theorems � and �� we can also prove the existence of mountain

pass points for E� �which correspond to mountain
pass type solutions
of �������� An analogous reasoning gives the existence of mountain

pass points for F�� This result is stated in Theorem �� Unlike the
solutions obtained minimizing the energy inside each topological sector�
the solutions of ������ we obtain in Theorem � will not necessarily be
local minimizers of E�� and are probably unstable�

��	� Mountain�pass solutions and threshold energies�

We start by the crucial� although elementary� remark that when
 	 �� we have that E�

� 	 H����� i�e� the whole a�ne space
H����R��� This space has obviously an unique component and fur

thermore� given any two elements u�� u� � H����R�� there is a natural
path between them� the straight line segment � � ��� �� �� H����R���
de�ned by

������ ��s� �	 ��� s�u� � s u� � for s � ��� �� �
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Likewise� F�
� 	 Hgi� which is the projection �continuous image� of

H� � H�� and thus is connected� Given two states �u��� �u�� � Hgi

we may consider the straight line between two of their representatives�
u�� u� � H����R���H��R� �R�� and consider the projection in Hgi of
the straight line in H� �H� between u� and u��

An important example of a map of degree n � Z� in H���� S�� �
H����R�� �and for which we can thus use the classical de�nition of the
degree�� is the map

������ wn�r� �� �	 exp �� n �� 	
zn

jzjn �

Using ����� it is easy to check that deg �wn��� 	 n and moreover� we
can see that the energy� E��wn�� of the maps wn� n � Z� is independent
of � and is given by

������ E��wn� 	
�

�

Z
�

jrwnj� 	 �

�

Z �

���

r

Z ��

�

n�

r�
d� dr 	 � n� log � �

Hence� given  � R� � let

n� �	

�s


� log �

�
�

be the largest integer less than or equal to
p

���� log ��� From equa

tion ������ it follows that� at least for n � ��n�� � � � � n��� the topological
sector topn�E

�
� � will be non
empty� and this independently of the value

of � � ��
Likewise� for F� we could take wn�r� �� �	 ��exp �� n ��� ���� All the

rest of the discussion also easily extends to the case of F��
Let  � R� be given� and let � � �� �where �� is as in Theorem

��� Suppose that for some n � Z both topn�E
�
� � and topn���E

�
� � are

non
empty� and consider two maps

u� � topn�E
�
� � � u� � topn���E

�
� � �

Let � � ��� �� �� H���� be a path between u� and u� �i�e� ���� 	 u�
and ���� 	 u��� Recall that� as we mentioned above� such a path always
exists because H����R�� is an a�ne space� Then� � cannot be entirely
contained in E�

� � if this were so� u� and u� would be in the same
path component of E�

� � and hence also in the same component of E�
�
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which contradicts our assumption �since� by Theorem �� the topological
sectors topn�E

�
� � and topn���E

�
� � are disjoint open and closed subsets

of the energy level set E�
� �� Hence� there exists some s � ��� �� such

that ��s� 	� E�
� � which is equivalent to saying that E����s��  � A

standard Min
Max argument will then yield the existence of generalized
critical values of E� of the form

������ cn �	 inf
��V

max
s�����	

E����s�� �

where V �	 f� � C����� ��� H����R��� � ���� 	 u�� and ���� 	 u�g� is
the space of continuous paths in H���� between u� and u�� The value
cn will be a generalized critical value of E�� To make sure it is actually
a critical value we use the following

Theorem 	� The functionals E� and F� satisfy the Palais�Smale con�

dition �in H����R�� and Hgi� respectively��

This implies that cn is a critical value of E� and hence� there exists
a map u � H���� such that u is a critical point of E� and E��u� 	 cn�
This u is probably not a local minimum of E�� All this discussion
extends to the case of F�� Thus� we have proved

Theorem 
� Suppose that for some  � R� � we have that for some

� � �� �where �� is given Theorem �� there exists n � Z such that

the topological sectors topn�E
�
� � and topn���E

�
� � are both non�empty�

Then� there are mountain�pass type critical points of E� or� equiva�

lently� there exist mountain�pass type solutions of the Ginzburg�Landau

equations �������
More precisely� consider two maps

u� � topn�E
�
� � and u� � topn���E

�
� � �

and let cn be de�ned as in ������� Then� there exists a map u �
H����R�� such that u is a critical point of E� and E��u� 	 cn�

Likewise� if we consider two states $� � topn�F
�
� � and $� �

topn���F
�
� �� and let cn be de�ned by

������ cn �	 inf
��V

max
s�����	

F����s�� �

where now V �	 f� � C����� ��� Hgi� � ���� 	 $�� and ���� 	 $�g� is
the space of continuous paths in Hgi between $� and $�� Then� there
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exists a state $ 	 ��u�A�� � Hgi such that $ is a critical point of F�
and F��$� 	 cn�

Remark �� The number cn de�ned by ������ is called the threshold

energy for the transition from the state u� to the state u�� It will be
the in�mum of the energies for which such a transition is possible� This
concept will play a crucial role in the physical behavior of our system�
We will come back to this point in the remarks on physics �see below��

Remark �� In Theorem �� for simplicity� we just considered transitions
from a state u� � topn�E

�
� � to a state u� belonging to the adjacent state

topn���E
�
� �� However� both the concept of threshold energy and the

result stated in Theorem � are immediately generalizable to the case
where u� � topn�E

�
� � and u� � topk�E

�
� �� for any two distinct integers

n� k � Z� As usual� this remark and the previous one extend to the
setting of the gauge
covariant functional F��

Remark �� All these results extend to the setting of more general
domains considered in Theorem �� stated below�

��
� Remarks on physics�

��
��� Ginzburg�Landau theory�

In the Ginzburg
Landau theory of superconductivity� the conduct

ing electrons are described as a �uid existing in two phases� the super

conducting one and the normal one� In the superconducting state the
material has an in�nite electrical conductivity and magnetic �elds are
repelled from the interior of the sample �this is the so called Meissner
e�ect��

On a microscopic scale� the superconducting state is described by
the theory of Bardeen� Cooper and Schrie�er �BCS�� In this theory�
the existence of superconductivity is due to a pairing of the conducting
electrons forming the so called Cooper pairs� For small applied forces�
these pairs behave as a single particle �a boson� of twice the charge of
the electron� At a macroscopic scale the behavior of the Cooper pairs is
described by a complex
valued function u� called the condensate wave
function �or order parameter�� The density ju�x�j� is proportional to
the density of pairs of superconducting electrons�
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The Ginzburg
Landau model is a phenomenological model which
extends Landau�s theory of second order phase transitions� It was pro

posed well before the microscopic theory �BCS� existed� but it can be
obtained as an approximation to the macroscopic consequences of this
theory� This model gives us a system of equations which describe the
interaction between the condensate wave function� u� and the electro

magnetic vector potential� A� In this model the parameter � 	 ���

�which depends on the material we consider and on the temperature�
plays a crucial role in determining the behavior of our system�

If � � ��
p
�� the material is called a type I superconductor� If

one applies an exterior magnetic �eld to the sample� then there is a
critical value� Hc� such that when the applied magnetic �eldH increases
beyond Hc� the sample passes suddenly from the superconducting phase
to the normal phase� On the other hand� if �  ��

p
�� the behavior

is quite di�erent and the transition between the superconducting and
the normal phase is done gradually� These materials are called type II
superconductors and they are characterized by two critical values of the
applied magnetic �eld� the �rst� Hc�� corresponds to the critical �eld
above which the two phases coexist� and the second� Hc�� corresponds to
the critical �eld above which all the sample will be in the normal phase�
Between these two critical values the normal and superconducting phase
will coexist� the normal state will be con�ned in vortices or �laments
whose number will increase as the applied �eld increases� The �ux lines
of the magnetic �eld inside the material will be concentrated inside
these vortices �since they are repelled by the part of the sample that is
in the superconducting phase�� For a detailed description of the physics
involved in the phenomena of superconductivity and super�uidity see�
for instance� the works of D� Saint
James� G� Sarma and E� J� Thomas
����� and of D� Tilley and T� Tilley ����� For a more mathematical
approach see the work of A� Ja�e and C� Taubes �����

��
��� Permanent currents�

A very interesting phenomenon in superconductivity� that moti

vates our work� is the existence of permanent currents in a supercon

ducting ring� The experiment is the following� a ring of supercon

ducting material in the normal state is submitted to a �xed external
magnetic �eld �subcritical�� and then the temperature of the system
is decreased until temperatures below the critical temperature corre




��
 L� Almeida

sponding to the applied �eld are attained� The applied �eld is then
turned o� and there is a current that persists inside the superconduct

ing ring� Furthermore it was observed that such a current does not dis

sipate with time � there were experiments where the current persisted
for several years without any dissipation� thus the name permanent
current�

This behavior of the system indicates that we should be in presence
of an energy functional having multiple wells �local minima� separated
by very high barriers� The main purpose of our work is to show that
even in the simple models considered in this paper� the energy func

tionals E� and F� have this type of structure�

The big height of the barriers would be associated to the �perma

nent� character of these currents� In fact� considering the possibility of
the system tunneling through the barrier� thus moving from one energy
well into another �and eventually to the ground state�� the associated
probability should be proportional to exp ��h�� where h is the height
of the barrier relative to the initial state of the system� Thus� having
very high barriers will yield transition probabilities close to zero and
therefore justify the �permanent� character of our currents�

��
�	� Transitions between states and threshold energies�

The natural question is then to describe the transitions between
two di�erent sectors � thus� the notion of threshold energy for such
transitions �de�ned in equation ������� is a crucial one for the physical
behavior of our system� We remark that in the setting of the gauge

invariant model� as we mentioned before� physical states of the system
are represented by gauge
equivalence classes �de�ned by ������ of con

�gurations of our system � thus the con�guration �u�A� is just a partic

ular representative of the state �u�A�� Therefore� we shouldn�t consider
paths between con�gurations in the space H����R���H��R� �R��� but
paths between states in the quotient space of H����R���H��R� �R��
by the gauge
equivalence relation� which we denote by Hgi �this is the
physical space��

The threshold energy cn for a transition between a state �u�� A�� �
topn�F

�
� � and a state �u�� A�� � topn���F

�
� � will be of the order of

j log �j� It is easy to see that it is at most of this order� Indeed� we can
prove the following upper bound for the transition energy�
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Theorem �� Let cn be the threshold energy for the transition between

the state �u�� A�� � topn�F
�
� � and the state �u�� A�� � topn���F

�
� ��

de�ned as in ������� Then�

������ cn �Mnj log �j� Ln �

where Mn and Ln are constants that depend only on n and our domain

��

We will give an intuitive proof of Theorem �� Let  � � log ��� �n�
��� and suppose that we want to describe a path from the con�g

uration �un� An� 	 �exp �� n ��� �� � topn�F

�
� � to the con�guration

�un��� An��� 	 �exp �� �n � �� ��� �� � topn���F
�
� �� We remark that

once we construct a path in the space H����R�� � H��R� �R�� be

tween �un� An� and �un��� An���� we can obtain a path between the
corresponding physical states �un� An� and �un��� An��� in the quotient
space Hgi by projecting the original path� The general case of a tran

sition between �v�� B�� � topn�F

�
� � and �v�� B�� � topn���F

�
� � can be

proved in a similar way�
Physically� the path we construct corresponds to bringing a positive

unit charge of size � from a point P arbitrarily close to in�nity� to the
origin� By a positive unit charge of size � at a point zs � C � we mean
the map

������ fzs�z� 	
z � zs
jz � zsj ���z � zs� �

where ����� 	 ������� and � � C�
� �R�� is such that

������

	



�




�

��x� 	 � � if jxj � � �

��x� 	 � � if jxj � � �

� � ��x� � � � for all x �

jr��x�j � � � for all x �

Hence fzs is a unit vortex at zs which is �smoothened out� in a ball of
radius � � around zs� Then�

������ F��fzs � �� � C� j log �j� C� �

where C� and C� are constants�
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Let M � R� be an arbitrarily big number� and let zs 	 �� �
s� ��M� � C � for s � ��� ��� This will be a path from the point ��M�
in the negative real axis� to the origin� Using zs we construct the path
in H����R���H��R� �R�� de�ned by

�vs� Bs� �	 �fzsun� �� � for s � ��� �� �

We can check that �v�� B�� is arbitrarily close inH
���� norm to �un� An�

� in fact� we would obtain the con�guration �un� An� if we chose M 	
��� Hence� in particular� for big values of M � we certainly have
�v�� B�� � topn�F

�
� �� Furthermore� �v�� B�� 	 �un��� An��� and we

can obtain estimate ������ as a consequence of the bound �������
Hence we see that the path corresponding to passing a positive unit

charge �of size �� from the outside of our annulus� to the hole inside the
annulus� corresponds to increasing by one the degree of our map and
requires that we go to an energy level of order j log �j� To prove that
any transition between topn�F

�
� � and topn���F

�
� � also requires passing

through energy levels of order j log �j� thus proving that cn is of order
j log �j� is a very delicate problem� We will show a way to solve this
problem and obtain very precise estimates for the threshold energies in
a forthcoming work ������

���� The case of more general domains�

In Theorem � we considered a very particular domain � the annulus
� 	 fx � R� � ��� � jxj � �g� However� once we have the result for
the annulus� it is not hard to extend it to the case of a general open
subset D � R� � or even the case of a domain in a Riemannian manifold
M� We de�ne the energy functional just as in ����� but replacing � by
our new domain D�

������ E��u�D� 	
�

�

Z
D

jruj� � �

� ��

Z
D

��� juj��� �

and we de�ne the corresponding level sets

E�
� �D� �	 fu � H��D�R�� � E��u�D� � g �

We start by �xing a set of representatives of generators of ���D� �the
�rst homotopy group of D�� f�j � j � Jg� such that each �j � S

� �� D�
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is an injective closed smooth curve inside our open set D� Hence� �j
will have a tubular neighborhood %j � �� We may suppose that for
each j there is a positive number� �j � �� such that for each j

i� %j 	 fx � D � dist �x� �j� � �jg�
ii� There is a di�eomorphism

$j � %j �� S� � ��� �� �

such that �j��� 	 $��j ��� ����� and the Jacobian of $j is uniformly
bounded from above and away from zero� i�e� there is a constant Cj � �
such that

������
�

Cj
� jr$j�x�j � Cj � for all x � %j �

Let #� �	 S� � ����� ����� This set is topologically an annulus just
like our standard set � considered before� Let Yj �	 $��j �#��� Given

a map u � E�
� �D� we consider the map wj 	 u � $��j � #� �� R� �

The map wj belongs to E
�
� �#��� where � is a constant that depends only

on  and the constant Cj in ������� Thus� we can apply Theorem �

replacing � and  by #� and �� respectively� Hence for � su�ciently
small deg �wj � #�� is well de�ned� We set� for each j � J �

������ deg �u� Yj� �	 deg �wj � #�� �

Suppose that the index set J is �nite �J 	 f�� � � � �mg�� i�e� suppose
that we �x a �nite number of �representatives of� generators of ���D��
We de�ne the topological type of u � E�

� �D� as the m
tuple of integers

������ ��u� �	 �deg �u� Y��� � � � � deg �u� Ym�� �

By the previous argument� this ��u� � Zm is well de�ned for su�ciently
small �� The continuity of � in W ����D�R�� topology inside E�

� �D�
�which is an immediate consequence of the continuity of deg �u���
proved in section �� will then allow us to assert that� since Zm is dis

crete� for each P � Zm� its inverse image by �� i�e� ����P � 	 fu �
E�
� �D� � ��u� 	 Pg� will be an open and closed subset of E�

� �D�� For
each P � Zm� we call ����P � the P 
topological sector of E�

� �D�� We
have thus proved the following Theorem which extends the classi�cation
given by Theorem � to this more general setting�
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Theorem �� Let D be an open subset of R� or a domain in a Riemann

manifold M� Let ��� � � � � �m be simple� closed and smooth curves which

are a set of representatives of generators of ���D�� Given  � � there

exists �� � �� depending on � such that for � � �� we can de�ne a

continuous map

������
� � E�

� �D� �� Zm �

u ��� �deg �u� Y��� � � � � deg �u� Ym�� �

such that for the special case where u � E�
� �D� 
 W ����D�S��� we

recover the classical notion of degree of a S� valued map� Therefore�

given P 	 �P�� � � � � Pm� � Zm� the subset ����P � � E�
� �D� will be an

open and closed subset of E�
� �D��

The same argument in the context of the superconductivity model
will give a similar extension of Theorem ��

���� Idea of the proof of Theorem ��

The maps u � E�
� may take values close to zero� which creates big

technical problems for de�ning their degree� However� this can only
happen in a set of small measure� We will start by studying� in sections
�� � and � the set G��� where juj is smaller than an appropriately chosen
� � ����� ����� For technical reasons �to avoid problems that may
appear near the boundary �� we will concentrate on the components
of G��� that intersect an interior annulus

Y �	
n
x � R� �

�

�
� jxj � �

�

o
�

Using Sard�s Lemma we will see that for su�ciently small �� these com

ponents of G may be included in a �nite number of simply
connected
sets� which we denote by Wk� k 	 �� � � � � &N � Their boundaries will be
closed smooth curves� Vk 	 Wk� and juj 	 � on each of the Vk�s�

In Section � we see� using the coarea formula� that the sum of
the lengths of the Vk�s will tend to zero when � �� �� Furthermore�
the coarea formula also gives us a bound on the L� norm of ru on
V 	

S
Vk� Since juj 	 � � ��� on Vk� it makes sense to talk about

deg �u� Vk��
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In Section � we the obtain an uniform bound on
P jdeg �u� Vk�j

using the estimate for krukL�
V � �and consequently we will also have
uniform bounds on jdeg �u� Vk�j for each k�� Thus� we see that for all
u � E�

� the number of Vk�s such that deg �u� Vk� 		 � �which we call the
�charged� Vk�s� is uniformly bounded by a constant depending only on
� Suppose that the charged Vk�s are V�� � � � � VN�

�
In Section � we will focus our attention on the �uncharged� Vk�s

�i�e� those for which deg �u� Vk� 	 ��� We will see� again using the
estimate for krukL�
V � obtained in Section �� that the number of �un

charged� Vk�s such that the oscillation of u is bigger than or equal
to ���� is also uniformly bounded� Suppose they are VN���� � � � � VN �
Moreover� for the remaining Vk�s� i�e� the �uncharged� ones such that
the oscillation of u is smaller than ��� �which will be VN��� � � � � V �N ��
we are able to prove that the energy minimizing extension toWk of ujVk
will have absolute value which is uniformly bounded away from zero �
hence we will show that these sets are rather �harmless��

In Section �� thanks to the uniform bound on N �the number of
�charged� Vk�s plus that of �uncharged� Vk�s such that the oscillation
of u is bigger than or equal to ����� we can cover V�� � � � � VN by a �nite
�uniformly bounded� number of balls� B�� � � � � Bm� of radius of order
at most �	 for some � � ���� and which are far away from each other
�in the sense that suitable dilations of the Bi�s are pairwise disjoint��
Furthermore� we will see that deg �u� Bi� 	 �� for all i� This means
that though we may have individual singularities that are charged� at
a scale of order ���� they cluster to form neutral structures�

In Section � we will �nally give the good de�nition of the global
degree of u in �� deg �u���� Let

T �	
n
r �

��
�
�
�

�

�
such that Sr 
G��� 		 �

o
�

and let

A �	
��
�
�
�

�

�
n T �

We show that jT j �� �� when � �� �� and hence jAj �� ���� when
� �� �� For r � A we de�ne

������ f�r� �	 deg �u� Sr� 	 deg
� u

juj � Sr
�
� Z �

This function is well de�ned since for r � A� ju�r� ��j  �� As we
mentioned before� for u � W ������ S�� this function is constant� In
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our case this might not be true� but by the results of Section �� it
cannot change too much� as a matter of fact� for � su�ciently small�
the value of f can only change when Sr intersects one of the balls Bi�
and even when this occurs� the absolute value of f remains bounded
by a constant that depends only on � Outside these balls �i�e� when
Sr 
 B 	 �� where B �	

S
Bi� f�r� will always have the same value

�since deg �u� Bi� 	 ��� This is the value we use to de�ne deg �u����
which will thus automatically be an integer� To recover this integer we
can also integrate f�r� over A and divide by the measure of A� thus
de�ning

������ �adeg �u��� �	
�

jAj
Z
A

f�r� dr �

This quantity� �adeg �u���� is called the approximate degree of u in ��
In general� it is not an integer� but it will tend to the integer deg �u���
as � �� �� In fact� let Q 	 A 
 B 	

S
�A 
 Bi�� The measure of Q

tends to zero when � �� � �it is bounded by jBj which� in turn� is at
most� of order �	 � ������ Furthermore� f remains uniformly bounded
even inside Q� and hence� we can see that

������ j�adeg �u���� deg �u���j � �

�
�

for su�ciently small �� Thus we can recover the integer deg �u��� as

the closest integer to �adeg �u��� for � small�
In Section � we will prove� for su�ciently small �� the continuity

of �adeg �u��� �and thus also of deg �u���� in W ������ norm� inside the
level set E�

� we �xed� Using this continuity we will then conclude the
proof of Theorem � in Section ��

Finally� in the Appendix �Section ��� we prove a general covering
Lemma of which we used a special case to obtain the balls Bi in Section
��

��� Open questions and related results�

As we saw� many questions about this subject remain open� in
particular in the borderline between the mathematics and the physical
behavior of these systems� a considerable amount of work remains to be
done� In this subsection we will discuss some of these problems shortly
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and mention some results of related interest� We start by mentioning a
few problems we are working on at the moment�

In ��� we are able to carry out a more detailed study of the proper

ties of the threshold energies we introduced above� In particular� using
some techniques introduced by F� Bethuel and the author in ���� we can
prove a more accurate version of the upper bound for the threshold en

ergy cn stated in Theorem �� More precisely� we show that there exists
a constant �n� not depending on �� such that cn � � j log �j� �n�

This estimate is crucial to succeeding in obtaining �see ���� a lower
bound for cn which is of the same order of the above� i�e� to showing
that cn  � j log �j � �n� Such a bound� as we mentioned� implies
that the energy barriers have a height of at least � j log �j � �n� and
therefore� since � is supposed to be small� we will have very high barriers
separating the wells� This agrees with what we expected considering
the physical behavior of our system� as we described above�

Regarding the extension of our results to the �
dimensional case�
there is a substantial part we are able to do� but there are still some
technical di�culties �which stem from the higher degree of liberty of the
equivalent of the Vk�s� which� in this setting� will be two
dimensional
surfaces�� Once we succeed in de�ning the degree� we can obtain
mountain
pass solutions just as for the dimension �� but proving that
the threshold energy� cn� is of order j log �j should be considerably harder
�for results on the structure of the singularities of the Abelian Higgs
model in R � see the works of T� Rivi!ere ���� and ������

Our work was also motivated by the paper of S� Jimbo and Y�
Morita ����� In ���� the authors establish the existence of stable non

trivial solutions for the Ginzburg
Landau equations in the case the do

main � � R is a solid of revolution obtained by rotating a convex
cross
section around the z
axis in R � Thanks to this special geometry�
they can �nd solutions using a separation of variables method� They
show that the solutions constructed are stable for variations in a linear
space that is transversal to the gauge
invariance of the problem�

Very recently� while this work was being �nished� the author re

ceived a series of preprints of S� Jimbo� Y� Morita and J� Zhai ����� �����
���� where they improve the techniques developed in ���� and introduce
some new ideas to obtain very interesting results about stationary so

lutions of the Ginzburg
Landau equations in topologically non
trivial
domains� The author also received recently a preprint J� Rubinstein
and P� Sternberg ����� where the ideas of B� White and F� Bethuel con

cerning the homotopy classes for Sobolev functions are used� together
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with variational techniques� in a very ingenious way� to obtain a homo

topy classi�cation for the minimizers of the Ginzburg
Landau energy
in the case the domain is topologically a torus in R � One fundamental
di�erence between these works and ours is that� since their authors are
looking at critical points� they rely strongly on the Ginzburg
Landau
equation to prove nice properties for these critical points� and then
succeed in de�ning the degree of the stationary solutions using these
properties� In our case� since we look at the whole level set of the en

ergy� we cannot rely on the equation to help us de�ne the degree� This�
as we saw� poses many technical problems� but gives us a considerable
amount of new information� Such information should enable us to have
a better understanding about the formation of permanent currents and
the transition processes between physical states�

Another important question is that of the evolution equation for
Ginzburg
Landau� Recently there was some work of F� H� Lin ����� �����
and of S� Demoulini and D� Stuart ���� on the heat �ow for Ginzburg

Landau� The author� F� Bethuel and Y� Guo have also obtained some
results regarding the dynamical stability of symmetric vortices in the
Maxwell
Higgs model �see ���� and �����

Remarks on notation�

� � is the annulus fx � R� � ��� � jxj � �g � R� � Its boundary�
�� has two connected components� �� 	 S���� the inner circle� and
�� 	 S�� the exterior circle� On �� ��x� stands for the exterior unit
normal to � at x� Hence ��x� 	 �x�jxj on ��� and ��x� 	 x�jxj on
��� For x � �� ��x� stands for the unit tangent vector to � at x�
pointing in the sense of increasing ��

� � denotes the wedge product of di�erential forms� and � repre

sents the exterior product of two vectors in R� �it is considered as a
real number��

� We often use the natural identi�cation between an one
form and
the associated vector �given by the scalar product in R���

� Although we would normally prefer to write vectors as columns�
we will often write them as rows because it makes it easier to insert
them in the text�

� We identify the vector �v�� v�� � R� with the complex number
v� � � v�� The scalar product in C is denoted by � � �� So �u� v� 	
�u v � v u���� With this notation we have that u � u� 	 �� u� u� ��
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Although this permanent switch between the vector and the complex
number notation may be slightly confusing at the beginning� later on
the reader will appreciate the convenience that stems from having both
notations available�

� d denotes the exterior derivative and 
 denotes the Hodge star
operator� which in R� is the linear operator on R
valued forms de�ned
by


� 	 dx� � dx� � 
dx� 	 dx� � 
dx� 	 dx� � and 
dx� � dx� 	 � �

We have that for k
forms on R� � 

 	 I
k
��k��� where I denotes the
identity� Hence 
 
 � 	 �� if � is a zero
form or a two
form� and

 
 � 	 ��� if � is a one
form�

� d
 denotes the operator 
��d
� where 
�� stands for the inverse
operator of 
�

� In many of the estimates we obtain during the proof of Theorem
�� there are constants which depend on the domain considered� How

ever� since we will have �xed as domain the annulus �� we will usually
not mention such dependence explicitly in the text�

