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Square functions of Calder�on

type and applications

Steve Hofmann and John L� Lewis

Abstract� We establish L� and Lp bounds for a class of square func�
tions which arises in the study of singular integrals and boundary value
problems in non�smooth domains� As an application� we present a
simpli�ed treatment of a class of parabolic smoothing operators which
includes the caloric single layer potential on the boundary of certain
minimally smooth� non�cylindrical domains�

�� Introduction and notation�

In this note we prove certain square function estimates which are
in the spirit of those considered by David� Journ�e� and Semmes �DJS�
Section ��	� In particular� they 
essentially� include square function
estimates for solutions of the heat equation in time varying domains
�HL� Theorem ���	� but our treatment here is of a purely real variable
and geometric nature� and does not depend on properties of solutions
of a PDE� Our approach will be based on an idea of P� Jones �JnsP	�
who gave a proof of the deep result of Coifman� McIntosh� and Meyer
�CMM	 concerning the L� boundedness of the Cauchy integral operator
along a Lipschitz curve� by viewing the Lipschitz curve as 
locally� a
pertubation of an approximating line� and then controlling the resulting
error terms by a certain Carleson measure estimate� In this context see
also the work of Fang �Fng	� and the monograph of Christ �Ch	� We
note that an important antecedent of Jones ideas is contained in the
work of Dorronsoro �Do	� We shall apply our square function estimates

�
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to obtain an alternative proof of �H�� Theorem �	� which is a regularity
result for a class of parabolic smoothing operators which includes the
caloric single layer on the boundary of certain non�smooth time�varying
domains�

Our main application being parabolic� we shall state and prove a
parabolic version of our square function estimates� The elliptic ver�
sion is similar� but a bit simpler� Indeed� another application of our
method has been given by D� Mitrea� M� Mitrea� and M� Taylor �MMT�
Section �	� who follow our approach here to prove certain square func�
tion estimates that are useful in their work on elliptic boundary value
problems in non�smooth Riemannian manifolds�

Let us now introduce some notation� Our operators are modeled
on operators arising from the theory of layer potential on non�smooth�
time�varying domains� The class of domains under consideration have
boundaries given 
at least locally� as graphs of functions A
x� t�� x �
R
n�� � t � R� which are Lipschitz in space� uniformly in time� and which
satisfy a certain half order smoothness condition in the time variable�
which is related to the BMO Sobolev spaces of Strichartz �Stz	� To be
more precise� we suppose that there exists a constant � such that


���� jA
x� t��A
y� t�j � � jx� yj �

and


���� kD nAk� � � �

Here� k � k� denotes the parabolic BMO norm 
de�ned below�� and�
following Fabes and Riviere �FR	� we have de�ned a half�order time
derivative by


���� D nA
x� t� �
� �

k
�� ��k
bA
�� ����
x� t� �

whereband � denote respectively the Fourier and inverse Fourier trans�
forms on Rn � and �� � denote� respectively� the space and time variables
on the Fourier transform side� Also� kzk denotes the parabolic �norm�
of z� We recall that this �norm� satis�es the non�isotropic dilation in�
variance property k
�x� ��t�k � � k
x� t�k� Indeed� k
x� t�k is de�ned as
the unique positive solution � of the equation


����
n��X
i��

x�i
��
�

t�

��
� � �
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We note that the class of functions A
x� t� satisfying 
���� and 
�����
has been introduced 
with a somewhat di�erent� albeit equivalent for�
mulation� in �LM	� and considered further in �H�	� �H�	� and �HL	� In
particular� it is shown in �H�	 that this class of functions is the natural
sharp parabolic analogue� of the class of Lipschitz functions in the el�
liptic theory� for the development of a Calder�on type singular integral
theory �Ca�	� �Ca�	� Indeed� in �H�	 it is shown that

����
r
��

	

	t
� A
����

op
� krxAk� � kD nAk� �

where � means the two quantities are bounded by constant multiples of
each other� Moreover� k � kop denotes the operator norm on L�
Rn����
and


���� rx �
� 	

	x�
� � � � �

	

	xn��

�
�

Since 

p
�� 	
	t� A� is the parabolic version of the �rst Calder�on

commutator� we de�ne the �commutator� norm of A by


���� kAkcomm � krxAk� � kD nAk� �

Of course� 
���� and 
���� say that this quantity is �nite� In �H�	 it
is also shown that �niteness of 
���� implies the parabolic Lipschitz
condition


���� jA
x� t��A
y� s�j � c � k
x� t��
y� s�k � c � 
jx�yj� jt�sj���� �

We recall now that parabolic BMO is the space of all locally integrable
functions modulo constants satisfying


���� kbk� � sup
B

�

jBj

Z
B

jb
z��mBbj dz �� �

Here� z � 
x� t� and B denotes the parabolic ball


���� B � Br
z�� � fz � R
n � kz � z�k � rg �

where jBj denotes the Lesbegue n measure of B and

mBb �
�

jBj

Z
B

b
z� dz �
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We note that jBr
z��j � c rd where c is a constant and d � n � � is
the homogeneous dimension of Rn endowed with the metric induced by
k � k� as de�ned in 
����� We observe that Rn so endowed is a space
of homogeneous type in the sense of Coifman and Weiss �CW	� Indeed�
there is a polar decomposition


�����
z � 
x� t� � 
� ��� � � � � � �n��� �

� �n��

dz � dx dt � �d�� 
� � ��n� d� d� �

where � � 
��� � � � � �n�� j�j � �� and d� denotes surface area on the unit
sphere�

Finally� we note that througout the sequel� we shall use the conve�
nient notation

z � 
x� t� � R
n � v � 
y� s� � R

n �

and we shall denote the parabolic dilations by the convenient notation

��z � 
�x� ��t� �

where  will always denote the n�dimensional multi�index 
�� � � � � �� ���

In the next section� we introduce the class of operators which we
shall consider� and state our results�

�� Statement of results�

We begin by de�ning our square functions� To this end� let H �
C�
Rn n f�g� satisfy the homogeneity condition


���� H
��z� � ��d��H
z� � for z � 
x� t� � d � n� � �

and assume that F � C�
R� with


����

jF 
r�j � cF
�

� � jrjd��
�

jF �
r�j � cF
�

� � jrjd��
�
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whenever r � R� For F�H as above de�ne a square function G of
�Calder�on type� by setting

R�f
z� � �

Z
Rn

H
z � v�F
�A
z�� A
v� � �

kz � vk

�
f
v� dv �
����

Gf
z� �
�Z �

�

jR�f
z� j
� d�

�

����
�
����

Let � be a parabolic A� weight 
these are de�ned in the usual way� in
this case with respect to parabolic balls� or cubes�� and f � L��
R

n ��
As usual�

kfk��� �
�Z

jf
x�j� �
x� dx
����

�

We shall work with weighted L�� because� when dealing with square
functions� this is a particularly suitable way to obtain Lp bounds 
via
extrapolation � see �GR	�� Furthermore our main application is to rough
singular integral operators which do not satisy the standard Calder�on�
Zygmund kernel estimates� and thus cannot be shown to be bounded
on Lp via the standard program� However� as usual� it is really our
unweighted L� bounds which are the heart of the matter � the extension
to the weighted case is routine� We shall prove the following theorem�

Theorem ���� Suppose that for H�F as above 
see 
���� and 
�����
we have either F is odd and H
x� t� is odd in x for each �xed t� or
else that F is even� H
x� t� is even in x for each �xed t� and also thatR
R
F 
r� dr � �� If kAkcomm � � ��� and � � A�� then there exists a

positive integer N depending only on d such that

kGfk��� � cF�H�� 
� � ��N kfk��� �

Remark� Here and in the sequel� when we indicate that a constant
depends on �� we mean that it actually depends only on the A� constant
of �� so that Lp bounds follow by extrapolation �GR	�

Theorem ��� is easily generalized� in a way that is useful for some
applications� Indeed� letH�F� be as in 
����� 
����� and let B � Rn �� R

with
kBkcomm � �� �� �
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Let A be as in Theorem ��� and put

eR�f
z� � �

Z
Rn

H
z � v�
B
z�� B
v�

kz � vk

� F
�A
z��A
v� � �

kz � vk

�
f
v� dv �


����

eGf
z� � �Z �

�

j eR�f
z� j
� d�

�

����

�
����

We then have

Theorem ���� Let H�F � and A be as in Theorem ���� and let B satisfy

kBkcomm � �� � �� Suppose that either F is odd and H
x� t� is even

in x for each �xed t� or else that F is even� H
x� t� is odd in x for each

�xed t� and also that
R
R
F 
r� dr � �� If � � A�� then there exists a

positive integer N depending only on d such that

k eGfk��� � cF�H�� �� 
� � ��N kfk��� �

In our applications the square functions de�ned in 
�����
���� and

�����
���� model the second derivatives of the single layer potential
mapped to Rn��� � We shall also describe here a model for higher order
derivatives� We refrain from stating the most general result of this
type as it would lead us too far astray from the purposes of this paper�
Suppose L � C�
Rn n f�g� with


���� L
��z� � ��d��L
z� � z � R
n �

and let E � C�
R� with


�����

jE
r�j � cE
�

� � jrjd��
�

jE�
r�j � cE
�

� � jrjd��
�

whenever r � R� Suppose that either E is even with
R
R
E
r� dr � �

and L
x� t� is odd in x for each �xed t� or else that E is odd� withR
R
r E
r�dr � �� and L
x� t� is even in x for each �xed t� Next assume
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that eL � C�
Rn n f�g� satis�es 
���� and eE � C�
R� satis�es 
������

Suppose that either eE is even with
R
R

eE
r� dr � � while eL
x� t� is even
in x for each �xed t� or else that eE is odd with

R
R
r eE
r� dr � �� whileeL
x� t� is odd in x for each �xed t� We set


�����

T�f
z� � ��
Z
Rn

L
z � v�E
�A
z��A
v� � �

kz � vk

�
f
v� dv �

eT�f
z� � ��
Z
Rn

eL
z � v�
B
z��B
v�

kz � vk

� eE�A
z��A
v� � �

kz � vk

�
f
v� dv �

where kAkcomm � � ��� kBkcomm � �� ��� and


�����

g
f�
z� �
�Z �

�

jT�f
z�j
� d�

�

����
�

eg
f�
z� � �Z �

�

j eT�f
z�j� d�
�

����
�

With this notation we have

Theorem ����� Let E�L� eE� eL� g�eg� A�B� be as above� Then there

exists a positive integer N � N
d� such that if f� � are as in Theorem

���� we have

kg
f�k��� � ���� keg
f�k��� � c 
� � ��N kfk��� �

where c depends on ��E� L� eE� eL� and d�

We shall not bother to give the proof of Theorem ���� in this note�
as the interested reader could easily supply it after reading the proofs
of Theorems ��� and ����

To conclude this section� we now describe the parabolic smoothing
operators which are our main application� Let J denote a kernel which
satis�es the homogeneity property


����� J
��z� � ��d�� J
z� �

where d � n � � and z � R
n � We also assume that J is su�ciently

smooth away from the origin� i�e�� J � Cm
Rn n f�g�� for some large
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m� With this notation� let E denote either sine or cosine� and de�ne
�smoothing operators of Calder�on type� by


�����

SAf
z� �

Z
Rn

J
z � v�E
�A
z�� A
v�

kz � vk

�
f
v� dv �

UA�Bf
z� �

Z
Rn

J
z � v�E
�A
z�� A
v�

kz � vk

�

�
B
z�� B
v�

kz � vk
f
v� dv �

We shall give a simpler proof of the following result of the �rst author
�H�� Theorem �	� Let Lp����� denote the parabolic Sobolev space de�

�ned as the collection of all f having a spatial gradient and ��� a time
derivative in Lp� i�e�� those f for whom the following norm is �nite

kfkLp
�����

� krxfkp � kD nfkp �

Theorem ����� Let kAkcomm� kBkcomm � � and f � Lp
Rn �� � �
p � �� Suppose that J is su�ciently smooth away from the origin� If

J
x� t� has the same parity in x as does E� then for some large positive

N � we have

kSAfkLp
�����

� cp�J 
� � kAkcomm�
N kfkp �

Similarly if J
x� t� has opposite parity in x to that of E� then

kUA�BfkLp
�����

� cp�J kBkcomm 
� � kAkcomm�
N kfkp �

Remarks� �� Using the method of �CDM	� one can immediately re�
place the trigonometric function E by any su�ciently smooth function
de�ned on R with the same parity as E� One can also treat layer
potentials via this method�

�� Theorem � in �H�	 is stated for A� weights but implies our
Theorem ���� by extrapolation�

In the next section 
��� we treat our square functions 
theorems
��� and ����� In the last section 
��� we give the alternative proof of
Theorem �����
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�� Proofs of theorems ���	 ����

We begin with a simple lemma� For 
�� z�� 
�� v� � R
n��
� � let

K�
z� v� be a family of real valued kernels satisfying

jK�
z� v�j � cK
�


�� kz � vk�d��
�
����

jK�
z� v��K�
z� ev�j
� cK kv � evk minn �

�d kz � vk
�

�

kz � vkd��

o
�


����

whenever � kv � evk � kz � vk� Let � be a parabolic A� weight� Put

K�f
z� �

Z
Rn

K�
z� v� f
v� dv � z � R
n �

The following result is standard� and we omit the proof�

Lemma ���� Let 
K�� satisfy 
����� 
���� and let �� f be as above� If

K�� � � for each � � �� thenZ
R
n��
�


K�f�
�
z��
z�

dz d�

�
� cK�� kfk

�
��� �

In Lemma ���� cK�� denotes a constant depending only on K� d�
and the A� constant of �� which is the same convention we used in
Section �� Lemma ��� is stated in �Ch� p� ��� Theorem ��	 for � � �

see also �CJ	� under slightly weaker hypotheses�

Proof of Theorem ���� Let P � C�
� 
B�
��� be an even function

with
R
Rn

P�
z� dz � �� where as usual P�
z� � ��d P 
���z� and let
f �� P�f be the convolution operator whose kernel is P�
z�� Put

Q�
�f
z� � �

Z
Rn

H
z � v�F
�hrz� P�A
z�� z

� � v�i� �

kz � vk

�
f
v� dv �

where z� � x� v� � y if z � 
x� t� and v � 
y� s�� Then

Gf
z� �
�Z �

�

j
R� �Q�
��f
z�j

� d�

�

����
�
�Z �

�

jQ�
�f
z�j

� d�

�

����
� G�f
z� �G�f
z� �


����
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We set V� � R� �Q�
� and observe from 
���� and 
���� that the kernel

V�
z� v� of V� satis�es


����
jV�
z� v�j � c 
� � ��d��

�


�� kz � vk�d��

� jA
z�� A
v�� hrz� P�A
z�� z
� � v�ij �

where c depends on F�H� d� Using 
���� and 
���� we deduce that V�
satis�es 
���� with K replaced by V and cK replaced by c 
� � ��d���
Also by the same argument we see that the kernel of Q�

� satis�es 
����
with Q� � K and the same constants as V � Moreover� since H �
C�
Rn n f�g� we �nd in addition from 
����� 
���� and 
����� that the
kernels of V�� Q

�
� satisfy 
���� with the same constants as in 
�����

First we consider G� in 
����� This term will be treated using
the main idea in �JnsP	� but with the particular details closer to the
exposition in �Ch	� From the above discussion we see that we may follow
the standard approach� as in �CM	� to handle K� � V� � 
V���P�� via
Lemma ��� since K�� � � for each � � �� Thus to show


���� kG�fk��� � cF�H�� 
� � ��N kfk���

we need only proveZ �

�

Z
Rn


V��P�f�
� �

dz d�

�
� cF�H�� 
� � ���N kfk��� �

i�e�� that


���� d�
�� z� � 
V��
z��
� �
z�

dz d�

�

is a weighted Carleson measure with norm comparable to the constants
in Theorem ���� To this end let z� � R

n � r � �� and let �� �� denote the
characteristic functions of B��r
z��� R

n nB��r
z��� respectively� Fixing
this ball� and using 
���� for V� we deduce� as usual� that it su�ces to

replace � by � in 
����� Next we put eA
z� � �
kz�z�k� 
A
z��A
z����
z � R

n � where � � C�
� 
��� r� �� r� is an even function with � � � on

���� r� �� r	� Then V� �
z� is unchanged for z � B��r
z��� � � � � r�

if we replace A in its de�nition by eA� Moreover from �H�� Section ��
Lemma �	 we have


����
i� k eAkcomm � c kAkcomm �

ii� For � � p ��� kD eAkpp � cp �
p rd �
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where the parabolic fractional derivative operator D is de�ned by the
Fourier multiplier cD f � k�k bf �
Using 
����� Schwarzs inequality� and the change of variable � �� �
�l

we obtain� for N large enough that


������N
Z r

�

Z
Br�z�	


V���
�
z��
z�

dz d�

�

� c
�X
l��

��l
Z �

�

Z
Rn

��d��
�Z

B��z	

j eA
z�� eA
v�
� hrz�P��l�

eA
z�� z��v�ij� dv�
����

� �
z�
dz d�

�

� c� �
� �
Br
z��� �

where the last inequality follows from 
���� and an argument involving
Plancherels Theorem in the case � � � 
see �H�� Section �	 for more
details� or else the argument of �H�� Section �� Lemma �	 in the weighted
case� Thus 
���� holds�

To prove the analogue of 
���� with G� replaced by G� we note
that 
����� 
���� for Q�

�� and Lemma ��� imply that it is enough to show
that Q�

�� � �� To do this we introduce the parabolic polar coordinates
de�ned in 
����� to get

Q�
��
z� � �

Z
S

�Z �

�

F
�
h�a� ��i�

�

�

� d�
��

�
H
��  
�� d� �

where �a � rz�P�A
z��  
�� � 
� � ��n �� and � � 
��� �n� � S �
the unit sphere in R

n � We change variables in the above integral by
� �� � �� then r � �
�� then r �� r � h�a� ��i� to obtain

Q�
��
z� �

Z
S

�Z �

h�a��� i

F 
r� dr
�
H
��  
�� d� � � �

since our hypotheses in Theorem ��� guarantee that this last expression
is zero� Indeed

R�
h�a���i

F 
r� dr is a function of �� having opposite parity

toH
��  
��� for each �xed non�zero �a� The case �a � � is much simpler�
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if H is odd in ��� then clearly
R
S
H
��  
�� d� � �� and if F is even

with
R�
��

F 
r� dr � �� then
R�
�

F 
r� dr � �� Thus 
���� holds also for
G�� and the conclusion of Theorem ��� follows�

Proof of Theorem ���� We shall be brief� since the ideas are now
familiar� Put

U�f
z�

� �

Z
Rn

H
z�v�
hrz� P�B
z�� z

� � v�i

kz � vk
F
�A
z�� A
v� � �

kz � vk

�
f
v� dv �

Then as in 
����

eGf
z� � �Z �

�

j
 eR� � U��f
z�j
� d�

�

����
�
�Z �

�

jU�f
z�j
� d�

�

����

� eG�f
z� � eG�f
z� �


�����

If eV� � eR� � U�� then as in 
���� we deduce

jeV�
z� v�j � c 
� � ��d�� min
n �

kz � vkd��
�

�

�dkz � vk

o
� jB
z�� B
v�� hrz� P�B
z�� z

� � v�ij �

where c depends on F�H� d� Using this inequality in place of 
���� we
can now repeat the argument following 
���� through 
���� to get that


���� holds with G� replaced by eG� and constants as in Theorem ����

As for eG� we note from 
���� that the kernel of U� can be written as a
sum of L� functions 
the components of rz�P�B
z�� times operators
whose kernels satisfy the hypotheses of Theorem ���� Thus 
���� holds

with G� replaced by eG� and constants as in Theorem ���� and we are
done�


� Alternative proof of Theorem �����

Next we shall use Theorems ���� ���� and ����� to give an alternate
proof of Theorem ���� 
i�e� essentially �H�� Theorem �	�� Our reduction
of the proof of Theorem ���� to the square function estimates which we
have proved in the previous theorems� will be in the spirit of some
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recent work of Li� McIntosh� and Semmes �LiMS� Section �	� To begin�
we consider the operator S � SA of Theorem ����� For speci�city� we
consider

Sf
z� �

Z
Rn

J
z � v� cos
�A
z�� A
v�

kz � vk

�
f
v� dv �

where


����

a� J
x� t� is even in x� for each �xed t �

b� J
��z� � ���d J
z�� z � R
n �

c� J � CN
� 
R

n n f�g�� for some large N �

Our goal is to show that for some large N and for each j� � � j � n�
we have


���� kD jSfkp � cJ�p 
� � ��N kfkp �

whenever f � Lp
Rn�� and � � p � �� Here� D j � 	
	xj for � �
j � n� �� and D n is the �
� order time derivative de�ned in Section ��
Since rxA � L�
Rn �� we have that� modulo pointwise multiplication
by a bounded function� each D jS� � � j � n � �� gives rise to a
standard parabolic Calder�on�Zygmund operator which falls under the
scope of �H�� Theorem �	 
to see this� just di�erentiate formally under
the integral sign in the de�nition of Sf ! this formal computation may
be justi�ed by smoothly truncating the kernel J � and obtaining bounds
independent of the truncation�� Thus it su�ces to prove the case j � n
of 
����� In fact if � is an A� weight and f � L��
R

n �� we shall show
that


���� kD nSfk��� � cJ�� 
� � ��N kfk��� �

Once 
���� is proved� the Theorem then follows from extrapolation 
see
�GR� Chapter �� Theorem ����	�� We remark that the operator D nS
cannot be viewed as a standard Calder�on�Zygmund operator 
modulo
multiplication by a bounded function�� and hence does not fall under
the scope of �H�� Theorem �	� nor can one use the classical Calder�on�
Zygmund theory to pass from L� bounds to Lp� The failure of the
standard C�Z estimates in this case is related to the fact that the chain
rule does not hold for fractional derivatives like D n �
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To make our arguments rigorous� we observe that since

jA
z�� A
v�j � c kAkcomm kz � vk


see 
������ we can replace the cosine in the de�nition of Sf by " where
"
r� � �
r� cos
r� and � � C�

� 
R� is an even function with � � � on
��c �� c �	� Clearly we can also choose � so that

R�
��

"
r� dr � �� We
make the a priori assumption that f � C�

� 
R
n�� A � C�
Rn�� and that

J has been smoothly truncated so that it is supported on a parabolic
annulus� These assumptions allow us easily to justify repeated di�er�
entiations and integrations by parts in the argument which follows� In
the rest of the proof we shall systematically suppress the truncation� so
as not to tire the reader with routine details� This means that we shall
be ignoring certain error terms which arise as a result of the truncation�
but these are not di�cult to handle� Of course� our estimates will not
have any quantitative dependence upon our a priori assumptions�

Under these assumptions we �rst use a construction of Kenig and
Stein 
which appeared �rst in a paper of Dahlberg �D	� see also �DKPV	
and �HL	 for applications related to the present paper�� to write Sf
z� �
lim��� S�f
z�� where

S�f
z� �

Z
Rn

J
z � v� "
�P	�A
z� � �� A
v�

kz � vk

�
f
v� dv � z � R

n �

and P	� is de�ned as follows� Let P � C�
� 
B�
��� be an even function

with
R
Rn

P�
z� dz � �� where as usual P�
z� � ��d P 
���z�� and let
f �� P�f be the convolution operator whose kernel is P�
z�� We
choose � to be a small� �xed number� depending only on kAkcomm�
such that ��� 	

	�
P	�A
z�

��� � �

�
�

Next let g � C�
� 
R

n� with kgk����� � � and observe that

kD nSfk��� � sup
��� Z
Rn

D nSf g dz
��� �

where the supremum is taken over all such g� Moreover�


����

�

Z
Rn

D nSf gdz �

Z �

�

Z
Rn

	

	�

D nS�f P�g� dz d�

�

Z �

�

Z
Rn

D n
	

	�
S�f P�g dz d�

�

Z �

�

Z
Rn

D nS�f
	

	�
P�g dz d�

� I � II �
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We recall that we have de�ned a parabolic fractional derivative operator
D by the Fourier multiplier


���� cD f � k�k bf �
We observe that 	P�
	� � D eQ� where eQ� is an approximation to

the zero operator 
i�e�� eQ�� � �� whose convolution kernel satis�es the
standard kernel estimates 
���� and 
����� We leave the details of this
routine estimate to the reader� noting only that to prove it� one uses
the fact that the kernel of 	P�
	� has not only mean value zero� but
also vanishing �rst moments� since we have chosen P 
z� to be an even
function� Thus since D n � i D ��
	
	t�� we have

jIIj �
��� Z �

�

Z
Rn

	

	t
S�f eQ�g dz d�

��� �
Since kgk����� � �� weighted Littlewood�Paley theory implies thatZ �

�

Z
Rn


 eQ�g�
�
� �
�

�
dz

d�

�
� c� �

Hence� by Schwarzs inequality�


���� jIIj� � c�

Z �

�

Z
Rn

��� 	
	t

S�f
���� � � dz d� �

Now let

w
x�� z� �

Z
Rn

J
z � v� "
�x� � A
v�

kz � vk

�
f
v� dv

and de�ne the Kenig�Stein mapping


���� �
�� z� � 
�� P	�A
z�� z� �

Since w 	 �
�� z� � S�f
z�� we have for z � 
x� t� that


����

	

	t
S�f
z� �

	

	t

w 	 ��
�� x� t�

� wt 	 �
�� x� t� � wx� 	 �
�� x� t�
	

	t
P	�A
x� t� �
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To handle the contribution of wt 	 � to the integral in 
���� we use the
change of variable


���� e� � �� P	�A
z��A
z� �

which de�nes a mapping 
�� z� �� 
e�� z� of Rn��� with Jacobian

� �
	

	�
P	�A
z� � �
�� z� �

Since j
	
	��P	�A
z�j � �
� for � small enough depending only on
kAkcomm� and lim��� P	�A � A� we deduce �rst that �
� � � � �
�
and thereupon that the above mapping is ��� and onto Rn��� � Changing
variables as in 
���� we �nd that by Theorem ����


�����

Z �

�

Z
Rn


wt 	 ��
� � � dz d� � cJ�� 
� � ���N kfk���� �

as desired�
To handle the contribution of the second term in 
���� to the inte�

gral in 
����� we claim that the non�tangential maximal function of

wx� 	 �
�� x� t�

is bounded on L�� with norm on the order of 
� � kAkcomm�
N � Indeed�

the operator
f �� wx� 	 �
�� x� t�

is of the form

TAf
z� � p�v�

Z
Rn

K
z � v�F
�A
z��A
v�

kz � vk

�
f
v� dv �

where
K
�x� ��t� � ��dK
x� t� �

K � Cm
Rn n f�g�� for some large m� F � Ck
R��� for some large k�
and where the parity of K
x� t� in the x variable is opposite to that
of F � It is essentially the conclusion of �H�� Theorem �	� that such
operators are bounded on L�� and hence on L��� with norm on the
order of 
��kAkcomm�

N � The claim now follows by applying a standard
argument involving Cotlars inequality for maximal singular integrals�
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to pass from the singular integral on the boundary to the non�tangential
maximal function� Furthermore

��� 	
	t
P	�A
z�

���� � d� dz
is a parabolic Carleson measure with a norm no larger than kD nAk

�
��

The desired bound for 
���� now follows by the usual properties of
Carleson measures�

We now turn to I in 
����� We integrate by parts in the integral
de�ning I to get


�����

�I �

Z �

�

Z
Rn

	�

	��
S�f P�g � dz d�

�

Z �

�

Z
Rn

	

	�
S�f

	

	�
P�g � dz d�

� I� � I� �

Arguing as in the proof of 
���� we �nd


�����

jI�j
� �

��� Z �

�

Z
Rn

	

	t

	

	�
S�f eQ�g � dz d�

����

� c�

Z
Rn

��� 	�

	t 	�
S� f

���� � �� dz d� �
Again


�����

	�

	t 	�
S�f �

	�

	t 	�
w 	 �

�
	

	t

�

wx� 	 ��

�
� �

	

	�
P	�A

��
� 
wx�t 	 ��

�
� �

	

	�
P	�A

�
� 
wx�x� 	 ��

� 	
	t

P	�A
��
� �

	

	�
P	�A

�

� 
wx� 	 ��
� 	�

	t 	�
P	�A

�
� "� � "� � "� �
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Since j
	
	��P	�Aj � �
�� we have "� � � jwx�t 	 �j� We now use
the change of variable 
����� and invoke Theorem ����� to handle the
contribution of "�� As for "�� since��� 	

	t
P	�A

��� � c 
� � ��� ��� �

we can use Theorem ��� to handle wx�x� in the same way that we treated
wt above� Finally� we may handle the contribution of "�� by the usual
nontangential maximum�Carleson measure arguments� i�e�� by exactly
the same method that we used previously to treat the contribution of
the second term on the right hand side of 
����� Altogether� we obtain
the desired bound for the term I��

It remains to estimate I�� We note that � D nP� �
eeQ� where

eeQ� is
an approximation to the zero operator whose kernel satis�es 
���� and

����� Thus arguing as in the proof of 
����� we obtain


�����

jI�j �
��� Z �

�

Z
Rn

	�

	��
S�f

eeQ�g dz d�
���

� c�

�Z �

�

Z
Rn

j
	�

	��
S� f j

� � � dz d�
����

�

But

	�

	��
S�f � 
wx�x� 	 ��

�
� �

	

	�
P	�A

��
� 
wx� 	 ��

� 	�

	��
P	�A

�
�

and these terms can each be handled by our earlier arguments� This
concludes the proof of Theorem ���� for S � SA� The proof for the
second class of operators� UA�B� is similar� and we leave the details to
the interested reader�
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Solutions des �equations de

Navier�Stokes incompressibles

dans un domaine exterieur

Nicolas Depauw

�� Introduction�

Le mouvement d�un �uide incompressible visqueux� de viscosit�e ��
remplissant un ouvert � � R

n �a bord �� r�egulier est mod�elis�e par les
�equations de Navier�Stokes�

�tu	 
u � r�u� ��u	rp  f � uj��  � �

r � u  � � ujt��  u� �

La dimension est n � �� Les inconnues sont le champ vectoriel de
vitesses u
t� x� � R

n et le champ scalaire pression p
t� x� � R � les vari�
ables sont t � R et x � �� r est l�op�erateur di��erentiel 
�x� � � � � � �xn��
not�e comme un vecteur� Ainsi r�u est la divergence du champ u� tandis
que 
u � r� est l�op�erateur de d�erivation partielle u� �x� 	 � � �	 un �xn �
� est l�op�erateur de Laplace 
r � r��

L��equation de Navier�Stokes pr�esente deux types de di�cult�es�
D�une part elle est non lin�eaire� Dans la r�esolution de cette �equation�
le terme 
u � r�u est souvent trait�e comme un terme de perturbation�
D�autre part� en ignorant le terme non lin�eaire� cette �equation ressemble
beaucoup �a l��equation de la chaleur avec condition de Dirichlet�

�tu� ��u  �  f � uj��  � �

ujt��  u� �

��
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mais en di��ere par l�incompressibilit�e� Prenant mod�ele sur l��equation de
la chaleur� on peut r�esoudre l��equation de Stokes avec second membre�

�tu� ��u	rp  f � uj��  � �

r � u  � � ujt��  u� �

�a l�aide d�un semi�groupe d�op�erateur� apr�es avoir d�e�ni correctement
les espaces de champs de vitesses �a divergence nulle et tangent au bord�

Dans le cas de Rn � de �b born�e� du demi�espace Rn� et en�n d�un
domaine ext�erieur �e� c�est��a�dire le compl�ementaire d�un compact� il
a �et�e d�emontr�e que le semi�groupe en question est analytique et born�e
uniform�ement en temps sur des espaces construits �a partir d�espaces de
Lebesgue Lp
���

Pour traiter de la perturbation non lin�eaire� on la consid�ere comme
un second membre et on r�esout l��equation de point �xe qui en r�esulte
par le th�eor�eme du point �xe dans les espaces de Banach� A�n d�en
v�eri�er les hypoth�eses� Fujita et Kato ��� ont introduits les puissances
fractionnaires du g�en�erateur du semi�groupe consid�er�e sur L� et �etudi�e
leurs domaines� D�un autre c�ot�e Weissler ���� a consid�er�e le semi�groupe
sur les espaces Lp� Les di��erentes adaptations aux quatre cas 
Rn � �b�
Rn� et �e� de ces techniques de semi�groupe� puissances fractionnaires
et espaces de Lebesgue ont �et�e poursuivis� entre autre gr�ace aux travaux
de Giga ����

Dans le cas de l��equation de Navier�Stokes sur Rn � Cannone ��� a
�etudi�e l�existence globale de solutions �a donn�ees petites dans l�espace de

Besov homog�ene �B
���n�p
p� 
Rn�� Ce type d�argument semble avoir �et�e

pouss�e au maximum par Kozono et Yamazaki dans ����� Cette �etude
est justi��ee parce qu�une donn�ee initiale peut �etre �a la fois petite dans
�B
���n�p
p� 
Rn� et grande dans Ln
Rn� �a condition d��etre su�samment

oscillante� De plus� l�existence de solutions �a donn�ees dans de tels es�
paces de Besov est essentielle pour l��etude des solutions autosimilaires
de l��equation de Navier�Stokes telle que l�ont men�ee Cannone et Plan�
chon ����� � �� ����� Les m�ethodes utilis�ees par ces auteurs reposent de
mani�ere essentielle sur l�expression explicite du noyau de la chaleur par
transformation de Fourier�

Nous exposons dans cet article l�analogue de ces r�esultats d�exis�
tence pour l��equation de Navier�Stokes� mais sur un domaine ext�erieur
�e� compl�ementaire d�un compact �a bord lisse� Les deux di�cult�es
nouvelles qui se pr�esentent sont l�absence d�une repr�esentation explicite
en Fourier du semi�groupe associ�e �a l�op�erateur de Stokes et la n�ecessit�e
de transposer la notion d�espace de Besov homog�ene�
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La m�ethode de point �xe utilis�ee depuis Weissler� reprise par Kato
���� et plus r�ecemment par Cannone et Planchon� pr�esente le d�efaut de
n�assurer l�unicit�e d�une solution continue �a valeur Ln
Rn�� pour une

donn�ee initiale dans Ln petite dans �B
���n�p
p� � que dans une boule d�un

sous�espace de l�ensemble C
Ln
Rn�� des fonctions continue de �����
dans Ln
Rn��

R�ecemment� Furioli� Lemarie�Rieusset et Terraneo ���� ��� ont ob�
tenu un remarquable r�esultat d�unicit�e des solutions locales C
L�
R����
�a l�aide de ces espaces de Besov homog�enes� Signalons au passage que
Lions et Masmoudi ���� ont annonc�e une autre d�emonstration� encore
valable dans le cas d�un domaine � �a bord r�egulier�

Pour le cas de �e domaine ext�erieur� nous retrouvons le r�esultat
d�unicit�e des solutions locales C
Ln
���� Nous preferrons utiliser l�a
les espaces de Besov non homog�enes de Kobayashi et Muramutu �����
pour �eviter la d�et�erioration de l�estimation du gradient du semi�groupe
en temps grand quand �  �e mise en �evidence par Maremonti et
Solonnikov �����

Un certain nombre d�auteurs ont utilis�e des espaces de Besov non
homog�enes sur un domaine ext�erieur� Grubb et Solonnikov ����� ����
ont introduit de tels espaces pour r�esoudre sur I � �b 
I intervalle
de R� �b ouvert born�e� les �equations de Navier�Stokes avec toute une
vari�et�e de conditions au bord et un second membre� Il s�agit d�espaces
de Besov avec des r�egularit�es di��erentes en temps et en espace� ce qui
donne des r�esultats tr�es pr�ecis sur les conditions de compatibilit�e que
doivent v�eri�er les donn�ees pour obtenir existence et unicit�e de solutions
r�eguli�eres� Grubb ���� a r�ecemment adapt�e cette m�ethode au cas de �e

domaine ext�erieur� mais en n�utilisant que des espaces non homog�enes�
son r�esultat n�est que local en temps� De m�eme pour Kobayashi et
Muramutu ���� qui ont obtenu sur �e un r�esultat d�existence locale en
temps pour une donn�ee initiale dans un espace de Besov abstrait non
homog�ene construit par interpolation r�eelle �a partir du g�en�erateur du
semi�groupe� Encore pour �e� mentionnons que Borchers et Myakawa
��� avaient utilis�e des espaces d�interpolation complexe d�e�nis �a partir
du g�en�erateur du semi�groupe 
qui sont en quelque sorte l�analogue des
espaces de Bessel homog�enes� pour obtenir des estimations c!rcives
homog�enes optimales�

Pour les espaces homog�enes� signalons en plus de ��� et ����� que
Kozono et Yamazaki dans ���� pr�esentent un r�esultat d�existence glob�
ale �a donn�ee petite dans l�espace de Lorentz Ln�
�e� pour un do�
maine �� par la m�ethode de Kato� Meyer dans ���� donne des r�esultats
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de continuit�e pour le terme non�lin�eaire dans Ln�
Rn�� qui sont faux
dans L�
R�� d�apr�es Oru ����� et qui permettent tout �a la fois de prou�
ver l�existence globale �a donn�ee petite dans Ln�
Rn� et de retrouver
l�unicit�e des solutions C
L�
R����

Plan de l�article� Dans les pr�eliminaires� apr�es des notations g�en�e�
rales nous �etudions l�op�erateur de Stokes� son semi�groupe associ�e� puis
d�ecrivons les espaces fonctionnels construits avec� La section suivante
rassemble les �enonc�es des r�esultats importants de l�article " existence
�a donn�ee petite� avec un exemple� et unicit�e� La troisi�eme section est
consacr�ee �a la d�emonstration des th�eor�emes� apr�es �etude de la continuit�e
du terme non lin�eaire� La derni�ere section expose en d�etail l�exemple�

�� Pr�eliminaires�

���� Notations g�en�erales�

On note R�
�
 ����� et R�

�
 ����� � C
I�X� et Cb
I�X� d�esig�

nent respectivement les fonctions continues et continues born�ees de I
dans X�

Notons L
X�Y � l�espace de Banach des applications lin�eaires con�
tinues d�un espace de Banach X dans un espace de Banach Y � et
kTkL�X	Y 
 la norme d�un op�erateur T �el�ement de cet espace� Si X  Y �
on �ecrit seulement L
X�� Si X est inclus dans Y et si l�injection est
continue� on �ecrit X �� Y �

Nous consid�erons un ouvert � de Rn dont le bord �� est lisse et
dont le compl�ementaire K est compact� Pour p � ����� et k � N �
on note W k

p 
�� l�espace de Sobolev des distributions dont les d�eriv�ees

jusqu��a l�ordre k sont dans Lp
��� et W k
p��
�� l�adh�erence dans W k

p 
��
des fonctions test C�

� 
��� On note Lploc
�� les distributions sur � dont
la restriction �a B 	 �� pour toute boule B de Rn � est dans Lp
B 	 ���
On note rku le gradient it�er�e k fois d�une distribution� c�est��a�dire la
collection des ��xu  �x�� � � � �x�ku pour � d�ecrivant l�ensemble des
applications de f�� � � � � kg dans f�� � � � � ng� de sorte que� par exemple�Pk

r�� krrukp est une norme �equivalente sur W k
p 
���

Nous aurons aussi besoin quelquefois "


 des espaces de Lorentz Lp q
�� pour q � ������ obtenus par
interpolation r�eelle �a partir des Lp
�� �
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 des espaces de Besov Bs
p q
�� pour s � R� n N et q � ������

obtenus par interpolation r�eelle �a partir des W k
p 
�� �


 des espaces de Sobolev sur le bord W k
p 
���� k � N et m�eme

des espaces de Slobodetskii W s
p 
��� 
dits aussi espaces de traces� pour

s � R� n N obtenus par interpolation r�eelle �a partir des pr�ec�edents�

Il est possible d��etendre ces d�e�nitions aux indices k � Z et s � R


voir ������
On note � le vecteur normal 
unitaire rentrant� au bord de � et ��

l�op�erateur di��erentiel associ�e� On note ��u la restriction �a �� d�une
fonction continue sur � et ��u

�
 �� ��u si u est contin�ument d�erivable�

On sait �etendre l�action de ces op�erateurs �a certains espaces de distri�

butions� Par exemple �� est continu de W �
p 
�� dans W

����p
p 
���� mais

n�est pas continu sur Lp
��� Pour une distribution u sur �� �a valeur
vectorielle� on d�e�nit l�op�erateur de projection orthogonale 	�u  
u���
sur �� On note ��

�
 	��� l�op�erateur de trace normale au bord�

On note Xp 
respectivement Xp q� l�adh�erence dans L
p
�� 
respec�

tivement Lp q
�� � des champs de vecteurs C�
� 
�� �a divergence nulle� Il

est bien connu que Xp co#$ncide avec le sous�espace ferm�e des u � Lp
��
tels que r � u  � et ��u  �� Ici r� d�esigne l�op�erateur di��erentiel
de divergence� La nullit�e de la divergence permet d��etendre l�op�erateur
de trace normale �� � au moyen d�une int�egration par partie� en un
op�erateur continu du sous�espace ferm�e de Lp
�� d��equation r � u  �

dans W
���p
p 
���� On sait aussi qu�on peut d�ecomposer en somme di�

recte l�espace de Banach


���� Lp
��  Xp � frp � Lp
�� " p � Lploc
��g

et qu�il existe un op�erateur lin�eaire P � continu pour tout � 
 p 
 �
sur les champs de vecteurs Lp
��� qui est une projection 
en partic�
ulier P �  P � sur PLp
��  Xp parall�element aux champs gradients�
orthogonale pour la structure euclidienne de L�
��� Pour le cas rel�
ativement g�en�eral qui nous int�eresse� �a savoir � 
 p 
 � et � non
born�e� mais cependant �� compact� la preuve de ces trois a�rmations
est pr�esent�ee en d�etail dans �� ��

On note p� l�exposant conjugu�e de p d�e�ni par ��p 	 ��p�  ��
On peut identi�er Xp� au dual de Xp� qui est donc r�e�exif� L�adjoint

du projecteur P " Lp
�� �� Lp
�� est le projecteur P " Lp
�


�� ��
Lp

�


��� tandis que si on consid�ere P " Lp
�� �� Xp� son adjoint est

simplement l�injection canonique I " Xp� �� Lp
�


���
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On note Ap l�op�erateur dans Xp� de domaine


���� D
Ap�  W �
p 	W �

p�� 	Xp

et agissant comme l�op�erateur de Stokes A  �P�� On remplace alors
la r�esolution de l��equation lin�eaire de Stokes pour la viscosit�e �  ��

�tu��u	rp  � �

r � u  � � ��u  uj��  � �

par l��equation di��erentielle abstraite �ecrite dans Xp qu�on obtient en
appliquant le projecteur P �a l��equation de Stokes

�tu	 Au  � �

Pour la commodit�e du lecteur� nous avons rassembl�e dans le tableau �
tous les autres espaces de fonctions d�e�nis dans la suite de l�article�

Espace Norme R�ef�erence Remarque

A D�ef� ��

Bs
p q
A� ku j Bs

p qk D�ef���� 
�����

Bqr ku j Bqrk D�ef� ��  B�n�q�n�r
r� 
A�

Br ku j Brk D�ef� ��  Bnr
�Bs
p q
A� ku j �Bs

p qk D�ef� ��� 
�����
�

Br ku j
�

Brk D�ef� ��  �B���n�r
r� 
A�

Ep kukEp
D�ef� ��

Ep	�
��� Ep	�
�� D�ef� ��

FT
p kukFT

p
D�ef� ��

GT
p kukGT

p
D�ef� ��  L�T 
Bp�

H kukH 
����

L�T 
X� D�ef� ��

Lp� kfkp� Not� ��

Lp�� kfkp��� Not� ��

Lp�� kfkp�� Not� ��

W �
p 
A� kukp D�ef� ��  Xp

W �
p 
A� ku jW �

p k D�ef� ��  D
Ap�

W��
p 
A� ku jW��

p k D�ef� ��

Tableau �� Liste des espaces fonctionnels�
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���� Op�erateur de Stokes�

������ D�ecomposition de la r�esolvante�

Nous d�ecrivons ici comment on peut trouver u � Xp solution du
probl�eme de Stokes 
� 	 A�u  f � Pr�ecis�ement " �etant donn�e � �
C n � ��� �� et f � Xp� on cherche u tel que


����u	rp  f � r � u  � � ��u  � �

Nous suivons les expos�es de ���� �� ��

Soit f � Xp� On note ef � Lp
Rn� son prolongement par z�ero hors

de �� On voit facilement que la distribution r � ef est nulle parce que
r � f et ��f sont nulles� On note eu la solution du probl�eme de Stokes
dans Rn


���� eu	rep  ef � r � eu  � �

Puisque r � ef  �� en fait ep  � et on peut calculer eu  eE�
ef au moyen

de l�op�erateur eE� de convolution par le potentiel volume ee� sur Rn

qui est la transform�ee de Fourier inverse de  ��� 
� 	 jj����� Par

le th�eor�eme de Mihlin� eE� est continu de Lp
Rn� dans W �
p 
R

n � pour
chaque � 
 p 
��

La restriction r�eu v�eri�e l��equation int�erieure de Stokes sur �


���� r� eu  f � r � r�eu  � �

puisque r�ep  �� mais pas la condition au bord� On �elimine la com�
posante normale ��  	���  � � �� au moyen du projecteur de Leray
P � On sait que pour v dans Lp
�� �a divergence nulle� la projection Pv
s�exprime au moyen de l�op�erateur solution du probl�eme de Neumann�

Fixons les notations� Pour � � W
���p
p 
��� avec

R
��

�  �� on note
w  N� la solution du probl�eme��� �w  � � rw � Lp
�� �

��w  � � lim
jxj��

jw
x�j  � �

obtenue au moyen du potentiel simple couche associ�e �a l�op�erateur de
Laplace �� Voir �� � et� en annexe� la d�e�nition du potentiel simple
couche et son application au probl�eme de Neumann �a la Section B���
Remarquons que r � r  � et ��r  ��� L�op�erateur rN est continu
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du sous�espace ferm�e de W
���p
p 
��� d��equation

R
��

�  � dans Lp
���
La restriction P� de P aux champs �a divergence nulle s��ecrit P� 
��rN�� �

Ainsi u�  P r�eu est solution de�

����u� 	rp�  f � r � u�  � �

�� u�  � �

avec p�  �N �� r�eu� �Evidemment la trace �� u� n�est pas n�ecessai�
rement nulle� mais elle est tangentielle�

Soit u	  V�� la solution du probl�eme tangentiel


����

�

����u	 	rp	  � � r � u	  � �

�� u	  � � �� u	  � �

avec � un champ de vecteurs tangentiel au dessus de ��� Le fait qu�on

puisse d�e�nir �� u	 dans W
���p
p 
��� pour un u dans Lp
�� qui v�eri�e

les trois autres �equations de 
���� est justi��e par un argument de dualit�e
dans ���� D�apr�es ��� Proposition ���� et le th�eor�eme du graphe ferm�e�

V� est continu de W
���p
p 
��� dans Lp
���

Si on choisit �  ��� u� � on v�eri�e en�n que u  G�f  u� 	 u	
est la solution du probl�eme de Stokes�


����u	rp  f � r � u  � �

�� u  � �

Remarque �� Les r�esultats de continuit�e rappel�es ci�dessus sont vrais
pour chaque � � C n ���� �� �x�e� Ils d�ecoulent des propri�et�es des
syst�emes elliptiques aux limites� L�am�elioration principale due �a ���
consiste en des estimations uniformes par rapport �a ��

������ R�esolvante et semi�groupe�

Dans toute la suite� V
 d�esigne� pour un � donn�e dans ��� 	�� l�en�
semble

V
  f� � C n R� " j arg�j 
 �g �
Voici un r�esultat important dans l��etude du comportement en temps
long des solutions de l��equation de Stokes�
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Th�eor�eme 	� Pour tout p � ����� � l�op�erateur �Ap est 	�sectoriel "
�etant donn�e �� � ��� 	� � il existe C tel que


���� k
�	 A��� vkp  C j�j�� kvkp � pour tous � � V
� � v � Xp �

Ce th�eor�eme permet de construire des solutions �a l��equation de
Stokes au moyen du semi�groupe engendr�e par �A�

Corollaire 
 
�� � p� ���������� Pour tout p � ����� � l�int�egrale de

Dunford

U
t�
�


�

� i 	

Z
�

et� 
�	A��� d�

o�u % est un chemin dans C contournant ���� �� dans le sens positif�

de ��e�i� �a ��ei� pour � � �	��� 	� � d�e�nit une application t ��� U
t�
de V� � f�g dans L
Xp�� ind�ependante de �� v�eri�ant sur cet ensemble

la r�egle de composition U
t�U
s�  U
t 	 s�� holomorphe sur V�� et
telle que pour tout �� 
 	� il existe une constante C avec

kU
t�xkp  C kxkp � pour tous t � V
� � f�g � x � X �

lim
t��
t�V��

kU
t�x� xkp  � � pour tout x � X �

Pour tout k � N� l�application t ��� tk Ak U
t� est continue born�ee de

R� dans L
X� et �tU
t�  �AU
t��

Rappelons que le domaine D
A�� du dual d�un op�erateur A non
born�e dansX de domaineD
A� dense dansX est l�ensemble des x� � X �

tel qu�il existe y� � X � v�eri�ant pour tout x � D
A� l��egalit�e hx�� Axi 
hy�� xi�

Th�eor�eme � 
�� ��� On a les identi�cations d�espaces et d�op�erateurs

duaux


�� � D
Ap
��  D
Ap�� � Ap

�  Ap� �

Proposition �� Soit p et q dans ����� tels que �  ��p� ��q  ��n�
Alors l�application t ��� 
�	A���U
t�Pr� est continue born�ee de R�

dans L
Lp
���Xq��
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D�emonstration� On sait d�ej�a que 
�	A��� et U
t� commutent et que
U
t� � Cb
R� �L
Xq��� Montrons que 
� 	 A���Pr� � L
Lp
���Xq��

Par d�e�nition de D
Aq�� et injection de Sobolev de W �
q�
�� dans L

p�
��

pour �  ��q����p�  ��n� on obtient r
�	A��� � L
Xq��L
p�
���� Or

r
�	A���  rI 
�	A��� est bien l�op�erateur dual de 
�	A���Pr� �

Pour le semi�groupe engendr�e par l�op�erateur de Stokes� on dispose
d�estimations Lp�Lq�

D�enition �� On note

�p� q� 
n

�

��
p
� �

q

�
�

Th�eor�eme � 
Estimations Lp�Lq ���� ����� ������

�� �Etant donn�e � 
 p  q 
�� il existe C tel que


���� kU
t� vkq  C kvkp t��p�q � pour tout v � Xp �

�� �Etant donn�e � 
 p  q  n� il existe C tel que


���� krU
t� vkq  C kvkp t������p�q � pour tout v � Xp �

�� �Etant donn�e � 
 p  q 
� avec n  q� il existe C tel que


���� krU
t� vkq  C kvkp t������p�q 
�	 t��n�q � pour tout v � Xp �

Remarque �� Dans le cas de Rn � 
���� est valable pour tout p� q dans
����� avec p  q� ���� en d�eduit un th�eor�eme d�existence globale en
temps d�une solution �a l��equation de Navier�Stokes dans C
Ln
Rn ��
quand la donn�ee initiale est su�samment petite dans Ln�

Pour le domaine ext�erieur �� le cas limite n  p est atteint d�apr�es
����� Cela lui permet d��etendre le r�esultat de ���� �a ce cas� ���� montre
que 
���� est optimale� Notons que pour t grand� l�exposant est

��

�
� �p� q� 	 �n� q�  � n

� p
�

Corollaire ��� Soit p et q dans ����� tels que p  q� et k dans N�
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�� Si n�  p� alors l�application t ��� tk������p�qAkU
t�Pr� est
continue born�ee de R� dans L
Lp
���Xq��

�� Pour tout T � �� l�application t ��� tk������p�qAk U
t�Pr� est
continue born�ee de ��� T � dans L
Lp
���Xq��

D�emonstration� Consid�erons d�abord le premier point� cas k  ��
On proc�ede par dualit�e comme pour la Proposition �� L�op�erateur dual
de rU
t�  rIU
t� est U
t�Pr�� La borne dans L
Lp
���Xq� vient
de 
����� Pour k � �� on �ecrit AkU
t�Pr�  
AkU
t����
U
t���Pr���
puis on applique le cas k  � �a U
t���Pr� et le Corollaire � �a Ak U
t���
Le second point est tr�es semblable " on utilise 
���� et la borne sur t�
La continuit�e vient du Corollaire ��

��	� Description des espaces fonctionnels�

Notation ��� On munit R� de la mesure de Haar dt�t associ�ee �a
la structure de groupe multiplicatif� Alors on note Lp� l�espace des
fonctions de puissance p�i�eme int�egrable� avec la norme

kfkp� �

�Z �

�

jf
��jp d�
�

���p
�

pour �  p 
 �� Pour p  �� l�extension usuelle de la d�e�nition
co#$ncide avec L�
R��� Si on consid�ere seulement l�intervalle ��� �� 
res�
pectivement ������� on notera respectivement Lp�� et kfkp�� 
respec�
tivement Lp�� et kfkp����

Si f est �a valeur dans un espace de Banach 
X� k � k�� on se place
dans le cadre de la th�eorie de l�int�egrale de Bochner en supposant que
f est fortement mesurable� D�apr�es le th�eor�eme de Pettis� il su�t que
f soit faiblement mesurable 
i�e� pour tout f � � X �� s ��� hf �� f
s�i
est mesurable� et presque partout �a valeur s�eparable 
i�e� il existe un
ensemble S de mesure nulle telle que f
R� n S� soit s�eparable��

On rappelle en Annexe A la d�e�nition et les propri�et�es principales
de l�interpollation r�eelle 
A�� A����� entre deux espaces de Banach A�

et A��
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��	��� Extrapolation�

D�enition ��� Notons W �
p 
A�

�
 Xp� et W

�
p 
A�

�
 D
Ap� le domaine

de l�op�erateur de Stokes d�e�ni par 
����� muni de la norme ku jW �
p k �


k
� 	A�ukp� Comme dans ����� on d�e�nit aussi des espaces d�indice

n�egatif " W��
p 
A� est l�espace compl�et�e �a partir de Xp pour la norme

ku jW��
p k �

 k
� 	 A���ukp�

Puisque le graphe GAp
est ferm�e et que le domaine D
Ap� est dense

dans Xp� cet espace co#$ncide avec la construction plus abstraite par
quotient " 
Xp � Xp��GAp

� introduite dans ����� Ceci est expliqu�e en
d�etail dans ����� On y apprend aussi qu�en lien avec la dualit�e 
�� ��
cet espace est le dual de D
Ap���

On peut �etendre A en un op�erateur non born�e dans W��
p 
A��

ferm�e de domaine W �
p 
A� dense� Il h�erite des propri�et�es spectrales de

l�op�erateur A dans Xp� On peut aussi �etendre �aW��
p 
A� tout op�erateur

pris dans L
Xp� qui commute avec la r�esolvante 
� 	 A���� En parti�
culier U
t� admet une telle extension� qui co#$ncide avec le semi�groupe
engendr�e par l�extension de A� Le domaine du carr�e de l�extension de
A est W �

p 
A�� Pour tout t � �� l�op�erateur U
t� est continu de W��
p 
A�

dans W �
p 
A� 
cf� ������

��	��� Espaces de Besov�

Comme W �
p 
A� ��W��

p 
A�� on peut leur appliquer l�interpolation
r�eelle�

D�enition �	� Pour s  ��
� � �� 	 ��� avec � 
 � 
 � et donc

jsj 
 �� pour p � ����� et q � �����

Bs
p q
A�

�
 
W��

p 
A��W �
p 
A����q

Il est bien connu 
voir ����� que


���� W �
p 
A� �� Bs

p q
A� ��W��
p 
A� �

De plus on peut montrer 
voir ����� que B�
p �
A� ��W �

p 
A� �� B�
p�
A��

Du th�eor�eme de r�eit�eration� il vient alors Bs
p q
A�  
W �

p 
A��W
�
p 
A����q

pour s  � � � ��� �� �
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���� donne une expression de la norme dans ces espaces �a l�aide des
puissances de la r�esolvante 
�	A��n� On trouve dans ���� la d�e�nition
�equivalente suivante� valable pour jsj 
 �

Bs
p q
A�  fu �W��

p 
A� " k�s�� k�A 
�	A��� ukp kq�� 
�g
muni de la norme


����� ku jW��
p k	 k�s�� k�A 
�	 A��� ukpkq�� �

Le lien avec les solutions de l��equation d��evolution est plus sensible
quand on exprime ces normes avec le semi�groupe engendr�e par l�op�e�
rateur�

Lemme �
� Pour jsj 
 �� Bs
p q
A� est l�ensemble des �el�ements de

W��
p 
A� tels que la quantit�e


����� ku j Bs
p qk �

 kU
��ukp 	 kt�s�� kt AU
t�ukpkq��
soit �nie� Cette quantit�e d�e�nit alors une norme �equivalente�

D�emonstration� Notons provisoirement kukX la quantit�e d�e�nie par

������ et X l�ensemble des �el�ements de W��

p 
A� qui v�eri�ent kukX 

��

Montrons d�abord Bs
p q
A� �� X� Soit u � Bs

p q
A�� On peut �ecrire

voir Proposition ��� pour � � R� �


����� u  u�
�� 	 u�
��

avec� quand on a �x�e s� et s� deux r�eels tels que


����� s�s� 
 � � 
�� �� s� 	 � s�  � �

comme d�e�nition d�une norme �equivalente

ku j Bs
p qk  inf 
k�s� ku�
�� jW��

p k kq� 	 k�s� ku�
�� jW �
p k kq��

o�u la borne inf�erieure est prise sur toutes les d�ecompositions 
������
Or U
�� � L
W��

p 
A��W �
p 
A�� donc 
���� implique kU
��ukp  C ku j

Bs
p qk� On calcule pour t  �

kt AU
t�ukp  kt AU
t�u�
t�kp 	 kt AU
t�u�
t�kp
 kt A 
� 	 A�U
t� 
� 	 A���u�
t�kp

	 kt A 
� 	 A��� U
t� 
� 	 A�u�
t�kp
 C t�� ku�
t� jW��

p k	 t ku�
t� jW �
p k �
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parce que t AU
t� et t�A� U
t� sont born�es sur Xp 
et t est born�e�� de
m�eme que A 
� 	 A��� et U
t�� En multipliant par t�s��� on voit que

kt�s�� kt AU
t�ukpkq��
 C 
kts� ku�
t� jW��

p k kq� 	 kts� ku�
t� jW �
p k kq��

en choisissant s�  ��� s��� s�  �� s��� qui v�eri�ent les conditions

����� d�apr�es la liaison entre s et � et �� 
 s 
 �� En passant �a la
borne inf�erieure� ceci montre bien que kukX  C ku j Bs

p qk�
Montrons ensuite X �� Bs

p q
A�� Puisque X � W��
p 
A�� on peut

�ecrire� dans cet espace� en vertu des propri�et�es analytiques du semi�
groupe�

u 

Z �

�

� A� U
��u d� 	 
� 	 �A�U
��u



Z �

�

��A� U
��u
d�

�
	 ca

Z �

�

��a 
� 	 �A�U
��u
d�

�

pour n�importe quel r�eel a positif� Ainsi donc on a d�e�ni une fonction
u
�� telle que dans W��

p 
A� l�int�egrale
R�
� u
���� d� converge� et vaut

u� Pour � � �� on majore� gr�ace �a l�e�et r�egularisant de U
���

ku
�� jW��
p k  ��a kU
��ukp �

ku
�� jW �
p k  ��a kU
��ukp �

Pour �  �� on calcule

ku
�� jW��
p k  k��A� 
� 	 A��� U
��ukp  C �

����
�
AU

��
�

�
u
���
p
�

ku
�� jW �
p k  k��A� 
� 	A�U
��ukp  C ���

����
�
AU

��
�

�
u
���
p
�

parce que �A 
� 	 A��� U
���� est born�e sur Xp� de m�eme que
��A� U
���� et ��A� U
���� 
et � est born�e�� Prenant par exemple
a  �� on en d�eduit que

k�s� ku
�� jW��
p k kq� 	 k�s� ku
�� jW �

p k kq�  C kukX
o�u s� et s� sont encore �� � s�� et � � s��� donc respectivement
dans � � �� �� et ��� �� � On a utilis�e s� � a 
et s� � a� n�egatif pour la
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convergence des int�egrales en � ��� Comme les conditions 
����� sont
v�eri��ees� ceci montre bien que ku j Bs

p qk  C kukX 
voir Proposition
����

Remarque ��� Rappelons la d�e�nition des espaces de Besov usuels sur
Rn au moyen d�une d�ecomposition dyadique spectrale 
voir par exemple
������ On se donne � � C�

c 
Rn�� nulle hors de la boule de rayon � et
�egale �a � sur la boule de rayon �� On pose �
�  �
��� ���
�� Puis
on note ���  � et� pour j � N � �j
�  �
��j � et �j
�  �
��j ��
de sorte que pour tout k � N

� 
X
j���

�j
�  �k
� 	
X
j�k

�j
� � �j
� 

j��X
k���

�k
� �

On d�e�nit ensuite les op�erateurs dyadiques �j et Sj par

d�ju
�  �j
� bu
� � dSju
�  �j
� bu
� �
o�u bu d�esigne la transform�ee de Fourier de u�

L�espace de Besov Bs
p q
R

n� est alors l�ensemble des distributions
temp�er�ees u telles que

kS�ukp 	
� �X
j��

�sjq k�jukqp
���q


� �

La comparaison de 
����� avec cette d�e�nition des espaces de Besov
sur Rn r�ev�ele que U
�� joue le r�ole du �ltre basse fr�equence S�� et
que l��echelle �j 
avec j � �� et le �ltre �j associ�e �a cette fr�equence
correspondent respectivement �a la quantit�e t���� 
avec t  �� et �a l�
op�erateur t AU
t��

Vue leur d�e�nition� ces normes peuvent jouer un r�ole important
pour traiter de l�existence de solutions locales en temps� Le choix du
temps � est arbitraire�

��	�	� Espaces de Besov �homog�enes��

Nous nous int�eresserons au probl�eme de l�existence globale� Il
para�$t alors judicieux d�introduire des normes qui prennent en compte
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les temps t ���� Soit u dans l�un des espaces W��
p 
A�� On sait faire

op�erer U
t� sur u� et donc exprimer une condition portant sur U
t�u�

D�enition ��� On note A �


S
p�����W

��
p 
A�� et I
�� p�

�


����minf�� n�pg� �
Pour s � I
�� p�� on note �Bs

p q
A� l�ensemble des u � A tels que

ku j �Bs
p qk �

 kt�s�� kt AU
t�ukpkq� 
� �

Remarque ��� Pour les espaces de Besov homog�enes d�e�nis sur Rn �a

partir d�une d�ecomposition spectrale dyadique� on utilise alors
�

�j pour
j � Z�

Avec cette d�e�nition� il n�est pas �evident que �Bs
p q
A� soit un espace

vectoriel� car A n�est pas stable par addition�

Proposition ��� �Bs
p q
A� muni de k � j �Bs

p qk est un espace de Banach

pour s � I
�� p��
�Bs�
p� q


A� �� �Bs�
p� q


A� pour si � I
�� pi�� p�  p� et s� � n�p� 
s� � n�p��

�Bs
p q
A� �� Bs

p q
A� pour s � ���� �� �
Bs
p q
A� �� �Bs

p q
A� pour s � ���min f�� n�pg� �

D�emonstration� Nous a�rmons tout d�abord que pour s � ���� �� �
�Bs
p q
A� est en fait inclus dans W��

p 
A�� En e�et� si u � �Bs
p q
A��

il existe r tel que u �W��
r 
A�� et on peut donc �ecrire en vertu des pro�

pri�et�es analytiques du semi�groupe

u 

Z �

�

�A�U
��u d� 	 
� 	 �A�U
��u



Z �

�

��A� U
��u
d�

�
	 
� 	 �A�

Z �

�

� AU
��u
d�

�
�

On estime la norme de chacun des deux termes dans W��
p 
A����
� 	 �A�

Z �

�

� AU
��u
d�

�

���W��
p

���

��� Z �

�

� AU
��u
d�

�

���
p
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Z �

�

�s�� 
��s�� k� AU
��ukp� d�
�

 k������ �
s��kq�� ku j �Bs

p qk �

��� Z �

�

��A� U
��u
d�

�

���W��
p

���

Z �

�

�� k
� 	A���A� U
��ukp� d�
�


Z �

�

C ���s��
���

�

��s������
�
AU

��
�

�
u
����d�

�

 Ck� ���� �
��s��kq�� ku j �Bs

p qk

o�u l�on a utilis�e que A 
�	A���U
���� est born�e sur Lp uniform�ement
en � � Les int�egrales convergent pr�ecis�ement parce qu�on a suppos�e s 
 �
et �� 
 s�

Ainsi� quand s � ���� �� � puisque �Bs
p q
A� �W��

p 
A�� on en d�eduit

que �Bs
p q
A� est un espace vectoriel et que ku j �Bs

p qk est une norme�
L�inclusion correspond �a une injection continue� De plus� on vient de
voir que kU
��ukp  C ku j �Bs

p qk� Le m�eme calcul montre que cette
majoration vaut aussi pour U
��u� On en d�eduit ku j Bs

p qk  C ku j
�Bs
p qk et �Bs

p q
A� �� Bs
p q
A��

Soient si � I
�� pi�� i  �� �� D�apr�es les in�egalit�e Lp� �Lp� sur le
semi�groupe� pour p�  p��

t�s��� kt AU
t�ukp�  t�s��� �
���U� t

�

� t
�
AU

� t
�

�
u
���
p�

 C t�s�����p��p�
��� t
�
AU

� t
�

�
u
���
p�
�

Et comme �s��� � �p�� p��  �
s� � n�p� 	 n�p����� on obtient en
prenant la norme dans Lq�

ku j �Bs�
p� qk  C ku j �Bs�

p� qk � pour s� � n

p�
 s� � n

p�
�

Cela implique �Bs�
p� q


A� � �Bs�
p� q


A�� Vu que s� � n�p� 
 �� on peut
toujours trouver s� � ���� �� et p� � �p���� v�eri�ant s� � n�p� 
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s� � n�p�� Alors �Bs�
p� q
A� � W��

p� 
A� � comme pr�ec�edemment cela

entra�$ne que �Bs�
p� q
A� est un espace vectoriel norm�e et que les in�egalit�es

correspondent �a des injections continues� �A ce stade� on v�eri�e sans
peine que les espaces �Bs

p q
A� pour s � I
�� p� sont complets�
En�n� soit � 
 s 
 min f�� n�pg et u � Bs

p q
A�� Par 
���� et le
Corollaire ��

t��s�� kAU
t�ukp  C t�s�� kukp � Lq��

car s � �� Donc u � �Bs
p q
A��

Ajoutons deux r�esultats qui renforcent le lien avec le semi�groupe�

Lemme ��� Soit s 
 �� La quantit�e kt�s�� kU
t�ukpkq� d�e�nit sur
�Bs
p q
A� une norme �equivalente�

D�emonstration� De la majoration kt AU
t�ukp  C kU
t���ukp
uniforme par rapport �a t on tire directement

ku j �Bs
p qk  C kt�s�� kU
t�ukpkq� �

Inversement� si u � �Bs
p q
A�� comme s 
 � on sait que u � W��

p 
A� et
on peut �ecrire

U
t�u 

Z �

t

� AU
��u
d�

�
�

Donc

t�s�� kU
t�ukp 
Z �

t

� t
�

��s��

��s�� k� AU
��ukp� d�

�

 
���� �
�s��� � 
��s�� k� AU
��ukp�

o�u ici � d�esigne la convolution sur le groupe 
R� ��� dt�t�� L�in�egalit�e
de H#older�Young donne alors

kt�s�� kU
t�ukpkq�  k���� ��s��k�� k��s�� k� AU
��ukpkq�
 C ku j �Bs

p qk

puisque s 
 ��
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Remarque 	
� Dans le cas de R� � en prenant A  �� et donc U
t� 
exp 
t��� ce lemme correspond �a ��� Lemme ������� C�est un point
crucial dans la relecture par ��� du r�esultat de �����

Lemme ��� Soit s � I
�� p� et q � ������ L�application t ��� U
t� est
continue born�ee de R� dans L
 �Bs

p q
A��� Si de plus s � n�p 	 n�r �
���� �� et p  r alors limt�� U
t�u  u dans W��

r 
A� pour tout u �
�Bs
p q
A��

D�emonstration� La continuit�e en � dansW��
r 
A� vient des injections

�Bs
p q
A� �� �B

r q
A� �� B
r q
A� ��W��

r 
A� � �  s� n

p
	
n

r

et de la continuit�e de U
t� dans cet espace�
La borne et la continuit�e de U
t� dans L
 �Bs

p q
A�� d�ecoulent
des m�eme propri�et�es dans L
Xp�� par commutation de U
t� et
���s��AU
���

�� �Enonc�es�

On consid�ere l��equation de Navier�Stokes dans � pour la viscosit�e
�  �


����

�
�tu��u	r � 
u� u� 	rp  � �

r � u  � � ��u  uj��  � �

avec la donn�ee initiale ujt��  u�� On a �ecrit r � 
u� u� pourX
k

�k
uk ui� �

En appliquant le projecteur P � on se ram�ene �a

�t u	 Au	 Pr � 
u� u�  � � ujt��  u� � ��u  � �

dont on cherche les solutions sous la forme


���� u
t�  U
t�u� �
Z t

�

U
t� ��Pr � 
u� u�
�� d� �
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Consid�erant le second terme du membre de droite comme un op�erateur

quadratique� appliqu�e �a u� on lit 
���� comme une �equation de point
�xe�

D�enition ��� On note U�
�
 U
t�u�� On note & l�op�erateur bilin�eaire

&
u� v�
t� x�
�


Z t

�

U
t� ��Pr � 
u� v�
�� x� d�

o�u r � 
u� v� d�esigne le champ de vecteurs
P

k �k
u
k vi��

Ainsi on cherche �a r�esoudre l��equation de point �xe


���� u  U� �&
u� u� �

Th�eor�eme �	� Il existe � � C
 �n��� �R�� v�eri�ant ceci� Pour tout

u� � Xn� s�il existe p � n tel que ku� j �B
���n�p
p� k 
 �
p�� alors il existe

u � Cb
R��Xn� solution de l��equation 
���� avec u
��  u��
u est l�unique solution de 
���� parmi les fonctions v de C
R� �Xn�

v�eri�ant supt�� t
���n�p
�� kv
t�kp 
 � �
p��

Pour le cas de R� � ce r�esultat est d�u �a ��� ��� L�int�er�et de n�imposer
la petitesse que sur la norme dans un espace de Besov se voit bien
dans le lemme suivant� qui est une adaptation au cas de notre domaine
ext�erieur d�un r�esultat semblable sur R� de �����

Lemme �
� Soit n 
 p� Il existe une suite uk � Xn telle que

� 
 inf
k
kukkn et lim

k��
kuk j �B

���n
p

p� k  � �

On peut �etendre l�ensemble des donn�ees initiales de la fa'con suiv�
ante "

Th�eor�eme ��� Il existe � � C
 �n����R�� v�eri�ant ceci� Pour tout

r � �n��� et u� � �B
���n�r
r� 
A�� s�il existe p � r tel que ku� j �B

���n�p
p� k


 �
p�� alors il existe u � Cb
R� � �B
���n�r
r� 
A�� solution de l��equation


���� avec u
t� �� u� dans W��
r 
A� quand t �� ��

u est l�unique solution de 
���� parmi les fonctions v de

Cb
R�� �B
���n�r
r� 
A�� v�eri�ant supt�� t

���n�p
�� kv
t�kp 
 � �
p��
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Comme dans le cas de R� � ces th�eor�emes d�existence� obtenus par
un point �xe dans un espace de Banach plus petit que celui induit
naturellement par la donn�ee initiale� ne sont pas satisfaisants pour
leur assertion sur l�unicit�e� On y demande la condition suppl�ementaire
supt�� t

���n�p
�� kv
t�kp 
 � �
p�� Ceci est reli�e au fait qu�on ne sait pas
si l�op�erateur bilin�eaire & est continu dans Cb
R� � Xn�� D�apr�es �����
il ne l�est pas dans L�
R��� tandis qu�il l�est dans L���
R��� d�apr�es
����� Cette di�cult�e est contourn�ee dans ���� ��� par l�utilisation de
normes di��erentes pour les deux arguments de l�op�erateur bilin�eaire�
Nous avons adapt�e leur r�esultat au cas de � ouvert ext�erieur�

Th�eor�eme ��� Soit u� � Xn et U�
�
 U
t�u�� Soit u� et u� dans

Cb
��� T � �Xn�� solutions de l��equation 
����� Alors u�  u� sur ��� T � �

	� D�emonstrations des th�eor�emes�

Nous rassemblons d�abord les r�esultats de continuit�e sur & utilis�es
ensuite� Puis nous prouvons les deux th�eor�emes d�existence� En�n le
th�eor�eme d�unicit�e�

	��� Continuit�e de l�op�erateur bilin�eaire &�

	����� Pour l�existence�

D�enition ��� On d�e�nit

�p�  �n� p� 
�

�

�
�� n

p

�
�

de sorte que �p� q�  �q�� �p��
On d�e�nit �a la mani�ere de ���� l�espace de Banach Ep comme

l�ensemble des u continus de R� dans Xp tels que

kukEp

�
 sup

t��
kt�p u
t�kp 
� �

Pour T�  � ou �� on d�e�nit aussi le sous�espace 
ferm�e � Ep	�
T�� de
Ep par

Ep	�
T�� 
	
u
t� x� � Ep " lim

t�T�
kt�p u
t�kp  �



�
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En�n on abr�ege �B
���n�p
p� 
A� en

�

Bp�

Proposition ��� �Etant donn�es p� q et r dans ����� tels que


����
�

r
 �

p
	

�

q
 �

r
	

�

n

l�op�erateur bilin�eaire & est continu de Ep � Eq dans C
R� �W��
r 
A���

et


���� k&
u� v�
t� jW��
r k  C tn���p���q
�� kukEp

kvkEq
�

En particulier� limt�� &
u� v�
t�  � dans W��
r 
A��

Proposition ��� �Etant donn�es p� q et r dans ����� tels que


����
�

p
	

�

q
� �

n



�

r
 �

p
	

�

q
 �

n�

l�op�erateur bilin�eaire & est continu de Ep �Eq dans Er�

De plus� pour T�  � ou �� si u � Ep	�
T�� ou v � Eq	�
T�� alors
&
u� v� � Er	�
T���

Proposition 	�� �Etant donn�es p� q et r dans ����� tels que


����
�

r
 �

p
	

�

q



�

n

l�op�erateur bilin�eaire & est continu de Ep �Eq dans Cb
R� �
�

Br��

Notation 	�� On note s le nombre tel que ��p 	 ��q  ��s� et a
�


��p� � �q�  �� 	 n�
� s�� Pour 
u� v� � Ep � Eq� on note eu
t� �


t�p u
t� et ev
t� �
 t�q v
t�� si bien que eu � ev � Cb
R� �Ls
��� avec

supt k
eu� ev�
t�ks  kukEp
kvkEq

et 
u� v�
t�  ta 
eu� ev�
t��
On note eU
t�

�
 t�b U
t�Pr�� o�u l�exposant b s�adapte �a chaque

proposition� et ew
t� �� �
 eU
t 
�� ���
eu� ev�
t ���

En�n on note

f
t� ��
�
 t U
t 
�� ���Pr � 
u� v�
t ��

de sorte que

&
u� v�
t� 

Z �

�

f
t� �� d�
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et
f
t� ��  t��a�b �a 
�� ��b ew
t� �� �

Preuve de la Proposition 	�� D�apr�es la Proposition �� pour
s� r dans ����� tels que �  ��s � ��r  ��n et b  �� eU
t� �
Cb
R� �L
Ls
���W��

r 
A���� Alors ew � Cb
R�� ��� �� �W��
r 
A��� et

comme a � ��� le r�esultat d�ecoule du th�eor�eme de continuit�e sous

le signe
R
appliqu�ee �a

R �
�
f
t� �� d� �

Preuve de la Proposition 	�� D�apr�es le Corollaire ��� pour s� r
dans ����� tels que ��r  ��s  ��n� et b  ���� � �s� r�� eU
t� �
Cb
R� �L
Ls
���Xr��� Alors ew � Cb
R�� ��� �� �Xr�� Comme �r� 	 �	
a	b  � et a � ��� on obtient le r�esultat par le th�eor�eme de continuit�e
sous le signe

R
pourvu que b � ��� ce qui s��ecrit encore ��s���n 
 ��r�

Si limt�T� eu  � dans Xp 
respectivement ev� Xq�� alors

lim
t�T�

ew
t� ��  �

dans Xr uniform�ement en � sur tout compact de ��� �� � On en d�eduit
facilement que limt�T� t

�r&
eu� ev�  � dans Xr�

Preuve de la Proposition ��� On va montrer que� pour b 
�n�
� s� et r� s dans ����� tels que ��r  ��s  ��n� et ��r  ��n�eU
t� � Cb
R� �L
Ls
���

�

Br��� Alors ew � Cb
R�� ��� �� �
�

Br�� Comme
� 	 a 	 b  � et a � ��� on obtient la proposition par le th�eor�eme
de continuit�e sous le signe

R
pourvu que b � ��� ce qui s��ecrit encore

��s 
 ��n�
Commen'cons par la borne� Soit c

�
 � 	 �r� et w � Ls
��� Par

d�e�nition

sup
t��

keU
t�w j
�

Brk  sup
t����

�c t�b kAU
t	 ��Pr � wkr �

D�apr�es le Corollaire ��� kAU
t	 ��Pr � wkr  C 
t	��b�c kwks pour
n�  s  r� car � 	 ��� 	 �s� r�  c � b� Or �c t�b 
t 	 ��b�c  � pour
b  �  c et 
t� �� � R� � R� � On en d�eduit la borne d�es que n�r  ��

Finissons par la continuit�e� qui d�ecoule de

eU
t	 h�� eU
t� 
�
U
� t
�
	 h

�
� U

� t
�

��eU� t
�

�
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et de U
t� � Cb
R� �L

�

Br�� vu au Lemme ���

	����� Pour l�unicit�e�

D�enition 	�� On pose &
u� v�
�
 &
v� u�� On note L�T 
X� les fonc�

tions fortement mesurables born�ees de ��� T � dans un espace de Ba�

nach X� On d�e�nit l�espace de Banach FT
p comme l�ensemble des u

mesurables de ��� T � dans Xp tels que

kukFT
p

�
 sup

��t�T
kt�p u
t�kp 
� �

On abr�ege B
�n�q�n�p
p� 
A� en Bqp� et Bnp en Bp� En�n GT

p
�
 L�T 
Bp��

Proposition 		� �Etant donn�es p� q et r dans ����� tels que


�� �
�

r
� �

q
 �

p
 �

n

il existe C tel que pour tout T � ��� �� � les op�erateurs bilin�eaires & et &
sont continus de FT

p � L�T 
Xq� dans L
�
T 
Bqr� avec une norme major�ee

par C�

D�emonstration� Posons c  �	 �q� r�� Par d�e�nition de k&
u� v�
t� j
Bqrk� on cherche C tel que pour u � FT

p � v � L�T 
Xq� et � 
 t 
 T 
 ��


����
kU
��&
u� v�
t�kr 	 sup

�����
k�cAU
��&
u� v�
t�kr

 C kukFT
p
kvkL�

T
�Xq
 �

Or
k
u� v�
��ks  �a kukFT

p
kvkL�T �Xq
 �

avec ��s  ��p	 ��q et a  ��p��
Et

U
��&
u� v�
t� 

Z t

�

U
� 	 t� ��Pr � 
u� v�
�� d� �

D�apr�es le Corollaire ��� U
��Pr� est born�e dans L
Ls
���Xr� pour

�  � 	 t � � � ��� �� et s  r� Comme
R t
�
�a d�  �� on obtient la

premi�ere partie de 
�����
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Et

�cAU
��&
u� v�
t� 

Z t

�

�cAU
� 	 t� ��Pr � 
u� v�
�� d� �

D�apr�es le Corollaire ��� ��b U
��Pr� est born�e dans L
Ls
���Xr�
avec b  ����� �s� r�� pour �  � 	 t� � � ��� �� et s  r� Donc


����

k�cAU
��&
u� v�
t�kr
 C kukFT

p
kvkL�

T
�Xq


Z t

�

�c 
� 	 t� ��b �a d� �

L�int�egrale devient

I 

Z �

�

c 
 	 �� ��b �a d�

si on pose �  t � car a	 b	 c  ��� Si �� 
 a 
 �  c� alors

I 
Z �

�


�� �����a �a d�

car alors� pour 
� �� � R� � R� � c 
 	 � � ��b 
� � ����a 
 �� Si
a  � 
 c� alors I 
 ��c� Or 
�� � implique a � �� ���� �� et ���  c�
On obtient donc la seconde partie de 
�����

Corollaire 	
� �Etant donn�es p� q et r dans ��� �� tel que


���� � 

�

r
� �

n



�

p
 �

n

il existe C tel que pour tout T � ��� ��� les op�erateurs bilin�eaires & et &
sont continus de FT

p �GT
r dans GT

r avec une norme major�ee par C�

D�emonstration� D�une part Ln�
��  
Lq
��� Lo
������ d�es que


����
�

n


�� �

q
	
�

o
�

Quand on se restreint aux champs �a divergence nulle et tangents au
bord� on obtient Xn�  
Xq� Xo���� 
voir ������ D�autre part� Br 

Bqr �Bor���� d�apr�es le th�eor�eme de r�eit�eration� Par ailleurs� pour r 
 n�
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B
���n�r
r� 
�� �� Ln�
�� par injection de Sobolev et interpolation r�eelle


voir ������ et Br �� Xr 	B
���n�r
r� 
�� d�apr�es ���� Lemma ����� On en

d�eduit Br �� Xn�� En�n� la th�eorie de l�interpolation 
voir par exem�
ple ����� nous enseigne que� pour tout � � ��� �� � L�T 

A�� A������ 

L�T 
A��� L

�
T 
A������� Donc


L�T 
Bqr�� L�T 
Bor�����  GT
r �� L�T 
Xn��  
L�T 
Xq�� L

�
T 
Xo����� �

On �xe maintenant u � FT
p � et on consid�ere les op�erateurs lin�eaires

v ��� &
u� v� et v ��� &
u� v�� On leur applique la Proposition �� et la
propri�et�e fondamentale de l�interpolation 
voir Th�eor�eme ���� Il reste
�a choisir o  q v�eri�ants 
���� et 
�� �� ce qui est possible d�apr�es 
����
en prenant q assez proche de n�

	��� Existence globale �a donn�ee petite�

	����� Point xes�

Lemme 	�� Soit E un espace de Banach� U� � E et & " E �E �� E
une application bilin�eaire avec k&
u� v�kE  C kukE kvkE � On note

f " E �� E l�application continue f
u�  U� �&
u� u��

�� Si kU�kE 
 
�C���� alors l��equation de point �xe f
u�  u
admet une solution dans la boule ferm�ee de rayon


�C���
��
p

�� �C kU�kE � �

�� L��equation de point �xe f
u�  u admet au plus une solution

dans la boule ouverte de rayon 
�C����

La preuve est �el�ementaire�
Voici maintenant la partie existence globale �a donn�ee petite� Rap�

pelons que u� � A s�il existe p � ����� tel que u� � W��
p 
A�� Dans ce

cas� on sait faire op�erer U
t� sur u�� et donc exprimer une hypoth�ese
du genre U
t�u� � Ep� Comme le point �xe fait intervenir U� plut�ot
que u�� on �enonce le r�esultat en ces termes "

Proposition 	� 
Existence�� Soit n 
 p� et u� � A tel que U�
�


U
t�u� � Ep avec


����� kU�kEp

 
�C���
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o�u C est la norme de l�op�erateur bilin�eaire & " Ep � Ep �� Ep� Alors

il existe une solution u � Ep �a l��equation 
���� qui est unique dans la

boule de cet espace de rayon 
�C���� De plus kukEp
 � kU�kEp

�

Pour T�  � ou �� si U� � Ep	�
T�� alors u � Ep	�
T���

La preuve est une application imm�ediate du lemme pr�ec�edent et
de la continuit�e de l�op�erateur bilin�eaire �enonc�e dans la Proposition ���
Ajoutons seulement que p � n � � implique ��p 
 ��n  ��n�� Et que
pour x  
�C���� 
�C��� 
��p

�� �C x �  �x�

Remarque ��� Le Lemme �� ci�dessous permettra de transf�erer l�hy�

poth�ese de petitesse de kU�kEp
�a ku� j

�

Bpk� Mais il n�est pas compl�e�
tement vain de garder �a l�esprit que� plus que u�� c�est U� qui est
r�eellement la donn�ee du probl�eme� Si on �etudiait par exemple l��equation
de Navier�Stokes avec un terme de force 
un f au second membre de

������ on s�arrangerait pour le faire rentrer dans U�� Il resterait ensuite
�a trouver des conditions sur f su�santes pour que le U� ainsi d�etermin�e
v�eri�e les hypoth�eses du th�eor�eme�

On va maintenant exploiter plus largement la Proposition �� pour
obtenir des renseignements suppl�ementaires sur la solution� Il s�agit de
r�esultats de r�egularit�e� qui rappellent ceux de l��equation de la chaleur�

Proposition 	� 
R�egularit�e�� Soit n 
 p� et u� � A tel que U�
�


U
t�u� � Ep� Alors U� � Es pour p  s�
Si de plus u � Ep est une solution de l��equation 
���� alors u � Es

pour p  s et u� U� � Es pour p��  s�
Si de plus U� � Eq pour un q � �n� p�� alors u et U� sont dans Es

pour q  s� et u� U� � Es pour q��  s�
Pour T�  � ou �� tout ceci est encore valable quand on remplace

les espaces E� par leur variante E�	�
T���

D�emonstration� On remarque que n � � entra�$ne ��n  ��n��
Tout d�abord� on constate que si U� � Ep� alors U� � Es pour

��s � ��� ��p�� par l�estimation Lp�Ls du semi�groupe 
�����
Ensuite� comme n 
 p� on v�eri�e ��p 
 ��n  ��n�� et donc

u � Ep implique d�apr�es la Proposition �� que &
u� u� � Er pour
��r � � maxf�� ��p � ��ng� ��p�� donc u  U� 	 &
u� u� � Es pour
��s � � maxf�� ��p� ��ng� ��p�� On montre ensuite par r�ecurrence sur
k que pour tout k l�assertion " (u � Es pour tout s v�eri�ant ��s �
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maxf�� �k�p�
�k����ng� ��p�) est vraie� En e�et pour k  �� on vient
de le voir� Et pour passer de k �a k	�� on �ecrit encore u  U�	&
u� u�
et on applique �a nouveau la Proposition ��� Voir sur la Figure � la
��eche issue de ��p�� Chaque segment vertical de la ��eche repr�esente
l�intervalle des valeurs de ��s qu�on ajoute �a chaque it�eration� Le fait
que u � U� � Es pour ��s � ���p� ��p� d�ecoule de l�assertion d�ej�a
d�emontr�ee (&
u� u� � Er pour ��r � � max f�� ��p � ��ng� ��p�)� Les
autres valeurs de s s�obtiennent en consid�erant u et U� s�epar�ement�

1
p

1
s

1
n

1
2n

1
p2

1
q

1
p1

1
n

1
s = 2

p
1
s = 2

p − 1
n

1

Figure �� Propri�et�es suppl�ementaires�

On utilise le m�eme argument pour les valeurs de s plus petites que
p� avec l�hypoth�ese que U� � Eq et n  q 
 p� Si U� � Eq alors� par
l�estimation Lq�Ls du semi�groupe 
����� U� � Es pour ��s � ��� ��q��
On a d�ej�a dit que u � Ep et ��p 
 ��n impliquent &
u� u� � Er pour
��r � � maxf�� ��p � ��ng� ��p�� Donc u  U� 	 &
u� u� � Es pour
��s � ���p�minf��p� ��qg�� On montre ensuite par r�ecurrence sur k
que� pour tout k v�eri�ant la condition �k�p  ��q� l�assertion " (u � Es

pour tout s v�eri�ant ��s � ���p�minf�k�p� ��qg�) est vraie� Pour k  ��
la condition est v�eri��ee puisque q 
 p� et l�assertion est vraie comme on
vient de le voir� Pour passer de k �a k	�� on note que l�assertion au rang
k implique u � Es pour ��p  ��s  min f�k�p� ��qg� La condition au
rang k 	 � implique alors ��s  �k�p puis ��s  ��q  ��n�� car
n  q� On peut donc appliquer �a nouveau la Proposition ��� Quand
la r�ecurrence s�arr�ete� on obtient k  K tel que l�assertion soit vraie
au rang K et �K�p � ��q� donc u � Es pour ��s � ���p� ��q�� Comme
��q  ��n�� on applique une derni�ere fois la Proposition �� qui donne
&
u� u� � Es pour ��s � ���p� ��q�� Voir sur la Figure � la ��eche issue
de ��p��
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	����� Preuve des th�eor�emes d�existence�

Lemme 	�� Soit u� � Xn� Alors

�� U
t�u� � Ep pour n  p� avec kU
t�u�kEp
 C ku�kn�

�� u� �
�

Bp pour n  p avec ku� j
�

Bpk  C ku�kn�
�� lim

t��
t�p kU
t�u�kp  � pour n 
 p� autrement dit U
t�u� �

Ep	�
���

D�emonstration� La premi�ere assertion d�ecoule des in�egalit�es Ln�Lp�
La seconde assertion est une cons�equence des in�egalit�es Ln�Lp� de

l�estimation uniforme de t AU
t� sur Xn et de la d�e�nition de �Bs
p�
A�

par 
������
La derni�ere assertion s�obtient par un raisonnement classique " si

u� �W �
n
A�� alors k
U
��� Id�u�kn  � kAu�kn� Donc

t�p k
U
t	 ��� U
t��u�kp  t�pkU
t� 
U
��� Id�u�kp
 C k
U
��� Id�u�kn  C � kAu�kn

donc t�p k
U
t	 ��� U
t��u�kp �� � quand � �� �� uniform�ement
par rapport �a t� D�autre part�

t�p kU
t	 ��u�kp 
� t

t	 �

��p
ku�kn �

Pour tout � � � cela tend vers � quand t �� �� car �p� � � pour p � n�
En additionnant� limt�� t

�p kU
t�u�kp  � pour tout u� � W �
n
A�� Or

t�p U
t� est born�e dans L
Xn� Xp�� et W
�
n
A� est dense dans Xn� Donc

la convergence a lieu pour tout u� � Xn�

D�emonstration du Th�eoreme 	�� Soit u� � Xn� D�apr�es le Lemme
��� U� � Eq pour q � n et U� � Eq	�
�� pour q � n� De plus on dispose
de p � n tel que

ku� j
�

Bpk � sup
t��

t�p kU�kp  kU�kEp
 �
p�

�
 
�Cp�

��

o�u l��equivalence des normes vient du Lemme �� et o�u Cp est la constante
de continuit�e de & " Ep � Ep �� Ep fournie par la Proposition ���
D�apr�es la Proposition ��� il existe une solution u � Ep	�
�� de 
�����
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et kukEp
 � kU�kEp

� C�est l�unique solution dans la boule de Ep de
rayon � �
p��

La Proposition �� assure que u � Eq pour q � n et u � Eq	�
��
pour q � n� On en d�eduit que &
u� u� � En	�� Comme par ailleurs
on sait que limt�� U�  u� dans Xn� on a bien u � Cb
R�� Xn� et
u
��  u��

D�emonstration du Th�eoreme 	�� Soit u� �
�

Br et r � n� Par la
Proposition �� et le Lemme ��� U�  U
t�u� � Eq pour q � r� De plus
on dispose comme ci�dessus de p � r tel que

ku� j
�

Bpk � sup
t��

t�p kU�kp  kU�kEp
 �
p�

�
 
�Cp�

�� �

Donc il existe une solution u � Ep de l��equation 
����� unique dans la
boule de Ep de rayon � �
p�� et kukEp

 � kU�kEp
�

La Proposition �� assure que u � Eq pour q � r� D�apr�es les

propositions �� et ��� &
u� u� � Cb
R� �
�

Br� et &
u� u�
t� �� � dans

W��
r 
A� quand t �� �� Or U� � Cb
R� �

�

Br� et U� �� u� dans
W��

r 
A� quand t �� �� d�apr�es le Lemme ��� Donc u aussi�

	���	� Quand t ����

Ayant des solutions globales� on s�int�eresse �a leur comportement
quand t tend vers l�in�ni� Nous avons introduit les espaces Ep	�
��
dans ce but� Comme ���� dans le cas de R� � nous montrons que deux
solutions ont le m�eme comportement �a l�in�ni s�il en va de m�eme de
leurs parties lin�eaires�

Th�eor�eme 
�� Soit n 
 p� et u�� u� deux solutions dans Ep de

l��equation de point �xe

u�  U�
� �&
u�� u�� � u�  U�

� �&
u�� u�� �

�Etant donn�e n  q� on suppose que ku�kEp
	 ku�kEp


 C�� o�u C est

la constante de continuit�e de & de Ep � Eq o�u Eq � Ep dans Eq� Si

U�
� � U�

� � Eq	�
�� alors u� � u� � Eq	�
���

D�emonstration� Notons w  u� � u� et W�  U�
� � U�

� � Alors
w  W� �&
w� u���&
u�� w�� Cette �equation de point �xe w  g
w�
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a un sens dans Eq d�es que W� � Eq et & est continu de Ep � Eq

et Eq � Ep dans Eq� Elle admet une solution unique puisque g est
a�ne et contractante de rapport k  C 
ku�kEp

	 ku�kEp
� 
 �� w

est n�ecessairement la limite dans Eq de la suite d�e�nie par w�  W��
wi��  g
wi�� On montre alors par r�ecurrence que wi � Eq	�
�� d�es
que W� � Eq	�
��� gr�ace �a la Proposition ��� Il s�ensuit que w �
Eq	�
���

	�	� Unicit�e des solutions locales C
Xn��

Lemme 
�� Soit u� � Xn et U�
�
 U
t�u�� Soit u� et u� dans

C
��� T ��Xn�� solutions de l��equation 
����� Alors il existe � � � tel

que u�  u� sur ��� �� 	 ��� T � �

D�emonstration� La di��erence w
�
 u� � u� des deux solutions de


���� v�eri�e� au moins formellement�

w  &
u�� u���&
u�� u��

 �&
w� u� � U���&
u� � U�� w��&
w�U���&
U�� w� �

Par le Corollaire ��� on sait que & est bilin�eaire continu de G

r � F 


p

et F 

p � G


r dans G

r� pour r et p v�eri�ant 
����� avec une norme

ind�ependante de �  �� Fixons p et r tels que � 
 ��r � ��n 
 ��p 

��n� On a alors

kwkG�
r
 C kwkG�

r

� kU�kF �

p
	 ku� � U�kF �

n
	 ku� � U�kF �

n
� �

Le premier terme dans la parenth�ese tend vers � quand � �� �� d�apr�es
le Lemme ��� Les deux autres termes tendent aussi vers � car ui et U�

sont continues �a valeurs dans Xn et �egales en �� Pour � assez petit�
kwkG�

r

 kwkG�

r
et donc w  � sur ��� ���

D�emonstration du Th�eoreme 	�� Soit J
�
 ft � ��� T � " u� 

u� sur ��� t�g� Par continuit�e des fonctions ui� J est ferm�e� Pour tout
T � � ��� T � � eui " t ��� ui
T � 	 t� appartient �a C
��� T � T �� �Xn�� et
r�esout l��equation 
���� pour la donn�ee initiale eui�  ui
T ��� Le lemme
appliqu�e �a eui assure que J est ouvert� Or � � J car u�
��  u�  u�
���
donc J  ��� T ��
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� L�exemple�

Il s�agit de d�emontrer le Lemme �� en exhibant un exemple de
suite uk� Comme dans ���� nous allons montrer deux points� D�une
part que le produit de u� par une suite wk tr�es oscillante tend vers �
dans un espace de Besov homog�ene d�indice n�egatif� D�autre part qu�en
choisissant convenablement wk� le produit ne tend pas vers � en norme
Lp� Plus pr�ecis�ement� voici les �enonc�es qui tiennent compte du fait que
le produit u� w

k n�est pas en g�en�eral dans Xn "

Proposition 
�� Soit u� � Ln
�� et fwk " k � Ng � L�
�� une

suite born�ee qui tend faiblement vers �� Alors pour n 
 p

lim
k��

sup
t��

t�p kU
t�P 
u�w
k�kp  � �

Proposition 
	� Soit u� � Ln
�� et wk
x�  �
x� exp 
i k  � x�� o�u
� � C�
�� est nulle au voisinage de �� et vaut 	 au voisinage de �
et  � R

n avec jj  �� Si k�u�kp � � alors on peut choisir  de sorte

que

lim inf
k�N

kP 
u�w
k�kp � � �


��� Convergence dans un espace de Besov d�indice n�egatif�

La preuve de la Proposition �� consiste �a se ramener au

Lemme 

� Soit u� � C�
� 
�� et fwkg comme dans l��enonc�e de la

proposition� Soit K un compact de C n ���� ��� Pour tout � � K�

lim
k��

k
�	 A��� P 
u�w
k�kp  � �

Preuve que le Lemme �� implique la Proposition �	� Fixons
� � �� On peut toujours �ecrire u�  u� 	 u� avec u� � C�

� 
�� et
ku�kn 
 �� et donc� d�apr�es 
�����

sup
k�N

sup
t��

t�p kU
t�P 
u�w
k�kp  C sup

k�N
kP 
u�w

k�kn  C � �

Pour u�� on dit d�abord qu�il existe T
 tel que

sup
k�N

sup
t���T��� �T�

t�p kU
t�P 
u�w
k�kp  C � �
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En e�et� pour t 
 T��

 � on invoque que u� appartient �a Lp
��� donc la

suite des P 
u�w
k� est born�ee dans Xp� Comme le semi�groupe U
t� est

born�e sur cet espace� il ne reste plus qu��a majorer t�p� Or pour p � n�
on sait que �p� � �� Pour t � T
� on tient le m�eme raisonnement en
partant de u� � Lq
��� en choisissant q 
 n� Notons simplement que
�p�� �q� p�  �q� 
 ��

Sur l�intervalle compact �T��

 � T
� les fonctions

t ��� t�p kU
t�P 
u�w
k�kp

sont uniform�ement �equicontinues� En e�et on sait qu�il existe des con�
stantes telles que

�tU
t�u  �AU
t�u et sup
t��

ktAU
t�ukp  C kukp �

pour tout u � Xp�

sup
t��

kt���pAU
t�ukp  C kukn �

pour tout u � Xn� En appliquant ceci �a u  u�w
k� on obtient

sup
k�N

k�t
t�pU
t�P 
u�w
k��kp  C t�� ku�kn �

pour tout t � �T��

 � T
�� La norme k � kp est une application lipschitzi�

enne� On en d�eduit l��equicontinuit�e uniforme des fonctions

t�p kU
t�P 
u�w
k�kp �

D�apr�es l�une des versions du th�eor�eme d�Ascoli� une suite �equicontinue
de fonctions qui converge simplement converge uniform�ement sur tout
compact� Il nous su�t donc de v�eri�er que pour tout t � �T��


 � T
��

lim
k��

kU
t�P 
u�w
k�kp  � �

On �xe donc maintenant t dans cet intervalle�
Il est plus facile de contr�oler l�in�uence du bord �� sur la r�esolvan�

te� On �ecrit donc le semi�groupe �a l�aide de l�int�egrale de Dunford sur le
contour %  %�� qui est le bord dans C n � ��� �� de l�ouvert contenant
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les � tels que 	� � 
 j arg
��j 
 	 ou j�j 
 � 
o�u on a �x�e un � tel que
	�� 
 	 � � 
 	�


����

U
t�u 
�

� i 	

Z
�

et� 
�	 A��� u d�


�

� i 	

Z
�

e� t�� 
t�� �	 A��� u d� �

La seconde �egalit�e vient du changement de variable t� ��� �� On
peut conserver le m�eme contour % d�int�egration gr�ace au th�eor�eme de
Cauchy� On sait gr�ace l�estimation 
���� sur la r�esolvante que

sup
k�N

k
�	 A��� P 
u�w
k�kp  C j�j�� ku�kp �

Il existe donc R
 tel qu�en notant B
 la boule ferm�ee dans C de rayon
R
� on ait

sup
k�N

��� �

� i 	

Z
�nB�

e� t�� 
t���	 A��� P 
u�w
k� d�

���
p
 C � �

Appelons K le compact de C n ���� �� que d�ecrit t��� quand t varie
dans �T��


 � T
� et � varie dans %	B
� Gr�ace au th�eor�eme de convergence
domin�ee appliqu�ee �a l�int�egrale sur %	B
� il nous su�t donc de montrer
que pour tout � � K�

lim
k��

k
�	 A���P 
��w
k�kp  � �

Nous d�ecomposons la d�emonstration du Lemme �� en trois �etapes qui
s�encha�$nent naturellement�

Lemme 
� 
Premi�ere �etape�� Soit u� � C�
� 
�� et fwkg une suite

born�ee dans L�
�� qui tend vers � pour la topologie ��faible� Alors

fk  P 
u�w
k� est born�ee dans Xp� tend faiblement vers �� et est uni�

form�ement p�int�egrable �a l�in�ni " pour tout � il existe R
 tel que pour

tout k � N


���� kfkkp��nB�

 �

o�u B
 est la boule ferm�ee de rayon R
�
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D�emonstration� La borne dans Xp et la convergence faible viennent
de la continuit�e 
forte et donc aussi faible� de P �

Soit K � un compact de � contenant le support de u�� Pour tout u
dans Lp
K �� �etendu �a � par � hors de K �� on sait que 
�� P �u  rp
o�u p est l�unique solution du probl�eme de Laplace�Neumann


���� �p  r � u � ��p  � � rp � Lp
�� �

En e�et� d�apr�es la d�ecomposition de Helmholtz 
����� il existe un p
dans Lploc
��� unique �a une constante pr�es� tel que 
� � P �u  rp�
Ceci implique que p v�eri�e �p  r � u et ��p  �� puisque le support
de u ne rencontre pas ��� L�unicit�e de p sous la condition rp � Lp
��
vient de �� � Lemma ����� Soit B une boule de rayon R si grand que

K � � ��� � 
����B� Il est clair que p et donc rp sont harmoniques
sur � n B� D�apr�es le Th�eor�eme  � de repr�esentation des fonctions
harmoniques� on peut d�evelopper p en s�erie de Laurent

p
x� 
�X
j��

jxj��n��jHj
x� 	
�X
j��

H �
j
x�

o�u Hj et H
�
j sont des polyn�omes harmoniques homog�enes de degr�e j� La

premi�ere s�erie converge uniform�ement sur � nB� tandis que la seconde
converge uniform�ement sur les couronnes Br nB pour tout r � R� avec
Br la boule de rayon r� La s�erie est d�erivable terme �a terme

rp
x� 
�X
j��

r
jxj��n��jHj
x�� 	
�X
j��

rH �
j
x� �

Le terme rH �
� est nul� et comme on sait que rp � Lp
��� n�ec�essaire�

ment H �
j
x�  � pour j � �� Dans la premi�ere s�erie� le terme d�indice j

est en O
jxj��n�j�� et le terme d�indice � est exactement cnH� jxj�nx�
Par ailleurs le th�eor�eme de Stokes implique� pour tout r � R�Z

�Br

��p 

Z
��Br

r � u�
Z
��

��p 

Z
��	�Br

�� u  � �

Si on remplace p par la s�erie dans l�int�egrale� quand on fait tendre r
vers l�in�ni� on voit que n�ecessairement H�
x�  �� On obtient rp
x� 
O
jxj�n� quand x ���� Notons H l�espace des champs harmoniques
sur � nB� continus sur � nB et telles que

kukH �
 sup

x��nB

jxjn ju
x�j 
� �
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Il est imm�ediat que H muni de kukH est un espace de Banach� On
consid�ere l�op�erateur lin�eaire Q de Lp
K �� dans H qui associe �a u la
restriction �a � n B de u � Pu  rp� Nous a�rmons que Q est un
op�erateur ferm�e� En e�et soit uk �� u dans Lp
K �� et Quk �� v
dans H� Ceci implique en particulier que Quk �� v dans Lp
� n B��
Par ailleurs� la continuit�e de ��P sur Lp
�� implique que Quk �� Qu
dans Lp
� nB�� Donc v  Qu� Par le th�eor�eme du graphe ferm�e� on a
donc une constante C telle que pour tout u � Lp
K ���

kQukH  C kukp�K� �

Revenons �a fk  P 
u�w
k�  u�w

k � 
�� P � 
u�w
k�� On voit que

sup
x��nB

jxjn jfk
x�j  C ku�kp�K� �

Cela implique bien que fk est uniform�ement p�int�egrable �a l�in�ni�

Avant d��enoncer le deuxi�eme point� rappelons que eE� a �et�e d�e�ni
�a la Section ����� pour � � C n ���� ��� comme l�op�erateur de con�
volution par le potentiel volume ee�� transform�ee de Fourier inverse de

�	 jj�����

Lemme 
� 
Deuxi�eme �etape�� Soit � � K et fk une suite born�ee

dans Xp� qui tend faiblement vers � et est uniform�ement p�int�egrable

�a l�in�ni 
i�e� v�eri�e 
������ On note ef k l�extension de fk par � hors

de �� et euk  eE�
ef k� Alors euk est born�ee dans W �

p 
R
n�� �a divergence

nulle� et tend vers � dans Lp
Rn��

D�emonstration� Il est imm�ediat que ef k  e�f
k est born�ee dans

Lp
Rn�� et on a d�ej�a vu que r � ef k  �� Par le th�eor�eme Mihlin� on
en d�eduit que euk est born�ee dans W �

p 
R
n� et �a divergence nulle� Soit

�
R

 �
x�R� avec � une fonction r�eguli�ere �egale �a � sur la boule de
rayon � et nulle hors de la boule de rayon �� Quel que soit R � �� la suite
�
�R
euk est donc compacte dans Lp
Rn �� d�apr�es l�injection de Sobolev�

Soit � dans C�
� 
Rn�� eE� �etant continu sur Lp
Rn �� la convergence

faible suppos�ee de fk implique que euk converge faiblement vers � dans
Lp
Rn�� de m�eme que �

�R
euk� Par compacit�e� �

�R
euk tend fortement

vers ��
Si jxj � �R� alors


�
R
ee� � ef k�
x�  
�

R
ee� � 
�� �

R��
� ef k�
x� �
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Donc� d�apr�es 
����� pour tout � il existe R
 tel que pour tout R � R


et tout k � N �

k
�� �
�R

� 
�
R
ee� � ef k�kp  C k
�� �

R��
� ef kkp 
 � �

D�un autre c�ot�e� comme  ��� ��� 
� 	 jj���� est L�
Rn� pour j�j 
n	 �� il existe C tel que

j
�� �R� ee�
x�j  C hRi��hxi�n�� � k
�� �R� ee�k�  C hRi�� �

et donc� quitte �a augmenter R
� pour tout R � R
 et tout k � N �

k
�� �
�R

� 

�� �
R
� ee� � ef k�kp  C hRi�� k ef kkp 
 � �

Finalement on a montr�e que

lim
R��

sup
k�N

k
�� �
�R

� eukkp  � �

ce qui implique que euk tend vers � en norme Lp�

Avant d��enoncer la troisi�eme �etape� rappelons la d�ecomposition de
la r�esolvante vue �a la Section ������ Soit f � Xp� On note ef  e�f eteu  eE�

ef � Alors on peut �ecrire


�	 A���f  u� 	 u	  
�� V����P r�eu �
u�  P r�eu  P� r� eu  
��rN��� r�eu �

u	  �V� �� u� � �� u�  �� r� eu� 
��rN� �� r� eu �
o�u V� est l�op�erateur solution du probl�eme de Stokes tangentiel 
�����

Lemme 
� 
Troisi�eme �etape�� Soit euk une suite born�ee dans W �
p 
R

n ��

�a divergence nulle� et qui tend vers � dans Lp
Rn �� Alors uk  
� �
V����P r� euk tend vers � dans Lp
���

D�emonstration� Il est clair que l�hypoth�ese implique r� euk tend vers
� dans Lp� Comme P est continu sur Lp
��� la conclusion s��etend �a
uk�  P r� euk� La borne sur reuk dans Lp
Rn� et l�in�egalit�e de trace

k�� r� eukp���  C keuk����p
p�Rn kreuk��pp�Rn
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montrent que �� r� euk tend vers � dans Lp
���� D�apr�es ��� Lemma �����
��rN est un op�erateur continu sur cet espace� donc �k  ��� uk� 

�� ��rN 	�� �� r� euk tend encore vers � dans cet espace� Finalement
la continuit�e de V� de Lp
��� dans Lp
�� implique que uk	  V� �

k

tend vers ��

R�esumons la preuve du Lemme ��� On �ecrit 
�	A���P 
u�w
k� 

uk avec

uk  
�� V� ���P r� euk �euk  eE�
ef k � ef k  e�f

k �

fk  P 
u�w
k� �

et on applique successivement les lemmes � � �� et ���


��� Non convergence vers � dans un espace de Lebesgue�

Nous donnons maintenant la preuve de la Proposition ���
Rappelons tout d�abord un r�esultat de ���� On se place sur Rn �

On note eP l�op�erateur de projection sur les champs �a divergence nulle�
C�est le multiplicateur de Fourier associ�e �a la fonction

eP 
� 
�
��  � 

jj�
�
�

r�eguli�ere hors de � et homog�ene de degr�e �� Soit eu � Lp
Rn � pour
� 
 p 
�� et ewk  eik�
x avec jj  �� Alors

lim
k��

k eP 
eu ewk�� ewk eP 
� eukp  � �

Revenons �a la situation de la Proposition ��� u�w
k  u� � exp 
i k  �x��

On peut consid�erer eu  u� � comme un fonction dans Ln
Rn�� eP 
� eu
vaut alors � eP 
�u�� On obtient

lim
k��

k eP 
u�w
k�� wk eP 
�u�kp  � �

Comme j exp 
i k  � x�j  �� on sait que kwk eP 
�u�kp  k� eP 
�u�kp�
qui ne d�epend pas de k et qu�on peut supposer �etre non nul en choisis�
sant bien � puisque par hypoth�ese k�u�kp � �� On en d�eduit� d�apr�es


�� �� que kr� eP 
u�w
k�kp ne tend pas vers ��
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Soit V�� un voisinage de ��� compact dans Rn et qui ne rencontre
pas le support de �� Il est clair que la restriction de � eP 
�u� �a V��
est nulle� ce qui implique k� eP 
�u�kp�V��  �� D�apr�es 
�� �� on en

d�eduit que kr� eP 
u�w
k�kp�V���� tend vers �� Ceci va nous permettre

de passer de r� eP 
u�w
k� �a P 
u�w

k��
En e�et pour un champ f � Lp
�� �a divergence nulle� on a d�ej�a vu

que Pf  P�f  
��rN���f � Et on a d�ej�a vu que �� est continu de

l�ensemble des champs �a divergence nulle de Lp
�� dans W
���p
p 
���� Il

est clair que ��u ne d�epend que de la restriction de u �a un voisinage de
��� donc en fait �� est continu de l�ensemble des champs �a divergence

nulle de Lp
V�� 	�� dans W
���p
p 
���� Donc �� r� eP 
u�w

k� tend vers

� dans W
���p
p 
���� Comme en fait il s�agit de la trace normale sur

�� d�une fonction �a divergence nulle sur Rn tout entier� le th�eor�eme de
Stokes implique que son int�egrale sur �� est nulle�

Ensuite rN est continu de l�ensemble de fonctions W
���p
p 
���

d�int�egrale �egale �a � dans Lp
��� Cela montre que rN�� r� eP 
u�w
k�

tend vers � dans Lp
��� En�n�

lim inf
k��

kr� eP 
u�w
k�kp � �

et
lim
k��

krN�� r� eP 
u� w
k�kp  �

impliquent que P 
u�w
k�  
��rN��� r� eP 
u�w

k� ne tend pas vers �
dans Xn�

A� Interpolation r�eelle�

Rappelons deux caract�erisations des espaces d�interpolation r�eelle�

Proposition 
�� Soit 
Ai� k � ki�� i  �� �� deux espaces de Banach

qui s�injecte contin
ument chacun dans un espace vectoriel topologique

s�epar�e A� Soit q � ����� et � � ��� �� � Les deux d�e�nitions suivantes

d�e�nissent le m
eme espace de Banach avec des normes �equivalentes�

�� Soit i deux nombres r�eels tels que � � 
 � et 
���� �	� � 
�� On consid�ere l�ensemble des �el�ements u � A� 	 A� qui s��ecrivent


A��� u 

Z �

�

u
t�
dt

t
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o�u l�int�egrale converge dans A et o�u u
t� est une fonction de R� dans

A� 	A� v�eri�ant


A��� kt��ku
t�k�kq� 	 kt��ku
t�k�kq� 
� �

La norme de u est la borne inf�erieure de l�ensemble des quantit�es 
A���
pour toutes les fonctions u
t� r�ealisant 
A����

�� Soient i deux nombres r�eels tels que � � 
 � et 
� � �� � 	
� �  �� On consid�ere l�ensemble des �el�ements u � A� 	 A� qui

s��ecrivent


A��� u  u�
t� 	 u�
t� � pour tout t � � �

o�u ui
t� est une fonction de R� dans Ai et

kt�� ku�
t�k�kq� 	 kt�� ku�
t�k�kq� 
� �

La norme de u est la borne inf�erieure de l�ensemble des quantit�es 
A���
pour tous les couples de fonctions 
u�
t�� u�
t�� r�ealisant 
A����

On note 
A�� A����q cet espace�

Pour la d�emonstration de cette proposition� d�autres d�e�nitions
de ces espaces et l��etude de leurs propri�et�es� nous renvoyons aux ou�
vrages tels que ��� ou ����� tr�es complets avec de nombreuses r�ef�erences
historiques�

L�int�er�et principal de l�interpolation pour les �equations aux d�eri�
v�ees partielles r�eside dans la propri�et�e suivante "

Th�eor�eme 
�� Soit 
Ai� k � ki�� i  �� �� deux espaces de Banach

qui s�injectent contin
ument chacun dans un espace vectoriel topologique

s�epar�e A� De m
eme 
Bi� k � ki� et B�
Soit T un op�erateur lin�eaire de A� 	A� dans B� 	B�� continu de

A� dans B� et de A� dans B��

Alors� pour tout � � ��� �� et q � ������ T est continu de 
A�� A����q
dans 
B�� B����q et

kTkL��A��A�
��q	�B��B�
��q
  kTk���L�A�	B�

kTk�L�A�	B�
 �
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B� �El�ements de th�eorie du potentiel�

Soit � � Rn un ouvert �a bord �� lisse� Rappelons que �� est
l�op�erateur de trace au bord relatif �a � " si u est continu sur �� ��u
x�
est la limite de u
y� quand y � � tend vers x � ��� On oriente le bord
�� �a l�aide du vecteur normal unitaire � rentrant� Les op�erateurs de
trace au bord �� et �� sont d�e�nis en cons�equence� avec en particulier
��  � � ��r  ��r� Les formules de Stokes et Green s��ecrivent donc

Z
�

�r � u 

Z
�� u �
B���

Z
�


u 
��v�� 
��u� v� 
Z
��


�� u ��v � ��u �� v� �
B���

On note �� l�ouvert tel que Rn  �������� On note ��� l�op�erateur de
trace de � � sur ���  ��� Il s�agit de la limite de u
y� quand y� dans
��� tend vers x � ��� De m�eme� on d�e�nit ���  � � ��� et ���  ���r�
Notons que ces deux op�erateurs sont les oppos�es des op�erateurs �� et
�� relatifs �a ���

On note E
x�  cn jxj��n la solution fondamentale de l��equation
de Laplace en dimension n � � " ��E  �� avec � la masse de Dirac en
�� On note Gx la fonction de Green associ�ee qui �a y fait correspondre
Gx
y�  E
x� y��

Dans la suite de cette section� on convient que rGx d�esigne le
gradient de la fonction de Green par rapport �a sa deuxi�eme variable�
De m�eme pour la trace ��Gx " c�est la seconde variable qu�on astreint
�a rester sur ��� Pour noter qu�une d�eriv�ee ou une trace se rapporte
�a la premi�ere variable� on ajoutera un indice " r�x
Gx� ���x
Gx� En
particulier ���x
Gx  ��Gx  �x o�u �x est la masse de Dirac au
point x� et


B��� ��Gx
y�  ��
y� �rE
x�y�  �
y� �rE
y�x�  ���y
Gy
x� �

B��� Potentiels simple couche et double couche�

Soit u une fonction C� au voisinage d�un ouvert born�e �� On
suppose de plus que u est harmonique� c�est��a�dire qu�elle v�eri�e �u 
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�� Alors en rempla'cant v par Gx dans la formule de Green 
B���� on
obtient


B��� u
x� 

Z
��


�� u ��Gx � �� u ��Gx� �

Inversement� donnons�nous un ouvert r�egulier � et une fonction � dans

C�
c 
���� On d�e�nit les potentiels simple couche V

�I

� et double couche

V
�II

� par

V
�I

� 

Z
��

� ��Gx � V
�II

� 

Z
��

� ��Gx �

La th�eorie classique du potentiel dit que les restrictions �a � 
respective�
ment ��� de ces deux potentiels sont des fonctions C� jusqu�au bord
de chacun de ces ouverts�

Le potentiel simple couche est continu �a travers la surface� mais
pas sa d�eriv�ee normale au bord� Elle est donn�ee par la formule


B���

�� V
�I

� 
x�  ��

�
�
x� 	

Z
��

� ���x
Gx �

��� V
�I

� 
x�  	

�

�
�
x� 	

Z
��

� ���x
Gx �

L�int�egrale au second membre est une int�egrale impropre� On sait que

r�x
Gx
y�  cn 
�� n� jx� yj��n x� y

jx� yj
est homog�ene de degr�e � � n en x � y �a x �x�e� Mais si x et y sont
astreints �a rester sur ��� quand y tend vers x� 
x � y��jx � yj tend
vers le plan tangent �a x� orthogonal �a �
x�� Et donc ���x
Gx
y� est en

O
jx� yj��n�� Comme �� est de dimension n� �� l�int�egrale impropre
est convergente�

Le potentiel double couche n�est pas continu au travers de la surface
��� Ses traces int�erieure et ext�erieure sont donn�ees par


B���

�� V
�II

� 
x�  	

�

�
�
x� 	

Z
��

� ��Gx �

��� V
�II

� 
x�  ��

�
�
x� 	

Z
��

� ��Gx �
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M�eme remarque sur l�int�egrale singuli�ere au second membre�
Pour le cas de la dimension d�espace n  �� on trouvera ces formules

et d�autres encore dans �����

B��� D�ecomposition en s�erie de Laurent�

Voici l��equivalent pour les fonctions harmoniques dans Rn de la
d�ecomposition en s�erie de Laurent pour les fonctions holomorphes dans
C �

Th�eor�eme ��� Soit u � D�
C� une distribution sur la couronne C
d�e�nie par fx � R

n " r 
 jxj 
 Rg� Si �u  � 
on dit que u est

harmonique� alors on peut repr�esenter u par un unique d�eveloppement

en s�eries de Laurent


B��� u
x� 
X
j�N

H �
j
x� 	

X
j�N

jxj��j���nHj
x�

o�u H �
j et Hj sont des polyn
omes harmoniques homog�enes de degr�e

j� La premi�ere 
respectivement la seconde� s�erie converge� ainsi que

toutes ses d�eriv�ees� uniform�ement sur les boules de rayon inf�erieur �a R

respectivement hors des boules de rayon sup�erieur �a r��

Indications pour la preuve� Comme �u  �� le th�eor�eme de
r�egularit�e elliptique implique qu�en r�ealit�e u est C�
C�� Donnons nous
une autre couronne C� �

 fx � Rn " r� 
 jxj 
 R�g avec r 
 r� 
 R� 

R� u est alors C� au voisinage de C�� D�apr�es 
B���� pour tout x � C��

u
x� 

Z
�C�


�� u ��Gx � �� u ��Gx�  ur�
x� 	 uR�
x�

o�u ur� est la fonction donn�ee par l�int�egrale quand on restreint le do�
maine d�int�egration �a la composante jyj  r� de �C�� et de m�eme avec
R�� Puisque ��u
y� et ��u
y� sont C

�� uR� et ur� le sont sur C�
La repr�esentation int�egrale de uR� permet d��etendre cette fonc�

tion en une fonction harmonique sur la boule BR� � C
� sur la boule

ferm�ee� En d�ecomposant la restriction de uR� �a la sph�ere SR�  �BR�

en harmoniques sph�eriques� on obtient

uR�
x� 
X
j�N

��j

� x

R�

�
� jxj  R� �
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o�u ��j est une harmonique sph�erique d�ordre j et o�u la s�erie converge
uniform�ement� Alors la fonction

x ���
X
j�N

� jxj
R�

�j
��j

� x

R�

�

X
j�N

H �
j
x� � jxj  R� �

est continue sur la boule ferm�ee� harmonique �a l�int�erieur 
car jxjj ��j
x�
est un polyn�ome harmonique� et prend les m�emes valeurs au bord que
uR� � C�est donc elle� On a ainsi obtenu un d�eveloppement de uR� � qui
donne la premi�ere s�erie de 
B����

On tient un raisonnement similaire pour ur� sur le compl�ementaire
de la boule de rayon r� " la formulation int�egrale assure que la fonction
tend vers � �a l�in�ni� qu�elle est harmonique sur jxj � r� et C� sur
jxj � r�� On d�ecompose sa restriction �a jxj  r� en harmoniques
sph�eriques�

ur�
x� 
X
j�N

�j

� x

R�

�
� jxj  R� �

o�u �j est une harmonique sph�erique d�ordre j et o�u la s�erie converge
uniform�ement� Alors la fonction

x ���
X
j�N

� jxj
R�

��j���n

�j
� x

R�

�

X
j�N

jxj��j���nHj
x� � jxj  R� �

est continue sur jxj � r�� harmonique sur jxj � r� 
car Hj
x� 
jxjj �j
x� est un polyn�ome harmonique homog�ene de degr�e j et donc
jxj��j���nHj
x� est encore harmonique� et prend les m�emes valeurs au
bord que uR� � C�est donc elle� On a ainsi obtenu le d�eveloppement de
uR� qui donne la seconde s�erie de 
B����

L�unicit�e du d�eveloppement s�obtient en �xant une direction �
On �ecrit la s�erie en x  � � Elle se pr�esente alors comme une s�erie de
Laurent en la variable r�eelle �� Si on fait varier � dans C � la s�erie est
convergente sur les compacts de la couronne r 
 j�j 
 R� La somme
de la s�erie est une fonction holomorphe� nulle sur la partie de la droite
r�eelle incluse dans cette couronne� donc elle est nulle� L�unicit�e du
d�eveloppement montre en particulier qu�il ne d�epend pas de r� et R��

L�assertion sur les s�eries d�eriv�ees d�ecoule de l�application du th�eo�
r�eme de Harnack pour les fonctions harmoniques aux sommes partielles
des s�eries�
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B�	� Probl�eme de Neumann ext�erieur�

Nous expliquons maintenant ce que signi�e r�esoudre (�a l�aide d�un
potentiel simple couche) le probl�eme de Neumann pour � domaine
ext�erieur� Il s�agit de r�esoudre� pour � � C�
����


B��� �w  � � ��w  � � lim
jxj��

w
x�  � �

Pour �eviter la di�cult�e li�ee au fait que � n�est pas compact� on va se
ramener �a un probl�eme sur ��� qui est compact par d�e�nition d�un
domaine ext�erieur�

On cherche w sous la forme d�un potentiel simple couche� c�est��a�

dire qu�on cherche en r�ealit�e � sur �� tel que w d�e�nit par w  V
�I

�


voir 
B� �� soit solution de 
B���� On a d�ej�a vu que pour n�importe
quel �� un tel w est harmonique dans �� On montre qu�il tend vers �
quand jxj tend vers l�in�ni par une majoration directe puisque Gx
y� 
C jx� yj��n et que y varie dans ���

La condition au bord donne l��equation dont � doit �etre solution

*�
�
 ��V

�I

�  � �

L�op�erateur * est un op�erateur pseudodi��erentiel sur ��� Cela vient
de Gx
y�  E
x � y� et du fait que la convolution par E est� modulo
un op�erateur �a noyau C�� un op�erateur Q pseudodi��erentiel sur Rn

param�etrix de ��� Ce dernier a un symbole polyn�omial donc Q poss�ede
la propri�et�e de transmission par rapport �a toutes les hypersurfaces�
Nous a�rmons que le symbole principal de * est �egal �a la fonction
constante ����� Cela peut se calculer� en se ramenant par localisation
dans des cartes au bord de �� au cas du demi�espace� On peut aussi
s�en convaincre d�apr�es 
B���� comme nous avons d�ej�a fait remarquer
que le noyau de l�int�egrale au second membre de 
B��� a une singularit�e
sur la diagonale x  y en O
jx� yj��n� 
et on est sur �� de dimension
n � ��� On en d�eduit que non seulement l�op�erateur * est elliptique�
mais en plus que son indice est le m�eme que celui de l�identit�e� ��

Pour a�rmer que * est inversible� montrons qu�il est surjectif� Il
nous su�t de montrer que son transpos�e t* est injectif� Calculons
formellement cet op�erateur� Soit � et �� dans C�
����

ht*�� ��i  h��*��i



Z
��

�
x�
�
� �

�
��
x� 	

Z
��

�� ���x
Gx

�
dx
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� �

�

Z
��

� �� 	

ZZ
���

�
x���
y� ���x
Gx
y� dx dy

d�apr�es 
B���� Or ���x
Gx
y�  ��Gy
x� d�apr�es 
B���� Donc en appli�
quant le th�eor�eme de Fubini�

ht*�� ��i  ��

�

Z
��

� ��	

Z
��

�Z
��

� ��Gy

�
��
y� dy 

Z
��

��� V
�II

� ��

d�apr�es 
B���� Finalement on a montr�e que t*�  ��� V
�II

� �

Alors l�injectivit�e de t* d�ecoule de l�unicit�e pour le probl�eme de

Dirichlet sur l�ouvert born�e ��� En e�et� w�  V
�II

� est une fonction

harmonique sur ��� et prend au bord ���  �� la valeur ��� V
�II

� � Si

ceci est nul� n�ecessairement w�  �� par exemple par le principe du
maximum� On a montr�e que le noyau de t* est r�eduit �a �� Donc * est
surjectif� Comme son indice est nul� il est bijectif�

Puisque * est un op�erateur pseudodi��erentiel de degr�e �� elliptique
et inversible� son inverse est encore un op�erateur pseudodi��erentiel de
degr�e �� Cela permet de r�esoudre l��equation *�  � dans� par exemple�

W
���p
p 
���� Le potentiel simple couche w  V

�I

� a encore un sens�

puisqu�on peut le voir comme la convolution de E avec la distribution
�a support compact � � ����
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Paraproduit sur le groupe

de Heisenberg et applications

Hajer Bahouri et Isabelle Gallagher

R�esum�e� En adaptant au cas inhomog�ene la d�ecomposition de Little�
wood�Paley homog�ene sur le groupe de Heisenberg introduite par H�
Bahouri� P� G�erard et C��J� Xu dans ��	� on construit des op�erateurs de
paraproduit analogues �a ceux d�e
nis par J��M� Bony dans ��	� malgr�e
le fait que lon ne dispose pas de formule simple pour la transform�ee de
Fourier dun produit� des propri�et�es de localisation spectrale du cas clas�
sique sont pr�eserv�ees sur le groupe de Heisenberg apr�es passage au pro�
duit� �A partir du d�ecoupage dyadique et du paraproduit� on d�emontre
lin�egalit�e de Gagliardo�Nirenberg sur le groupe de Heisenberg� et lon
�etudie la r�egularit�e des solutions de syst�emes sous�elliptiques semi�
lin�eaires� ainsi que des �equations dondes semi�lin�eaires�

Abstract� We adapt the homogeneous Littlewood�Paley decomposi�
tion on the Heisenberg group constructed by H� Bahouri� P� G�erard
and C��J� Xu in ��	 to the inhomogeneous case� which enables us to
build paraproduct operators� similar to those de
ned by J��M� Bony
in ��	� although there is no simple formula for the Fourier transform
of the product of two functions� some spectral localization properties
of the classical case are preserved on the Heisenberg group after the
product has been taken� Using the dyadic decomposition and the para�
product algorithm� we prove the Gagliardo�Nirenberg inequality on the
Heisenberg group� the smoothness of solutions of subelliptic� semi�linear
systems is also studied� as well as semi�linear wave equations�

��
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�� Introduction�

Ce travail vise �a donner des applications de la th�eorie de Little�
wood�Paley sur le groupe de Heisenberg� �a partir de la construction de
la d�ecomposition homog�ene men�ee par H� Bahouri� P� G�erard et C��J�
Xu dans ��	� Une adaptation de la m�ethode de ��	� utilisant aussi un
r�esultat de ���	� conduit �a la construction dune d�ecomposition inho�
mog�ene� ce qui nous permet de transposer au groupe de Heisenberg
divers r�esultats connus dans le cas classique �que lon peut trouver par
exemple dans ��	� ��	 ou dans ��	�� concernant la th�eorie de Littlewood�
Paley� On d�emontre notamment des r�esultats concernant le co�ut de
la d�erivation pour des fonctions dont la transform�ee de Fourier est lo�
calis�ee dans une boule ou dans une couronne� ainsi que des estimations
concernant laction des applications homog�enes et la composition par
des fonctions C�� En
n cette d�ecomposition de Littlewood�Paley per�
met de d�emontrer les inclusions de Sobolev Hs � Lp � ces inclusions
sont �egalement d�emontr�ees dans ��	� par une m�ethode di��erente�

On d�e
nit ensuite� dans la Section �� les op�erateurs de paraproduit
sur le groupe de Heisenberg� et lon �etudie leurs propri�et�es� La d�e
nition
de J��M� Bony �voir ��	� dans le cas classique sav�ere op�erante dans ce
cadre� une fois v�eri
�e �par la Proposition ���� que certaines propri�et�es
de localisation dans lespace de Fourier sont pr�eserv�ees apr�es passage
au produit� Ces op�erateurs� comme dans le cas classique� permettent de
d�emontrer des lois de produit et des estimations douces dans les espaces
de Besov�

En
n la derni�ere section est consacr�ee �a des applications de cette
th�eorie� La premi�ere concerne la d�emonstration de lin�egalit�e de Ga�
gliardo�Nirenberg par utilisation du d�ecoupage dyadique et des fonc�
tions maximales sur le groupe de Heisenberg� La seconde application
vise �a d�emontrer un r�esultat de r�egularit�e pour les solutions d�equations
sous�elliptiques semi�lin�eaires� par utilisation du paraproduit� La m�e�
thode de d�emonstration suit la d�emarche de J��Y� Chemin et C��J� Xu
dans ��	� En
n la derni�ere application concerne des �equations dondes
semi�lin�eaires sur le groupe de Heisenberg� en utilisant les estimations
douces d�emontr�ees plus haut� associ�ees aux estimations de Strichartz
g�en�eralis�ees de ��	� on d�emontre un th�eor�eme analogue �a un r�esultat de
G� Ponce et T� Sideris �voir ���	� dans le cas classique�

Remarquons que dans ���	� P��G� Lemari�e construit une base don�
delettes sur les groupes de Lie nilpotents strati
�es abstraits� �a partir
de laquelle on peut d�eduire une formule de paraproduit� Lint�er�et de
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la construction que nous pr�esentons ici est quelle est adapt�ee au cadre
Heisenberg� et ainsi directement utilisable pour des applications�

�� Notations et rappels�

Nous allons rappeller ici quelques r�esultats sur la th�eorie de Little�
wood�Paley sur le groupe de Heisenberg� Pour des d�etails concernant
le groupe de Heisenberg� nous renvoyons �a ��	� ���	� ���	� ���	� ���	� ���	�
et pour le d�ecoupage dyadique homog�ene sur le groupe de Heisenberg�
on consultera le travail de H� Bahouri� P� G�erard et C��J� Xu dans ��	
et ��	�

���� Rappels de d�e�nitions�

Le groupe de Heisenberg H n est lensemble C n � R muni de la loi
de produit suivante

�z� s� � �z�� s�� � �z � z�� s � s� � � Im z � z �� �
pour tous ��z� s�� �z�� s��� � H n � H n � Le groupe H n �etant non commu�
tatif� la transform�ee de Fourier sur H n est d�e
nie �a laide des repr�esen�
tations irr�eductibles unitaires de H n � Nous choisissons ici les repr�esen�
tations d�e
nies �a partir des espaces de Bargmann�

H� � fF holomorphe sur C n � kFkH�
��g �

o�u lon a not�e

kFk�H�

def
�
�� j�j

�

�n Z
Cn

e��j�jj�j� jF ���j� d� �

et les repr�esentations irr�eductibles unitaires �u��H������ sont alors

u�z�sF ��� � F �� � z� ei�s������z�jzj���� � pour � � � �

et
u�z�sF ��� � F �� � z� ei�s������z�jzj���� � pour � � � �

Notons que lon a une base orthornorm�ee de lespace de Hilbert H��
form�ee de

F������ �
�
p

� j�j ���p
	

� 	 � N �
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On d�e
nit la transform�ee de Fourier dune fonction f � L��H n� par

F�f���� �

Z
Hn

f�z� s�u�z�s dz ds �

Dans le cas particulier des fonctions radiales� telles que f�z� s��g�jzj� s��
la proposition suivante� d�emontr�ee dans ���	� nous sera dune grande
utilit�e�

Proposition ���� Si f � L��H n� est radiale� alors F�f����F��� �
Rj�j���F���� o�u

Rm��� �

�
m � n� �

m

��� Z
f�z� s� ei�s L�n���

m �� j�j jzj�� e�j�jjzj� dz ds �

et o�u les L
�n�
m �t� sont les polyn�omes de Laguerre

L�n�
m �t� �

mX
k��

����k
�
m � n

m� k

�
tk

k�
�

R�eciproquement� s�il existe des scalaires Rm��� tels que F�f����F��� �
Rj�j���F���� et

X
m

�
m � n� �

m

��� Z
jRm���j� j�jn d� �� �

alors f � L��H n� est radiale� et l�on a presque partout

f�z� s� �
�n��

�n��

X
m

Z
e�i�sRm���L�n���

m �� j�j jzj�� e�j�jjzj� j�jn d� �

En
n rappellons quil existe une base de champs de vecteurs in�
variants �a gauche sur le groupe de Heisenberg� not�es

Xj � 
xj�� yj 
s et Yj � 
yj��xj 
s � pour tous j � f�� � � � � ng �

o�u lon a �ecrit� pour tout zj � C n � zj � xj � i yj � On notera

�Hn
def
�

nX
j��

�X�
j � Y �

j � �
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et pour tout � � N � X � sera un produit de � champs de vecteurs� du
type

����� X � � Xj� � � �Xj�

o�u jk � f�� � � � � �ng� et lon convient que Xj�n � Yj � pour j�f�� � � � � ng�
Remarquons que pour toute fonction f � S�H n�

����� F��Hn f����F��� � �� j�j �� j	j� n�F�f����F��� �

On peut en
n d�e
nir lop�erateur suivant

����� F����Hn ����f����F��� � �� j�j ��j	j� n�����F�f����F��� �

pour tous � � R� f � S�H n ��

���� Th�eorie de Littlewood�Paley sur le groupe de Heisenberg�

Nous allons rappeller tout dabord la d�e
nition de la d�ecomposition
de Littlewood�Paley homog�ene construite dans ��	 et ��	� Nous pr�ecise�
rons �a la 
n de ce paragraphe comment cette construction peut sadap�
ter pour obtenir une d�ecomposition inhomog�ene�

Dor�enavant nous noterons C� la couronne f � R � ��� � j j � �g�
B� la boule f � R � j j � �g� et nous consid�ererons une fonction
R� � C�� �C��� telle queX

j�Z

R�����j � � � � pour tout  � R
� �

Dautre part� on d�e
nit la fonction eR� � C�� �B��� identiquement �egale
�a � pr�es de �� telle que

eR��� �
X
j��

R�����j� � � � pour tout  � R �

Dans ce qui suit� nous noterons R�m�� � R����m� n� �� La Proposi�
tion ��� nous permet de d�e
nir la fonction radiale

��z� s� �
�n��

�n��

X
m

Z
e�i�sR�m���L�n���

m �� j�j jzj�� e�j�jjzj� j�jn d� �
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et ��� Proposition ���	 indique que � est un �el�ement de S�H n �� Ce
r�esultat est aussi une cons�equence de ���	� Ainsi lon peut �ecrire en
particulier

F������F��� � R�j�j���F��� �

et si �j�z� s� � �Nj ���jz� ��js� � o�u N � �n � � est la dimension
homog�ene de H n � alors la s�erie

f �
X
j�Z

 �jf � avec  �jf � f � �j �

est la d�ecomposition de Littlewood�Paley de f � S�H n � sur le groupe
de Heisenberg�

La convergence de la s�erie
P

j�Z
 �jf est d�emontr�ee dans ��	� No�

tons que cette s�erie ne converge pas dans S ��H n� ��a cause des fonctions
polyn�omiales� qui v�eri
ent  �jf � �� pour tout j � Z�� Dautre part�
notons que cette d�ecomposition dyadique est bien une d�ecomposition
de Littlewood�Paley� puisque �voir ��� Proposition ���	� si f � S ��H n�
v�eri
e

P
j�Z

 �jf � f � alors f � Lp�H n� est �equivalent �a k  �jfk	��Z� �
Lp�H n��

Notre but �etant d�ecrire une th�eorie du paraproduit sur le groupe de
Heisenberg� il convient �a pr�esent de construire une d�ecomposition inho�
mog�ene de Littlewood�Paley� en dautres termes� nous allons �a pr�esent
chercher �a montrer que la fonction � d�e
nie par

�����

��z� s�

�
�n��

�n��

X
m

Z
e�i�s eR�m���L�n���

m �� j�j jzj�� e�j�jjzj� j�jn d�

v�eri
e � � S�H n�� Alors on �ecrira� pour f � L��H n��

�����

f �
X
j���

�jf � avec pour tout j � N �

�jf �  �jf � ���f � f � �
et pour tout j � ��� �jf � � �

On d�e
nit aussi Sjf � �j � f � avec �j�z� s� � �Nj ���jz� ��js�� pour
tout j � N �

Il sagit donc de v�eri
er que � d�e
nie en ����� est un �el�ement
de S�H n�� Une adaptation de ��� Proposition ���	 nous permet de
d�emontrer le r�esultat suivant�
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Proposition ���� La fonction � d�e�nie par

��z� s� �
�n��

�n��

X
m

Z
e�i�s eR�m���L�n���

m �� j�j jzj�� e�j�jjzj� j�jn d� �

o�u eR� � C�� �B�� est identiquement �egale �a � pr�es de �� v�eri�e

k���Hn �k�kL��Hn � � Ck � pour tout k � N ������

k�i s� jzj��	�kL��Hn � � C	 � pour tout � � N ������

et donc � est dans S�H n��

D�emonstration de la Proposition� Nous allons commencer par
d�emontrer ������ Rappellons quil est d�emontr�e dans ��	 que la trans�
form�ee de Fourier sur le groupe de Heisenberg r�ealise un isomorphisme
du sous�espace des fonctions radiales de L��H n� sur les op�erateurs A �a
un param�etre� d�e
nis par

A���F��� � Qj�j���F��� �

avec
�n��

�n��

X
m

�
m � n� �

m

�Z �

��

jQm���j� j�jn d� �� �

Alors la Proposition ���� associ�ee �a ������ donne le r�esultat� puisque

X
m

�
m � n� �

m

�Z �

��

j�� ���m�n� j�j�jk j eR����m�n���j� j�jn d�

�
X
m

�
m � n� �

m

�
��m � n��n��

Z �

��

j eR��k���j� j�jn d� �

o�u eR��k est une fonction de C�
� �R�� donc cette s�erie est convergente�

Pour ce qui est de ������ on peut reprendre les calculs de ��	� si Q
est une fonction de C�� �R��� et si Qm��� � Q���m� n���� alors il est
montr�e dans ��	 que la fonction

f�z� s� �
�n��

�n��

X
m

Z
e�i�sQm���L�n���

m �� j�j jzj�� e�j�jjzj� j�jn d�
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est dans L��H n�� mais aussi toutes les fonctions �i s � jzj��	f pour
� � N � On constate facilement �nous nentrerons pas dans les d�etails
ici�� au vu de la d�emonstration de ce r�esultat dans ��	� que la condition
Q � C�� �R�� peut �etre relax�ee en Q � C�� �R�� et Q constante pr�es de

� � �� Cest en particulier le cas pour la fonction eR�� et donc le point
����� est d�emontr�e�

Reste donc �a v�eri
er que ����� et ����� impliquent bien que � �
S�H n�� Cela r�esulte du lemme suivant�

Lemme ���� Soit f � S ��H n� telle que

���Hn �kf � L��H n� � pour tout k � N �

et

�i s� jzj��	f � L��H n � � pour tout � � N �

Alors f � S�H n��

D�emonstration� Nous allons d�emontrer ce r�esultat uniquement dans
le cas � � �� le cas g�en�eral sen d�eduit sans di!cult�e� La sous�ellipticit�e
de ���Hn �k implique �voir ��� Lemme ���	� quil su!t de d�emontrer
que

���Hn �k��i s� jzj��f� � L��H n � � pour tout k � N �

Il est facile de voir� par la formule de Leibnitz et avec la notation ������
que

X �k��i s� jzj�� f� � �i s� jzj��X �kf �
X
k�
�k

Pk��z�X k�f �

pour tout k � N
� � o�u Pk� est un polyn�ome� Mais lhypoth�ese �i s �

jzj��	f � L��H n� implique que pour tout � � N � on a z�f � L��H n ��
par cons�equent il vientZ

Hn

X �k��i s� jzj��f�X �k��i s� jzj��f� dz ds

� C

Z
Hn

�i s� jzj�� f X �k��i s� jzj�� f� dz ds

� C

Z
Hn

�i s� jzj��� f X �kf dz ds
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�
X
k�
�k

Z
Hn

Pk��z� �i s� jzj�� f X k�f dz ds

� C sup
�	�k

k���Hn ��fkL��Hn � k�i s� jzj��� fkL��Hn � �

Le lemme est d�emontr�e� et avec lui� la proposition�

�� Lemme de localisation et applications�

���� �Enonc�e du lemme et d�emonstration�

Le r�esultat suivant est lanalogue du ��� Lemme �����	 dans le cas
classique� Il d�ecrit le co�ut de la d�erivation pour une fonction dont la
transform�ee de Fourier est localis�ee�

Lemme ���� Soient p et q deux �el�ements de ����	� avec p � q� et soit
u � Lp�H n� une fonction telle que u � f � � pour toute fonction radiale

f � S�H n � v�eri�ant� pour tout 	 � Nn �

����� F�f����F��� � � � pour � � �� j	j� n��� ��j B� �

Alors on a

����� sup
��k

kX �ukLq�Hn � � Ck �Nj���p���q��kj kukLp�Hn � �

pour tout k � N� D�autre part� si u � g � � pour toute fonction radiale

g � S�H n� v�eri�ant� pour tout 	 � Nn �

������ F�g����F��� � � � pour � � �� j	j� n��� ��j C� �
alors

C��
� ��j� k���Hn ����ukLp�Hn � � kukLp�Hn �

� C� ��j� k���Hn ����ukLp�Hn � �������

pour tout � � R�

Remarques� Dans le cas o�u la fonction u est un �el�ement de S�H n ��
alors les hypoth�eses ����� et ������ se traduisent respectivement en

F�u����F��� � ���j�j�n�����jB����F�u����F��� �
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et

F�u����F��� � ���j�j�n�����jC����F�u����F��� �

Notons en outre que le second r�esultat de ce lemme ne concerne que
le cas o�u lop�erateur de d�erivation est du type ���Hn ����� Cela est
d�u au fait que dans le cas des op�erateurs Xj � on ne dispose pas de
d�ecomposition dans la base des F��� aussi simple que celle donn�ee par
����� pour ��Hn �

D�emonstration du Lemme� Nous allons nous placer dans le cas o�u
la fonction u est un �el�ement de S�H n �� le lemme suit par densit�e� Soit
R � C�� �R�� identiquement �egale �a � pr�es de B�� Alors on a

F�u����F��� � Rj�j��
��j��F�u����F��� �

o�u lon a pos�e Rj�j��� � R��� j	j� n���� Mais alors dapr�es les propo�
sitions ��� et ���� il existe une fonction g � S�H n � radiale� telle que

F�g����F��� � Rj�j���F��� �

En �ecrivant gj�z� s� � �Nj g��jz� ��js�� on a alors

F�u����F��� � F�gj����F�u����F��� �

et donc u � gj � u� Mais on a alors

X �u � �j�N��� X �g���j �� � u �

o�u pour tout a� �a est la dilatation homog�ene d�e
nie par �a�z� s� �
�a z� a�s�� Comme dans ��	� il su!t alors dappliquer lin�egalit�e de
Young pour obtenir ������

D�emontrons �a pr�esent ������� Soit R� � C�� �R��� identiquement
�egale �a � pr�es de C�� Alors

F�u����F��� � R�j�j��
��j��F�u����F��� �

o�u R�j�j��� � R���� j	j� n���� donc

F�u����F��� � ��j�
R�j�j��

��j��

�����j j�j �� j	j� n�����
F����Hn ����u����F��� �
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D�e
nissons alors la fonction

����� �
R����

�� j�j��� �

�a laquelle on associe ��j�j��� � ����� j	j� n���� Alors �� � C�� �R��� et

dapr�es ��	� il existe une fonction g� � S�H n� telle que

F�g�����F��� � ��j�j���F��� �

et lon conclut comme pr�ec�edemment� Le lemme est d�emontr�e�

���� Applications�

������ Lemme de caract�erisation�

Cette premi�ere application du Lemme ��� permet de caract�eriser
lappartenance dune fonction �a un espace de Besov� la d�e
nition des
espaces de Besov sur le groupe de Heisenberg est identique au cas clas�
sique �voir ��	�� Rappellons simplement que lespace B�

p�r�H
n�� pour

� � R et �p� r� � ����	� est d�e
ni comme lespace des distributions
temp�er�ees v�eri
ant

u �
X
j

�ju et kukB�
p�r�Hn �

def
�
� X
j���

�jr� k�jukrLp�Hn �

���r
�� �

et lespace de Besov homog�ene  B�
p�r�H

n�� pour � � N�p est lespace

des distributions temp�er�ees telles que u �
P

j
 �ju� et que la norme

suivante soit 
nie

kuk 	B�
p�r�Hn �

def
�
�X
j�Z

�jr� k  �jukrLp�Hn �

���r
�

Remarque� On d�e
nit aussi� comme dans le cas classique� les espaces
de H"older C�� que lon identi
e pour tout � � R � N �a B�

���� ainsi
que les espaces de Sobolev Hs et leurs versions homog�enes� pour tout
s � R�

Lemme ���� Soit � � � et �p� r� � ����	�� Les deux assertions

suivantes sont �equivalentes�
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i� u � B�
p�r�H

n��

ii� Il existe fujgj�� telle que u �
P

uj� et pour tout � � R�

k���Hn ��ujkLp�Hn � � C� cj ��j������ � avec � � � �

o�u C� ne d�epend que de �� et fcjgj�� est une suite de �r�N��

D�emonstration� Le Lemme ��� pr�ec�edent implique clairement que
i� implique ii�� D�emontrons donc que ii� implique i�� Soit j� � N � et
�ecrivons X

j

�j� uj �
X
j�j�

�j� uj �
X
j	j�

�j� uj �

Alors

�j
�� k�j� ukLp
� �j

��
X
j�j�

k�j� ujkLp � C� �j
��
X
j	j�

���j�� k�j����Hn ��ujkLp �

par le Lemme de localisation ���� avec � �a 
xer� Mais alors on a� par
hypoth�ese�

�j
�� k�j�ukLp � C

X
j�j�

��j
��j�� cj � C�

X
j	j�

��j�j
�������� cj �

o�u fcjgj�� est une suite de �r�N�� Il su!t alors de prendre la norme �r

en j�� en choisissant � tel que � � � �� Comme lon a en outre suppos�e
que � � �� on a le r�esultat�

Remarque� Un r�esultat analogue s�enonce bien s�ur dans le cas des
espaces homog�enes�

Le Lemme ��� permet de d�emontrer de mani�ere �evidente la conti�
nuit�e des op�erateurs Xj dans les espaces de Besov� Les notations sont
comme en ������

Lemme ���� Soit � � N�p� et soit le couple �p� r� � ����	� Si u
est un �el�ement de  B�

p�r�H
n�� alors pour tout j � f�� � � � � �ng� on a

Xju �  B���
p�r �H n �� et

kXjuk 	B���
p�r �Hn � � C kuk 	B�

p�r�Hn � �
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D�emonstration� On a par d�e
nition de  B�
p�r�H

n��

k  �kukLp�Hn � � ck ��k� � pour tout k � Z �

o�u fckgk�Z est une suite de �r�Z�� Par cons�equent� on a par le lemme
d�echantillonage ���

kXj
 �kukLp�Hn � � C ck ��k����� � pour tous j � f�� � � � � �ng �

Les op�erateurs Xj et  �k commutent� ce qui d�emontre le lemme�

Remarque� Le m�eme r�esultat est �evidemment vrai dans le cas inho�
mog�ene�

������ Estimations douces�

Une autre application du lemme de localisation ��� consiste en la
d�emonstration destimations douces� du type suivant� Remarquons que
les �enonc�es sont les m�emes dans le cas des espaces homog�enes�

Lemme ��	� Soit s � �� Si u et v sont deux �el�ements de L�	Hs�H n ��
alors u v est un �el�ement de L� 	Hs�H n �� et

ku vkL�
Hs�Hn � � C �kukL�kvkHs � kvkL�kukHs� �

Nous ne d�emontrons pas ce lemme ici� car il peut �etre obtenu aussi
comme un corollaire des lois dop�erance des op�erateurs de paraproduit
que nous d�e
nirons plus bas� Par contre� d�emontrons le r�esultat suivant�
dont la d�emonstration dans le cas classique peut �etre trouv�ee dans ���
p� ���	 par exemple�

Lemme ��
� Soit k � N� et soient u et v deux fonctions de L��H n�	
Hk�H n�� Alors pour tout couple ��� �� � N� tel que � � � � k� on a

kX �uX �vkL��Hn � � C �kukL��Hn �kvkHk�Hn � � kvkL��Hn �kukHk�Hn �� �
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D�emonstration� Supposons par exemple que � 
 � �puisque si � �
� � �� alors le r�esultat est trivial�� Par la formule de Leibnitz� on peut
�ecrire

X �uX �v �
X
j

cjXj�X �juX �jv� � ck uX ���v �

o�u les cj sont des constantes� et o�u �j � �j � k � �� Il su!t donc de
d�emontrer que

kX �juX �jvkH��Hn � � C �kukL��Hn �kvkHk�Hn ��kvkL��Hn �kukHk�Hn �� �

Mais on a

X �juX �jv �
X
q��

�SqX �ju� ��qX �jv� �
X
q��

��qX �ju� �Sq��X �jv�

et le Lemme ��� implique que

k�SqX �ju� ��qX �jv�kL� � kSqX �jukL�k�qX �jvkL�

� C �q�j kukL� vq kvkHk ��q�k��j� �

o�u fvqgq�� est une suite de ���N�� de norme �� On peut alors conclure
que

k�SqX �ju� ��qX �jv�kL� � C vq ��q kukL�kvkHk �

ce qui d�emontre le r�esultat�

������ Action des applications homog�enes�

La proposition suivante d�ecrit laction des applications homog�enes
dans les espaces de Besov� et est la traduction au groupe de Heisenberg
��� Th�eor�eme �����	� Avant d�enoncer le r�esultat� donnons la d�e
nition
suivante�

D�e�nition ���� Pour toute fonction f � C��R��� on appellera

f����Hn ����� l�op�erateur d�e�ni par

F�f����Hn �����u����F��� � f��� j�j �� j	j� n������F�u����F��� �

pour tout u � S�H n��



Paraproduit sur le groupe de Heisenberg et applications 
�

Proposition ���� Si f � C��R�� est homog�ene de degr�e m� alors

pour tout � � N�p� pour tout �p� r� � ����	� et pour tout u �  B�
p�r�

lim
k��

���X
j	k

�jf����Hn �����u
���

	B��m
p�r

� C kuk 	B�
p�r

�

D�emonstration� Nous allons d�emontrer que pour toute fonction u �
S�H n�� on a

kf����Hn �����uk 	B��m
p�r

� C kuk 	B�
p�r

�

La proposition suit alors par densit�e� Avec les notations rappell�ees au
Paragraphe ���� on a

F�  �jf����Hn �����u����F���

� R�j�j��
��j��f��� j�j �� j	j� n������F�u����F��� �������

ce qui� par lhomog�en�eit�e de f � conduit �a

F�  �jf����Hn �����u����F���

� �jmR�j�j��
��j��f��� j���j � j�� j	j� n������F�u����F��� �

D�e
nissons alors ����� � R����f�� j�j����� et soit h la fonction radiale�
dans S�H n� par ��	� telle que

F�h����F��� � ��j�j���F��� �

o�u comme pr�ec�edemment� on a not�e ��j�j��� � ����� j	j � n���� La
condition de support de R� nous permet d�ecrire

F�  �jf����Hn �����u����F���

� �jm ��j�j��
��j��

X
jj�j�j	�

R�j�j��
��j���F�u����F��� �

On en conclut que

������  �jf����Hn �����u � �jm�jN h���j �� �
X

jj�j�j	�

 �j� u �

et donc le lemme est d�emontr�e� par application de lin�egalit�e de Young
comme dans ��	�
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����	� Composition par des fonctions C��

Le Lemme ��� a en
n pour cons�equence le r�esultat suivant� sur la
composition par des fonctions de classe C��

Proposition ���� Soit u � L� 	 B�
p�r�H

n � une fonction �a valeurs

r�eelles� avec � � �� Soit F une fonction dans l�espace C��R� telle que

F ��� � �� Alors F �u� est dans L� 	 B�
p�r�H

n�� et

kF �u�kB�
p�r�Hn � � C kukB�

p�r�Hn � �

o�u C ne d�epend que de F et de kukL��Hn ��

D�emonstration� La d�emonstration de cette proposition repose sur le
lemme de caract�erisation ���� et est identique au cas classique �voir ��	�
���	�� Rappellons bri�evement la m�ethode� on �ecrit F �u� comme la s�erie

������ F �u� �
X
j���

vj � o�u vj � F
�X
k	j

�ku
�
� F

� X
k	j��

�ku
�
�

en se souvenant que

F �u� � lim
j��

F
�X
k	j

�ku
�
�

Il su!t alors de d�emontrer que

������ k���Hn ��vjkLp�Hn � � C� cj ��j������ � pour tout � � N �

o�u C� ne d�epend que de �� et fcjgj�� est une suite de �r�N�� ce qui par
le Lemme ��� donnera le r�esultat�

Lestimation ������ sobtient en �ecrivant la formule de Taylor avec
reste int�egral� �a lordre �� qui fournit

F
�X
k	j

�ku
�
� F

� X
k	j��

�ku
�

� �ju

Z �

�

F �
� X
k	j��

�k u � t�ju
�
dt �

La 
n de la preuve consiste alors �a estimer des d�eriv�ees successives du
terme dans lint�egrale� par application de la formule de Faa�di�Bruno�
nous renvoyons �a ���	 pour des d�etails�
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Remarque� On a le m�eme type de r�esultat pour les espaces de Sobolev
homog�enes  Hs� pour tout s � ��

����
� Inclusions de Sobolev�

Nous allons dans cette section pr�esenter une d�emonstration des
inclusions de Sobolev utilisant le d�ecoupage dyadique�

Th�eor�eme ���� Soit p � ����	 et soit � � R tel que � � � � N�r�
Alors l�inclusion

B�
r�r�H

n� � Lp�H n� � avec p �
rN

N � r�

est continue�

D�emonstration� Soit f � S�H n �� On a

kfkpLp�Hn � � p

Z �

�

ap����fjf j � ag� da �

o�u � est la mesure de Haar sur H n ��egale �a la mesure de Lebesgue��
Soit alors A un r�eel strictement positif �a 
xer� et �ecrivons

f � f��A � f��A � avec f��A �
X
�j
A

�jf et f��A �
X
�j�A

�jf �

On a� en utilisant le Lemme ����

������

kf��AkL��Hn � �
X
�j
A

k�jfkL��Hn �

�
X
�j
A

�j� k�jfkLr�Hn � �j�N�r���

� CAN�r�� kfkB�
r�r�Hn � �

Choisissons �a pr�esent A � Aa tel que

CAN�r��
a kfkB�

r�r�Hn � �
a

�
�
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Comme

��fjf j � ag� � �
�n
jf��Aj � a

�

o�
� �

�n
jf��Aj � a

�

o�
�

on en d�eduit� avec le choix A � Aa� que

�
�n
jf j � a

o�
� �

�n
jf��Aj � a

�

o�
�

Mais on a� par lin�egalit�e de Bienaym�e�Tchebytchev�

�
�n
jf��Aj � a

�

o�
� �r a�r kf��AkrLr�Hn � �

et

kf��Aa
krLr�Hn � �

Z
Hn

��� X
�j�Aa

�jf
���r dz ds

�
Z
Hn

� X
�j�Aa

�jr j�jf jr dz ds
�� X

�j�Aa

��jr
�

�r�r�
�

o�u ��r � ��r� � �� et donc

kf��Aa
krLr�Hn � � CA�ra

X
�j�Aa

�jr k�jfkrLr�Hn � �

Par cons�equent� on peut �ecrire� en utilisant le th�eor�eme de Fubini� que

kfkpLp�Hn � � C

Z �

�

ap�r��A�ra

X
�j�Aa

�jr k�jfkrLr�Hn � da

� C
X
j���

�Z C�j�N�r���kfk
B
�
r�r

�

ap�r���r�r��N�r��� da
�

� ��C kfkB�
r�r

�r
��N�r���� �jr k�jfkrLr�Hn �

� C kfkp�r
B�
r�r

X
j���

�j�N�r����p�r� k�jfkrLr�Hn �

� C kfkp�r
B�
r�r

X
j���

�j�r k�jfkrLr�Hn � �
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Le th�eor�eme est d�emontr�e�

Remarque� La m�eme d�emonstration permet dobtenir lin�egalit�e de
Sobolev pr�ecis�ee suivante �voir ���	�

kfkLp�Hn � � C kfk��r�p
B
��N�r���
��� �Hn �

kfkr�p
B�
r�r�Hn �

�

Il su!t en e�et de modi
er le calcul ������� si lon nutilise pas le Lemme
���� il vient

kf��AkL� � CAN�r��kfk
B
��N�r���
���

�

et les calculs sont alors identiques� en choissant A � Aa avec

a

�
� CAN�r��

a kfk
B
��N�r���
���

�

	� Paraproduit sur le groupe de Heisenberg�

Lobjet de cette section est dadapter au groupe de Heisenberg
lalgorithme de paraproduit introduit par J��M� Bony dans ��	�

Par rapport au cas classique� une di!cult�e appara�#t� due au fait
que lon ne dispose pas d�ecriture simple pour la transform�ee de Fourier
du produit de deux fonctions� Notamment il nest pas �evident a priori�
et contrairement au cas classique� que si deux fonctions ont une trans�
form�ee de Fourier support�ee dans des couronnes su!samment �eloign�ees
lune de lautre� alors la transform�ee de Fourier de leur produit reste
support�ee dans une couronne� N�eanmoins ce r�esultat est conserv�e pour
le groupe de Heisenberg� comme le montre la proposition suivante�

Proposition 	��� Soient j et j� deux entiers� et soient f et g deux

fonctions de S ��H n� telles que f � efj � � et g � egj� � � pour toutes les

fonctions radiales efj et egj� dans S�H n �� telles que

F� efj����F��� � � � pour � � �� j	j� n��� ��j C� �

F�egj�����F��� � � � pour � � �� j	j� n��� ��j
� C� �

Alors si j�� j � �� il existe une couronne C�� telle que fg �ehj� � � pour

toutes les fonctions radiales ehj� dans S�H n�� telles que

F�ehj�����F��� � � � pour � � �� j	j� n��� ��j
� C�� �
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D�autre part� si jj� � jj � �� alors il existe une boule B�� telle que fg �eh�j� � � pour toutes les fonctions radiales eh�j� dans S�H n �� telles que

F�eh�j�����F��� � � � pour � � �� j	j� n��� ��j
� B�� �

Remarque� De la m�eme mani�ere que pour le Lemme ��� vu plus
haut� dans le cas de fonctions dans S�H n�� cette proposition s�ecrit
plus simplement de la fa$con suivante�

Proposition 	��� Soient j et j� deux entiers� et soient f et g deux

fonctions de S�H n� telles que

F�f����F��� � ���j�j�n�����jC����F�f����F��� �

F�g����F��� � ���j�j�n�����j�C����F�g����F��� �

avec j� � j � �� Alors il existe une couronne C�� telle que

F�fg����F��� � ���j�j�n�����j�C��
���F�fg����F��� �

D�autre part� si jj� � jj � �� alors il existe une boule B�� telle que

F�fg����F��� � ���j�j�n�����j�B��
���F�fg����F��� �

D�emonstration de la Proposition ���� Nous supposerons dans
la suite que f et g sont deux fonctions de S�H n�� la Proposition ���
sobtenant par densit�e� On est donc ramen�e �a d�emontrer la Proposition
����

Pour simpli
er nous ne traiterons dans la suite que le cas � � ��
Par d�e
nition de F�f����� on a

F�f����F������ �

Z
Hn

f�z� s�u�z�sF������ dz ds

�

Z
Hn

f�z� s�

�p
�� �� � z�

��
p
	�

ei�s������z�jzj���� dz ds �

En �ecrivant � � �a � i �b et z � za � i zb� il vient

F�f����F������ � �A�
���f�b���� �b���� �a���� �
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o�u lon a �ecrit bf pour la transform�ee de Fourier usuelle de toute fonc�
tion f � et o�u

A�
���f�z� s� �

�p
�� �� � z�

��
p
	�

e���j��zj
��j�j�� f�z� s� �

Remarque� Par ce calcul� on a fait le lien entre la transform�ee de
Fourier %Heisenberg& et la transform�ee de Fourier usuelle� Cest ce lien
qui est la clef de la d�emonstration du r�esultat�

On peut �a pr�esent �ecrire

F�fg����F������ � �A�
���fg�b���� �b���� �a���� �

Soit alors � un multi�indice tel que � � 	� et j�j � E�j	j���� o�u E est
la partie enti�ere� D�e
nissons

B�
���f�z� s� �

�p
�� �� � z�

��
p
��

f�z� s� �

Alors on a

�A�
���fg�b���� �b���� �a����

�

�
	

�

�����

�B�
���f�b � �A���

��� g�b���� �b���� �a���� �

Il reste donc �a �etudier les supports de ces deux fonctions en convolution�
On sait que

�A���
��� g�b�� �� �b���� �a����

� F�g����F��������

� ���j���j�n�����j�C���� �A���
��� g�b���� �b���� �a���� �

donc le support en � de la fonction �A���
��� g�z� s��b���� �b���� �a����

est inclus dans la couronne �� j	� �j� n��� ��j
� C��

Lemme 	��� La fonction �B�
���f�b���� �b���� �a���� v�eri�e

�B�
���f�b���� �b���� �a����

� ���j�j�n�����jB��� ��� �B�
���f�b���� �b���� �a����
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o�u B��� � f � R � j j � �g�

Supposons un instant ce lemme d�emontr�e� Alors la Proposition
��� suit imm�ediatement� puisque le fait que j� � j � � implique que la
couronne C� et la boule B��� sont disjointes� De m�eme� on a le r�esultat
cherch�e dans le cas o�u jj� � jj � ��

D�emonstration du Lemme ���� �Ecrivons

�B�
���f�b�� �� �b���� �a����

�

Z
f�z� s� ei�s��i���bza��azb�

�p
�� �� � z�

��
p
��

dz ds

�

Z
f�z� s� e���j��zj

��j�j��

�p
�� �� � z�

��
p
��

� e��j��zj��j�j�� eiJ��s�z��� dz ds �
avec J��s� z� �� � � s � �� ��b za � �a zb�� Mais il existe une suite
fckgk�Nn telle que

e�j��zj
�

�
X
k�Nn

ck

� nY
i��

��i � zi�
ki
� �jkj �� � z�k

�� k��
�

La fonction �B�
���f�b���� �b���� �a���� est donc �egale �aZ

eiJ��s�z��� e���j��zj
��j�j��

�p
�� �� � z�

��
p
��

� f�z� s�
X
k�Nn

ck
� nY
i��

��i � zi�
ki
��jkj�� � z�k

�� k��
dz ds �

En �ecrivant�p
�� �� � z�

��
�jkj �� � z�kp

�� �� k��
�

�p
�� �� � z�

���kp
�� � k��

�jkj�� dk�� �

o�u les dk�� sont des constantes� il vient pour �B�
���f�b ���� �b���� �a�

��� X
k�Nn

�jkj�� dk�� ck

Z
eiJ��s�z���f�z� s�

� nY
i��

��i � zi�
ki
�

� e���j��zj��j�j�� �
p

�� �� � z����kp
�� � k��

dz ds �
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do�u 
nalement

�B�
���f�b�

X
k�Nn

�jkj�� dk�� ck

�
A��k
���

� nY
i��

��i � zi�
ki
�
f
�
b

�

�Etudions s�epar�ement chacun des termes de cette s�erie� Il est facile de
voir que pour tout � tel que �i �� ��


�i�F�f�����F������

� c�
p
� F�f����F���i����� � �� �F�zif�����F������

o�u lon a not�e �i pour le vecteur de Rn dont toutes les composantes
sont nulles sauf la composante i� �egale �a �� Dans le cas o�u �i � �� on a
simplement


�i�F�f�����F������ � �� �F�zif�����F������ �

Donc le support en � de F���i � zi�f����F������ est inclus dans la
r�eunion suivante

��j �� j�j� n��� C� � ��j �� �j�j � �� � n��� C� �

Une r�ecurrence imm�ediate implique que le support en � de

F
� nY
i��

��i � zi�
kif
�

���F������

est inclus dans

��j �� j�j� n��� C� � � � � � ��j �� �j�j � k� � � � � � kn� � n��� C� �

Mais comme � � � � k� on obtient 
nalement que le support en � de

�
A��k
���

� nY
i��

��i � zi�
ki
�
f
�
b

���� �b���� �a����

est inclus dans

��j �� j�j� n��� C� � � � � � ��j �� �j�j� k� � � � �� kn� � n��� C� �
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cest��a�dire dans la boule� ind�ependante de k�

�� j�j� n��� ��j B��� � o�u B��� � f � R � j j � �g �
Mais alors chacun des termes de la s�erie� qui converge vers

�B�
���f�b���� �b���� �a���� �

est support�e dans une boule 
xe� ce qui implique que

�B�
���f�b���� �b���� �a����

est support�e dans cette m�eme boule�
Le lemme est donc d�emontr�e� et avec lui� la Proposition ����

	��� L�algorithme de paraproduit�

	����� D�e�nitions�

D�e�nition 	��� On appelle paraproduit de f par g� et l�on note Tfg�
l�op�erateur bilin�eaire suivant

Tf g
def
�

X
j�	j��

�j�f�j g �
X
j

Sj��f�j g �

o�u l�on a d�e�ni

Sjf �
X

j�	j��

�j� f �

On appelle reste du produit fg� et l�on note R�f� g�� l�op�erateur bili	

n�eaire sym�etrique suivant

R�f� g�
def
�

X
jj�j�j	�

�j�f�j g �

Remarque� La Proposition ��� implique en particulier que pour tout
j 
 � et pour tout � � f��� �� �g� on a

F�Sj��f�jg����F��� � ���j�j�n�����jC�����F�Sj��f�jg����F��� �

F��j��f�jg����F��� � ���j�j�n�����jB�����F�Sj��f�jg����F��� �
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	����� Lois de produit�

Les d�emonstrations des r�esultats ci�dessous sobtiennent exacte�
ment comme dans le cas classique� par application du Lemme ���� Nous
renvoyons �a ��	 pour les d�etails�

Th�eor�eme 	��� Soient � et �� deux r�eels� et p et r deux �el�ements

de �����	� Alors si a est un �el�ement de L��H n�� l�op�erateur Ta est

continu de B�
p�r dans B�

p�r� et si a � C���H n� avec �� � �� alors Ta est

continu de B�
p�r dans B����

p�r � et l�on a

kTabkB�
p�r�Hn � � C kakL��Hn � kbkB�

p�r�Hn � �

et

kTabkB����
p�r �Hn �

� C kakC���Hn � kbkB�
p�r�Hn � � �� � � �

D�autre part� pour tous r�eels �� et �� tels que �� � �� � �� et pour tous

les p�� p�� p� r�� r� dans �����	 tels que ��p � ��p� � ��p� et ��r
def
�

��r� � ��r� � �� l�op�erateur R est bilin�eaire continu de

B��
p��r� �B��

p��r� dans B���
p�r �

o�u

��� � �� � �� �N
� �

p�
�

�

p�
� �

p

�
�

En�n si �� � �� 
 � et ��p � ��p� � ��p� et ��r� � ��r� � �� alors R
est bilin�eaire continu de

B��
p��r�

� B��
p��r�

dans B���
p�� �

Corollaire 	��� Soient � � � et �p� r� � �����	� trois r�eels� Si u et v
sont deux �el�ements de L� 	 B�

p�r�H
n �� alors uv � B�

p�r�H
n �� et

ku vkB�
p�r�Hn�

� C �kukL�kvkB�
p�r

� kvkL�kukB�
p�r

� �

Si �� � �� � � et si p� est tel que �� � N�p�� alors pour tout couple

�p�� r�� � �����	�� on a pour tous u et v dans B��
p��� 	 B��

p��r��H n��

ku vkB�
p��r�

�Hn � � C �kukB��
p���

kvkB��
p��r�

� kvkB��
p���

kukB��
p��r�

� �
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o�u � � �� � �� � N�p�� D�autre part� si �� � �� 
 �� �� � N�p� et

��r� � ��r� � �� alors pour u et v dans B��
p��r�

	B��
p��r�

�H n�� on a

ku vkB�
p���Hn � � C �kukB��

p��r�
kvkB��

p��r�
� kvkB��

p��r�
kukB��

p��r�
� �

En�n si �� � �� � �� �j � N�pj et p 
 max fp�� p�g� alors pour tout

�r�� r���
ku vkB���

p�r �Hn � � C kukB��
p��r�

kvkB��
p��r�

�

avec

��� � �� � �� �N
� �

p�
�

�

p�
� �

p

�
et r � maxfr�� r�g� et si ����� 
 �� avec �j � N�pj et ��r����r� � ��
alors pour tout p 
 max fp�� p�g�

ku vkB���
p���Hn � � C kukB��

p��r�
kvkB��

p��r�
�

Remarque� Les r�esultats correspondant au cas des espaces de Besov
homog�enes s�enoncent de mani�ere identique�

Un second corollaire �a ce th�eor�eme est d�emontr�e dans ��	� la d�e�
monstration ici est identique�

Proposition 	��� Soient � et r deux r�eels tels que � 
 � et ��� � r �
�� Il existe alors une constante C telle que pour toutes fonctions u� v�
et w avec

u � B�
��� 	 Cr�H n� et �v� w� � �B���

��� 	 Cr�����H n� �

on a

ku v wkB����r
��� �Hn � � C kukB�

���
C
r kvkB���

���
C
r�� kwkB���

���
C
r�� �

En
n les op�erateurs de paraproduit permettent de pr�eciser la Pro�
position ���� sur la composition par une fonction C�� de la mani�ere
suivante�

Proposition 	��� Soit u une fonction �a valeurs r�eelles telle que u �
B�
p�r�H

n�� avec � � N�p� Soit en�n F � C��R�� Alors

F �u� � TF ��u�u � R � o�u R � B���N�p
p�r �H n� �
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D�emonstration� Nous nallons pas donner ici les d�etails des calculs
conduisant �a ce r�esultat� et renvoyons au livre de Y� Meyer ����	� pour
la d�emonstration de cette proposition� Rappellons simplement que la
d�emonstration consiste �a �ecrire la s�erie t�el�escopique ������ d�ej�a em�
ploy�ee pour d�emontrer la Proposition ���� et dutiliser alors la formule
de Taylor avec reste int�egral �a lordre deux�


� Applications�


��� L�in�egalit�e de Gagliardo�Nirenberg�

On d�e
nit les espaces W ��r�H n� comme la compl�etion de S�H n�
pour la norme

kukW��r�Hn � � k���Hn ���� ukLr�Hn � �

Lobjet de cette section est de d�emontrer� par application des r�esultats
pr�esent�es pr�ec�edemment� le th�eor�eme suivant�

Th�eor�eme 
��� Soit f une fonction de Lq 	W ��r�H n�� avec q et r
strictement sup�erieurs �a � et � 
 �� Alors f �W ��p�H n�� et

k���Hn ����fkLp�Hn � � C kfk�Lq�Hn � k���Hn ����fk���Lr�Hn � �

o�u ��p � ��q � ��� ���r� � � ��� ���� et � � 	�� �� �

D�emonstration� Commen$cons par rappeller la d�e
nition et les prin�
cipales propri�et�es de la fonction maximale �voir ���� Chapitre XIII�
p� ���	� pour des d�etails��

Rappellons que la distance homog�ene sur le groupe de Heisenberg
est d�e
nie par

kj�z� s�kj def� �jzj� � jsj����� �
Les %boules& associ�ees �a cette distance sont not�ees

B�z� s� R� � f�z�� s�� � H
n � kj�z�� s���z� s���kj � Rg �

et leur mesure est not�ee m�B�z� s� R���
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D�e�nition 
��� Soit f � L�
loc�H

n �� La fonction maximale de f est

d�e�nie par

Mf�z� s�
def
� sup

R��

�

m�B�z� s� R��

Z
B�z�s�R�

jf�z�� s��j dz� ds� �

Proposition 
��� Si f � Lp�H n�� avec � � p � �� alors Mf �
Lp�H n�� et

����� kMfkLp�Hn � � Ap kfkLp�Hn �

o�u Ap est une constante d�ependant de p et de n�

D�autre part� soit � � L��H n �� et supposons que le plus petit ma	

jorant radial de �� not�e � et d�e�ni par

��z� s� � sup
kj�z��s��kj�kj�z�s�kj

��z�� s��

est dans L��H n�� Alors pour tout f � Lp�H n �� avec � � p � �� on a

����� jf � ��z� s�j � k�kL��Hn �Mf�z� s� �

D�emontrons �a pr�esent lin�egalit�e propos�ee pour une fonction f �
S�H n�� On peut �ecrire

���Hn ����f

�
X
j	A

���Hn ����  �jf �
X
j�A

���Hn ��������  �j����Hn ������ f� �

o�u A est une constante �a 
xer� Nous avons vu en ������ que

F�a����Hn �����  �jf����F���

� �jmR�j�j��
��j �� a��� j���j�j �� j	j� n������F�f����F��� �

d�es que a � C��R�� est homog�ene de degr�e m� Alors comme en �������
on a

a���Hn �  �jf � �jm�jN h���j �� �
X

jj�j�j	�

 �j� f �
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o�u h est la fonction de S�H n� telle que

F�h����F��� � R�j�j��� a��� j���j �j�����F��� �

Mais alors comme dans ��	� il existe une fonction eh radiale� int�egrable
et d�ecroissante en la distance �a lorigine� qui majore h� ce qui par ap�
plication de ������ donne

ja���Hn �  �jf�z� s�j � C �jmMf�z� s� �

En appliquant cette in�egalit�e �a a�D� � ���Hn ���� puis �a a���Hn � �
���Hn ��������� il vient

j���Hn ���� f�z� s�j

� C
�X
j	A

��jMf�z� s� �
X
j�A

������jM����Hn ���� f��z� s�
�

� C ��AMf�z� s� � C ������AM����Hn ���� f��z� s� �

puisque � � �� En optimisant sur A� il vient

j���Hn ����f�z� s�j � C �Mf�z� s������� �M����Hn ����f��z� s����� �

Il su!t alors dappliquer lin�egalit�e de H"older� qui donne

k���Hn ����fkLp�Hn � � C kMfk�Lq�Hn � kM����Hn ����f�k���Lr �

avec � � �� ����
Lin�egalit�e maximale ����� termine la d�emonstration�

Remarque� Dans le cas o�u p � q � r � �� lin�egalit�e correspondante

k���Hn ����fkL��Hn � � C kfk�L��Hn � k���Hn ����fk���L��Hn � �

o�u � � �� � ���� et � � 	�� �� � se d�emontre simplement par le calcul
suivant

k���Hn ����fkL��Hn � �
���X
j	A

���Hn ����  �jf
���
L��Hn �

�
���X
j�A

���Hn ��������  �j����Hn ����f�
���
L��Hn �

� C �������A kfkL��Hn �

� C ����A k���Hn ����fkL��Hn � �
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ce qui� en optimisant sur A� conduit au r�esultat�


��� �Equations semi�lin�eaires sous�elliptiques�

Dans ���	� C��J� Xu et C� Zuily d�emontrent un r�esultat de r�egularit�e
des solutions faibles d�equations quasi�lin�eaires sous�elliptiques� Nous
nous proposons ici� dans le cas o�u lop�erateur sous�elliptique est ��Hn

et dans un cadre semi�lin�eaire� den pr�esenter une d�emonstration plus
�el�ementaire� reposant sur le paraproduit et les espaces de Besov� Cette
d�emonstration dans le cas classique est due �a J��Y� Chemin et C��J� Xu�
voir ��	�

Consid�erons donc l�equation semi�lin�eaire sous�elliptique suivante�
o�u N� � N � et bk

�

ij�k	 est une fonction ind�e
niment di��erentiable

����� ��Hnu
k� �

�nX
i�j��

N�X
k�	��

bk
�

ij�k	�u�Xiu
kXju

	 � � �

pour k� � f�� � � � � N�g� On peut alors d�emontrer le th�eor�eme suivant�

Th�eor�eme 
��� Si � est un r�eel tel que � � ���� et si u est solution

faible de ����� telle que u � H��H n � 	 C��H n�� alors u � C��H n��

D�emonstration� Les r�esultats obtenus jusquici permettent de re�
prendre �a lidentique la d�emonstration de ��	� nous la reproduisons ici
pour la commodit�e du lecteur�

On peut supposer que � � �� Commen$cons par remarquer que si
u � H��H n� 	 C��H n�� alors

bk
�

ij�k	�u�Xiu
kXju

	 � L��H n� �

et donc par linjection continue de L��H n� dans B�
����H n�� on en d�eduit

que
�Hnu

k� � B�
����H n� �

Mais lop�erateur ���Hn � est un isomorphisme de B�
p�r�H

n � dans
B���
p�r �H n � pour tout � � R� et pour tous �p� r� � ����	 �voir ��	��

par cons�equent on obtient que u � B�
����H n��

On raisonne alors par r�ecurrence� en montrant que pour tout k � N �

����� u � B��k�
��� 	 C��H n � implique u � B

���k����
��� �H n � �
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ce qui d�emontrera le th�eor�eme�
Pour d�emontrer ������ il su!t dutiliser la Proposition ��� ci�dessus�

qui implique que

bk
�

ij�k	�u� � B��k�
��� 	 C��H n� �

et donc par le Corollaire ���� on a

bk
�

ij�k	�u�Xiu
kXju

	 � B
�k����
��� �H n � �

On en conclut alors que

u � B
���k����
��� �H n � �

ce qui ach�eve la d�emonstration�


��� �Equations d�ondes semi�lin�eaires�

Consid�erons l�equation dondes semi�lin�eaire suivante

�����

	

ttu��Hnu � jXuj�F �u� � dans R � H n �

�ujt��� 
tujt��� � �u�� u�� �

o�u F � C��R�� On a not�e Xu � �X�u� � � � � X�nu�� et lon notera
dor�enavant Du � �
tu�Xu�� D�emontrons le th�eor�eme suivant�

Th�eor�eme 
��� Soit s � N�� � ���� et �u�� u�� �  Hs �  Hs���H n ��
Alors il existe un temps T � � tel que ����� poss�ede une unique solution

u� avec
u � L����� T 	�  Hs�H n�� �

et

Du � L����� T 	�  Hs���H n �� 	 L����� T 	� L��H n�� �

Remarque� Ce th�eor�eme est lanalogue sur le groupe de Heisenberg du
���� Th�eor�eme �	 du cas classique� Notons toutefois que la restriction
sur lindice s est plus forte dans notre cadre �quand d � �� la restriction
dans ���	 est s � ��� Comme nous le verrons dans la d�emonstration� cela
est d�u au fait que le domaine de validit�e des estimations de Strichartz
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g�en�eralis�ees� sur le groupe de Heisenberg� est moins �etendu sur H n que
sur Rn �voir ��	��

D�emonstration du Th�eor�eme� Nous allons commencer par rappeler
��� Th�eor�eme ���	� donnant les estimations de Strichartz g�en�eralis�ees�
sur le groupe de Heisenberg� v�eri
�ees par la solution u de	


ttu��Hnu � f � dans R � H n �

�ujt��� 
tujt��� � �u�� u�� �

Notons que dans ��	� le th�eor�eme est d�emontr�e pour �u�� u�� �  H� �
L��H n�� mais on obtient de mani�ere identique le cas �u�� u�� �  Hs �
 Hs���H n��

Proposition 
��� Soient trois r�eels s� �� et ��� et soient pi� ri� pour i �
f�� �g� tels que

�

pi
� �

�
� �

ri
et � � ri � � �

�� � N
��

�
� �

r�

�
� �

p�
� s et �� � N

��

�
� �

r�

�
� �

p�
� �� s �

Supposons que �u�� u�� �  Hs�  Hs���H n�� Alors pour tout temps T � on
a

kukLp��
��T �� 	B
��
r���

�Hn �� � k
tukLp��
��T �� 	B
����
r���

�Hn ��

� C k�u�� u��k 	Hs� 	Hs���Hn � � C kfk
Lp� �
��T �� 	B

���
r���

�Hn ��
�

o�u pour tout r� on a not�e r pour son conjugu�e� d�e�ni par ��r���r � ��

Pour all�eger les notations� on notera LpT �  B�
p�r�H

n�� lespace

Lp���� T 	�  B�
p�r�H

n��� Dautre part� on supposera dans la suite que
s � N�� � � puisque dans le cas s � N�� � �� la r�esolution du syst�eme
est simplement due �a la th�eorie classique des syst�emes sym�etriques hy�
perboliques� Par la proposition ci�dessus� on a donc

kukL�T � 	Hs�Hn �� � k
tukL�T � 	Hs���Hn ��

� C k�u�� u��k 	Hs� 	Hs���Hn � � C k jXuj� F �u�kL�
T �

	Hs���Hn �� �
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et� pour tout � � �� puisque s � N�� � ���� on a

kukLp�T � 	B���
����H

n �� � k
tukLp�T � 	B�
����H

n ��

� Ck�u�� u��k 	Hs� 	Hs���Hn � � C k jXuj�F �u�kL�
T �

	Hs���Hn �� �
�����

avec
�

p�
� � � � �

N

�
� s �

et lon peut choisir p� � ��

Remarque� Cest ici que la restriction sur s intervient� et elle est due
au fait que sur le groupe de Heisenberg� on a n�ecessairement p� 
 ��
alors que dans le cas classique� la limitation sur p� est p� 
 � �en
dimension d 
 ��� Cette limitation dans le cas classique permet donc
de r�esoudre notre probl�eme pour s � �n � ���� d�es que la dimension
despace est n 
 �� et pour s � � � ��� en dimension �� Ici en toute
dimension� on demande que

s �
N

�
�

�

�
�

Le Lemme ��� indique que les Xj op�erent sur les espaces de Besov�
par cons�equent lestimation ����� s�ecrit aussi

kDukL�
T �

	B�
����H

n ��

� C k�u�� u��k 	Hs� 	Hs���Hn � � C k jXuj� F �u�kL�
T �

	Hs���Hn �� �

En outre� comme  B
��� � L�� on a 
nalement

kDukL�
T �L

��Hn ��

� C k�u�� u��k 	Hs� 	Hs���Hn � � C k jXuj� F �u�kL�
T �

	Hs���Hn �� �

Il reste �a estimer jXuj� F �u� dans  Hs���H n �� Pour cela� on va faire ap�
pel aux estimations douces obtenues en Section ����� et �a la Proposition
��� sur la composition par des fonctions C�� ainsi qu�a lalgorithme de
paraproduit introduit dans la D�e
nition ���� Commen$cons par d�e
nir
la fonction G � C��R� par

G�u� � F �u�� F ��� �
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Alors� par les estimations douces de la Section ������ on a

k jXuj�F �u�k 	Hs���Hn �

� C kXukL��Hn �kXuk 	Hs���Hn � � k jXuj�G�u�k 	Hs���Hn � �

D�emontrons 
nalement le lemme suivant�

Lemme 
��� Si Xu � L� et u �  Hs�H n�� avec s � N��� alors

k jXuj�G�u�k 	Hs���Hn � � C kXukL��Hn � kuk�	Hs�Hn �
�

D�emonstration du Lemme� Commen$cons par remarquer que la
Proposition ��� sur la composition par des fonctions C� implique�
puisque G��� � �� que

kG�u�k 	Hs � Ckuk 	Hs �

En outre� les estimations douces de la Section ����� fournissent

k jXuj�G�u�k 	Hs���Hn � � C kXuk 	Hs���Hn � k jXujG�u�kL��Hn �

� kXukL��Hn � k jXujG�u�k 	Hs���Hn � �

Le premier terme de cette estimation se majore en utilisant que

k jXujG�u�kL��Hn � � C kXukL��Hn � kG�u�k 	Hs�Hn � �

puisque s � N��� ce qui donne

kXuk 	Hs���Hn � k jXujG�u�kL��Hn � � C kuk�	Hs�Hn �
kXukL��Hn � �

Quant au second terme� on �ecrit lalgorithme de paraproduit

jXujG�u� � TG�u�jXuj� TjXujG�u� � R�G�u�� jXuj� �

Le Th�eor�eme ��� implique que

kTG�u�jXuj k 	Hs���Hn � � C kG�u�kL��Hn �kXuk 	Hs���Hn �

� C kuk�	Hs�Hn �
�
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De m�eme� on peut �ecrire que

kTjXujG�u�k 	Hs���Hn � � C kXuk 	C���Hn � kG�u�k 	Hs�Hn �

� C kuk 	Hs�Hn � kG�u�k 	Hs�Hn � �

puisque s � N��� ce qui donne lestimation voulue� En
n pour le terme
de reste� on �ecrit que

kR�G�u�� jXuj�k 	Hs���Hn � � C kXuk 	Hs���Hn � kG�u�k 	B�
����Hn �

� C kuk 	Hs�Hn � kG�u�kL��Hn � �

Le lemme est donc d�emontr�e�

On peut �a pr�esent achever la d�emonstration de la proposition� En
d�esignant k � ks�T pour la norme

kuks�T � kukL�T � 	Hs�Hn �� � k
tukL�T � 	Hs���Hn �� � kDukL�
T �L

��Hn �� �

on a 
nalement montr�e que

kuks�T � C k�u�� u��k 	Hs� 	Hs���Hn � � C kuk�s�TT ��� � C kuk�s�TT ���� �

Il est classique que ce type destimation conduit �a lexistence de solu�
tions en temps petit �d�ependant de �u�� u���� Lunicit�e est une cons�e�
quence du fait que