�� Coarea formula and control of the bad set�

As we mentioned before� the bad set consists of the places where
juj is close to zero� Nevertheless� the presence of the potential term in
E� �in particular� the presence of the ��� factor�� assures us that for
u � E�

� � the measure of the set fx � juj � ���g will be very small when
� �� �� In fact� as we will see in this section� a more careful analysis
using the coarea formula will allow us to prove much more about this
set�

Suppose  and � given and �x an element u � E�
� 
 C����� For

each � � ����� ����� let

V ��� 	 fx � � � ju�x�j 	 �g �
By Sard�s Lemma we know that for almost every �� V ��� is a one

dimensional submanifold of �� hence we will suppose that the � we
choose is in these conditions� We will now de�ne as our bad set� the set
G where juj is smaller than �� Let

G��� �	 fx � � � ju�x�j � �g � � �
h�
�
�
�

�

i
�
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It is easy to see that for small �� the measure of G��� will be very small�
In fact�

�����

Z
G
��

��� juj��� 
Z
G
��

��� ����

 jG���j ��� ����


� �

��

��
jG���j �

and�

�����

Z
G
��

��� juj��� � � ��
�

� ��

Z
�

��� juj��� � � ��  �

Combining ����� and ����� we obtain the desired bound on jG���j�

����� jG���j �
���
�

��
� ��  	 C �� ��

���
� �

where C is a constant depending only on the energy bound �

���� The coarea formula�

Using the coarea formula of Federer and Flemming� we can obtain
a considerable amount of information about the Vk�s and the behavior
of ujVk � for � conveniently chosen�

Here we will apply a special case of this formula which can be
stated as follows �for a proof and more general forms of this result see�
for instance� L� Evans and R� Gariepy ������

Theorem  �coarea formula �change of variables��� Let f � R� �� R

be Lipschitz� Then� for every Lebesgue summable function g � R� �� R�
we have that

i� The restriction gjf��fyg is Hausdor� H��measurable for almost

every y�

ii� For every measurable set X � R� �Z
X

gjrf j dx 	

Z
R

�Z
f��fyg�X

g dH�
�
dy �
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Remark� By Rademacher�s Theorem� since f is Lipschitz� it is di�er

entiable almost everywhere� and hence rf is de�ned almost everywhere
x � X�

���� Upper�bound for the length of the Vk�s�

We start by proving that the length �Hausdor� one
dimensional
measure� of the Vk�s is small for small �� As a matter of fact� if we
denote ' �	 fx � ��� � juj � ���g� it follows from the co
area formula
that

�����

Z ��

���

H��V ���� d� 	

Z
�

jrjuj j

�
Z
�

jruj

�
�Z

�

jruj�
����

j'j��� �

where we used Cauchy
Schwarz for the last inequality� Moreover�

�

�

Z
�

jruj� � E��u� �  �

hence�

�����
�Z

�

jruj�
����

�
p
� �

On the other hand� the measure of ' can also be estimated using the
energy bound �just like we did for G���� in fact ' 	 G������� We obtain

����� j'j �
���
�

�� Z
�

��� juj��� �
���
�

��
�� �

From ������ ����� and ������ it follows that

Z ��

���

H��V ���� d� � ��
p
�

�
� �
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Hence� except for � in a set Z� � ����� ���� of measure at most
p
���� �

�����

����� H��V ���� � ��p
�

��
p
�

�
 � 	 ��� � �

��	� Upper�bound for the L��V ���� norm of ru�

A di�erent application of the coarea formula yields

�����

Z
�����

Z
V 
��

jruj 	
Z
�

jrjuj j jruj �
Z
�

jruj� �

Since we assume that u � E�
� � from ����� it follows that

�����

Z
�����

Z
V 
��

jruj � �E�
� �u� � � �

Using Fubini�s Theorem� we will then have that except for � in a set
Z� � ����� ���� of measure at most �����

������

Z
V 
��

jruj � �� �

Thus� except when � belongs to the set Z� � Z�� whose measure is at
most ����� estimates ����� and ������ will be valid� For the rest of
this paper we will choose a � � ����� ���� such that estimates �����
and ������ are valid� and that V ��� is a one
dimensional submanifold of
�� Hence� V ��� consists of a �nite number of simple curves in �� Let
V�� � � � � V �N � denote the connected components of V ���� Equation �����
gives us an upper
bound on the length of each Vk�

������

�NX
k��

H��Vk� � H��V ���� � ��� � �

In particular�

������ H��Vk� � ��� � � for all k 	 �� � � � � (N �
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Hence� for small �� the length of each Vk will be small �the same being
true for the sum of their lengths��

	� Properties of the Vk�s which are far from ��

We consider the interior subdomain Y �	 f�r� �� � ��� � r �
���g � �� i�e�� the interior annulus consisting of the points whose dis

tance to the origin lies between ��� and ���� For technical reasons� we
will also have to consider a slightly enlarged subdomain� #Y �	 f�r� �� �
��� � r � ���g� Hence� Y b #Y b ��

We start by proving that for � su�ciently small� the Vk�s that
intersect #Y are closed curves that stay away from the boundary of ��

Lemma �� If � is su�ciently small� then Vk 
 #Y 		 �� implies that Vk
is a closed curve and dist �Vk� �� � �����

Proof� Suppose that Vk 
 #Y 		 �� Then� since dist � #Y � �� 	 ���� for
dist �Vk� �� to be smaller than ����� it is necessary that diam�Vk� 
����� However� from ������ it follows that

diam �Vk� � H��Vk� � ��� � �

Hence� for � � ����� we must have that diam�Vk� � ����� and thus�
dist �Vk� �� � �����

The fact that Vk is then a closed curve� follows from it being a
one
dimensional submanifold of � which does not touch ��

Henceforth� we will always suppose that � is chosen su�ciently
small for the result in Lemma � to be true� Suppose that the Vk�s
that intersect #Y are V�� � � � � VN � They will be closed curves and thus�
by Jordan�s Curve Theorem� we can de�ne the domain Wk enclosed
by Vk �Wk is the bounded component of R� n Vk� and in particular�
Vk 	 Wk��

Among V�� � � � � VN we will only consider those which are maximal
in the following sense� for i� j � N � if Vi � Wj then we disregard Vi
and just keep Vj in our list �so we always keep only the exterior curves��

Suppose that V�� � � � � V �N � for some &N � N � are the maximal curves we
obtain� These are the Vk�s that will interest us for the rest of this paper
�unless stated otherwise� henceforth we will always assume k � &N��
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	��� Estimates for deg �u� Vk��

By the de�nition of V ���� the restriction of u to Vk will have values
in the circle of radius �� i�e� ujVk � Vk �� S� � where we denote S� 	
fz � R� � jzj 	 �g� Therefore� we can de�ne the degree of u� as usual
we consider the map

v 	

�
v�

v�

�
�	

u

juj � Vk �� S� �

and we de�ne

����� deg �u� Vk� �	 deg �v� Vk� �	
�

��

Z
Vk

v � v

�
d� �

where � denotes� as usual� the arc
length parameter on Vk�
Since u 	 juj v� we have that

����� ru 	 r�juj v� 	


BB�
juj
x�

v� � juj v
�

x�
juj
x�

v� � juj v
�

x�

juj
x�

v� � juj v
�

x�
juj
x�

v� � juj v
�

x�

�
CCA �

Thus�

jruj� 	 juj�
��v�

x�

��
�
�v�
x�

��
�
�v�
x�

��
�
�v�
x�

���
� ��v��� � �v����

�
��juj

x�

��
�
�juj
x�

���
�juj juj

x�

�
v
v

x�

�
�juj juj

x�

�
v
v

x�

�
�

�����

But since jvj 	 Cte 	 �� it follows that

�v��� � �v��� 	 jvj� 	 � �

and�

v
v

xi
	

�

�



xi
�v v� 	 � �

Thus� ����� yields

����� jruj� 	 juj� jrvj� � jrjuj j� �
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Hence� in particular�

����� jruj�  juj� jrvj� �

For x � Vk� since ju�x�j 	 �  ���� this yields

����� jruj�  �� jrvj�  �

�
jrvj� �

which� in turn� implies that on Vk�

����� jruj  �

�
jrvj �

From equations ����� and ����� it follows that

jdeg �u� Vk�j 	 jdeg �v� Vk�j �
Z
Vk

���v � v

�

��� d� � Z
Vk

jrvj � �

Z
Vk

jruj �

Therefore� using equation ������� we obtain a bound on the absolute
value of the degree of u in each of the Vk� for all k 	 �� � � � � &N �we
remark that this bound is also valid for &N � k � #N as long as Vk is a
closed curve � so that we have no problem de�ning deg �u� Vk���

����� jdeg �u� Vk�j � �

Z
Vk

jruj � �

Z
V 
��

jruj � ��� �

Moreover� we even have a bound on the sum of the absolute values of
these degrees�

�����

�NX
k��

jdeg �u� Vk�j � �

�NX
k��

Z
Vk

jruj � �

Z
V 
��

jruj � ��� �

which gives a bound on the number N� �	 )fk � Vk 
 #Y 		 �� and
deg �u� Vk� 		 �g� i�e�� the number of �charged� Vk�s that intersect #Y �
In fact� we obtain

������ N� �
�NX

k��

jdeg �u� Vk�j � ��� �
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Remark� We will often refer to a Vk such that deg �u� Vk� 		 � as a
�charged� �or topologically charged� singularity of u� and to one such
that deg �u� Vk� 	 � as a �uncharged� �or neutral or topologically un

charged� singularity of u� This terminology is unprecise but helps con

vey the essential di�erence between the behavior of u on these two types
of sets�

Using this terminology� the charged Vk�s that intersect #Y are
V�� � � � � VN�

� and the neutral ones are VN���� � � � � V �N �


� The �uncharged� Vk�s�

Although the charged Vk�s are the only ones that may change the
value of f�r� 	 deg �u� Sr�� de�ned in ������ in order to prove that these
cannot be isolated� we will need some control of u on the uncharged
Vk�s �i�e�� VN���� � � � � V �N �� and on the energy minimizing extensions of
u to the Wk�s that lie inside them� Thus� in this section we will always
suppose k � fN� � �� � � � � &Ng�

The restriction of u to Vk 	 Wk� gk � Vk �� S� � has degree zero
�since we are considering only the �uncharged� Vk�s� and Wk is simply
connected� hence gk can be written as

����� gk 	 � exp �� �k� �

where �k � Vk �� R� is a smooth lifting of ujVk � For x � Vk we have
that

jr�kj� 	 jr�exp �� �k��j� 	
���r� u

juj
����� �

Therefore� by ������

����� jruj� 	 �� jr�kj� � jrjuj j� �

and� in particular�

����� jr�kj � jruj
�

�

As usual� we de�ne the oscillation of �k as

����� osc ��k� �	 sup
x�Vk

��k�x��� inf
x�Vk

��k�x�� �
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We will prove that the number of Vk�s for which �k can oscillate con

siderably� is uniformly bounded �by a constant depending only on the
energy bound ��

Lemma �� Given  � R� � there is a constant M � R� such that� for

all � � �� for all u � E�
� � if

I �	
n
k � fN� � �� � � � � &Ng� such that osc ��k� �

�

�

o
�

then�

����� )I �M 	
���

�
�

Proof� By the fundamental Theorem of Calculus�

osc ��k� 	 sup
x�y�Vk

��k�x�� �k�y�� �
Z
Vk

����k
�

��� � Z
Vk

jr�kj �

Then� using equations ������ and ����� we obtain

�

�
)I �

X
k�I

osc ��k�

�
X
k�I

Z
Vk

jr�kj

�
X
k�I

�

�

Z
Vk

jruj

� �

Z
V 
��

jruj

� ��� �

Hence�

����� )I � �

�
��� 	

���

�
 �

Thus� we have proven Lemma � with M 	 ������
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If deg �u� Vk� 	 �� we know that there exist smooth extensions of
g 	 ujVk � Vk �� S� to W k� where S� 	 fx � R� � jxj 	 �g � S�� and
Wk is the domain inside Vk �in the sense of Jordan�s curve Theorem��
Let H�

g �	 fu � H��Wk� C � � u 	 g on Vkg� Then� as in the work of F�
Bethuel� H� Brezis and F� H elein ���� we know that

����� �g �	 min
u�H�

g

E��u� �

is achieved by some map u�� and furthermore� u� satis�es the Euler
equation

�����

	�
� �"u� 	 �

��
u� ��� ju�j�� � in Wk �

u� 	 g 	 u � on Vk �

This elliptic system will allow us to prove some sort of maximum prin

ciple for u� which will give us upper and lower bounds for ju�j in terms
of the oscillation of g 	 ujVk or� more precisely� in terms of osc ��k�� In
particular� we will be able to prove that if the oscillation of �k is small
enough� then ju�j stays bounded away from zero in Wk� Together with
Lemma � this will imply that the number of Wk�s for which ju�j can be
close to zero� is uniformly bounded�

We start by proving an upper bound for ju�j� The following Lemma
is just an adaptation of ��� Proposition �� to our situation�

Lemma 	� Let u� be a solution of ������ Then� ju�j � �� in Wk�

Proof� We start by observing that

"�ju�j�� 	 �u�"u� � � jru�j� �

Hence� by ������

����� "�ju�j�� 	 �

��
ju�j� �ju�j� � �� � � jru�j�  �

��
ju�j� �ju�j� � �� �

Therefore� v� �	 ju�j� � �� will satisfy

	�
�

"v� � �

��
ju�j� v�  � � in Wk �

v� 	 �� � � � on Vk 	 Wk �
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Since ������� ju�j� � �� the maximum principle implies that �see� for
instance� ���� Corollary �����

������ sup
Wk

v� � sup
Vk

v� �

where v��x� �	 maxfv��x�� �g� Hence� since v��x� �	 max f����� �g 	
�� on Vk� it follows that

sup
Wk

ju�j� � � 	 sup
Wk

v� � � �

Thus�

������ sup
Wk

ju�j � � �

This concludes the proof of Lemma ��

Using this Lemma and equation ������ we are now able to obtain

Proposition �� Suppose that osc ��k� � ���� Let u� be the minimizer

of ������ Then�

������ ju��x�j  �

�
�  �

�
� for all x �Wk �

Proof� If osc ��k� � ���� then u�Vk� is contained in an arch #� of S� �

of amplitude at most ���� Let a and b be the endpoints of #�� and let B
be the domain bounded by the straight line #r passing through a and b�
and the unit circle S�� We claim that the maximum principle implies
that

������ u��Wk� � B �

By Lemma � we already know that ju�j � �� so it su�ces to prove that
u��Wk� and the origin lie on opposite sides of the straight line #r de�ned
above�

Choose coordinates y�� y� in the image space such that the y� axis
is parallel to #r �i�e�� it is the straight line through the origin parallel to
the segment a b�� and the y� axis cuts the segment a b perpendicularly
at its midpoint� In these coordinates we may write

u��x� 	

�
u���x�

u���x�

�
	 � exp �� �k� �
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where� we are taking the positive y� axis as the origin for the angle �k�
Since the amplitude � �	 osc ��k� � ���� the y� coordinate of the

endpoints a and b satis�es

������

� �	 y��a�

	 y��b�

	 min
x�Vk

y��u�x��

	 � cos
��
�

�
 � cos

��
�

�

	
�

�

 �

�
�

On the other hand� since u� is a minimizer of E�� hence a critical point�
it is a solution of equation ������ In particular u�� will satisfy

������

	�
�
�"u�� 	

�

��
u�� ��� ju�j�� � in Wk �

u��  � � on Vk 	 Wk �

Doing a re�ection of u across the y� axis in order to make the image lie
in the right half
plane� we obtain the map

&u��x� 	

�
&u���x�

&u���x�

�
�	

� ju���x�j
u���x�

�
�

which satis�es

E��&u�� 	 E��u�� 	 min
v�H�

g
Wk�C�
E��u� �

Hence� &u� is also a minimizer� and thus critical point� of E�� and there

fore� &u�� 	 ju��j� satis�es

������

	�
�
�"&u�� 	

�

��
&u�� ��� ju�j�� � in Wk �

&u��  � � on Vk 	 Wk �
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Using Lemma � we see that the right
hand side of ������ is always non

negative� Hence� �"&u�  �� and thus the maximum principle assures
us that

min
Wk

&u�� 	 min
Vk

&u��  � �

Consequently� using ������ we obtain

������ min
Wk

ju��j  �  �

�
 �

�
�

Since u�� is continuous and Wk is connected� u���Wk� has to be con

nected� Thus� using ������ and the fact that u���x�  � on Vk� we know
that we must have

������ u���x�  � � for all x �Wk �

This� together with equation ������� proves claim ������� In particular�
from ������ it follows that

������ ju�j 	
p
�u���

� � �u���
�  ju��j  �  �

�
 �

�
� for all x �Wk �

which is equation �������

Remark� The same method we used to prove claim ������ will give us
the slightly more precise result

������ u��Wk� � A � B �

where A is the closed set bounded by the half
lines *� a and *� b� the
segment a b and the circle S�� In fact� all we have to do to prove this
result is to� instead of using a re�ection relative to an axis parallel to the
segment a b� as before� we have to consider re�ections with respect to
axii which approach � a �and others which approach � b� on the outside
of the set A de�ned above�
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�� Blow�up of the energy around an isolated �charged� singu�

larity�

���� The covering argument�

For simplicity� we will do one more renumbering of the Vk�s� k 	
�� � � � � &N such that

a� deg �u� Vk� 		 � and Vk 
 Y 		 � if and only if k � f�� � � � � N�g�
b� deg �u� Vk� 		 �� Vk 
 #Y 		 � and Vk 
 Y 	 � if and only if

k � fN� � �� � � � � N�g�
c� deg �u� Vk� 	 �� Vk 
 #Y 		 � and osc ��k� � ��� if and only if

k � fN� � �� � � � � Ng�
d� deg �u� Vk� 	 �� Vk 
 #Y 		 � and osc ��k� � ��� if and only if

k � fN � �� � � � � &Ng�
From ������ it follows that

����� N� � N� � ��� �

On the other hand� Lemma � implies that

����� N 	 N� �)I � ��� �
���

�
 � ��� �

We remark that ����� gives a bound for N which is valid for all u � E�
�

and which� moreover� depends only on  and not on �� We have no sim

ilar bound for &N � the total number of Vk�s that intersect #Y � However�
as we will see in this section� a bound on N like ����� is enough since
Proposition � will allow us to prove that the Vk�s in condition d� �i�e��
those for which deg �u� Vk� 	 � and osc ��k� � ��� are �harmless� � in
fact� Proposition � gives us a good enough control over the behavior of
u inside these Vk�s for our estimates of lower bounds on the energy of an
isolated charged singularity to go through� regardless of the the pres

ence of Vk�s of type d� in its neighborhood� We will need the following
two rather technical Lemmas to obtain these lower bounds�

The �rst one is a covering argument that will allow us to see that
W�� � � � �WN can be subdivided into groups� each of which is contained
in some ball of radius of order bigger than

p
�� and that the di�erent

balls are� in some sense� far apart �this type of technique has recently
been used by several authors like M� Str+uwe or F� Bethuel� H� Brezis
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and F� H elein or still F�H� Lin in ���� � our approach is closer to that
of the latter��

The second Lemma will then serve to prove that if any of the balls
Bj which intersect Y were charged� then we would have to pay a very
high price �of order j log �j� in energy�

Lemma 
� Fix  � R� � Let u � E�
� � and W�� � � � �WN be de�ned

as above� Then� for � su�ciently small� there is an integer m � N �

a family of numbers ��� � � � � �m � ����� ��� and a family of balls Bj�

j 	 �� � � � �m� of centers xj and radii rj such that

i� rj � C�	j �

ii�
N�
i��

Wi �
m�
j��

Bj�

iii� The enlarged balls &Bj �	 B�xj� �
�	j�
�

N����� rj� are pairwise

disjoint�

Proof� We have �xed  � R� � and we are looking at maps u � E�
� �

for � su�ciently small �to be chosen later�� We de�ne W�� � � � �WN as
above �thus they will be open� simply
connected subsets of � � R� �
such that Wk 	 Vk�� By equation ����� we know that there exists
a uniform bound on N depending only on the energy level  we are
considering� and not on � � to be able to change � while having an
uniform bound on the number m of balls used in the covering is crucial
for our argument to work�

On the other hand� by ������ we have that

������ diam�Wk� � �

�
H��Vk� � ��� � �

Hence our Lemma follows from the more general covering argument
stated in Lemma � of the Appendix� In fact� it corresponds to the
special case where C 	 ��� and � 	 ��

���� Lower�bound for the energy around an isolated charged

singularity�

Lemma �� Let R�� R� � R� be such that R� � R�� Let � be the

annulus � 	 B��� R�� nB��� R��� and u � H���� C � be such that exists
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� � R� such that ju�x�j  � � �� for all x � �� and deg �u� SR�
� 	

deg �u� SR�
� 	 d 		 �� Then�

����� E��u�  � d� �� log
�R�

R�

�
�

Proof� We have that

����� E��u�  �

�

Z
�

jruj� � for all u � H���� C � �

Hence� we will concentrate on obtaining a lower bound for the Dirichlet
energy of u �the right hand side of ������� Since� by hypothesis� juj 
� � �� we may de�ne

v �	
u

juj � H���� S�� � and deg �v� SR�
� 	 deg �v� SR�

� 	 d 		 � �

By ����� we know that

����� jruj�  juj� jrvj�  �� jrvj� �
We de�ne

Vd 	 fv � H���� S�� � deg �v� SR�
� 	 deg �v� SR�

� 	 dg �
From ����� and ����� it follows that

����� E��u�  �

�

Z
jruj�  �� inf

v�Vd

��
�

Z
jrvj�

�
�

The problem of determining

inf
v�Vd

��
�

Z
jruj�

�
has already been extensively studied� In fact we can reduce it� using an
associated linear problem �see� for instance� ��� Theorems I�� and II���
and their Corollaries��� to determining the Dirichlet energy of a har

monic map $ such that

�����

	






�







�

"$ 	 � � in � �

$ 	 � � on SR�
�

$ 	 C � on SR�
�Z

SRi

$

�
	 �� d �
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where C is some constant� and � is the outward normal to BR�
and

also the outward normal to BR�
�so � will point inside � on SR�

and
outside on SR�

��
We can easily check that $ 	 d log �r�R�� is a solution of ������

Therefore� by the proof of ��� Theorem I��� �see step � of that proof �
it is essentially a consequence of Poincar e�s Lemma� we know that for
all v � H���� S��� deg �v� SRi

� 	 d� i 	 �� ��

�����

Z
�

jrvj� 
Z
�

jr$j�

	

Z
�

���d
r

����

	

Z ��

�

d�

Z R�

R�

r
d�

r�
dr

	 �� d� log
�R�

R�

�
�

Combining equations ����� and ����� we obtain

E��u�  � �� d� log
�R�

R�

�
�

which is the desired result�

We are now ready to prove the main result of this section�

Theorem �� Let  � R be �xed and u � E�
� � Then� there exists �� � �

�depending only on � such that if � � ��� then Bj 
 Y 		 � implies

that deg �u� Bj� 	 �� where the balls Bj are given by Lemma ��

Proof� Suppose that for some �� su�ciently small to apply Lemma
�� there exists u � E�

� such that in Lemma � we obtained a ball Bj

such that Bj 
 Y 		 � and deg �u� Bj� 		 �� Since Bj 
 Y 		 �� if � is

su�ciently small �depending only on � &Bj � #Y �because the radius of
&Bj tends to zero when � �� ��� Thus� since in the covering argument

we took care of all the Vk�s such that Vk 
 #Y 		 � and deg �u� Vj� 		 �

or osc ��k� � ���� we know that the annulus Dj �	 &Bj n Bj may only
intersect uncharged Vk�s such that osc ��k� � ��� �what we called Vk�s
of type d� in the beginning of this section��
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We may suppose� without loss of generality� that the Vk�s that
intersect Dj are VN��� � � � � V �N � for some #N � &N � We know that

osc ��k� � ���� k 	 N ��� � � � � #N � However� we cannot apply Lemma �
directly to u on Dj since a priori we have no lower bound on juj inside
WN��� � � � �W �N � Nevertheless� if we replace u inside each of the Wk�

k 	 N � �� � � � � #N � by the corresponding minimizer of ������ we will
decrease the energy and� at the same time� by Proposition �� we will
have a lower bound on the absolute value of the map obtained� Let

������ &u �	

	

�


�

u � in Dj n
�N�

k�N��

Wk �

u� � in Wk � k 	 N � �� � � � � #N �

where u� is the minimizer of E� in Wk with boundary value u� In
particular� u� satis�es equation ������ By construction� j&uj  �  ���

in Dj n
S �N
k�N��Wk� and by Proposition �� j&uj 	 ju�j  ��� in Wk�

k 	 N � �� � � � � #N � Therefore�

������ j&uj  �

�
� in Dj �

Hence� deg �&u�  &Bj� 	 deg �&u� Bj� 	 d 		 ��Thus� we may apply
Lemma � to &u in Dj � Denoting the energy of a map w in a domain
G by

E��w�G� �	
�

�

Z
G

jrwj� � �

� ��

Z
G

��� jwj��� �

this Lemma yields

������ E��&u�Dj�  �d�
��
�

��
log ���	j�
�

N������ �

Since �j  ��� �by Lemma ��� we have that

������ E��&u�Dj�  � d�

��
log �����
�
�

N������� 	 � � d�

�� ��N�� � ��
log � �

We claim that� for � su�ciently small

������ E��u���  E��&u�Dj� �
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Proof of claim �����	� We have that

������

E��&u�Dj� 	 E�

�
&u�Dj n

�N�
k�N��

Wk

�
�

�NX
k�N��

E��&u�Wk 
Dj�

� E�

�
&u�Dj n

�N�
k�N��

Wk

�
�

�NX
k�N��

E��&u�Wk� �

By construction� &u 	 u on Dj n
S �N
k�N��Wk� we have that

E�

�
&u�Dj n

�N�
k�N��

Wk

�
	 E�

�
u�Dj n

�N�
k�N��

Wk

�
�

and� on the other hand� by the de�nition of u� as the minimizer of ������
we also have that

E��&u�Wk� � E��u�Wk� � for k 	 N � �� � � � � #N �

Therefore� it follows from ������ that

E��&u�Dj� � E�

�
u�Dj n

�N�
k�N��

Wk

�
�

�NX
k�N��

E��u�Wk�

	 E��u�Dj �WN�� � � � � �W �N �

� E��u��� �

since Wk � #Y � �� k 	 N � �� � � � � #N � if � is su�ciently small� This
concludes the proof of claim �������

Combining ������ and ������ we have that for � su�ciently small�

������ E��u���  � � d�

�� ��N�� � ��
log �  C d� j log �j �

where C is a positive constant only depending on  �in fact� using
equation ����� we may choose C 	 ����� �������� ��� � ���

If� as we supposed� d 		 �� then� since u � E�
� � we would have that

C d�j log �j � � for all � su�ciently small� However� this is clearly not
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true for � � exp ����C d���� Hence� d must be zero� which concludes
the proof of Theorem ��

Remark� Theorem � proves rigorously our idea that as � gets small the
charged Vk�s have to cluster� giving rise to �neutral� �deg 	 �� Bj�s� or
to �drift� towards the boundary � �thus exiting the interior domain
Y �� Hence� in the interior of �� and for a distance scale of order �����
the charged singularities shouldn�t be �perceptible��

�� De�nition of the degree of u in ��

In this section we de�ne the degree of u in �� which is an integer�
and show that this integer is well de�ned�

Let

v �	
u

juj �
#Y n

�N�
k��

Wk �� S� �

and

A �	
n
r �

��
�
�
�

�

�
� Sr 
 Vk 	 � � for all k 	 �� � � � � &N

o
�

As before� for r � A� we de�ne

����� f�r� �	
�

��

Z
Sr

v � v

�
	 deg �u� Sr� �

and we de�ne the approximate degree as

����� adeg �u� �	
�

��jAj
Z
A

Z
Sr

v � v

�
d� dr 	

�

jAj
Z
A

f�r� dr �

The function f may only change value when we cross a charged Vk since
if r�� r� � A� r� � r�� then

f�r��� f�r�� 	
X

k�Ir��r�

deg �u� Vk� ������

Ir��r� 	 fk � Vk � B��� r�� nB��� r��g �

By ������ ������ Lemma � and Theorem �� inside Y we can cover all
the charged Vk�s by an uniformly bounded number of balls B�� � � � � Bm�
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with m � ���� and such that rj 	 radius �Bj� � ��� ����� and
deg �u� Bj� 	 �� Hence the function f will always have the same value

in (A �	 A n B� where B �	
Sm
j��fr � SR 
 Bj 		 �g� This is the value

we use to de�ne deg �u��� � Z�
When � �� � the approximate degree �adeg �u�� approaches this

value� In fact� from ����� and Lemma �� it follows that

����� jBj � �
mX
j��

rj � �m ��� ���� � ������ ���� �

Furthermore� even inside A 
 B the value of f�r� 	 deg �u� Sr� is uni

formly bounded � equations ����� and ����� imply that

����� jf � deg �u���j �
N�X
k��

jdeg �u� Vk�j � ��� �

Thus� using ������ ����� and ������ we obtain

�����

jadeg �u�� deg �u�j 	
��� �

jAj
Z
A

f�r� dr� �

jAj
Z
A

deg �u��� dr
���

� �

jAj
Z
A

jf�r�� deg �u���j

� �

jAj jBj ���

� �����

�
��
�
�H��V ����

� ����

� �����

�

�
� ��� �

���� �

Since this bound depends only on  and � �and not on u�� we will have
that adeg �u� will converge to deg �u��� � Z� uniformly in u � E�

� �
Hence� given � we know that for � su�ciently small

jadeg �u�� deg �u�j � �

�
�

and therefore� the knowledge of adeg �u� will determine the integer
deg �u� as desired�
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Remark� Of course we can also obtain deg �u��� by evaluating f�r� 	
deg �u� Sr� for any r � (A 	 A n B� The problem is that the process of
obtaining the balls Bj that de�ne B is very elaborate � hence our choice
of also showing how to obtain deg �u��� using the approximate degree�
We remark also that the Bj�s obtained using Lemma �� and thus also B�
are not uniquely determined� However� using estimate ������ it is easy
to check that �for su�ciently small �� as usual� the value of deg �u���
obtained by evaluating f�r� in (A� is independent of the particular Bj �s
used in the process�

� Continuity of deg �u����

This section is devoted to showing that the notion of deg �u���
we de�ned in the previous section �Section �� is continuous in H����
topology inside each level set of the Ginzburg
Landau energy ������
This result will be stated in Theorem � at the end of the section�

Let  � R� be given and � � �� �with �� de�ned as in Theorem ��
and consider u�� u� � E�

� � Suppose B
i
�� � � � � B

i
mi

� are the balls obtained

when applying Lemma � to ui� i 	 �� �� and V i
k � k 	 �� � � � � &Ni� i 	 �� ��

denote the corresponding Vk�s� We de�ne� as before� vi �	 ui�juij�

Ai �	
n
r �

��
�
�
�

�

�
� Sr 
 V i

k 	 �� for all k 	 �� � � � � &N�

and Sr 
 Bi
j 	 �� for all j 	 �� � � � �mi

o
�

fi�r� �	
�

��

Z
Sr

vi � vi
�

d� � for r � Ai �

Then� denoting A �	 A� 
 A��

����� deg �ui��� 	
�

jAij
Z
Ai

fi�r� dr 	
�

jAj
Z
A

fi�r� dr �

since fi�r� 	 Cte 	 deg �ui��� in Ai �hence also in A � Ai�� Therefore�
denoting G �	 f�r� �� � r � A� � � ��� ���g�
jdeg �u����� deg �u����j

	
�

��jAj
��� Z

A

Z
Sr

� u�
ju�j � �

� u�
ju�j

�
� u�
ju�j � �

� u�
ju�j

��
d� dr

���
�����
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�

��jAj
��� Z

A

Z
Sr

� u�
ju�j� �

u�
�

� u�
ju�j� �

u�
�

�
d� dr

��� �
since

ui
juij � �

� ui
juij

�
	

ui
juij �

� �

juij
ui
�

�
�

ui
juij �

�
ui �

� �

juij
��

	
ui
juij �

� �

juij
ui
�

�
�

because ui � ui 	 ��
Furthermore� from equation ������ and Lemma �� it follows that

jA�j� jA�j and jAj �� ��� uniformly when � �� �� and thus� in partic

ular� we have that for � su�ciently small �independent of the particular
choice of u�� u� � E�

� �� jAj � ������� Hence� equation ����� yields that
for all � as above�

�����

jdeg �u����� deg �u����j

	
�

��jAj
��� Z

A

Z
Sr

� u�
ju�j� �

u�
�

� u�
ju�j� �

u�
�

�
d� dr

���
� �

��jAj
Z
G

��� u�
ju�j� �

u�
�

� u�
ju�j� �

u�
�

���
�
��� u�
ju�j� �

u�
�

� u�
ju�j� �

u�
�

���
L�
G�

�

We can write the integrand in ����� as

u�
ju�j� �

u�
�

� u�
ju�j� �

u�
�

	
�

ju�j
u�
ju�j �

u�
�

� �

ju�j
u�
ju�j �

u�
�

	
� �

ju�j �
�

ju�j
� u�
ju�j �

u�
�

� �

ju�j
� u�
ju�j �

u�
�

� u�
ju�j �

u�
�

�
�

�����

Moreover� one can write the last factor in ����� as

u�
ju�j �

u�
�

� u�
ju�j �

u�
�



	�� L� Almeida

	
�

ju�j
�
u� � u�

�
� u� � u�

�

�
�
� �

ju�j �
�

ju�j
�
u� � u�

�

	
�

ju�j
�
�u� � u��� u�

�
� u� � �u� � u��

�

������

�
� �

ju�j �
�

ju�j
�
u� � u�

�
�

From ����� and ����� it follows that

u�
ju�j� �

u�
�

� u�
ju�j� �

u�
�

	
� �

ju�j �
�

ju�j
� u�
ju�j �

u�
�

�
�

ju�j ju�j
�
�u� � u��� u�

�

�

�
�

ju�j
� u�
ju�j �

�u� � u��

�

�
�
� �

ju�j �
�

ju�j
��

u� � u�
�

�
�

�����

On the other hand� since juij  ��� in G� we have that

�����
�

juij � � � i 	 �� � � and
�

ju�j ju�j � � � in G �

Furthermore� we have the following estimates for vi 	 ui�juij���� ui
juij

���
L�
��

	 � ������

��� ui
juij

���
L�
G�

�
��� ui
juij

���
L�
G�

jGj��� � jGj��� � jY j��� 	
p
��

�
������

Regarding the tangential derivatives� we have that jui�� j � jruij�
and thus�

������
���ui
�

���
L�
G�

� kruikL�
G� � kruikL�
�� �

and also that ����u� � u��

�

��� � jr�u� � u��j �
which implies that

������
����u� � u��

�

���
L�
G�

� kr�u��u��kL�
G� � kr�u��u��kL�
�� �
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Finally� we can easily check that

��� �

ju�j �
�

ju�j
��� 	 j ju�j � ju�j j

ju�j ju�j � ju� � u�j
ju�j ju�j � � ju� � u�j �

which� in turn� yields

������
��� �

ju�j �
�

ju�j
���
L�
G�

� � ku� � u�kL�
G� � � ku� � u�kL�
�� �

Moreover� since we supposed that ui � E�
� � we have� as in ������

������ kruikL�
G� � kruikL�
�� �
p
�E��ui� �

p
� �

Using the Cauchy
Schwarz inequality and equations ������ ������ ������
������ ������� ������� ������ and ������� it follows from equation �����
that

jdeg �u����� deg �u����j

�
��� u�
ju�j� �

u�
�

� u�
ju�j� �

u�
�

���
L�
G�

�
��� u�
ju�j

���
L�
G�

��� �

ju�j �
�

ju�j
���
L�
G�

kru�kL�
G�

� � ku� � u�kL�
G� kru�kL�
G�
� �

��� u�
ju�j

���
L�
G�

kr�u� � u��kL�
G�

�
��� u�
ju�j

���
L�
G�

��� �

ju�j �
�

ju�j
���
L�
G�

kru�kL�
G�

� � kru�kL�
G� ku� � u�kL�
G� � � kru�kL�
G� ku� � u�kL�
G�
� � jY j��� kr�u� � u��kL�
G� � � kru�kL�
G� ku� � u�kL�
G�

� �� kru�kL�
�� � � kru�kL�
��� ku� � u�kL�
��

� �

p
��

�
kr�u� � u��kL�
��

� ��
p
� ku� � u�kL�
�� �

p
��

�
kr�u� � u��kL�
��

� C ku� � u�kH�
�� �
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where C is a constant that depends only on the energy bound  �we may
take C 	 ��

p
� �

p
������ Therefore� we have proven the following

Theorem which is the main result of this section�

Theorem �� Let  � � be given and � be su�ciently small� Then�

inside the level set E�
� the degree de�ned as above is continuous in

H���� topology� and there is a constant C� depending only on � such
that for all u�� u� � E�

�

������ jdeg �u����� deg �u����j � C ku� � u�kH�
�� �

�� Proof of Theorem � and Theorem ��

We start by proving Theorem �� i�e� the case where � is of the
special form we studied �the annulus � 	 fx � R� � ��� � jxj � �g��
In this case we de�ned in Section � the map deg �u��� which has all the
required properties of ��u�� Thus� we de�ne ���� �	 deg ����� � E�

� ��
Z� Theorem � states that this map is continuous inside each level set of
the Ginzburg
Landau energy� Since � is a continuous map with values
in the discrete set Z� for each k � Z� ����k� 	 fu � E�

� � ��u� 	 kg�
will be an open and closed subset of E�

� �in H� topology�� We have thus
succeeded in de�ning topological sectors inside E�

� � This concludes the
proof of Theorem �� Theorem � follows from Theorem � as described
in the Introduction�

�� The Palais�Smale condition� proof of Theorem 	�

Suppose that un is a Palais
Smale sequence for E�� i�e� that there
exists a constant M such that

E��un� �M � for all n ������

dE��un� �� � in �H��� as n �� �� ������

where �H��� is the dual of H����R��� and dE��un� denotes the dif

ferential of E� at un� We want to show that then un has a strongly
convergent subsequence in H�� This shall be achieved in two steps�
�rst we prove that un is bounded in H����R�� and then we �nd a
convergent subsequence�
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���� Step �� un is bounded in H��

Equation ����� can be written as

�����
�

�

Z
�

jrunj� � �

� ��

Z
�

��� junj��� �M � for all n �

and equation ����� means that there is a sequence Cn  �� such that
for all v � H����R���

�����
��� Z

�

run � rv � �

��

Z
�

��� junj��un � v
��� � Cn kvkH�
��R�� �

which implies that there exists a sequence bn�v� such that � � bn�v� �
Cn� for all n� v �and hence bn �� �� and

�����
��� Z

�

run � rv
��� 	 bn kvkH�
��R�� �

��� �
��

Z
�

��� junj��un � v
��� �

Taking v 	 un in ����� we obtain

�����
��� Z

�

jrunj� � �

��

Z
�

��� junj�� junj�
��� � Cn kunkH�
��R�� �

and thus

�����
��� Z

�

jrunj�
��� � Cn kunkH�
��R�� �

��� �
��

Z
�

��� junj�� junj�
��� �

First� using the Cauchy
Schwarz inequality and ������ we notice that���� �
��

Z
�

��� junj�� junj�
��� 	 ��� �

��

Z
�

��� junj��� � �

��

Z
�

��� junj��
���

� �M �
�

��

�Z
�

��� junj���
����

j�j��������

� �M �
�

�
M��� j�j��� �

Second� the same type of estimate yields

�����

��� Z
�

junj�
��� 	 ��� Z

�

�� junj� � �
���

�
��� Z

�

�� junj�
���� j�j

� �M��� j�j��� �� j�j
	 j�j� o ��� �
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From ����� and ����� it follows that

������

Z
�

jrunj� � Cn �kunkL� � krunkL�� � �M �
�

�
�M��� j�j��� �

and� using ������ this yields

������

krunk�L� � Cn krunkL� � Cn ��M
��� j�j��� �� j�j����

� �M �
�

�
�M��� j�j���

	 #C�M� �� �

Since Cn �� � this implies that krunkL�
�� is bounded� Together with
������ which gives us a bound on kunkL�
��� this yields

������ kunkH�
�� � C�M� �� �

which concludes the proof of the �rst step�

Step �� un has a strongly convergent subsequence in H��

Since by ������ un is bounded in H����R��� it has a subsequence�
which we will still denote by un which is weakly convergent in
H����R��� Hence� using the fact that we have a compact embedding
H����R�� �� L����� we know that� up to passing to a subsequence�
there exists u � H����R�� such that

������ un �� u in L���� and run � ru in L���� �

Therefore� we just need to prove strong convergence in L���� of the
gradients� run �� ru in L����� By ������ we already have weak
convergence run � ru� thus we just need to prove the convergence of
the L���� norms in order to obtain strong convergence�

Since H���� �� Lp���� for all � � p � ��� we have that

������ un � u in H� implies un �� u in Lp � for all � � p � �� �

In particular

un �� u in L���� and junj� �� juj� in L���� �
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Thus� using H+older�s inequality�

��� junj��un �� ��� juj��u in L���� �

��� junj��un � u �� ��� juj�� juj� in L���� �������

and� since un �� u in L�����

������ ��� junj��un � un �� ��� juj�� juj� in L���� �

Taking v 	 u � H� in equation ����� we obtain

������
��� Z

�

run � ru
��� 	 bn kukH�
��R�� �

��� �
��

Z
�

��� junj��un � u
��� �

Passing to the limit n �� ��� using the fact that run � u weakly in
L����� bn �� � and ������� inequality ������ yields

������

Z
�

jruj� 	
��� �
��

Z
�

��� juj�� juj�
��� �

On the other hand� passing to the limit in ������ using the fact that
Cn �� �� ������� ������ and ������� we obtain

������ lim
n���

Z
�

jrunj� �
��� �
��

Z
�

��� juj�� juj�
��� 	 Z

�

jruj� �

Since by the lower semi
continuity of the L� norm in weak topology we
have that Z

�

jruj� � lim
n���

Z
�

jrunj� �

equation ������ implies that

������

Z
�

jruj� 	 lim
n���

Z
�

jrunj� �

which concludes the proof of Theorem � for E�� For the case of the
functional F� the same proof will work once we �x the Coulomb gauge�
The reader interested in seeing how the gauge invariance a�ects Palais

Smale sequences in this problem may take a look at the appendix of
����
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��� Threshold energies and components of E�
� �

We can reformulate the statement of Theorem � and state the
following Proposition�

Proposition �� Suppose that for some  � R� � we have that for some

� � �� �where �� is given Theorem �� there exist n� k � Z� n 		 k�
such that the topological sectors topn�E

�
� � and topk�E

�
� � are both non�

empty� Then� there are mountain�pass type critical points of E� or�

equivalently� there exist mountain�pass type solutions of the Ginzburg�

Landau equations �������
More precisely� consider two non�empty components of E�

� � ,� �
topn�E

�
� � and ,� � topk�E

�
� �� and let cn�k�,��,�� be de�ned as in

������� Then� there exists a map u � H����R�� which is a critical

point of E� and such that E��u� 	 cn�k�,��,���

Since H���� is locally pathwise connected and the level sets E�
�

are open� their path components coincide with their components� so
we can use the two concepts indistinguishably� Let n� k � Z be two
distinct integers� and let ,� and ,� be components of E�

� such that
,� � topn�E

�
� � and ,� � topk�E

�
� �� Then� given u�� u

�
� � ,� and

u�� u
�
� � ,�� we know that there exist two paths �i� i 	 �� �� such that

�i � ��� �� �� ,i � �i��� 	 ui � �i��� 	 u�i � i 	 �� � �

In particular�

������ �i�s� �  � for all s � ��� �� �

As usual� we de�ne the composition operation for paths� let � be a path
from p to q� and � be a path from q to r� then � 	 � � is the path from
p to r de�ned by

��s� �	

	
�

�

��� s� � for � � s � �

�
�

��� s� �� � for
�

�
� s � � �

And we de�ne the inverse path of �� which we denote by ���� as
����s� �	 ����s�� for s � ��� ��� Then� to any path � � ��� �� �� H����
between u� and u�� one can associate a path �� 	 ���� � �� � ��� �� ��
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H���� from u�� to u��� And vice
versa� to any path �� � ��� �� �� H����
between u�� and u��� one can associate a path � 	 �� �

� ���� � ��� �� ��
H���� from u� to u�� With these de�nitions� from equation ������ it
follows that

������ max
s�����	

E����s�� 	 max
s�����	

E���
��s��   �

And hence�

������ inf
��V

�
max
s�����	

�E����s���
�
	 inf

��V�

�
max
s�����	

�E���
��s���

�   �

where�

V �	 f� � C����� ��� H����R��� � ���� 	 u�� and ���� 	 u�g �

and

V � �	 f�� � C����� ��� H����R��� � ����� 	 u��� and ����� 	 u��g �

Thus� cn� the threshold energy for a transition from u� to u� de�ned in
������� is well de�ned as a transition energy from a component ,� of
topn�E

�
� � to a component ,� of topk�E

�
� �� We can de�ne�

������ cn�k�,��,�� �	 inf
��Vn�k
������

�
max
s�����	

�E����s���
�
�

where�

Vn�k�,��,��

�	 f� � C����� ��� H����R��� � ���� � ,� � topn�E
�
� ��

and ���� � ,� � topk�E
�
� �g �

By the Mountain Pass Theorem we know that cn�k�,��,�� is a gen

eralized critical value of E� and� since by Theorem � the functional
E� satis�es the Palais
Smale condition� this implies that cn�k�,��,�� is
also a critical value of E�� thus concluding the proof of Proposition �
and Theorem ��

Remark� For small � and n 		 k� cn�k�,��,�� shouldn�t depend on the
speci�c components ,� � topn�E

�
� � and ,� � topk�E

�
� �� but only on

n and k �i�e� only on the topological sectors themselves�� This leads
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us back to the question of how many distinct components can there be
inside a topological sector and how do they change when  changes� We
expect that for certain values of � topn�E

�
� � may not be connected� but

that as we increase  the di�erent components which existed at lower
energies� should increase in size and eventually intersect thus becoming
the same component� As a matter of fact� in ��� we will be able to
prove that all the components in topn�E

�
� � can be connected by paths

wich involve energies of� at most� something like �� while to connect
di�erent topological sectors we will need energies like � j log �j� which
for small enough � is much bigger than �� In this case cn�k�,��,��
will depend only on n and k as we said�

Remark� As usual� similar results are valid for F��

��� A model for superconductivity�

In this section we will consider the gauge
invariant Ginzburg
Lan

dau model ������ and prove that inside the level sets F�

� we can de�ne
topological sectors in a similar way to the one used for de�ning such
sectors inside the level sets E�

� in theorems � and � which we proved in
Section ��

����� Gauge �xing�

Given a con�guration �v�B� � F�
� � we will show in this section

how to choose a gauge equivalent con�guration� �u�A� � �v�B�� such
that we have the necessary control on A to allow us to bound the L�

norm of ru by a constant depending only on the energy level � In
fact� to achieve this� all we need to do is to �x a Coulomb gauge over
the unit disk D 	 B��� �� 	 � � B��� �����

Proposition 	� Given a con�guration �v�B��H�� there exists �u�A��
�v�B� such that

������

�
d
A 	 � � in D �

A � � 	 � � on D 	 S� �
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The proof is just the same as that of ��� Propositions I�� and I����
Now we remark that� since D is simply
connected� ������ implies that

there exists � � H��D�R� such that writing #� 	 � dx� � dx� 	 
 ��

������

�
A 	 d
#� 	 
 d� � in D �

� 	 � � on D �

It follows from ������ and ������ that � satis�es

������

�
"� 	 d
 d� 	 
 dA � in D �

� 	 � � on D �

This implies� using standard elliptic estimates� that

k�kW ���
D� � #C kdAkL�
D� �

which� together with ������ yields

������

kAk�W ���
D� 	

Z
D

jAj� �
Z
D

jrAj�

	

Z
D

jr�j� �
Z
D

jr��j�

� k�k�W ���
D�

� #CkdAk�L�
D�

� #C F��u�A�

� #C  �

where #C is a constant�

����� Global control of jruj��

The purpose of this subsection is to show how to obtain a bound
on krukL�
�� by a constant depending only on the energy level �

Lemma �� Given �v�B� � F�
� � let �u�A� be as in Proposition �� Then�

������

Z
�

jruj� � C �
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where C is a constant which only depends on �

Proof� Since� by construction� F��u�A� 	 F��v�B� � � we have
that� in particular�

������

Z
�

jrA uj� 	
Z
�

jru� � A uj� � �F��u�A� � � �

Hence� Z
�

jruj� 	
Z
�

jru� � A u� � A uj�

� �

Z
�

jru� � A uj� � �

Z
�

jAuj�

� �F��u�A� � �

Z
�

jAj� juj�������

� � � �

Z
�

jAj� �juj� � �� � �

Z
�

jAj�

� � � �

Z
�

jAj� j�� juj�j� �

Z
�

jAj� �

Using H+older�s inequality� and the fact that from the energy bound it
follows that

k�� juj�k�L�
�� � � �� F��u�A� � � ��  �

we obtain

������

Z
�

jruj� � � � � kA�kL�
�� k�� juj�kL�
�� � � kAk�L�
��

� � � � ���� kAk�L�
�� � � kAk�L�
�� �

Since we are in a two
dimensional domain it follows from the Sobolev
Embedding Theorem that W ������ �� Lq���� for all q � ��� hence�
in particular� there exists a constant &C such that

������ kAkL�
�� � &C kAkW ���
�� �

Furthermore� from ������ we know that

������� kAkW ���
�� � kAkW ���
D� �
p

#C  �
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From equations ������� ������ and ������� it follows that for � � � �as
mentioned before� it is the case where � is small that interests us��

�������

Z
�

jruj� � � � � ���� &C� kAk�W ���
D� � � kAk�W ���
D�

� � � ���� &C� #C  � � #C 	 C �

where C is a constant depending only on �

���	� De�nition of deg ��v�B���� and proof of Theorem ��

Once we have the estimate ������� we can de�ne deg �u��� as in
the case of the initial model ������ since we will have all the estimates
we used in the work that culminated with the de�nition of the degree
in Section �� Thus� for � su�ciently small� deg �u��� is well de�ned�
and hence we may de�ne

deg ��v�B���� �	 deg �u��� �

Once we have achieved this� Theorem � follows from the corresponding
result for deg �u��� which� thanks to estimate ������� can be proven
in a similar way to that we used for proving Theorem � �therefore� we
omit this proof��

The generalization of Theorem � to the setting of Riemannian man

ifolds will then follow from Theorem � in an analogous way as Theorem
� followed from Theorem ��

��� Appendix� Covering Lemma�

This section is devoted to a general covering Lemma we used to
prove Lemma ��

Lemma � Let � � � and W�� � � � �Wn be connected open subsets of R�

such that there exist C�� � � such that diam�Wl� � C �	� Then� for �
su�ciently small� there is a family of numbers ��� � � � � �m  ���� and
a family of balls B�� � � � � Bm� with m � n� such that� denoting by xj the
center of Bj� and by rj its radius�

i� rj � C�	j �
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ii�
n�
l��

Wl �
m�
j��

Bj�

iii� The enlarged balls &Bj �	 B�xj� �
�	j�
�

n����� rj� are pairwise

disjoint�

Proof� We start by de�ning

qn �	
�n��

�n�� � �
�

pk �	
�

kX
j��

��j

	
�k

�k�� � �
�

for k 	 �� � � � � n�
The proof of this Lemma is done by induction on the number k

of components of A 	
Sn
l��Wl� For k 	 �� it su�ces to consider a

unique ball of radius r� 	 C �	� � with �� 	 ���� 	 �p�� since� for �
su�ciently small�

������ diam �A� �
nX
l��

diam �Wl� � nC �	 � C ��	� �

Hence� we can �nd a ball B�� of radius r� � C��	� containing
Sn
l��Wl�

Suppose that the result is always true if A has n components� for all
n � k�� � n��� and� furthermore� the number m of balls obtained in
the covering process is at most n and each of the �j �s obtained satis�es

������ �j  �
nX
j��

��j

	 �pn  �pk�� �

To complete the induction argument� we just have to show that then
the result will still be true when A has k components� and that in this
case m � k � n and we can �nd �j �s such that