Du � L����� T 	� L��H n�� �
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The maximal quartile operator

Christoph Thiele

�� Introduction�

Let C��R� denote the set of all functions f � R �� R that are �nite
linear combinations of characteristic functions of dyadic intervals� i�e��
intervals of the form ��kn� �k�n	
�� with k� n � Z� We de�ne theWalsh

function Wl � C��R� for l � N� by the following recursive formulas

W� � ������ ��
�

W�l � Wl��x� 	Wl��x� 
� ����

W�l�� � Wl��x��Wl��x� 
� ���

For k� n � Z� l � N� we de�ne the Walsh wave packet wk�n�l by

wk�n�l�x� � ��k��Wl��
�k x� n� �

The quartile operator HW and the maximal quartile operator Hmax
W are

then de�ned by

HW �f� g� ��
X
k�n�Z

l�N�

��k�� hf� wk�n��li hg� wk�n��l��iwk�n��l�� �

Hmax
W �f� g��x�

�� sup
K�Z

���� X
k�n�Z

l�N�
k�K

��k�� hf� wk�n��li hg� wk�n��l��iwk�n��l���x�

���� �

���
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In this paper we prove the following theorem�

Theorem �� Let p� q� r satisfy

���



p
�




q
	




r
�

�


� p �� � 
 � q � r � � �

Then there is a constant C such that for all functions f� g � C��R�

kHW �f� g�kp � C kfkq kgkr �

kHmax
W �f� g�kp � C kfkq kgkr �

Only the estimates for Hmax
W are new� but our approach gives the

estimates for HW without extra work�
The quartile operator has been introduced in �

� as a discrete

model for the bilinear Hilbert transform� The bilinear Hilbert transform
H is de�ned as a bilinear operation from S�R� � S�R� into C�R� by

H�f� g��x� �� p�v�

Z
f�x� t� g�x	 t�

dt

t
�

It has been shown in ��� and ���� see also ��� and ��� for a survey and
�

� for a condensed proof� that the bilinear Hilbert transform satis�es
the a priori estimates

��� kH�f� g�kp � Cq�r kfkq kgkr

provided p� q� r satisfy ���� More recently� M� Lacey has shown �see ����
that also the maximal truncation of the bilinear Hilbert transform�

Hmax�f� g��x� �� sup
���

��� Z
Rn�����	

f�x� t� g�x	 t�
dt

t

��� �
satis�es estimates as in ���� ���� By the same method he has observed
that the maximal operator

M�f� g��x� �� sup
���

���

�

Z
�����	

f�x� t� g�x	 t� dt
���

satis�es estimates as in ���� ���� For the operator M � these estimates
are nontrivial only if p � 
�



The maximal quartile operator ���

The current paper is an adaption of the ideas in ��� to the discrete
model of the quartile operator� As in ���� the main ingredient that is
needed to pass from estimates for HW to estimates for Hmax

W is a version
of a lemma by Bourgain �see �
�� for certain maximal averages�

We use analysis in the Walsh phase plane as in �

�� We give all
the necessary de�nitions� but at some places we refer to results in �

��

�� The main lemma�

The main issue in proving Theorem 
 is to e�ciently make use of
orthogonality of wave packets� For this we have to identify appropriate
large sets of pairwise orthogonal wave packets� We will associate to each
wave packet a rectangle in the half plane� so that disjoint rectangles
correspond to orthogonal wave packets� Then the combinatorial issue
is to identify sets of pairwise disjoint rectangles� This is the main idea
behind the following Lemma 
� In the proof of this lemma one has to
identify sets of pairwise disjoint rectangles so that we can use the second
hypothesis of the lemma� This lemma already appears implicitly in ����

p��P �

p��P �

p��P �

p��P �

IP

�P

Table �� Subdivision of quartiles�

A tile p is a rectangle p � Ip � �p of area one in the upper half
plane� such that Ip and �p are dyadic� Hence for each tile p there are
integers k� n� l with l � � such that

Ip � ��kn� �k�n	 
�� � �p � ���kl� ��k�l 	 
�� �

Similarly� a quartile P is a rectangle IP � �P of area four in the upper
half plane� such that IP and �P are dyadic� Each quartile P is the
union of four tiles p��P �� p��P �� p
�P �� and p��P �� as in Figure 
�
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If p� q are two tiles� then we write p � q if Ip � Iq and �q � �p�
This de�nes a partial ordering of the set of tiles� Let � � f
� �� g� A set
T of quartiles is called a tree of type �� if fp��P �gP�T contains exactly
one element which is maximal in fp��P �gP�T � If p��PT � is this maximal
element� we write p��PT � � IT � �T � pT and call pT the top of the
tree�

Lemma �� Assume that we are given exponents 
 � s� � � for

� � f
� �� g such that 
	s� 	 
	s� 	 
	s
 
 
� and we are given a

constant B 
 �� Then there is a constant C 
 � such that the following

holds �
Let P be a �nite set of quartiles� For each � � f
� �� g let

a� � P �� R
�

be a function such that the following two hypotheses are satis�ed �


� Let � 	� �� If T � P is a tree of type �� then

���� X
P�T

a��P ��

jIP j
�IP

�������
�
� B jIT j �

�� Let � 	� �� m � Z� Let P� � P be a disjoint union of trees of

type �

P� ��
��

T�F

T �

such that the set fp��P � � P � P�g is a set of pairwise disjoint rectangles

and� for each T � F � we have

���� X
P�T

a��P ��

jIP j
�IP

�������
�
� �m�s� jIT j �

Then X
T�F

jIT j � B ��m �

Then we have the estimateX
P�P

jIP j
���� a��P � a��P � a
�P � � C �
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We prove the lemma� Let m � Z and �� � � f
� �� g with � 	� �� We
say that a tree T satis�es the size condition �m� �� ��� if T is of type �
and

���
���� X

P�T

a��P ��

jIP j
�IP

�������
�
� �m�s��
 jIT j �

We say that a tree T satis�es the size condition �m� �� ��� if T is of type
� and

���
a��P �p
jIP j

� �m�s� �

for all P � T �
The size of a tree T is the maximal m � Z such that T satis�es a

size condition �m� �� �� for some �� � � f
� �� g�
We partition the set P into trees T�� � � � � TN as follows� Let � � N�

and assume by induction that T	� is already chosen for all �� with �� � ��
De�ne

P	 �� P n
�
	��	

T	� �

We can assume P	 is not empty� Let m	 be the maximal integer for
which there exists a tree T � P	 of size m	 � and let F	 be the set of
all trees T � P	 of size m	 � De�ne Fmax

	 to be the set of trees in F	
which are maximal in F	 with respect to set inclusion� Let F	�
 be
the set of all trees in Fmax

	 which satisfy a size condition �m� �� �� with
� � �� If F	�
 is nonempty� choose T	�� � F	�
 such that the center of
�T��� is maximal� If F	�
 is empty� choose T	�� � Fmax

	 such that the
center of �T��� is minimal�

Since P is �nite� the algorithm stops with a �nite partition of P
into fT�� � � � � TNg� De�ne F �� fT�� � � � � TNg�

In the following estimates� C will denote a constant depending on
s� and B� The precise value of C may change from line to line�

Lemma �� If T � F and the size of T is m� then� for � 	� ��� X
P�T

a��P ��
����

� C �m�s� jIT j
��� �

and

sup
P�T

a��P �p
jIP j

� C �m�s� �
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Proof� Let T � F be of size m� De�ne

f ��
� X
P�T

a��P ��

jIP j

IP

����
�

To prove the �rst estimate of the lemma� we have to bound the L��
norm of f � We prove kfkBMO� � C �m�s� � which gives the appropriate
bound on kfk�� because f is supported on IT �

Let J be a dyadic interval� We have to show

��� inf
c




jJ j

Z
J

�f�x�� c� dx � C �m�s� �

We split the sum in the de�nition of f into the sum over those P with
IP � J and the sum over those P with IP 	� J � The second sum is
constant on the interval J � Hence� using the inequality

�a	 b���� � b��� � a��� �

which holds for any two positive numbers a� b� we can estimate the left
hand side of inequality ��� by




jJ j

Z
J

� X
P�T �IP�J

a�� �P �

jIP j
�IP �x�

����
dx �

By passing to subintervals� if necessary� one observes that it su�ces to
bound this expression under the assumption that there is a P � � T such
that IP � � J � But then the set TJ �� fP � T � IP � Jg is a tree of
type �� The size of this tree is at most m by construction of the tree T �
The size estimate for TJ then shows that ��� is bounded by C �m�s��
This �nishes the desired BMO estimate and therefore the proof of the
�rst estimate of the lemma� The second estimate follows immediately
from the observation that the set fPg is a tree of type � for all P � T
and has size less than or equal m� This �nishes the proof of Lemma ��

Lemma �� Let Fm be the set of trees in F with size m� Then

X
T�Fm

jIT j � C ��m �
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Proof� Fix �� � � f
� �� g� It su�ces to show the desired estimate
for the sum over the set Fm���� of those T � Fn which satisfy the size
condition �m� �� �� but no size condition �m� �� ��� with � � ��� We �rst
consider the case � � �� Pick �� 	� � and consider the set pm���� of all
tiles which are tops of trees in Fm����� Then pm���� is a set of pairwise
disjoint rectangles� To see this assume to the contrary that the tops
of two trees T� T � � Fm���� intersect� We can assume that T has been
selected before T �� Then the union T 
T � is a tree containing T � which
contradicts the maximality of T at the time it was selected� Since each
set fPg with P � P� is both a tree of type �� and of type �� we can
apply ��� and the second hypothesis of the proposition to conclude the
desired estimate�

Now assume � � �� For a tree T de�ne T red to be the set of P � T
such that IP is not minimal in fIP � � P � � Tg� If T red is nonempty� it
is again a tree� De�ne TRed � �T red�red� If T � Fm����� then���� X

P�TRed

a��P ��

jIP j
�IP

�������
�

�
���� X

P�T

a��P ��

jIP j
�IP

�������
�
�
���� X

P�TnTRed

a��P ��

jIP j
�IP

�������
�
�

Since the size of each tree fPg with P � T n TRed is less than or
equal m and the intervals IP with P � T n T red as well as those with
P � T red n TRed are pairwise disjoint� we can bound this expression by

� �m�s��
jIT j � �m�s��� jIT j � �m�s��� jIT j � �m�s� jIT j �

The desired estimate now follows from the second hypothesis of the
proposition as soon as we prove that for any T� T � � Fm���� and any

P � T red� P � � T �red with P 	� P � we have that p��P � and p��P
�� are

disjoint� To prove this assume to the contrary that �p��P � � �p��P ���
�p��P � 	� �p��P ��� Since � � �� it is easy to see that the center of �p��P �
is greater than the center of �p��P ��� Hence T has been selected before

T �� Pick P ��� P ��� � T � n T �Red such that p��P
��� � p��P

���� � p��P
���

Then we have

�p��P � � �p��P ��� � Ip��P ��� � Ip��P � �

Hence P �� quali�es to be in the tree T � a contradiction to the maximality
of T � This �nishes the proof of Lemma � since the case � 
 � is done
similarly to the case � � ��



��� C� Thiele

The size of a tree in F is bounded by a constant C� This is im�
mediate in the case of size conditions �m� �� �� with � 	� � from the �rst
hypothesis of the lemma� For � � � we apply� as we have done before�
the �rst hypothesis of the lemma to trees containing just one element�

Hence we have

X
P�P


p
jIP j

a��P � a��P � a
�P �

�
X
m�Z
m�C


X
����

X
T�Fm����

X
P�T


p
jIP j

a��P � a��P � a
�P � �

Applying H�older�s inequality gives

� � � �
X

m�m�


X
����

X
T�Fm����

sup
P�T

a��P �p
jIP j

Y
l��

� X
P�T

al�P ��
����

�

Now Lemma � gives

� � � �
X
m�C


X
����

X
T�F�m�����

C ����s����s����s��m jIT j �

Finally Lemma  gives

�
X
m�C


X
����

C ����s����s����s����m �

This is a convergent geometric series and hence bounded by a constant
C� This �nishes the proof of Lemma 
�

�� The maximal quartile operator�

If p is the tile ��kn� �k�n	 
��� ���kl� ��k�l	 
��� then we denote
by wp the Walsh wave packet given by

wp�x� �� wk�n�l�x� � ��k��Wl��
�k x� n� �
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The signi�cance of this identi�cation is that if p and p� are two disjoint
tiles� then wp and wp� are orthogonal� Moreover if a p � q for two
tiles p and q� then then on the interval Ip the functions wp and wq are
multiples of each other� For a proof of these easy facts see �

��

Let P denote the set of all quartiles� Then the maximal quartile
operator Hmax

W can be written as

Hmax
W �f� g��x�

�� sup
k�Z

��� X
P�P�jIP j��k


p
jIP j

hwp��P �� fi hwp��P �� giwp��P ��x�
��� �

Now let � � C��R�� Then the linearized maximal quartile operator
H�
W is de�ned by

H�
W �f� g��x� ��

X
P�P�jIP j����x�


p
jIP j

hwp��P �� fi hwp��P �� giwp��P ��x� �

By standard arguments� an Lp�bound on H�
W that does not depend on

the function � implies the corresponding bound for Hmax
W � We �x the

function � and write

H�
W �f� g��x� �

X
P�P


p
jIP j

hv��P � fi hv��P � gi v
�P �x� �

where

v��P �� wp��P � � v��P �� wp��P � �

v
�P �x� ��

�
wp��P ��x� � if jIP j � ���x� �

� � if jIP j � ���x� �

By integrating against a third function f
� we obtain a trilinear form

T�
W � C��R� � C��R� � C��R� �� R �

T�
W �f�� f�� f
� �

X
P�P


p
jIP j

hv��P � f�i hv��P � f�i hv
�P � f
i �

For each permutation  of the set f
� �� g we obtain the bilinear oper�
ator H���

W de�ned byZ
H���
W �f�� f���x� f
�x� dx � T�

W �f������� f������� f����
�� �
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We will prove Theorem 
 in two steps� The �rst step is to prove the
following proposition�

Proposition �� Let 
 � r�� r� � � and assume




r
��




r�
	




r�





�
�

Then there is a constant C such that for all ��  as above and all

f�� f� � C��R�

�
�� kH���
W �f�� f��kr � C kf�kr� kf�kr� �

The second step consists of an interpolation argument which is
given in the appendix�

�� Proof of Proposition ��

By Marcinkiewicz interpolation �see ��� it su�ces to prove the
corresponding weak type estimate instead of �
��� By homogeneity �
here we use that � was arbitrary � and linearity it su�ces to prove that
for kf�kr� � kf�kr� � 
 we have

jfx � H���
W �f�� f���x� 
 
gj � C �

Fix such f� and f� and de�ne

E �� fx � max fM�
r�
f��x��M

�
r�
f��x�g � 
g �

Here we have set

M�
p f�x� ��

�
sup

I�dyadic�x�I




jIj

Z
I

jf�x�jp dx
���p

�

By the maximal theorem the measure of E is bounded by a universal
constant� hence it su�ces to prove a weak type estimate outside the
set E� i�e�� since each v��P is supported on IP � it su�ces to prove a
universal bound on the measure of the set

F ��
n
x �

X
P�P�IP ��E


p
jIP j

hv�����P � f�i hv�����P � f�i v��
��P �x� 
 

o
�
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For this we can assume that the measure of F is larger than 
� Let f

be the characteristic function of F � divided by jF j���� It is easy to see
that f
 � C��R� and we have

jF j��� �
X

P�P�IP ��E


p
jIP j

hv�����P � f�i hv�����P � f�i hv��
��P � f
i �

Now the following lemma� applied with r
 �� � and f�� f�� f
� r�� r�
as above� implies that jF j is bounded� Observe that for these data
E
 � �� hence the set E in the lemma coincides with the set E above�

Lemma �� Let 
 � r�� r�� r
 � � with


 �



r�
	




r�
	




r

� � �

Then there is a constant C such that the following holds � Let f�� f�� f
 �
C��R� with

kf�kr� � kf�kr� � kf
kr� � 
 �

De�ne

E� �� fx � M�
r� f��x� � 
g

and E �� E� 
E� 
E
� Then

X
P�P�IP ��E


p
jIP j

jhv����� f�i hv����� f�i hv��
�� f
ij � C �

It remains to prove this lemma� By symmetry we can assume that
 is the identity� First observe that under the hypotheses of the lemma
it su�ces to prove that for any �nite subset Q � fP � P � IP 	� Eg�
such that hv��P � f�i hv��P � f�i hv
�P � f
i 	� � for all P � Q� we have

X
P�Q

jIP j
����jhv��P � f�i hv��P � f�i hv
�P � f
ij � C �

This inequality is the conclusion of Lemma 
 applied to the set Q and
the functions a� de�ned by

a��P � � jhv��P � f�ij �
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It remains to verify the two hypotheses of Lemma 
 with s� �� r�
� 	 � for

some small �� and B some number which will evolve from the estimates
below�

�� Veri�cation of Lemma ���	�

Let � 	� �� Fix a tree T as in Hypothesis 
� It su�ces to prove

���� X
P�T

jhf� v��P ij
�

jIP j
�IP

�������
t
� C kfkt �

for all 
 � t � �� Namely� if this is true� we apply it to f � f� �IT and
obtain with H�older�s inequality

�

�
���� X

P�T

jhf� v��P ij
�

jIP j
�IP

�������
�
� C jIT j inf

z�IT
M�

t f�z� �

If we set t �� r�� then the right hand side is bounded by C jIT j� since
IT 	� E� Hence Hypothesis 
 is satis�ed�

By standard square function techniques it su�ces to prove the
estimate

�
��
��� X
P�T

��P � hf� v��P iwp��P �

���
t
� C kfkt

uniformly for all functions � � T �� f�
� 
g and all functions f �
C��R��

First we assume that � 	�  and prove this estimate by real inter�
polation� For t � � it follows simply from the fact that the rectangles
fp��P � � P � Tg are pairwise disjoint� It remains to prove the weak
type estimate

�
�
���nx �

X
P�T

��P � hf� wp��P �iwp��P ��x� � �
o��� � C kfk� �

�� �

We �x � 
 � and split f into a good function g and a bad function b
as follows� Let E be the set where the maximal function M�

� f is larger
than �� Let fIng

N
n� be the set of maximal dyadic intervals contained

in E� De�ne
bn �� �In �f � �nwpT � �
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where pT is the top of the tree T and �n is chosen so that bn is orthog�
onal to wpT � De�ne b �

PN
n� bn and g � f � b� It su�ces to prove

estimate �
� for g and b separately� Since g is obviously bounded
by Cmin f��M�

� f�x�g� the estimate for g follows from the previously
proved L� estimate�

On the other hand�X
P�T

��P � hbn� wp��P �iwp��P �

is supported on � In� This is because if Ip��P � is larger than � In� then
there is a tile q with Iq � In� q � p��P �� and q � p��PT �� Hence wp��P �
and wpT are multiples of each other on the interval Iq� and therefore
wp��P � and bn are orthogonal�

This proves the weak type estimate for the bad function and thus
�nishes the proof of Hypothesis 
 in the case � 	� �

Now assume � � � Instead of �
�� we prove the dual estimate��� X
P�T

��P � hf� wp��P �iv��P

���
t�
� C kfkt� �

If we replace f by X
P�T

��P � hf� wp��P �iwp��P � �

which by the ideas used in the case � 	�  satis�es��� X
P�T

��P � hf� wp��P �iwp��P �

���
t�
� C kfkt� �

we see that it su�ces to prove��� X
P�T

hf� wp��P �i v��P

���
t�
� C kfkt� �

This in turn follows by the maximal theorem from the pointwise esti�
mate ��� X

P�T

hf� wp��P �i v��P �x�
��� � CM�

� f�x� �

To prove this pointwise estimate� it su�ces to prove

�
�� jfkj � CM�
� f �
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for all k � Z� where

fk ��
X

P�T �jIP j��k

hf� wp��P �iwp��P � �

Fix x � R and k � Z� Let Ik and Ik�� be the dyadic intervals containing
x of length �k and �k�� respectively� Then the functions wp��P � with

I � IP � jIP j � �k are multiples of each other on the interval Ik���
Hence fk is of constant modulus on Ik��� and we have

�
�� jIkj
��� jfk�x�j � C kfkkL��Ik� �

It is easy to see that fk is orthogonal to f�fk on the interval Ik� Hence
the right hand side of �
�� can be estimated by kfkL��I�� This proves
�
�� and completes the veri�cation of Lemma 
�
��


� Veri�cation of Lemma ���	�

Let P� � Q be a set of quartiles as in Hypothesis �� i�e�� P� is a
disjoint union of trees of type �

P� ��
��

T�F

T �

such that the set fp��P � � P � P�g is a set of pairwise disjoint rectangles
and� for each T � F � we have

�
��
���� X

P�T

jhf�� v��P ij
�

jIP j
�IP

�������
�
� �m�s� jIT j �

Here � 	� � and m � Z� De�ne the counting function

N ��
X
T�F

�IT �

We have to estimate the L��norm of the counting function N � Fix � � �
and consider the set

E �� fx � M�
r���f��x� � � ���r� and N�x� � �g �
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for some small constants � � ��m� s�� 
 � and � 
 � to be speci�ed
later� The set E is clearly contained in the set

F ��
n
N�x� �

�

�

o
�

Let I be a maximal dyadic interval contained in F and assume I�E 	�
�� De�ne

NI �
X

T�F �IT�I

�IT �

Then N �NI is constant on I and bounded by �	�� since otherwise the
double of I was also contained in F� a contradiction to the maximality
of I�

We assume the following inequality� which we will prove later

�
��
���nNI�x� �

�

�

o��� � C jIj ���m�s� ����s� inf
x�I

M�
r��� f�x��

r��� �

Since I � E 	� �� the in�mum on the right hand side is bounded by
� ���r� � Moreover it is bounded by 
� since otherwise I was contained
in the set where the maximal function M�

r�
f is larger than 
� and hence

NI � �� which is impossible because I � E 	� ��
Maximizing the expression on the right hand side of the previous

inequality over � gives���nNI�x� �
�

�

o��� � C jIj ���m�s� �r��s��r��� �

Now we pick � smaller than C �m�r� for an appropriate small constant
C� then we have ���nNI�x� �

�

�

o��� � jIj


��
�

Taking unions we obtain

jEj �
jFj


��
�

Now we have

kNk� �

Z �

�

jfN�x� � �gj d�

�

Z
jfM�

r��� f��x� � � ���r�gj d�	

Z
jEj d�

� ��r�
���M�

r��� f�

���r�
r�
	





��

Z ���nN�x� �
�

�

o��� d�
� C ��m kf�kr� 	





�
kNk� �
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This gives the appropriate bound on the counting function� Therefore
it remains to prove �
���

Pick a � � 
 and de�ne

E� �� fx � NI�x� � �g �

De�ne

FI�� �� fT � F � IT � I� IT 	� E�g �

PI�� ��
�

T�FI��

T � NI�� ��
X

T�TI��

�IT �

It is easy to see from the dyadic property of all intervals IP that
kNI��k� � ��

We introduce some measure spaces� The �rst one is the set PI��

endowed with counting measure� The second one� I� is as a set the
abstract disjoint union of the sets IT � T � FI��� where each of the IT is
endowed with Lebesgue measure normalized such that IT has measure

� The third one is FI�� with counting measure� The fourth space is
simply R with Lebesgue measure�

Now we consider functions on the cartesian product of these mea�
sure spaces�

f � R � FI�� � I �PI�� �� R

and de�ne norms on these functions by

kfkp�q�r�s �� k k k kfkLs�PI���kLr�I�kLq�FI���kLp�R� �

De�ne the linear operator S mapping functions on R to functions on
R � FI�� � I �PI�� by

Sf�y� T� x� P � �

�	

	�

hf� wp��P �i

jIP j���
� if y � IT � P � T� and x � IP � IT �

� � otherwise �

Here the condition x � IP � IT means that x is contained in the piece
IT of I and in addition x � IP � where IP is naturally identi�ed with a
subset of this piece IT � We have

kSfk��������
�Z

R

X
T�FI��

�IT �y�



jIT j

Z
IT

X
P�T

jhf� v��P ij
�

jIP j
�IP �x� dx dy

����

�
� X
P�PI��

jhf� v��P ij
�
����

�
��

� C log �
 	 ��� kfk� �
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If � 	� � then the last inequality follows simply from the orthogonality
of the v��P � wp��P �� We postpone the proof of inequality �
�� in the
case � �  to the next section�

Moreover we have for small � 
 �

kSfk����������

�
�Z

R

sup
T�FI���y�IT

� 


jIT j

Z
IT

� X
P�T

jhf� v��P ij
�

jIP j

� �IP �x�
����

dx
�����

dy
���������

�

Using �

� with t � 
 	 � we can bound this by

� C
�Z

R

sup
T�FI���y�IT

� inf
z�IT

M�
��� f�z��

���� dy
���������

� C
�Z

R

�M�
���f�y��

���� dy
���������

� C kfk���� �

The last line followed from the maximal theorem�
Interpolation and H�older�s inequality in the third exponent gives

for a di�erent small �

�
�� kSfkr����s������� � C log �
 	 ��� kfkr��� �

We replace in this inequality f by f �I � which does not change the left
hand side of this inequality� With the assumption �
�� this gives

�Z
R

� X
T�F

��IT �y� �
m�s��s���

��r������s����
dx
����r����

� kN
���s����
I�� kr��� �m�s�

� C log �
 	 ��� kf �Ikr��� �

This gives the weak type estimate

jfx � NI � �gj � jfx � NI�� � �gj

� C ������s���� log �
 	 ��� ��m�s� kf �Ikr����
r���

� C �����s� ��m�s� kf �Ikr����
r��� �
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Since � � 
 was arbitrary and NI takes only integer values� this proves
�
�� and �nishes the veri�cation of Lemma 
����

It remains to prove inequality �
�� in the case � � �

Proof of inequality ���� in the case � � � It su�ces to prove
for all functions f � C��R�

����
��� X
P�PI��

hf� wp��P �i v��P

���
�
� C log �
 	 ��� kfk� �

Namely� this implies by duality��� X
P�PI��

hf� v��P iwp��P �

���
�
� C log �
 	 ��� kfk� �

which implies �
�� by orthogonality of the wp��P ��
We prove ����� Let I be the set of intervals IT with T � FI��� Let

I� be the set of maximal intervals in I with respect to set inclusion�
and de�ne I	 for � � �� � � � � to be the set of maximal intervals in

I n
�
	�
	

I	� �

From the dyadic property of the intervals IT with T � FI�� we conclude
that for every J � I	 � � 
 
� there is a J � � I	�� with J � J �� Since
the counting function NI�� is bounded by �� we conclude that I	 is
empty for � 
 ��

Let P	 be the set of all tiles p � PI�� with Ip � J for some J � I	 �
but Ip 	� J � for all J � � I	��� De�ne ��x� so that the left hand side of
���� is bounded by

��� sup
	

��� 	X
n�

� X
P�Pn

hf� wp��P �iwp��P �

���� ���
�

	
��� X
P�P��x��jIpj����x�

hf� wp��P �iwp��P �

���
�
�

By Rademacher�Menshov� the �rst term in this sum is bounded by
C log ��	
� kfk�� which is the desired estimate for this summand� The
second summand can be estimated by�X

	

��� sup
k

��� X
P�P� �jIpj��k

hf	 � wp��P �iwp��P �

��� ����
�

����
�
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where
f	 ��

X
P�P�

hf� wp��P �iwp��P � �

Since the functions f	 are orthogonal as � varies� it su�ces to prove for
a �xed �

��
�
��� sup

k

��� X
P�P� �jIpj��k

hf� wp��P �iwp��P �

������
�
� C log ��	 
�� kfk� �

We split the set P	 further� Let J be an interval in I	 � By a trivial
splitting of P	 we can assume that all P � P	 satisfy IP � J � Then�
if P � P	 � we necessarily have P � T for some tree T � FI�� with
J � IT � Hence we can �nd a collection of at most � trees T � FI��
such that P	 is contained in the union of these trees� For each tree T
in this collection pick a top frequency � � �T � and let � be the set of
these frequencies�

For each integer k with �k � jJ j consider the collection �k of all
dyadic intervals of length ��k which have nonempty intersection with
�� Call k an exceptional value if if the cardinality of �k�� is larger than
the cardinality of �k��� There are at most �� exceptional values� Pick
a chain of integers k� � k� � k� � � � � � k�� such that all exceptional
values appear in this chain�

We can estimate the left hand side of ��
� by��� sup
m

��� X
p�P� �jIP j��km

hf� wp��P �iwp��P �

��� ���
�

	
��� sup

m
sup

km��
k�km

��� X
p�P� ��km�jIP j��k

hf� wp��P �iwp��P �

��� ���
�
�

Again by Rademacher�Menshov the �rst summand is bounded by
C log ��	 
� kfk��

To estimate the second summand it su�ces by a similar argument
as before to prove for each m

����

��� sup
km��
k�km

��� X
p�P� ��km�jIP j��k

hf� wp��P �iwp��P �

��� ���
�

� C log ��	 
�� kfk� �

If km�� � km � 
� then this estimate is trivial� Therefore assume that
km�� � km � 
�
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We claim that for km�� � k � km we have

X
p�P� ��km�jIP j��k

hf� wp��P �iwp��P �

� �k�k�

X
p�P� ��km�jIP j��

km��

hf� wp��P �iwp��P � �

Here �k�k� denotes the projection onto the subspace of L��R� corre�
sponding to all points in the Walsh phase plane whose frequency coor�
dinate is contained in the union of intervals in �k�k� � where k� � f�� 
g
depends only on � and �� For the de�nition and properties of subspaces
associated to sets in the Walsh phase plane �see �

���

We prove the claim in the case � � 
 and � � �� the other cases
being similar� In this case we have k� � �� Let Fk be the union of all
intervals in �k� To prove inequality ��� we have to show that for all
P � P	 with IP � �k we have �p��P � � Fk�� and �p��P �� � Fk � ��
However it is clear that �p��P � contains a � � �� hence ���P � 
 ���P �
is a dyadic interval of length ��k�� having nonempty intersection with
� and therefore being contained in Fk��� Moreover� �p��P �� � Fk �
�� because k is not exceptional and therefore the two neighbouring
intervals �p��P � and �p��P � can not be both in �k�

Now the claim ��� shows that inequality ���� is a direct con�
sequence of the following Lemma which is a version of a lemma by
Bourgain �see �

���

Lemma � �Bourgain�� Let � � R
� � For each integer k de�ne �k

to be the set of dyadic intervals of length ��k which have nonempty

intersection with �� De�ne �k to be the orthogonal projection onto the

subspace of L��R� associated to the set of all points in the phase plane

whose frequency coordinate is contained in the union of the intervals in

�k� Let k � k� be two integers such that �k and �k� have the same

cardinality� De�ne

M�f�x� �� sup
k
��k�

j��f�x�j �

Then

kM�fk� � C log �����kfk� �
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Proof of Lemma �� Following �
�� we present a series of lemmata
that leads to a proof of Lemma �� The �rst lemma is a version of
Doob�s oscillation lemma for martingales and is obtained by methods
of stopping times and square functions

Lemma 
 �Doob�� Let 
 � r � � and f � Lr�R�� For each dyadic

interval I let mIf denote the mean of f on I� For � 
 � and x � R let

M�x� be the maximal number such that there is an increasing chain of

dyadic intervals x � I� � I� � � � � � IM��x� with

jmIjf �mIj��f j � � �

Then

k�M
���
 kr � Cr kfkr �

For a proof of this Lemma we refer to �
��� With Lemma � we
prove the following lemma due to L epingle �see �����

Lemma � �L epingle�� Let � be small and �� � � p � s � �	 �� � � s�
Let f � Lp�R�� Then

Z
sup

n� JX
j�

jmIjf �mIj��f j
s
���s

� J � N� �

x � I� � I� � � � � � IJ��

op
dx����

� C �s� ���� kfkpp �

Proof� By interpolation it su�ces to prove this for f being the char�
acteristic function of a set A� Using the numbers M�x� de�ned in
Lemma � we can estimate ���� by

Z � �X
n�

��nsM��n�x�
�p�s

dx �

Now an easy calculation shows that this is bounded by

�X
n�

��np ��np�s
Z

���np�s �M
���
��n�x��

�p�s dx �
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By Lemma � this is bounded by

�X
n�

��np�����s� jAj � C
�

�
�




s

�
kfkpp �

This proves Lemma ��

Next� we prove a vector valued version of Lemma ��

Lemma � �L epingle� vector valued�� Consider the Euclidean space Rn

and let f � �f�� � � � � fn� � L��R�Rn �� Let � � s� For � 
 �� x � R let

M�x� denote the minimal number of ��balls necessary to cover the set

fmIfgI dyadic �x�I � Then

��� sup
��

�
�M

��s


�����
�
� C �s� ����

nX
��

kf�k
�
� �

For a proof of this lemma we calculate with p � � in the previous
lemma

k sup
��

��M
��s
 �k��

� C

Z
sup

n� JX
j�

� nX
��

jmIjf� �mIj��f�j
�
�s�����s

�

J � N� � x � I� � I� � � � � � IJ��
o�

dx

� C
nX

��

Z
sup

n� JX
j�

jmIjf� �mIj��f�j
s
���s

�

J � N� � x � I� � I� � � � � � IJ��

o�
dx

� C �s� ����
nX

��

kf�k
�
� �

This proves Lemma ��

Now we proceed to prove Lemma �� By passing to a subset of � if
necessary we can assume that �k and �k� have the same cardinality as
�� We enumerate � as ��� � � � � �n�



The maximal quartile operator ���

Let x � R� We use the following equality� which is an easy result
of Walsh phase plane analysis as in �

�

�kf�x� �
nX

��

mk�f w�	�w�	 �

where w� is the Walsh function of modulus 
 on R associated to the
frequency � and mk�f��x� is the mean of f over the dyadic interval of
length �k which contains x�

Let J be a dyadic interval of length �k� For s � Z pick a minimal
collection Bs�J of �s�balls covering the set

���� f�m�f��x�� � � � �m�fn�x�� � k � � � k�g �

where x � J and the set clearly does not depend on the choice of x�
De�ne the function

G ��
� nX
��

�M��mk�f w�	���
�
����

�

whereM� denotes the dyadic Hardy Littlewood maximal function� The
function G is constant on dyadic inetrvals of length J � and we write GJ

for the value of G on J �
If s is larger that � 	 log�GJ � then the ball of radius �s centered

at the origin covers the set ����� and we pick Bs�J to just consist of
this ball� For each ball B � Bs�J pick a ball B� � Bs���J which has
nonempty intersection with B� Let d�B� � c�B� � c�B��� where c�B�
denotes the center of B� Clearly the length of the vector d�B� is less
than �s��� We write d��B� for the ��th coordinate of d�B��

For each k � � � k� we can �nd balls B��s�J � Bs�J such that for
each x � J � 
 � � � n

m��f w�	��x� ��
X
s�Z

d��B��s�J� �

Then we have

sup
k
��k�

��� nX
��

mk�f w�	�w�	�x�
���

� sup
k
��k�

��� nX
��

X
s�Z

d��B��s�J�w�	�x�
���



��� C� Thiele

�
X
s�Z

max
B�Bs�J

��� nX
��

d��B�w�	�x�
���

� C
X
s�Z

min
n
�sn����

� X
B�Bs�J

��� nX
��

d��B�w�	�x�
��������o �

Hence we obtain

��� sup
k
��k�

��� nX
��

m��f��w�	

��� ���
L��J�

� C
X
s�Z

min
n
�k�� �sn����

� X
B�Bs�J

��� nX
��

d��B�w�	

����
L��J�

����o
�

The functions w�	 restricted to J are pairwise orthogonal for 
 � � � n�
hence we can estimate the previously displayed expression by

� C �k��
X
s�Z

s���log�GJ

min f�s n���� �sjBs�J j
���g

� C
��� Z �GJ

�

min fn����M
���
 g d�

���
L��J�

�

Hence

��� sup
k
��k�

��� nX
��

m��f��w�	

��� ���
L�

� C
��� Z �G

�

min fn����M
���
 g d�

���
�
�

Moreover�

Z �G�x�

�

minfn����M
���
 g d�

� G�x� 	

Z �G�x�

n��
�G�x�

n������sM�x�
��s d�

� G�x� 	 C n������s log �
 	 n� sup
��

�M�x�
��s �

If we pick s such that 
	� � 
	s is log �n 	 
���� then taking the L�

norm in x of the previously displayed expression and using Lemma �
proves Lemma ��
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This completes the proof of Proposition 
�

�� Appendix Interpolation�

So far we have only proved some of the estimates which are claimed
in Theorem 
� Now we prove the remaining estimates by interpolation�

Recall the de�nition of the trilinear form

T�
W � C��R� � C��R� � C��R� �� R �

T�
W �f�� f�� f
� �

X
P�P


p
jIP j

hv��P � f�i hv��P � f�i hv
�P � f
i �

Also recall that for each permutation  of the set f
� �� g we have the
bilinear operator H���

W de�ned byZ
H���
W �f�� f���x� f
�x� dx � T�

W �f������� f������� f����
�� �

Let p�� p�� p
 � R 
 f�g� We say that T�
W is of type �p�� p�� p
� if there

is a permutation  such that

���� � � p����� p����� p��
�
� � �

and there is a constant C such that

���� kH���
W �f� g�kp�

����
� C kfkp����kgkp���� �

for all functions f� g � C��R�� Here p� denotes the conjugate exponent
of p de�ned by




p�
	




p
� 
 �

We claim the following theorem� which implies Theorem 
�

Theorem �� Let � � C��R�� If




p�
	




p�
	




p

� 
 � �




�
�




p�
�



p�
�



p

� 
 �

then T�
W is of type �p�� p�� p
��
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The following diagram shows the plane of all points �
	p�� 
	p��

	p
� with 
	p� 	 
	p� 	 
	p
 � 
�

��� �� �� ��� �� ��

��� �� ��

�
�

�

�
�

�

�
� �

�

�
���

�

�
�

�

�

� �
��

�

�
��

�

�

�

�
�

�
� ���

�

�

�

�
�

�

�
� ��

�

�

�

�
�

�
��

�

�
� �

�

T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
TT

T
T
T
T
T
T
T
T
T
T
T
T
T

T
T
T
T
T
T
T
T
T

T
T
T
TT�

�
�
��

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��

b

d

d dr

t

t t

t

t t

r r

Let A be the open interior of the convex hull of the six large �lled
circles in the above diagram� Theorem � states that T�

W is of type
�p�� p�� p
� for all �
	p�� 
	p�� 
	p
� � A� The closed convex hull B of
the three large empty circles is the region in which condition ���� is
satis�ed for all permutations  and thus the type estimates ���� are
equivalent for all six bilinear operators H���

W � The remainder set A nB
splits into three connected regions D� such that the exponent p� is
negative in the region D� for � � 
� �� � In each of these regions� only
two permutations  satisfy ���� and thus the estimate ���� makes sense
only for the two corresponding bilinear operators H���

W �

Proposition 
 proves the type estimates in each of the three tri�
angles which are spanned by two adjacent large �lled circles and the
adjacent small �lled circle in the above diagram�

Hence Theorem � follows from Proposition 
 and the following
convexity lemma�

Lemma �� Let �
	p�� 
	p�� 
	p
� and �
	q�� 
	q�� 
	q
� be two points

in the region A such that p� � q� for some � � f
� �� g and assume

that T�
W is of type �p�� p�� p
� and of type �q�� q�� q
�� Then T�

W is of

type �u�� u�� u
� for all �
	u�� 
	u�� 
	u
� on the line segment connecting

�
	p�� 
	p�� 
	p
� and �
	q�� 
	q�� 
	q
��

We prove the lemma� The conclusion of the lemma follows im�
mediately by complex interpolation as in ���� if there exists a  such
that type �p�� p�� p
� and type �q�� q�� q
� can be expressed as estimates
for H���

W �i�e�� all p�� q� are in �
���� This is the case if there is a
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� � f
� �� g such that both �
	p�� 
	p�� 
	p
� and �
	q�� 
	q�� 
	q
� are
contained in the region B 
D��

Therefore we can assume that

� 


p�
�



p�
�



p


�

and � 


q�
�



q�
�



q


�
are in di�erent regions D�� Let  and � be permutations such that

kH���
W �f� g�kp�

����
� Cp kfkp����kgkp���� �����

kH���
W �f� g�kq�

����
� Cq kfkq����kgkq���� �����

for all functions f� g � C��R�� By symmetry we can assume that
�
� � ��
�� and then we necessarily have

p���� � q���� �

Let Cp and Cq be the optimal constants in the above estimates�
Pick two di�erent points �
	u�� 
	u�� 
	u
� and �
	v�� 
	v�� 
	v
�

on the line segment connecting the points �
	p�� 
	p�� 
	p
� and �
	q��

	q�� 
	q
� such that �
	u�� 
	u�� 
	u
� and �
	v�� 
	v�� 
	v
� are both
in the open interior of the region B and the distance between �
	p��

	p�� 
	p
� and �
	u�� 
	u�� 
	u
� is smaller than the distance between
the points �
	p�� 
	p�� 
	p
� and �
	v�� 
	v�� 
	v
�� It is easy to see
that such points exist� because �
	p�� 
	p�� 
	p
� and �
	q�� 
	q�� 
	q
�
are in di�erent regions D��

Let f � C��R� be �xed� It is easy to see that there are constants
Cu and Cv� possibly depending on f � such that

kH���
W �f� g�ku�

����
� Cu kfku����kgku���� ����

kH���
W �f� g�kv�

����
� Cv kfkv����kgkv���� ��
�

for all functions g � C��R�� Let Cu and Cv be the best constants
in these inequalities� Assume to get a contradiction that Cv is larger
than Cp and Cq� Then it follows by interpolation as in ��� between the
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estimates ���� and �
� that Cu is smaller than Cv� However� we have
by duality

kH���
W �f� g�ku�

����
� Cu kfku����kgku���� ����

kH���
W �f� g�kv�

����
� Cv kfkv����kgkv���� ���

for all g � C��R�� where the same constants Cu and Cv as above are
optimal� Hence it follows by interpolation between the estimates ��
and ���� that Cv is smaller than Cu or Cq� a contradiction�

Hence Cv is smaller than Cp or Cq� which are independent of f �
Hence T�

W is of type �v�� v�� v
�� and now the Lemma follows by inter�
polation between ���� and �
�� and by interpolation between ���� and
���

This completes the proof of Lemma �� and therefore also the proof
of theorems � and 
�
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Multi�multifractal decomposition

of digraph recursive fractals

Dominique Simpelaere

Abstract� In many situations� both deterministic and probabilistic�
one is interested in measure theory in local behaviours� for example in
local dimensions� local entropies or local Lyapunov exponents� It has
been relevant to study dynamical systems� since the study of multifrac�
tal can be further developped for a large class of measures invariant
under some map� particularly when there exist strange attractors or
repelers �hyperbolic case�� Multifractal refers to a notion of size� which
emphasizes the local variations of the weight of a measure� of the en�
tropy or the Lyapunov exponents� All these notions are explicited in
the case of digraph recursive fractal studied by Edgar � Mauldin where
some questions are given� We study the extremal measures and intro�
duce the notion of multi�multifractality which may be useful in problems
of rigidity�

�� Introduction�

In many situations implicated the dimension of measures� singular
measures are investigated� and more precisely how densely the singu�
larities of a measure are distributed�

Let �X� d� be a compact metric space and � be a Borel probability
measure� The decay rates of the measure � of small balls are determined
in order to de�ne local dimensions� The singularities of the measure �

���
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are speci�ed by

�	� d��x� 
 lim
r��

ln��B�x� r��

ln r
and d��x� 
 lim

r��

ln��B�x� r��

ln r
�

and when d��x� 
 d��x� 
 d��x� � the measure � has pointwise di�
mension d��x�� and it is said that � is exact dimensional �Si	�� �Y� if
for � almost every point x we have d��x� 
 d� 
 constant�

Even for nice measures� it is not expected that this pointwise di�
mension exists or the measure � to be exact dimensional �LM�� �S�� The
singularity sets are then de�ned for any real number � �  by

���

C�� 
 fx � X � d��x� 
 �g �

C�
� 
 fx � X � d��x� 
 �g �

C� 
 C�
� � C

�
� �

which is called the multifractal decomposition�
This concept �rst appeared in a paper of physicists �HJKPS� where

it was suggested to study the so�called dimension spectrum f���� i�e�

��� f��� 
 HD�C�� and f��� � �� � if C� 
 � �

There exist many de�nitions of dimension �F��� �P��� Packing�dimen�
sion� Box�dimension � � � For theoretical purposes the Hausdor� dimen�
sion is prefered� for any Borel set A and any positive real number � �
put

HD����A� 
 inf
A��Ai

jAij��

nX
i��

jAij
�
o

and
HD� �A� 
 lim

���
HD����A� � ����� �

We obtain �nally the Hausdor� dimension �which derives from a mea�
sure� by the following

HD�A� 
 sup f� � HD� �A� 
 ��g 
 inf f� � HD� �A� 
 g �

and the Hausdor� measure of A is the value HDHD�A��A� � ������
We de�ne the dimension of a Borel measure � by

HD��� 
 inf fHD�A� � A a Borel set and ��A� 
 	g �
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In fact it has been found relevant information in a large class of mea�
sures� namely dynamical systems �X��� T � where the map T � X ��
is ergodic and the measure � is T �invariant� The �rst rigorous re�
sult �CLP� was the multifractal analysis of C� one�dimensional Markov
maps� Many articles appeared on this subject� �R� for Cookie�cutters�
�Lo� for hyperbolic Julia sets� �Si	� for Axiom A surface di�eomor�
phisms� Other models have been developped� multiplicative chaos �tree
structure� which is a model of the phase transition of a system with
random interactions in physics and chemistry� in polymers� turbulence�
thermodynamics� rainfall distribution � random measures with �xed
supports �HW� or with random supports �F	�� iterated function sys�
tems �BPS	�� �BPS��� �BMP�� �CM�� �CLP�� �EM�� �K�� �Lo�� �O	�� �O���
�Si	�� There are now many references that may be found in particular
in �P��� especially in the very well�known case of self�similarity for sets
or measures �Mo�� �MR��

One physical motivation is when ergodic�time averages along the
process converge to a measure � �
 limn����	�n�

Pn��
i�� 	T i�x� which

describes the occupation of the attractor under iterations of T � This
measure � is the one that can be seen on the screen when computing
the iterates of a point under the dynamical system� This is the case
for SBR �Sina���Bowen�Ruelle� measures of di�eomorphisms of smooth
Riemannian manifolds which contain a compact hyperbolic attractor
� of T � The limit measure � has absolutely continuous conditional
measures on unstable manifolds �HY�� and the measure � describes the
orbit distribution of points in a basin B � �� Clearly� one sees how
densely the singularities of � are distributied � areas are darker and
darker when there are more and more visits�

Most of the measures in the literature are equilibrium measures �
Gibbs measures � and therefore are very common and typical in physics�
In some cases explicit formulae can be obtained �BPS	�� �BPS��� �R��
�Si	�� and in all the cases the dimension spectrum f is proved to be real
analytic�

A new approach is suggested when looking at the distribution along
orbits� We de�ne for any x � X and any integer q � � the quantity
�GHP�� �HP�� �P	�� �PT��

C�x� q� r� n� 

	

nq
�f�i�� � � � � iq� � d�T

ij �x�� T ik�x�� 
 r

for  	 ij 
 ik 
 ng �



��� D� Simpelaere

If the measure � is ergodic� we have for � allmost every x�

lim
n���

C�x� q� r� n� 


Z
X

��B�y� r��q�� d��y� �

Provided the limit exists� we de�ne the HP spectrum

���

�	� q�Cq�x� 
 lim
r��

lim
n���

lnC�x� q� r� n�

ln r

� a�e�



ln
�Z

X

��B�y� r��q�� d��y�
�

ln r
�

In �O	�� �O��� �P	�� �Si�� this function is generalized to real numbers and
is called the correlation dimension�

C��� 
 lim
r��

ln
�Z

X

��B�y� r��� d��y�
�

ln r
� for all � � R �

provided the limit exists� which is for � 
 	 the average of the singu�
larities of � �Si���

This function can be seen in the following way �order two approach�
suggested by D� Ruelle and described in �P	�� Consider the product
metric space Y 
 X 
X equipped with the metric

d���x�� y��� �x�� y��� 
 d�x�� y�� � d�x�� y��

and de�ne the direct product measure � 
 �
 �� De�ne the diagonal

D 
 f�x� x� � Y g and for r   � Dr 
 fy � Y � d��y�D� 
 rg �

We then obtain

��Dr� 


Z
X

��B�x� r����dx� �

and therefore we have

ln ��Dr�

ln r



ln

Z
X

��B�x� r����dx�

ln r
��
r��

C�	� �

This function C plays an important role in the numerical investigation
of some models and the procedure is simple and runs fast �GHP�� �P	��
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In multifractal analysis there are two methods� the �rst one comes
from the theory of operators �Perron�Froenius� and gives the existence�
uniqueness and regularity of the solution �EM�� The other one is based
on large deviations and thermodynamics� and leads to explicit formulae
�CLP�� �Si	�� The latter is described in the following�

Using large deviations and under suitable assumptions� we have the
multifractal formalism� i�e� the dimension spectrum f is the Legendre�
Fenchel transform of a function F � called free energy function� concave
and at least C�� i�e�

��� f��� 
 inf
t�R
ft �� F �t�g �

where F is derived from a sequence of partition functions fZngn��

��� F ��� 
 lim
n���

�
	

n
lnb���n� Zn��� ��
 Fn���� � for all � � R �

These partition functions are de�ned by the following

��� Zn��� 

X
U�Qn

��U���

��U�� � for all � � R �

where fQngn�� is a well chosen sequence of partitions �typically the
Markov partition fPngn�� generated by the dynamics and the iterates
under T �Bo�� �Ru�� whose diameters tend to  when n goes to �� �for
b�n���� see ��	� and ������

There is another intrinsic free energy function �CLP�� �RU�� �Si	�
associated to the Markov partition fPngn� � de�ned on R

� by �see
Theorem A and �����

��� GD�x� y� 
 lim
n���

	

n
lnG

�n�
D �x� y� � for all �x� y� � R� �

with

G
�n�
D �x� y� 


X
A�Pn

��A�x jAjy � for all �x� y� � R� �

For these thermodynamic quantities it is proved that �O	�� �O��� �Si��

C��� 
 F ��� � 	 � for all � � R �
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and this equality holds if and only if F can be associated to a sequence
of uniform partitions� It is also proved that �CLP�� �Si��

HD��� 
 inf fHD�A� � A a Borel set and ��A� 
 	g 
 d� 
 F ��	� �

The main result in multifractal analysis is the following� f is smooth
�real analytic or C�� and strictly concave on an interval ��min� �min��
R
�	 and is the Legendre�Fenchel transform of a function F of same

regularity� except in the degenerate case where it is de�ned at one point
�this case can be described��

There exist also multifractal decompositions for �Kolmogorov�Si�
na��� entropy and Lyapunov exponents � decompositions into level sets�

For the entropy spectrum� let f�g be a generating partition� i�e�
if B�X� is the Borel algebra� then B�X� 


W
i�� T

�i���� mod �for
example the Markov partition� and �n�x� be the element of the partition
�n at rank n�

�n 

n���
i��

T�i��� �

which contains the point x� Then de�ne local entropy�

��� h��x� 
 h��x� �� T � 
 lim
n���

�
	

n
ln���n�x�� �

provided the limit exists �it exists for � almost every point x in the
ergodic case�� and for � almost every point x� h��x� 
 h� �� is exact
for the entropy in the ergodic case�� the entropy of the dynamical system
�the exact value��

We de�ne the level sets for entropy for any real � �  by

�	� E��� 
 fx � h��x� 
 �g and En��� 
 HD�E���� �

which is the entropy spectrum�
For the local Lyapunov exponent� let M be a smooth manifold�

T � M �� a C� conformal expanding map leaving invariant a compact
subset � of M� Let � be a T �invariant probability measure on �� We
have for any tangent vector

�
v � Tx����

�		� ���x� 
 lim
n���

	

n
ln kdTnx �

�
v �k �

provided the limit exists �it exists � almost everywhere�� and for �
alomost every point x� ��x� 
 ��� the Lyapunov exponent of the dy�
namical system �the exact value��
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We de�ne the level sets for Lyapunov exponents� for any real � � �
consider

�	�� L��� 
 fx � ���x� 
 �g and Ly��� 
 HD�L���� �

which is the Lyapunov spectrum�
We then have the following multifractal decompositions�������������

� 
 fx � h��x� does not existg  fx � h��x� 
 h�gS
�
�h�

fx � h��x� 
 �g �

� 
 fx � ���x� does not existg  fx � ���x� 
 ��gS
�
�	�

fx � ���x� 
 �g �

and the corresponding spectra� Notice that the existence of the exact
values for the di�erent spectra are given by� the Eckmann�Ruelle con�
jecture �BPS	� for dimension� the Shannon�McMillan�Breiman theorem
for entropy and the Kingman theorem for Lyapunov exponents�

Notice that in general we have

HD�fx � X � h��x� does not existg�  

and similarly

HD�fx � X � ���x� does not existg�   �
 dim�X�� �

Our aim is to answer to questions found in �EM�� completness of the
dimension spectrum �and �nally the other spectra�� problems at the
bounds of the interval of de�nition of the spectra� case where the tran�
sition matrix is not irreducible � � �

Results found in �EM� are given in Section �� We �nd again these
results and generalize them in a di�erent framework �Section ��� Then
using notations and results of Section �� let us de�ne the following�

In the case of expanding Markov maps� a map T � C��
��� is
given� and for x � �� J�x� 
 � lnT ��x� 
  �� C
����� The T �
invariant measure � is a Gibbs measure associated to the potential
� � C
��� 
 � Since the set � is compact the functions � and J take
their values in compacts sets �a� b� and �c� d� since there are continuous�

For any real number � we de�ne a Gibbs measure �� associated to
the potential �� 
 � � � F ���J �and ��� are limits when � � �� ��
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Consider

�	�� �min 


Z
	

� d���Z
	

J d���


 ��� and �max 


Z
	

� d���Z
	

J d���


 ��� �

We then have the following results�

Theorem A� For any ��� s� t� � R
 we have

G�s� t� 
 P �s � � tJ� �

F ��� 


h�� � �

Z
	

� d��Z
	

J d��

�

G����F ���� 
  �

and

F ��� 
 ����� �

In the degenerate case the di�erent spectra are reduced to points�
Otherwise we can associate a family of probability measures f��g��R�
and we have the following�

Theorem B� We have in the general case

� C� �
 � if and only if � � ��min� �max� where  
 �min 
 �max 

���

� For all � � ��min� �max� there exists a unique � 
 f ���� � R such

that �� is exact dimensional� and

f��� 
 HD�C�� 
 HD���� 
 d�� 


Z
	

� � d��Z
	

� J d��



h�� �T �

��� �T �
�

� � is exact dimensional � HD��� 
 d� 
 f���	�� where ��	� 

F ��	��
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Theorem C� We have in the general case �

	� For the entropy spectrum ��� and �	� �

� E��� �
 � if and only if � � ��min� �max� where  
 �min 
 �max 

���

� For all � � ��min� �max� there exists a unique � � R such that

� 

R
	
�� d�� 
 h�� ��� is exact dimensional �� and

En��� 
 HD�E���� 
 HD���� 
 d�� 


Z
	

� � d��Z
	

� J d��



h��
���


 f��� �

where � 
 F �����

� � is exact dimensional � for � 
 h� �� 
 	�� we have ��E���� 
 	
and

En��� 
 HD�E�h��� 
 d� 

h�
��

�

�� For the Lyapunov spectrum �		� and �	�� �

� L��� �
 � if and only if � � ��min� �max� where  
 �min 

�max 
 ���

� For all � � ��min� �max� there exists a unique � � R such that

� 

R
	�J d�� 
 ��� ��� is exact dimensional �� and

Ly��� 
 HD�L���� 
 HD���� 
 d�� 


Z
	

� � d��Z
	

� J d��



h��
���


 f��� �

where � 
 F �����

� � is exact dimensional � for � 
 �� �� 
 	�� we have ��L���� 
 	
and

Ly��� 
 HD�L����� 
 d� 

h�
��

�

Theorem D� The extremal measures ��� are uniform on their Can�

tor�like fractal supports�
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In Section � we de�ne the model and the results �theorems 	 and
�� obtained in �EM��

In Section � we give a short exposition concerning the thermody�
namic formalism that we use for our computations in the next sections�

In Section � we �nd again and generalize the results in �EM� by
proving theorems A and B�

Section � deals with the multifractal spectra� entropy and Lya�
punov exponents� which correspond to the level sets �	� and �	��� and
we prove Theorem C�

In Section � we develop a new concept� multi�multifractality� which
allows us to give answers concerning extremal points �the points ����
in a quite simple fashion and we prove Theorem D� In particular we
give some graphs of the functions we have studied�

Section � is devoted to discussion and new questions�

�� The model and the operator theory�

We start from a directed multigraph �V�E� �EM�� The set E 

fe�� � � � � ekg consists of the edges of the graph� and the elements of V 

fu� v� � � � � wg are the vertices� This graph is supposed to be strongly
connected� that means there is a path from any vertex to any other along
the edges of the path �if not we decompose it into connex components��

Now we de�ne notions of length and measure �mass� in order to
compute local dimensions �	��

A path of length k in the graph is a �nite string

� 
 e� e� � � � ek �

of edges� and to each edge e correspond a ratio r�e� � �� 	� �parameter
of a homethety in Rn�� and r��� 
 r�e�� r�e�� � � � r�ek�� The subset Euv�

the edges from u to v� is a partition of E for �u� v� � V �� The set E
�k�
uv

is composed of all the paths of length k that start at u and end at v�

E
�k�
u is the set of paths of length k starting at u� and Eu is the set of

in�nite paths starting at u�

For any vertex u � V � let Ju be a nonempty compact subset of
R
n � Actually we may assume for simplicity that the diameter of the set
jJuj 
 	 for any u � E�

A digraph recursive fractal� based on seed set Ju and ratios r�e��
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is the set

�	�� Ku 

	
k��

� 

��E

�k�
u

J���
�
�

where the sets J��� are choosen recursively�

i� J��u� 
 Ju where �u is the empty path from u to u�

ii� For � of length k with terminal vertex v� the set J��� is geo�
metrically similar to Jv with reduction ratio r����

iii� For � of length k with terminal vertex v� the sets J�� e�� e �
Ev� are nonoverlapping subset of J��� �they intersect at most at their
boundaries� �open set condition ��

There are many choices to place the sets J��e� in J���� and for
example consider the �self�similar graph fractals using similaritiesHe �
R
n �� R

n � one for each edge e � E� De�ne for any � 
 e�e� � � � ek �

E
�k�
uv

J��� 
 He� He� � � �Hek�Jv� �

where the seed set Jv must be choosen such that iii� is satis�ed�
We now de�ne the measure of Markov type �u on Ku recursively�

we start with �u�Ju� 
 	� and the mass is distributed among the subsets
J�e�� e � E� so that J�e� has mass p�e�� Once the mass of a set J��� has
been assigned� then it is distributed among the subsets J�� e� according
to the values of p�e�� With �	�� we get �nally a unique probability
measure depending on the choice of the number ��p�e��e�E� As for the
de�nition of r���� we get p��� 
 p�e�� � � �p�ek� for � 
 e�e� � � � ek�

It implies that p is de�ned on �cylinders � and then by the Kol�
mogorov consistency theorem a unique measure �u on Ku is de�ned�

Let for ��� k� 
 �e�e� � � � ek� the �nite string of length k�

�	��

hu � Eu �� Ku

� ���
	
k��

J��jk�

�representation of the coding sequences of the trajectories� one�to�one
at least on a set of � measure 	 � the points with more than two
representations have no local dimension�� We have � 
 �u � h

��
u where

�u is de�ned on Eu �it is de�ned on the cylinders��



��� D� Simpelaere

Let A be the transition matrix associated to the Markov partition
given by the iterations of the sets Jv� v � E� by the map H which de�
termines the distribution of the J�v e�� e � E� inside J�v� �for example
in the case of �self�similar graph fractals � H is composed of similarities
Hv � Rn �� R

n � for each edge v��
De�ne the matrix B�

Buv��� s� 

X
e�Euv

p�e�� r�e�s � ��� s� � R�

�compare with ���� and the function G
���
D ��� s��� and let ���� s� be the

spectral radius of B� By the Perron�Frobenius theory of nonnegative
matrices� � is real analytic in both variables� and given any real number
�� there exists a unique real number s 
 ���� such that ���� ����� 
 	�
We get in particular HD�Ku� 
 ��� 
 d which is independant of u�

Here are the results obtained in �EM��

Theorem �� The function � is real analytic� strictly decreasing from

�� to �� and convex�

Let for any real number ��

�	�� � 
 �����   and f 
 � �� ���� �

and for � 
 e�e� � � � ek�

	��� 

ln p���

ln r���



ln �p�e�� p�e�� � � �p�ek��

ln �r�e�� r�e�� � � � r�ek��

and �min 
 inff	��� � � is a simple cycleg ��max 
 sup��
Let fxvgv�V be the Perron numbers and consider the pairs

��v� �v�v�V � We have� for all v � V � xv   and for all u � V �X
v�V

X
e�Euv

r�e�d xdv 
 xdu �

for all u � V � X
v�V

X
e�Euv

P �e� 
 	 �

where P �e� 
 ���u p�e�� r�e����� �v� The real numbers �u de�ne a sta�
tionary distribution for the Markov chain� given Xk 
 u� the condi�
tional probability that Xk�� 
 v is