�j  �
kX

j��

��j

	 �pk �
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Let A�� � � � � Ak be the connected components of A� Suppose that

������ diam�A� � �nC �	qnpk�� �

Then� for � su�ciently small� we can include A in a ball B� of radius
r� � �	pk � In fact� it su�ces that

�nC �	qnpk�� � C �	qnpk �

This is always true� provided that � is su�ciently small� since

� qn pk�� � �pk if and only if
pk��
pk

�
�

qn
�

and

pk��
pk

	 � �
��k

pk��
� � �

�

�k��
	

�k��

�k�� � �
 �n��

�n�� � �
	

�

qn
�

Thus� if ������ is true� our proof will be completed� Hence� we may
suppose that this is not so� i�e�� that

������ diam�A�  �nC �	qnpk�� �

Let y�� y� � A be such that jy��y�j 	 diam�A�� and consider the family
of balls B�y�� r� for r � ��� diam�A��� De�ne Gj �	 fr � B�y�� r�
Aj 		
�g� j 	 �� � � � � k� Each Gj will be an interval� and the sum of the lengths
of the Gj �s will be smaller than the sum of the diameters of the Wl�s�
which is at most nC�	� Since nC �	 � nC �	qnpk�� � for all � � �� it
follows that the set

#G �	 ��� diam�A�� n
k�

j��

Gj �

will have a measure of at least

�nC�	qnpk�� � nC �	qnpk�� 	 �nC �	qnpk�� �

Moreover� the set #G is the union of� at most� k � � subintervals of
��� diam�A�� since it was obtained from the latter by removing the
k open intervals Gj �among which one had endpoint � and another
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had endpoint diam �A��� Consequently� at least one of its components�
which we will denote by �a�� b��� will be such that

������ b� � a�  j #Gj
k � �

 �n

k � �
�	qnpk�� � � �	qnpk�� �

Let #A 	 A 
 B�y�� a��� and &A 	 A n B�y�� b��� Then� A 	 #A � &A� and
both #A and &A include at least one of the Aj �s� Hence� both #A and &A
have at most k�� components and thus we can apply the induction step
to each of them� It yields� since the sum of the number of components
of #A and &A is k� that there will be a total of m � k balls B�� � � � � Bm�
such that

a� #A � B� � � � � �Bm� &A � Bm�� � � � � � Bm� for some m � m�

b� Each Bj has center xj and radius rj � C �	j � where �j 
�pk��  �pk�

c� The enlarged balls &Bj �	 B�xj � �
�	j�
�

n����� rj� are pairwise
disjoint for j � f�� � � � �mg and also for j � fm� �� � � � �mg�

However� to obtain the disjointness of two &Bj� one corresponding

to #A �i�e� j � m� and the other to &A �i�e� j � m�� we need to use
equation ������� In fact� if j� � m and j� � m� then

������ jxj� � y�j � a� � C �	j� � a� � C �	qnpk�� �

since Bj� 
 #A 		 �� #A � B�y�� a�� and by b�� �j�  �pk�� � qn �pk���
Similarly� we have that

������ jxj� � y�j � b� � C �	j� � b� � C �	qnpk�� �

since Bj� 
 &A 		 �� &A � A n B�y�� b�� and� by b�� �j�  �pk�� �
qn �pk���

Therefore� combining ������ and ������ we have

������ jxj� � xj� j � �C �	qnpk�� �

Since &Bji has radius

C �qn	ji � C �	qnpk�� �

equation ������ implies that

&Bj� 
 &Bj� 	 � �



Topological sectors for Ginzburg	Landau energies 	��

as desired� Consequently� the balls Bj obtained satisfy all the conditions
required for the induction argument� and thus the proof of Lemma � in
completed�

Remark� Relative to the similar covering argument of Lin ����� our
result has the advantage that we are able to keep the �j always bigger
than ���� which corresponds to keeping the balls Bj rather small � in
Lin�s result �j may tend to zero when n ���� However� we also lose
something� both because our proof is technically more complicated� but
also because we obtain smaller �and more complex� expansion factors
for the &Bj �s� In fact� even Lin�s expansion factors ���	j�� go to �

when n ���� but ours ���	j�
�
n������ will decrease to � considerably

faster�
We prefered to privilege the scale of the balls because it enables

us to assert that in our problem� at least at a scale ����� things appear
neutral to an outside observer �and it also makes the energy explosion
estimate ������ slightly neater�� Using Lin�s result� the scale would
depend on n� and hence on � which would be less satisfactory�
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Controllability of analytic

functions for a wave equation

coupled with a beam

Brice Allibert and Sorin Micu

Abstract� We consider the controllability and observation problem
for a simple model describing the interaction between a �uid and a
beam� For this model� microlocal propagation of singularities proves
that the space of controlled functions is smaller that the energy space�
We use spectral properties and an explicit construction of biorthogonal
sequences to show that analytic functions can be controlled within �nite
time� We also give an estimate for this time� related to the amount of
analyticity of the latter function�

�� Introduction�

Let � be the two�dimensional square � � 	
� ��� 	
� �� � R� �

We assume that � is �lled with an elastic� inviscid� compressible
�uid whose velocity �eld �v is given by the potential  � 	x� y� t��
�v � r� By linearization we assume that the potential  satis�es the
linear wave equation in �� 	
����

The boundary � � �� of � is divided in two parts �� � f	
� y� �
y � 	
� ��g and �� � �n��� The subset �� is assumed to be rigid and
we impose zero normal velocity of the �uid on it� The subset �� is
supposed to be �exible and occupied by a Bernoulli�Euler beam that

���
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vibrates under the pressure of the �uid on the plane where � lies� The
displacement of �� is described by the scalar function W � W 	y� t��
On the other hand� on �� we impose the continuity of the normal ve�
locities of the �uid and the beam� The beam is assumed to satisfy
Neumann�type boundary conditions on its extremes� All deformations
are supposed to be small enough so that linear theory applies� Under
natural initial conditions for  and W the linear motion of this system
is described by means of the following coupled equations

	��

�����������������������������������������

tt �� � 
 � in �� 	
��� �
�

��
� 
 � on �� � 	
��� �

�

�x
� �Wt � on �� � 	
��� �

Wtt �Wyyyy � t � 
 � on �� � 	
��� �
Wy	
� t� � Wy	�� t� � 
 � for t � 
 �

Wyyy	
� t� �Wyyy	�� t� � 
 � for t � 
 �

	
� � � � t	
� � 
� � in � �

W 	
� �W � � Wt	
� �W � � on �� �

By � we denote the unit outward normal to ��
In 	�� we have chosen to take the various parameters of the system

to be equal to one�
System 	�� is well�posed in the energy space Y � H�	���L�	���

H�
N 	����L�	��� for the variables 	�t�W�Wt� where H

�
N 	��� � fv �

H�	
� �� � vy	
� � vy	�� � 
g� The energy

	�� E	t� �
�

�

Z
�

	jrj� � jtj�� dx dy � �
�

Z
��

	jWyyj� � jWtj�� dy

remains constant along trajectories�
It is easy to see that the equilibria of these systems are of the form

	�� 	�t�W�Wt� � 	c�� 
� c�� 
� �

c� and c� being constant functions�
We study the controllability of system 	�� under the action of an

exterior force on the �exible part of the boundary ��� The control is
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given by a scalar function � � �	y� t� in the spaceH��	
� T �L�	����� Of
course this is an arbitrary choice and many others make sense� However
this is the most natural one when solving the control problem by means
of J� L� Lions�s HUM 	see ����� as we will do� The controlled system
reads as follows

	��

�����������������������������������������

tt �� � 
 � in �� 	
��� �
�

��
� 
 � on �� � 	
��� �

�

�x
� �Wt � on �� � 	
��� �

Wtt �Wyyyy � t � � � on �� � 	
��� �
Wy	
� t� � Wy	�� t� � 
 � for t � 
 �

Wyyy	
� t� �Wyyy	�� t� � 
 � for t � 
 �

	
� � � � t	
� � 
� � in � �

W 	
� �W � � Wt	
� �W � � on �� �

The problem of controllability can be formulated as follows� Given
T � �� �nd the space of initial data 	����W ��W �� that can be
driven to an equilibrium of the form 	�� in time T by means of a suitable
control � � H��	
� T �L�	�����

The model under consideration is inspired in and related to that of
H� T� Banks et al� in ���� However� there are some important di�erences
between these two models� First of all� we choose Neumann�type bound�
ary conditions for the beam� These are compatible with those of  in
order to develop solutions in Fourier series� Another di�erence is re�
lated to the nature of the controls� In ��� the control acts on the system
through a �nite number of piezoceramic patches located on ��� This
restricts very much the set of admissible controls� that are essentially
second derivatives of Heaviside functions� and much weaker controlla�
bility results have to be expected� In ��� the controllability problem is
not addressed� Instead� they consider a quadratic optimal control prob�
lem� More recently in ��� a Riccati equation for the optimal control is
derived� The problem of the controllability of one�dimensional beams
with piezoelectric actuators has been successfully addressed by M� Tuc�
snak ���� However� to our knowledge� there are no rigorous results on
the controllability of �uid�structure systems under such controls� In ���
the controllability problem for a similar system with a string instead
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of a beam was studied� It was shown that a space of analytical initial
data can be controlled in any time T � �� The techniques we develop
in the present article can be applied to that case and allow to show that
larger and larger classes of analytic functions can be controlled in �nite
time�

The propagation of singularities for the wave equation on any seg�
ment parallel to �� proves that the space of controlled functions will be
small� It will not contain all functions of �nite energy�

Let us denote by X � H�	
� ��� L�	
� ��� C � C and by X � its
dual space� Let also Yn � 	H�	
� ��� L�	
� ��� C � C � cos 	n� y��

By the HUM method� we will �rst prove that if C	n� T � is a se�
quence of constants such that any solution of the observation problem

	��

�����������������������������������������

tt �� � 
 � in �� 	
��� �
�

��
� 
 � on �� � 	
��� �

�

�x
�Wt � on �� � 	
��� �

Wtt �Wyyyy � t � 
 � on �� � 	
��� �
Wy	
� t� � Wy	�� t� � 
 � for t � 
 �

Wyyy	
� t� �Wyyy	�� t� � 
 � for t � 
 �

	�t�jt�� � 	���� � in � �

	W�Wt�jt�� � 	W ��W �� � on �� �

with initial conditions in Yn� satis�es

k	����W ��W ��k�Y � C	n� T �

Z T

�T
jWtt	
� t�j� dt �

then the space of initial data

H�
nX

n

	����W ��W ��n cos	n� y� j	����W ��W ��n � X

such that
X
n

C	n� T � 	k	����W ��W ��nk�X � � j�	
�j�� 	�
o

is a subset of the space of controlled functions� Remark that the spaceH
depends on the constants C	n� T �� when C	n� T � �increase�� H becomes
smaller�
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This paper aims at proving that� for T and n large enough�

	�� C	n� T � � C e��T �jnj

with the following property

Theorem �� For any positive real number q� there is a constant Cq

such that

	�� 
	T � � Cq

T ��q �

It means that any initial condition whose Fourier coe cients in
y decrease like e�jnj� can be controlled if T is larger than T 	
� �
��q
p
Cq�
� This condition on the Fourier coe cients means that the

initial condition is analytic with respect to y and that it can be contin�
ued as an holomorphic function over the complex strip jIm yj 	 
�

Now any initial condition that is analytic with respect to y can
be continued as an holomorphic function over a such a strip jIm yj 	 �
for a positive � that depends on this initial condition� Therefore� its
Fourier coe cients with respect to y decrease like e�jnj�� So according
to Theorem � and 	��� it can be controlled if T � T 	���

This means that any initial condition of �nite energy that is ana�
lytic with respect to y can be controlled in a �nite time 	which is not
uniform��

It is important to notice that analyticity is required only with
respect to the variable y� Therefore the space of controlled functions
is not symmetric in x and y� This means that we do not use the fact
that the metrics in our problem is analytic with respect to x� In ���� the
boundary control problem is studied on a surface of revolution� The
same kind of result is proved in that case� even if the surfece is only
C�� This is posible because such surface is still �analytic� with respect
to the angular variable� even if it is only C� with respect to its axial
variable�

The rest of the article is organized as follows� In Section � we give
a direct estimate for the observation problem and� by using 	��� we
apply Hilbert Uniqueness Method to solve our controllability problem�
We obtain that the initial data from H can be controlled in time T � In
Section � we prove some spectral properties of the operator that will be
used in the proof of the main theorem in Section �� In the last section
an explicit dependence of the space H on the time T is obtained�
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�� The direct estimate and the controllability problem�

���� Direct estimate�

Let us consider the system

	!�

�����������������������

tt � xx � n� ��  � f � in 	
� ��� 	
� T � �
x	�� � 
 � for t � 	
� T � �
x	
� � ut � for t � 	
� T � �
utt � n	 �	 u� t	
� � g � for t � 	
� T � �
	
� � � � t	
� � � � in 	
� �� �

u	
� � u� � ut	
� � u� �

The unknowns are  � 	x� t� and u � u	t�� Of course� since the coe �
cients of the system depend on n � 
� �� � � � � solutions 	� u� depend on
n too� However� in order to simplify the notations we will not use the
index n to distinguish the solutions of 	!� for the di�erent values of n�

The energy space for system 	!� is the Hilbert space X � H�	
� ���
L�	
� ��� C � C �

It is easy to see that for any 	�� �� u�� u�� � X and 	f� g� �
L�	
� T �L�	
� ��� C � system 	!� has a unique solution in the class

	��  � C	�
� T ��H�	
� ��� � C�	�
� T ��L�	
� ���� u � C�	�
� T �� C � �

In other words 	� t� u� ut� � C	�
� T ��X ��
The energy of the system

	�
� F 	t� �
�

�

Z �

�

	jtj� � jxj� � n� �� �� dx�
�

�
	jutj� � n	 �	 juj��

satis�es

	���
dF 	t�

dt
�

Z �

�

f	x� t� t	x� t� dx� g	t�ut	t� �

Therefore� when f � 
 and g � 
� the energy F remains constant along
trajectories�

We observe that when n 	 � the square root of F de�nes a norm
in X equivalent to the canonical norm k 
 kX of X

	��� k	u� v� w� z� �kX �
�Z �

�

	juxj� � juj� � jvj�� dx� w� � z�
����

�
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However� when n � 
 this is not the case� Actually� for n � 
� 	� u� �
	c�� c�� with c�� c� real constants are stationary solutions of 	!� with
f � 
� g � 
 for which the energy F vanishes�

We have the following �hidden regularity� result

Proposition �� For any T � 
 there exists a constant C	T � � 

independent of n � 
� �� � � � such that� Z T

�

juttj dt
��
�

Z T

�

	jutj� � 	� � n
 �
�u� � 	� � n� ��� �	
� t��dt

� C 	n	 � �� 	k	�� �� u�� u��k�X
� kfk�L����T �L������� � kgk�L����T �� �

	���

for any 	�� �� u�� u�� � X � f � L�	
� T �L�	
� ��� and g � L�	
� T ��
If g � L�	
� T �� then u � H�	
� T � and we also haveZ T

�

juttj� dt � C 	n	 � �� 	k	�� �� u�� u��k�X
� kfk�L����T �L������� � kgk�L����T �� �	���

Remark� This proposition shows that u is more smooth than what 	��
guarantees� This is due to the structure of the second order 	in time�
equation that u satis�es� The fact that the constant c in 	��� and 	���
does not depend on the index n is worth mentioning�

Proof of Proposition �� It is enough to consider smooth solutions
since a classical density argument allows to extend inequalities 	��� and
	��� to any solution with �nite right hand side� We use a classical mul�
tiplier technique 	see� for instance� ����� We multiply the �rst equation
in 	!� by 	� � x� x and integrate over 	
� �� � 	
� T �� Integrating by
parts we obtain

�

�

Z T

�

	jtj� � jxj� � n� �� ��	
� t� dt

� �
Z �

�

t 	�� x� x dx
���T
�

�
�

�

Z T

�

Z �

�

	�t � �x � n� �� �� dx dt�

Z T

�

Z �

�

f	�� x� x dx dt

� X �
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In this identity we use the notation LjT� � L	T ��L	
�� The right hand
side of this identity can be easily bounded as follows

jXj � �
�

Z �

�

	�t � �x�	x� 
� dx�
�

�

Z �

�

	�t � �x�	x� T � dx

�

Z T

�

F 	t� dt�
�

�
	kfk�L����T �L������� � kxk�L����T �L��������

� F 	
��F 	T ��

Z T

�

F 	t� dt�kF 	t�kL����T ��
�

�
kfk�L����T �L�������

� C 	kFkL����T � � kfk�L����T �L�������� �

with C � 
 independent of n�
In the sequel� if some constant in the inequalities depends on n� we

will make it explicit by means of an index n on that constant�
On the other hand� from identity 	��� and using Gronwall�s in�

equality it is easy to deduce that

kFk�L����T � � C 	kfk�L����T �L������� � kgk�L����T � � F 	
�� �

Since H�	
� �� is continuously embedded in C	�
� ��� C � we also haveZ T

�

�	
� t� dt � C

Z T

�

F 	t� dt

� C 	kfk�L����T �L������� � kgk�L����T � � F 	
�� �

Combining these inequalities we deduce thatZ T

�

	jtj� � jxj� � n�����	
� t� dt

� C 	n� � �� 	k	�� �� u�� u��k�X
� kfk�L����T �L������� � kgk�L����T �� �

	���

On the other hand

n
 �

Z T

�

u�	t� dt � �n	 �	
Z T

�

F 	t� dt

� C n	 	k	�� �� u�� u��k�X	���

� kfk�L����T �L������� � kgk�L����T �� �
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Inequalities 	��� and 	��� are a direct consequence of 	��� and 	��� and
the coupling conditions between  and u given in system 	!�� i�e�

	��� y	
� t� � ut	t�� utt	t� � g	t� � t	
� t�� n	 �	 u	t� �

for t � 	
� T ��

���� A controllability result�

In this section� we solve the controllability problem 	�� stated in
the Introduction by using J�� L� Lions�s HUM� This is done by Fourier
descomposition which is possible because of the boundary conditions
we have chosen for W � Indeed� W is assumed to satisfy Neumann type
boundary conditions which are compatible with those of  to develop
solutions in Fourier series�

Indeed� let us decompose the control �� the solutions �W and the
initial data in the following way

	�!�

���������������������������������������������

� �
�X
n��

�n	t� cos 	n� y� �

 �
�X
n��

"n	x� t� cos 	n� y� �

	���� �
�X
n��

	"�
n	x��"

�
n	x�� cos 	n� y� �

W �
�X
n��

Vn	t� cos 	n� y� �

	W ��W �� �
�X
n��

	V �
n � V

�
n � cos 	n� y� �

With this decomposition� system 	�� can be split into the following
sequence of one�dimensional controlled systems for n � 
� �� � � �

"n�tt �"n�xx � n� ��"n � 
 � in 	
� ��� 	
��� �
"n�x	�� t� � 
 � for t � 
 �

"n�x	
� t� � �Vt	t� � for t � 
 �
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Vn�tt	t� � n	 �	 Vn	t�

� "n�t	
� t� � �n	t� � for t � 
 �	���

"n	
� � "
�
n� "n�t	
� � "

�
n � in 	
� �� �

Vn	
� � V �
n � Vn�t	
� � V �

n �

The control � we obtain is of the form

� �
��

�t�
� �

with � � L�	�� � 	
� T �� having compact support in time� ThereforeR T
� � � 
� Taking this fact into account it is easy to see that the con�
stants c�� c� of the equilibrium we reach at time t � T are determined
a priori by the initial data� Indeed� integrating the �rst equation of 	��
in � we obtain that Z

�

t dx dx�
Z
��

W dy

remains constant in time� Therefore� necessarily�

	�
� c� �

Z
��

W � dy �
Z
�

� dx dy �

On the other hand� integrating the equation satis�ed byW on ���	
� T �
and taking into account that

R T
� � � 
 we deduce that

	���

Z
��

Wt	T � dy �

Z
��

	
� y� T � dy �

Z
��

W � dy �

Z
��

�	y� 
� dy

and therefore

c� �

Z
��

	W � � �	
� y�� dy �

In terms of the Fourier coe cients 	�!� these constants can be written
in the following way

	��� c� � V �
� �"

�
�	
� � c� � V �

� �
Z �

�

"�
�	x� dx �

Therefore� the constants c� and c� of the equilibrium we may reach
are uniquely determined by the Fourier coe cients of the initial data
corresponding to the frequency n � 
 in the y�variable�
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This fact is related to the di�erent nature of systems 	��� for n � 

and n 	 �� While for any n 	 � system 	��� is exactly controllable to
zero at any time T � �� when n � 
 we can only control the system to
the equilibrium given by 	��� in terms of the initial data�

In this section we suppose that for any n � N� and time T � �
we can �nd a constant C	n� T � such that for any 	"��"�� V �� V �� � X �
the solution of problem

	���

�����������������������

"tt �"xx � n� ��" � 
 � in 	
� ��� 	
��� �
"x	�� t� � 
 � for t � 
 �

"x	
� t� � Vt	t� � for t � 
 �

Vtt	t� � n	 �	 V 	t��"t	
� t� � 
 � for t � 
 �

"	
� � "� � "t	
� � "
� � in 	
� �� �

V 	
� � V � � Vt	
� � V � �

satis�es

	��� k	"��"�� V �� V ��k�X � C	n� T �

Z T

�

jVttj� dt �

We shall prove 	��� and we shall give estimates over C	n� T � in Section
�� while proving Theorem ��

When n 	 � we have the following controllability result for 	����

Proposition �� Let X be the space H�	
� ���L�	
� ���C �C � Assume

that T � � and n 	 �� Then� for any 	"��"�� V �� V �� � X � there exists

a control � � H��	
� T � with compact support such that the solution

	"� V � of 	��� satis�es

	��� "	T � � "t	T � � 
 in 	
� �� � V 	T � � Vt	T � � 
 �

Remark� In the statement of Proposition � and in the sequel we drop
the index n from the unknowns 	"� V � to simplify the notation�

The solution 	"� V � is de�ned by transposition� Therefore 	���
has to be understood in a suitable weak sense� We will return to this
question in the proof of the proposition�

The proof of Proposition � provides the continuous dependence of
the control � on the initial data� More precisely

	��� k�k�H�����T � � C	n� T � 	k	"��"�� V �� V ��k�X � � j"�	
�j�� �
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for any initial data 	"��"�� V �� V �� as in the statement of Proposition
�� By X � we denote the dual of the space X � The constant C	n� T � in
	��� is the one appearing in 	��� and will be evaluated in Section ��

Proof� We use HUM to prove this result�
Given any 	�� �� u�� u�� � X we solve the adjoint system

	���

�����������������������

tt � xx � n� ��  � 
 � in 	
� ��� 	
� T � �
x	�� t� � 
 � for t � 	
� T � �
x	
� t� � ut	t� � for t � 	
� T � �
utt	t� � n	 �	 u	t�� t	
� t� � 
 � for t � 	
� T � �
	
� � � � t	
� � � � in 	
� �� �

u	
� � u� � ut	
� � u� �

We �x� some non�negative smooth function �	
� T � �� R with compact
support such that � � � in 	�� T � �� with T � � � � ��

We then solve the backward system

	�!�

���������������������������������

"tt �"xx � n� ��" � 
 � in 	
� ��� 	
� T � �
"x	�� t� � 
 � for t � 	
� T � �
"x	
� t� � �Vt	t� � for t � 	
� T � �
Vtt � n	 �	 V �"t	
� t�

� � d�

dt�
	�	t�utt	t�� � for t � 	
� T � �

"	T � � "t	T � � 
 � in 	
� �� �

V 	T � � Vt	T � � 
 �

The solution of 	�!� is de�ned by transposition 	see ����� If we multiply
in 	�!� by any solution 	e� eu� of 	!� and integrate 	formally� by parts
we obtain the following identityZ T

�

�	t�utt	t� eutt	t� dt� Z T

�

Z �

�

ef " dx dt�
Z T

�

eg V dt

�

Z �

�

	�"t	
� e	
� � "	
� et	
�� dx� V 	
� e	
� 
�
� "	
� 
� eu	
�� V 	
� eut	
� � Vt	
� eu	
� �	���
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Notice that when we derived 	��� we have used the fact that � and its
�rst derivative vanish for t � 
 and T �

We adopt 	��� as de�nition of weak solution in the sense of trans�
position of 	�!�� More precisely we say that 	"� V � solve 	�!� if 	���

holds for any 	e�� e�� eu�� eu�� � X and 	 ef� eg� � L�	
� T �L�	
� ��� C ��
We observe that 	��� can be rewritten in the following wayZ T

�

�	t�utt	t� eutt dt� Z T

�

Z �

�

ef " dx dt�

Z T

�

eg V dt

� �h"t	
� � V 	
� ��� e	
�i� h"	
�� et	
�i
� 	Vt	
� � "	
� 
�� eu	
�� V 	
� eut	
� �	�
�

where h
� 
i denotes both the duality pairing between 	H�	
� ���� and
H�	
� �� and the scalar product in L�	
� �� and �� � 	H�	
� ���� denotes
the Dirac delta at y � 
�

We have the following existence and uniqueness result of solutions
in the sense of transposition�

Proposition �� System 	�!� has a unique solution in the sense of

transposition� More precisely� for any solution 	� u� of 	��� with initial

data in X � there exists a unique 	"� V � � C	�
� T ��L�	
� ����L�	
� T ��
�� � L�	
� ��� �� � 	H�	
� ����� �� � C � �� � C satisfyingZ T

�

�	t�utt	t� eutt dt � Z T

�

Z �

�

ef " dx dt�
Z T

�

eg V dt

� h��� e	
�i� h��� et	
�i� �� eu	
� � �� eut	
�	���

for any solution 	e� eu� of 	!� with
	e�� e�� eu�� eu�� � X � ef � L�	
� T �L�	
� ���� eg � L�	
� �� �

Remark� In the identity 	��� ��� ��� �� and �� play respectively the
role of "	
�� �"t	
� � V 	
� ��� �V 	
� and Vt	
� � "	
� 
�� It is easy
to see that� in the frame of smooth functions� there is a one to one
correspondence between 	��� ��� ��� ��� and 	"	
��"t	
�� V 	
�� Vt	
���

Proof of Proposition �� In view of Proposition � we know that the
map

	��� 	e�� e�� eu�� eu�� ef� eg� �� Z T

�

�	t�utt	t� eutt	t� dt
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is linear and continuous from X � L�	
� T �L�	
� ���� L�	
� T � into C �
This implies the existence and uniqueness of 	��� ��� ��� ���� 	"� V � �
X ��L�	
� T �L�	
� ����L�	
� T � such that 	��� holds� Moreover� there
exists a constant C � 
 such that

	���

k	"� V �kL����T �L��������L����T � � k	��� ��� ��� ���kX �
� C kuttkL����T �

� C k	�� �� u�� u��kX � �

The fact that " � C	�
� T ��L�	
� ��� can be deduced from 	��� by a
classical density argument�

Remark �� When the data of 	��� are smooth� the solution 	� u� is
smooth too� It is easy to see that 	�!� has a �nite energy solution� In
this case one can check that the element 	��� ��� ��� ��� � X � obtained
in Proposition � is such that

�� � "	
� � �� � �"t	
��V 	
� �� � �
� � �V 	
�� �� � Vt	
��"	
� 
� �

By a density argument one can then deduce that the solution 	"� V �
obtained in Proposition � is such that the traces

"jt�� � �"t � V ��jt�� � �V jt�� � Vt �"	
� t�jt��
are well de�ned and coincide with 	��� ��� ��� ����

The same arguments allows us to show that the traces are also well
de�ned at t � T � This su ces to assert that the weak solution of 	�!�
we have constructed by transposition is at rest at t � T �

We can now complete the proof of Proposition ��

End of the proof of Proposition �� In view of Proposition � and
Remark � we can de�ne a linear and continuous map # from X into X �

such that

#	�� �� u�� u�� � 	�"t � V ��jt���"	
�� Vt �"	
� t�jt����V jt��� �

Taking in 	���� ef � 
�eg � 
 and 	e� eu� � 	� u�� we deduce that
h#	�� �� u�� u��� 	�� �� u�� u��i �

Z T

�

�	t� jutt	t�j� dt
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and in view of 	��� we deduce that there exists C � 
 such that

h#	�� �� u�� u��� 	�� �� u�� u��i 	 C k	�� �� u�u��k�X �

Actually� C � 	C	T� n����� where C	T� n� is as in 	����
This implies that # is an isomorphism�
This shows that given any 	��� ��� ��� ��� � X � there exists

	�� �� u�� u�� � #��	��� ��� ��� ���

such that the corresponding solution of 	�!� in the sense of transposition
satis�es

	���
"	
� � �� � �"t � V ��jt�� � �� �

� V jt�� � �� � Vt �"	
� t�jt�� � �� �

If we want this to be equivalent to the initial data of 	��� we have to
take

	��� �� � "� � �� � �"� � V � �� � �
� � �V � � �� � V � �"�	
� �

This makes sense when the data 	"��"�� V �� V �� is in X �
The control we have obtained is of the form

� � � d�

dt�
	� utt� �

where u corresponds to the solution 	� u� of 	��� with data

	�� �� u�� u�� � #��	��� ��� ��� ��� �

where 	��� ��� ��� ��� is given by 	����
From the identities above we see that

k�k�H�����T � � k� uttk�L����T �

� C k	��� ��� ��� ���k�X �
� C 	k	"��"�� V �� V ��k�X � � j"�	
�j�� �

where C � C	T� n� is the constant obtained in 	����
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Remark �� In fact� in some sense� we obtain a stronger result since
we prove that we can control the problem 	��� for any initial data
	��� ��� ��� ��� � X �� In order to give an interpretation of the control
problem in terms of the initial data 	"��"�� V �� V �� we have to assure
that "�	
� makes sense� For this reason we consider that

	"��"�� V �� V �� � X �

When n � 
 one can not expect the same controllability result due
to the conservation of the quantities 	��� along the trajectories� In this
case the controllability result reads as follows

Proposition �� Assume that T � � and n � 
� Then� for any

	"��"�� V �� V �� � X there exists a control � � H��	
� T � with compact

support such that the solution 	"� V � of 	��� satis�es

	���

"	T � � V � �"�	
� � "t	T � � 
 �

V 	T � � V � �
Z �

�

"� dx � Vt	T � � 
 �

Remark �� This result asserts that� when n � 
� any solution of
	��� can be driven to an equilibrium con�guration which is a priori
determined by the initial data�

Proof� First of all we observe that proving Proposition � is equivalent
to showing that for any initial data as in the statement of Proposition
� and satisfying the further assumptions

	��� V � �"�	
� � 
 � V � �
Z �

�

"�	x� dx � 
 �

then� there exists a control � such that

	�!� "	T � � "t	T � � 
 in 	
� �� � V 	T � � Vt	T � � 
 �

Indeed� this is an immediate consequence of the remark made in the
introduction that shows that when � is of zero average the following
identities hold

	���

Vt	T � � "	
� T � � V � �"�	
� �

V 	T ��
Z �

�

"t	x� T � � V � �
Z �

�

"�	x� �
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Thus� in the sequel we focus on initial data 	"��"�� V �� V �� satisfying
	���� For the adjoint system

	�
�

�����������������������

tt � xx � 
 � in 	
� ��� 	
� T � �
x	�� � 
 � for t � 	
� T � �
x	
� � ut � for t � 	
� T � �
utt � t	
� � 
 � for t � 	
� T � �
	
� � � � t	
� � � � in 	
� �� �

u	
� � u� � ut	
� � u� �

we consider initial data in the following subspace X� of X

	��� X� �
n
	�� �� u�� u�� � Xu� � �	
� � 
 �

Z �

�

� dy � u� � 

o
�

It is easy to see that the subspace X� is invariant under the �ow gener�
ated by 	�
��

Given 	�� �� u�� u�� � X� we solve �rst 	�
� and then the back�
ward system

	���

���������������������������

"tt �"xx � 
 � in 	
� ��� 	
� T � �
"x	�� t� � 
 � for t � 	
� T � �
"x	
� t� � �Vt	t� � for t � 	
� T � �

Vtt	t� � "t	
� t� � � d�

dt�
	�	t�utt	t�� � for t � 	
� T � �

"	T � � "t	T � � 
 � in 	
� �� �

V 	T � � Vt	T � � 
 �

where � is as in the proof of Proposition ��
Proceeding as in the proof of Proposition � one can show that 	���

has a unique solution de�ned by transposition such that the traces 	�!�
are well de�ned� On the other hand� integrating the equations in 	���
we deduce that

	���

Z �

�

��	x� dx � 
 � �� � 
 �
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Let us denote by Z the subspace of X � satisfying 	���� More precisely�

	��� Z � f	��� ��� ��� ��� � X � such that 	��� holdsg �

It is easy to check that Z is actually the dual of X�� Indeed� the dual of
X� is a quotient space of X � and there is a one�to�one correspondence
between Z and this quotient space in the sense that� in Z� we have
chosen the unique element of each class of the quotient space satisfying
	����

As in the proof of Proposition � we can de�ne a linear and continu�
ous operator # � X� �� Z that associates the trace 	��� ��� ��� ��� � Z
in 	��� to each 	�� �� u�� u�� � X��

We also have

h#	�� �� u�� u��� 	�� �� u�� u��i �
Z T

�

�	t� jutt	t�j� dt �

Remark that inequality 	��� also holds for the case n � 
 if we consider
initial data in X�� Hence there exists a constant C � 
 such that

h#	�� �� u�� u��� 	�� �� u�� u��i 	 C k	�� �� u�� u��k�X � �

for all 	�� �� u�� u�� � X�� since the quantity 	k�xk�L�������k�k�L�������

ju�j����� de�nes a norm in X� which is equivalent to the norm induced
by X �

We deduce that # � X� �� Z is an isomorphism�
Then� given initial data as in the statement of Proposition � and

such that 	��� holds we de�ne 	��� ��� ��� ��� � Z by 	���� The control
we are looking for is

� � � d�

dt�
	�	t�utt	t�� �

where u is the second component of the solution 	� u� of 	�
� with
initial data 	�� �� u�� u�� � #�� 	��� ��� ��� ����

This concludes the proof of the Proposition�
Let us now state the controllability results for the two�dimensional

system 	���
We use the Fourier decomposition method described at the begin�

ning of this section� Thus we develop the initial data 	����W ��W ��
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to be controlled in Fourier series

	���

�����������
� �

�X
n��

"�
n	x� cos 	n� y� � � �

�X
n��

"�
n	x� cos 	n� y� �

W � �
�X
n��

V �
n cos 	n� y� � W � �

�X
n��

V �
n cos 	n� y� �

We assume that for every n � 
� �� � � � the initial data satisfy the as�
sumptions of Proposition � and Proposition �� We set

	��� ��n � "
�
n � �

�
n � �"�

n � V �
n �� � �

� � �V �
n � ��n � V �

n �"
�
n	
� �

We introduce the following space of initial data

	���
H �

n
	����W ��W �� � Y �

�X
n��

C	n� T � k	��n� ��n� ��n� ��n�k�X �

� k	����W ��W ��k�H 	�
o
�

where the constants C	n� T � are those appearing in 	����

Proposition �� Assume that T � �� Then� for every initial data

	����W ��W �� in H there exists a control � � H��	
� T �L�	
� ���
such that the solution 	�W � of 	�� satis�es

	�!�

�������������
	T � � �� �

Z �

�

W �	y� dy �

Z �

�

"�	
� y� dy � t	T � � 
 �

W 	T � � h��� �i

�

Z �

�

W �	y� dy �
Z �

�

Z �

�

"�	x� y� dx dy � Wt	T � � 
 �

Moreover there exists a constant C � 
 such that

	��� k�kH�����T �L������� � C k	����W ��W ��kH �

Remark 	� The control time T � � is optimal� Indeed� when T 	 �
it is easy to see that the set of controllable data is not dense in the
space of �nite energy data� Actually� when T 	 � none of the one�
dimensional problems 	��� is approximately controllable� i�e� the space
of controllable data is no even dense in Y ��
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Remark 
� The constants C	n� T � play an important role in the con�
trollability problem since the space H of controllable functions depends
on them� The next two sections are devoted to the evaluation of these
constants�

Proof� In view of propositions � and � for any n � 
� �� � � � there
exists a control �n � H��	
� T � such that the solution 	"n� Vn� of 	���
satis�es

	�
� "n	T � � "n�t	T � � 
 in 	
� �� � Vn	T � � Vn�t	T � � 
 �

for n 	 � and

	���
"�	T � � �� � "��t	T � � 
 in 	
� �� �

V�	T � � h��� �i � V��t	T � � 
 �
when n � 
�

On the other hand

	��� k�nk�H�����T � � C	n� T � k	��n� ��n� ��n� ��n�k�X � �

We construct the following control for the two�dimensional system

	��� �	y� t� �
�X
n��

�n cos 	n� y� �

We have� in view of 	����

k�k�H�����T �L������� �
�X
n��

k�n	t�k�H�����T �

�
�X
n��

C	n� T �k	��n� ��n� ��n� ��n�k�X �

� k	"��"��W ��W ��k�H
	� �

Therefore � � H��	
� T �L�	
� ���� On the other hand�

"	x� y� t� �
�X
n��

"n	y� t� cos 	n� y� � W 	y� t� �
�X
n��

Vn	t� cos 	n� y�
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solves 	�� with the control � given in 	��� and satis�es 	�!� at time
t � T �

This concludes the proof of this Proposition�

�� Spectral analysis�

In this section we give some estimates on the spectrum of the dif�
ferential operator corresponding to 	��� that will be used in the next
section to prove 	���� In order to analyze the spectrum of 	��� let
	"	x� t�� V 	t�� be solution of

	���

�����������
"tt �"xx � n� �� � � 
 � in 	
� ��� 	
��� �
"x	�� � 
 � for t � 	
��� �
"x	
� � Vt � for t � 	
��� �
Vtt � n	 �	 V � �t	
� � 
 � for t � 	
��� �

Now if we look for solutions of 	��� of the form 	"	x� t�� V 	t�� �
e�t 	"	x�� V �� with V � R� it follows that the eigenvalues � of system
	�� are the roots of the equation

	��� e�
p
���n��� � ��� �p

�� � n� �� 	�� � n	 �	�

�� �
p
�� � n� �� 	�� � n	 �	�

�

We have the following �rst result

Lemma �� System 	�� has a two�parameter sequence of purely imagi�

nary eigenvalues f�n�kgn�N�k�Z� given by

	��� �n�k �
q
z�n�k � n� �� i

if k � 
 and �n�k � ��n��k if k 	 
� where fzn�kgk�N� are the roots of

the equation

	��� tan z �
z� � n� ��

z � z 	n� �� � n	 �	�
�

Moreover� there are another two eigenvalues of 	��� ��n and ���n � with

the modulus less than n�� given by

	�!� ��n �
p
n� �� � 	z�n�� i � ���n � �

�
n �
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where z�n is the unique positive root of the equation

	��� e�z �
z � z� � n� �� � z 	n	 �	 � n� ���

z � z� � n� �� � z 	n	 �	 � n� ���
�

In the last case� ��n � ���n � 
 when n � 
�

Proof� We know that the eigenvalues � are roots of 	���� Considering

the change of variable � �
p
�� � n� �� equation 	��� becomes

	�
� e�� �
� � �� � n� �� � � 	n	 �	 � n� ���

� � �� � n� �� � � 	n	 �	 � n� ���
�

zn,k0

n,1 zn,2

γn

zO

g
n

Figure ��

Since the di�erential operator corresponding to 	�� is conservative
its eigenvalues will be all purely imaginary� Hence� we have to look only
for those roots of 	�
� which are purely imaginary or real� It follows
that the imaginary roots of 	�
� are the roots of the equation 	��� and
the real ones are roots of 	����
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z
n, *

1

O

hn

Figure ��

Observe that the right hand side of 	��� has a pole at

z �
p
n	 �	 � n� �� �

Let us denote by 
n � n	 �	�n� ��� �n �
p

n and let k� � N be such

that k� � � ��� � p

n 	 k� � � ����

Equation 	��� has an unique root in each interval 	k ������ k ��
���� for k � N n fk�g�

In 	k� �� ���� k� �� ���� there are two roots zn�k��� and zn�k� of
	����

The localization of the roots fzk�mgk�N� and zn�� is illustrated in
�gures � and �� where

gn	z� �
z� � n� ��

z � z 	n� �� � n	 �	�

and

hn	z� �
z � z� � n� �� � z 	n	 �	 � n� ���

z � z� � n� �� � z 	n	 �	 � n� ���
�

The roots correspond to the points of intersection of the curves in the
�gures�
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The skew adjoint operator corresponding to 	�� can be diagonalised
over the orthogonal basis of eigenvectors

�n�k �

�BBB	
��n�k

��n�k

�n�k

�	n�k


CCCA

�

�BBBBBBBBBBBBB	

�

�n�k
cosh

�q
n� �� � ��n�k 	x� ��

�
cos 	n� y�

� cosh �qn� �� � ��n�k 	x� ��
�
cos 	n� y�

�
q
n� �� � ��n�k

��n�k
sinh

�q
n��� � ��n�k

�
cos 	n� y�q

n� �� � ��n�k

�n�k
sinh

�q
n� �� � ��n�k

�
cos 	n� y�


CCCCCCCCCCCCCA
and the solution of 	�� with initial condition �n�k is such that�BBB	

"	x� y� t�

"t	x� y� t�

W 	y� t�

Wt	y� t�


CCCA � �n�k	x� y� e
�n�kt �

As this basis is not normalized� we will denote $n�k � k�n�kkY � Notice
that if n and k are integers�

	��� c � $n�k � C �

On the other hand zn�� is the only positive real solution to

e�t � hn	t� �
N	t�

D	t�
�
�t� � n� �� � t 	t� � n	 �	 � n� ���

t� � n� �� � t 	t� � n	 �	 � n� ���
�

Let t�	n� be the real root of D� It follows that zn�� � t�	n� � n��
Furthermore� as D	n���� � 
 and R	n���� � � 	 e�n

���

� zn�� 	 n��� for
large n�
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Therefore� as �n�� � i
q
n� �� � z�n���

	��� c n�
 �
����n��
i n

� �
��� � C n��

and

	��� c n� � $n�� � C en
���

�

For any 	����W ��W �� in Y�

	����W ��W �� �
X
n�N

k�Z��f����g

an�k
$n�k

�n�k	x� y� �

with fan�kgn�k � l��
Let us now make some notations� We will write for any

	����W ��W �� in Y that
 	����W ��W �� � Yn� if n �� n� implies an�k � 
�

 	����W ��W �� � Y��� if jkj � jnj implies an�k � 
�
 	����W ��W �� � Y��� if jkj � jnj or k � f�� ��g implies an�k �


�

 	����W ��W �� � Yi�n implies 	����W ��W �� � Y�i� � Yn�

We can denote

	����W ��W �� � 	����W ��W ����� � 	����W ��W ����� �

with 	����W ��W ���i� � Y�i��
Moreover I will be the set of 	k� n� such that k � f�� ��g or jkj �

jnj� and we will agree that �� � ��� To end with� we shall also denote
�n�k � Im�n�k to deal with real numbers�

�� Proof of Theorem ��

In order to prove the theorem� we will use a proposition for low
frequencies and a lemma for high ones�
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Proposition � 	Low frequencies�� For any positive � and �� there exists
a constant C��	� an integer n�	�� and a positive time T�	�� �� � C	��

��	

such that for any integer n greater than n�	�� and any 	����W ��W ��
in Yn� the solution of 	�� with initial condition 	����W ��W �� satis�
�es

k	����W ��W �����k�Y � C��	 e
��jnj

Z T����	�

�T����	�
jWtt	
� t�j� dt �

This proposition will be proved in Section ����

Lemma � 	High frequencies�� There exists a constant C and a positive

time T� such that for integer n and any 	����W ��W �� in Yn��� the

solution of 	�� with initial condition 	����W ��W �� satis�es

	��� k	����W ��W ��kY � C

n	
kWttkL�����T������ �

The proof of Lemma � will be given in subsection ����
Let us now prove how do Proposition � and Lemma � imply that

Theorem � is true�

Proof of Theorem �� Let � and � be two positive real numbers� Out
of Propositions � and Lemma �� we get two positive times� denoted T�
and T�	�� ��� Let us de�ne T 	�� �� � sup fT�� T�	�� ��g�

Let n be a positive integer and 	����W ��W �� any initial condi�
tion in Yn� Then we have

k	����W ��W ��k�Y
� k	����W ��W �����k�Y � k	����W ��W �����k�Y �

So by Proposition � and Lemma �� for n 	 n�	���

k	����W ��W ��k�Y � C��	 e
��jnj

Z T����	�

�T����	�
jWtt	
� t�j� dt

�
C

n	

Z T�

�

jW ���
tt	
� t�j� dt

� C��	 e
��jnj

Z T ���	�

�T ���	�
jWtt	
� t�j� dt
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�
C

n	

Z T�

�

jWtt	
� t�j� dt

�
C

n	

Z T�

�

jW ���
tt	
� t�j� dt �

Therefore� by the direct estimate 	����

k	����W ��W ��k�Y

� C ���	 e
��jnj

Z T ���	�

�T ���	�
jWtt	
� t�j� dt� C � k	����W ��W �����k�Y �

So by Proposition ��

k	����W ��W ��k�Y � C ���	 e
��jnj

Z T ���	�

�T ���	�
jWtt	
� t�j� dt �

We can increase the constant to take care of the �rst n�	�� values of n�
As T 	�� �� � T�	�� �� � C����	 � if we put

T 	
	T �� �� � T �

we get


	T � � Cq

T ��q �

for any positive real number q and 	�� is proved�

We pass now to prove Lemma ��

���� Proof of Lemma ��

Since 	����W ��W �� � Y��n�

	���

	����W ��W �� �
X
jkj
n

an�k
�n�k
$n�k

�

k	����W ��W �����k�Y �
X
jkj
n

jan�kj� �
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On the other hand� for T� � 
�Z T�

�

jWtt	t� 
�j�

�

Z T�

�

�����n�k X
jkj
n

an�k
�n�k
$n�k

e�n�kt i
����

�

Z T�

�

��� X
jkj
n

an�k
$n�k

q
n� �� � ��n�k sin

�q
n��� � ��n�k

�
e�n�kti

���� �
Let us prove that there exists c � 
 such that� for k � n�

	��� �n�k�� � �n�k 	 c �

Firstly� remark that zn�k�� � zn�k � ���� for all k �� k� � �� k� where
k� � N is such that 	k� � ��� � ��� � p


n 	 k� � � ���� We recall
that 
n � n	 �	 � n� ��� In order to prove that there is a gap between
zn�k��� and zn�k� let us show that� if z � 		k� � ��� � ���� k� � � ����
then

	���
���z� � n� ��

z � z 
n

��� 	 �

�
�

Indeed we have���z� � n� ��

z � z 
n

���
	 min

�����
�
	k� � ��� � �

�

��
� n� ���

	k� � ��� � �

�

�
�
�
	k� � ��� � �

�

�

n

�����
�����

�
	k� � ��� �

�

�

��
� n� ���

	k� � ��� �
�

�

�
�
�
	k� � ��� �

�

�

�

n

�����
�

	 
n � n� ��


n �
p

n

p

n


min


����	k� � ��� � �

�
�p
n

��� � ����	k� � ��� � �

�
�p


n

���
�

	 �

�
�
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From 	��� it follows that max fj tan zn�k���j� j tan zn�k� jg � ����
Hence jzn�k� � zn�k���j � arctan 	�����
We can evaluate now

�n�k�� � �n�k �
q
n� �� � z�n�k�� �

q
n� �� � z�n�k

�
	zn�k�� � zn�k� 	zn�k�� � zn�k�

�
q
n� �� � z�n�k

� arctan
�

�

n�

�n�

�
�

�
arctan

�

�

and 	��� holds with c � 	���� arctan 	�����
By using Ingham�s inequality 	see Ingham ���� we obtain that� for

T� � ���c�

	�!�

Z T�

�

jWtt	t� 
�j�

	 C
X
jkj
n

��� an�k
$n�k

���� ��qn� �� � ��n�k sin
�q

n� �� � ��n�k
���� �

Let us prove that

	���
��qn� �� � ��n�k sin

�q
n� �� � ��n�k

��� � jzn�k sin zn�kj 	 C

n	
�

where C is a positive constant not depending on n and k�
Firstly� from 	���� we have

zn�k sin zn�k �
z�n�k � n� ��

z�n�k � 
n
cos zn�k �

Consider the following cases

i� zn�k �
p

n� In this case

z�n�k � n� ��

z�n�k � 
n
�

zn�k 	zn�k �p
n �
z�n�k � 
n

�
�

� �

p

n

zn�k

�
C

n�
�
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If j cos zn�kj 	 ��
p
� then

zn�k sin zn�k �
z�n�k � n� ��

z�n�k � 
n
cos zn�k �

C

n�
�

If j cos zn�kj 	 ��
p
� then j sin zn�kj 	 ��

p
� and

jzn�k sin zn�kj 	 zn�kp
�
�

p

np
�

�

ii� zn�k 	
p

n� Now we have

j tan zn�kj � inf
z�
p
�n

z�n�k � n� ��

zn�k � zn�k 
n
�
�

n�
�

It follows that

jzn�k sin zn�kj 	 C

n	
�

Finally� we obtain that 	��� holds�
From 	���� 	�!� and 	��� it follows that

k	����W ��W ��k�Y �
C

n	

Z T�

�

jWtt	t� 
�j� �

We still have to prove Proposition �� This will be dealt with in the
following subsection�

���� Proof of Proposition ��

This proposition deals with the lowest eigenmodes of the prob�
lem� In this part of the spectrum� the Ingham techniques do not work�
because the gap between frequencies goes to zero� The technique of
biorthogonal sequence� that we will use� is more general� Examples of
its application can be found in ��� for instance�

The idea is to �nd a sequence of functions hn�k with compact sup�

port such that bhn�k	�n�k�� � �kk� � and whose L
� norm is not too large�

Indeed� will prove the following lemma�
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Lemma �� For any odd integer q and any positive real number �� there
exists a time T�	q� �� smaller than Cq �

�q�������q� such that for any

	n� k�� in N
� � 	Z� � f�� ��g� there exists a function hk��n��q that satis�es

i� hk��n��q is supported by ��T�	q� ��� T�	q� ����
ii� For 	k�� n� � I� khk��n��q k�L� � C e��jnj�

iii� If k �� �k�� Z
hk��n��q 	t� e

it�n�k dt � 
 �

iv� If n 	 n�	�� q� and 	k�� n� � I���� Z hk��n��q 	t� e
t�n��k� dt

��� 	 c

nNq
�

The constants depend only on q and �� Moreover the functions h can

be chosen as even or odd� We will denote them he
k��n
��q or ho

k��n
��q �

Let us show at �rst how to prove Proposition � out of this lemma�
Let n be an integer greater than n�	��� and 	

����W ��W �� an
initial condition in Yn� Let us denote 	"� V � the solution of 	�� with
these data�

We will denote K the operator that maps 	����W ��W �� in Yn

to Wtt	y � 
� 
�� If we denote an�k � h	����W ��W ��� �n�k�$n�ki� we
notice that

W 	y� t� �
X

k�Z��f����g
an�k

�n�k
$n�k

cos 	� n y� ei�n�kt �

Thus

K	����W ��W ��	t� � �
X

k�Z��f����g
an�k

�n�k
$n�k

��n�k e
i�n�kt �

Now for 	k�� n� in I and L in N
� � as che is even�Z

he
k��n
��q 	t�K

� X
jkj��
jkj�L

an�k
�n�k
$n�k

�
	t� dt

� �
X
k��

��k�L

	an�k � an��k�
�n�k
$n�k

��n�k

Z
he

k��n
��q 	t� e

i�n�kt dt �



��� B� Allibert and S� Micu

So� out of iii�� if L 	 k��Z
he

k��n
��q 	t�K

� X
jkj��
jkj�L

an�k
�n�k
$n�k

�
	t� dt

� �	an�k� � an��k��
�n�k�
$n�k�

��n�k�

Z
he

k��n
��q 	t� e

i�n�k�t dt �

So out of iv�� we get that��� Z he
k��n
��q 	t�K

� X
jkj��
jkj�L

an�k
�n�k
$n�k

�
	t� dt

���

	 jan�k� � an��k� j
��� �n�k�
$n�k�

��� j�n�k� j� c

nNq

	 jan�k� � an��k� j c e�n
���

�

out of 	��� and because� as we have already seen�

j�n�k� j �
jzn�k� j
j�n�k� j

j sin zn�k� j 	
C

nN
�

If we take the limit with L �� ������ Z he
k��n
��q 	t�K	

����W ��W ��	t� dt
��� 	 jan�k� � an��k� j c e�n

���

�

We can show the same way that��� Z ho
k��n
��q 	t�K	

����W ��W ��	t� dt
��� 	 jan�k� � an��k� j c e�n

���

�

So� by summing conveniently�

	�
�

jan�k� j � C en
���
���� Z he

k��n
��q 	t�K	

����W ��W ��	t� dt
���

�
��� Z ho

k��n
��q 	t�K	

����W ��W ��	t� dt
���� �
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So for any n greater than n�	���

k	����W ��W �����k�Y �
X
jkj��
jkj�jnj

jan�kj� �

So out of 	�
��

k	����W ��W �����k�Y
� C

X
jkj��
jkj�jnj

en
���
��� Z he

k�n
��q 	t�Wtt	
� t� dt

���� � same with ho �
Thus� out of i��

k	����W ��W �����k�Y

� C en
��� X

jkj��
jkj�jnj

Z
jhk�n��q 	t�j� dt

Z T��q���

�T��q���
jWtt	
� t�j� dt �

Thus out of ii��

k	����W ��W �����k�Y � C eCn
���

e��jnj
Z T��q���

�T��q���
jWtt	
� t�j� dt �

When q goes to the in�nity� if 	q����	�� q� � ��� �� � goes to 
� So
we have proved Proposition ��

We still have to prove Lemma ��
First� we will introduce a sequence of functions fk��n� that will

satisfy conditions i�� iii� and iv�� but which L� norms will behave like
en�� that is too large for ii�� We will notice though that these norms
will be mostly concentrated within ��� n� � n�� on the Fourier side�

Then we will build a sequence of functions g of which we will know�
by stationary phases computations� that their norms� on the Fourier
side� are exponentially small over ��� n� � n�� and reasonably bounded
outside�

We will then put h � f � g� and show that h satisfy i� to iv�� for
suitable parameters�
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���� Proof of Lemma ��

In order to prove this lemma� we will build two sequences of func�
tions� denoted f and g� and put h � f � g� The functions f will have
the right zeroes 	on the Fourier side�� but too large an L� norm� The
functions g will be small where f is large� in order to get controlled L�

norms� We will have to ensure also that they behave properly at the
zeroes of f �

Namely� we will prove he following lemmas�

Lemma �� For any 	n� k�� in N� � 	Z��f�� ��g� � there is an even L�

function fk��n that satis�es�

i� fk��n is supported by ����� ����
ii� For z � ��� n� � n�� j bfn�k�	z�j � C en

p
����z�n�� and for z ��

��� n� � n�� j bfn�k�	z�j � P 	n� k�� where P is a polynomial�

iii� If k �� �k�� bfn�k�	�n�k� � 
�
iv� If n 	 n�	�� q� and 	k�� n� � I � f	k� n� � jkj � � or jkj � ng�

j bfn�k�	�n�k��j 	 c�nNq �

Lemma �� For large enough T � for any real number � � �� close to ��

and any odd integer q� we can �nd three positive constants C�
q � C

�
q�T �

cq�T�	 and two integers rq� n	q� �� such that for any integer n� there is a

function gnT�q�	 in L�	R� such that�

i� gnT�q�	 is supported by ��T� T ��
ii� jbgnT�q�	jL� � �T � and for any real number � such that j� j � n���

jbgnT�q�		��j � C�
q�T e

�TnC�
q minf���	���n�q��q�����g �

iii� For any integer n greater than n	q� ��� if k� � � or � � k� � n�
there is a time Tn�k� in �T� T � �� such that

���cg�n
Tn�k� �q

� j�n�k� j
�

���� 	 cq�T�	p
n

�

The constants depend only on q and �� Moreover the functions g can

be chosen as even or odd� We will denote them ge
n
T�q�	 or go

n
T�q�	�
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Let us prove Lemma � out of those two results�
Let � be a positive real number� Let us choose �� such that

��

r
��

� �
��

��
�

�

�

and T � such that

	��� sup
�������	��

�
��
p
�� �� � C�

q T
�
� �
��
� �

�q��q����
� � �

The derivative is

����p
�� ��

�
q

q � � T
�C�

q

� �
��
� �

����q���
�

we choose T � such that it is 
 for �� such that ��
p
�� ���

We have

�� � � �
��

����
� o 	��� �

�� � �� ��

�!��
� o 	��� �

so
�

��
� �� � ��

����
�

hence T � � cq �
�q�������q��

Let us de�ne positive times T �
n�k�

as follows� For integers k� such
that jk�j � jnj or jk�j � �� we take the time T �

n�k�
given by Lemma �

with T � T �� and for jk�j � jnj� we put T �
n�k�

� T ��

T �
n�k� � �T �� T � � �� � so c�q �

�q�������q� � T �
n�k� � c�q �

�q�������q� �

Let us denote

che k��n��q 	�� �
bf k��n	�� bgenT �

n�k�
�q�	�

� �
�

�
�

cho k��n��q 	�� �
bf k��n	�� bgonT �

n�k�
�q�	�

� �
�

�
�
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The subscript meaning that h is even or odd� We will not write this
subscript when not necessary�

We shall now prove step by step that hk��n��q satis�es all the proper�
ties of Lemma ��

Proof of i�� By Lemma ��i�� the support of fk��n is located within
����� ����

By Lemma ��i�� gnT �
n�k�

�q�	 is supported by ��T �
n�k�

� T �
n�k�
��

As hk��n��q is the convolution product of those two functions� it is

supported by ��T�	q� ��� T�	q� ��� with T�	q� �� � �� � c�q �
�q�������q��

The estimates on T �
n�k�

insures that T�	q� �� � Cq �
�q�������q��

Proof of ii�� We will use results about the small size of kgk that will
compensate kfk�

By Lemma ��ii��
jbgjL� � �T�	q� �� �

Furthermore� outside of ��� n� � n�� the L� norm of f is bounded by a
polynomial in n� so the problems are located within this interval�

We must estimate
R n
�n jbh k��n

��q 	��j� d� �
Now� out of Lemma ��ii�� we know that if ��n belongs to ���� ���

we have

jfk��n	��j� � C e�n
p
���j��nj� � C e��n

p
��j����n�j� �

Thus if j��	� n�j 	 ����� jbh k��n
��q 	��j� � C e�n�

Moreover� out of Lemma ��ii�� if j��	� n�j is smaller than ����� we
have ���bg nT �

n�k�
�q�	�

� �
�

����� � C e��T
�
n�k�

nC�
q ���	��j����n�j�q��q���

�

So out of 	���� we get jbh k��n
��q 	��j� � C e��n� Thus

kbhk��n��q k�L� � C e��n �

Proof of iii�� This is a simple consequence of Lemma ��iii�� Indeed for

any integer k di�erent from k�� bf k��n	j�n�kj� � 
� So by de�nition of h�
we also have bhk��n��q 	j�n�kj� � 
� which is exactly the Fourier transcription
of iii��
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Proof of iv�� For any couple 	n� k�� in I� out Lemma ��iv� and Lemma
��iii�� we get

jbhk��n��q 	�j�n�k� j�j 	
C

nN
cq�T��	�p

n
	 Cq��

nN � �

which is once again the Fourier transcription of the needed result�
Now we have to prove Lemmas � and ��

������ Proof of Lemma �	 construction of f �

Put

Fn	z� � 		z � z 	n� �� � n	 �	�� tan z � z� � n� ��� cos z �

Gn	z� �
p
z� � n� �� �

and
fn	z� � Fn	Gn	z�� �

The following properties hold for these functions�

f�i� fn� � O	C ��
f�iii� For any k in Z

� � f�� ��g� fn� 	�n�k� � 	zn�k tan zn�k � z�n�k �
n� ��� cos zn�k � 
 out of 	����

Let us evaluate fn�	�n�k��

fn�	�n�k� � Gn�	�n�k�Fn�	Gn	�n�k�� �z �
zn�k

� �

Now jGn�	�n�k�j � j�n�k�zn�kj 	 �� So to bound jfn�	�n�k�j from bel�
low� we only have to bound jFn�	zn�k�j from bellow� To simplify the
notation� put 
n � n	 �	 � n� ���

Fn�	zn�k�

� cos zn�k


 	�� zn�k � 	zn�k � 
nzn�k� 	� � tan
� zn�k� � 	� z

�
n�k � 
n� tan zn�k� �z �

h�zn�k�

�
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	see pictures � and ���
We recall that the �rst value of k for which zn�k is larger than

p

n

is denoted by k�� If k �� k� and k �� k���� jzn�k�p
nj 	 ����As we also
have zn�k 	 ��� and zn�k is a root of tan zn�k � 	z

��n� ����	z�
n z��
we get j cos zn�kj 	 ��P 	n� k� where P is a polynomial�

Let us consider h� For any positive � and z � zn�k 	 p

n � ��

h	z� � �� z � 	z � 
n z� 	� � tan
� z� � 	� z� � 
n� tan z

	 �� z � 	z �p

n� 	z �

p

n� z

	 	� � 
n � �� z
� � for large n �

For
p

n�� � z � zn�k 	

p

n� h	z� � �� z so jh	z�j 	 ��

And for z � zn�k �
p

n���

h	z� � �� z � 	jz � 
n zj j� � tan� zj � j� z� � 
nj j tan zj� �

now j� � tan� zj � j tan zj and as ��� � z � p

n��� jz � 
n zj 	

j� z� � 
nj�
So jh	zn�k�j 	 j� zn�kj 	 ��
Hence we know that if k �� k� and k �� k� � ��

jFn�	zn�k�j 	 �

P 	n� k�
�

Now if k � k� or k � k���� zn�k � �p
n�����
p

n����� so for large

n� zn�k � p

n� Now

zn�k �p

n �

z�n�k � n� ��

z 	z �
p

n�� �z �

	���

cos zn�k
sin zn�k

�

So for a small �xed � either j cos zn�kj 	 � then

jzn�k �p

nj 	 �	�

and in that case we know that jh	zn�k�j 	 �� hence jFn�	zn�k�j 	 �
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Either j cos zn�kj 	 � now

Fn�	zn�k� � �� zn�k cos zn�k� �z �
j
j�������p�n

�	� z�n�k � 
n� sin zn�k� �z �
j
j���n

p
����

�
zn�k �p


n
cos zn�k

zn�k 	zn�k �
p

n�� �z �

j
j�����������
p
������n

�

Now for small �

�
p
�� � �

�p
�� �

��
�
� �

�
�

so
jFn�	zn�k�j 	 c 
n 	 � �

So we have proved that for any n� k�

jfn�	�n�k�j 	 �

P 	n� k�
�

Let us put for any k in Z� � f�� ��g�

bf k�n	z� � fn� 	z�
�

z� � j�n�kj�
� sinpz� � �� n�p

z� � �� n�

��
	the last term ensures that f remains in L���

Let us show that these functions satisfy the properties of Lemma
�� by construction� they are even�

As f� has got zeroes at �j�n�kj� bf k�n � O	C �� Moreover bf k�n �
L�	R� and for any complex number z� j bf�k�n	z�j � C ejIm zj�

So by the Paley Wienner theorem� we have property i��

Property ii� is straightforward� due to the explicit value of bfn�k�
As by f�iii�� �n�k is a zero of f

n
� for any k� it is by de�nition a zero

of bfn�k� if k �� k�� so iii� holds
Furthermore�

fk�n� 	�j�n�kj� � fn�
�	�j�n�kj�

� sin zn�k
zn�k

�� �

�� j�n�kj �
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thus

jfk�n� 	�j�n�kj�j 	 C

	� � n�� jkj j sin zn�kj
� 	 C

	� � n� � k��N�
�

So iv� holds�

������ Proof of Lemma �	 construction of functions g�

Let q be an odd integer and let us denote hq	x� the solution of
y� � � � yq�� that satis�es y	
� � 
� This function is de�ned over
	�xq� xq� for a positive xq� It is odd� strictly increasing and analytic�
Moreover� we have hq	x� � x� 
q x

q � o 	xq� when x is near 
� with a
positive 
q and when x goes to xq� hq goes to the in�nity�

We shall denote Hq the reciprocal function to hq� It is de�ned
over R� odd� strictly increasing� bounded by xq� We have Hq	x� �
x� 
q x

q � o 	xq� if x is close to 
�
Let � be a real number� greater than �� and close to �� that will be

�xed later�
Let us de�ne functions g as follows

g�
n
T�q	t� � ���T�T � e

in�T�	xq�hq��xq�T �t� �	���

cg�n
T�q	�� �

Z T

�T
ein�T�	xq�hq��xq�T �t��i�t dt �	���

Let us write "q	s� � 	T�xq�Hq		� xq�T � s��

cg�n
T�q	�� �

Z ��

��
eins�i��q�s�"�q	s� ds �

If we denote

�q	s� �
�

xq
Hq	� xq s� �

we have

cg�n
T�q	�� �

Z ��

��
��q
� s
T

�
einT �s�T����n��q�s�T �� ds

� T

Z ��

��
��q	v� e

inT �v����n��q�v�� dv �
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Let us put 
 � nT and � � ��n� We will estimate

�	
� �� �

Z
��		v� e

i��v�����v�� dv �

for 
 going to the in�nity�
There will be two kinds of estimates depending upon the value of

� as compared to ����

 If � 	 ���� In this zone� the phases is non�stationary� So we will
get and exponential decrease�

Let us shift slightly in the imaginary direction� For any real number
v� any � smaller than ��� and any little �� we get

Im	v � i �� � �q	v � i ���

� �� � Im �q	v � i ��

� �� � Im 	�q	v � i ��� �q	v��

� �� � Im

Z v�i�

v

��q	z� dz

� �� � Im

Z v�i�

v

� dz

� � �q�� xq��q zq��

� �� � � �Re

Z �

�

du

� � �q�� xq��q 	v � i � u�q��

	 � if � � 
 �
If � is positive�

Im 	v� i �� � �q	v� i ��� 	 �� � � �
��� Z �

�

du

� � �q�� xq��q 	v � i � u�q��

��� �
Now for any real v���� Z �

�

du

� � �q�� xq��q 	v � i � u�q��

���� �z �
I

� �

�� cq �q��
�

because either v � � and then

I � c

� � vq��
� � �
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or v �Mq � and then

jv � i � ujq�� � Cq �
q��

implies
j� � �q�� xq��q 	v � i � u�q��j 	 �� cq �

q��

implies

I � �

�� cq �q��
�

Thus

Im 	v � i �� � �q	v � i ��� 	 �� � � �

�� cq �q��

	 � 	�� � ��� c�q � �
q

	 �
��
�
� �

�
� c�q � �

q �

Now

max
�

�
��
�
��
�
�cq � �q � c�q

��
�
��
�q��q���

������q� 	 c��q
��
�
��
�q��q���

�

We can choose a real number � and a very small cq such that for any
real number v���� Im 	v � i �� � �q	v � i ��� 	 cq

��
�
� �

�q��q���
� if � �

�

�
�

�

i
�

Im 	v � i �� � �q	v � i ��� 	 cq � if � � 
 �
Now we can shift the integration line over v from R to R � i �

�	
� �� �

Z
��q	v � i �� ei��v�i����q�v�i��� dv �

To end with� as

��q	v � i �� �
�

� � 	� xq 	v � i ���q � � �

we get

j��q	v � i ��j � Cq

� � vq��
�
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hence for any real number 
 and any � � ����

j�	
� ��j �
Z

Cq

� � vq��
e��cq minf���	���q��q�����g dv

� Cq e
��cq minf���	���q��q�����g �

So if ��n � ����

	��� jcg�nT�q	��j � Cq T e�nTcq minf���	���n�q��q�����g �

 If � 	 � 	� ����� Through the stationary phase formula 	see ���
p� ������ we get

�	
� ���C 	jH��	j cos
p�	�� ���
���q	v�	�� ���p



�

NX
j��

aj	�� ��


j
p



�
�r��		
� �

where r��		
� � C��

N�� and 
 	 A��	� H��	 denoting the square root

of the Hessian at the critical points�
Moreover� in this formula� C and A are continuous with respect

to � and �� and aj	�� �� depends on the �rst � j � � derivatives of
v ��� �q	v� at v � v�	�� ���

Let us compute p�	�� ���

�

�v
	v � � �q	v�� � 
 if an only if �� � �

� � �q�� xq��q vq��
� 


implies � � �q�� xq��q vq��� 	�� �� � � �

implies v�	�� �� �
�

� xq
	� � � �����q��� �

If � takes the values j�n�kj�	n�� for any couple 	n� k� such that jkj � n�
we have � � � � �

p
��

Moreover� if � � j�n��j�	n��� by 	����

� 	 �� Cp
n
	 �
�

�
� �

�

�

�
as soon as n 	 n�	���

So for any n greater than n�	��� if 	n� k� belongs to I and � �
j�n�kj�	n��� C 	 v�	�� ��� jp�	�� ��j� jH��	j 	 c	� thus � 	 ��q	v�	�� ���
	 cq� Moreover aj	�� �� � Cj�	�
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Let T be a positive real time� As jp�	�� ��j 	 c	� for any n greater
than n�	��� and k� such that 	n� k�� belongs to I� one can pick a time
Tn�k� in �T� T � �� such that

cos
�
nTn�k� p�

� j�n�k� j
n�

� �
��

	 c�	 �

Thus for T � Tu� n 	 n	q� ��� 
 � T n� 	k�� n� � I and �� j�n�k� j�	n���

�����q	v�	�� ���p



�
NX
j��

aj	�� ��


j
p



��� 	 j��q	v�	�� ���j
�
p



�

jr��		
�j � c�	
jH��	j ��q	v�	�� ���

�
p



�

And in the same conditions� there is a time Tn�k� in �T� T ��� such that

�����nTn�k� � j�n�k� jn�

���� 	 c�	 jHj ��q
�
v�
��n�k�
n�

� �
��

�
p
n
p
Tn�k�

	 cp
n
�

We have proved that for any time T greater than Tu� for any n larger
than n	q� �� and k� such that jk�j � � or jk�j � n� there is a time Tn�k�
in �T� T � �� such that

	���
���cg�n

Tn�k� �q

� j�n�k� j
�

���� 	 CT�q�	p
n

�

By changing t into �t� we can prove two estimates similar to 	��� and
	��� for the functions

g�nT�q�		t� � ���T�T � ein�T�	xq�hq��xq�T �t� �

As g�nT�q�	 � g�n
T�q�	� we have� Tn�k��� � Tn�k����

So if we put

ge
n
T�q�		t� � ���T�T � cos

�
n

T

� xq
hq

�xq
T

t
��

�

we have

ge
n
T�q�		t� � Re g�

n
T�q�		t� �

�

�
	g�

n
T�q�		t� � g�nT�q�		t�� �
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Let us show that this even function satis�es the properties of Lemma
��

i� By de�nition� it is supported by ��T� T ��
ii� is an easy consequence of the de�nition and 	��� for the L�

estimate� and 	��� for the other one�

iii� If n 	 n	q� �� and 	jk�j � n or jk�j � ��� C�
q�T e

�nTC�
q �

cq�T�	�	�
p
n�� so � if n is large enough� by 	��� and 	����

jcg�nTn�k� �q�		��j � jcgnTn�k� �q�		��j � for � � �j�n�k� j
�

�

As we can increase the constants to cope with the �nite number of
	n� k� in I for which n is not large enough� we get for 	n� k�� in I and
� � �j�n�k� j���

j bgenTn�k� �q�		��j 	 cq� T� �p
n

�

Of course� similar results hold for the odd function

go
n
T�q�		t� � ���T�T � sin

�
n

T

� xq
hq

�xq
T

t
��

�

This ends the proof of Lemma ��
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A Lieb�Thirring bound for a

magnetic Pauli Hamiltonian� II

Luca Bugliaro� Charles Fe�erman and Gian Michele Graf

Abstract� We establish a Lieb�Thirring type estimate for Pauli Hamil�
tonians with non�homogeneous magnetic �elds� Besides of depending
on the size of the �eld� the bound also takes into account the size of
the �eld gradient� We then apply the inequality to prove stability of
non�relativistic quantum mechanical matter coupled to the quantized
ultraviolet�cuto� electromagnetic �eld for arbitrary values of the �ne
structure constant�

�� Introduction�

We continue here our analysis of Lieb�Thirring type estimates for
Pauli Hamiltonians� which we begun in ��	 
henceforth called I� and
present its applications to the stability of matter coupled to the 
ultra�
violet�cuto�� quantized electromagnetic �eld� The one�particle Hamil�
tonian we consider describes a spin ��� electron and is once more


���� H  D
� � � V �

acting on H  L�
R�� � C � � where D  p � A and D
�
 D � �� Here�

A
x� is the magnetic vector potential� � is the vector of Pauli matrices�
and V 
x� � � is a scalar potential� In I� the paradigm was given by
the well�known Lieb�Thirring estimate ���	 for the case B  r�A  �
and our estimate 
I����� aimed at estimating the e�ect of B � � 
see

���
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��	� ��	� ���	� ���	� ��	� ���	 for other results in this direction�� Here� by
contrast� the starting point is the following bound� due to Lieb� Solovej
and Yngvason ���	� on the sum of the negative eigenvalues �ei of 
�����


����
X

ei � C

Z
V 
x���� 
V 
x� � B� d�x �

which holds for the case in which the �eld B is constant� Our goal is
to generalize it to the case where B is not constant� or� more precisely�
that of estimating the e�ect of r�B  
�iBj�i�j������ � � on 
����� We
remark that an estimate having the same purpose� but quite di�erent
assumptions on B� has been derived in ��	� ��	�

In I� the role of B
x� was expressed by means of a length scale
r
x� de�ned through B
x� non�locally 
incorporating insight of ��	� ���	�
���	�� Similarly here� the role ofr�B will be re�ected in a second length
scale l
x�� These two length scales satisfy

Z
r
x��� d�x � C

Z
B
x�� d�x �
����

Z
l
x��� d�x � C

Z

r� B
x��� d�x �
����

as well as some local variants thereof� We can now state our general�
ization of 
�����

Theorem �� For su�ciently small � � � there are constants C �� C �� �
� such that for any vector potential A � L�

loc
R
� �R��


����

X
ei � C �

Z
V 
x���� 
V 
x� � bB
x�� d�x

� C ��
Z
V 
x�P 
x���� 
P 
x� � bB
x�� d�x �

where bB
x� is the average of jB
y�j over a ball of radius � l
x� centered
at x� and

P 
x�  l
x��� 
r
x��� � l
x���� �

As noticed in ��	� 
���� yields� by the variational principle� a bound
on the density n
x�  E
x� x� of zero modes of D

�
� where E
x� y� is
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the integral kernel of the spectral projection E corresponding to the
possible ���	 eigenvalue � of D

�
� The bound is

n
x� � C �� P 
x���� 
P 
x� � bB
x�� �
and� as it should� it vanishes in the case of a homogeneous magnetic
�eld� where l 	�

In Section � we discuss the properties of the two length scales
mentioned above� The main part of the proof of Theorem � is given
in Section �� while some more technical aspects are deferred to Section
�� In order to keep these sections reasonably short we shall be brief on
details which have already been discussed at length in I�

We now turn to the implications of estimate 
���� regarding sta�
bility of non�relativistic matter coupled to quantum electromagnetic
�eld� We recover a result of ��	 establishing stability for any value of
the �ne structure constant �� with a bound depending however on the
ultraviolet cuto� � 		� The details of the model are as follows� The
electromagnetic vector potential is 
in appropriate units ��	�


����

A�
x� 
 A
x�  A�
x� �A�
x� � A�
x�  A�
x�
� �

A�
x� 
����

�


Z
�
k� jkj����

X
���

a�
k� e�
k� e
ikx d�k �

The cuto� function �
k� satis�es j�
k�j � � and supp � � fk � R
� �

jkj � �g� the operators a�
k�� and a�
k� are creation and annihilation
operators on the bosonic Fock space F over L�
R�� � C

� 
with C
�

accounting for the helicity states of the photon� and satisfy canonical
commutation relations

�a�
k�
	� a��
k

��		  � � �a�
k�� a��
k
���	  ���� �
k � k�� �

Moreover� for each k� the direction of propagation �k  k�jkj and the po�
larizations e�
k� � C � are orthonormal� The free photon Hamiltonian
is

Hf  ���
Z
jkj

X
���

a�
k�
� a�
k� d

�k �

Matter consists of K nuclei of charge Z � � with arbitrary positions
Rk� 
k  �� � � � � K� and N electrons obeying the Pauli principle� The
Hamiltonian for both matter and �eld� acting on 
�NH��F � is

H  Hm �Hf �
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where

Hm 
NX
i��

D
� �

i
� VC �

VC 
NX

i�j��

i�j

�

jxi � xj j �
N�KX
i�k��

Z

jxi �Rkj �
KX

k�l��

k�l

Z�

jRk �Rlj �

The energy per particle is bounded below as shown by the following
result� previously established in ��	�

Theorem �� The Hamiltonian H satis�es

H � �C 
Z� ���� 
N �K� �

where

C
Z� ����  const z�
 log 
� � z��Z� 
� � z���Z�� �

with z�  � � Z��� and Z�  Z � ��

The proof� given in Section �� rests on a stability result ��	 for
matter coupled to a classical magnetic �eld� which is here established
in Section �� This is actually where estimate 
���� enters�

�� The basic length scales�

We de�ne the length scales we mentioned in the introduction as
the solutions r  r
x� � � respectively l  l
x� � � of the equations

r

Z

�y � x

r

�
B
y�� d�y  � �
����

l�
Z

�y � x

l

�

r� B
y��� d�y  � �
����

The function  � R� �� R� 
z�  
�� z������ is the same as in I and
satis�es

z � r
z� � � �
����

jD� � � �Dnj �  � n � N �
����
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where Dj  �i� 
i  �� �� �� or Dj  z � r� Here and in the following
X � Y means X � C Y for some constant C independent of the data�
i�e�� of A� V �

The solutions of 
���� and 
���� exist and are unique� except for
the case B 
 � 
almost everywhere�� respectively r � B 
 � 
almost
everywhere�� where we set r 
 	� respectively l 
 	� They are smooth
as a function of x � R� 
see Section I����

We �rst discuss how these length scales are semi�locally controlled
by the original quantities B and r � B� To this end let �R  fx �
dist 
x��� 	 Rg for R � � and � � R