P
e�Euv

P �e��
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These are the transition probabilities for some stationary measure

on Eu� �
���
u � a measure of Markov type de�ned on the cylinders of Eu�

With the map hu it corresponds to a measure �
���
u on Ku�

����u ��� 
 ���u p���� r������� �v and ����u 
 ����u � h��u �

We then have de�ned for all u � V measures �
���
u � � � R� on the sets

Eu by its transition probabilities� and therefore measures �
���
u � � � R�

on the sets Ku� �
���
u 
 �

���
u � h��u �

Consider for any u � V �

�	��

�������
K

���
u 


n
x � Ku � lim

r��

ln�u�B�x� r��

ln r

 �

o
�

E
���
u 


n
� � Eu � lim

k���

ln p��jk�

ln r��jk�

 �

o
�

then E
���
u 
 h��u �K

���
u �� It is proved that we have for f given by �	��

����u �K���
u � 
 ����u �E���

u � 
 	

and
HD�K���

u � 
 HD�E���
u � 
 f 
 HD������ 
 HD������ �

Finally there are two cases for the multifractal analysis�

Theorem ��

i� In the degenerate case � for all �u� v� � V �� for all e � Euv�

p�e� 
 �x��u r�e�xv�
d� Then � is linear and for all � � R� ���� 


d �	� ��� HD�Ku� 
 d 
 d�u and K
���
u �
 � if and only if � 
 d�

ii� In the nondegenerate case � there exists e � Euv� p�e� �

�x��u r�e�xv�

d� Then � is real analytic and strictly convex � � is a

strictly decreasing function of �� i�e� � � R �� ��min� �max� � f is

a strictly concave function of � and K
���
u �
 � if and only if � �

��min� �max��

�� Thermodynamic formalism�

This is a useful theory developped in �Bo�� �Ru�� It allows to trans�
port some problems from the dynamical system ��� �� T �� where T is for
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example a picewise C��
 expanding Markov map �R�� onto a symbolic
dynamical system �!�

A� �� �� by a coding map�

���� Symbolic dynamics�

We introduce Markov partitions to make an analogy with the sym�
bolic dynamical systems� In a sense� we replace small balls in the de��
nition of dimension by small elements of the iterations of this partition
by the expanding Markov map�

Let � be a basic set� a T �invariant compact metric set� A Markov
partition is a �nite cover of � � U� 
 �U�� � � � � Um�� consisting of proper
rectangles �compact sets R such that R 
 int�R�� which satisfy

� int�Ui� � int�Uj� 
 � for i �
 j�

� Each T �Ui� is a union of rectangles Uj �

We can construct Markov partitions of arbitrary small diameter�
We then de�ne the partition at the rank n by

Un 

n���
i��

T�i�U�� �

We associate to this partition the transition matrix A de�ned by

�	�� Ai�j 


�
	 � if T���

o

Uj� �
o

Ui �
 � �

 � otherwise �
	 	 i� j 	 p �

which is irreducible �for all �i� j�� there exists n such that �An�ij  �
you reach any Ui from any Uj��

Consider the subshift of �nite type associated to the matrix A

!�
A 
 fx 
 fxngn�� � f	� � � � �mg

N � Axi xi�� 
 	g �

which is the set of admissible sequences�
We de�ne the metric on !�

A �for  
 � 
 	�

d���x� y� 


�
�k � if k 
 sup fj � xi 
 yi� for all i�  	 i 
 jg �

 � if x 
 y �
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which is a compact set� and the shift ��x� 
 y� where for all n � N �
yn 
 xn���

We then de�ne a continuous �Lipschitz� surjection ��

� � !�
A �� �

x ���
	
j��

T�j�Uxj �

which is one�to�one on the set of points whose trajectories do not in�
tersect the boundaries of the elements of the Markov partition �if not
these points have no local dimension�� a set of � measure 	 when �
is a Gibbs measure� Nevertheless� it is bounded�to�one and satis�es
� � �n 
 Tn � ��

���� Thermodynamics�

Let us de�ne the following sets�

� ConsiderM��� �respectivelyM�!�
A�� the set of Borel probability

measures de�ned on � �respectively M�!�
A���

� LetMT ��� �respectivelyM�!
�
A�� be the set of T �invariant Borel

probability measures on � �respectively ��invariant on !�
A��

� Let C��� �respectively C�!�
A�� be the set of continuous functions

de�ned on � �respectively !�
A� and C


��� �respectively C
�!�
A�� be the

set of 	�H�older continuous functions�

The pressure of a function � � C
��� �respectively � � C
�!�
A��

is de�ned by

�	�� P� 
 PT ��� 
 sup
��MT �	�

�
h��

Z
	

�d�
�

�
 P�� � �� 
 P���� �

and the measures which achieve this supremum are called equilibrium
measures� The entropy h��T � � the Kolmogorov�Sina�� entropy of the
map T � is the following� de�ne the set

B�x� n� r� 
 fy � � � d�T i�x�� T i�y�� 
 r � for  	 i 	 n� 	g �

the set of points that cannot be distinguished from x at the small dis�
tance r after �n� 	� iterations� Then we get for an ergodic T �invariant
probability measure ��

h��T �
� a�s�

 � lim

r��
lim

n���

	

n
ln��B�x� n� r�� �
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which is a nonnegative real number in our case� Notice that the larger
the entropy� the greater the rate of decrease of the indeterminacy of the
dynamical system�

In our case� there exists a unique measure �� �respectively ��� �� 

�	��� which is the Gibbs measure of the potential � �respectively ���
The map � � �!�

A� ��� s� �� ��� ��� T � is an isomorphism of dynamical
systems�

This means that the pullback of any Gibbs measure �� on � is
a Gibbs measure �� on !�

A� Conversely the pushforward of any Gibbs
measure �� on !�

A is a Gibbs measure �� on �� and their thermody�
namic quantities are equal� PT ��� 
 P�� � ��� h���T � 
 h������

The measure �� is well de�ned on the cylinders which generate the
topology of !�

A� There exist nonnegative constants c and C such that

��� c 	
�� fy � !�

A � y� 
 x�� � � � � yn�� 
 xn��g

exp
�
� nP� �

n��X
k��

���k�x��
� 	 C �

uniformly in n�
The pressure function P � C
�!�

A� �� R is real analytic �not true
for arbitrary symbolics�� Consider for ��� �� � C
�!�

A�
�� the map

��	�
Q � R� �� R

�x� y� ��� P �x � � y �� �

It is real analytic in both variables� convex and strictly convex if and
only if the functions � et � are not conjugate to constants c and c�� i�e�
� �
 c� �� � � �� � � C
�!�

A� �respectively � and c���
Let �x���y�� be the Gibbs measure of the function x� � � y� � �

C
�!�
A�� then we have �M�� �Ma�� �MC�� �R�� �Ru�� �Si	�

����

���������
�Q

�x
�x�� y�� 


Z
��
A

� d�x���y�� �

�Q

�y
�x�� y�� 


Z
��
A

� d�x���y�� �
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�� Dimension spectrum and the thermodynamic theory�

���� Idea of the computation�

Consider the Markov partition

Pn 

n���
i��

T�j�P� �

where P 
 �K�� K�� � � � � Kq� �see just below�� The idea for computation
of local dimensions �	� is to replace small balls B�x� r� by elements
V 
 T�n�U� � Pn�U � P� which are in the set Bn

j���n� �see �����

which cover at the limit the singularity set C� for � 
 F ����� Those
elements generate a measure �� �of course singular to each other� which
is ergodic� We use the assumptions on T and ��

� For any V 
 T�n�U� �
 V �U� � Pn there exists an element
y�U� � U such that

����

jV �U�j 
 jT�n�U�j


 j�T�n���y�U��j jU j


 exp
� n��X
j��

J�T j�y�U���
�
jU j�z�
��

�where the sign � expresses that the ratios of both sides are uniformly
bounded by constants�� expression which controls the length of V �U��

� Since the measure � is a Gibbs measure we have following ���

���� ��V �U�� � exp
� n��X
j��

��T j�y�U��
�
�

expression which controls the mass of V �U��

It follows from the Birkho�"s sums and the ergodicity of the dy�
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namical system that

ln��B�x� r��

ln r
�

ln��V �U��

ln jV �U�j

�

	

n

n��X
j��

��T j�y�U���

	

n

n��X
j��

J�T j�y�U���

�� a�s�
��

n���

Z
	

� d��Z
	

J d��


 �


 F ���� �

which gives the existence and the value of the local dimension for points
covered by the sets of the type Bn

j���n� ����� Otherwise it su#ces to
prove for the points which do not have this property that they do not
have local dimension�

Note that it is not always possible to replace balls by elements of
the partition �O���

���� Dimension spectrum�

The Markov measures that are used are in fact a special case of
Gibbs measures� These measures are associated to potentials � depend�
ing only on the �rst coordinate� i�e� ��x� 
 g�x�� for x 
 �xi�i��� For
this purpose� consider the transfer operator

L� � C
�!�
A� �� C
�!�

A�

f ���
X

y����x�

exp ���y� f�y�� �

and the corresponding operator de�ned on measures L	� � M�!�
A� ��

M�!�
A��
Then there exist �see �Ru���
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i� �   �
 exp�P ������

ii� h � C��!�
A� such that h  �

iii� � �M�!�
A��

such that L��h� 
 �h� L	���� 
 � � and �� 
 h � � M�!
�
A�

�d�� 
 h�x�� d�� which is the Gibbs measure for � and can be repre�
sented on the cylinder sets by

����
��fy � !�

A � y� 
 x�� � � � � yn 
 xng


 R�x�� x��R�x�� x�� � � �R�xn��� xn� p�xn� �

where we have

R�xi� xj� 

Aij h�xi� exp ���xi��

�h�xj�

and p is an invariant probability vector�
P

i pi 
 	 and R�p� 
 p�
These equations de�ne all the Markov measures �u and a fortiori

all the measures �u�
We compute the partition functions ��� for any pair �k� s� � N	
R�

Zk�s� 

X

V �U��Pk

��V �U��s 

X
u�E

p�u���

X
��E

�k�
u

p���s �

Let C�s� 
 maxu�E P�X� 
 u�s and for any pair �k�m� of integers� we
have

Zk�s� 

X
u�E

X
��E

�k�
u

p���s P�X� 
 u�s

and
Zm�s� 


X
v�E

X
���E

�m�
v

p����s P�X� 
 v�s �

We then obtain

Zk�s�Zm�s�



X
u�E

X
v�E

X
�������E

�k�
u E

�m�
v

�p��� p�����s �P�X� 
 u�P�X� 
 v��s

	 C�s�Zk�m�s�


 C�s�
X
u�E

X
v�E

X
����E

�k�m�
u

p�����s P�X� 
 u�s �
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where ��� 
 � �� � � 
 u e� � � � ek and �� 
 v e�� � � � e
�
m� Finally we obtain

	

C�s�
Zk�s�

	

C�s�
Zm�s� 	

	

C�s�
Zk�m�s� �

which implies that the sequence fln �Zk�s��C�s�gk�� is subadditive�
and that the sequence flnZk�s��kgk�� converges to a concave function�

Following the same method we prove ��� that for any pair �s� t� of
real numbers the sequence

�
	

k
lnG

�k�
D �s� t� ��

k���
G�s� t� �

where
G
�k�
D �s� t� 


X
u�E

X
��E

�k�
u

p���s P�X� 
 u�s jJ���jt

�we haved assumed that jJuj 
 	 for any u � E��

Framework� The dynamical systems �Ku� �u� H�u�E �respectively
�Eu� �u� ��u�E � may be studied in the same way� De�ne �K� �� T � �re�
spectively �E� �� ��� be one of these sets� where the map T is a picewise
C� expanding Markov map �T 
 H��� for all e � E� T��e 
 He��

The measure � is the Gibbs measure of the potential � � C
�K� 
 
�respectively � � C
�E��� and J 
 � lnT � C
�K� 
  �respectively
J � C
�E��� We have seen that for Markov measures the associated
potentials J and � depends only on the �rst coordinate�

We now prove theorem A�
Assume that P ��� 
 � if not take e� 
 � � P ��� which is cohomol�

ogous to the potential �� which implies the equality �
e� 
 �� 
 ��

From the expressions ���� and ���� there exists for any set V �U� 

T�n�U� � Pn an element y�U� � U � P such that

����

	

n
ln��V �U�� �

	

n

n��X
j��

��T j�y�U��� �

	

n
ln jV �U�j �

	

n

n��X
j��

J�T j�y�U��� �

Since the functions J and � are C
�H�older� they are continuous on the
compact set K and therefore take their values in compact sets �a� b� and
�c� d��
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Consider for any integer i � Z� �a n� b n� 	� �linear scale� the set

���� An
i 
 fV �U� � Pn � ln��V �U�� � �i� i� 	� g �

and for any real number �� the integer i��� n� such thatX
V �U��An

i

��V �U��� 	
X

V �U��An
i���n�

��V �U��� �

Since there is a linear scale we have for any real number ��X
V �U��An

i���n�

��V �U��� 	
X
i

X
V �U��An

i

��V �U���



X

V �U��Pn

��V �U���


 Zn���

	 �b� a�n
X

V �U��An
i���n�

��V �U��� �

We get therefore for any real number � ����

����

	

n
lnZn��� �

	

n
ln
� X
V �U��An

i���n�

��V �U���
�

� �
i��� n�

n
�

ln�An
i���n�

n
�

since the elements of An
i���n� have same mass � exp �i��� n���

Among the elements of An
i���n� we make a new selection for the

length� in order to obtain elements of An
i���n� with same mass and same

length�
Therefore consider in the same way for all integer j � Z� �c n� d n�

	� �linear scale� the set

���� Bn
j 
 fV �U� � An

i���n� � ln jV �U�j � �j� j � 	� g �

For any real number �� de�ne the integer j��� n� such thatX
V �U��Bn

j

��V �U��� 	
X

V �U��Bn
j���n�

��V �U��� �
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We then have for any real number ��X
V �U��Bn

j���n�

��V �U��� 	
X
j

X
V �U��Bn

j

��V �U���



X

V �U��An
i���n�

��V �U���

	 �d� c�n
X

V �U��Bn
j���n�

��V �U��� �

which implies for any real number ��

	

n
ln
� X
V �U��An

i���n�

��V �U���
�
�

	

n
ln
� X
V �U��Bn

j���n�

��V �U���
�
�

Finally we have

���

�
	

n
lnb�n���� Zn��� � �

	

n
lnb�n����

� X
V �U��Bn

j���n�

��V �U���
�

� �
i��� n�

j��� n�
�

ln�Bn
j���n�

j��� n�
�

Notice that the set Bn
j���n� � An

i���n� consists of elements of the partition

Pn with �same measure exp �i ��� n�� and �same length exp �j��� n��

 b�n�����n �in the order �	�n� ln�� where b�n���� is the logarithmic
basis in the expression of the free energy function ����

��	�

�
��V �U�� � exp �i��� n�� �

jV �U�j � exp �j��� n�� �
for all V �U� � Bn

j���n� �

In fact it is the set where the distribution of the mass ��V �U��� of the
function is the largest� and this is where large deviations occur�

The aim is to determine the measures �� whose supports are the
singularity sets C�� We consider for any real number � the following
probability measures

�n��� 

	

�Bn
j���n�

X
V �U��Bn

j���n�

	y�U� and �n��� 

	

n

n��X
j��

T j �n���
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�We remark that a cluster point of the sequence f�n���gn�� is T �inva�
riant��

By our assumptions� the following sequences take their values in
compact sets

	

n
ln�Bn

j���n� � ��d��c� �
i��� n�

n
� �a� b� �

j��� n�

n
� �c� d� � �n��� �M�K� �

Then there exists a sub�sequence fnkgk��� that we note for simplicity
fmgm�� �m 
 m����� such that

����

�����������������������

	

m
ln�Bm

j���m� ��
m���

���� � ��d��c�   �

i���m�

m
��

m���
���� � �a� b� 
  �

j���m�

m
��

m���
� b��� � �c� d� 
  �

�m��� �M�K� ��
m���

�� �MT �K� �

We get �nally with ��� for any real number ��

���� �
	

m
lnb�m���� Zm��� 
 Fm��� ��

m���

�	

b���
����� � � ����� �

where ���� and ����� represent entropies and b��� a Lyapunov expo�
nent�

Consider the functional

I � MT �K�
 R �� R

��� �� ���

h��T � � �

Z
K

� d�Z
K

J d�
�

We have the following fundamental result�
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Lemma � ��Si	��� We have for any real number ��

F ��� 
 inf
��MT �K�

�I��� ��� 
 inf
��MT �K�

� ergodic

�I��� ��� �

The proof is given in three steps �the three following expressions��

	� For all � � R� sup
��MT �K�

� ergodic

��I��� ��� 
 sup
��MT �K�

��I��� ����

�� For all � � R� lim
n���

�Fn��� � sup
��MT �K�

� ergodic

��I��� ����

�� For all � � R� lim
n���

�Fn��� 	 sup
��MT �K�

��I��� ����

The functional I is semicontinuous since the �entropy� map � ���
h��T � is expanding� i�e� two orbits never stay ��close� Its in�mum is
attained since MT �K� is a compact set� Since the ergodic measures are
extremal and form a G
 set in the convex set MT �K�� we have the �rst
equality� The two others are much harder to prove�

For the second step we consider an ergodic Borel probability mea�
sure � �MT �K�� The ergodic theorem implies that for � allmost every
x�

	

n

nX
j��

	T j�x� ��
n���

� �

We know that for � �where � � �� allmost cylinders the ergodic mea�
sure � satis�es� ��Cn�x�� � e�nh��� and jCn�x�j � e�n	���� For the
elements of the Markov partition �which correspond on the dynamical
system to the cylinders� V �U� � Pn� we have

��V �U�� � e�nh��T � and jV �U�j � e�n	��T � �

Using the sets Bj���n� ���� we see that ��	�

�������
i��� n�

n
��

n���

Z
K

� d� 
 �h��T � �

j��� n�

n
��

n���

Z
K

J d� 
 ����T � �
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According the Shannon�McMillan�Breiman theorem �DGS� p� �	� we
de�ne for �   the set

H�����n��� 
 fV �U� � Pn � �n���T �� � 
 j��� n� 
 �n���T � � �g �

for which there exists an integer N such that for any integer n � N �
we get

��H�����n���� � 	�� and �H�����n��� � �	��� exp �n �h��T ����� �

We get therefore for any real number � and any element V �U� �
H�����n����

��V �U��� � exp
�
� n
�Z

K

� d�� �
��

�

��� according to the sign of the real number ��� which gives for any
integer n � 	�

�Fn��� 

	

n
lnb�n���� Zn���

�
	

n
lnb�n����

� X
V �U��H�����n���

��V �U���
�

�
ln�H�����n���Z
K

�J d�� �
� �

Z
K

� d�� �Z
K

�J d�� �

�

h��T � � �

Z
K

� d�� � �Z
K

�J d�� �
�

which implies that

lim
n���

�Fn��� �

h��T � � �

Z
K

� d�Z
K

� J d�

 �I��� �� �

which ends the second step since the ergodic measure � is arbitrary�
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For the third step� using ����� ���� and ����� we compute for any
real number � the following integrals�������������������������

Z
K

J d�m��� 

	

�Bm
j���m�

X
V �U��Bm

j���m�

� 	

m

m��X
j��

J�T j�y�U���� z �
� ln jV �U�j ��
�

�
�

Z
K

� d�m��� 

	

�Bm
j���m�

X
V �U��Bm

j���m�

� 	

m

m��X
j��

��T j�y�U���

� z �
� ln��V �U�� ����

�
�

Using ���� and ���� we have�������
i���m�

m
��

m���
���� 


Z
K

� d�� �

j���m�

m

 �b���m� ��

m���
� b��� 


Z
K

J d�� �

We get �nally for any real number ��

����
	

m
lnb�m���� Zm��� 
 �Fm��� ��

m���

���� � �

Z
K

� d��Z
K

� J d��

�

In this expression we do not know the value ���� which satis�es the
following�

Lemma �� For all � � R� ���� 	 h�� �

This estimate uses a standard argument of Misiurewicz �DGS�
p� 	����

It implies that ���� becomes for any real number ��

�Fm��� 	 ��I���� ��� �

which implies that

�Fm��� 	 sup
��MT �K�

��I��� ��� �
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Remember that the sequence f�Fm���gm�� is a subsequence �����
which implies that

lim
n���

�Fn��� 	 sup
��MT �K�

��I��� ��� �

which ends the third step and the proof of Lemma 	�
By the same way we prove that for any pair �x� y� � R

� we have
����

GD�x� y� 
 P �x � � y J� 
 sup
��MT �K�

�
h��T � �

Z
K

�x � � y J� d�
�
�

This function is real analytic in both variables� and by the way it is
computed we have

���� GD�s� t� 
 ln��s� t� �

Finally de�ne the Gibbs measure �� associated to the potential �� 

� � � F ��� J � We verify that we have for any real number ��

���� P ���� 
 P �� � � F ��� J� 
 sup
��MT �K�

�
h��T � �

Z
K

�� d�
�

  �

It implies that the unique measure which achieves the value  is the
Gibbs measure �� � Replacing this result in the expression of the free
energy function� we obtain

���� F ��� 
 inf
��MT �K�

�h��T � � �

Z
K

� d�Z
K

J d�

�



h�� �T � � �

Z
K

� d��Z
K

J d��

�

for all � � R� Since we have for any real number ��

���� GD��� ����� 
 ln���� ����� 
  
 GD����F ���� �

we have F 
 ��� which ends the proof of Theorem A�

Since the pressure is di�erentiable ����� by di�erentiating the fol�
lowing expression

P �� � � F ��� J� 
  �
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we get for any real number � �����

�P

�x
����F ���� 


Z
K

� d�� 
 

and
�P

�y
����F ���� 


Z
K

J d�� 
  �

We then obtain for any real number ��

���� F ���� 


Z
K

� d��Z
K

J d��

  �

Di�erentiating once more� we obtain for any real number � �M�� �Ma��
�R�� �Si	��

F ����� 


F �����
���P
�y�

�
� �F ����

� ��P

�x�y

�
�
���P
�x�

�
��P
�x

� ����F ���� 	  �

We prove that F �� 
  if and only if the functions � et J are not
cohomologous to constants �Ru� �if not F is linear��

Consider the Legendre�Fenchel transform of F ���� Since F is at
least C� �it is real analytic� and according to the theory of conjugate
functions �E�� we have for the function f and any real number ��

��� f��� � F ��� 
 �� if and only if

�
� 
 F ���� �

� 
 f ���� �

We then obtain ���� for any real number ��

��	� f�F ����� 
 � F ����� F ��� 

h�� �T �

��� �T �



Z
K

�� d��Z
K

J d��


 d�� �

In the degenerate case� the free energy function F is linear � ��� d� ���
	�� and the dimension spectrum f � d 
 d� 
 HD����
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If not the free energy function is strictly increasing and strictly
concave� This implies in particular that the dimension spectrum f is
real analytic on the interval ��min� �max� where

����

�����
�min 
 inf

��R
F ���� 
 lim

����
F ���� �

�max 
 sup
��R

F ���� 
 lim
����

F ���� �

and strictly concave since for any � 
 F ���� � ��min� �max� �

f ����� 

	

F �����

  �

In the expression ���� and the existence of the limit F ���� we have for
any real number �� �� 
 �� � The sets Bn

j���n� from ���� cover at the

limit the singularity set C� where � 
 ���� 
 F ���� �see Section ��	��
We can prove directly �CLP�� �Si	� that f��� 
 HD�C��� Here we

have parametrized all the fractal sets fC����g��R� and we have asso�
ciated to the Gibbs measure � a family of Gibbs measures f��g��R
�respectively � and the family f��g��R� where �� has the potential
� � � F ��� J � C
�K� �respectively � � � F ��� J � C
�E���

Let ��� �respectively ���� be a cluster point of the �� when
� �� �� �respectively � �� ��� � respectively ��� and ��� in
M�E�� It is clear with �	�� that we obtain the extremal points ���
given in ���� and the corresponding singularity sets C��� � Remark that
the way there are given they may be not well de�ned� But in Section �
we see that they are uniquely determined�

We have thus proved Theorem B which contains Theorem � �Sec�
tion ���

Remarks� 	� We have�

� F �� 
 �HD�K� 
 d� f�F ���� 
 sup f��� 
 d�

� F �	� 
 � f�F ��	�� 
 F ��	� and the tangeant of the graph � ���
f��� at the point � 
 F ��	� 
 d� is the line y 
 x� Moreover we have
�� 
 ��

�� For any � � R and � 
 F ���� we have ���C�� 
 	 �therefore
the �� are singular to each other�� the measure �� is exact dimensional
since d�� 
 HD���� 
 f���� The tangent of the graph � ��� f���
at the point � 
 ���� 
 F ���� is the line y 
 � x � F ��� ��	�� The
measure � is also exact dimensional since �� 
 ��
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�� Multifractal spectra of entropy and Lyapunov�

The multifractal spectra of entropy� ��� and �	�� and Lyapunov
exponents� �		� and �	��� are given by the following�

Let us de�ne �there are same values when using the subshift E 

!�
A�

����

�min 
 inf
��R

Z
K

�� d�� 
 ��� �

�max 
 sup
��R

Z
K

�� d�� 
 ��� �

�min 
 inf
��R

Z
K

�J d�� 
 ��� �

�max 
 sup
��R

Z
K

�J d�� 
 ��� �

In the degenerate case for the dimension spectrum� the two spectra are
simultaneously degenerate� hence the functions � and J are cohomol�
ogous to constants� In this situation the two intervals ��min� �max� and
��min� �max� are reduced to points h� and �� �

Otherwise at least one of the two spectra is not degenerate� This
means that at least two of the three spectra �plus dimension spectrum�
are not degenerate� and therefore one of the functions En �	� and Ly
�	�� is real analytic on an open interval�

Proof of Theorem C� Suppose that for some � �� ��min� �max� we
have E��� �
 � �	�� The concentration of the measures �� and �J are
given on E by expansions of the type ����

����
n��X
j��

���j�x�� and
n��X
j��

J��j�x�� �

For any x � E��� we have

�
	

n

n��X
j��

���j�x�� ��
n���

� �
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and for any � � R � ���E���� 
  since � �� ��min� �max� because the last
expression converges toZ

E

�� d�� � ��min� �max� �

We obtain in the same way the following convergence

�
	

n

n��X
j��

J��j�x�� ��
n���

� �� ��min� �max� �

We have on a set $ the existence of local dimension � for all x � $�
d��x� 
 ���� On the other hand we have for any � � R � ���$� 
 
implies E��� � fx � d��x� does not existg� which gives a contradiction�

In fact the sequences in ���� are in the domain of attraction of the
measure �� � and therefore we have

��� �� 

�Z

E

�� d���

Z
E

�J d��

� �


�Z

K

�� d���

Z
K

�J d��

��
�

Then we obtain for � 
 F ���� the spectra �	� and �	��

E��� 
 L��� 
 C�

and
En��� 
 Ly��� 
 HD�C�� 
 f��� 
 d��

which gives Theorem C�

�� Multi	multifractal
 extremal measures and graphs�

In the multifractal analysis of a measure � the supportK is decom�
posed into fractal sets which represent the singularity sets �level sets
for local dimension or other spectra� and of course the sets of points
which do not have local dimension�

The idea for multi�multifractal analysis is to iterate in�nitely this
process and re�ne the decompositions� The interesting case is when
the dimension spectrum is nondegenerate �if not all the spectra are
degenerate and constants�� We introduce multi�multifractal analysis
for dimension� but notice that the constructions for the other spectra
are similar�
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In the nondegenerate case we de�ne a set of Gibbs measures �we
omit the measures ��� since we show that they are uniform on their
supports� and in particular �� 
 �� M���� 
 f��g��R where the sin�
gularity sets C� satisfy for � 
 F �����

���C�� 
 	 and HD�C�� 
 f��� 
 HD���� 
 d�� �

Then multifractal analysis can be represented by the triple ��� F�
M������

In fact it is possible to de�ne many in�nite sequences of multifractal
spectra� Let us describe the second step�

First �x � � Rnf	g and realize the multifractal analysis for the
measure �� � De�ne for ��� �� �MT �K�
 R�

I���� �� 


h��T � � �

Z
K

�� d�Z
K

J d�
and F���� �� 
 inf

��MT �K�
�I���� ��� �

We have the following�

� at the �rst step� � 
 �� �� � � R� F ��� 
 I���� �� �� �� 

�� � F ���J � �� 
 ��� �� f��� 
 d�� for � 
 F �����

� at the second step� �� 
 ��� �� � � R� F���� 
 I������ � ����
�� 
 ��� � F����J � ���� 
 ��� �� f���� 
 d���� 
 HD�C���� for
� 
 F ����� and C��� 
 fx � K � d�� �x� 
 �g� If M����� 
 f����g��R�
we have then de�ned a new triple ��� � F��M�������

We can iterate this construction step by step at any level�
Suppose that multifractal analysis has been de�ned at level n� We

have then for ���� � � � � �n��� � R
n�� a triple

����������n�� � F��������n�� � f���������n����g��R�

and

���������n�� 
 �����			��n��

�� �n � R � F��������n����n�

�� �n � R � ���������n����n � �����			��n����n

�� f��� 
 HD�C��������n����� 
 HD����������n����n� �
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for � 
 F ���������n����n� where we have

C��������n���� 

n
x �

ln���������n���B�x� r��

ln r
��
r��

�
o
�

We have then de�ned a new triple

����������n����n � F��������n����n � f���������n����n��g��R� �

where we omit the two extremal measures ���������n����n����
If at the �rst level the spectrum is nondegenerate� then it is non�

degenerate at any level� We have seen that it is degenerate at the �rst
level if and only if the two potentials � and J are cohomologous to con�
stants� Since at any level it is a linear combination of the functions �
and J it is never degenerate�

Concerning local Lyapunov exponents this is the same behaviour
than for dimension� If the multi�multifractal spectrum is nondegenerate
at the �rst step �J is not cohomologous to a constant�� then it is not
degenerate at any step�

The behaviour for local entropies is di�erent� For example at the
�rst level it may be degenerate �� is cohomologous to a constant�� but
at the second level it may be not since for any real number � �
 	�
�� 
 � � � F ��� J is not cohomologous to a constant� and in fact it is
not at any further level�

We omit at each step the extremal measures ���������n����n��� ob�
tained at the limits when j�j goes to ��� In fact at any level these
measures are uniform on their supports and then imply degenerate spec�
tra�

We will see it on a very simple example on the unit interval� namely
a linear Markov map modeled by the full shift on � symbols�

Let us describe this dynamical system by the following simple
model�

Figure �� The measure � given by p� � � p� 
 	�
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�for example p� 
 �� and p� 
 ���� and

Figure �� The measure � given at the second step �and so on � � � ��

In the computation of the partition functions ���� the di�erent sets
Bn
j���n� that are selected ���� �
 An

j���n� ���� since J is constant� the

partitions are uniform� jV �U�j 
 ��n� when � �� ��� are in fact
the intervals where the distribution of the mass ��V �U�� is the largest�
They are actually the central intervals �	��� 	��� � �n�� 	���	��� ��n��
of measure pn� which covers at the limit the set f	��g� We have then
��� 
 	��� and d��� 
 �

When � �� ��� it is the set of intervals where the distribution
of the mass ��V �U�� is the smallest� In fact we select the sets


n����

k��

�h� k
�n

�
� k � 	

�n

i

h� k � �

�n
�
� k � �

�n

i�
composed of �n intervals of measure pn� � which cover at the limit the
tryadic Cantor set� We obtain therefore that ��� is the uniform mea�
sure on the Cantor set for which the dimension spectrum is degenerate
at the point d��� 
 ln �� ln ��

The multifractal analysis implies the following results�

	� HD�fx � d��x� does not exists g� 
 	� This set contains for
example the set of points obtained by iterations of the boundaries� for
these special points we have

d��x� 
 ��� 
 �
ln p�
ln �

and d��x� 
 ��� 
 �
ln p�
ln �

�

In higher dimension n � �� this set contains iterates of the boundaries of
the Markov partition �countable in dimension 	� and then has Hausdor�
dimension greater or equal to 	 �equal to n in general��
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�� The dimension spectrum is real analytic on the interval �����
���� �

�� For all � � R� �� is exact dimensional and d�� 
 �F �����F ���
where we have

F ��� 
 �
ln �� p�� � p�� �

ln �
and F ���� 
 �

� p�� ln p� � p�� ln p�

�� p�� � p�� � ln �
�

For � 
 	� �� 
 � is exact dimensional�
We see that the extremal measures ��� are uniform measures on

their supports� This phenomenon seems to be general� and it is quite
clear for linear Markov maps equipped with Gibbs measures� The next
step is for subshifts of �nite type where things are more complicated
�case of the digraph recursive fractals� in the nondegenerate case�

We have seen in ���� that for any real number � the set Bn
j���n�

consists of elements of the Markov partition Pn �of �same measure
exp �i��� n�� and �same length exp �j��� n�� � b��� n��n in the order
�	�n� ln� indicates at the step n the distribution of the mass ��V �U���

of the partition function ��� and where the large deviations occur ����
In the order �	�n� ln some small variations for the mass of the

elements of Bn
j���n� occur which imply the multifractality of the measure

�� �multi�multifractality at the second level��
The situation is di�erent for the extremal measures ��� given by

the limits of the measures �� when j�j �� ���
For the measure ��� the elements of Pn which cover at the limit

the set K���� are those which satisfy the following�

 
 ��V �U�� 
 min
V �U��Pn

��V �U�� �

In the same way� for the measure ��� the elements of Pn which cover
at the limit the set K���� are those which satisfy the following

 
 ��V �U�� 
 max
V �U��Pn

��V �U�� �

In our example these sets are respectively the �n intervals of measures
pn� and the central intervals of measures pn� �

Therefore if we want to realize the multi�multifractality analysis of
the measures ��� at the second level� we get for example ������ 

��� and ������ 
 ��� and �nally for any � � R � ����� 
 ���
and ����� 
 ���� This gives Theorem D�
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Here we present the di�erent graphs of the functions we have stud�
ied for the particular values� p� 
 �� and p� 
 ��� Figure �� the
function F � Figure �� the derivative F �� Figure �� the function which
represents the distribution of � ��� d�� � �see ��	�� Figure �� the di�
mension spectrum � � ��� f����

Figure �� The free energy function F � R �� R� � ��� F ����

Figure �� The derivative of the free energy function

F � � R ������� ����� � ��� F �����
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Figure 	� The parametrized dimension spectrum

f� � R ���� 	�� � ��� �F ����� F ����
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Figure 
� The dimension spectrum
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�� Discussion and questions�

We may summarize the di�erents results concerning the measure
�� The measure � is exact dimensional� i�e� d��x� 
 h����� almost
everywhere� although we have the following

HD�fx � d��x� does not existg� 
 n �

For � 
 F ��	� 
 d�� we have ��K���� 
 	 which gives the completness
of the measure�

There are limiting constructions for the K��� when � �� ����
The sets K����� are the supports of the measures ��� which are
uniform on their supports� Therefore their multifractal and multi�
multifractal are reduced to points

d��� 

h���
����

and d��� 

h���
����

�

The disjointness conditions on the sets J��� are those for Markov parti�
tions� i�e� the interiors are disjoints and they intersect at most at their
boundaries which are of measure  for any Gibbs measure� Like for the
example� all the points on the boundaries belong to the set

fx � d��x� does not existg

which is not countable in dimension geater or equal to ��
If the graph is not strongly connected� we analyse all the strongly

connected components of the graph� i�e� if the matrix A �see Section
��	� is not reducible� we decompose it into irreducible components�

To each irreducible component A
�j�
��j�p we associate in the same

fashion as in the digraph recursive fractal sets the singularity sets and
the di�erent dimension spectra which may or not intersect with the
others� For any value � � ��min� �max�� there are at most p di�erent

singularity sets where C
�j�
� 
 fx � d��x� 
 �g �which may be 
 ���

and therefore we de�ne

f��� 
 max
��j�p

HD�C�j�
� � �� �� if all the singularity sets are ��


 max
��j�p

f �j���� �

where f �j� is the dimension spectrum of the measure � restricted to the
set generated by the j�th strongly connected component�
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The result means that we get for any positive real number �� f���

to be the greatest Hausdor� dimension of the singularity sets C
�j�
� �since

we have the following� HD�E  F � 
 max fHD�E��HD�F �g��
We have seen in ���� in the nondegenerate case that F �� 
  �if and

only if the H�older continuous functions � and J are not cohomologous
to constants�� and we get �nally that f �� 
  on ��min� �max� since we
have f ����� 
 	�F ������ Then we have for any real number � � R and
� � ��min� �max� � F

����� 
  and f ����� 
 � and the value  is never
achieved�

The challenging question at this moment comes from the concept of
rigidity and the conjecture that the dimension spectrum is an invariant
for dynamical systems modeled by subshifts of �nite type�

Rigidity deals with an important problem which is to know if we
can restore the dynamics of a dynamical system by recovering infor�
mation from the di�erent spectra� The aim is to obtain a physical
classi�cation of dynamical systems given by maps and Gibbs measures�

Let �X��� T � and �Y� �� S� be two topologically equivalent dynam�
ical systems� i�e� there exists a homeomorphism h � X �� Y� The
problem is to know if some of their multifractal spectra coincide then
they are smoothly equivalent and h is a di�eomorphism� If there exists
a topological conjugacy � between T and S� we want to �nd in all the
class of conjugacies a homeomorphism � preserving the di�erentiable
structure� T 
 S � �� and also measure preserving� � 
 � � ��

This has been proved in �BPS�� in a very particular case� namely
one�dimensional �and two�dimensional� linear Markov maps of �� 	� �or
�� 	��� modeled by the full shift on two symbols �where all the things
work�� We believe that this assertion is true for linear Markov maps of
the unit interval �or �� 	��� modeled by the full shift on p � � symbols�
The generalization of this statement will be for arbitrary subshifts of
�nite type !�

A�
We believe that multifractal dimension spectrum is only needed

to recover information� but if necessary one can use multi�multifractal
analysis�
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On certain Markov processes

attached to exponential

functionals of Brownian motion�

application to Asian options

Catherine Donati�Martin� Raouf Ghomrasni and Marc Yor

Abstract� We obtain a closed formula for the Laplace transform of
the �rst moment of certain exponential functionals of Brownian motion
with drift� which gives the price of Asian options� The proof relies on
an identity in law between the average on ��� t� of a geometric Brownian
motion and the value at time t of a Markov process� for which we can
compute explicitly the resolvent�

�� Introduction�

The aim of this paper is two�fold	

i
 We take up the computation of the value of a continuously aver�
aged Asian option in a Black�Scholes setting� with initial price normal�
ized to �� at maturity date t� and strike k� i�e� E��Aa�b

t � k
�� where

Aa� b
t 

R t
� ds exp �aBs � b s
 and �Bs� s � �
 denotes a one dimen�

sional Brownian motion� The computation of the general price� which
involves r the instantaneous risk�free rate easily reduces to the previous
computation �for details� see ��� p� ��������
�

However� our approach in the present paper is very di�erent from

���
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that in Geman�Yor ���� ���� or Yor ����� which relies very heavily upon
Lamperti�s representation

����
 exp �Bt � � t
  R����A
���
t 
 � t � � �

where A
���
t 

R t
�
ds exp �� �Bs � � s

� and �R����u
�u � �
 denotes a

Bessel process with index ��
In the present paper� rather than relying on ����
� we shall use the

following remark

����
 Aa�b
t

�law�
 exp �aBt � b t


Z t

�

ds exp ���aBs � b s

 �

for any �xed t � �� which is a very particular case of a general identity
in law involving the generalized Ornstein�Uhlenbeck processes discussed
in Section � below�

An important fact is that the right�hand side of ����
 de�nes the

value at time t of a Markov process �Y a�b
t � t � �
� This remark being

made� we write

����
 E ��Aa�b
t � k
��  E ��Y a�b

t � k
�� �

and we develop the right�hand side of ����
 using It�o�Tanaka formula�
It turns out than we can compute explicitly the density of the

resolvent of Y a�b� so that� �nally� we obtain another derivation of the
main results of Geman�Yor �see ���� ����
�

ii
 The second aim of this paper is to present� throughout the text�
a more complete view of the bibliography about exponential functionals
of L�evy processes than in the Monograph ����� the incompleteness of
the bibliography in ���� is the sole responsability of the third author
of the present paper� In particular� we refer to Urbanik ����� ���� for
the study of the law of

R�
� exp ��uXt
 dt for a positive L�evy process X

and to Paulsen ���� and co�authors ������ ���
 for computations of the
laws of randomly discounted integrals

R�
� exp ��Xt
 dPt� where X and

P are two independent L�evy processes�
Concerning the price of Asian options� we also mention the work

of Rogers�Shi ���� which gives interesting lower and upper bounds for
the price�

In a di�erent direction� Leblanc�s work ���� deals with the joint law
of �

exp �Bt � � t
�

Z t

�

exp �BS � � s
 ds�

Z t

�

exp � �Bs � � s
 ds
�
�
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We now hope that� together with the references found in ���� concern�
ing exponential functionals of L�evy processes� this paper o�ers a more
reasonably complete bibliography �than in ����
� Needless to say� any
new omission of relevant work is not intended�

�� On generalized Ornstein�Uhlenbeck processes�

It is a remarkable fact that� if f��t� �t
� t � �g is a two�dimensional
L�evy process with respect to a �ltration �Ft
� then the process de�ned
by

����
 Xt  exp ��t

�
x�

Z t

�

exp ���s�
 d�s
�

is also a Markov process� Cases of particular interest involve indepen�
dent � and �� but this independence hypothesis is not necessary�

Some of these processes have been studied in the literature� The
case where �s  � s and � is a Brownian motion gives the usual Orn�
stein�Uhlenbeck process of parameter �� Hadjiev ��� considers the case
where �s  � s and � is a L�evy process without positive jumps and
determines the distribution of the hitting times for X� Gravereaux ���
studies the case where � is a d�dimensional L�evy process and �s  s h
where h is a linear map on Rd � and looks for the existence of an invariant
measure� We also refer to Jurek ��� for the condition on � insuring the
existence of

R�
� exp �� s
 d�s for � � � and to Jacod ��� for the study of

����
 when the initial condition x is replaced by an anticipating random
variable�

Yor ���� considers the process X for � and � two independent Brow�
nian motions with respective drifts � and � and deduces from Propo�
sition ��� below the law of a subordinated perpetuity� a result already
obtained by Paulsen ���� by a di�erent method�

We also mention the work of de Haan�Karandikar ���� where the
Markov process X appears as the solution of a �SDE� of the form

Xt  As
t Xs � Bs

t � s � t �

for random variables fAs
t � B

s
t � s � tg satisfying compatibility conditions

and certain independence and stationarity properties�
These Markov processes are related to exponential functionals of

L�evy processes via the following	
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Proposition ���� Let � and � be two independent L�evy processes� then

for �xed t�

����


�
exp ��t
� exp ��t


Z t

�

exp���s�
 d�s
�

�law�


�
exp ��t
�

Z t

�

exp��s�
 d�s

�
�

This identity follows from the invariance by time reversal of the
distribution of a L�evy process� We refer to Carmona�Petit�Yor in ����
for applications of this result�

Corollary ���� Consider the L�evy process

�t  ��c t� 	Bt � 
�t � 
�t 
 �

where �
�t � t � �
 are subordinators without drift and L�evy measures

�� � B is a Brownian motion and the processes B� 
�� 
� are inde�

pendent� We denote by ���
 the L�evy exponent of � determined by

E�exp �� �t

  exp ��t���

�
Let

At 

Z t

�

exp ��s
 ds

and

Xt  exp ��t


Z t

�

exp ���s
 ds �

T� denotes an exponential variable of parameter �� independent of ��

i
 The law �� of AT� satis�es

����
 �� 
�

�
L��� � on ����
 �

where L denotes the in�nitesimal generator of the Markov process X�

ii
 In particular� the moments of AT� satisfy

����
 E�Am
T� � 

m

�� ��m

E�Am��

T�
� �

for m � � and ����m
 � ��
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iii
 Finally� if A� � � almost surely� then ��� the law of A��

solves L���  ��

Proof� i
 From Proposition ���� for f � Dom�L
�

E�f�At
�  E�f�Xt
�

 f��
 �E
h Z t

�

Lf�Xs
 ds
i

 f��
 �

Z t

�

E�Lf�As
� ds �

Thus�

E�f�AT�
�  f��
 � �

Z �

�

dt exp ��� t

Z t

�

E�Lf�As
� ds

 f��
 �

Z �

�

dt exp ��� t
E�Lf�At
� 
�

�
E�Lf�AT�
�

proving ����
� as we restrict f to C�K �����

� and use integration by
parts�

ii
 ����
 has already been obtained by Carmona�Petit�Yor in �����
We give another proof relying on ����
�

The generator L of X is given by �see ���� p� ���


Lf�x
 
	�

�
x�f ���x
 �

��	�
�
� c
x� �

�
f ��x


�
Z x

�

f ��u
 ��
�
ln
�x
u

��
du�

Z �

x

f ��u
 ��
�
ln
�u
x

��
du �

where � is the tail of �� �We point out a misprint in the formula given
in ���� p� ��� where the sign minus before the coe�cient of f �� must be
deleted
�

An easy computation shows that if fm�x
 	 xm� m � �� then

Lfm�x
 
�	�
�
m� � cm�

Z �

�

�exp ��mz
� �
 ���dz


�

Z �

�

�exp �mz
� �
 ���dz

�
fm�x
 �mfm���x


 ���m
 fm�x
 �mfm���x
 �
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Thus� from ����
�

E�Am
T� � 

�

�
E�mAm��

T�
� ��m
Am

T� � �

hence
E�Am

T�
� 

m

�� ��m

E�Am��

T�
� �

iii
 It su�ces to multiply both sides of ����
 by � and to let �
converge to ��

�� Application to the computation of the price of Asian op�

tions�

We take up ����
 again� i�e�

E��Aa�b
t � k
��  E��Y a�b

t � k
�� �

where

Y a�b
t �x
  exp �aBt � b t


�
x�

Z t

�

ds exp ���aBs � b s


�

is a Markov process and we write simply Y a�b
t for Y a�b

t ��
� It may
be worth mentioning that these processes come up as an important
example throughout Arnold�s book ����

Proposition ���� The process Y a�b
t �x
 is the solution of the equation

Yt  x� a

Z t

�

dBu Yu �

Z t

�

du
��a�

�
� b

�
Yu � �

�
�
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Proof� This is immediate� using It�o�s formula� and Fubini�s theorem�

By scaling� we may and we shall assume that a��  � and we set

Y�  Y
p
��� �

Theorem ���� We denote by U� the resolvent of the Markov process

Y�� that is

U�f�x
 

Z �

�

exp ��� t
Ex�f�Y��t

� dt �

Then� the resolvent U� admits a density which is given by

u��x� y
 
 
�� � �

�

�
 �� � �


�
����x� �y


��
y

����
exp

�
� �

y

�
���x
���y


� ��x��� �y

��
y

����
exp

�
� �

y

�
���x
���y


�
�����


for x� y � � where

���x
 
� �
x

��������
�
�� � �

�
� � � ��

�

x

�
�����


���x
 
� �
x

��������
!
�� � �

�
� � � ��

�

x

�
�����


with � 
p
�� � �� and � and ! denote the con�uent hypergeometric

functions of �rst and second kind �see Lebedev ���� Section ����
�

Proof� Let f be a bounded function on R� � The function u�x
 	
U�f�x
 solves the di�erential equation ��I � L
u�x
  f�x
 where
L denotes the in�nitesimal generator of Y� � Thus� u is the bounded
solution of

����
 x�
d�

dx�
u�x
 � ��� � �
x� �


d

dx
u�x
� �u�x
 � f�x
  � �

Let us consider the homogeneous equation associated to ����


����
 x� y�� � ��� � �
x� �
 y� � �y  � �
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Then� �� and ��� given by ����
 and ����
 are two independent solutions
of ����
� Moreover� �� is bounded near �� and �� is bounded near
� �����
  �
� Now� we are looking for a solution of ����
 of the form
u�x
  ���x
���x
 � ���x
���x
 with��

�
����x
���x
 � ����x
���x
  � �

����x
�
�
��x
 � ����x
�

�
��x
  �f�x


x�
�

Then�

����x
 
f�x
���x


W ���� ��
�x
x�
� ����x
 

�f�x
���x


W ���� ��
�x
x�
�

where the Wronskian W ���� ��
�x
 is given by

W ���� ��
�x
 
 �� � �


 
�� � �

�

�� �
x

����
exp

� �
x

�

�see ���� ��������
�
� Using the boundary conditions on ��� ��� the
bounded solution of ����
 is given by

����


u�x
 
�Z x

�

f�t
���t


W ���� ��
�t
 t�
dt
�
���x


�
�Z �

x

f�t
���t


W ���� ��
�t
 t�
dt
�
���x
 �

This gives formula ����
�

Corollary ���� Let T� be an exponential time with parameter � inde�

pendent from B� then the density of A
p
���

T�
is given by

����

k��x
  �

 
�� � �

�

�
 �� � �


� �
x

����������

� exp
�
� �

x

�
�
�� � �

�
� � � ��

�

x

�
�

For � � � � �� we have

E��A
p
���

T�
� k
�� 

 
�� � �

�
� �

�
 
��� �

�
� �

�
 �� � �
  

��� �

�

�

� k��������� exp
�
� �

k

�
�
�� � �

�
� �� � � ��

�

k

�
�����
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Proof� �
 From ����
� the distribution of A
p
���

T�
is the same as the

distribution of Y��T�
� that is � u���� y
 dy� Thus� ����
 follows from
����
 and ����
  ��

�
 E��A
p
���

T�
� k
��  �U� fk��
 for fk�x
  �x� k
�� From ����
�

U�fk��
 
 
�� � �

�

�
 �� � �


Z �

k

�t� k

��
t

����������

� exp
�
� �

t

�
�
�� � �

�
� � � ��

�

t

�
dt

and the integral converges for � � � � �� Now� we have the following
relationZ �

k

�t� k

��
t

����������
exp

�
� �

t

�
�
�� � �

�
� � � ��

�

t

�
dt


 
��� �

�
� �

�
 
��� �

�
� �

�k��������� exp�� �

k

�
�
�� � �

�
� �� � � ��

�

k

�
����


�see Lebedev ���� ��� p� ���� and Yor ���� Chapter �� for a probabilistic
proof of this relation
 and ����
 follows�

Remark� �
 Formula ����
 yields the result of Geman and Yor ��� ��
�
since� by scaling�

E
h�
A
���
T�

� �

�x

��i

�

�
E
h�
A
p
���

T���
� �

x

��i
�

�
 We can decompose the right�hand side of ����
 using It�o�Tanaka
formula

E��Yt � k
�� 

Z t

�

dsE
h��a�

�
� b

�
Ys � �

�
�fYs�kg

i
�
�

�
E�Lkt � �

where �Lkt � t � �
 denotes the local time of Y a�b at level k� Thus� the
quantity Ca�b�t� k
 	 E��Yt � k
�� can be decomposed as

Ca�b�t� k
 
�a�
�
� b

�
Ca�b
� �t� k
 � Ca�b

� �t� k
 �
�

�
Ca�b
� �t� k
 �
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where ��������
�������

Ca�b
� �t� k
 

Z t

�

dsE�Ys �fYs�kg� �

Ca�b
� �t� k
 

Z t

�

dsE��fYs�kg� �

Ca�b
� �t� k
  E�Lkt � �

We restrict ourselves to the case a 
p
�� b  � and we delete the

superscripts in C�
From Proposition ���� we can compute the Laplace transformZ �

�

dt exp��� t
Ci�t� k


for i  �� �� �� For i  �� from the occupation density formulaZ t

�

f�Ys
 dhY is 
Z �

�

f�y
Lyt dy �

it follows that

E�LyT� �  � y� u���� y


 �
 
�� � �

�

�
 �� � �


y��������� exp
�
� �

y

�
�
�� � �

�
� � � ��

�

y

�
�

Now�

E�C��T�� k
�



Z �

�

exp ��� t
E��fYt�kg� dt

 U� �fx�kg��



 
�� � �

�

�
 �� � �


Z �

k

��
t

����������
exp

�
� �

t

�
�
�� � �

�
� � � ��

�

t

�
dt �

Now� the following relation holds �see Lebedev ���� ��� p� ����


�����


Z �

k

��
t

����������
exp

�
� �

t

�
�
�� � �

�
� � � ��

�

t

�
dt


�

�� �
k������� exp

�
� �

k

�
�
�� � �

�
� �� � � ��

�

k

�
�
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In the same way�

E�C��T�� k
�


 
�� � �

�

�
 �� � �


Z �

k

t
��
t

����������
exp

�
� �

t

�
�
�� � �

�
� � � ��

�

t

�
dt �

which can be expressed in term of ���� � �
� � �� � � �� �k
 and
���� � �
� � �� � � �� �k
 using the two relations ����
 and �����
�

In terms of con"uent hypergeometric functions� the equality

E�C�T�� k
�  �� � �
E�C��T�� k
� � E�C��T�� k
� �
�

�
E�C��T�� k
�

corresponds to the recurrence relation

�b� a
 ��a� �� b� z
 � �� a� b� z
 ��a� b� z
� a��a� �� b� z
  �

�see ���� �������
�
�

�� Some 	nite dimensional Markov processes�

It was shown in ���� ���� that� for a � �� and b � ��

����
 the variable

Z �

�

ds exp �aBs� b s
 is distributed as
�

a� Z�b�a�
�

where Z� is a gamma variable with parameter �� i�e�

P �Z� � dt
 
dt t��� e�t

 ��

�

However� in ����� the joint law of

nZ �

�

ds exp �aiBs � bi s
 � i  �� �� � � � � n
o
�

for di�erent constants ai� bi could not be obtained�
In this section� using ����
� we can express this law as the invariant

measure of a Markov process� Indeed� we consider jointly the one�

dimensional Markov processes �Y
�i�
t � t � �
 de�ned as

Y
�i�
t 

Z t

�

ds exp ��
�i�
t � ��i�s 
 � t � � �



��� C� DonatiMartin� R� Ghomrasni and M� Yor

where �
�i�
t  aiBt�bi t� and �Bt
 is a one�dimensional Brownian motion�

Of course� these processes are not independent� and jointly� they
constitute a �R�


n�valued Markov process� speci�ed in the following	

Thorem ���� The process Yt � �Y
���
t � � � � � Y

�n�
t 
� t � � is a Markov

process� whose in�nitesimal generator coincides on C������
n
 with

L 
�

�

� nX
i	�

a�i y
�
i

��

�y�i
� �

X
i�j

ai aj yi yj
��

�yi �yj

�

�
nX
i	�

��a�i
�
� bi

�
yi � �

� �

�yi
�

We are now interested in the case where bi � �� for every i� In this
case� since

Y
�i�
t

�law�


Z t

�

ds exp ���i�s 
 �

the vector Yt � �Y
���
t � � � � � Y �n�

t 
 converges in law� towards

U  �U ���� U ���� � � � � U �n�
 �

where U �i� 
R�
�

ds exp ��
�i�
s 
�

Our aim now is to describe �� the joint law of the random vector
U �

Just as in Carmona�Petit�Yor in ����� we note that � is the unique
invariant measure of the Markov process Y � hence� it satis�es	 �L  ��
i�e�

����
 for all f � C�
b ��R�


n
 � h�� Lfi  � �

Let us assume that ��dy
  k�y
 dy� where y denotes the generic ele�
ment in �R�


n� and dy is Lebesgue�s measure on �R�

n�

Now� from ����
� it follows that

�

�

� nX
i	�

a�i
��

�y�i
�y�i k�y

 � �

X
i�j

ai aj
��

�yi �yj
�yi yjk�y



�

�
nX
i	�

��a�i
�
� bi

� �

�yi
�yi k�y

 �

�

�yi
�k �y


  � �

����
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We check that in the case n  �� we recover the result ����
� Indeed�
the density �k�u
� u � �
 of X � cZ� is

k�u
 
c�

 ��
u���
exp

�
� c

u

�
�

where we have denoted c  �a�� and �  � ba��
On the other hand� for n  �� and a�  a� b�  �b� ����
 becomes

����
 �y� k�y

�� � �� � �
 �y k�y

� � c k��y
  � �

and we easily verify that the density k de�ned above solves ����
�

Remark� �
 Unfortunately� except in the case n  �� it does not seem
easy to solve ����
� i�e� to �nd explicitly the density of U � It may be
easier to �nd the Laplace transform � of U � From ����
� we can easily
deduce the equation satis�ed by �� that is

����
 bL��x
  � nX
�

xi

�
��x
 � x � R

n
� �

where

bL 	
�

�

� nX
i	�

a�i y
�
i

��

�y�i
� �

X
i�j

ai aj yi yj
��

�yi �yj

�
�

nX
i	�

�a�i
�
� bi

�
yi

�

�yi

with the boundary conditions ���
  � and limx�� ��x
  ��
For n  �� ����
 is a particular case of Theorem ��� of Paulsen ����

where it is shown that the Laplace transform of a randomly discounted
integral solves an integro�di�erential equation�

�
 For n  �� the Laplace transform of U  �U ���� U ���
 is obtained
in ����� ���� in the two particular cases where

�
 a�  �a�  � and b�  b�  ���
�
 a�  �a�  � and b�  � b�  � �� � �
�
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Harmonic analysis in value

at risk calculations

Claudio Albanese and Luis Seco

Abstract� Value at Risk is a measure of risk exposure of a portfolio
and is de�ned as the maximum possible loss in a certain time frame�
typically ���� days� and within a certain con�dence� typically �	
� Full
valuation of a portfolio under a large number of scenarios is a lengthy
process� To speed it up� one can make use of the total delta vector and
the total gamma matrix of a portfolio and compute a Gaussian integral
over a region bounded by a quadric� We use methods from harmonic
analysis to �nd approximate analytic formulas for the Value at Risk
as a function of time and of the con�dence level� In this framework�
the calculation is reduced to the problem of evaluating linear algebra
invariants such as traces of products of matrices� which arise from a
Feynmann expansion� The use of Fourier transforms is crucial to re�
sum the expansions and to obtain formulas that smoothly interpolate
between low and large con�dence levels� as well as between short and
long time horizons�

�� Introduction�

The notion of Value at Risk �VaR� introduced in the J� P� Morgan
RiskMetrics document �JPM�� captures the risk exposure of a portfolio
in terms of the largest possible loss within a certain con�dence interval�

In the RiskMetrics framework� one deals with portfolios subject
to a number of risk factors whose evolution is a geometric Brownian
motion with a given covariance matrix� The full valuation method

���
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consists of repricing the portfolio under a number of scenarios by calling
all the relevant pricing functions� This procedure is computationally
very intensive� In typical applications with portfolios that consist of
several hundred thousand instruments� not more than a few thousand
scenarios can be priced overnight with current technologies� The small
number of scenarios results in large inaccuracies in the Value at Risk
measurement� The use of rather unsophisticated pricing models can
speed up the calculation but is also at the origin of uncontrollable errors�

An alternative that has been advocated in the RiskMetrics tech�
nical document is to use the quadratic approximation for the portfolio
variation as a function of the underlying risk factors� To obtain this
representation� the knowledge of the total delta vector and of the total
gamma matrix is required� This leads to the problem of evaluating an
integral of the form

���� I��K �

Z
�x�������x��x��K

exp ����x� A x �

for certain vectors � and matrix �� To our knowledge� the problem
of estimating ���� was �rst considered by Ruben �Rub� �in the case of
positive de�nite � and zero �� and then extended by a number of other
authors� see �KJB� and references therein� An asymptotic expansion in
the large con�dence limit has been obtained by Quintanilla �see �Q��

The notion of Value at Risk owes its popularity to the fact that it
captures� with just one parameter of intuitive meaning� the risk expo�
sure of a portfolio� However� the Value at Risk evolves with time and
is subject to stochastic �uctuations which re�ect the evolution of the
risk factors and the evolution of the composition of the portfolio itself�
The sensitivity of the Value at Risk with respect to the dynamics of the
underlying risk factors depends on the relative importance of delta and
gamma risks� To capture this e�ect� it is useful to use dual variables
which give the sensitivity to the total delta and the total gamma risk
of a given portfolio�

In our setting� duality transformations involve Fourier transforms�
After an initial simultaneous diagonalization of the covariance matrix
A and of the total gamma of the portfolio� we reduce the calculation to
an integral of a Gaussian over a high dimensional quadric� This integral
is computed using techniques from harmonic analysis� which reduce all
calculations to the Fourier transform of quadrics� In the case of positive
de�nite Gammas� this reduces to explicit Bessel functions� the general
case is not much more di�cult� The Paley�Wiener theorem guarantees
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that our formulas have adequate computational properties� This re�
sult can be strengthened by deriving analytic formulas which give the
asymptotic behaviour and determine the relevant Fourier transforms up
to smooth multipliers� The moments of these transforms can be com�
puted by means of a technique related to Feynmann diagrams� This
gives rise to matrix invariants such as traces and determinants� which
yield analytic formulas for the Value at Risk as a function of the time
horizon and of the con�dence level� In this context� the use of Fourier
transforms is crucial to resum the expansions and to obtain formulas
that smoothly interpolate between low and large con�dence levels� as
well as between short and long time horizons�

By changing coordinates� the integral in ���� can be reduced to a
convolution of integrals of the same form but with a positive �� In this
case� Fourier transforms give rise to the two following representations�
�rst�

I��K�R � Rn��
� Z �

��

Jn��
�
�R�

pjb�j �G�b�
�� jb�jn�	 db�

� � i

Z �

��

Z �

b� tan�� kvk�

Jn��
�
�R�

pjb�j �F �b�� b�
�� jb�jn�	

� cos ���
q
� b� � �

���b� db�db�� �
for a certain function K�R and for suitable functions G and F � which
arise as Fourier transforms of certain determinant functions� The in�
teger n represents the number of risk factors �or underlyings in the
portfolio under consideration�

In this expression� the �rst term corresponds to the VaR of a per�
fectly ��hedged portfolio� while the second captures the VaR of hedging
imperfections� In fact� we will also obtain a second expression� as an
asymptotic expansion of the form

I��K�R � Rn��
�X
j
�

�

j�

Z �

��

Jn��
�
�R�

pjb�j �
�� jb�jn�	 H�j��b� db� �

for suitable functions H�j�� Each term in this expansion corresponds to
increasing degrees of delta�hedge slippage� It is obtained by expanding
the �rst in powers of the � vector and is convenient in the limit of
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small � or of large time horizon� The functions G�b�� F �b�� b� and
H�j��b� admit an integral representation that allows one to �nd their
asymptotic behaviour at the boundaries of their support� Moreover�
the Fourier transform of these functions can be computed explicitly
and the moments admit an expansion in Feynmann diagrams� This
expansion can be used jointly with the asymptotic analysis to �nd an
approximation scheme to e�ciently interpolate between large and small
values of the arguments based on the knowledge of linear invariants of
the matrix D and the vector v� such as TrDk� kvk and �v�Dkv�

The interest of analytical formulas for VaR of the type presented
in this paper is manifold� and not unrelated to the interest of analytical
expressions for traditional pricing theories� First� they allow for further
analysis and calibration for di�erent portfolio parameters� Second� they
allow for VaR calibration techniques based on historical P�L data�

This article is organized into seven sections� In the next one� we
present the general framework and the main formulas in our analysis�
In the third� fourth and �fth sections� which are rather technical� we
provide all the details that justify our approach and the formulas it
gives rise to� Based on these results� in the sixth section we derive an
e�cient approximation scheme for value at risk calculations� The last
section contains concluding remarks�

�� Value at Risk�

Consider a portfolio of price � consisting of a combination of un�
derlying securities Sj � for j � �� � � � � n� which we assume to be log�
normally distributed with covariance matrix V� The Value at Risk of
the portfolio is de�ned to be the number K such that

���� Prob ����� ��t � K � � �

where � is a small number �typically ���	� and t is a small time window
�i�e�� � day�

In this paper we consider only portfolios that are smooth over
time horizons of interest� This includes most traded securities with
some exceptions as� for instance� barrier options when the price of the
underlying is near the barrier� To apply our methods� a split of the
portfolio into a regular and a singular sub�portfolio is necessary if such
singular securities are present�
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To leading order in time� we approximate the value of the portfolio
by today�s deltas and gammas�

�� � rS� �
� 	�
	S�

� � � � �
	�

	Sn

�
�

and

�� � HessS� �
n 	��

	Si 	Sj

o
�

in the sense that� in the near future t�

���� ��t � ��������S�t�S����

�
�S�t�S�������S�t�S��y �

Our assumption on log�normality means that

S�t � �S��� e
�� � � � � � Sn�� e

�n �

with E � �
�� � � � � 
n a normally distributed random vector�

���� Prob fE � �g � ��n��
Z
�

e��x�m�V���x�m�t dxp
detV

�

Taylor�expanding the exponential� ���� becomes

����

��t � ��� �
nX
i
�

Si���
i
�

�

i �

�

�

�i

�
�

�

�

X
i�j

Si��Sj�� 
i 
j �
i�j
� �O�jEj�

� ��� � � �E �
�

�
E � � �Et �

where

���	 �i � Si�� ��i
� � �i�j �

�
Si��Sj�� �

i�j
� � if i �� j �

S�i �� �
i�i
� ��i � if i � j �

According to this approximation� the Value at Risk K of the portfolio
���� can be approximated by the number K � such that

Prob
n
� �E �

�

�
E � � �Et � �K �

o
� � �
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which� using ����� becomes

��n��
Z
x��������x�xy��K�

e��x�m�V���x�m�t dxp
detV

� � �

or

��n��
Z
x���������x�xy�K��

e�xV
��xt dxp

detV
� � �

for

�� � ��m� �

K �� � �K � �m ��� �

�
m�mt �

Hence� the goal of this paper is to produce an e�cient scheme to com�
pute multidimensional integrals of the type

���  I��K �

Z
x���������x��x��K

e���x�Ax� dx �

Here� A is a symmetric positive de�nite matrix� while � is just symmet�
ric� We shall assume that � is non�singular as this is the generic case�
the singular case can be reduced to this� plus explicit erf terms�

�� Diagonalizations�

Lemma �� We have that

p
det A I��K � ��

s
det
� A

j�j
�
I�K �

where

I�K �

Z
jx�j��jx�j��K

e����x�v��D�x�v�� dx �

with K� v and D de�ned below�

Proof� The matrices A and � are as follows� A is symmetric positive
de�nite� with diagonal form given by

A � Q�� M Q �
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where Q is orthogonal and

M �

�� a�
� � �

an

	A �

We have that
�x� A x � �Q x� M Q x �

� is symmetric non�singular� The matrix and the vector

�� � M ���� Q �Q�� M ���� � �� � M ���� Q�� � �

are such that

�x��x � �M ��� Q x��� M ��� Qx � � � x � �� M ��� Q x �

In terms of these matrices� the integral in ���  is given by

I��K �
�p
detA

Z
��x�������x���x��K

exp ��� kxk� dx �

Let S be the orthogonal transformation which diagonalizes ��� i�e�

�� � S��L S

and let ���� D be such that

�x� x � �
p
jLj Sx� D

p
jLj Sx � �� � x � ���

p
jLj Sx �

i�e�

D � jLj�� � ��� � jLj���� S���� � jLj���� S��M ���� Q�� � �

We have that

I��K �
�p
det�

Z
����x��x��L�jLj�x��K

exp ��� �x� D x dx �

Setting

v �
�

�

L

jLj �
�� � K � K � �v� v � ���v �
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and shifting coordinates� we arrive at an integral of the form

I��K �
�p
det�

Z
jx�j��jx�j��K

exp ��� �x� v� D �x � v dx �

where the vector x � �x�� x� is split into the components along the
eigenspaces of L�jL j�

�� The positive de�nite case�

The goal is to compute the integral

���� I�R� �

Z
jxj��R�

e���x�v�D�x�v�
t

dx �

when D is an d � d positive de�nite matrix� We denote its �positive
diagonal elements by �j � j � �� � � � � d�

The expansion of the Bessel function

Jd���� z

jzjd�� cos ��w �
X
k�j

ak�j z
�k w�j �

has coe�cients

ak�j �
���k�j ��j

k� �� j� �
�
k � � �

d

�

� �

Note that we haveX
k�j

jak�jj z�k w�j �
Id���� z

jzjd�� cosh ��w �

where In�� denotes the modi�ed Bessel function� We will also need the
related hypergometric functions

B�z� w �
X
k�j

jak�jj zk wj �
Zd���� z

jzjd�	 C��w �

where

Zd���� z �

�
Id���

p
� z  � if z  � �

Jd���
p
� jzj  � if z � � �

C�� z �
�

cosh ��
p
z if z  � �

cos ��
pjzj if z � � �
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and eB�z� w �X
k�j

jak�j��j zk wj �
Zd���� z

jzj d�
C��w� �

w
�

The only property we will use for these functions is that they are
bounded for negative arguments and grow at most exponentially for
positive arguments�

Lemma �� De�ne

N��� � � �� i � D � i � D ��� vt v D ��� �

f��� � �

Z
Rd

e���N������
t

d� � �detN��� ����� �����

We have

I�R� � �d��
X
k�j
�

Rn��k �� ik�j akj
	k

	�k





�
�

	j

	�j





�
�

f��� � �

The Fourier transform of the characteristic function of a ball is a
Bessel function� Therefore� using Parseval�s identity� in dimension n we
have

I�R� �

Z
jxj�R

e���x�v�D�x�v�
t

dx

� Rd

Z
Rd

Jd�����R j�j
jR�jd�� e�����D

�� �� cos ��� � � v d�p
det� D

�
�X
k�j

Rd��k �k�j akj

Z
Rd

j�j�k �� � v�j e��� D�� � d�p
det� D

�

Since
�v � �� � �t vt v � �

we have thatZ
Rd

j�j�k �� � v�j e��� D�� � d�

� ��i�k�j 	k

	�k





�
�

	j

	�j





�
�

Z
e����D

���i��i�vtv�� d�

� �d�� ik�j
	k

	�k





�
�

	j

	�j





�
�

�det �D �� � i �� i � vt v���� �
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The function f is smooth since the real part of N is positive� f can easily
be computed using the following elementary result in linear algebra�

Lemma �� Let �j  � be the eigenvalues of D � for j � �� � � � � d� and
v � Rd � Then� for �� � � C we have

det �� � � D � � D ��� vt v D ��� �
� dY
j
�

�� � ��j
��

� �
dX

j
�

� �j jvj j�
� � ��j

�
�

Proof� For w � Rd � we have

det ��� wt w � � � jwj��

This follows simply by rotating v with a unitary U so it is of the form
�jwj� �� � � � � �� for which the claim is obvious�

We �nd

det ��� � D � � D ��� vt v D ���

� det ��� � D  det ��� � ��� � D ���� D ��� vt v D ��� ��� � D ����

�
� dY
j
�

�� � ��j
��

� �
dX

j
�

� �jjvj j�
�� � ��j

�
�

Lemma �� The function f��� � can be extended as an analytic func�

tion to the domain

Q � f��� � � C � � Im�max�j � Im� vD vt � �g �

Proof� Modify ���� to

���� f��� � �

Z
Rd

exp ��� � � ��� i � D � i � D ��� vt v D ��� � �t d� �

for complex � and �� Since

� D �t � j�j� max
j

�j � � D ��� vt v D ��� �t � j�j��v D vt �

we see that the integral de�ning f in ���� is absolutely convergent for
all � and � in Q�
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Lemma ��

jf��� �j � jRe�j��d����� �det D ���� �jRe�j� jRe �j jvj����� �

where ��� � � D�

Proof� Let A and B be positive de�nite matrices�Z
Rd

e���A �
t

e�i�B �
t

d� �
e�id�	p
det �A B 

Z
Rd

e���A
�� �t e�i�B

���t d� �

Hence�

����




 Z
Rd

e���A�
t

e�i�B�
t

d�



 � �det�A B ����

Z
Rd

e���A
�� �t dx

� �det B ���� �

We apply this to ���� with

A � �� �Im� D � �Im� vt v �

B � � D � t vt v �

� � Re� � t � Re � �

to obtain

jf��� �j � �det �j�j D � jtj vt v D ����

� j�j�d�� �det D ���� det
�
� �

jtj
j�j v

t v
�����

�

We use Lemma � to compute the last determinant above and conclude
that

jf��� �j � j�j�d�� �det D ����
�
� �

jtj
j�j jvj

�
�����

�

as claimed�

It can easily be seen using stationary phase estimates that the
bound in the lemma above is sharp� An immediate consequence of this
result is that the function f is integrable in � but not in ��
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Lemma 	� Fix constants T � kD k�� � and U � V such that U kD k �
V v D vt � �� then�Z �

��

jf���i T� �j d� �	 �

Z �

��

Z �

��




	f
	�

���i U� t�i V 



 d� dt �	 �

Proof� It is enough to establish the integrability of f and f� at in�nity�
since they are bounded inside D� Thus the �rst bound follows from
Lemma 	� For the second� just note that by Lemma � the determinant
function is linear in �� Hence�

���	

	f

	�
� � i

�
f���� �

dY
j
�

�� � i � �j
dX

j
�

�j jvj j�
� � i � �j

�
i

�

dY
j
�

�� � i � �j
����

dX
j
�

�j jvj j�
� � i � �j�

� � i �
dX

j
�

�j jvj j�
� � i � �j

���� �

Therefore�




	f
	�




 � jf j� v D vt

�min j� � i � �jj
dY

j
�

j� � i � �jj

� �

�
jf j� vDvtmax j� � i � �jjd��

� v D vt

� �detD���
max j� � i � �jjd��

j�j��d����� �j�j� jtj jvj���� �

which is clearly integrable at in�nity�

Our next target is to rewrite Lemma � using the Fourier transform
of f � De�ne

F �b�� b� � Z
R�

e���i�b���
b��� 	f

	�
��� � d�d� �

G�b� � Z
R

e���ib�� f��� � d� �
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Both are well de�ned due to Lemma  �

Lemma 
 �Paley�Wiener� Let �  ��

jF �b�� b�j � C	 e
����c�jb�j�c�jb�j� � jG�b�j � C	 e

����c�jb�j� �

where

c� �

� kDk�� � � � if b� � � �

arbitrarily large � if b�  � �

c� �

�
v D vt � � � if b� � � �

arbitrarily large � if b�  � �

Proof� Let �� � � Q� with � � �� � i �� and � � �� � i ��� By
Cauchy�s formula�

F �b�� b� � Z ���i��

���i��

Z ���i��

���i��

e���i��b���
b�� 	f

	�
��� � d�d�

� e����� b����
b��

Z ��

��

Z ��

��

e���i���b����
b��

� 	f
	�

��� � i ��� �� � i �� d�� d�� �

Therefore�

jF �b�� b�j � e����� b����
b��

Z
R�




	f
	�

��� � i ��� �� � i ��



 d�� d�� �

If b� � �� we use Lemma  � with any � � �� � kDk��� If b�  �� we
can use the previous argument with any negative ��� Same thing for
�� Same thing for G�

Lemma �� G�b� � � when b� � �� Also�

���  G�b� � ��� b�d����p
det D

Z
n�Sd��

exp ��� b� �n� D��n d� � b� � � �

where d� denotes the usual surface measure on Sd���
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Proof� First G� Let � � C�
�

I 

Z
R

G�b���b� db�
�

Z
R

Z
R

e���i�b� f��� � d�db�
�

Z
R

Z
R

Z
Rd

e��j�j
�

e���i�b� e��i��D�
t

��b� d� d� db�
�

Z
R

Z
Rd

e��j�j
�

e��i��D�
t b��� d� d�

�

Z
Rd

e��j�j
�

�
�
� �

�
� D �t

�
d� �

The substitution 
 � � D ��� leads to

I �
�p
det D

Z
e�����D

���� �
�
� �

�
j
j�

�
d


�
�p
det D

Z �

�

Z
n�Sd��

do�n e��r
��n�D��n� �

�
� �

�
r�
�
rd�� dr �

By substituting r with � � r���� we �nd that

I �
�p
det D

Z �

�

Z
Sd��

e�����n�D
��
n� ���b� �� b��d����� d��n db�p

� b� �

Let us introduce the polar coordinate in the �b�� b� plane
b� �

qb�� � b�� � b� � � � tan��
� b�b�� �

where the arc�tangent is taken with values in ������ ��� and the angleb� is de�ned with a shift of � to keep notation simple in what follows�

Lemma �� The function F �b�� b� has support in the sector

� � b� � tan�� kvk� �
Inside this sector� we have that

���  F �b�� b� � � �� ip
det D

b� d �� cos b�d��s tan b�
kvk� � tan b� m�b�� b� �
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where

���! m�b�� b� � Z
�
b�

e���b
 cos
b��n�D��n� d��

b�

�

�
b�
is the sphere

���" �
b�
�
�
n � knk� � � and v � n �

p
tan b� � �

and d��
b�
is the surface measure on ���

Proof� Denote w �
p
D v�

I 

ZZ

F �b�� b���b�� b� db�db�
� �� i

Z
�� � w�e��j��j e���i��b���b�� e��i���D��wtw��t

� ��b�� b� db�db� d�d� d�
� �� i

Z
�� � w�e��j��j e��i���D��wtw��t b���� � d�d� d�

� �� i
Z
�� � w� e��j��j �

�
� �

�
� D �t ���

�
�w � ��

�
d�

In terms of the new coordinate 
 � � D ��� � we �nd that

I � � � ip
det D

Z
Rd

�v � 
� e�����D�����
�
� �

�

����

�
�v � 
�

�
� � � ip

det D

Z �

�

dr

Z
n�Sd��

d��n rd�� �v � n� e��r��n�D��n�

� �
�
� �

�
r����

�
r� �v � n�

�
�

In polar coordinates�

b� �
�

�
r�
p
� � �v � n� � b� � tan���v � n� �

and the function
��b�� b� � ��b��b�� b�� b��b�� b� �
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We have that

I � � � ip
det D

Z �

�

dr

Z
n�Sd��

d��n rd�� �v � n� e��r��n�D��n�

� ��b�� tan���v � n� �
The unit sphere Sd�� � fn � jnj� � �g intersects the plane of equation

v � n �
p

tan b� on a codimension � sphere �
b�� �which might degenerate

to a point or be empty� The points of �
b� have the form

n �
p
tan b� v

jvj� � � �

with

� � v � � �

Hence� the radius is s�
�� tan b�

kvk�
�
�
�

and the �d� ��dimensional volume of such set is

��d����

�d� � �
�d
�
� �
� ��� tan b�

kvk�
�d����
�

�

The co�area formula �see Chavel �Cha� for spheres reads as follows

Z
n�Sd��

f�n d�d�� �

Z �

��

Z
n�v�
t

n�Sd��

f�n dAt
dtp
�� t�

� v� � Sd�� �

where dAt is the �d � ��dimensional surface measure on that sphere�
In our context� v� � v�kvk and this formula implies that

Z
n�Sd��

f�n d�d�� �

Z kvk

�

d
p
tan b�q

kvk� � tan b�
Z
�
b�

f�n d��
b�

�
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Thus�

I � � �ip
det D

Z �

�

dr rd��
Z kvk

�

tan b� d
p
tan b�q

kvk� � tan b�
� ��b�� b� Z

n��
b�

e��r
��n�D��n� d�

b�

� � � ip
det D

Z �

�

db�Z kvk

�

d
p
tan b�q

kvk� � tan b�
� �� b� cos b�d�� tan b�m�b�� b���b�� b�

� � �ip
det D

Z �

�

db�Z tan�� kvk�

�

db� �� b� cos b�d��ptan b�
cos� b�qkvk� � tan b�

�m�b�� b���b�� b� �
where m�b�� b� is the function de�ned in the statement of the lemma�
Since

I �

Z �

�

Z �

��

F �b�� b���b�� b� b� db�db� �
we conclude that F is supported on the sector

suppF � f�b�� b� � jb�j � tan�� kvk�g �
and

F �b�� b� � � �� ip
det D

b� d �� cos b�d��s tan b�
kvk� � tan b� m�b�� b� �

Lemma ���

I�R� � Rd��
�Z �

��

db� Jd����R�
pjb�j G�b�

�� jb�jd�	
� � i

Z �

��

db� Z �

b� tan�� kvk�
db� Jd����R�

pjb�j F �b�� b�
�� jb�jd�	

� cos ���
q
� b�� �

���b�
�
�
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Proof� Lemma ! allows us to continue Lemma � as

I�R� � �d��
X
k

Rd��k �� ik ak��

Z
R

��� i b�kG�b� db�
� �d��

X
k�j

Rd��k �� ik�j�� ak�j��

�
Z
R�

��� i b�k ��� i b�j F �b�� b� db�db� �
� �d��

Z
R

X
k

Rd��k �����k ak�� b�k G�b� db�
� �d��

Z
R�

X
k�j

Rd��k �����k�j�� ak�j�� b�k b�j F �b�� b� db�db�
� Rd �d��

Z
R

X
k

���R� �� b�k ak�� F �b�� b� db�
�Rd �d��

Z
R�

X
k�j

���R� �� b�k ����� b�j ak�j�� F �b�� b� db�db�
� Rd �d��

Z
R

X
k��

��R� �� b�k jak��jG�b� db�
�Rd �d��

Z
R�

X
k�j

��R� �� b�k ���� b�j jak�j��jF �b�� b� db�db� �
� Rd �d��

�Z
R

Z��R� �� b�G�b� db�
�

Z
R�

eB��R� �� b�� ��� b�F �b�� b� db�db��
and the last integral converges unconditionally due to the growth prop�
erties of B� in conjunction with Lemma !�

Lemma ��� We have that

I�R� � Rd��
�X
j
�

�

j�

Z �

��

Jd����R�
p
jb�j

�� jb�jd�	 H�j��b� db� �
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where

H�j��b� � ����j ��� b��d�j�����p
det D

�
Z
n�Sd��

�n � vj exp ��� b� �n� D��n d��n �

with b� � ��

Proof� We have that

H�j��b� � i ��j�� ��j��
Z �

b� tan�� kvk�
db� F �b�� b� b�j�� �

Hence

Ij 

Z �

��

db�H�j��b���b� � ����j
Z

d� �� �w�j e��j��j �
�
� �

�
� D �t

�
�

where w �
p
D v� Proceeding as in the proof of Lemma ��� we make

the substitution 
 �
p
D � and obtain

Ij �
����jp
det D

Z
�
 � vj e�����D���� �

�
� �

�
j
j�

�
d


�
����jp
det D

Z �

�

rj�d�� dr

Z
n�Sd��

d��n �n � vj

� e��r��n�D��n� �
�
� �

�
r�
�
�

By substituting r with � � r���� we �nd that

Ij �
����jp
det D

Z �

�

Z
Sd��

�n � vje�����n�D��n�

� ���b� �� b��j�d����� db�p
� b� d��n �
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�� The hyperbolic case�

The hyperbolic case can be reduced to the positive de�nite case�
via spherical convolutions�

We will use the following elementary identities

d

dr

Z
jxj�r

f�x dx �

Z
jxj
r

f�� d� �

andZZ
jxj��jyj��R

��x� y dx dy �

Z �

�

Z
jyj
r

Z
jxj�R�r�

��x� y dx d��y dr �

We apply these identities to I with the notation of Lemma � �namely
n � n� � n�� to obtain

I�K �

Z
jx�v�j��jy�v�j��K

e��x�D�x���y�D�y�

�

Z �

�

Z
jy�v�j�
r�

e��y�D�y�
Z
jx�v�j��r��K

e��x�D�x� dx d��y dr

�

Z �

�

I��r
� �K

	

	r
I��r

� dr �

�	��

Here� the integrals I� and I� are both of the positive de�nite type�
with matrices D � and D � respectively� and o�set vectors v� and v��
in dimension n� and n�� We can therefore deal with the methods in
the preceeding section� In particular� let H

�j�
� �b� and H

�j�
� �b� be the

functions associated to the integrals I� and I�� respectively� and let

Hi�b� � �X
j
�

�

j�
H

�j�
i �b� �

where i � �� �� so that

Ii�R
� � Rni��

Z �

��

Jn������R
p
jb�j

�� jb�jni�	 H�b� db� �
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Equation �	�� then implies that

I�K �

Z �

�

I��r
� �K

	

	r
I��r dr

�

Z �

�

ZZ
R��

�r� �Kn��	
Jn������

p
�r� �K jb��j 

�� jb��jn��	 �� jb��jn��	
� 	r�rn��� Jn������ r

p
jb��j H�b��H��b�� db�� db��

� ��n�	
Z

#�b��� b��H��b��H��b�� db�� db�� �
where

#�b��� b�� � Z �

�

�r� �Kn��	
Jn������

p
�r� �K jb��j 

jb��jn��	 jb��jn��	
� 	r�rn��� Jn������ r

p
jb��j  �

	� Feynmann expansion for moments�

It will su�ce to consider the positive de�nite case� To compute
the functions H�j��b� one can make use of the following ans$atze which
satisfy the asymptotic properties of the exact functions

� �� H�j��b� � ��� b�d����P �j��b� e�mb� �

where m � �� inf ��D�� and the P �j��b� are polynomials of the form

� �� P �j��b� � nX
k
�

c
�j�
k b�j �

To estimate the coe�cients in the polynomials� one can match moments�

Let

B � i � D � i � kvk� D ��� Pv D ��� �
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To compute the determinant det �� � B � we can use a Feynmann ex�
pansion�

� ��

det�� � B  � exp �Tr log �� � B 

� exp �Tr
�X
k
�

���k��
k

B k 

� exp
� �X
k
�

���k��
k

Tr B k
�

�
�X
n
�

�

n�

� �X
k
�

���k��
k

Tr B k
�n

� � � Tr B �
�
� �

�
Tr B � �

�

�
�Tr B �

�
�

�
��
�
Tr B � � �Tr B �Tr B � �

�

�
�Tr B �

�
�
�
� �

�
Tr B 	 �

�

�
�Tr B �� � �Tr B Tr B �

� �

�
�Tr B � Tr B � �

�

�
�Tr B 

�
� � � �

Traces of powers of B are given by

� �� Tr �B k  � ik
� �v� D kv

kvk� ���� � kvk�k � �k � �k Tr D k
�
�

where we use the fact that the projection operator Pv is nilpotent�
Here are some moments computed by means of this formulaZ

db�H����b� � � �

Z
db� b�H����b� � ��

�
Tr D �

Z
db� b��H����b� � �

�
Tr D � �

�

�
�Tr D � �Z

db�H����b� � ��

�
Tr D �
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db� b�H����b� � �

�
Tr D �v� D v �

�

�
�v� D �v �

Z
db� b��H����b� � ���

"
Tr D �v� D v� � �

�

�v� D �v� Tr D �v� D v

�v� D v

� �

�
Tr D ��v� D �v kvk � �v� D v�

�
�

�
�v� D �v kvkTr D � �v� D v �v� D �v

� �v� D �v kvk �

The coe�cients cjk in � �� can be computed by matching the momenta
above� This involves solving a linear system� In fact� based on the
ansatz in � �� we have thatZ

db� b�nH�j��b� � Z db� ��� b�d����P �j��b� emb�

�
nX

k
�

c
�j�
k

Z
db� ��� b�d���� b�j emb�

� �
nX

k
�

c
�j�
k �d����m�d���j

Z �

�

dx xj�d���� e�x

� �
nX

k
�

c
�j�
k �d���� �

�
j �

d

�

�
m�d���j �


� Conclusions�

In this article� we develop a resummed perturbation expansion for
the calculation of high dimensional Gaussian integrals on sets bounded
by quadrics� Such integrals arise in the calculation of Value at Risk for
large portfolios in the quadratic approximation�

After an initial simultaneous diagonalization of the covariance ma�
trix and of the total gamma of the portfolio� we reduce the calculation
of the Value at Risk to an integral of a Gaussian over a high dimen�
sional quadric� This integral is computed using techniques from har�
monic analysis� which reduce all calculations to the Fourier transform
of quadrics� In the case of positive de�nite Gammas� this reduces to
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explicit Bessel functions� the general case is not much more di�cult�
The asymptotic behaviour of the relevant functions can be computed
analytically up to factors which are smooth and bounded� The mo�
ments of these transforms can be computed by means of a Feynmann
expansion and can be expressed in terms of linear invariants such as
traces and determinants� This yields analytic formulas for the Value at
Risk as a function of the time horizon�

Possible applications of this Fourier transform method that we can
envisage include�

i Performing real time monitoring of Value at Risk�

ii Finding the impact of the sale of one single contract to the
global risk exposure in real time� thus permitting to price against the
current holdings�

iii Identifying the risk factors which are mostly responsible for
large Value at Risk�

iv Visualizing and monitoring the risk exposure in terms of few
parameters� �The Fourier transform we compute captures all the risk
exposure e�ects in just two variables and contains information about
the interplay between delta risk and gamma risk�

v Estimating %Bayesian& Value at Risk by integrating the covari�
ance matrix over the Wishart distribution�

vi VaR calibration from historical P�L data�

These applications and extensions will be covered in forthcoming
papers�
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On pseudospheres

that are quasispheres

John L� Lewis and Andrew Vogel

Abstract� We construct bounded domains D not equal to a ball in
n � � dimensional Euclidean space� Rn � for which �D is homeomorphic
to a sphere under a quasiconformal mapping of Rn and such that n� �
dimensional Hausdor� measure equals harmonic measure on �D�

�� Introduction�

Denote points in Euclidean space� Rn � by x � �x�� � � � � xn	 and let
E� �E� denote the closure and boundary of E � R

n � respectively� Put
B�x� r	 � fy 
 jy � xj � rg and S�x� r	 � fy 
 jy � xj � rg when
r � �� De�ne k dimensional Hausdor� measure� � � k � n� in Rn as
follows
 For �xed � � � and E � R

n � let L��	 � fB�xi� ri	g be such
that E � �B�xi� ri	 and � � ri � �� i � �� � � � � Set

�k� �E	 � inf
L���

�X
	�k	 rki

�
�

where 	�k	 denotes the volume of the unit ball in Rk � Then

Hk�E	 � lim
���

�k� �E	 � � � k � n �

Let D be a bounded domain in Rn with � � D and Hn����D	 � ���

���
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Then �D is said to be a pseudo sphere �see �S�	 if

����	

a	 D �� ball and there is a homeomorphism

f 
 Rn �	 R
n with f�S��� �		 � �D �

b	 h��	 � a

Z
�D

h dHn�� � whenever h is harmonic

in D and continuous on D �

In b	� a denotes a constant� The construction of pseudo spheres in R� �
which are not circles� was �rst done by Keldysh and Lavrentiev to show
the existence of domains not of Smirnov type �see �KL�� �P� Chapter ��	�
Also a completely di�erent proof of existence in R� has been given by
Duren� Shapiro� and Shields in �DSS� �see also �Du� Chapter ���	� In
higher dimensions we proved in �LV��

Theorem A� There exists a pseudo sphere in Rn � n � ��

Recall that a function g 
 Rn �	 R
n is said to be K � � quasicon�

formal on Rn �see �R�� �Re�	 if


i	 g is a homeomorphism of Rn onto Rn �

ii	 g has distributional partial derivatives that are locally n�th
power integrable�

iii	 kDg�x	kn � K Jg�x	� almost everywhere�

In iii	� Dg�x	 � ��gi�x	
�xj	� is the Jacobian matrix of g and
kDg�x	k is the norm of Dg�x	 as a linear operator on Rn � Also Jg�x	
�the Jacobian of g at x	 is the determinant of Dg�x	� In �LV� we asked
whether f in the de�nition of a pseudosphere can also be chosen K � �
quasiconformal from R

n to Rn when n � �� If so� then �D is said
to be a K quasisphere� In R

� it follows easily from the geometric
construction of Keldysh and Lavrentiev and the Ahlfors three point
condition �A� that there exists pseudospheres which are quasispheres�
The construction in �DSS� �see also �D� Chapter ���	 is also easily seen
to produce pseudospheres that are quasispheres� In this note we answer
our own conjecture by proving

Theorem �� Given K � � there exists a pseudo sphere in Rn � n � ��
which is a K quasisphere�
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We note that the only � quasiconformal maps of Rn are M�obius
transformations� Also� it was shown by �FL� that convex domains satis�
fying some mild smoothness conditions cannot be pseudospheres� More
generally� let G be Green�s function for a bounded domain D with pole
at � and suppose B��� s	 
 D� Assume that

�	 jrGj �M �� in D nB��� s	�

��	 Hn����D n �D�	 � �� where

�D� � fx � �D 
 lim sup
r���

r�nmin fHn�B�x� r	�D	�

Hn�B�x� r	 nD	g � �g �

In �LV�� Theorem �� we showed that if b	� �	� ��	 are valid� then D
must be a ball� Recall that �D is said to be Ahlfors regular if for some
r� � � and every x � �D we have Hn���B�x� r	 � �D	 � rn�� where
� means the two quantities are related by constants independent of x
and r� � � r � r�� This inequality and b	 are easily seen to imply �	�
Also if D is an NTA domain in the sense of Jerison and Kenig �JK��
then ��	 is valid� We conclude that an NTA domain whose boundary
is Ahlfors regular and satis�es b	 must be a ball� So in particular if f
is a bilipschitz mapping of Rn with f�S��� �		 � �D and b	 holds� then
D � ball� Thus pseudospheres can be nice �quasispheres	 but not too
nice �Lipschitz	�

To point out some of the di�erences between Theorem � and The�
orem A we need to recall some details from �LV�� Suppose a � � in the
de�nition of a pseudosphere� To construct D� let D� � B��� ��	 and let

G��x	 � �n �n� 		�n		���jxj��n � ���n� 	 � x � B��� ��	 �

be Green�s function for B��� ��	� where �� is chosen so that if x �
�B��� ��	� then

���	 jrG��x	j � �n	�n		�����n� �  �

By induction� if Dm has been de�ned for m � a nonnegative integer�
we added certain smooth bumps to �Dm to get Dm�� with Dm 

Dm��� ThenD �

S
Dm� To obtain f we modi�ed the identity mapping

slightly in a neighborhood of each bump� to get hm�� a homeomorphism
from R

n into Rn � with hm����Dm	 � �Dm��� hm���Dm	 � Dm��� for
m � �� �� � � � � Put h��x	 � �� x and set fk�x	 � hk  hk��  � � � 
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h��x	� Then f � limk�� fk uniformly in R
n � The problem with our

construction in �LV� was that the distortion �i�e� K	 could build up
under successive iterations� In the present paper we overcome this
di�culty by using the so called �mickey mouse� construction which is
apparently due to Thurston �oral communication to the �rst author
by Seppo Rickman	� Under this construction hm�� is de�ned in such
a way that it is � quasi�conformal �i�e� the restriction of a M�obius
transformation	 in a neighborhood of Hn�� almost every point of �Dm�
To getDm�� we then only allow bumps to be added that lie in the image
of the above neighborhoods� It turns out for Hn�� almost every point
x � Rn that we can arrange it so that all functions in the composition
de�ning fk�x	� with one exception� are � quasiconformal� while the
remaining function can be chosen K quasiconformal for �xed K � ��
We note that the construction of a pseudosphere in R� given in �P� also
uses circles� but for a di�erent reason� To carry out the above program
we have had to overcome certain problems not encountered in �LV�� For
example in this paper we added C� bumps to �Dm and consequently
were able to use Schauder type theorems to make the desired estimates
on the Green�s function of Dm��� However� to get hm��� as above� we
are forced to add non smooth spherical bumps to �Dm� Hence we have
to argue that our earlier program can still be used� Also in �LV� we used
an important lemma of Wol� �W� Lemma ��� for the Green�s function
of a domain obtained by adding a C� bump to a half space� Again
we have to verify that Wol��s lemma remains valid for spherical bumps
�whose radius is large	� As for the proof of Theorem � we follow closely
the proof of Theorem A in �LV� so the reader is advised to have this
paper at hand� In Section  we discuss adding spherical bumps to a
domain and show inequality ����	 in �LV� �see ���		 is still valid� In
Section � we use the �mickey mouse construction� to get D and f � In
Section � we add a spherical bump to a half space and show that the
conclusion of Wol��s lemma remains true� We then use this lemma
in Section � to show that ����	 in �LV� �see �����		 still holds� ���	�
����	� and ����	 of �LV� imply that ����	 b	 is valid �see the discussion
in Section � following �����		�

�� Spherical bumps�

We assume throughout this section that � is a bounded domain
with � � �� Moreover we assume � is locally Lipschitz� That is given
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y � �� there exists s � � such that B�y� s	� �� is a part of the graph
of a Lipschitz function de�ned on a hyperplane in Rn and B�y� s	 � �
lies above the graph� We also assume that �� is connected and the
union of a �nite number of closed spherical caps with centers in �
and the property that each point of �� lies in at most two spherical
caps� Thus either two caps are disjoint or their intersection is an n� 
dimensional �circle� �intuitively cut out by the smaller sphere from
the larger sphere	� Let T denote the set of points in the union of
these �circles�� Finally we assume that F 
 R

n is a compact set with
F � �� 
 T� We remark that in our construction F will be the set
of points where a certain iterate is not � quasiconformal� Intuitively
we want to avoid this set in modifying � to get �� so that successive
iterations will not increase K� Let G be Green�s function for � with
pole at �� By de�nition�

G�x	� �n �n� 		�n		��jxj��n � x � Rn �

is harmonic in � and G has boundary value � in the sense of Perron�
Wiener�Brelot� Using the Kelvin transformation �see �H�	 we see that
each component of

rG�x	 �
� �G
�x�

� � � � �
�G

�xn

�
extends to a C� function on � n �T � f�g	� Under this assumption
suppose that

���	 jrGj � � � on �� n T �

Given �� � � � � ������ we shall add smooth spherical bumps to �� by
�pushing out� �� along certain small surface elements in fx � �� nT 

jrGj�x	 � ���g of approximate side length r�� Let ��� G� be the domain
and Green�s function with pole at �� obtained from this process� Then
��� will have the same properties as ��� i�e� it is locally Lipschitz�
connected� and the union of a �nite number of closed spherical caps
with centers in �� and the property that each point of ��� lies in at
most two spherical caps� De�ne T � relative to �� in the same way that
T was de�ned relative to �� Then � 
 ��� T 
 T � and we shall choose
the spherical bumps so that

��	 jrG�j � � � on ��� n T � �
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Also for t � �� we shall have

���	 Hn������	 � Hn�����	 � ��t	Hn���fx 
 jrG�x	j � � � tg	 �

where � is a nondecreasing positive function on ����	 which is inde�
pendent of �����

Let � � � � ���� be a small positive number to be chosen in
Section � and let l be the largest nonnegative integer such that �l� �
� � �� Put k � �k�� for k � �� �� � � � and set

Ek � fx � �� 
 � � k � jrG�x	j � � � k��g � � � k � l� � �

E� � fx � �� 
 jrG�x	j � � � �g �

Let d�E�� E�	 denote the Euclidean distance between the sets E�� E�

and put
U � fy � �� 
 d�fyg� T 	 � ��� br�g �

where br� � � is so small that

���	 Hn���Ek � U	 � �

�
Hn���Ek	 � for � � k � l � � �

which is possible since Hn���T 	 � �� Next if � � br� � � is the smallest
radius of the spheres whose caps form �� we also choose

���	 br� � �� br�
��

���
�

Let

V � fy � � 
 d�fyg� T 	 � ��	 br�g � ny � � 
 d�fyg� f�g	 � ��


o
�

where �� is as in ���	 and set

M� � max
x�V

X
j��G�x	j �

where � � ���� ��� � � � � �n	� � � j�j � � is a multiindex and �� denotes
the corresponding partial derivative with respect to x� � x � V�We �rst
choose r��� � � r�� � br�� so that
���	 r�� �

�

���nM�	��
�
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Given y � �� n U let B�y� r�	 denote the re�ection of B�y� ��	 r��	
with respect to the sphere whose spherical cap 
 �� contains y� From
our assumptions on �� we can choose r�� � � so small that for any
y � �� n U�

���	
B�y� ��	 r��	 intersects exactly one spherical cap 
 ���

and �B�y� ��	r��	 �B�y� r�		 � F � � �

From compactness and a standard covering argument it follows for each
r�� � � r� � r��� that there exists� y

�� y�� � � � � yN � �� n U � such that

���	
�� n U �

N�
i
�

B�yi� ��� r�	 � � � V

and B�yi� �� r�	 � B�yj� �� r�	 � � � i �� j �

We now construct ��� Let L be the set of all y � fyigN� for which

B�y� ��� r�	 �
� l���
k
�

Ek

�
�� � �

Let �k � � k � �� � � � be an increasing sequence of positive numbers
to be speci�ed later and set rk � r�
�k for k � �� � � � � l � �� For �xed
y � L� let j � j�y	 be the smallest nonnegative integer with

���	 B�y� ��� r�	 � Ej �� � �

We draw a sphere S�ey� er	 of radius er� center ey � � with the following
properties

����	

a	 S�ey� er	 � �� � S�y� �j rj	 � �� �
b	 The angle between the normals to S�ey� er	
and �� at points of intersection is �j �

c	 B�ey� er	 
 � �B�y� �j rj	 �
Existence of S�ey� er	 as in ����	 follows from ���	 and elementary ge�
ometry� De�ne �� by

����	

i	 � n
� �
z�L

B�z� �j rj	
�
� �� n

� �
z�L

B�z� �j rj	
�
�

ii	 ��� �B�y� �j rj	 � S�ey� er	 n � whenever y � fyigN� �

iii	 �� �B�y� �j rj	 � B�ey� er	 � B�y� �jrj	 �
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From ����	� ����	� and ���	 it is clear that ��� is locally Lipschitz�
connected� and the union of a �nite number of closed spherical caps with
centers in �� and the property that each point of ��� lies in at most
two spherical caps� We now prove ��	� If x � ������� then it follows
from ���	 and the Hopf boundary maximum principle that ��	 is true�
Otherwise� x � S�ey� er	�����nT �	 for some y � fyigN� � S�ey� er	� satisfying
���	�����	� Using ���	� ����	 a	� b	 and high school geometry it is
easily seen for � small enough that

���	
er

� rj �  er �

From ���	� ���	 we deduce that S�ey� er	�� 
 V and thereupon from
���	� ���	 as well as Taylor�s theorem with remainder that

����	 ��� �r��	���	 jrG�y	j h�� z� yi � G�z	 �

whenever z � S�ey� er	 and h�� z � yi � �	j rj � Here � denotes the inner
unit normal to �� at y and h�� �i denotes the inner product on Rn � Let
� be a C� function on R with � � � in ���� �	j rj	� ��x	 � x� for

x � �� with equality when x � ��	j rj and

�	j rj	
i��
��� di
dxi

���x	� x	
��� � ��	 �

whenever x � � and � � i � � Let h be the harmonic function in
B�ey� er	 which is continuous in B�ey� er	� with boundary values h�x	 �
��h�� x� yi	 whenever x � S�ey� er	� Let

H�z	 � h�ey � er z	� h�� ey � y � er zi � for z � B��� �	 �

Using ���	 and Schauder type estimates �see �GT�	� or direct estimates
by way of the Poisson integral for B��� �	 we �nd that

jrHj�z	 � c�n	 er ���j �

whenever ey � er z � ���� Transferring back we get

����	 jrh� �j � c�n	
���
j �

in S�ey� er	 � ���� where c�n	 � � as in the sequel is a constant which
only depends on n� not necessarily the same at each occurence� Since
G � G� in �� we see from ����	 and the boundary values of h that

����	 ��� �r��	���	 jrG�y	jh � G� �
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on S�ey� er	� Using the Hopf boundary maximum principle and ����	�
����	 it follows that

����	 jrG�j � ��� �r��	���	 ��� c�n	
���
j 	 jrG�y	j �

on S�ey� er	 � ���� Now from ���	� ���	� ���	 we deduce that

jrG�y	j � � �
j

�

Putting this inequality in ����	 we see for � � ��n	 � � small enough
that ��	 is true for x � S�ey� er	 � ���� Hence ��	 is true on ��� n T ��

Next we prove ���	� To do this observe from ���	 that since
r� � br� we have
����	

Hn����� � B�y� �j rj		

� 	 �n� �	 ��j rj	n�� � c�n	 br��� ��j rj	
n�� �

Note from ���	� ���	� and elementary trigonometry� that the solid
angle � subtended by B�ey� er	 � �� with respect to ey satis�es
�����a	 j� � �j j �

� er �jbr� �

and

�����b	 er sin � � �j rj �
��j rj	

�

��� br �� �

for � � ��n	 � � small enough� Now using spherical coordinates and
�����a	 it is easily seen that

Hn���S�ey� er	 n �	 � 	 �n� �	
�
� �

	j
c�n	

�
�er sin �	n�� �

From this inequality� � ����b	� and once again ���	 we conclude that

����	 Hn������ �B�y� �j rj		 �
�
� �

	j
c�n	

�
	 �n� �	 ��j rj	n�� �
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Combining ����	� ����	� and using �j rj � r�� we �nd for some c�n	 � �
that

���	

Hn������ � B�y� �j r
�
�j		

�
�
� �

	j
c�n	

�
Hn��

�
�� �B

�
y� �j

r�

�j

��
�

Let ��t	 � �n��i ���ni 
c��n	 for i�� � t � i� i � �� �� � � � and set
��t	 � �n��� ���n� 
c��n	 for t � �� Then from ���	� ���	� and ���	
we conclude for c��n	 large enough that ���	 is true for t � ��

�� The Mickey mouse construction�

We continue with the same notation introduced in sections ��� Let
����� y � fyigN� � r�� er � er�j	� S�ey� er	� �j � and �j be as in ���	����	�
Suppose that B�y� ��� r�	 � �� 
 S�w� ��	 with B�w� ��	 
 �� Choose
a M�obius transformation L so that

����	

		 L�B�w� ��		 � H � fx � Rn 
 x� � �g �
�	 L�S�w� ��	 � S�ey� er		 � fx � Rn 
 x� � x� � �g �
�	 L�B�ey� er		 � eH and L� eH nH	 
 fx 
 x�� x� � �g �
�	 The angle between the normals to H� eH
at points of eH �H is �j �

����	 is easily proven using ����	 b	� as well as the fact that M�obius
transformations preserve angles and map balls into hyperplanes or balls
�see �Re� Chapter ��	� We introduce polar coordinates x� � r cos ��
x� � r sin �� r � �� � � � � �� If x � �x�� x�� � � � � xn	 we put bx �
�x�� � � � � xn	 and write x � �x�� x�� bx	� Next we de�ne a quasiconformal
mapping q of Rn as follows

q�x	 � x� when � � � � �j �

q�x	 � �r cos �� �� � �j 	 � �j 	� r sin �� �� � �j 	 � �j 	� bx	
for �j � � � � � �j with � � �� � �j 	
�� � �j 	 �

q�x	 � �r cos �� � �j 	� r sin �� � �j 	� bx	� for � � �j � � � � � �j �
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q�x	 � �r cos ��� �� � � � �j 	 � � � �j 	�

r sin ��� �� � � � �j 	 � � � �j 	� bx	�
for � � �j � � � � � �j � with �

� � �� � ��j 	
�� � �j 	 �

q�x	 � x� for � � �j � � � � �

From the above de�nition of q we note that

���	

i	 q maps H onto H � eH �

ii	 q is the identity mapping on�
x 
 x�


q
x�� � x�� � cos ��j 	

�
�

iii	 q is a rotation on
�
x 
 x�


q
x�� � x�� � � cos ��j 	

�
�

iv	 q is � � ���j quasiconformal on R
n �

Put g�x	 � L��  q  L�x	 when x � Rn � From ���	� ���	� ����	 we
note that if

eF � L��  q
�n

x 
 � cos��j 	 �
x�p

x�� � x��
� cos ��j 	

o�
�

then

����	
� eF � g��� eF 		 
 B�y� ��	 r��	 �B�y� r�	
and � eF � g��� eF 		 � F � � �

where the last line follows from ���	� From ���	 we also conclude that

����	

a	 g is the identity transformation

on the unbounded component I of Rn n g��� eF 	 �
b	 g is a M�obius transformation

on the bounded component J of Rn n g��� eF 	 �
c	 g is � � ���j quasiconformal on R

n �

We do this construction for each y � fyigN� obtaining functions g�� � � � �

gN and sets eF�� I�� J�� � � � � eFN � IN � JN � corresponding to y�� y�� � � � � yN �
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in such a way that ����	� ����	 hold with g � gi� � � i � N � De�ne
� 
 Rn �	 R

n by

����	 ��x	 �

�
x � when x � I� � I� � � � � IN �

gi�x	 � when x � g��i � eFi	 � Ji� � � i � N �

We note that � is well de�ned since from ����	� ���	� and ���	 it

follows that the sets g��i � eFi	 � Ji� � � i � N � are pairwise disjoint�
Using this note and ����	 we conclude that

����	

�	 ���	 � �� and � is a � � ���j quasiconformal mapping

of Rn onto Rn �

��	 � � a M�obius transformation in each component

of Rn n ���� bF 	 where bF �

N�
i
�

eFi �
���	 � bF � ���� bF 		 � F � � and F � � bF � F

is compact with F � � ��� 
 T � �

We now construct D� f� Let D� � B��� ��	 be as in Section � where ��
is as in ���	 and set F � F� � T � T� � �� Let � � �� � ������
and put � � D�� We use the results in Section  to get �

� � D� satis�
fying ��	� ���	 and �� � � satisfying ����	 with ���D�	 � D�� Let
F� � F �� T� � T � be the sets obtained from this construction� We now
proceed by induction� Suppose Dk��k� Tk� Fk have been constructed
using the results in Section  for m � � with

����	
Dk 
 Dk��� Tk 
 Tk��� Fk 
 Fk�� �

and Fk�� � �Dk�� 
 Tk��� for � � k � m� � �

in such a way that

jrGkj � � � on �Dk n Tk �����	

Hn����Dk��	 � Hn����Dk	

� ��t	Hn���fx 
 jrGk�x	j � � � tg	 �
����	
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whenever t � �k � �����k� � � k � m � �� Here Gk denotes the
Green�s function for Dk with pole at �� We also assume that

�����	
����	 holds with �� F� F � replaced by �k��� Fk� Fk���

respectively� for � � k � m� � �

We put � � Dm� F � Fm� T � Tm� and note from the induction
hypothesis� ����	� that F � �� 
 T � If � � �m � �����m� then we can
apply the results in Section  to get �� � Dm��� T

� � Tm��� for which
����	� ����	 hold when k � m � �� Also using ����	 we get F � � Fm���
� � �m��� satisfying �����	 with k � m� By induction we conclude
that ����	������	 holds� for each nonnegative integer k�

Put D �
S�
� Di� We note that fm � �m  � � �  �� maps D� onto

Dm� From ����	 ���	� ����	� and �����	 it is clear for given x � Rn nTm��
that each function in the composition de�ning fm� with at most one
exception� is a M�obius transformation in a neighborhood of x�Moreover
such an exception is � � ���� quasiconformal in a neighborhood of
x� Thus fm is � � ���� quasiconformal on R

n and fm�D�	 � Dm

for m � �� Now ffmg�� is a locally bounded sequence of � � ����
quasiconformal mappings on Rn � so a subsequence �see �Re� Chapter ��
or �R� Chapter ��	 of this sequence either converges uniformly to a

� � ���� quasiconformal
bf from R

n to Rn or to a constant� Clearly a

constant is ruled out� Put f�x	 � bf��� x	� Then from our construction
we conclude that f�B��� �		 � D� f�S��� �		 � �D� Thus if ���� � K�
then ����	 a	 in Theorem � is true�

For the reader�s convenience we outline the proof of b	 given in
�LV�� Using ���	����	 it is intuitively clear for � small enough that
D is NTA in the sense of Jerison and Kenig �JK� with constant ����
�see �LV� Section �� for details	� Also from Green�s theorem and ����	
we see that

�����	 Hn����Dk	 �
Z
�Dk

jrGkj dHn�� � � �

From �����	 we see that D is of �nite perimeter in the sense of Federer
�see �GE�	� Thus as k �	��

����	 Hn��j�Dk �	 Hn��j��D � Hn��j�D �

Here the convergence is weak convergence as measures� Also ��D is the
reduced boundary of D� To get the last inequality� we note that ��D
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agrees Hn�� almost everywhere with the so called measure theoretic
boundary of D� de�ned as the set of points where the Lebesgue lower
n densities of D�Rn n D are positive� Using the fact that D is NTA�
it is easily seen that �D equals the measure theoretic boundary of D�
Hence ����	 is true �for a more direct proof see �LV� Section ��	� Also
observe from ����	 that

�����	 lim
k��

Hn���fx � �Dk 
 jrGk�x	j � � � �g	 � � �

for each � � �� since otherwise we could use ����	 and iteration to get
a contradiction� Finally we shall show in Section � that

�����	

Z
Dk

jrGkj log jrGkj dHn�� � c �� � for k � �� �� � � �

From �����	 we deduce for 	 � �� k � �� �� � � �

�����	 log	

Z
fjrGkj��g

jrGkj dHn�� � c � �� �

Let g � � be a harmonic function in D which is continuous on D� Then
from ����	� ����	� and Green�s theorem we get

�����	

g��	 �

Z
�Dk

g jrGkj dHn��

�
Z
�Dk

g dHn�� �	
Z
�D

g dHn�� �

as k �	 �� To obtain the reverse inequality for �xed � � ���� and
	 � ���� put

Pk � fx � �Dk 
 � � jrGk�x	j � � � �g �
Qk � fx � �Dk 
 � � � � jrGk�x	j � 	g �

Lk � fx � �Dk 
 jrGk�x	j � 	g �

for k � �� �� � � � � Then

g��	 �

Z
�Dk

gjrGkj dHn�� �

Z
Pk

� � � �
Z
Qk

� � � �
Z
Lk

� � � � I��I��I� �
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Clearly�

jI�j � �� � �	

Z
�Dk

g dHn�� �

Also from �����	 we �nd that

jI�j � 	 kgk�Hn���fx � �Dk 
 � � � � jrGkjg	 �	 � �

as k �	�� Here� kgk� denotes the maximum of g in D� Using �����	
we get

jI�j � kgk�
Z
fjrGkj��g

jrGkj dHn�� � c �log		�� kgk� �

Letting k �	� we obtain from the above estimates and ����	 that

g��	 � �� � �	

Z
�D

g dHn�� � c �log		�� kgk� �

Finally letting � �	 �� 	 �	�� we have

g��	 �
Z
�D

g dHn�� �

In view of �����	 we conclude that

�����	 g��	 �

Z
�D

g dHn�� �

when g � � is continuous on D and harmonic in D� From �����	 with
g � � we note that� Hn����D	 � �� If g� is continuous on D� harmonic
in D� and g� �m � � in D� then from �����	 and the above note we
deduce

g���	 � �g� �m	��	 �m �

Z
�D

�g� �m	 dHn�� �m �

Z
�D

g� dH
n�� �

Finally from a simple barrier estimate it is easily seen that for each
y � T��

� � lim sup
x�y

jrG�j�x	 � lim sup
x�y

jrGj�x	 �

From this inequality we conclude that D �� ball�
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Thus D is a pseudosphere and Theorem � is true once we have
proved �����	�

�� Lemma of Wol��

If x � �x�� � � � � xn	 � R
n we write x � �x�� xn	� where x� �

�x�� � � � � xn��	� For given � � �� � � � � �
��� de�ne ���� �	 on Rn�� by

��x�� �	 �

�			
			�
���
�
��p� � �� ��� jx�j�	  �
when x� � Rn�� and jx�j � � �

� �

when x� � Rn�� and jx�j � � �

Put K � fx � Rn 
 xn � �g and set K��	 � fx � �x�� xn	 � Rn 
 xn �
��x�� �	g� We note that �K��	 n �K consists of the part of the sphere
with center ��� � � � � �� ���	 and radius�

p
��� � � which lies outside K�

Thus K��	 is obtained by adding a spherical bump to K� Let g��� �	 be
the Green�s function for K��	 with pole at �� That is� g�x� �	� xn is
a bounded harmonic function in K��	 and g��� �	 is continuous on K��	
with g��� �	 � � on �K��	� Set

I��	 �

Z
�K���

jrg��� �	j ln jrgj��� �	 dHn�� �

Next let b��x�	 � �� � jx�j�	�� x� � Rn�� � where a� � max fa� �g� Let
� denote the bounded harmonic function on K which is continuous on
K with � � b� on �K � R

n�� � Put

 ��	 �

Z
Rn��

���xn	
� � � jr��j� �xn	 dHn�� �

where r� denotes the gradient in x� only� We prove

Lemma ���� If  ��	 � �� then there exists c� � c��n	 � �� such that

I��	 � ���  ��	
���� for � � � � c��n	��min f ��	� �g�

Proof� The proof is essentially the same as �W� Lemma ���� However
this lemma was proved under the assumption that �K��	 is smooth
�C�	 where in our case �K��	 is just Lipschitz� Therefore we include
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some details� We shall show that I has continuous fourth derivatives
and jI ����j � c�n	 on ��� ��	 for �� � ���n	 � �� su�ciently small� Also
it will turn out that the derivatives of I can be found by di�erentiating
under the integral sign as in �W� and I��	 � I ���	 � I ����	 � �� while
I �����	 � ���
�	 ��	� Using Taylor�s theorem with remainder we then
get Lemma ����

To begin� let y � �K��	 and suppose for some r � � that w is
harmonic in K��	 � B�y�  r	 with continuous boundary values zero on
�K��	�B�y�  r	 and jwj �M �� in B�y�  r	�K��	� From a barrier
type argument we �nd for � � � � �� � �
���� su�ciently small� that

���	 jwj�x	 � c�n	M
� jx� yj

r

�����
�

for x � K��	 � B�y� r	� With �� now �xed let g��� z� �	 denote Green�s
function for K��	 with pole at z � K��	 for � � � � ��� We note
that g�x� z� �	 � c�n	 jx � zj��n since the righthand side is a constant
multiple of the Green�s function for Rn � Let S � f�x�� �	 � Rn 
 jx�j �
�g and let bx� bz � �K��	 � �B��� 	 n S	� Let x � B�bx� j� � jbxj j
	�
z � B�bz� j��jbzjj
	� with j��jbxj j � j��jbzj j
��� Then from ���	 with
r � jx� zj
� y � bx� w � g��� z� �	� and the above note it follows that

����	 g�x� z� �	 � c j�� jxj j���� jx� zj��n����� �

Next suppose that v is harmonic in K��	 with

v�x	 �

Z
�K����B��	��

��� jzj		�� jrg�x� z� �	j dHn��z � x � K��	 �

where derivatives of g��� �� �	 are with respect to z� Under these assump�
tions we prove for x � B�bx� j��jbxj j
	�K��	� and bx � �K��	�B��� 	
that there exists bc �n	 � � with

����	 jv�x	j � bc �n	 j�� jxj j	�� �
Now from Green�s formula�

����	 jv�x	j � c�n	 j�� jxj j	�� �
Z
J

��� jzj		�� jrg�x� z� �	j dHn��z �

where J � fz � �K��	�B��� �	 
 j��jxj j � ��
���	 ���jzj	g� From the
Kelvin transformation �see �H�	� it is easily seen that g�x� �� �	 extends
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to a harmonic function in B�z� j�� jzj j	 whenever x is not in this ball
and z � �K��	 n S� We shall also denote this extension by g�x� �� �	�
Using this fact� ����	� and interior estimates for harmonic functions we
see that

jrg�x� z� �	j � c�n	 j�� jxj j���� jx� zj�n����� � whenever z � J �

Putting this estimate in ����	� using  jx � zj � j� � jzj j when z � J
and integrating we get ����	�

Again from the Kelvin transformation� ���	 with w � g� and inte�
rior estimates for harmonic functions we observe that

����	
��� �kg
�x�

����x� �	 � c�k� n	 j�� jxj j�k����� � x � B
�bx� �


j�� jbxj j� �

whenever bx � �K��	 � �B��� 	 n S	� � � � � ��� and k � �� �� � � � Here
	 � �	�� � � � � 	n	 is a multi index with j	j � k and x� � x��� � � �x�nn �
Also we have

����	 g�x�� ��x�� �	� �	 � � � x� � Rn�� � � � � � �� �

Next observe for k � �� �� � � � � that �k���� �	
��k is uniformly Lipschitz
for x� � Rn�� � � � � � ��� with

����	

i	
���r �k��x�� �	

��k

��� � c�n� k	 �

ii	
����k��x�� �	

��k

��� � c�n� k	 ��� jx�j	� �

iii	
���x�� �	

��
� � ��� jx

�j�	�


�
����x�� �	

���
� � �

We claim that ����	�����	 imply g��� �	 has continuous mixed partials
in x� � of all orders whenever� x � B�bx� j� � jbxj j
	� � � � � �� andbx � �K��	 n S� Moreover if also jbxj � �

����	
����k�lg�x� �	

�x� ��l

��� � c�k� l� n	 j�� jxj j�k�	�� �

for k� l � �� �� � � � � while

�����	
����k�l �g�x� �	� xn	

�x� ��l

��� � c�k� l� n	 j�� jxj j�k�n�� �
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with x � �K��	� jxj � � ����	 for l � �� k � �� �� � � � is implied by
����	� �����	 follows from the fact that g��� �	�xn extends to a bounded
harmonic function in Rn n B��� �
	 which is zero on f�x�� �	 
 x� �
R
n�� � jx�j � �
g and the Poisson integral formula for such functions�
Thus ����	� �����	 are true for l � �� k � �� �� � � � We can now proceed
by induction to get ����	� �����	� We do only the case l � �� k � �� � � � �
in detail� From ����	� ����	 ii	� the mean value theorem from elementary
calculus� and ����	 for k � � we see that

�����	

jg�x�� ��x�� ��	� ��	� g�x�� ��x�� ��	� ��	j
� jg�x�� ��x�� ��	� ��	� g�x�� ��x�� ��	� ��	j

� c�n	max
n��� �g
�xn

����x�� ��x�� �	� �	 
 � � � � ��

o
� j��x�� ��	� ��x�� ��	j

� c�n	 j�� � ��j ���� jx�j	�		�� �

for x� � �K���	 n S� � � ��� �� � ��� From �����	 we deduce that
f��� � ��	

�� �g��� ��	 � g��� ��		g is uniformly bounded and has a con�
tinuous extension to �K���	 whenever � � ��� �� � �� and �� �� ���
From the maximum principle for harmonic functions and the Kelvin
transformation� it follows that this sequence is harmonic and uniformly
bounded in L���	 � K���	

SfB�bx� j��jbxj j	 
 bx � �K���	nSg� Letting
�� �	 �� it follows that �g
�� is uniformly continous and bounded in
L���	 whenever � � �� � ��� Moreover�

����	
�g

��
�x� �	 � � �g

�xn
�x� �	

��

��
�x�� �	 �

with x � �x�� ��x�� �		 � �K��	 n S� Using ����	 ii	 and ����	 with
k � � we get j�g
�� ��� �	j � c�n	 ���� jxj	�		�� on �K��	� Using this
inequality and the maximum principle for bounded harmonic functions
in K��	 we conclude �rst that j�g
��j � c�n	 v� and thereupon from
����	� the Kelvin transformation� and interior estimates for harmonic
functions that ����	 is true when l � �� k � �� �� � � � �����	 follows for
l � � by the same reasoning as when l � �� Finally since a uniformly
convergent sequence of harmonic functions has derivatives which also
converge uniformly� it follows that the mixed partial derivatives consist�
ing of one partial derivative in � and k partial derivatives in the space
variable x are independent of the order of di�erentiation�
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Next we use ����	 and argue as in �����	 to obtain that

��g

���
�x� �	 � � ��g

�� �xn
�x� �	

��

��
�x�� �	

� �g

�xn
�x� �	

���

���
�x�� �	� ��g

�x�n
�x� �	

���
��

��
�x�� �	 ������	

whenever x � �K��	� Using ����	 ii	 and ����	 with l � �� �� k � �� � we
conclude �rst that j��g
����x� �	j � c�n	 ����jxj	�		�� when x � �K��	
and thereupon from ����	� the Kelvin transformation� and interior esti�
mates for harmonic functions� that ����	 is true when l � �� �� � �����	
follows by the same reasoning as when l � �� �� As above we see that
the mixed partial derivatives consisting of two partial derivatives in �
and k partial derivatives in the space variable x are independent of the
order of di�erentiation� Continuing by induction we get ����	� �����	�

Finally observe from a barrier argument that

�����	 c�n	 jrg��� �	j � � � on �K��	 n S �
for � � � � ��� Using ����	� �����	� �����	 we deduce that derivatives of
I with respect to � of all orders can be found by di�erentiating under the
integral sign de�ning I� Doing this and letting � �	 � we �nd that the
argument of Wol� �W� pp� ������� can be used essentially verbatim�
One only needs to check that the second and third partial derivatives of
� with respect to � do not add additional terms in the calculations when
� � �� In fact from ����	 iii	 we see that the second partial of � with
respect to � vanishes identically� Moreover all terms involving the third
partial of � with respect to � vanish at � � � �since all second partials
of g�x� �	 � xn are identically zero and jrg�x� �	j � �	� Lemma ��� now
follows from Wol��s argument in the way mentioned at the beginning
of the proof�

In order to apply Wol��s lemma we need to show that  ��	 � ��

In fact we shall show in �LVV� that if b� � �� is a radial� nonincreasing�

Lipschitz function on Rn�� with compact support and b� �� �� then
 ��	 � �� As usual� � denotes the bounded harmonic extension of b�
to K which is continuous on K with � � b� on �K� Clearly this result
implies

�����	  ��	 � � �

Here we outline a direct method for establishing �����	 which gives a
numerical lower bound for the integral when n � �� Using separation
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of variables or the Poisson integral formula for harmonic functions in a
half space one can show for r � jx�j that

�xn�x
�� �	 � �cn F

�n

���

�
n� �


� r�
�
� � � r � � �

where F �a� b� c� z	 is the usual hypergeometric function�

cn �
!
�n


�
!
�n� �



�
!
��


� �

and ! is the Euler gamma function� Writing the hypergeometric func�
tion in a series it is easily seen that

�F
�n

���

�
n� �


� r�
�
� �� � n

n� � ��� ��� r�	���	 �

Using this estimate and doing some arithmetic we �nd thatZ �

�

��xn r
n�� dr � c�n �n� �	��

Z �

�

��� � n ��� r�	���	� rn�� dr

� c�n �n� �	��
� �

n� � �
�n�

n� � �
�

� � c�n �n� �	��
�
� �

n�

n� 

�
�����	

� bn �

Also we note that

�

Z �

�

�xn jr��j� rn�� dr � �� cn
Z �

�

F
�n

���

�
n� �


�
rn dr

�
�� �n� 	
�n� 	� n

�

The last equality is obtained by writing out the series for the integrand
and integrating term by term� The series one gets after evaluating
at � can be written as the sum of several hypergeometric functions
evaluated at �� Using tables one then gets the last equality� Finally
using Stirling�s formula and making some more estimates one can show
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that bn��� �n�	
��n�	�n	 � � for n � �� which in view of �����	�
the above equality� and the fact that �xn�r� �	 � � for r � ����	 �by
positivity of � 	 implies �����	 for n � �� The cases n � �� � can be
done separately� A more involved argument using estimates also forR�
�

��xn r
n�� dr can be used to show that for some absolute constant c

one has  ��	 � c
n� n � �� �� � � � �more details will be supplied upon
request	�

Next we introduce some notation in order to state some conse�
quences of Lemma ��� and �����	� Let �� be a bounded domain with
diameter � � and NTA constant ����� Then by de�nition�

i	 �corkscrew condition	 For each x � ����

� � r � �� there are points Pr�x	 � ��� Qr�x	 � Rn n ���

with jPr�x	� xj � ���� r� jQr�x	� xj � ���� r� and

dist �Pr�x	� ���	 � ������r� dist �Qr�x	� ���	 � ������r�

ii	 �Harnack chain condition	 For each x� y � �� there is a path

� 
 ��� �� �	 �� with ���	 � x� ���	 � y� and with

length � ���� jx� yj� Also
dist ���t	� ���	 � ������min fj��t	� xj� j��t	� yjg for t � ��� ���

Next suppose that �� is Lipschitz on scale t with constant ����� That
is assume for each z � ���� there exists a coordinate system such that
��� �B�z� t	 is the graph of a Lipschitz function de�ned on Rn�� with
Lipschitz norm � ����� Moreover� �� � B�z� t	 lies above the graph of
this function� Finally assume for some w � ��� and t � � that after a
possible rotation of coordinates�

�����	
��� � B�w� t	 � fx 
 xn � wng �B�w� t	
�� � B�w� t	 � fx 
 xn � wng � B�w� t	 �

Let ���� �	 be as de�ned at the beginning of Section �� � � � and de�ne
����	 � �� for � � � � ��� as follows


a	 �� nB�w� t	 � ����	 nB�w� t	�
b	 �����	 � B�w� t	 � f�x� � w�� wn � t ��� ��t���x�� �		 
 x� �

R
n��g � B�w� t	�
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c	 ����	�B�w� t	 � f�x��w�� xn	 
 xn � wn�t �
�� ��t�� �x�� �	g�

B�w� t	�

We assume

�����	 B��� ��	 � �� � B��� �	 �

where �� is as in ���	� Denote Green�s functions for �������	� with
pole at �� by G�� G���� �	 respectively� and let �� be harmonic measure
on �� with respect to �� With this notation we state

Lemma ����� Let �� be NTA and Lipschitz on scale t with constant

����� Suppose �� satis�es �����	� �����	� and �� is obtained by adding

a spherical bump to �� as in a	�c	� Let �� � � c��n		��min f ��	� �g�
where c� is as in Lemma ���� If � � b� � ��� then there exists �� �
���b�� n	� c � c �b�� n	 � � such that for � � ���Z

�����

jrG���� �	j log jrG�j��� �	 dHn��

�
Z
��

jrG�j log jrG�j dHn�� � �

c �n��
���B�w� t		 �

whenever b� � � � ���

Proof� In view of Lemma ��� and �����	 we can essentially apply
�W� Lemma ��� to get Lemma ���� in R� � The proof in Rn � n � �� is
unchanged�

	� Proof of Theorem ��

Armed with Lemma ���� we can use the argument in �LV� Section ��
to prove �����	 and hence complete the proof of Theorem �� Unfortu�
nately� in �LV� Section �� Schauder estimates for smooth domains were
again used� whereas our boundaries are only locally Lipschitz� Thus
for the reader�s convenience we sketch the argument in �LV� Section ��
indicating the necessary changes� We wish to apply Lemma ���� to
Dm� Dm�� constructed in Section �� but in order to do so we need to
introduce intermediary domains with �at bumps as in Lemma ���� and
make some estimates� We shall use the same notation as in Section
� Note that in Section � we constructed Dm�� from Dm by adding
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spherical bumps as in ���	�����	� Thus we work with ���� as in Sec�
tion � We assume� as we may� that �� � ��
��� where � is yet to
be �xed and �� is as in Lemma ����� We now de�ne ��k	 introduced
above ���	� Let br�� br�� ��M�� r

�
�� r

�� �Ek	� L� l� rj be as in Section � For
�xed y � L recall from ���	 that j was the least postive integer such
that B�y� ��� r�	 � Ej �� �� � � j � l � �� Let T be the tangent
plane to �� at y � ��� From the above restriction on �� ���	� we
see as in ����	 a	 that the central angle� say �j � �j�y	� subtended by
B�ey� er	�T �relative to ey	 satis�es �� �j � �j � �j � ��
�� regardless

of the choice of �j � � y � L or r�� Put �j � tan ��j
	� �
�
j � ����j � n	

and set �
�

j � max f��j � bj� �
�
jg� j � �� �� � � � � where bj � c��j � n	� Let

�k � max��j�k �
�

j � k � �� �� � � � � and observe that ��k	
�
� depends only

on n once � is �xed�
We add �at bumps to ���� as follows� Let y� j be as above and

as in ����	 let S�w� ��	 be such that B�y� ��� r�	 � �� 
 S�w� ��	 and
B�w� ��	 
 �� After a rotation if necessary we may assume that y �

�w�� wn���	� where w � �w�� wn	� Let A � ���
p
���	� � �r� � �r�	���	�

and de�ne � 
 Rn�� �	 R by

��x�	 �

�						
						�

wn � �� � for jx� � w�j � r��

�r�	����A �jx� � w�j � r�	 � wn � �� �

for r� � jx� � w�j � r� � �r�	��� �

wn �
p
���	� � jx� � w�j� �

for r� � �r�	��� � jx� � w�j � �� �

Note that the graph of � coincides with the tangent plane T to S�w� ��	
at y when jx� � w�j � r� and �linearly� connects this tangent plane
with S�w� ��	 when r� � jx� � w�j � r� � �r�	���� Suppose that L �
fz�� z�� � � � � zpg and put Lk � fz�� � � � � zkg� � � k � p�

De�ne b�k� � � k � p� by

bI 	 b�k n � �
z�Lk

B�z� �� r�	
�
� � n

� �
z�Lk

B�z� �� r�	
�
�

bII	 �b�k �B�y� �� r�	 � f�x�� ��x�		g � B�y� �� r�	 �cIII	 b�k � B�y� �� r�	 � f�x�� xn	 
 xn � ��x�	g �B�y� �� r�	 �

whenever y � Lk� Next we de�ne e�k � b�p� � � k � p� relative to b�k
in the same way that �� was de�ned by adding spherical bumps to ��
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That is�

eI	 b�k n � �
z�Lk

B�z� �j rj	
�
� e�k n � �

z�Lk

B�z� �j rj	
�
�

fII	 �e�k �B�y� �j rj	 � B�y� �j rj	 � ��b�k nB�ey� er	 � S�ey� er	 n b�k	�
whenever y � Lk �gIII	 e�k � B�y� �j rj	 � �B�ey� er	 � b�k	 �B�y� �j rj	 whenever y � Lk �

Here ey� er are de�ned as in ����	 relative to y� From the de�nition of

���� we see that b�k � �� e�p � �� for � � k � p� Also from the
de�nition of � and ���	 it can be shown as in �LV� Section �� thatb�k� e�k� � � k � p� are NTA and Lipschitz on scale r� with constant
����� Let b�� � �� e�� � b�p� From the de�ninion of f�kg and our
restriction on � we deduce after a possible rotation and translation
that Lemma ���� can be applied with �� � e��� �� � e��� Next by
the same reasoning we can apply Lemma ���� with �� � e�� and �� �e��� � � � � etc� Let bGk� eGk� b�k� e�k� be the Green�s functions and harmonic
measures relative to � for b�k� e�k� Applying the above argument p times
we obtain an inequality for bGp � eG� and eGp� Using the de�nition of
f�kg�� � we conclude

����	

Z
�ep

jr eGpj log jr eGpj dHn��

�
Z
�bp

jr bGpj log jr bGpj dHn��

� c�n	 ��l��	
��n���

p��X
k
�

e�k�B�zk���  r�		 �
To prove �����	 we must show that bGp� eGp� in ����	 can be replaced by

G�G�� with a manageable error term� To do so we introduce �
�

k� � �
k � p� de�ned by �

�

� � ��� and for � � k � p�

I�	 ��k n
� �
z�Lk

B�z� �� r�	
�
� �� n

� �
z�Lk

B�z� �� r�	
�
�

II�	 ���k � B�y� �� r�	 � �e�k �B�y� �� r�	 �
III�	 ��k � B�y� �� r�	 � e�k �B�y� �� r�	 �
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for each y � Lk� Denote the corresponding Green�s functions and har�
monic measures relative to �� by G

�

k� �
�

k� � � k � p� We shall also
need the following facts about the NTA domain �� with constant ����
satisfying �����	� If z � ��� and � � � � ��� then

���	
���B�z� �		 � c�n	 �n�� max

B�z	
���
G�

� c�n	 �n��G��P
	 � c�n	���B�z� �		 �

where P
 � P
�z	� Moreover�

����	 ���B�z�  �		 � c�n	���B�z� �		 �

����	 is called the doubling inequality for harmonic measure� Also� there
exists � � ��A	 � � so that for z� P
� as above� and x � B�z� �	 � ���

����	 G��x	 � c�n	
� jx� zj

�

��
G��P
	 �

From Harnack�s inequality� it follows that there exists � � ��n	� � �
� ��� with
����	 c�n	���� � ���B�z� �		 � � � � � � � � �

Next we note that if z � ��� and u� v� are two positive harmonic
functions in �� which vanish continuously on ��� n B�z� �	� and P
 �
P
�z	� then for x � �� nB�z�  �	

����	 c�n	��
u�P
	

v�P
	
� u�x	

v�x	
� c�n	

u�P
	

v�P
	
�

Moreover� ����	 is valid when u� v� vanish on ��� � B�z�  �	� and
x � B�z� �	 � ��� ����	 is called the rate inequality� Next since ��

is Lipschitz on scale t� we have for � � t� � t�

����	 t��n�

Z
B�z	t��

jrG�j� dHn�� � c�n	 �t�
��n���B�z� t�			

� �

which is called an L� reverse H�older inequality� Using ����	 and H�older�s
inequality one easily deduces the following A� type condition� If E 

B�z� t�	 is a Borel set� then

����	
���E	

���B�z� t�		
� c�n	

� Hn���E	

Hn���B�z� t�		

����
�
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Also using ����	� ����	 and Jensen�s inequality one deduces�

����	

Z
B�z	t��

jrG�j j log jrG�j j dHn�� � �c�n	 log t� ���B�z� t�		 �

For the proof of ���	�����	 see �JK� sections � and ��� ����	 follows from
����	 and a result of Dahlberg �see �D�	� Using ���	�����	 it follows as
in �LV� �����	� that

�����	

p��X
k
�

��k�B�zk��� � r
�		 � c�n	 �

whenever � is an element of f����� g� We show for � � k � p� � that
Z
�

�

k

jrG�

kj log jrG
�

kj dHn�� �
Z
�

�

k��

jrG�

k��j log jrG
�

k��j dHn��

� c�n	 �r�	��� �
�

k�B�zk��� � r
�		 ������	Z

�bk��

jr bGk��j log jr bGk��j dHn�� �
Z
�bk

jr bGkj log jr bGkjdHn��

� c�n	 �r�	��� b�k�B�zk��� � r�		 �����	

Summing �����	 and using �����	� it then follows that

�����	

Z
��

jrG�j log jrG�j dHn��

�
Z
�ep

jr eGpj log jr eGpjdHn�� � c�n	 �r�	��� �

where we have used the fact that �
�

� � ��� �
�

p � e�p� Summing ����	
and using �����	� we �nd

�����	

Z
�bp

jr bGpj log jr bGpj dHn��

�
Z
�

jrGj log jrGj dHn�� � c�n	 �r�	��� �
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since b�� � �� Putting �����	� �����	 into ����	 we get

�����	

Z
��

jrG�j log jrG�j dHn��

�
Z
�

jrGj log jrGj dHn�� � c�n	 �r�	��� �

Using this inequality in the de�nition of Dm�� we obtainZ
�Dm��

jrGm��j log jrGm��j dHn��

�
Z
�Dm

jrGmj log jrGmj dHn�� � c�n	 �r�	��� ������	

where r� � r��m	� From ���	 and the de�nition of �k following ����	 we
see that

P�
m
��r

��m		��� � �� Hence �����	 is true and the proof of
Theorem � is complete after we prove �����	� ����	�

We prove only �����	 for k � �� since the proof of all the other
inequalities is the same� To prove �����	 for k � � let y � z� in the
de�nition of ��� and let � be as de�ned earlier relative to y� If ey� er are
as in ����	� put

��x�	

�

�
min

�
��x�	� eyn �p�er	� � jw� � x�j� � � for jx� � w�j � er �

��x�	 � for er � jx� � w�j � �� �

Then

���� � B�y� �� r�	 � f�x�� ��x�		g � B�y� ��r�	 �

��� � B�y� ��r�	 � f�x�� xn	 
 xn � ��x�	g �B�y� �� r�	 �

Also if

�x�	 �

�			
			�
min

�
wn �

p
���	� � jx� � w�j�� eyn �p�er	� � jx� � w�j� � �

for jx� � w�j � er �
wn �

p
���	� � jx� � w�j� �

for er � jx� � w�j � �� �
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then

��� �B�y� �� r�	 � f�x�� �x�		g � B�y� �� r�	 �

�� �B�y� �� r�	 � f�x�� xn	 
 xn � �x�	g �B�y� �� r�	 �

Next let

K� � fx� 
 �x�� xn	 � S�ey� er	 � S�w� ��	g �
K� � fx� 
 �x�� wn � ��	 � S�ey� er	g �

K� � fx� 
 r� � jx� � w�j � r� � �r�	���g �

Let K be the set of all x� � R
n�� whose distance from ��i
�Ki is at

most ���� �r�	��� and set

H � fx� 
 jx� � w�j � � r�g nK �

K � � f�x�� xn	 � ��� �B�z�� � r�	 
 x� � Kg �
K �
� � f�x�� xn	 � ���� � B�z�� � r

�	 
 x� � Kg �

We have

�����	

��� Z
���B�z�	�r��

jrG�j log jrG�j dHn��

�
Z
��

�
�B�z�	�r��

jrG��j log jrG��j dHn��
���

�
��� Z

K�

jrG�j log jrG�j dHn�� �
Z
K�

�

jrG��j log jrG��j dHn��
���

�
��� Z

���nK���B�z�	�r��

jrG�j log jrG�j dHn��

�
Z
���

�
nK�

�
��B�z�	�r��

jrG��j log jrG��j dHn��
���

� T� � T� �

To estimate T� we cover K
� by balls of radius �� �r�	��� with centers in

K � and the property that the balls with the same centers and radius
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�r�	��� are disjoint� Using ����	 in each ball and ����	� ����	 with E �
K �� t� � � r� we deduce after summing that��� Z

K��B�z�	�r��

jrG�j log jrG�j dHn��
��� � �c�n	 log r����K �	

� c�n	 �r�	��� ���B�z�� � r
�		 �

This inequality also holds with K �� G�� �� replaced by K �
�� G

�
�� �

�
�� Next

we observe that it follows in the same way as �����	 that ����B�z�� � r
�		

� ���B�z�� � r
�		 where � means the two quantities are constant multi�

ples of each other �depending only on n	� From the above inequalities
we conclude

�����	 T� � c�n	 �r�	��� ���B�z�� � r
�		 �

To begin the estimate of T� we write x for �x
�� �x�		 and bx for �x�� ��x�		

in the following integrals�

T� �
��� Z

���nK���B�z�	�r��

jrG��j log jrG��j dHn��

�
Z
���

�
nK�

�
��B�z�	�r��

jrG��j log jrG��j dHn��
���

�
Z
H

j jrG��j�x	 log jrG��j j�x	j

�
p
� � jr�x�	j� �

p
� � jr��x�	j� j dx�

�

Z
H

j jrG��j�bx	� jrG��j�x	j j log jrG��j j�x	p� � jr��x�	j� dx�
�����	

�

Z
H

jrG��j�bx	j log jrG���x	j � log jrG���bx	j jp� � jr��x�	j� dx�
� U� � U� � U� �

From the de�nition of �� � and ����	 we �nd that

����	 U� � c�n	 �r�	��� ����B�z�� � r
�		 � c�n	 �r�	��� ���B�z�� � r

�		 �

To estimate U�� U� let bx � �x�� ��x�		� x � �x�� �x�		� x� � H� be as in
�����	� Then bx � ���� n K �

� and using the Kelvin transformation it is
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easily seen that G�� extends to a harmonic function in B�bx�  �r�	��� 	�
If � � �r�	���� then from standard estimates for harmonic functions in
balls� ���	� and the fact that jx� bxj � c�n	 �r�	�
��� we obtain

����	

jrG���x	�rG���bx	j � c�n	 jx� bxj ��� max
B�bx	
�

G��

� c�n	 �r���	��G���P
�bx		
� c�n	 �r���	�� ���n ����B�bx� �		 �

Using positivity of G�� and ����	 we also �nd that

���	 c�n	�� ���n ����B�bx� �		 � jrG���bx	j � c�n	 ���n ����B�bx� �		 �
Putting ���	 in ����	 we �nd in view of ���	 that

����	 jrG���x	�rG���bx	j � c�n	 �r�	��	 jrG��j�x	 �

where x � x or bx� From ����	 and ����	 we see that

����	 U� � U� � c�n	 �r�	��� ���B�z�� � r
�		 �

Using ����	� ����	 in �����	 we deduce

����	 T� � c�n	 �r�	��� ���B�z�� � r
�		 �

If x � ��� nK �� bx� and � � �r�	���� are as above� then again using the
Kelvin transformation we deduce �rst that G� � G�� has a harmonic
extension to B�x�  �	 and second that

����	 jrG� �rG��j�x	 � c�n	 ��� max
B�x	
�

jG� �G��j �

We claim that

max
B�x	
�

jG� �G��j � c�n	 max
B�x	
���

jG� �G��j� c�n	
�r�	���

��
G��P
�x		

� c�n	 max
B�x	
���

jG� �G��j� c�n	
�
�r�	���

�

��

�
jrG�j�x	 �����	

The second line of ����	 follows from the �rst line� ���	� ����	� and the
same argument as in ���	� To prove the �rst line of ����	 observe that
if x � S�ey� er	 �K �� then this inequality is obvious since both functions
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are extended by essentially re�ecting across S�ey� er	� Otherwise suppose
z � B�x� �	 and ez� bz denote the re�ection of z with respect to the plane
fu � Rn 
 un � wn � ��g and the sphere S�w� ��	� respectively� Then

jez � bzj � c�n	 �r�	���
�

��
�

Using this fact� the de�nition of the Kelvin transformation� and stan�
dard estimates for functions vanishing on B�x� �	 � S�w� ��	 we obtain
����	� As noted earlier we have

���B�z�� � r
�		 � ����B�z�� � r

�		

so from ���	� we have

G��Pr��x		 � G���Pr��x		 �

Now if � � ��n	 � � is small enough� then from this note and a
barrier type estimate using interior and exterior cones� we deduce for
r� � t �  jx� bxj that
�����a	

c�n	��
� t

r�

������
max fG��Pr��x		� G���Pr��x		g

� min fG��Pt�x		� G���Pt�x		g

and

�����b	

maxfG��Pt�x		� G���Pt�x		g

� c�n	
� t
r�

�����
min fG��Pr��x		� G���Pr��x		g �

We observe that every point of ����B�z�� � r�	 lies within c�n	 �r�	�
��
of a point of ����� From this observation� the maximum principle for
harmonic functions� ����	 and ���	 we see that

����	

max
B�x	
���

jG� �G��j � c�n	 max
���B�z�	�r��

jG��j

� c�n	
� r�
��

�����
G��Pr��x		

� c�n	 �r�	��	G��P
�x		

� c�n	 �r�	��	 � jrG��x	j �



On pseudospheres that are quasispheres ���

Using ����	� ����	 in ����	 we get

�����	 jrG� �rG��j�x	 � c�n	 �r�	��	 jrG��x	j �

Finally from �����	� ����	 we conclude that

T� �
��� Z

���nK���B�z�	�r��

jrG��j log jrG��j dHn��

�
Z
���nK���B�z�	�r��

jrG�j log jrG�j dHn��
���� T�

�
Z
H

j jrG��j�x	� jrG�j�x	j j log jrG��j j�x	
p
� � jr�x�	j� dx�

� c�n	 �r�	��� ���B�z�� � r
�		

�����	

�

Z
H

jrG�j�x	j log jrG���x	j � log jrG��x	j j
p
� � jr�x�	j� dx�

� c�n	 �r�	��� ���B�z�� � r
�		 �

From �����	� �����	 and �����	 we conclude that

����	

��� Z
��

�
�B�z�	�r��

jrG��j log jrG��j dHn��

�
Z
���B�z�	�r��

jrG�j log jrG�j dHn��
���

� c�n	 �r�	��� ���B�z�� � r
�		 �

Next we note that the argument in �LV� from ����	 to ����	 uses only
NTA estimates �primarily ����	 and ����		 so is also valid for our current
domains� Thus

�����	

��� Z
��

�
nB�z�	�r��

jrG��j log jrG��j dHn��

�
Z
��nB�z�	�r��

jrG�j log jrG�j dHn��
���

� c�n	 �r�	��� ���B�z�� � r
�		 �
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From ����	� �����	 we �nd that �����	 is valid for k � �� Fix
� � ��n	 � � subject to the stipulations in sections ��� From our
earlier remarks we conclude �rst �����	 and thereupon that Theorem �
is valid�
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Martin boundary for

homogeneous riemannian

manifolds of negative curvature

at the bottom of the spectrum

Ewa Damek� Andrzej Hulanicki and Roman Urban

�� Introduction�

Let M be a manifold and let L be a subelliptic second order dif�
ferential operator on M � Positive L�harmonic functions have been in�
tensively studied for many decades� In particular� if M has negative
curvature and L is coercive �i�e� there is a positive � such that L� � I
admits the Green function�� the Martin boundary has been described
by A� Ancona �A	� and earlier by M� Anderson and Schoen �AS	 in the
case when L is the Laplace�Beltrami operator� If L is noncoercive� the
situation is much more complicated� there are no results like in �A	� so
various particular cases are of interest�

In this paper we treat noncoercive operators on simply connected
homogeneous manifolds of negative curvature� J� Wolf �W	 and E�
Heintze �Hei	 proved that such a manifold is isometric with a solv�
able Lie group S 
 N A� being a semi�direct product of a nilpotent Lie
group N and A 
 R

� and� moreover� for a H � A the Lie algebra of
A the eigenvalues of AdH jN are all greater than �� Conversely� every
such group equipped with a suitable left�invariant metric becomes a
homogeneous Riemannian manifold with negative curvature�

���
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On S we consider a second order left�invariant operator

L 

mX
j��

Y �
j � Y �

such that Y�� � � � � Ym generate S� Let � � S �� A 
 S�N be the
canonical homomorphism� d��L� is a second order invariant operator
on R� � hence

d��L� 
 �a �a�� � � a �a �

for a � � R� �� a �a is the A�component of Y and L 
 L� is coercive�
if and only if � �
 ��

Let 	t be the semigroup of measures generated by L� � If � � ��
then there is a unique �up to a constant� positive Radon measure 
� on
N such that

	�t � 
� 
 
� � t � �

�E	� For � � � the measure 
� is bounded� while 
� is unbounded� The
measures 
� � � � � have been studied in various contexts �B	� �E	� �G	�
�Ra	� see also �D�	� �D�	� �DH�	� �DHZ	� In particular� the bounded L��
harmonic functions� � � � are described as 
��Poisson integrals �Ra	�
�D�	� �DH�	 of L��functions on N � If � 
 �� the only bounded L�
harmonic functions are constants but the unbounded measure 
� gives
rise to non�trivial positive L� harmonic functions�

Also 
� plays an essential role in description of the Martin bound�
ary for L� �and L��� both in the coercive and the noncoercive case�
However� while the �rst case can be deduced from Ancona�s theory �D�	�
the latter requires new methods� This is the main topic of our study
here�

We make use of a probabilistic method introduced in �DH�	 and
continued in �DHZ	� The essence of it is a decomposition of the di�usion
on S generated by a��L into the �vertical component� generated by
��a�

� � ���a� �a �Bessel process� and the �horizontal component� for
which the transition probabilities conditioned on a trajectory at of the
�vertical component� satisfy some evolution equation �Chapter ��� The
idea of this decomposition is very intuitive and goes back to �M	� �MM	�
cf� also �K	� �S	� �Tay	� The available proofs of the properties of this
decomposition are either very sketchy or quite involved� We give here
a direct proof of it adapted to the situation of our interest�

The main aim of the present paper is to describe the Martin bound�
ary for L� � for all � � R� In addition� we �nd lower and upper pointwise
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bounds for 
� � 
� turns out to be the main building block for all mini�
mal positive L� �

In the simplest two dimensional case� i�e� when S 
 �ax � b�
the description of the Martin boundary is due to Molchanov� �Mo	�
Indeed� his technique is based on properties of the Bessel process� as is
ours� only in the two�dimensional case the operator in the horizontal
direction can be made independent of the vertical direction which makes
the decomposition mentioned above super�uous� and all the arguments
are much simpler�

�� Preliminaries�

Let

����� S 
 N �A

be a solvable Lie algebra which is the sum of its nilpotent ideal N and
a one�dimensional algebra A 
 R

� � We assume that

�����
there exists H � A such that the real parts
of the eigenvalues of adH � N 	�� N are positive �

Let N�A� S be the connected and simply connected Lie groups whose
Lie algebras are N �A�S respectively� Then S 
 NA is a semi�direct
product of N and A 
 R

� �

On S we consider a second order left�invariant operator

L 

mX
j��

Y �
j � Y �

such that Y�� � � � � Ym generate S� It follows from elementary linear alge�
bra that Y�� � � � � Ym can be chosen in the way that Y��e�� � � � � Ym�e� � N �

The decomposition ����� is not unique� i�e� there is no canonical
choice of A� We put A 
 exp ft Y� � t � �g and assume with no loss
of generality that the real parts of the eigenvalues of adY� are strictly
positive� Moreover� multiplying L by a constant we may assume that
the real parts of adY� are large� Decomposing s � S as s 
 xa� x � N �
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a 
 exp �log a��Y��� we write

�����

Lf�xa� 
 L�f�xa�

 ��a �a�

� � � a �a� f�xa�

�
� mX
j��

�a�Xj�
� � �a�X�

�
f�xa� �

where �a 
 Adexp �log a�Y� and X�X�� � � � � Xm are left�invariant vector
�elds on N and X�� � � � � Xm generate N � We shall keep the subscript �
in L in order to stress the role of the A�component of Y �

����� together with the assumption on the length of Y� imply �see
e�g� �DHZ	� that there are m��m� � � and C � � such that

����� k�akN�N 
 C �am� � am�� � a � � �

In N we de�ne a �homogeneous� norm j � j� Let ��� �� be an arbitrary
�xed inner product in N and let

hX�Y i 

Z �

�

��a�X���a�Y ��
da

a
� kXk 


p
hX�Xi �

We put

j expXj 
 jXj 
 �inf fa � � � k�a�X�k � �g��� �

Since for X �
 �

lim
a��

k�a�X�k 
 � �

lim
a�� k�a�X�k 
� �

and a �� k�a�X�k is increasing �

it follows that for every Y �
 � there is precisely one a such that

Y 
 �a�X� � jXj 
 � � jY j 
 a �

If the action of A on N is diagonal� j � j is the usual homogeneous norm
on N � Finally� let

�a�expX� 
 exp �log a�Y� expX exp �� log a�Y�
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i�e� �a is the di�erential of �a�
The space Hb of bounded harmonic functions for L is well known�

If � 
 �� then bounded harmonic functions are constant� This is a
consequence of �BR	 �cf� also �DH�	�� If � � �� Hb is in one�one
correspondence with L��N� via the Poisson integral

����� F �s� 


Z
N

f�s � x�m��x� dx �

where x �� s � x denotes the action of S on N 
 S�A ��Ra	� �DH�	��
m� is a smooth� bounded positive function with d
��x� 
 m��x� dx
whence

R
N
m��x� dx 
 � ��D	�� Moreover �D	�

����� C�� �� � jxj��Q�� 
 m��x� 
 C �� � jxj��Q�� � x � N �

For � � � the function m� is uniquely de�ned by two conditionsZ
N

m��x� dx 
 �

and
P �xa� 
 a�Q �m���a���x�� is L�harmonic �

It turns out that the probability measure m� is also the basic
ingredient in the description of positive harmonic functions for all � �
R�

Let

����� Q 
 Re Tr adY�

and

����� Py�xa� 
 a�Q �m���a�� �y��x�� �

If � � �� the family fPygy�N and the function a� are all the mini�
mal positive L��harmonic functions ��A	� cf also �D�	�� The proofs �as
well as the proof of ������ are based on the Ancona�s potential theory
on manifolds with negative curvature� Since L��f 
 a��L�a�f�� the
minimal positive L���harmonic functions are � and a��Py�xa��

The case � 
 � is essentially di�erent� because Ancona�s theory
does not apply� To examine the Martin kernel we have to estimate
the Green function G� for L� in another way� The �nal description of
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positive minimal L��harmonic functions� however� is very similar to the
case � �
 ��

Let 	t be the semigroup of probability measures with the in�nites�
imal generator L� and let 	 
 	�� The Markov chain on N with the
transition probability

P �x�B� 
 �	 � x�B� � x � N � B  N �

is a Harris chain with the unique �up to a multiplicative constant�
positive Radon measure 
� such that �	 � 
� 
 
�� �E	� 
� has a smooth
density m� which is not integrable in contrast to m� � � � ��

The aim of this paper is to show

Theorem� The minimal positive L��harmonic functions normalized at

e are

�����

the constant function �

and Py�xa� 

�

m��y�
a�Q �m���a�� �y��x�� �

Moreover� we have

����� C�� �� � jxj��Q 
 m��x� 
 C �� � jxj��Q � x � N �

To prove the theorem we proceed in the following way� For � 

��� 
 � we de�ne a new operator

L� 
 a��L�

which is not left�invariant on S� We study it on the space N�R� � How�
ever� it has some homogeneity with respect to the family of �dilations�
Dr� r � � on N � R

�

Dr�x� a� 
 ��r�x�� ra� �

We have

������ L��f �Dr� 
 r�L�f �Dr �

Also L� commutes with the natural action of N on N �R� on the left�
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The Green function G� for L� is given by

������ G��x� a� y� b� 


Z �

�

pt�x� a� y� b� dt �

where

Ttf�xa� 


Z
N�R�

f�y� b� pt�x� a� y� b� b
���� dy db

is the heat semigroup on L��a����� generated by L� �see Theorem �����
By ������

������ pr�t�x� a� y� b� 
 r�Q����� pt�Dr���x� a��Dr���y� b��

and so

������ G��x� a� y� b� 
 r�Q���G��Dr���x� a��Dr���y� b�� �

The operator L�� conjugate to

L� 
 ��a � ��� �� a�� �a � a��
mX
j��

�a�Xj�
� � a���a�X� �

with respect to the measure a���� dx da is

L�� 
 ��a � ��� �� a�� �a � a��
mX
j��

�a�Xj�
� � a���a�X� �

Clearly�
p�t �x� a� y� b� 
 pt�y� b�x� a�

and

������ G���x� a� y� b� 
 G��y� b�x� a� �

Although the case � 
 � is the most interesting for us� we keep the
assumption � 
 � to stress that our method works for all those cases� In
particular� we obtain new proofs of ����� and ������ �Again conjugating
the operator by a� ��

Let G� be the Green function for L� � � 
 �� G� is uniquely de�ned
by the following two conditions

������ L� G��� � yb� 
 �yb � as distributions �
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�Functions are identi�ed with distributions via the right Haar measure
a�� da dx��

������ For every yb � S� G���� yb� is a potential for L� �

It turns out that

������ G��x� a� y� b� b
�� 
 G��xa� yb� �

Since the notions of potentials for L� and L� coincide� the only condi�
tion to check is ������� By Theorem ����� we have

Z
G��x� a� y� b�L

�
���x� a� a

���� da dx 
 ���y� b� �

ButZ
G��x� a� y� b�L

�
���x� a� a

���� da dx




Z
G��x� a� y� b� a

���L����x� a� a
�� da dx




Z
G��x� a� y� b� a

��L����x� a� a�� da dx �

which shows �������
Using ������ we describe the Martin boundary for L� �Theorem

����� The case � �
 � was described in �D�	� For that we heavily use
������ to �nd appropriate estimates for Martin kernels�

������ can be extended to b 
 � �see Lemma ����� and ������ as the
limit of G��x� a� y� bn�� bn �� �� More precisely�

G��x� a� y� �� 
 lim
bn��

G��x� a� y� bn�

as Radon measures� Then

������ �m��x� 
 G���x� �� e� �� � � � � �

������ follows from the fact that

G���x� a� e� �� 
 a�Q���G����a���x�� �� e� ��
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is L���harmonic� Hence a�Q��� �m���a���x�� is L���harmonic� and so
a�Q �m���a���x�� is L��harmonic� But the last condition implies that
for every t

�	t �m� 
 m� � � � � �
which uniquely determines m� �

Hence� from estimates on G we conclude estimates for m� �

�� Bessel Process�

Let b��t� denotes the Bessel process with a parameter � � �� �RY	�
i�e� a continuous Markov process with state space ������ generated
by  
 ��a � ���� ��a� �a� � � ��

The transition function with respect to the measure y���� dy is
given by ��RY	�

pt�x� y�




����
���

c���
�

� t
exp

��x� � y�

� t

�
I�

�x y
� t

� �

�x y��
� for x� y � � �

c��� �� t������� exp
��y�
� t

�
� for x 
 �� y � ��

�����

where

I��x� 

�X
k��

�x
�

��k��
k! "�k � �� ��

is the Bessel function �L	� Therefore� for x � � and B  ������

Px�b��t� � B� 


Z
B

pt�x� y�y
���� dy �

The Bessel process appears as the vertical component of the di�usion
generated by L� � � 
 ���� The aim of this chapter is to recall the
basic properties of the process b��t�� The proofs are rather standard�
we sketch them brie�y for reader�s convenience�

Lemma ���� Let # be the space of trajectories of the Bessel process

b��t�� For b� � # and � � � de�ne ���b���t� 

p
� b��t���� Assume

that b��t� starts from x� Then �
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i� for every � � �� ebt 
 ���b���t� is the Bessel process �with a

parameter �� starting from
p
� x�

ii� for every � � �� x � ��

Exf � �� 
 Ep�x f �

The Bessel process b� on R
� started at x � � satis�es the following

stochastic di�erential equation �RY� p� ���	�

b��t� 
 x� ��t� � ���� ��

Z t

�

�

b��s�
ds �

where ��t� is the one�dimensional Brownian motion started at �� Con�
sequently� we have

Px�b��s� 
 �	 
 P��b��s� 
 �	 and Px�b�s� 
 �	 
 Px���s� 
 �	 �

Also� by the comparison theorem �RY� p� ���	�

� 
 �� then for all s � � � b��s� 
 b���s� � almost everywhere �

whence
b��s� 
 j�n�s�j � where n 
 ���	 � � �

and �n is the n�dimensional Brownian motion�

Lemma ����

Pa� max
��s�t

���s� 
 �	 
 e���t��
�� �

Indeed� Let q 
 P������� 
 �	� Then q � � and

Pa� max
��s�t

b��s� 
 �	 
 Pa��� max
��s�t���

b��s� 
 �	


 E�

�t���	Y
k��

Pb��k��b���� 
 �	


 q�t��
�	


 e���t��
�� �
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Lemma ���� There exist constants c�� c� such that for every R � �
and for every t � ��

PR

�
inf

s����t	
b��s� �

R

�

�

 c�e

�c�R��t �

Indeed�

PR
h
inf

s����t	
b��s� �

R

�

i

 PR

h
inf

s����t	
��s� �

R

�

i

 c� e

�c�R��t �

Lemma ��	� There exist constants c�� c� such that for every x � ��
for every � � � and for every t � ��

Px� sup
s����t	

b��s� � x� �� 
 c� e
�c����t �

Indeed� for n 
 ���	 � �

Px� sup
s����t	

b��s� � x� �� 
 Px� sup
s����t	

�n�s� � x� �� 
 c� e
�c����t �

Lemma ��
� Let � � �� There are constants � c�� c� � � such that for

every a � � and A � ��

Pa

� Z �

�

b���s� ds � A
�

 c� e

�c�A�� �

Proof� Given positive � we have

Pa

�Z �

�

b��s� ds � A
�


 Pa

�
sup
s�����	

b��s� 
 �A	
	

�Pa

�
sup
s�����	

b��s� � �A
	� jfs � b��s� � A	gj � A��	�	 �

By Lemma ����

Pa

�
sup
s�����	

b��s� 
 �A	
	 
 c� e

�c�A�� �
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To estimate the probability of

# 



sup
s�����	

b��s� � �A
	� jfs � b��s� � A	gj � A��	�� �

we de�ne the stopping time � 
 inf fs � b��s� 
 �A	g� Then by Lemma
����

Pa�#� 
 EaPb��
�

�
inf

s����A����	
b��s� �

b����

�

�

 c� e

�c�A�������

�

We choose  such that �  � � �  � � ��

Corollary ���� Let � � �� Then

sup
a	�

Ea

�Z �

�

b���s� ds
��D��

� �� �

Proof� Since by the previous Lemma

Pa

� �

n� �


Z �

�

b���s� ds 

�

n

�

 c�c�n

�

� �

we have

Ea

�Z �

�

b���s� ds
��D��



X
n

�n� ��D��e�c�n
�

� �� �

�� Solution of a heat equation on the product N � R
� �

In this chapter we give an analytic proof of the decomposition of the
di�usion on N �R� into its components� Using it we �nd a convenient
formula for the solution of the heat equation

�L� � �t�u�t� x� a� 
 � �

For a multi�index � 
 ���� � � � � �k�� �j � Z� and a basis X�� � � � � Xn of
the Lie algebra N of the Lie group N we write

X� 
 X��
� � � �X�n

n �
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For k 
 �� �� � � � �� we de�ne

Ck 
 ff � X�f � C�N�� for j�j � k � �g

and

Ck
� 
 ff � Ck � lim

x��X�f�x� exists for j�j � k � �g �

For k �� the space Ck� is a Banach space with the norm

kfkCk
�


X
j�j�k

kX�fkC�N� �

Let
L��t� 
 ��t���

�X
����t��Xj��

� � ���t��X�
�
�

For a continuous function � � ������ �� ������ 
 A let fU��s� t��
� � s � tg be the �unique� family of bounded operators on C� 
 C��
which satis�es

i� U��s� s� 
 I�

ii� U��s� r�U��r� t� 
 U��s� t�� s � r � t�

iii� �sU
��s� t�f 
 �L��s�U��s� t�f � for every f � C��

iv� �tU
��s� t�f 
 U��s� t�L��t�f for every f � C��

v� U��s� t� � C�� �� C���

U��s� t� is a convolution operator U��s� t�f 
 f � p��t� s�� where
p��t� s� is a probability measure with a smooth density� By ii� we have
p��t� r� � p��r� s� 
 p��t� s� for t � r � s� Existence of U��s� t� follows
from �T	�

Let dWa be the probability measure on the space C��������R� ��
for the Bessel process b��t� 
 bt�

For f � C�c �N� we de�ne

�����
u�t� x� a� 


Z
U���� t�f�x� ��t�� dWa���


 EaU
���� t�f�x� ��t�� �
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Theorem ���� Let � 
 ��� and let u 
 u�t� x� a� be the function on

N de�ned by ������ Then

L�u�t� x� a� 
 �tu�t� x� a� � on R� �N � R
� �

u is continuous and

����� u��� x� a� 
 f�x� a� � when t �� � �

Proof� First� we prove that u 
 u�t� x� a� de�ned in ����� is a solution
of the integral equation

����� u�t� x� a� 
 Eaf�x� bt� �

Z t

�

EaL�bt�s�u�s� x� bt�s� ds �

To do this we observe that EaL�bt�s�u�s� x� bt�s� is �nite� Let Y��
� � � � Yn be a �xed basis of N � Then

�aXj 
 �j��a�Y� � � � �� �jn�a�Yn �

where �ji �s are continuous functions and j�ji �a�j 
 C �am��am��� More�
over�

Yk

Z
f �N p��s� ���x� �s� dWa���

and

Yk Yl

Z
f �N p��s� ���x� �s� dWa���

are bounded for x in a compact set� We have

L�a�u�s� x� a�


 L�a�

Z
U���� s� f�x� �s� dWa���


 L�a�

Z
f �N p��s� ���x� �s� dWa���


 a��
X
j�k�l

�jk�a��
j
l �a�Yk Yl

Z
f �N p��s� ���x� �s� dWa��������

� a��
X
j�k

�jk�a�Yk

Z
f �N p��s� ���x� �s� dWa���
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and� by the above remarks

����� jL�a�u�s� x� a�j 
 C �am� � am�� �

where

m
 
 min fm��m�� �m�� �m��m� �m�g � � � �
and

m� 
 maxfm��m�� �m�� �m��m� �m�g � � �
It follows that Ea L�bt�s�u�s� x� bt�s� is �nite� Indeed� by ����� and
������ proceeding as before �i�e� replacing a by bt�s� we obtain

jEa L�bt�s�u�s� x� bt�s�j 
 C Ea�b
m�
t�s � bm�

t�s� �

Now we calculate

EaL�bt�s�u�s� x� bt�s�




Z
L�bt�s�u�s� x� bt�s� dWa�b�




Z
L�bt�s�

Z
U���� s� f�x� �s� dWbt�s��� dWa�b�




ZZ
L�bt�s�U���� s� f�x� �s� dWbt�s��� dWa�b�




Z
L�bt�s�U b�t� s� t� f�x� bt� dWa�b� �

By ������ and the Fubini�s theorem we obtain

Z t

�

EaL�bt�s�u�s� x� bt�s� ds




ZZ t

�

L�bt�s�U b�t� s� t� f�x� bt� ds dWa�b� �

but

Z t

�

L�bt�s�U b�t� s� t� f�x� bt� ds 
 U b��� t� f�x� bt�� f�x� bt� �
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Indeed by iii� we get

d

ds
U b�t� s� t� f�x� bt� 
 � d

ds
U b��� t� f�x� bt�

���
t�s


 ���L�bt�s�U b�t� s� t� f�x� bt��


 L�bt�s�U b�t� s� t� f�x� bt� �

Therefore�

Z t

�

EaL�bt�s�u�s� x� bt�s� ds




Z
U b��� t� f�x� bt� dWa�b��

Z
f�x� bt� dWa�b�


 u�t� x� a�� Eaf�x� bt� �

Now we are going to prove that u is a solution of the di�erential equation
������ Since u is a solution of ����� we have

u�t� h� x� a�� u�t� x� a�

h



Eaf�x� bt�h��Eaf�x� bt�

h
�
�

h

Z t

�

�EaL�bt�h�s�u�s� x� bt�h�s�

�EaL�bt�s�u�s� x� bt�s�� ds

�
�

h

Z t�h

t

EaL�bt�h�s�u�s� x� bt�h�s� ds �

Let  be the in�nitesimal generator of the Bessel process i�e�

 
 ��a �
��� �

a
�a �

Letting h to � we get

�tu�t� x� a�


  Eaf�x� bt� �  

Z t

�

EaL�bt�s�u�s� x� bt�s� ds� L�a�u�t� x� a�

in a sense of distributions�
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On the other hand� since u is a solution of ����� thus

Lu�t� x� a�


 �L�a� �  �u�t� x� a�


 L�a�u�t� x� a� �  
�
Eaf�x� bt� �

Z t

�

EaL�bt�s�u�s� x� bt�s� ds
�


 L�a�u�t� x� a� �  Eaf�x� bt� �  

Z t

�

EaL�bt�s�u�s� x� bt�s� ds �

So u is a solution of ������

Theorem ���� Let

Ttf�x� a� 


Z
U���� t� f�x� �t� dWa��� �

Then fTtg is a semigroup�

Proof�

Ts�Ttf��x� a� 


Z
U b��� s�Ttf�x� bs� dWa�b�




Z
U b��� s�

Z
U���� t� f�x� �t� dWbs��� dWa�b�




Z
U b��� s�U b�s� s� t� f�x� bs�t� dWa�b�




Z
U b��� s� t� f�x� bs�t� dWa�b�


 Ts�tf�x� a� �

where in the third equality we have used the Markov property�

�� Estimate of the evolution kernels by the Nash inequality�

Let X�X�� � � � � Xm be as in ������

La 
 a��
� mX
j��

��aXj�
� � �a�X�

�
�

 � 

mX
j��

X�
j �
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and
 
  � �X �

Let � � ������ �� ������ be a continuous function such that ��t� � �
for t � �� and p��t� s� x� 
 p��t� s��x�� s � t be the evolution generated
by the operator L��t� � �t�

The aim of this Chapter is to prove the following estimate for
p��t� �� x��

Theorem ���� For every compact set K  N � which does not contain

the identity element e of N � there exist positive constants C�� C�� m
�

m� and n 
 Q such that for every x � K and for every t�

p��t� �� x� 
 C�

�Z t

�

������Q�n��u� du
��n��

exp
�
� C�

A��� t�

�
�

where

A�s� t� 


Z t

s

��m��u� � �m��u�� du �

The main tool in the proof of the above theorem is the Nash in�
equality �see e�g� �VSC	�

����� kfk����nL� 
 �C � f� f� kfk��nL� 
 � �f� f� kfk��nL� �

for all f � C�� �N�� where d is the local dimension of �N�X�� � � � � Xm�
and D is the dimension at in�nity of �N�X�� � � � � Xm� n is any num�
ber satisfying d 
 n 
 D�see �VSC	�� Let Qt be the heat semi�group
generated by  �� Then

kQtkL��L� 
 C


t�d�� � if t 
 � �
t�D�� � if t � � �

�Theorem IV���� in �VSC	� and so ����� follows by the Nash theorem
�Theorem II���� in �VSC	�� Since we can make Q arbitrarily big �see
����� � 
 �� ���Q�n� is positive�

Proof of Theorem ���� We start with some integral estimates on
f � p��t� s��

Let � 
 � � C�c �N�� supp�  Br�e� and
R
� 
 � �r will be �xed

later�� Let ��x� 
 � ���x� where � is a left invariant Riemannian metric



Martin Boundary for homogeneous riemannian manifolds ���

on N � There exists a positive constant C such that if Y�� � � � � Yn is a
�xed basis of N then

����� jYj ��x�j 
 C � jYi Yj ��x�j 
 C � for i� j 
 �� � � � � n

�H	� Moreover�

����� ��x� 

Z
���x y��� � ��y����y� dy 
 ��x� � r �

and

����� ��e� 


Z
��y�����y� dy 
 r �

For a natural number m let �m�x� 
 �m � ��x�� where

�m�x� 
 min fm� ��x�g �

Then there exists a positive constant C such that for every m� ������
����� and ����� hold with �m and �m instead of � and � respectively�

We have

����� ��s�f � p��t� s�� e�m� 
 ��f � p��t� s�� L���s�e�m��

����� is obvious� if instead of e�m we put e�m�� where � � C�� �N��
So to conclude ����� we take the sequence �j 
 � � �aj for � � C�� �N�
such that ���� 
 � and aj �� �� Since �aj �x� �� e for every x � N
and� by ������ j�aj �Xj��j �� �� we obtain ����� as the limit of

�s�f � p��t� s�� e�m�j� 
 ��f � p��t� s�� L���s��e�m�j�� �

Therefore� by ����� and ������

�s�f � p��t� s�� e�m�

 C ��� �������s� ��m��s� � �m��s��� �f � p��t� s�� e�m�
� C �����s� ��m��s� � �m��s�� �f � p��t� s�� e�m� �

Thus

�s�f � p��t� s�� e�m�
�f � p��t� s�� e�m� 
 C ��� ��� ��m��s� � �m��s�� �



��� E� Damek� A� Hulanicki and R� Urban

and so

�f � p��t� s�� e�m� 
 �f� e�m� exp �C ��� ���A�s� t�� �

where

A�s� t� 


Z t

s

��m��u� � �m��u�� �

Therefore�

�p��t� s�� e�m� 
 e�m�e� exp �C��� ���A�s� t��


 e�r exp �C ��� ���A�s� t�� �

Now for m ��� ����� and ����� yield

�����
�p��t� s�� e�
� 
 �p��t� s�� e���r��


 e��r exp �C ��� ���A�s� t�� �

The next step is the Nash inequality for La� Applying ����� to f � �a
we obtain

a�Q�����n�kfk������n�L� 
 �C a�Q�a�Laf� f� a��Q�n kfk��nL�


 �C a�Q����Q�n�Laf� f� kfk��nL� �

Thus

����� kfk������n�L� 
 �C a����Q�n��Laf� f� kfk��nL� �

Now we proceed similarly as in the case of semigroups �e�g� �VSC	��
For a function � 
 f � C�c �N� such that

R
f 
 � we de�ne

fs�x� 
 f � p��t� s��x� � hs�x� 
 kfsk�L� �

Then

��shs 
 ��s�fs� fs�

 � �L��s�fs� fs�


 ��C��������Q�n��s� kfsk������n�L�


 �C ������Q�n��s�h����ns �
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�By ����� we may exchange �s with the integral�� So

��shs h�����ns 
 �C ������Q�n��s� �

Hence

�
Z t

s

�uhu h
�����n
u du 


n

�
h���nu

���u�t
u�s


 �C
Z t

s

������Q�n��u� du �

Thus
n

�
�h
���n
t � h���ns � 
 �C

Z t

s

������Q�n��u� du �

Since h
���n
t � ��

�n
�
h���ns 
 �C

Z t

s

������Q�n��u� du

and so

kf � p��t� s�kL� 
 h���s 
 C
� Z t

s

������Q�n��u� du
��n��

kfkL� �

Therefore�

kp��t� s�kL� 
 C
� Z t

s

������Q�n��u� du
��n��

kp��t� s�kL� 
 kp��t� u�kL�kp��u� s�kL�


 C
� Z t

�

������Q�n��u� du
��n��

�����

�
�Z �

s

������Q�n��u� du
��n��

�

Taking � such that

������

Z �

s

������Q�n��u� du 

Z t

�

������Q�n��u� du



�

�

Z t

s

������Q�n��u� du
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we obtain

kp��t� s�kL� 
 C
�Z t

s

������Q�n��u� du
��n��

�

By the subadditivity of the metric � � estimates ����� and ����� we have

p��t� �� x� e�
�x�



Z
p��t� s� x� p��s� �� x y��� e�
�y� e�
�xy

��� dy


 kp��t� s�k���L� kp��s� ��k���L� �p
��t� s�� e��
���� �p��s� ��� e��
����


 C
�Z t

s

������Q�n��u� du
��n���Z s

�

������Q�n��u� du
��n��

� e��r exp �C ��� ���A�s� t�� exp �C ��� ���A��� s��


 C
�Z t

s

������Q�n��u� du
��n���Z s

�

������Q�n��u� du
��n��

� e��r exp �C ��� ���A��� t�� �

Now for the s such that in the last product the �rst two factors are
equal we obtain

p��t� �� x� e�
�x�


 C
�Z t

�

������Q�n��u� du
��n��

e��r exp �C ��� ���A��� t�� �

If � 
 � ��x��A��� t�� then

p��t� �� x� 
 C
� Z t

�

������Q�n��u� du
��n��

� exp
�� � r ��x�

A��� t�
� C � ��x� �

C �� ���x�

A��� t�
� � ���x�

A��� t�

�
�

Now our assumptions on K imply that we may neglect C � ��x� and we
can �nd r such that r � ��x����� x � K� Moreover� we assume that
C � � ���� Then

p��t� �� x� 
 C
�Z t

�

������Q�n��u� du
��n��

exp
��� ���x�
�A��� t�

�
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and the proof is completed�

Theorem ����� Assume that

������ � 
 ��s� 
 $ � for s � �r� r � T 	 �

Given � � T� � T� � T and a neighborhood B of e� we can �nd C � �
independent on r such that

������ p��r� r � t� � C � for z � B � � � T� 
 t 
 T� � T �

and any � satisfying �������

Proof� Although we have an evolution here� not a semigroup� the
proof of ������ is the same ��SS� p� �������	�� It is based on the Poincar%e
inequality and upper bound estimates we have just proved� Let �a be
the optimal control metric de�ned by the vector �elds a���a�X��� � � � �
a���a�Xm� and let Br�a 
 fx � N � �a�x� � rg� Then

������

min
z�R

Z
Br�a

jf�x�� zj� dx 

Z
Br�a

jf�x�� fr�aj� dx


 C r�
Z
B�����r�a

jrf�x�j� dx �

where�

fr�a 

�

jBr�aj
Z
Br�a

f�y� dy and jrf j� 

mX
j��

�Xj�
� �

The constant C does not depend on a� r� ������ implies

������

min
z�R

Z
jf�x�� zj�&a�r�x� dx 


Z
jf�x�� f�r�a

j�&a�r�x� dx


 C r�
Z
jrf�x�j�&a��r�x� dx �

where

f�a�r



Z
f�y�&a�r�y� dyZ
&a�r�y� dy
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and

&a�r�x� 


��
�
��� �a�x�

r

��
� if �a�x� � r �

� � if �a�x� � r �

and c does not depend on a� Having ������ we follow the argument on
�SS� p� �������	�

	� Green function for L��

Let
Ttf�x� a� 
 EaU

���� t� f�x� �t�

be the semigroup of operators generated by L� � Since

jEaU
���� t�f�x� �t�j 
 kfkL� and EaU

���� t�f�x� �t� � � for f � � �
for every x � N� a � �� t � �� there exists a probability measure
pt�x� a� �� �� such that

Ttf�x� a� 


Z
N�R�

f�y� b� pt�x� a� dy� db� �

Moreover� pt�x� a� �� �� � L��N � R
� � dx� a���� da�� Indeed�

jU���� t�f�x� ��t��j 
 kp��t� ��kL�� dx�

�Z
jf�x� ��t��j� dx

����
�

Therefore�

jTtf�x� a�j 
 �Eakp��t� ��k�L��dx��
���
�
Ea

Z
jf�x� ��t��j� dx

����

 c�a� t� �Eakp��t� ��k�L�� dx��

���kfkL��dx
a����da�

because for a �xed t the kernel ����� is bounded as a function of space
variable� By ������ Lemma ��� and Corollary ����� Eakp��t� ��k�L�� dx� �
� and so� for every t� x� a�

pt�x� a� �� �� � L��N �R�� dx� da���� da� �

Now a standard argument shows that for �xed x � N � a � ��

����� �L� � �t� p��x� a� �� �� 
 � �
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We want to have ����� also for a 
 ��

Lemma 	��� Given f � C�c �N � R
� � R

��� we have

�����

lim
a��

Z
pt�x� a� y�b� f�y� b� t� dyb

����db dt




Z
pt�x� �� y� b� f�y� b� t� dyb

���� db dt �

Proof� We rewrite ����� as

lim
a��

EaU
���� t� f�x� ��t�� t� 
 E�U

���� t� f�x� ��t�� t� �

Since the trajectories are continuous� it is enough to show that
U���� t� f�x� ��t�� t� is a continuous function of the trajectory �� For an
arbitrary �xed T � � let

d��� ��� 
 sup
t����T 	

j��t�� ���t�j �

We have

�����

U��s� t� f�x� ��t�� t�� U���s� t� f�x� ��t�� t�


 U��s� t� f�x� ��t�� t�� U��s� t� f�x� ���t�� t�

� U��s� t� f�x� ���t�� t�� U���s� t� f�x� ���t�� t�

and

jU��s� t� f�x� ��t�� t�� U��s� t� f�x� ���t�� t�j

 sup

x�t
jf�x� ��t�� t�� f�x� ���t�� t�j �

which clearly tends to � if d��� ��� �� �� The second term in ����� can
be written as

U��s� t� f�x� ���t�� t�� U���s� t� f�x� ���t�� t�




Z t

s

U��s� r� �L��r�� L���r��U
���r� t� f�x� ���t�� t� dr �

It also tends to �� because for � � �

lim
����

Z t

�

j��r � ���r j 
 � �
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which completes the proof of Lemma ����

Now we are ready to study the Green function for L� in greater
detail� Let

����� G��x� a� y� b� 


Z �

�

pt�x� a� y� b� dt �

The previous lemma� applied both to L� and L
�
� � says that pt�x� a� y� b�

is well de�ned also for a � �� b � � or for a � �� b � �� Therefore
G��x� a� y� b� is de�ned for arbitrary x� y in N and a� � b� � ��

Theorem 	�
� G� is the Green function for L�� More precisely�

G���� �� y� b� � L�loc�N � R
� � ������

L�G���� �� y� b� 
 ��y�b� ������

G���� �� y� b� is a L��potential ������

and

G��x� a� �� �� � L�loc�N � R
�� �������

L��G��x� a� �� �� 
 ��x�a� �������

G��x� a� �� �� is a L���potential �������

In particular�

L��G��x� �� �� �� 
 � on N � R
� �������

L�G���� �� y� �� 
 � on N � R
� �������

Finally� given � � �� there exists C � � such that

������ C�� 
 G��x� a� y� b�
 C �

whenever jxj � �� � 
 a � �� jyj 
 �� b 
 � or jyj � �� � 
 b � ��
jxj 
 �� a 
 �� respectively�
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Proof� Since the heat semigroup p�t �x� a� y� b� corresponding to L�� is
given by p�t �x� a� y� b� 
 pt�y� b�x� a� it is enough to prove ��������������
First we notice thatZ �

�

Tt��x� a� dt �� � for � � C�� �N � R
�� �

Indeed� if t � � then jTt��x� a�j 
 k�kL� and the beginning of the
proof of Lemma ��� shows that

Z �

�

Tt��x� a� dt �� �

To prove ������ we write

Z
R�

Z
N

L��G��x� a� y� b���y� b� dyb
���� db




Z
R�

Z
R�

Z
N

pt�x� a� y� b�L���y� b� dy b
���� db dt������


 lim
t���
t���

Z t�

t�

Z
R�

Z
N

pt�x� a� y� b�L���y� b� dy b
���� db dt �

because ������ is absolutely convergent� But

������

Z
R�

Z
N

pt�x� a� y� b�L���y� b� dy b
���� db 
 �tTt��x� a� �

Moreover�
lim
t���

Tt���x� a� 
 ���x� a�

and by ������ Corollary ���� Lemma ���

jTt���x� a�j 
 C Ea

�Z t�

�

b��s� ds
��D��

�

which tends to �� when t� ��� This proves ������ and ������� To show
that G��x� a� �� �� is L���potential we consider an L���harmonic function
h satisfying

� 
 h�y� b� 
 G��x� a� y� b�
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and apply T �r to it� Then� on one hand side

T �r h�z� c� 
 h�z� c� �

and on the other�

T �r h�z� c� 

Z �

�

pt�r�x� a� z� c� dt �� � � for �z� c� �
 �x� a� �

Hence h 
 �� ������ is a direct consequence of the next Lemma�

Lemma 	���� Given � � �� � � �� D � �� a� � �� there is C such

that if a 
 a�� � � b � �� � � � � �� then

Z �

�

Ea

�Z t

�

b���s� ds
��D��

e�c�A���t�

� 	��b� �� b� �	��� �fb� b��t���b��b�	g dt � C �

where A��� t� is de�ned in Theorem ��� and 	�A� 

R
A
r���� dr�

Proof� Assume �rst that t � �� Then� by the Markov property� it is
enough to estimate

������

Z �

�

Ea

�Z t��

�

b���s� ds

��D��
� 	��b� �� b� �	���Eb��t��� �f�����t�����b��b�	g���� �

But by ����� and Lemma ���

Eb��t��� �f�����t�����b��b�	g���� 
 C t���� 	��b� �� b� �	� �

On the other hand by Lemma ���

Ea

�Z t��

�

b���s� ds
��D��


 ��������D�� t��������D��Ea�
p
t

�Z �

�

b���s� ds
��D��

�

Now� Corollary ��� implies that ������ is dominated by a constant for
every a� b� ��
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Let t � �� First we notice that for every M� c � � there is C such
that e�c�x 
 C xM for every x � �� Therefore� it su'ces to estimate