� �

Lemma �� The length scales r
x� and l
x� satisfy 
����� 
����� More�

over� for any R � � and � � R
� there is a function ���R
x� � �

satisfying k���Rk� � � and k���Rk� � j�Rj� uniformly in �� R� such
that Z

�R

r
x��� d�x �

Z
���R
x�B
x�

� d�x� j�RjR�� �
����

Z
�R

l
x���d�x �

Z
���R
x� 
r�B
x��� d�x� j�RjR�� �
����

Proof� Estimates 
���� and 
���� were proven in Lemmas I�� and I����
The same proofs are valid for the remaining two estimates once the
following remark about the proof of Lemma I�� has been made� We
replace there r
x� by l
x�� Because of g�
jxj� � �� 
I����� implies

g�
jxj�� 
� z � x

g�
jxj�
�
� 
z� �

which after integration against 
r�B
z��� d�z implies l
x� � g�
jxj��
Then the proof continues as before�

The length scales r
x� and l
x� are tempered in the following sense�

Lemma ��

j��l
x�j � l
x���j�j�� � j�j � � �
����

j��r
x�j � r
x���j�j��min
n
��
�r
x�
l
x�

����o
� j�j � � �
����
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where � � N
� is a multiindex�

Proof� We omit the proof of 
���� since it consists of a minor adapta�
tion of that of 
I������ For r
x� � l
x� 
���� reduces to 
I������ so that
we may assume r
x� 	 l
x�� We discuss this case using a variant of the
argument given in I� We recall that it was based on the equation


���� 
��m
x�� �ir
x�  mi
x� �

where

m
x�  r
x�

Z
z �r
z�U
y� d�y � mi
x�  r
x�

Z

�i�
z�U
y� d

�y �

with z  
y � x��r
x�� Moreover� we denoted by Vn� n � N � the space
of �nite sums of functions of the form

f
x�  r
x���n�� P 
f��rg�
Z
�
z�B
y�� d�y �

where � is of the formD� � � �Dk and P is a monomial in the derivatives
f��rgj�j�n of order � in the sense that it contains as many powers of
� as of r� In addition we consider here the subspace eVn � Vn obtained
by restricting f to satisfy� i� some ��r with � � j�j � n occurs among

the factors of P � or else ii� D�  �i� i�e�� �  �i e� with e� of the form
previously stated for �� One veri�es that �iVn � eVn�� and r�� eVn �eVn���

The induction assumption states that 
���� holds for � � j�j � n�

It is empty for n  ��� We now prove it for n� � instead of n� First�

we claim that f � eVn satis�es
jf
x�j � r
x��n

�r
x�
l
x�

����
�

In case i� this follows directly from the induction assumption� in case
ii� by integration by partsZ

�i e�
z�B
y�� d�y  � r
x� Z e�
z�B
y� � �iB
y� d�y �
which by 
���� and the Cauchy�Schwarz inequality is bounded in abso�
lute value by

� r
x�
�Z


z�B
y�� d�y
�����Z


z� 
r� B
y��� d�y
����

� r
x���
�r
x�
l
x�

����
�
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In the last estimate we used that the �rst integral equals r
x���� where�
as the second may be estimated by replacing z by 
y � x��l
x�� since
r
x��� � l
x��� and 
z� is radially decreasing� Hence that integral is
bounded by l
x���� We can turn to 
����� Applying ��� 
j�j  n� to


���� and using m � V� we obtain 
� �m
x�� ���ir
x� � ��mi � eVn�
The last set is eVn 
even for j�j  n  ��� since mi � eV�� The result
follows with m � ��

We remark that 
���� implies 
see 
I�������


����� jx� yj � � l
x� implies
�

�
� l
y�

l
x�
� �

for � � � small enough� A partition of unity based on the length scale
l
x� is

jy
x�  
� l
x��
���� �

�
x� y

� l
x�

�
� y � R

� �

where � 	 � � � and � � C�� 
R
�� with supp� � fz � jzj � �g andR

�
z�� d�z  �� Analogously to Lemma I�� we have

Lemma 	�

Z
jy
x�

� d�y  � �
�����

Z
j��jy
x� ��jy
x�j d�y � 
� l
x����j�j�j�j �
�����

for any �� � � N
� � where �  ���x�

The length scale l
x� will be the one most frequently used in the
following sections� At one point however 
in the proof of Lemma ���
we will use the length scale �
x� de�ned by �
x���  r
x��� � l
x����
It also satis�es 
���� and 
����� 
with l replaced by ��� and Lemma �
applies accordingly to the partition based on �
x��

Finally we point out that Lemma � 
in particular� the improvement
of 
���� over 
I������ implies


����� jrP 
x�j � P 
x� l
x��� � j�P 
x�j � P 
x�� �
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Combining 
����� with 
����� we also �nd that for jx � yj � � l
x� we
have j logP 
y�� logP 
x�j � �� and hence


�����
�

�
� P 
y�

P 
x�
� � �

for � � � small enough�

�� The eigenvalue sum�

In this section we present the framework of the proof of 
����� with
large parts of it deferred to the next section� We begin by applying� as
in I� the Birman�Schwinger principle ���	


����
X

ei � �
Z �

�

n

D
� �
� E����� 
V � E�

���
� � �� dE �

where n
X��� is the number of singular values � � � � � of a compact
operator X� i�e�� the number of eigenvalues �� � �� of X�X� We then
decompose the operator in 
���� as K�
E� �K�
E� with

K�
E�  
D
� �
� ���P � E����� 
V � E�

���
� �

K�
E�  

D
� �
�E����� � 
D� �

� ���P � E������ 
V �E�
���
� �

for some su�ciently small � � �� and note that 
see e�g� ��	� ���	�


���� n
K� �K�� s� � s�� � n
K�� s�� � n
K�� s�� �


we take s�  s�  ����� For the last term we shall prove the bound


���� n
�
K�
E��

�

�

�
� n

D

� �
� ���P ��� ���PV ���� constE���� �

For the purpose of estimating n
K�� ���� and n
K�� ���� we introduce

some auxiliary objects� starting with the Hilbert space bH 
R �
R�
H d�y

and the linear map

J � H �� bH � J 

Z �

R�

jy d
�y �
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see also Section I���� Next we de�ne

bH � bH �� bH � bH 

Z �

R�

eify Hy e
�ify d�y �

where Hy  H
By� � ���P 
y�� H
B�  

p� 
����B � x� � ���� fy
x�
is a function to be speci�ed later and By  jKyj��

R
Ky

B
x� d�x is

the average magnetic �eld in the ball Ky  fx � jx � yj 	 � � l
y�g�
In summary� bH acts on �bers of bH as a Pauli Hamiltonian with con�

stant magnetic �eld� The Pauli operator D
� �

compares to the above
construction as


���� 
D
� �
� ���P �� � J� bH�J �

This inequality� which is at the center of our analysis� is obtained by

�rst localizing 
D
� �
� ���P �� and then by locally replacing the �elds

B  r� A by a constant magnetic �eld and P by a constant� Indeed�

���� results from the combination of the following two inequalities�

Lemma 
�


D
� �
� ���P �� �

Z
jy

�
D
� �
�
�

�
���P �

�
jy d

�y �
����

jy

�
D
� �
�
�

�
���P �

�
jy � jyH

�
y jy �
����

Let us point out that 
���� implies the weaker inequality 
see

I������


���� D
� �
� ���P � J� bHJ �

Proof of ������ Let

bH� � bH �� bH � bH� 

Z �

R�

eify H
By� e
�ify d�y �

Then bH � bH� and� as in I� we obtain from 
����


���� n
�
K�
E��

�

�

�
� n

 bH� �E�����J
V � E�

���
� � const�
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by means of 
����� From now on the computation closely follows the
line given in ���	� where the contribution of the lowest Landau band is
split from that of the higher bands� We set

b � bH �� bH � b  Z �

R�

eify  
By� e
�ify d�y �

where  
B� is the projection in L�
R�� � C � onto the lowest band of
H
B�� Its integral kernel is

 
B�
x� x��


jBj
�


exp
�
i 
x� � x���

B

�
� 
x� � x���

� jBj
�

�
�
x� � x���P	 �


����

in coordinates x  
x�� x�� where B  
�� jBj�� and P	  
�� ����� is
the projection in C � onto the subspace where B � �  jBj� We remark
that b commutes with bH�� The operator appearing on the right hand

side of 
���� is then split as 
 bH��E�����J 
V �E�����  K�
E��K�
E��
with

K�
E�  
 bH� � E����� b J
V � E�
���
� �

K�
E�  
 bH� � E����� 
�� b �J
V �E�
���
� �

so that by 
���� it su�ces to estimate n
Ki
E�� const�� i  �� �� sepa�
rately� The �rst term is bounded by

n
K�
E�� const� � trK�
E�
�K�
E�



Z
d�y tr 
jy 
V � E�

���
�  
By� 
H
By� � E���

� 
By� 
V � E�
���
� jy�
�����

 
�
E������
Z
d�y d�x 
V 
x��E�� jy
x�

� jByj

where the last estimate is ���� 
�����	� Note that the gauge trans�
formation eify disappeared from the trace by cyclicity� For the sec�
ond term we use the inequality before ���� 
�����	� which states that
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�H
By��� � D�
y 
 
p � 
����By � x�� on the orthogonal complement

Ran 
�� 
By�� of the lowest Landau band� We hence get


����� bH� � �

�

Z �

R�

eifyD�
y e

�ify d�y 
 bHS

on Ran 
�� b �� as well as 
�� b � 
 bH� � E��� 
�� b � � 
 bHS � E����

because b and bHS commute� Together with n
X� �� � tr 

X�X��� this
yields

n
K�
E�� const�

� tr 

V � E�
���
� J�
 bHS � E���J
V � E��

� J�
 bHS � E���J
V �E�
���
� �



Z
tr
�
jy jy� e

i�fy�fy�  
V �E��

��
�
D�
y �E

���
� jy jy� e�i�fy�fy�  
V � E��

��
�
D�
y� � E

����
d�y d�y� �

Using the pointwise diamagnetic inequality ���	 for the resolvent kernel


�����
�����
�
D�
y �E

���

x� x��

��� � ��
�
p� � E

���

x� x�� �

the trace under the integral is bounded as in 
I����� by

�

�


� �

�E

���� Z

V 
x�� E��� jy
x�

� jy�
x�
� d�x �

This leads to n
K�
E�� const� � E����
R

V 
x��E��� d�x by 
����� and�

together with 
������ to


�����

Z �

�

n
�
K�
E��

�

�

�
dE

�

Z
d�xV 
x����

�
V 
x� �

Z
d�y jByj jy
x��

�
�

We now turn to K�� The inequalityZ �

�

n
�
K�
E��

�

�

�
dE � ��� tr 
V ���PJ� bH��JPV ����
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follows from 
����� from
R�
�

n
X������ d�  tr X�X� and from 
�����

We then split bH��  b bH��b � 
�� b � bH��
�� b �� The contribution
of the �rst term isZ

d�y tr 
jy V
���P  
By� 
H
By� � ���P 
y���� 
By�P V ��� jy�


�

�


Z

���P 
y������ jByjP 
x�� V 
x� jy
x�� d�y d�x �

because of 
���� and of  
B� 
H
B� � E���   
B� 
p�� � E��� in
the coordinates used there� For the second term we use 
see 
������bH� � 
 bHS � bP �� on Ran 
�� b �� since bH and bHS � bP commute� wherebP  ���

R �
R�
P 
y� d�y� This yields a contribution bounded by

Z
tr
�
jy V

��� P
��
�
D�
y � ���P 
y�

���
P V ��� jy

�
d�y

� �

�


Z � �

� ���P 
y�

����
P 
x�� V 
x� jy
x�

� d�y d�x �

where we used again 
������ Taking into account 
����� and 
����� we
thus obtainZ �

�

n
�
K�
E��

�

�

�
dE

�

Z
d�xV 
x�

�
�����P 
x���� � �����P 
x����

Z
d�y jByj jy
x��

�
�


�����

In order to put the result� i�e�� the sum of 
����� and 
������ into the
form given in Theorem � we estimate

jByj�jKyj��
Z
Ky

jB
z�j d�z jKy j��
Z
jB
z�j �
jz � yj 	 � � l
y�� d�z �

where �
A� is the characteristic function of the set A� so thatZ
d�y jByj jy
x��

�
Z
d�z jB
z�j

Z
d�y jKyj�� �
jz � yj 	 � � l
y�� jy
x�� �


�����
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We recall that supp jy � fx � jx� yj � � l
x�g� Using again 
����� and
the triangle inequality jx� zj � jx� yj� jz � yj we bound 
����� by a
constant times

jKxj��
Z
d�z jB
z�j �
jx� zj 	 � � l
x��

Z
d�y jy
x�

�

 jKxj��
Z
jx�zj�
	l�x

d�z jB
z�j �

i�e�� by bB
x� after a rede�nition of ��
At this point Theorem � is proven� except for Lemma � and 
�����

�� Proofs�

In this section we give all the proofs we omitted in the previous
one in order to complete the derivation of 
�����

Lemma �� Let U � L���
R��� Then


���� U � �

�

�

�

�����
kUk���D� �

For a proof� see Lemma I�� and subsequent remark�

Lemma ��


���� Dl��D � D
� �
P � PD

� �
� ���P � �

Proof� The �rst step towards 
���� consists in showing


���� Dl��D � D
� �
l�� � l��D

� �
� ���P � �

This statement is closely related to Lemma I�� and� similarly� its proof
reduces to that of


���� l�� jBj � ���� 
Dl��D � ���P �� �

This is again proven as in I� except for the fact that we use here 
and
only here� a partition of unity based on the length scale ��
x� as dis�
cussed at the end of Section �� with �
x���  r
x��� � l
x���� In
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particular� we now set eKy  fx � jx� yj 	 ��
x�g with characteristic
function e�y � It then still holds that

kl�� jBj e�yk��� � kl�� e�yk� kBe�yk� ke�yk�
� l
y��� r
y����� 
� r
y�����

 ���� l
y��� �

where� we used �
x� � l
x� in estimating the �rst factor� �
x� � r
x�
and 
���� in the second� and again �
x� � r
x� in the last one� We
hence obtain� just as in I�

l�� jBj � ����
�
Dl��D � l��

Z

rjy�� d�y

�

with the integral bounded by 
� �
x���� due to 
������ The proof of

����� and hence of 
����� is completed by noticing that l�����  P ��
We now come back to 
����� We have


D� �
f � fD

� � � �D�f D�� � �D
�
PD
�
� ���P � �

for f  l�� or f  P � Indeed� the left hand side is

�D�� �D�� f 		  �i �D��rf � �	  �X�X � �D
�
PD
�
� ���P��
rf��

with X  
� P ����D
�  i 
� P �����rf � � and 
rf�� � P � due to 
����

respectively 
������ Taking f  l�� we �rst obtain from 
����

Dl��D � D
�
l��D

�
� �D

�
PD
�
� ���P � � ���P � � � 
D�PD�� ���P �� �

and then� with f  P � we obtain 
�����

Proof of ������ The localization argument begins as that given for

I������ with b replaced by P � i�e�� we have

D
� �


Z �
jy D
� �
jy �

�

�

�jy� �jy� D

� �
		� D
� �
� � �jy� D

� �
	�
�
d�y �

with the estimate

�
Z
�

�

�jy� �jy� D

� �
		� D
� �
� d�y � �

�
��� 
D

� �
P � PD

� �
� � ��
P �
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for the �rst localization error� The other one is estimated similarly

�
Z
�jy� D

� �
	� d�y � const 
���Dl��D � ��� l���

� �

�
��� 
D

� �
P � PD

� �
� � ��
P � �

by using 
����� The conclusion then is as in I�

Lemma  
��	�� Let K  fx � jxj 	 �g be the unit ball� and K�  �K�

Let B � L�
K��R�� be a vector �eld with r �B  � 
as a distribution�
and


����

Z
K

B
x� d�x  � �

Then there is a vector �eld A such that


���� r �A  B � r �A  � �

and


���� kAk��K � kr � Bk��K� �

Proof� A solution A to 
���� is constructed as in I� i�e�� as A  r�F �
where F is the solution of ��F  B with boundary conditions 
I�������
By kFk��K� � kBk��K� and the elliptic estimate

kr
�Fk��K � kFk��K� � k�Fk��K� � kr ��Fk��K�

we have

kr
�Ak��K � kBk��K� � kr �Bk��K� � kr � Bk��K� �

In establishing the last inequality we used that a Poincar!e inequality

see e�g� ���� Theorem �����	� applies to kBk��K�� due to 
����� Another
Poincar!e type inequality 
���� Corollary �����	� yields

kA� �� � xk��K � kr
�Ak��K �

for �i  jKj�� R
K
Ai
x� d

�x and �ij  jKj�� R
K
�jAi
x� d

�x� This
proves 
���� for A� � � � x instead of A� Equation 
���� is preserved
under this replacement� since it implies �ij � �ji  � and tr �  ��
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Proof of ������ Let By  jKyj��
R
Ky

B
x� d�x be the average mag�

netic �eld over Ky  fx � jx � yj 	 � � l
y�g� It is generated by the
vector potential Ay
x�  
����By � 
x � y�� On the other hand� leteAy
x� be the vector potential of eBy
x�  B
x�� By� which by scaling
corresponds to the one constructed in the previous lemma� It satis�es


���� j eAy
x�j � ���� l
y��� �

for x � Ky because of 
����� 
����� Since B  r � 
Ay � eAy�� we may

assume� upon making a gauge transformation� A  Ay� eAy� The Pauli
operators corresponding to D

�
y
 
p� Ay� � � and D

�
are related as

D
� �

y
 
D

�
� eAy � ���  D

� �
� 
 eAy�

� � f eAy � ��D
�g

 D
� �
� 
 eAy�

� � f eAy� Dg� eBy � � �

This and r � eAy  � yield

D
� �

y
� � 
D� �

� 
 eAy�
� � �D 
 eAy�

�D � 
 eBy�
�� �

After multiplying from both sides with jy we may replace eAy by �y eAy

and similarly for eBy� where �y 
x� is the characteristic function of Ky�
Note that� besides of 
����� we have by 
���� and k�yk� � � l
y�

k eB�
y �yk��� � k eB�

y �yk� k�yk� � k
r� B�� �yk� k�yk� � � l
y��� �

We can thus estimate� using 
�����

jy D
� �

y
jy � jy 
D

� �
� �� l
y��� � �Dl
y���D� jy

and �nally� using 
������ 
������ 
�����

jy 
D
� �

y
� ���P 
y��� jy � � jy 
D

� �

y
� ���P 
y��� jy

� jy

�
D
� �
�
�

�
���P 
x�� � �Dl
x���D

�
jy

� jy 
D
� �
� ���P �� jy �
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Proof of ������ The proof can be taken over literally from that of

I������ after replacing b by P � To be checked however is that f  logP
satis�es 
rf�� � l�� � P and j�f j � P � as well as D 
rf��D �

D
� �
P � PD

� �
� ���P �� This follows from 
������ 
�����

	� Stability of matter�

As an application of 
����� we state and prove a stability estimate
for matter coupled to a classical magnetic �eld� It is essentially iden�
tical to a result of ��	� except for exhibiting a somewhat more explicit
dependence of the stability bound on the parameters involved� The
system we consider consists of N spin ��� electrons 
with Hilbert space
�NH� H  L�
R��� C �� interacting with K static nuclei� having posi�
tions Rk and charges Z � �� and with a classical magnetic �eld B� The
theorem then reads�

Theorem ��� Let R  fRkgKk�� and R� Z� "� � � �� There is

C
Z�"� �� and a function �R
x� � � with


���� k�Rk� � � � k�Rk� � R�K �

uniformly in R� Z� such that the N �body Hamiltonian

HN 
NX
i��

D
� �

i
� VC

� "

Z
�R
x� 
B
x�

� � � R� 
r� B�
x��� d�x �


����

VC 
NX

i�j��

i�j

�

jxi � xj j �
N�KX
i�k��

Z

jxi �Rkj �
KX

k�l��

k�l

Z�

jRk �Rlj �

acting on �NH� satis�es


���� HN � �C
Z�"� �� 
Z � ��R�� 
N �K�

for arbitrary R � 
Z � ����� For " � Z � � and � � � � z� one can

take


���� C
Z�"� ��  const 
z� � z
����� log 
z
�������
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with z  � � 
Z � �� "���

Remark� One may modify the de�nition 
���� of l
x� by replacing

r�B�� by 
r�B�� �R�� for some R � �� Theorem � continues to
hold� On the right hand side of 
���� a term R�� should also be added
to 
r�B��� but it can be absorbed into the last term� The purpose of
this variant is to ensure


���� l
x� � R �

Proof� By monotonicity� it will be enough to prove the theorem for
Z � �� " � Q and � � z�� We partition ��	 R� into Voronoi cells
"j  fx � jx � Rj j � jx � Rkj for k  �� � � � � Kg� j  �� � � � � K� Let
Dj  min fjRj � Rkj � j � kg��� For any � � � the reduction to a
one�body problem reads ��	� ���	


����

HN �
NX
i��

hi � � N �
Z�

�

KX
j��

D��
j

� "

Z
�R
x� 
B
x�

� � � R� 
r� B�
x��� d�x �

where h  D
� � � 
W � ��� and W is a potential satisfying W 
x� �

Q jx� Rjj�� for x � "j � with Q  Z �
p
�Z � ����

We choose �  QR�� and apply Theorem � 
in the variant dis�
cussed above� to obtain


����

NX
i��

hi � �
Z
V 
�� d�x�

Z
P ���V d�x

�
Z bB V ��� d�x�

Z bBP ��� V d�x �

where V  
W � QR����� Comparing with 
���� it appears to be
enough to show that each of the integrals 
����� which we shall denote
by i��iv� below� is bounded by the bound 
���� or by a small 
universal�
constant times


����
Z�

�

KX
j��

D��
j � "

Z
�R
x� 
B
x�

� � � R� 
r�B�
x��� d�x �
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i� Note that supp V � �R for �  fRj � j  �� � � � � Kg� This
integral is thus bounded by constQ
��R���K � QR��K�

ii� We note that for any �� � �


���� P ��� �
p
� l���� 
r�����l����� �

p
�
��
�
r���

p
�
�
��

����

�

�
l��

and we estimate the contributions to ii� of the two terms separately�
For the �rst one we use that

Z
�R

r
x��� V 
x� d�x � Q

Z
�R
x�B
x�

� d�x�Q
KX
j��

D��
j �QR��K �

as was shown in Section I��� This is consistent with the bound 
����
if �� � minfQ�� "� �g� 
By a � b we mean a  const b for some
su�ciently small universal constant�� For the last term in 
���� we use
instead

Z
�R

l
x��� V 
x� d�x

� ��
�

Z
�R

l
x��� d�x�
����

�

Z
�R

V 
x�� d�x

� ��

Z
�R
x�
r� B�
x�� d�x� 
��R

�� � ���� Q�R�K �

due to 
����� The desired bound holds provided we pick z ��� � " � R��

iii� We split the integral into K inner integrals over Uj  fx �
jx�Rjj � bDjg� bDj  min fDj � � l
Rj�� Rg for some small � � �� and one
outer integral over R� nSK

j�� Uj � The inner integrals can be estimated
as

Z
Uj

bB
x�V 
x���� d�x � 
 sup
x�Uj

bB
x�� bD���
j Q���

� �

�
bD�
j 
 sup

x�Uj

bB
x��� � ���

�
Q� �
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Because of 
����� we have l
Rj��� � l
x� � � l
Rj� for x � Uj and thus


�����

bB
x��  jKxj��
�Z

Kx

jB
y�j d�y
��

� jKxj��
Z
Kx

B
y�� d�y

� 
� l
Rj��
��

Z
�
jy � Rj j � � � l
Rj��B
y�

� d�y �

Altogether we �nd for any � � �Z
�Kj��Uj

bB
x�V 
x���� d�x � �

Z
�
y�B
y�� d�y � ���Q�K �

�
y� 
KX
j��

bD�
j 
� l
Rj��

�� �
jy �Rj j � � � l
Rj�� �

For � � " this will be bounded as claimed once we show that

� � ��R �

First� supp� � �R for small � � � because of 
����� It thus su�ces to
show k�k� � �� from bDj � � l
Rj�� the triangle inequality and 
�����
we �nd

k�k� � sup
y

KX
j��


� l
Rj��
�� �
jy � Rj j � � � l
Rj��

�
Z
Uj

�
jx�Rj j � � l
Rj�� d
�x

� sup
y

KX
j��


� l
y����
Z
Uj

�
jx� yj � � � l
y�� d�x

� � �

since the Uj are disjoint�
The outer integral can be written and estimated asZ

�Rn��Kj��Uj

d�xV 
x���� jKxj��
Z
d�y jB
y�j �
jx� yj 	 � l
x��
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� ��
�

Z
�RR�

d�x d�y jB
y�j� jKxj�� �
jx� yj 	 � l
x��

�
����

�

Z
�Rn��Kj��UjR

�

d�x d�y V 
x�� jKxj�� �
jx� yj 	 � l
x�� �


�����

By the usual argument 
������ the �rst integral is bounded by a constant
times

R
�
y� jB
y�j� d�y for

�
y�  jKyj��
Z
�R

�
jx� yj 	 � � l
y�� d�x � � �

Moreover� supp� � ��R as before� It thus su�ces to take �� � "� In
the second term on the right hand side of 
����� the integration over y
is explicit� and the integral is


�����

Z
�Rn��Kj��Uj

V 
x�� d�x �
KX
j��

Q� logR bD��
j

� ��Q
�

KX
j��

R bD��
j � 
log ���� �Q�K �

where we used that log t � �� t � log �
��
� for t� �� � �� We shall take

"�� ���Q�R� �� so that the last term is of the desired form� The �rst
one reduces to an arbitrarily small constant times Q

PK
j��

bD��
j � Note

that


����� bD��
j � ���

�Z
Uj

l
x��� d�x
����

�D��
j �R�� �

In fact� by 
������ the integral is bounded below by a constant times


� l
Rj��
�� bDj � and thus the whole right hand side by

bD��
j

�� bDj

� l
Rj�

��
�
bDj

Dj
�
bDj

R

�
� bD��

j �

by de�nition of bDj � The contribution of the last two terms of 
����� are
then controlled by the �rst term 
����� respectively by 
����� For the

integral� I� we use I��� � � ������ �� � �� I�� and choose Q � �� ��� �
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" z��R�� Note that the Uj are disjoint� allowing for the application of

�����

iv� Using


����� P ��� � l���� 
r���� � l����� � ��
�
r�� �

�
� �

����

�

�
l�� �

we estimate the contributions to iv� of the two terms separately� The
�rst integral isZ

�R

d�x r
x��� V 
x� jKxj��
Z
d�y jB
y�j �
jx� yj 	 � l
x��

� Q

�

Z
�RR�

d�x d�y jB
y�j� jKxj�� �
jx� yj 	 � l
x��

�
Q��

�

Z
d�x d�y r
x��� V 
x�� jKxj�� �
jx� yj 	 � l
x�� �


�����

The �rst term on the right hand side is like the corresponding one in

����� and hence acceptable provided �� �Q� "� The second integral�

Q��
R
r
x���V 
x��d�x� is dealt with by splitting it with respect to eUj 

fx � jx�Rj j 	 eDjg� eDj  min fDj � � r
Rj�� Rg 
see Section I���� ThenZ
eUj

r
x��� V 
x�� d�x � r
Rj�
��

Z
eUj

V 
x�� d�x � ��Q� eD��
j �

andZ
R�n��K

j��
eUj

r
x��� V 
x�� d�x

� ��Q��

�

Z
R�n��K

j��
eUj

V 
x�� d�x�
���Q�

�

Z
�R

r
x��� d�x �

Since the �rst integral is bounded above by constQ�
PK

j��
eD��
j we have

that

Q��
Z
r
x��� V 
x�� d�x

� Q
KX
j��

eD��
j �Q

Z
�R

r
x��� d�x

� Q
KX
j��

D��
j �Q

Z
�R
x�B
x�

� d�x�QR��K
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due 
I����� 
augmented by R��� and 
����� These terms �t 
���� for our
choice of ���

The integral corresponding to the last term in 
����� is estimated
similarly to iii� and is split accordingly� The inner integrals can be
estimated as


�����

Z
Uj

bB
x� l
x��� V 
x� d�x
� 
 sup

x�Uj

bB
x� l
x���� bD�
jQ

� � �
���
�

�
bD�
j 
 sup

x�Uj

bB
x� l
x������� � ����

�
Q� �

where


����� 
 bB l������ � �

�
�����R���� 
� bB� � �R� l��� �

The term coming from bB� will be dealt with by 
������ the other one
by using bD�

j sup
x�Uj

l
x��� �

Z
Uj

l
x��� d�x �

Choosing z � ����� �����R���� � " ensures that both terms 
����� are
controlled by 
���� and 
����� The contribution of the last term 
�����
is then of order z � ���� Q�K � z
 �����QR��K� The estimate of the
outer integral follows the line of 
�����Z

�Rn��Kj��Uj

d�x l
x��� V 
x� jKxj��
Z
d�y jB
y�j �
jx� yj 	 � l
x��

� ��
�

Z
�RR�

d�x d�y jB
y�j� jKxj�� �
jx� yj 	 � l
x��

�
����

�

Z
�Rn��Kj��UjR

�

d�x d�y l
x��� V 
x�� jKxj��

� �
jx� yj 	 � l
x�� �

The �rst term just requires z�� � "� The second one isZ
R�n��K

j��
Uj

l
x��� V 
x�� d�x

� �

�
�
����
�

Z
R�n��K

j��
Uj

V 
x�� d�x�
�

�
��

Z
�R

l
x��� d�x �
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To accomodate the last term� after application of 
����� we require
z� "�� � �� � " z��R�� The �rst term is dealt as in 
������ with
�� � z�� there�


� Proof of Theorem ��

We split the total Hamiltonian into two parts ��	� ��	

H  HI �HII �

with

HI 
NX
i��

D
� �

i
� VC � "

Z
�R
x� 
B
x�

� � � R� 
r� B�
x��� d�x �

HII  Hf � "
Z
�R
x� 
B
x�

� � � R� 
r� B�
x��� d�x �

where B  r�A� and �R is the positive function appearing in Theorem
��� " and � will be chosen later�

All the �elds appearing in HI are multiplication operators in the
same Schr#odinger representation of F ��	� Thus Theorem �� applies
and yields


���� HI � �C
Z�"� �� 
Z � ��R�� 
N �K� �

We now turn to HII� Let F 
x� be either B
x� or r�B
x�� As in 
�����
we may write F 
x�  F�
x� � F�
x� and obtain

F 
x�� � F 
x�� � 
F�
x�� F�
x��
�
F�
x�� F�
x��

� � 
�F�
x�F�
x� � �F�
x�� F�
x�	� �

where the commutator is a multiple of the identity� independent of x�
We then integrate against f
x� d�x with f � � and bound the �rst term
using f
x� � kfk� and Parseval$s identity� This yieldsZ

f
x�B
x�� d�x

� �
 � kfk�
Z
d�k jkj j�
k�j�

X
���

a�
k�
� a�
k� �

���



kfk� �



A Lieb	Thirring bound for a magnetic Pauli Hamiltonian� II �	�

respectivelyZ
f
x� 
r� B�
x�� d�x

� �
 � kfk�
Z
d�k jkj� j�
k�j�

X
���

a�
k�
� a�
k� �

����

�

kfk� �

Note that the integrals on the right hand side are bounded by �Hf and
���Hf � respectively� In particular� for f  �R we �nd

"

Z
�R
x� 
B
x�

� � � R� 
r�B�
x��� d�x

� const "�� 
� � � 
�R��� 
Hf � ��� ��R�K� �

We may now optimize over "� �� R� within the ranges allowed by The�
orem ��� in such a way that the factor in front of Hf is less than ��
The resulting choice is as follows� We pick " � Z� 
� � Z� ����� and
R  ����� 
� � Z� 
Z� ��������� As a result� the factor in front of Hf

is indeed less than � and


���� HII � �Z� �������K �

We �nally choose �  z� with z as in Theorem ��� Since z � ��Z� ��

we have R � Z���� so that 
���� applies

HI � �z� 
� � log z�Z�R�� 
N �K�

� �z
 
� � log z�Z� 
� � Z� 
Z� ������ 
N �K� �

This is also a lower bound to 
����� because of � � � � Z� ���
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On proximity relations for

valuations dominating a two�

dimensional regular local ring

Jos�e J� Aparicio� Angel Granja and Tom�as S�anchez�Giralda

Abstract� The purpose of this paper is to de�ne a new numerical
invariant of valuations centered in a regular two�dimensional regular
local ring� For this� we de�ne a sequence of non�negative rational num�
bers �� � f���j�gj�� which is determined by the proximity relations
of the successive quadratic transformations at the points determined
by a valuation �� This sequence is characterized by seven combinato�
rial properties� so that any sequence of non�negative rational numbers
having the above properties is the sequence associated to a valuation�

�� Introduction�

Valuations centered in a two�dimensional regular local ring have
been studied and classi�ed by Zariski� Abhyankar and Lipman �see for
example 	
��� More recently� there has been a revival of interest in this
subject �see 	
��� 	
�� 	��� 	��� � � � ��

The main purpose of this paper is to de�ne a new numerical in�
variant of valuations centered in a regular two�dimensional local ring�
One advantage of our invariant over those of 	
�� is that it works for
a general regular local ring of dimension two� in particular� we do not
assume that the residue �eld is algebraically closed�

���
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The idea of proximity to classify singularities of analytically irre�
ducible plane curves was developed by Enriques �see 	��� and can be
adapted to the situation above �see 	��� 	��� 	
�� � � � ��

Several invariants can be associated to proximity relations �the re�
�ned proximity matrix� the multiplicity sequence� the semigroup�length
sequence� � � � � see 	
��� Here we will introduce a new one which is a
sequence of non�negative rational numbers �� � f���j�gj�� �later called
proximity sequence�� where the proximity relations are codi�ed�

In what follows� all rings considered will be commutative and with
a unit element� For a local ring R� we will denote by M�R� its maximal
ideal�

Throughout this paper� R will be a two�dimensional regular noethe�
rian local ring and we will consider a �xed sequence

��� R � R� � R� � � � � � Rn � � � � �

where Ri�� is a quadratic transform of Ri �i�e� Ri�� is a localization
at a maximal ideal of a ring R 	x��M�Ri�� with x � M�Ri� and x ��
�M�Ri��

��
For i � �� we will denote by

ei�� �
h Ri

M�Ri�
�

Ri��

M�Ri���

i
�

It should be remembered that S � �i��Ri is a valuation ring� �See 	
���
If � is the valuation of S then � is the only valuation of the quotient
�eld of R centered at the maximal ideal of Ri for all i � ��

The main goal of the paper is the characterization of the properties
of the proximity sequence in the following sense� the properties that a
sequence of non�negative rational numbers f��j�gj�� must satisfy in
order to be the sequence associated to a valuation � �or equivalently to
a sequence ����� Therefore these properties characterize the class of all
valuations with the same associated sequence �� � This gives rise to a
notion of equisingularity of valuations�

For this� we see that all such sequence can be realized taking
R � Q�t� � � � � � tn� � � � � 		X�Y ��� Q being the �eld of rational numbers�
In general� this is not possible for any R� If� in addition� the sequence
satis�es that ��j� is an integer for all j � � �or equivalently all rings of
��� have the same residue �eld� then there is a valuation � such that
its associated proximity sequence is the given one�

We are also interested in other properties of the proximity se�
quence� In particular� if R is a complete ring then there is a non�zero
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principal prime ideal J of R such that J �goes through� Rn for all
n � � �i�e� Jn �� Rn� where Jn is the strict quadratic transform of J in
Rn� if and only if there is N�� such that ���n� � � for all n � N�� In
this situation� �� characterizes the equisingularity classes of analytically
irreducible plane curves� So we also have an explicit description of the
di�erent equisingularity classes�

The paper is organized as follows�

In Section 
 we outline some de�nitions and properties of proximity
relations�

Section � is devoted to an introduction of the invariant and to
study its properties� In particular we see that it is equivalent to the
re�ned proximity matrix�

In the last section we characterize �� by its properties and when
�� is an invariant for the equisingularity of plane curves�

�� Preliminaries�

First we will outline some concepts about the proximity relations
of ����

For j � i we say that Rj is proximate to Ri if the valuation ring
V �Ri� of OrdRi

contains Rj � where OrdRi
is the usual valuation order

of Ri �i�e� OrdRi
�x� is the greatest non�negative integer d such that

x � �M�Ri��
d� x being a non�zero element of Ri�� In this case� V �Ri� �

�Rj�p� where p is a height one prime ideal of Rj containing M�Ri�Rj

and Rk is proximate to Ri for i � k 	 j�

Moreover� for j � i it is easy to verify that M�Ri�Rj � t
aij
ij u

bij
ij �

where tijRj � M�Rj���Rj� �tij� uij�Rj � M�Rj�� aij � � and bij � ��
�aij and bij being integers�� So Rj is proximate to Rj�� and at most
to one other ring in ���� In fact if j � i� 
 and Rj is proximate to Ri

we can write

Rk �
�
Rk��

hui�k��
ti�k��

i�
�ti�k�ui�k�

�

with ti�k � ti�k�� and ui�k � ui�k���ti�k��� i � � � k � j� So bi�j � 

and this is also a su�cient condition for Rj to be proximate to Ri�

One also has ai�j � j � i
 
 and ek�� � 
� i� � 	 k 	 j�

In general� for j � i�
 we say that Rj is a satellite of Ri if bij �� ��

where M�Ri�Rj � t
aij
ij u

bij
ij as above� If bij � � we say that Rj is free

with respect to Ri�
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This is simply Zariski�s de�nition of satellite and free points� �See
	
���� It should be noted that Rj is a satellite of Ri if and only if

OrdRj

�p
M�Ri�Rj

�
� �� It is also easy to verify that Rj is a satellite

of Ri if and only if there is a non�negative integer q with j 
 
 � q � i
such that Rj is proximate to Rq�

�� The invariant�

In this section we will use the above notations�
We de�ne the function � � Z� 
� Z� as follows� ���� � � and for

j � 
� ��j� � 
 � min fk � Rj is proximate to Rkg� where Z� denotes
the set of non�negative integers�

Thinking geometrically� this map computes the oldest exceptional
divisor that �goes through� Rj �

On the other hand� note that ��j� � j if and only if Rj is a satellite
of Ri for some i � j 
 
� So ��j� � j if and only if Rj is free with
respect to Ri for all i � j 
 
�

The most interesting properties of � are given in the following
results�

Proposition ���� We have the following statements�

a� ��j� 	 j�

b� If ��j� � i � j then ��i� � ��j��

c� For all j � � there is a non�negative integer n such that �n�j� �
�n���j�� where �� � �Z� and �k�� � � � �k�

d� If ��j� � j then ��j� � j 
 
 or ��j� � ��j 
 
��

Proof� a� Follows from the de�nition of ��

b� If m� 
 � ��j� � j then Rj is proximate to Rm and also Ri is
proximate to Rm for m� 
 	 i 	 j� So ��i� � m� 
 � ��j��

c� By a� we have � 	 � � � 	 �k�j� 	 � � � 	 ��j� 	 j� So there is an
n such that �n�j� � �n���j��

d� As ��j� � j� if ��j� �� j 
 
 then ��j� � j 
 
 � j by a�� And
by b� ��j� � ��j 
 
��
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In what follows we will denote by

n�j� � min fn � Z� � �n�j� � �n���j�g �

Proposition ���� With the above notations� let us assume that k � j�
then we have�


� If ��j� � k then n�j� � n�k� � 
�

�� If ��j� � ��k� then n�j� � n�k��

Proof� Note that �n�k����j� � �n�k��k� � �n�k����k� � �n�k����j�� so
n�j� 	 n�k� � 
�

On the other hand� �n�j����k� � �n�j��j� � �n�j����j� � �n�j��k��
so n�j� � n�k� � 
 and we have 
��

The proof of �� is similar�

Now we have the conditions to de�ne the invariant� which we will
call proximity sequence�

We de�ne �� � f���j�gj�� as follows� ����� � � and for j � 


���j� � n�j� � 





ej��
�

First of all� we will see that the sequence �� characterizes the proximity
relations of � �or equivalently of �����

Proposition ��	� With the above notations� the following statements

are equivalent�

a� Rj is free with respect to Ri for all i � j 
 
�

b� ���j� � 

 �
�ej����

c� ���j� � 
�

Proof� Rj is free with respect to Ri for all i � j 
 
 if and only if
��j� � j� so if and only if ���j� � 

�
�ej��� or equivalently ���j� � 
�

Proposition ��
� With the above notations� if i � j 
 
 the following

statements are equivalent�

a� Rj is proximate to Ri�
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b� n�i� 
� � 
 � ���i� 
� � 
�ei � ���k� � ��j�� i� � 	 k 	 j�

Proof� In order to see that a� implies b�� we note that Rk is proximate
to Ri� i � 
 	 k 	 j� So ��k� � i � 
 for i � � 	 k 	 j� Then� by
de�nition of �� we have ���i� 
� � 
�ei � 
� n�i� 
� � n�k� � ���k��
i� � 	 k 	 j�

On the other hand� by Proposition �� Rj is proximate to Rh�
h � j 
 
�

If h � i then by a� implies b� we have that ���k� � ���j� for
h � � 	 k 	 j� In particular� ���i � 
� � ���j�� Yet ���i � 
� �
n�i� 
� � 
 � ���j�� which is a contradiction�

If i � h then also by a� implies b� ���h� 
� � ���j�� which is also
a contradiction�

So h � i and we have that b� implies a��

Proposition ���� With the above notations� the proximity sequence ��
has the following properties�


� ���j� � ��

�� ����� � ��

� ���
� � 
�

�� If ���j� � 
 then ���i� is an integer�

�� If ���j� � 
 then 
��

 ���j�� is an integer�

�� If ���j � 
� � ���j� then ���j � 
� � 
�

�� ���j � 
� 	 
 � ���j��

Proof� 
� and �� follow from the de�nition of �� �

� As ��
� � 
 we have n�
� � � and ���
� � 

 
�e� � 
�

�� If ���j� � 
 then ��j� �� j� so Rj is proximate to Rq� with
q � j 
 
� So ej�� � 
 and ���j� � n�j� is an integer�

�� If ���j� � 
 then ��j� � j and ���j� � 
 
 
�ej��� so ej�� �

��

 ���j�� is an integer�

�� If ���j�
� � ���j� and ���j�
� � 
� then ���j� � 
� So Rj�� is
proximate to Rq� q � j and Rj is proximate to Rh� h � j

� Therefore
��j � 
� � q � 
� ��j� � h � 
� ej�� � ej � 
� ���j � 
� � n�j � 
� �
n�q � 
� � 
 and ���j� � n�j� � n�h� 
� � 
�
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If q � j 
 
 then q � h and ���j � 
� � ���j�� which is a contra�
diction�

So q � j 
 
 and ��j � 
� � j� Then by ��� we have n�j � 
� �
n�j� � 
 and

���j � 
� � n�j � 
� � 





ej
� n�j� � 
 � 






ej��
� ���j� � 
 �

which is also a contradiction� So ���j � 
� � 
�

�� We have three possibilities�

 ��j�
� � j�
� in this case ���j�
� � 
 and always ���j�
� 	
���j� � 
�

 ��j�
� � j� in this case we have n�j�
� � n�j��
� see ���� So

���j � 
� � n�j � 
� � 





ej
	 ���j� � 
 �

 ��j�
� � ��j�� in this case we have n�j�
� � n�j�� see ���� So

���j � 
� � n�j � 
� � 





ej

and

���j� � n�j� � 





ej��
�

then

���j � 
� � ���j� �



ej��






ej
� ���j� � 
 �

To �nish this section we will compare the proximity sequence with
other invariants� Namely� we will see that it de�nes equivalent data to
the re�ned proximity matrix�

It should be remembered �see 	
�� that the re�ned proximity ma�

trix P� � �pij�i�j�� is given by pii � 
�

pij � 

h Rj

M�Rj�
�

Ri

M�Ri�

i

if Rj is proximate to Ri and pij � � for the rest� Note that P� is an
upper triangular matrix�
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Proposition ���� The proximity sequence �� determines the re�ned

proximity matrix P� and vice�versa�

Proof� First we note that p�� � 
� p�� � � and

p�� � 

h R�

M�R��
�

R�

M�R��

i
� 
e� �




���
�
 

�

So p�� and ���
� are the same data�
Now let us assume that �� determines pij for � 	 i� j 	 n� n � 
�

We have pn���n�� � 
 and pn���k � � for � 	 k 	 n�
If Rn�� is free with respect to Rk for all k � n� then pk�n�� � �

for k � n and

pn�n�� � 

h Rn��

M�Rn���
�

Rn

M�Rn�

i
� 
en �




���n� 
�
 

�

If Rn�� is proximate to Rk with k � n then

n�k � 
� � 
 � ���k � �� � ���k � � � � � � � ���n� 
� � ���k� �



ek
�

So



���n� 
�
 ���k � 
�
� pk�n�� �

Now

pn�n�� � 

h Rn��

M�Rn���
�

Rn

M�Rn�

i
� 
en � 



and pj�n�� � � for j � n� and j �� k�
So �� determines P� �
Similar reasoning proves that P� determines �� �

	� Valuations with a given ��

Now we will prove the main result of this paper�

Theorem 	��� Let � � f��j�gj�� be a sequence of non�negative ratio�

nal numbers having the seven properties of Proposition ���� Then there

is a two dimensional regular noetherian local ring R and a valuation �
centered at M�R� such that its proximity sequence is ��
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Proof� We consider R � Q�t� � � � � � tn� � � � � 		X�Y ��� where Q is the �eld
of rational numbers� ft�� � � � � tn� � � �g is a set of indeterminates over Q
and X and Y are two indeterminates over Q �t� � � � � � tn� � � � ��

We de�ne ej�� � 
 if ��j� � 
 and

ej�� �





 ��j�
� if ��j� � 
 �

We put R � R� and

R� �
�
R
hY
X

i�
�X��Y�X�e��t��

�

Now let us assume that for n � 
 we have R � R� � R� � � � � � Rn such
that for any valuation �� centered atM�Rn� we have that ����j� � ��j��
for each � 	 j 	 n� and

Rj

M�Rj�
�

Rj��

M�Rj���
	t
��ej��
j � � if ej�� � 


and
Rj

M�Rj�
�

Rj��

M�Rj���
� if ej�� � 
� 
 	 j 	 n �

We have two possibilities�


� ��n � 
� � 
 �i�e� Rn�� must be free with respect to Ri for
all i � n�� In this case� let �xn� yn� be a basis of M�Rn�� such that
M�Rn���Rn � xnRn�

We de�ne

Rn�� �
�
Rn

h yn
xn

i�
�xn��yn�xn�en�tn���

�

�� ��n � 
� � 
 �i�e� Rn�� must be a satellite�� In this case� we
have 
 � ��n� � ��n� 
� � ��n��

 If ��n� 
� � ��n�� then Rn�� must be proximate to Rn��� �See
����� Let �xn� yn� be a basis ofM�Rn�� such thatM�Rn���Rn � xnRn�

We de�ne
Rn�� �

�
Rn

hxn
yn

i�
�yn�xn�yn�

�

 If ��n � 
� � ��n�� then Rn�� must be proximate to Rk� with
k � n 
 
� �See ����� In this case� we can take �xn� yn� a basis of
M�Rn�� such that M�Rn���Rn � xnRn and M�Rk�Rn � xan ynRn�
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We de�ne
Rn�� �

�
Rn

h yn
xn

i�
�xn�yn�xn�

�

Now it is easy to see that R � R� � R� � � � � � Rn � Rn�� proves
that for any valuation �� centered at M�Rn��� we have ����j� � ��j��
for each � 	 j 	 n� 
� and

Rj

M�Rj�
�

Rj��

M�Rj���
	t
��ej��
j � � if ej�� � 


and
Rj

M�Rj�
�

Rj��

M�Rj���
� if ej�� � 
� 
 	 j 	 n� 
 �

Now we will study the case in which ���j� is an integer for all j � ��

Theorem 	��� Let � � f��j�gj�� be a sequence of non�negative inte�

gers having the seven properties of Proposition ���� Let R be any regu�

lar noetherian local ring of dimension two� Then there is a valuation �
centered at M�R� such that its proximity sequence is ��

Proof� First we put ej�� � 
 for all j � �� R � R� and

R� �
�
R
hy
x

i�
�x�y�x�

�

�x� y� being any basis of M�R��
Now let us assume that we have R � R� � R� � � � � � Rn such

that for any valuation �� centered at M�Rn� we have ����j� � ��j�� for
each � 	 j 	 n�

Rj

M�Rj�
�

Rj��

M�Rj���
� 
 	 j 	 n �

We have two possibilities�


� ��n�
� � � �i�e� Rn�� must be free with respect to Ri� i � n��
In this case� let �xn� yn� be a basis of M�Rn�� such that M�Rn���Rn �
xnRn�

We de�ne

Rn�� �
�
Rn

h yn
xn

i�
�xn��yn�xn��

�
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�� ��n � 
� � 
 �i�e� Rn�� must be a satellite�� In this case� we
have 
 � ��n� � ��n� 
� � ��n��

 If ��n� 
� � ��n�� then Rn�� must be proximate to Rn��� �See
����� Let �xn� yn� be a basis ofM�Rn�� such thatM�Rn���Rn � xnRn�

We de�ne
Rn�� �

�
Rn

hxn
yn

i�
�yn�xn�yn�

�

 If ��n � 
� � ��n�� then Rn�� must be proximate to Rk� with
k � n 
 
� �See ����� In this case� we can take �xn� yn� a basis of
M�Rn�� such that M�Rn���Rn � xnRn and M�Rk�Rn � xan ynRn�

We de�ne
Rn�� �

�
Rn

h yn
xn

i�
�xn�yn�xn�

�

Now it is easy to see that R � R� � R� � � � � � Rn � Rn�� proves
that for any valuation �� centered at M�Rn��� we have ����j� � ��j��
for each � 	 j 	 n� 
� and

Rj

M�Rj�
�

Rj��

M�Rj���
� 
 	 j 	 n� 
 �

It should be noted that the above theorem is not true if � is not a
sequence of non�negative integers�

For example� let us consider R � R		X�Y ��� where R is the �eld of
real numbers� Let � � f��j�gj�� be the sequence given by ���� � ��
��
� � �� and ��k� � � for k � �� If there is a valuation � �or
equivalently a sequence ���� with � as the proximity sequence� then
R�M�R� is isomorphic to R and

e� �
h R�

M�R��
�

R

M�R�

i
�  �

which is a contradiction�
To �nish the paper� we will clarify the relation between the prox�

imity sequence and the classi�cation of plane curve singularities�
For this� we need to assume that R is a complete ring�

Proposition 	�	� Let us assume that there is a non�zero principal

prime ideal J of R � R� such that Jn �� Rn� Jn being the strict

quadratic transform of J in Rn� n � �� Then there is a non�negative

integer N� such that ���n� � � for n � N��
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Proof� By 	�� Proposition ��� and Theorem 
����� there is an N� such
that JRn has a normal crossing for n � N�� that is JRn � xann ybnn Rn�
where �xn� yn� is a basis of Rn and an and bn are non�negative integers�

On the other hand� by de�nition of strict quadratic transform of J
we have

JRn �
� n��Y

i��

�M�Ri��
di
�
JnRn �

where di � OrdRi
�Ji�� � 	 i 	 n
 
�

We can thus assume that Jn � ynRn� with bn � 
 and

n��Y
i��

�M�Ri��
diRn � xann Rn �

Therefore Rn is free for n � N��
As Jn�� �� Rn�� we have

Rn�� �
�
Rn

h yn
xn

i�
�xn�yn�xn�

�

so en � 
� for n � N��
Now� we have ��n� � n and ��n� � � for n � N��

Proposition 	�
� With the above notations� let us assume that there is

a non�negative integer N� such that ���n� � � for n � N�� Then� there

is a non�zero principal prime ideal J of R � R� such that Jn �� Rn� Jn
being the strict quadratic transform of J in Rn for all n � ��

Proof� As ���n� � � for n � N� we have that Rn is free and en � 
�
for n � N��

So we can write

Rn�� �
�
Rn

h yn
xn

i�
�xn��yn�xn��a�

�

where �xn� yn� is a basis of M�Rn� and an � RN�
� n � N��

Let us consider the ideal

JN�
� �y

N�
� a

N�
x
N�

� a
N���

x�
N�

� � � � � �RN�
�� �

where �RN�
�� is the complection of RN�

�
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It is now easy to see that J � JN�
� R is the required non�zero

principal prime ideal of R�

It should be noted that Propositions � and �� characterize the
proximity sequences such that there is an analytically irreducible plane
curve that �goes through� all the rings of ����

In addition� it is easy to verify that �� is an invariant of the eq�
uisingularity class of such a curve� For a more speci�c treatment of
proximity relations and plane curve singularities refer to 	
���
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