Z �

�

Ea

�Z t

�

b���s� ds
��D��

A��� t�	��b��� b��	����fb� b��t���b��b�	g �

where

A��� t� 


Z t

�

�bm�
� �s� � bm�

� �s�� ds �

Since

A��� t�M 
 C
��Z t

�

bm�
� �s� ds

�M
�
�Z t

�

bm�
� �s� ds

�M�
�

we are left with

I 


Z �

�

Ea

�Z t

�

b���s� ds
��D���Z t

�

bmj
� �s� ds

�M
� 	��b� �� b� �	��� �fb� b��t���b��b�	g�b�� � ��mj � � �

and so� in view of the Schwartz inequality� we are to estimate

I� 


Z �

�

Ea

� Z t

�

b���s� ds
��D

�fb� b��t���b��b�	g�b�� �

and

I� 


Z �

�

Ea

�Z t

�

bmj
� �s� ds

��M
�fb� b��t���b��b�	g�b�� �

By Lemma ��� and Corollary �������

I� 
 t��������D Ea�
p
t

�Z �

�

b���s� ds
��D

� �fb� b�������b���pt��b���pt	g�b��


 t��������D Ea�
p
t

�Z ���

�

b���s� ds
��D

�Eb������ �f������������b���
p
t��b���

p
t	g����


 C t�������D���� 	��b� �� b� �	� �
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Let #�� 
 fb� � sups�����	 b��s� 
 a�g and

#m 



b� � a� �m � sup

s�����	
b��s� 
 a� �m� �

�
� m 
 �� �� �� � � �

Then

I� 

�X

m���
Ea

�Z t

�

bmj
� �s� ds

��M
��m

�b���fb� b��t���b��b�	g�b�� �

We treat the cases m 
 ��� �� � and m � � separately� For m 
 ��� �� �
we have

Ea

�Z t

�

bmj
� �s� ds

��M
����������

�b���fb� b��t���b��b�	g�b��


 C t�M���� 	��b� �� b� �	� �

Let � � �� � ���� A 
 �
P�

n�� �
�n����� Then

#m 
��
n��

�n���
k��

#m�n�k �

where

#m�n�k 

n
b� � b�

�k t
�n

�
� b�

� �k � �� t
�n

�
�

mA

�n��

o
�

Indeed� since b��t� 
 � and sups����t	 b��s� � �� we can always �nd n
and k � �n such that b� � #m�n�k� Therefore� by Lemma ������

Ea

�Z t

�

bmj
� �s� ds

��M
��m�n�k

�b���fb� b��t���b��b�	g�b��

� t�M �a� �m� ���Mmj Ea��m�n�k
�b��Eb��kt��n�

� �f�� s��t�kt��n���b��b�	g����

 C t�M�����a� �m� ���Mmj �n����� 	��b� �� b� �	

�EaEb����k���t���n� �f�����t��n��mA��n��������g����


 C t�M�����a� �m� ���Mmj �n����� 	��b� �� b� �	�

� exp
�
� c�m

�A� �n�������

t

�
�



Martin Boundary for homogeneous riemannian manifolds ���

Hence�
I� 
 C tM���� 	��b� �� b� �	�

and �nally�

I 
 C

Z �

�

t���������D����M���� dt � �� �

Now we pass to the lower estimate for the Green function� Let
jyj 
 �� � � � and let � be a family of smooth functions with the
properties� supp �  fz � N � jy��zj � �g� � � ��

R
��z� dz 
 ��

Finally� let �� � � 
 	��b� �� b� �	��� ��b��b�	� � ��

Lemma 	���� Given a� � � and a compact set K  N � there is c � �
such that for every a 
 a�� � � b � �� � � � � ��

Z �

�

EaU
b��� t���x���b��t�� dt � c � x � K �

Proof� Let d�D be positive numbers which will be chosen later� We
consider the set

# 



b� � sup

s����t	
b��s� 
 D� inf

s��t���
t��	
b��s� � d

�
�

and we estimateZ �

�

Ea� � pb�t� ���x����b��	��b� �� b� �	��� �fb� b��t���b��b�	g�b��

from below� We have

� � pb�t� ���x�




ZZ
� � pb

�
t�
� t

�

�
�z� pb

�� t
�
�
t

�

�
�z�� x y��� pb

� t
�
� �
�
�y� dz dy �

In view of ������ we choose a compact set K� such that for b � # and
� 
 t 
 ��Z

K�

� � pb
�
t�
� t

�

�
�z� dz � � � � �

Z
K�

pb
� t
�
� �
�
�y� dy � � � � �
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where � 
 ��A�� Then� by Theorem ������ there is C 
 C�D� d�K�K��
such that

pb
�� t
�
�
t

�

�
�z�� x y��� � C �

for z� y � K�� x � K� b� � #� � 
 t 
 �� Therefore we are left with
I 
 	��b� �� b� �	���Pa�b� � b� � #� b��t� � �b� �� b� �	�

� Ea�fsups�	���t��
 b��s��D��infs�	t����t��
 b��s�	dg�b��	��b� �� b� �	���

�Pb���t�
�

�
sup

s����t�
	
���s� 
 D� ��

� t
�

�
� �b� �� b� �	

�

provided D� � D� Notice that if d 
 b��� t��� 
 D��

	��b� �� b� �	���Pb���t�
�

�
��

� t
�

�
� �b� �� b� �	

�
� C 
 C�d�D�� �

But� proceeding as in the proof of the previous theorem we see that

	��b��� b��	���Pb���t�
�

�
sup

s����t�
	
���s� � D� �

� t
�

�
� �b��� b��	

�

 c� e

�c��D�D��
�

�

Therefore choosing D and D� appropriately we have

	��b��� b��	���Pb���t�
�

�
sup

s����t�
	
���s� 
 D� ��

� t
�

�
� �b��� b��	

�
� C�d�D�D�� �

for � 
 t 
 �� Hence for D� � D��

I � C�d�D�D��Ea�fb� sups�	��t��
 b��s��D��b��t�
���dg

�Pb��t�
�

�
inf

s����t�
	
���s� � d� sup

s����t�
	
���s� 
 D�

	
�

By Lemmas ���� and ����

Pb��t�
�

�
inf

s����t�
	
���s� � d� sup

s����t�
	

 D�

	
� ��Pb��t�
�

�
inf

s����t�
	
���s� � d

	�Pb��t�
�

�
sup

s����t�
	
���s� � D�

	
� �� c� e

�c�d� � c� e
�c��D��D��

�

� C � �
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provided d and D� �D� are large enough� Finally�

Pa

�
sup

s����t�
	
b��s� 
 D�� b�

� t
�

	
� � d

�

� ��Pa

�
sup

s����t��	
b��s� � D�

	�Pa

�
b�
� t
�

�
� � d

�

� c� e
�c�d� � c� e

�c�D�
� � C � � �

for su'ciently large D��


� Estimates of the Poisson kernels and the Martin boundary�

������ and ������ imply immediately the following estimates for
m� �

Theorem 
��� Let m� be the Poisson kernel of L�� � � �� Then there

exists a constant C� such that

C��� �jxj� ���Q�� 
 m��x� 
 C� �jxj� ���Q�� �

for x � N� In particular�

C�� �jxj� ���Q 
 m��x� 
 C �jxj� ���Q �

for x � N �

Proof� Theorem ��� says that there is a positive constant C� such
that

����� C��� 
 G���x� a� e� �� 
 C�

if jxj 
 �� a 
 �� Let x 
 �a�y�� jxj 
 a � �� jyj 
 �� By ������� we
have

m��x� 
 G���x��� �� e� ��


 G����a�y�� �� e� ��


 a�Q��G���y� a��� e� ��


 jxj�Q��G���y� a�� e� �� �
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and the proof is completed�

Now we consider the case � 
 �� i�e� we look at the operator L��
The next theorem gives description of the Martin boundary for L��

Theorem 
��� The Martin boundary for L 
 L� consists of the fol�

lowing functions �

a� the constant function ��

b� Py�xa� 

�

m��e�
a�Q �m���a���y��x�� �

All of them are minimal�

Proof� By ������ we may use G to write the Martin kernels� Assume
that

lim
n��

G�x� a� yn� bn�

G�e� �� yn� bn�

 K�x� a�

and jynj �� � or bn ����
Let rn 
 maxfjynj� bng� Then

G�x� a� yn� bn� 
 r�Qn G��r��
n
�x�� r��n a��r��

n
�yn�� r

��
n bn� �

We take n such that

j�r��
n
�x�j � �

�
� r��n a �

�

�
�

Since j�r��
n
�yn�j 
 � and r��n bn 
 � or �r��

n
�yn� 
 � and r��n bn 
 �� by

Theorem ��� and the Harnack inequality for L�� there is a constant c
independent of x� a such that

c�� 
 G��r��
n
�x�� r��n a��r��

n
�yn�� r

��
n bn� 
 c �

c�� 
 G�e� r��n ��r��
n
�yn�� r

��
n bn� 
 c �

Therefore K�x� a� is bounded and so must be constant �see �BR	��
Now we assume that yn �� y� and bn �� �� First we prove that

����� lim
n��

G�x� a� yn� bn�

G�e� �� yn� bn�

 lim

n��
G�y��� x� a� e� bn�

G�e� �� e� bn�
�
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i�e� that

����� lim
n��

G�y��n x� a� e� bn�

G�y��� x� a� e� bn�

 � �

Notice that for n su'ciently large �depending on x� a�� ��y��n x� a�
y��� x� a� � �� Hence by the Harnack inequality

jG�y��n x� a� e� bn��G�y��� x� a� e� bn�j

 G�y��� x� a� e� bn� ��y

��
n x� a� y��� x� a� �

and ����� follows� We have

G�x� a� e� bn� 
 a�QG��a���x�� �� e� a��bn� �

Therefore when bn �� ��

lim
bn��

G�x� a� e� bn� 
 a�QG��a���x�� �� e� �� 
 a�Q �m��a���x��

and so

lim
bn��

G�x� a� e� bn�

G�e� �� e� bn�



�

m��e�
a�Q �m���a���x�� 
 Pe�xa� �

� is minimal because the only bounded L�harmonic functions are con�
stants� Pe is minimal if and only if Py is minimal� Hence all of them
are minimal�
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Path�wise solutions of stochastic

di�erential equations driven

by L�evy processes

David R� E� Williams

Abstract� In this paper we show that a path�wise solution to the
following integral equation

Yt �

Z t

�

f�Yt� dXt � Y� � a � R
d �

exists under the assumption that Xt is a L�evy process of �nite p�
variation for some p � � and that f is an ��Lipschitz function for some
� � p	 We examine two types of solution
 determined by the solution�s
behaviour at jump times of the process X
 one we call geometric
 the
other forward	 The geometric solution is obtained by adding �ctitious
time and solving an associated integral equation	 The forward solution
is derived from the geometric solution by correcting the solution�s jump
behaviour	

L�evy processes
 generally
 have unbounded variation	 So we must
use a pathwise integral di�erent from the Lebesgue�Stieltjes integral	
When X has �nite p�variation almost surely for p �  we use Young�s
integral	 This is de�ned whenever f and g have �nite p and q�variation
for ��p� ��q � �	 When p �  we use the integral of Lyons	 In order
to use this integral we construct the L�evy area of the L�evy process and
show that it has �nite �p���variation almost surely	

���
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�� Introduction�

In this paper we give a path�wise method for solving the following
integral equation

��� Yt � Y� �

Z t

�

f�Yt� dXt � Y� � a � R
d �

when the driving process is a L�evy process	
Typically
 a L�evy process
 almost surely
 has unbounded variation	

The integral does not exist in a Lebesgue�Stieltjes sense	 However
 the
integral still makes sense as a random variable due to the stochastic
calculus of semi�martingales developed by the Strasbourg school ����	

The semi�martingale integration theory is not complete though	
There are processes of interest which do not �t into the semi�martingale
framework
 for example the fractional Brownian motion	 An alternative
integral is provided by the path�wise approach studied by Lyons ����

��� and Dudley ���	 The basis of their papers is that of Young ���

who showed that the integral

��

Z t

�

f dg

is de�ned in a Riemann sense whenever f and g have �nite p and q�
variation for ��p���q � � �and they have no common discontinuities�	
For a comprehensive overview of the theory we recommend the lecture
notes of Dudley and Norvai�sa in the case p � 
 ���	

Recently in ����
 a system of linear Riemann�Stieltjes integral equa�
tions is solved when the integrator has �nite p�variation for some � �
p � 	 These results are contained in Theorem �	� where we allow
non�linearity of the vector �eld f 	 This is because our approach is an
extension of the method of ����
 ���	

The approach that we follow distinguishes two cases	 The �rst is
when the process has �nite p�variation
 almost surely
 for some p � 	
We use the Young integral ���	 In ����
 ��� is solved when Xt is a
continuous path of �nite p�variation for some p � 	

The second case is when the process has �nite p�variation
 almost
surely
 for some p � 	 The Young integral is only de�ned when f
and g have �nite p and q�variation for ��p � ��q � �	 So an iteration
scheme on the space of paths with �nite p�variation does not work	
However
 Lyons de�ned an integral against a continuous function of
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p�variation for some p � 
 ���	 The integral is developed in the space
of geometric multiplicative functionals �described in Appendix A�	 The
key idea is that we enhance the path by adding an area function to
it	 If there is su�cient control of the pair
 path and area
 then the
integral is de�ned	 The canonical example in ��� is Brownian motion	
The area process enhancing the Brownian motion is the L�evy area ���

Chapter �
 Section ���	 We show that there is an area process of a L�evy
process which has �nite �p���variation
 almost surely	

In order to solve ��� for a discontinuous function we add �ctitious
time during which linear segments remove the discontinuities
 creating
a continuous path	 By solving for the continuous path and then re�
moving the �ctitious time we recover a solution for the discontinuous
path	 This is called a geometric solution	 A second type of solution is
derived from the geometric solution which we call the forward solution	
Several papers
 ���
 ���
 and ���
 have used the geometric solution to an�
swer questions about continuity of solution for a stochastic di�erential
equation driven by a discontinuous path	

The �rst section treats the case where the discontinuous driving
path has �nite p�variation for some p � 	 The second section treats the
case where the path has �nite p�variation for some p �  only	 The main
proofs of the second section are deferred to the third section	 In the
appendix we prove the homeomorphic �ow property for the solutions
when the driving path is continuous	 This is used in proving that
forward solutions can be recovered from geometric solutions	

�� Discontinuous processes � p � �

In this section we extend the results of ���� to allow the driving path
of ��� to have discontinuities	 The results are applied to sample paths of
some L�evy processes
 those that have �nite p�variation
 almost surely

for some p � 	 Throughout this section p � ��� � unless otherwise
stated	

First
 we determine the solution�s behaviour when the integrator
jumps	 There are two possibilities to consider� the �rst is an extension
of the Lebesgue�Stieltjes integral� the second is based on a geometric
approach	

Suppose that the discontinuous integrator has bounded variation	
The solution y would jump

yt � yt� � f�yt�� �xt � xt�� �
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at a jump time t of x	 If x has �nite p�variation for some � � p � 
we insert these jumps at the discontinuities of x	 We call a path y with
the above jump behaviour a forward solution	

The other jump behaviour we consider is the following� When a
jump of the integrator occurs we insert some �ctitious time during which
the jump is traversed by a linear segment
 creating a continuous path
on an extended time frame	 Then we solve the di�erential equation
driven by the continuous path	 Finally we remove the �ctitious time
component of the solution path	 We call this a geometric solution be�
cause the solution has an �instantaneous �ow� along an integral curve
at the jump times	 This jump behaviour has been considered before by
����
 ��� and ���	

The disadvantage of the �rst approach is that the solution does
not
 generally
 generate a �ow of di�eomorphisms
 ���	

In this section we prove the following theorem�

Theorem ���� Let xt be a discontinuous function of �nite p�variation
for some p � � Let f be an ��Lipschitz vector �eld for some � � p�
Then there exists a unique geometric solution to the integral equation

��� yt � y� �

Z t

�

f�yt� dxt � y� � a � R
d �

With the above assumptions� there exists a unique forward solution as

well�

Before proving the theorem we recall the de�nitions of p�variation
and ��Lipschitz�

De�nition ���� The p�variation of a function x�s� over the interval

��� t� is de�ned as follows

kxk
p����t�

�
�

sup
������t�

X
�

jx�tk�� x�tk���j
p
���p

�

where ���� t� is the collection of all �nite partitions of the interval ��� t��

Remark� This is the strong p�variation	 Usually probabilists use the
weaker form where the supremum is over partitions restricted by a mesh
size which tends to zero	
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De�nition ���� A function f is in Lip��� for some � � � if

kfk� �� and
	f

	xj
� Lip��� �� � j � �� � � � � d �

Its norm is given by

kfkLip��� � kfk� �
dX

j��

��� 	f
	xj

���
Lip�����

� for � � � �

This is Stein�s ��� de�nition of ��Lipschitz continuity for � � �	
It extends the classical de�nition� f is in Lip��� for some � � ��� �� if

jf�x�� f�y�j � K jx� yj� �

with norm

kfk� � sup
x ��y

jf�x�� f�y�j

jx� yj�
�

���� Geometric solutions�

In this subsection we de�ne a parametrisation for a c�adl�ag path x
of �nite p�variation	 The parametrisation adds �ctitious time allowing
the traversal of the discontinuities of the path x	 We prove that the
resulting continuous path x� has the same p�variation that x has	 We
solve ��� driven by x� using the method of Lyons ����	 Then we get
a geometric solution of ��� by removing the �ctitious time �i�e� by
undoing the parametrisation�	

De�nition ���� Let x be a c�adl�ag path of �nite p�variation� Let 
 � ��
for each n � �� let tn be the time of the n�th largest jump of x� We

de�ne a map � � � ��� T � �� ��� T � 

P�

i�� jj�ti�j
p� �where j�u� denotes

the jump of the path x at time u� in the following way

��� � ��t� � t� 

�X
n��

jj�tn�j
p �

ftn�tg
�t� �

The map � � � ��� T � �� ��� � ��T �� extends the time interval into one

where we de�ne the continuous process x��s�

��� x��s� �

�����
x�t� � if s � � ��t� �

x�t�n � � �s� � ��t�n ��

� j�tn� 

�� jj�tn�j

�p � if s � �� ��t�n � �
��tn�� �
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Remarks ���� �� �s� x�s�
 s � ��� � ��T �� is a parametrisation of the
driving path x	

� The terms jj�tn�j
p in ��� ensure that the addition of the �ctitious

time does not make � ��t� explode	

�� In Figure � we see an example of a parametrisation of a discon�
tinuous path xs in terms of the pair �t�s�� y�s��	

The next proposition shows that the above parametrisation has
the same p�variation as the original path
 on the extended time frame
��� � ��T ��	

T(s)

Y(s)

s
0

0

X(s)

Figure �� Parametrisation of a discontinuous path�

Let xs be a discontinuous path of bounded variation �p � ��	 De�
�ne a map ��s� inserting �ctitious time for the discontinuities of x	
De�ne a parametrisation �t�s�� y�s�� in the manner of ���	 �t�s�� y�s��
traverses the jumps of x during the �ctitious time	
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Proposition ���� Let x be a c�adl�ag path of �nite p�variation� Let x�

be a parametrisation of x as above�

kx�kp�������T �� � kxkp����T � � for all 
 � � �

Proof� Let �� be a partition of ��� � ��T ��	 Let

Vx� ���� �
X
��

jx��ti�� x��ti���j
p �

We show that we increase the value of Vp���� by moving points lying
on the jump segments to the endpoints of those segments	

Let ti��� ti� ti�� be three neighbouring points in the partition ��
such that ti lies in a jump segment	 Consider the following term

� � jx�ti � x�ti��
jp � jx�ti��

� x�ti j
p �

We show that � � is dominated by replacing x�ti by one of x�l and x�r

where l and r denote the left and right endpoint of the jump segment
containing ti	

For simplicity we set a � x�ti��
� b � x�ti��

and c � x�l 	 Let

L � fc� k x � k � ��� ��� c� x � R
d � x �� �g � a� b � R

dnL �

Let the function f � ��� �� �� ����� be de�ned by

f�k� � ja� djp � jd� bjp � d � c� k x �

Then f � C	��� �� and one can show that f �� � � on ��� �� when p � �	
To conclude the proof we move along the partition replacing ti which
lie in the jump segments by new points t�i that increase Vx�����	 The
partition �� is replaced by a partition ��� whose points lie on the pre�
image of ��� � ��T ��	 Therefore we have

Vx����� � Vx� ��
�
�� � Vx��

�
�� �

Hence kx�kp�������T �� � kxkp����T �	

Theorem ���� Let x be a c�adl�ag path with �nite p�variation for some

p � � Let f be a Lip�� vector �eld on R
n for some  � p� Then there
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exists a unique geometric solution y� having �nite p�variation which

solves the di�erential equation

��� dyt � f�yt� dxt � y� � a � R
n �

Proof� Let x� be the parametrisation given in ���	 The theorem of
���
 Section �� proves that there is a continuous solution y� which solves
��� on ��� � ��T ��	 Then �s� y�s� is a parametrisation of a c�adl�ag path y
on ��� T �	

The solution is well�de�ned	 To see this
 consider two parametrisa�
tions of x and note that there exists a monotonically increasing function
�s such that

�s� x�s� � ��s� x
�
	s� �

���� Forward solutions�

In this subsection we show how to recover forward solutions from
geometric solutions	 The idea behind our approach is to correct the
jump behaviour of the geometric solution using a Taylor series expan�
sion
 cf� Lemma �	�	 The correction terms are controlled by

�X
i��

jxti � xt�i
j	 �

which is �nite due to the �nite p�variation of the path x	
In the case where the driving path has only a �nite number of

jumps we note that the forward solution can be recovered trivially	 It
is enough to mark the jump times of x and solve the di�erential equation
on the components where x is continuous
 inserting the forward jump
behaviour when the jumps occur	 It remains to show that the forward
solution exists when the driving path has a countably in�nite number
of jumps	 The method we use requires the following property of the
geometric solution�

Theorem ���� Let x be a continuous path of �nite p�variation for some

p � �� Let f be in Lip��� for some � � p� The maps ��t�t�� � Rn ��
R
n obtained by varying the initial condition of the following di�erential

equation generate a 	ow of homeomorphisms

��� d�t � f��t� dxt � �� � Id � �the identity map� �
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We leave the proof of Theorem �	� until Appendix A	 We note the
uniform estimate

��� sup
��t�T

j�at � �bt j � C�T �ja� bj �

The following lemma will enable estimates to be made when the geo�
metric jumps are replaced by the forward jumps�

Lemma ���� Let x be a c�adl�ag path with �nite p�variation� Let f be in

Lip��� for some � � p� Let !yi �respectively !zi� denote the geometric

�respectively forward � solution�s jump which correspond to !xi� the i�th
largest jump of x� Then we have the following estimate on the di�erence

of the two jumps

k!yi �!zik� � K j!xij
	 �

where the constant K depends on kfkLip����

Proof� Parametrise the path x so that it traverses its discontinuity
in unit time	 Solve geometrically over this interval with the solution
having initial point a	 Note that the forward jump is the �rst order
Taylor approximation to the geometric jump	 Then

����

y��a� � y��a� �
dys�a�

ds

			
s��

�
�



d	ys�a�

ds	

			
s�


� z��a� �
�



d	ys�a�

ds	

			
s�


�

for some � � � � �	 We estimate the second order term by

����

����


d	ys�a�

ds	

���
�

�
����


d

ds
f�ys�a���!xi�

���
�

�
�


krfk� kfk� j!xij

	

�
�


kfk	Lip��� j!xij

	 �

Both krfk� and kfk� are �nite because f is Lip��� for some � � p �
�	
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Theorem ��	� Let x be a c�adl�ag path with �nite p�variation� Let f be

in Lip��� for some � � p� Then there exists a unique forward solution

to the following di�erential equation

��� dzt � f�zt� dxt � z� � a �

Proof� By Theorem �	� there exists a unique homeomorphism y which
solves

dyt � f�yt� dxt � y� � a �

in a geometric sense	
Label the jumps of x by jx � fjig

�
i�� according to their decreasing

size	 Let zn denote the path made by replacing the geometric jumps of
y corresponding to fjig

n
i�� by the forward jumps ff��� �!xi�g

n
i��	 We

show that the fzngn�� have a uniform limit	
We order the corrected jumps chronologically
 say ftig

n
i��	 Then

we estimate the following term using Lemma �	� and the uniform bound
on the growth of y given in ���

����

jzns �a�� ys�a�j �
nX
i��

jyti�s�z
n
ti
�a��� yti�s�yti���ti�z

n
ti��

�a���j

� C�T �
nX
i��

jznti�a�� yti���ti�z
n
ti��

�a��j

� C	�T �K
�X
i��

j!xij
	 �

So we have the uniform estimate
����

kzn � yk� � K�C
�T �� kfkLip����
�X
i��

j!xij
	 �� � for all n � � �

We use an analogous bound to get Cauchy convergence of fzngn��	 Let
m� r � �	

kzm � zm�rk� � K�C�T� zm�� kfkLip����
�X

i�m��

j!xij
	 �
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One notes that fC�T� zm�g are uniformly bounded
 because of the
boundedness of C�T � � C�T� y� and the Lipschitz condition on f 	
Therefore we have the following estimate

kzm � zm�rk� � L
�X

i�m��

j!xij
	 �

This implies that fzng are Cauchy in the supremum norm because x
has �nite p�variation �p � � which implies that

P�
m�� j!xij

	 tends to
zero as m increases	

Remark� Theorems �	� and �	 combine to prove Theorem �	�	

Corollary ���� With the above notation� z has �nite p�variation�

Proof� Let s � t � ��� T �	

jzt � zsj � j�zt � zs�� �yt � ys�j� jyt � ysj �

where �yt� ys� is the increment of the geometric solution starting from
zs driven by the path xt on the interval �s� T �	 Then

j�zt� zs�� �yt� ys�j � C
X

jxj�s�t�

j!xij
	 and jyt� ysj � kxkp��s�t� �

which implies that

jzt � zsj
p � p��

�
Cp
� X
jxj�s�t�

j!xij
	
�p

� kxkpp��s�t�

�
�

hence

kzkp����T � � �p����p
�
Cp
� X
jxj���T �

j!xij
	
�p

� kxkpp����T �

���p
�� �

���� p
variation of L�evy processes�

In this subsection we apply Theorem �	� to L�evy processes which
have �nite p�variation
 almost surely	
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L�evy processes are the class of processes with stationary
 indepen�
dent increments which are continuous in probability	 The class includes
Brownian motion
 although this process is atypical due to its continu�
ous sample paths	 Typically a L�evy process will be a combination of a
deterministic drift
 a Gaussian process and a jump process	 For further
information on L�evy processes we direct the reader to ���	

The regularity of the sample paths of a L�evy process has been
studied intensively	 In the �� ��s several people worked on the question
of characterising the sample path p�variation	 The following theorem

due to Monroe
 gives the characterisation�

Theorem ��� ����
 Theorem ��� Let �Xt�t�� be a L
evy process in R
n

without a Gaussian part� Let � be the L
evy measure� Let � denote the

index of Xt� that is

���� � � inf
n
� � � �

Z
jyj��

jyj� ��dy� ��
o
�

and suppose that � � � � � If  � � then

�� � P �kXk� ��� � � �

where the �variation is considered over any compact interval�

Remark� Note that all L�evy processes with a Gaussian part only have
�nite p�variation for p � 	

Corollary ���� Let �Xt�t�� be a L
evy process with index � �  and

no Gaussian part� Let f be a vector �eld in Lip��� for some � � p�
Then� almost surely� the following stochastic di�erential equation has a

unique forward and a unique geometric solution

dYt � f�Yt� dXt � Y� � a �

Proof� The corollary follows immediately from Theorems �	� and �	�	

�� Discontinuous processes � p � �

The goal of this section is to extend �Corollary �	� to let any L�evy
process be the integrator of ���	
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One problem we have is that the Young integral is no longer useful
because we use a Picard iteration scheme which fails condition �� when
p � 	 However
 we can use the method from ���	 To de�ne the integral
we need to provide more information about the sample path	 We do
this by de�ning an area process of the L�evy process	 Then we prove
that the enhanced process �path and area� has �nite p�variation
 cf�
De�nition A	�	

We parametrise the enhanced process in an analogous manner to
��� �adding �ctitious time�	 Then we solve ��� in a geometric sense
using the method for continuous paths �p � � given in ���	 Finally

forward solutions are obtained by jump correction as before	

Before enhancing �Xt�t�� we give an example which shows that
there exist L�evy measures with index two	 So a L�evy process does not
need a Gaussian part to have
 almost surely
 �nite p�variation only for
p � 	

Example ���� One can de�ne the following measures on R

�k �dx� � jxj�
���k dx � jxj � ��k � ���
�k���� k�
k� � Jk

�m�dx� �
mX
k��

�k�dx 	 Jk 	 ��Jk�� �

We show that � � limm�� �m is a L�evy measure	 The integrability
condition

����

Z
jxj��

jxj	 ��dx� �� �

must be satis�ed	Z
jxj��

jxj	 �m�dx� � 

Z �

�

mX
k��

x�����k�
Jk
�x� dx

� 
mX
k��

�k x��k�k
��k

�k������k���

� 
mX
k��

k �k�
 � �k � ���
�����k��

� 
mX
k��

k �k�
 � �
�����k�k�
�����k��
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� 
mX
k��

k�	 ��� �
�����k�k�
�k�

� C
�X
k��

k�	

�� �

where C is some suitable constant	 We take the limit as m tends to
in�nity on the left hand side to prove ����	

Now we show that

����

Z
jxj��

jxj� ��dx� �� �

for all � � 	 Fix � � 	 De�ne the following number

m��� � inf
n
k � ��

�

k
� 
o
�� � as � �  �

Let m � m���	 ThenZ
jxj��

jxj� �m�dx�

� 
mX

k�m���

�

��� ��k � �
�k�
k�����k�	� � �k � ���
�k��������k�	��

� 
mX

k�m���

�

�� ��� ��k��
��k � ���
�k��������k�	� � k�
k�����k�	��

�


� �

mX
m���

��k � ��
�k����	������k�� � k
k�	������k���

��� � as m ��� �

This proves that the index � of � equals two	 Theorem �	� implies that
the pure jump process associated to the L�evy measure � almost surely
has �nite p�variation for p �  only	

The following theorem gives a construction of the L�evy area of the
L�evy process �Xt�t��	 The L�evy area process and the L�evy process
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form the enhanced process which we need in order to use the method
of Lyons ���	

Theorem ���� The d�dimensional L
evy process �Xt�t�� has an anti�

symmetric area process

�As�t�
ij
�

�



Z t

s

Xi
u� 
 dX

j
u�Xj

u� 
 dX
i
u � i� j � �� � almost surely �

The proof is deferred to Section �	

Theorem ���� The L
evy area of the L
evy process �Xt�t��� almost

surely� has �nite �p���variation for p � � That is

sup
�

�X
�

jAtk���tk j
p�	
�	�p

�� � almost surely �

where the supremum is taken over all �nite partitions � of ��� T ��

The proof is deferred to Section �	
Now we parametrise the sample paths of �Xt�t�� as before ���	

Proposition ���� Parametrising the process �Xt�t�� does not a�ect

the area process� �p���variation�

Proof� The proof is similar to the proof of Proposition �	�	 One can
show that if � lies in a jump segment then

jAs�	j
�p�	� � jA	�tj

�p�	� � s � � � t �

is maximised when � is moved to one of the endpoints of the jump
segment	

With the parametrisation of the path and the area we can de�ne the
integral in the sense of Lyons ���	 Consequently we have the following
theorem�

Theorem ���� Let �Xt�t�� be a L
evy process with �nite p�variation
for some p � � Let f be in Lip��� for some � � p� Then there exists�
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with probability one� a unique geometric and a unique forward solution

to the following integral equation

���� Yt � Y� �

Z t

�

f�Yt� dXt � Y� � a � R
d �

Remark� When constructing the forward solution it is necessary that
the sum

�X
n��

j!Xnj
	

remains �nite	 This is guaranteed by the requirement on L�evy measures
to satisfy Z

jxj��

�jxj	 � �� ��dx� �� �

�� Proofs of Theorem ��� and Theorem ����

For clarity
 throughout this section we assume that the L�evy pro�
cess �Xt�t�� is two dimensional and takes the following form

��� Xt � Bt �

Z
jxj��

x �Nt�dx�� t ��dx�� �

That is
 �Xt�t�� is a Gaussian process with a compensated pure jump
process
 whose L�evy measure is supported on �x � R

	 � jxj � ��	

Proposition ���� The d�dimensional L
evy process �Xt�t�� has an

anti�symmetric area process

�As�t�
ij
�

�



Z t

s

Xi
u� 
dX

j
u�Xj

u� 
dX
i
u � i� j � ��  � almost surely �

For �xed s � t we obtain the area process by the following limiting

procedure

�As�t�
ij � lim

n��

nX
m��

	m��X
k��
odd

Ai�j
k�m � almost surely �
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where Aij
k�m is the area of the �ij��projected triangle with vertices

X�u�k����	�m���� X�u�k����	�m���� X�uk�m� �

where uk�m � s� k �m �t� s�� Also we have the second order moment

estimate

��� E ��Aij
s�t�

	� � C��� �t� s�	 �

Proof� We de�ne As�t�n�

As�t�n� �
�



	n��X
k��

�X����uk�n��X����s�� �X�	��uk���n��X�	��uk�n��

� �X�	��uk�n��X�	��s�� �X����uk���n��X����uk�n��

�
	n��X
k��

Bk�n �

where Bk�n is the �signed� area of the triangle with vertices

X�s�� X�uk�n�� X�uk���n� �

By considering the di�erence between As�t�n� and As�t�n � �� we see
that

B	k�n�� � B	k���n�� � Bk�n

is the area of the triangle with vertices

X�uk�n�� X�uk���n�� X�u	k���n��� �

which we denote by Ak�n	 We re�order As�t�n�

As�t�n� �
�



nX
m��

	m��X
k��
odd

�X�uk�m�� dk�m�

� �X�u�k����	�m����X�u�k����	�m����

�
�



nX
m��

	m��X
k��
odd

Ak�m �
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where dk�m � ���� �X�u�k����	�m��� �X�u�k����	�m����	 The conver�
gence to the area process is completed using martingale methods	

Let Fn � ��X�uk�n� � k � �� � � � � n�	 Then

Lemma ����

�� E �X�uk�m� jFm��� � dk�m � almost surely �

Proof� For ease of presentation we let

U� � X�uk�m��X�u�k����	�m��� �

U	 � X��u�k����	�m����X�uk�m� �

Then

E �X�uk�m�� dk�m jFm���

� E �X�uk�m�� dk�m jX�u�k����	�m���� X�u�k����	�m����

�
�


E �U� � U	 jX�u�k����	�m���� X�u�k����	�m���� �

Using the stationarity and the independence of the increments of X we
see that U� and U	 are exchangeable
 that is

P �U� � A� U	 � B� � P �U	 � A� U� � B� � for all A�B � B�R	� �

The exchangeability extends to the random variables

�Ui jX�u�k����	�m���� X�u�k����	�m���� � i � ��  �

We deduce that

E �U� � U	 jX�u�k����	�m���� X�u�k����	�m���� � � �
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Returning to the proof of Proposition �	�
 we compute the variance
of Ak�m	 This will be used to show that

sup
n��

E �As�t�n�
	� �� �

E �A	
k�m�

� E ���X����uk�m�� d
���
k�m� �U

�	�
� � U

�	�
	 �

� �X�	��uk�m�� d
�	�
k�m� �U

���
� � U

���
	 ��	�

�
�

�
E ���U

���
� � U

���
	 � �U

�	�
� � U

�	�
	 �� �U

�	�
� � U

�	�
	 � �U

���
� � U

���
	 ��	�

�
�

�
E ��U

���
� U

�	�
	 �	 � U

���
� U

�	�
	 U

���
	 U

�	�
� � �U

���
	 U

�	�
� �	�

� ��� � �� � ��� �

We use the independence of the increments and It"o�s formula for dis�
continuous semi�martingales to compute ���� �� and ���	

��� � E ��U
���
� U

�	�
	 �	� � E ��U

���
� �	� E ��U

�	�
	 �	� �

By applying It"o�s formula and using the stationarity of the L�evy process
we �nd that

��� � ��� � �	m �t� s�	
Z
jxj��

jx�j
	 ��dx�

Z
jxj��

jx	j
	 ��dx� �

Another application of It"o�s formula gives

�� � � E �U
���
� U

�	�
	 U

���
	 U

�	�
� �

� � E �U
���
� U

�	�
� � E �U

�	�
	 U

���
	 �

� ��	m�� �t� s�	
� Z

jxj��

x� x	 ��dx�
�	

�

Collecting the terms together we have the following expression

E �A	
k�m � � C���� 

�	m�� �t� s�	 �

where

C���� �
�Z

jxj��

jx�j
	 ��dx�

Z
jxj��

jx	j
	 ��dx��

�Z
jxj��

x� x	 ��dx�
�	�

�
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Now we estimate the following term

E �A	
s�t�n�� � E

h� nX
m��

	m��X
k��
odd

Ak�m

�	i
�

which through conditioning and independence arguments equals

� E

h nX
m��

	m��X
k��
odd

A	
k�m

i

� C����
nX

m��

	m��X
k��
odd

�	m�� �t� s�	

� C����
�X

m��

	m��X
k��
odd

�	m�� �t� s�	

� C��� �t� s�	 �

We use the martingale convergence theorem to deduce that
 almost
surely
 there is a unique limit of As�t�n�	 Furthermore the last calcula�
tion implies that there is a moment estimate of the area process given
by

E �A	
s�t � � C��� �t� s�	 �

We note that there is another way that one could de�ne an area
process of a L�evy process	 One could de�ne the area process for the
truncated L�evy processes and look for a limit as the small �compen�
sated� jumps are put in	 Using the above construction one can de�ne
A�
s�t for a �xed pair of times
 corresponding to the L�evy process X�	

With the ���elds �G���� de�ned by

G�
� ��X� � 
 � �� � for � � � �

we have the following proposition�

Proposition ���� �A�
s�t��� form a �G���martingale�
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Proof� Let � � � � �	 By considering the construction of the area
given above for the truncated processes X� and X� we look at the
di�erence at the level of the triangles A�

k�n and A�
k�n	

E �A�
k�n �A�

k�n jG
��

� E �A���
k�n � �X���

k�n � d���k�n�� �X�
�k����	�n�� �X�

�k����	�n���

� �X�
k�n � d�k�n�� �X���

�k����	�n�� �X���
�k����	�n��� jG

�� �

where the superscript �� � signi�es that the process is generated by the
part of the L�evy measure whose support is ��� ��	 Using the spatial
independence of the underlying L�evy process we have

� E �A���
k�n � � E ��X���

k�n � d���k�n��� �X�
�k����	�n�� �X�

�k����	�n���

� �X�
k�n � d�k�n�� E ��X���

�k����	�n�� �X���
�k����	�n����

� � �

With the uniform control on the second moment of the martingale

E ��A�
s�t�

	� � C��� �t� s�	 � for all � � � �

we conclude that A�
s�t converges almost surely as � �� �	

The algebraic identity

��� As�u � As�t �At�u �
�


�Xs�t� Xt�u� � s � t � u �

for the anti�symmetric area process A generated by a piecewise smooth
path X extends to the area process of the L�evy process	 This is due to
��� holding for the area processes A� of the truncated L�evy processes
X�	

Proposition ���� The L
evy area of the L
evy process �Xt�t�� has �nite
�p���variation for p � � almost surely� That is

sup
�

�X
�

jAtk���tk j
p�	
�	�p

�� � almost surely �

where the supremum is taken over all �nite partitions � of ��� T ��
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Proof� In Proposition �	� we constructed the area process for a pair
of times
 almost surely	 This can be extended to a countable collection
of pairs of times
 almost surely	 In the proof below we assume that the
area process has been de�ned for the times

k �nT� �k � �� �n T � k � �� �� � � � � n � �� n � � �

The proof follows the method of estimation used in � �	 To estimate
the area process for two arbitrary times u � v we split up the interval
�u� v� in the following manner�

We select the largest dyadic interval ��k� �� �nT� k �n� which is
contained within �u� v�	 Then we add dyadic intervals to either side of
the initial interval
 which are chosen maximally with respect to inclusion
in the interval �u� v�	 Continuing in this fashion we label the partition
according to the lengths of the dyadics	 We note that there are at most
two dyadics of the same length in the partition which we label �l��k� r��k�
and �l	�k� r	�k� where r��k � l	�k	 Then

�u� v� �
�

k��



i���	

�li�k� ri�k� �

We estimate Au�v using the algebraic formula ���	

Al��m�r	�m

�
mX
k��

X
i���	

Ali�k�ri�k�
�



X
��a�b�	

X
��j�k�m

�Xra�k�Xla�k � Xrb�j�Xlb�j � �

Noting thatX
��a�b�	

X
��j�k�m

j�Xra�k �Xla�k � Xrb�j �Xlb�j �j

�
X

��a�b�	

X
��j�k�m

j�Xra�k �Xla�k�� �Xrb�j �Xlb�j �

� �Xrb�j �Xlb�j �� �Xra�k �Xla�k�j

�
X

��a�b�	

X
��j�k�m

jXra�k �Xla�k j jXrb�j �Xlb�j j

�
� mX
k��

X
i���	

jXri�k �Xli�k j
�	

�
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we have the estimate

���

jAu�vj
p�	 � �p�	���

�� �X
k��

X
i���	

jAli�k�ri�k j
�p�	

�
�



� �X
k��

X
i���	

jXri�k �Xli�k j
�p�

�

Using H#older�s inequality
 with p �  and  � p� �
 we have

jAu�vj
p�	

� �p�	���
�� �X

n��

n�����p�	����
��p�	��� �X

n��

n�
� X
i���	

jAli�k�ri�k j
�p�	

�
�



� �X
n��

n����p���
�p�� �X

n��

n�
� X
i���	

jXri�k �Xli�k j
�p����

� C��p� �
�X
n��

n�
X
i���	

jAli�k�ri�k j
p�	

� C	�p� �
�X
n��

n�
X
i���	

jXri�k �Xli�k j
p �

One can uniformly bound jAu�vj
p�	 for any pair of times u � v � ��� T �

by extending the estimate in ��� over all the dyadic intervals at each
level n
 that is


jAu�vj
p�	 � C��p� �

�X
n��

n�
	nX
i��

jAli�k�ri�k j
p�	

� C	�p� �
�X
n��

n�
	nX
i��

jXri�k �Xli�k j
p �

If the right hand side is �nite
 almost surely
 then the area can be
de�ned for any pair of times	

The �p���variation of the L�evy area can be estimated by the same
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bound	

� �

sup
�

X
�

jAu�vj
p�	 � C��p� �

�X
n��

n�
	nX
i��

jAli�k�ri�k j
p�	

� C	�p� �
�X
n��

n�
	nX
i��

jXri�k �Xli�k j
p �

We use ��� to control the �rst sum

E �jAs�t j
p�	� � C �t� s�p�	 � for p � � �

So we have

E

h �X
n��

n�
	nX
i��

jAli�k�ri�k j
p�	
i
� C

�X
n��

n�
	nX
i��

��n T �p�	

� C
�X
n��

n� �n��p�	����

�� � for p �  �

This implies that the �rst term in the right hand side of � � is almost
surely �nite	 Now we consider the second term of � �	

Lemma ����

�X
n��

n�
	n��X
k��

jX�k���	�nT �Xk	�nT j
p �� � almost surely �

Before proving the lemma we recall a result of Monroe
 �� �	

De�nition ���� Let Bt be a Brownian motion de�ned on a probability

space �$�F�P�� A stopping time T is said to be minimal if for any

stopping time S � T � B�T �
�d�
� B�S� implies that� almost surely� S � T �

Theorem ��� �� 
 Theorem ���� Let �Mt�t�� be a right continuous

martingale� Then there is a Brownian motion �$�Gt� Bt� and a family

�Tt� of Gt�stopping times such that the process BTt has the same �nite

distributions as Mt� The family Tt is right continuous� increasing� and
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for each t� Tt is minimal� Moreover� if Mt has stationary independent

increments then so does Tt�

Remark� It should be noted that the stopping times Tt are not gen�
erally independent of Bt	 However
 in the case of ��stable processes
� � � �  one can use subordination to gain independence of the
stopping times
 ��	

Proof of Lemma ���� Let ��t�t�� denote the collection of minimal
stopping times for which

Xt
�d�
� B�t �

The proof will be completed once it has been shown that

���
�X
n��

n�
	n��X
k��

jB���k���	�nT � �B��k	�nT �j
p �� � almost surely �

The following inequality holds because Brownian motion is ���p���H#ol�
der continuous
 almost surely
 for p� � 

��� jB��tk���n� � B��tk�n�j
p � C j��tk���n�� ��tk�n�j

p�p� �

for all k � �� � � � � n � �
 and for all n � �
 almost surely
 where tk�n �
k �n T and  � p� � p	

���
 Theorem �� shows that the index of the process ��s� is half
that of the L�evy process	 Therefore
 with probability one
 ��s� has
�nite �� � 
��variation for all 
 � �	

Theorem ���� If � is a minimal stopping time and E �B� � � �� then
E ��� � E �B	

� ��

Consequently the process ��t�t�� can be controlled in the following
way

��� E ��t � � E �B	
�t
� � E �X	

t � � t

Z
jxj��

jxj	 ��dx� �

where � is the L�evy measure corresponding to the process Xt	 From
��� and Theorem �	� we note that the process �t is a L�evy process
whose L�evy measure
 say �
 satis�es the followingZ �

�

x��dx� �� �



��� D� R� E� Williams

From this result we deduce that the process �t
 almost surely
 has
bounded variation	 From ���
 Theorem �� we note that there is a posi�
tive constant A such that

P ��t � A t � for all t � �� � � �

From the above bound and using the fact that � has stationary inde�
pendent increments one can show

P ���tk���n�� ��tk�n� � A�tk���n � tk�n� � A �n j ��tk�n�� � � �

P

� �
n��

	n���
k��

�j��tk���n�� ��tk�n�j � A �n�
�
� � �

Returning to ��� we see that

jB��tk���n� �B��tk�n�j
p � C j��tk���n�� ��tk�n�j

p�p� � CA �n�p�p
�� �

which implies that

�X
n��

n�
	n��X
k��

jB���k���	�nT ��B��k	�nT �j
p � C A

�X
n��

n��n�p�p
���� �� �

due to p� being chosen in the interval �� p�	
This lemma concludes the proof that the bound in � � is �nite


which shows that the area process
 almost surely
 has �nite �p���
variation	

In this section we have proved that the area process exists and has
�nite �p���variation when �Xt�t�� has the form ��� To prove theorems
	�
 	 we note that a general L�evy process has the form

Xt � a t�Bt � Lt �
X

��s�t

j�Xsj��

!Xs � almost surely �

So
 we need to add area corresponding to the drift vector and the jumps
of size greater than one	 However
 this part of the L�evy process has
bounded variation and is piecewise smooth so there is no problem de�n�
ing its area	 Similarly
 it has
 almost surely
 �nite �p���variation	



Pathwise solutions of stochastic differential equations ��	

A� Homeomorphic ows�

In this section we give a proof that the solutions
 generated by ���
as the initial condition is varied
 form a �ow of homeomorphisms when
the integrator is a continuous function	 The proof modi�es the one
given in ��� for the existence and uniqueness of solution to ���	 The
main idea is that one uniformly bounds a sequence of iterated maps
which have projections giving the convergence of the solutions with
two di�erent initial points and bounding the di�erence of the solutions	

First
 we need some notation	

De�nition A��� Let T �n��Rd� denote the truncated tensor algebra of

length n over Rd � That is

T �n��Rd� �
nM
i��

�Rd�	i �

where �Rd�	� � R and T ����Rd� denotes the tensor algebra over Rd �

Let ! � ��� T � ��� T �� A map X � ! �� T �n��Rd� will be called

a multiplicative functional of size n if for all times s � t � u in ��� T �
the following relation holds in T �n��Rd�

Xst �Xtu � Xsu

and X
���
st � ��

A map X � ! �� T �n��Rd� is called a classical multiplicative func�

tional if t �� Xt � X
���
�t is continuous and piecewise smooth and

���� X
�i�
st �

ZZ
s�u��


�ui�t

dXu� � � �dXui �

where the right hand side is a Lebesgue�Stieltjes integral� We denote the

set of all classical multiplicative functionals in T �n��Rd � by S�n��Rd��

De�nition A��� We call a continuous function � � ! �� R
� a control

function if it is super�additive and regular� that is�

��s� t� � ��t� u� � ��s� u� � for all s � t � u � ��� T � �

��s� s� � � � for all s � ��� T � �
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Let X be a path of strong �nite p�variation� Then we can de�ne the

following control function

��s� t� � kXkpp��s�t� �

De�nition A��� A functional X � ��� X���� � � � � X�n�� de�ned on

T �n��Rd � where n � �p� is said to have �nite p�variation if there is

a control function � such that

���� jX
�i�
st j �

��s� t�i�p

�
� i
p

�
%

� for all �s� t� � ! � i � �� � � � � n �

for some su�ciently large � and x% � &�x� ���

Theorem A�� ���
 Theorem 		���� Let X�n� be a multiplicative

functional of degree n which has �nite p�variation� with n � �p� ��p�
denotes the integer part of p�� Then for m � n there is a unique

multiplicative extension X�m� in T �m��Rd� which has �nite p�variation�

Remark� The above theorem shows that once a su�cient number of
low order integrals associated to a path Xt have been de�ned
 then the
remaining iterated integrals of Xt are de�ned	

De�nition A�	� We call a multiplicative functional X �!��T �n��Rd�
geometric if there is a control function � such that for any positive

� there exists a classical multiplicative functional Y ��� which approxi�

mates X in the following way

j�Xst � Yst����
�i�j � � ��s� t�i�p � i � �� � � � � n � �p� �

We denote the class of geometric multiplicative functionals with �nite

p�variation by $G�Rd�p�

Example A��� Let Wt be an R
d �valued Brownian motion	 Then the

following functional W de�ned on T �	��Rd � belongs to $G�Rd�p for any
p � 	

��� Wst �

�
��Wt �Ws�

ZZ
s�u��u	�t


dWu� 
 dWu	

�
�
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where 
dWu denotes the Stratonovich integral	 It should be noted
that if one replaced the Stratonovich di�erential in ���� by the It"o
di�erential then one would not get an element of $G�Rd �p	 This is due
to the quadratic variation term which occurs in the symmetric part of
the area process

W
�	�
st �

ZZ
s�u��u	�t

dWu� dWu	 �

It was shown in ���� that one had su�cient control of the above func�
tional to generate path�wise solutions to stochastic di�erential equa�
tions driven by a Brownian motion	 This control was derived from
a moment condition in the same spirit as Kolmogorov�s criterion for
H#older continuous paths	 The moment condition was veri�ed for the
above area by the use of known stochastic integral results
 though one
could also derive it from a construction depending on the linearly in�
terpolated Brownian motion	

There are two stages to de�ning the integral against a geometric
multiplicative functional	 The �rst gives a functional which is almost
multiplicative �see ��� for de�nition�	 The second associates
 uniquely

a multiplicative functional to the almost multiplicative functional	

Theorem A��� There is a unique geometric multiplicative functional

Y which we call the integral of the ��form � against the geometric mul�

tiplicative functional X� We denote this by

Yst �

Z t

s

��Xu� 
X �

Corollary A��� One has the following control on the p�variation of Y

����
			� Z t

s

��Xu� 
X
��i�			 � �C ��s� t��i�p

�
� i
p

�
%

� i � �� � � � � �p� �

where C depends on p� k�kLip���� � �� �� L and �p��

The estimate is derived from estimating both the almost multi�
plicative functional and the di�erence of it from the integral	

We now state two lemmas which help prove that the solutions of
��� are homeomorphic �ows when the initial condition is varied	
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Lemma A��� Let X be in $G�Rd�p controlled by a regular ��� Let

f � Rn �� hom�Rd �Rn � be a Lip�� map for some  � p� Let Y
�i�
st �

i � ��  denote the element in $G�Rn�p which solves the rough integral

equation

Y
�i�
st �

Z t

s

f�Y �i�� 
X �

with initial condition Y
�i�
� � ai� i � �� � Let Wst be the multiplicative

functional which records the di�erence in the multiplicative functionals

Y
���
st and Y

�	�
st � Then

���� jW
�i�
st j � �i

��s� t��i�p�

�
� i
p

�
%

� for all i � � �

where � � ja� � a	j� � � C ��� the constant C depends on p� kfkLip����

�� � The bound holds for all times s � t on the interval J � fu �
� ��� u� � �g�

Lemma A��� With the assumptions of Lemma A	� one can estimate

the di�erence of the increments of Y
���
st and Y

�	�
st for any pair of times

� � s � t which satisfy ��s� t� � � as follows

jY
���
st � Y

�	�
st j � � exp

�
�

�
��
p

�
%
�� ��� s� � � ��� s����p��


��s� t����p�

�
��
p

�
%

�

In particular for any t � � one has

���� jY
���
t � Y

�	�
t j � ja� � a	jC�t� �

Now we can prove that the solutions form a �ow of homeomor�
phisms as the initial condition is varied	

Proof of Theorem ���� The continuity of solutions follows from
Lemma A		 It remains to show that the inverse map exists and is con�
tinuous	 This can be checked by repeating all the previous arguments
using the reversed path �Xt�s���s�t as the integrator	

The induction part of the proof of Lemma A	 will require the
following lemma about rescaling�
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Lemma A�� ������ Let X be a multiplicative functional in T ��p���Rd�
which is of �nite p�variation controlled by �� Let �X�Y � be an extension

of X to T ��p���Rd � R
n� of �nite p�variation controlled by K�� Then

�X��Y � is controlled by

max f�� �kp�iK � � � k � i � �p�g� �

where � � R� In particular� if � � K��p��p � � then �X��Y � is

controlled by ��

Proof of Lemma A��� We set up an iteration scheme of multiplicative
functionals which we will bound uniformly
 by induction	 A projection
of the sequence proves that a Picard iteration scheme converges to the
solutions of ��� starting from a� and a		 Another projection shows that
the di�erence of these solutions is bounded	

Let � � � and � � �	 Let V
���
st be the geometric multiplicative

functional given by

V
���
st � �Z

������
st � Y

������
st � Y

������
st � Z

�	����
st � Y

�	����
st � Y

�	����
st �W

���
st � ���Xst�

�
�Z t

s

f�a�� 
X � a��

Z t

s

f�a�� 
X� a��

Z t

s

f�a	� 
X � a	�Z t

s

f�a	� 
X� a	�

Z t

s

f�a��� f�a	� 
X� �
��Xst

�
�

The iteration step is a two stage process	 Given V �m� we set

eV �m��� �

Z
km
 �V �m�� 
V �m� �

where km
 is the ��form on ��Rn��� � R
d� given by

km
 �a�� � � � � a� �dA�� � � � � dA�

� �a� g�a	� a
� dA� dA
 � ��mdA�� dA	� a� g�a�� a�� dA�

dA� � ��mdA�� dA�� �
�� g�a	� a�� dA� dA� �

g�x� y� is the ��form appearing in ���
 Lemma �	� which satis�es the
following relation with respect to f

f i�x�� f i�y� �
X
j

�x� y�jgij�x� y� �
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eV �m��� is well de�ned because g and km
 are both Lip�� for some
 � p� �	

We de�ne V �m��� to be the geometric multiplicative functional
obtained by rescaling the �rst and fourth components of eV �m��� by � �
and the seventh component by �	

The uniform bound on the iterates �V �m��m�� will be obtained by
induction	 X is controlled by a regular �� so there exists a constant C
such that V ��� is controlled by � � C ��	 Suppose that V �k� �k � m�
are controlled by �	 From �Corollary A	�� there is a constant C� such

that eV �m��� is controlled by C� �	 If we choose � � �
 � � � such that

� � C
��p��p
� and � � � C

��p��p
� 
 then Lemma A	� implies that V �m��� is

controlled by �
 completing the induction step	
The uniform control on the iterates V �m� ensures the convergence

of fY �i��m�gm�� to the solutions of

dY
�i�
t � f�Y

�i�
t � dXt � Y

�i�
� � ai � i � ��  �

Through the de�nition of f
W �m�gm��
 the sequence at the level of
the paths will converge to the scaled di�erence of the two solutions
����Y �	� � Y ����	 For s� t in J one has

j
W
�i�
st j �

��s� t�i�p

�
� i
p

�
%

� i � �� � � � � �p� �

which implies that

jW
�i�
st j � �i

��s� t�i�p

�
� i
p

�
%

� i � �� � � � � �p� �

Proof of Lemma A��� We de�ne the following set of times

�� � t� � � and tj � inf fu � tj�� � ��tj��� u� � �g �

for all j � f�� � � � � n�s�g
 where n�s� � max fj � tj � sg and tn�s��� � s	
We solve the di�erential equation starting from s and use ���� to

show that

jW k
stj � K�s�k

��s� t��k�p�

�
�k
p

�
%

�
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where K�s� is an upper bound on the supremum over all the possible

di�erences of the paths jY
���
s � Y

�	�
s j � at time s	 The bound K�s� is

derived recursively by considering the analogous upper bound for the
di�erence of the solutions to the di�erential equation over the time
interval �ti��� ti� given below

jY
���
ti � Y

�	�
ti j � jY

���
ti��

� Y
�	�
ti��

j� jWti�� ti j

� jY
���
ti��

� Y
�	�
ti��

j

�
� �

��ti��� ti�
���p�

�
��
p

�
%


�

which implies that

K�tj� � K�tj���

�
� �

��tj��� tj�
���p�

�
��
p

�
%


� j � �� � � � � n�s� � � �

Therefore

jW k
stj � K�t��

k

n�s���Y
j��

�
� �

� �tj��� tj�
���p�

�
��
p

�
%

k
��s� t��k�p�

�
�k
p

�
%

� �k exp

�
k

�
n�s�X
j��

��tj��� tj�
���p�

�
��
p

�
%

�
� �tn�s�� s�

���p�

�
��
p

�
%



�
��s� t��k�p�

�
�k
p

�
%

�

noting that ��tj��� tj� � � and using the sub�additivity of � we obtain

� �k exp

�
k

�
��
p

�
%
�� ��� s� � � ��� s����p��


��s� t��k�p�

�
�k
p

�
%

�

By considering the above bound at the level of the paths �k � �� and
repeatedly using the triangle inequality one deduces ����	
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Branching process associated
with 2d-Navier Stokes equation

Säıd Benachour, Bernard Roynette and Pierre Vallois

Abstract. Ω being a bounded open set in R
2, with regular bound-

ary, we associate with Navier-Stokes equation in Ω where the velocity
is null on ∂Ω, a non-linear branching process (Yt; t ≥ 0). More pre-
cisely: Eω0(〈h, Yt〉) = 〈ω, h〉, for any test function h, where ω = rotu,
u denotes the velocity solution of Navier-Stokes equation. The support
of the random measure Yt increases or decreases of one unit when the
underlying process hits ∂Ω; this stochastic phenomenon corresponds to
the creation-annihilation of vortex localized at the boundary of Ω.

0. Introduction.

We consider here the 2d-Navier-Stokes (N.S.) equation in a boun-
ded open set Ω of R

2. The aim is not the study of existence or unique-
ness for the solution, when the initial data or the boundary of Ω are
smooth enough. We suppose that there exists a unique smooth solution
u of the Navier-Stokes equation, and we represent u and the vorticity
(ω = rotu) through a stochastic model.

We firstly introduce two dual nonlinear differential systems. We
prove (see sections 2 and 3) that the (N.S.) equation is equivalent to
each of the former nonlinear reflected stochastic differential equations.
The nonlinear feature appears in two places:

• inside Ω, through the singular kernel of Biot and Savart, defining
the mean velocity of the stochastic particle, when it moves in Ω,

331
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• on the boundary of Ω, via the local time; this process governing
the local behaviour of the particle when it reaches ∂Ω.

Since Ω is a subset of R
2, the vorticity ω is a scalar function.

Roughly speaking ω(t, ·) is the “density” of one of the two previous
diffusion processes taken a time t. (Corollary 3.4).

Secondly we define a branching process Y , having again a double
non linearity. By definition, Yt is a linear and random combination of
Dirac measures. ω is expressed through Y as follows (cf. Theorem 4.5)

E [〈h, Yt〉] = E
[ ∫

Ω

h(x)Yt (dx)
]

=
∫

Ω

h(x) ω(t, x) dx ,

h being a test function.
ω(t, x) dx can be interpreted as the mean value at time t of the

number of particles associated with Y , lying in a infinitesimal box lo-
cated at x, with area dx. We heuristically describe the dynamic of
branching of Y :

• a single particle moves in Ω as a diffusion process introduced in
the first step, all the particles being alive are independent,

• no particle is created when all of them lie in Ω.

• Sometime (i.e. randomly), when a particle hits F ⊂ ∂Ω (respec-
tively F † ⊂ ∂Ω) the particle dies and give rise to two new independent
particles, (resp. the particle dies), where F ∪ F † = ∂Ω. The branching
mechanism taking on the boundary gives a stochastic interpretation of
the creation or disappearing of vorticity on ∂Ω.

We conjecture that the nonlinear branching process can be ap-
proximated by a system of interacting particles. Our algorithm does
not coincide with those intoduced by A. Chorin ([C.M]).

Let in briefly detail the organisation of the paper:

• In Section 1, we study the connections between the Navier-Stokes
equation and the equation verified by the vorticity ω.

• In sections 2 and 3, we prove the equivalence between the two re-
flected stochastic differential equations and the (N.S.) equation. More-
over we check that these diffusion processes are in duality.

• We detail in Section 4, the construction of the branching process
associated with the (N.S.) equation.

• We describe in Section 5, our open question concerning the simu-
lation of the nonlinear branching process through a system of particles.
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1. A first approach to the Navier Stokes equation.

1) In this paper, Ω will denote a simply connected, bounded open
subset of R

2. We assume that the boundary ∂Ω is smooth. The Navier
Stokes system in Ω, with velocity vanishing at ∂Ω, is

(N.S.)

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

i)
∂u

∂t
+ (u · ∇)u = νΔu−∇p ,

ii) divu = 0 ,

iii) u(0, ·) = u0(·) ,
iv) u(t, x) = 0 , for all t ≥ 0, for all x ∈ ∂Ω .

u = (u1, u2) is the velocity (u is a two-dimensional valued vector field),
u0 is the initial velocity, p denotes the pressure (p is a scalar function),
ν is the viscosity of the fluid (ν will be taken without loss of generality
equal to 1/2 in the sequel). As usual

∇p =
(∂p
∂x
,
∂p

∂y

)
,

divu =
∂u1

∂x
+
∂u2

∂y
,

Δu =
∂2u

∂x2
+
∂2u

∂y2
,

and
u · ∇ = u1

∂

∂x
+ u2

∂

∂y
.

Note that the first equation i) in the (N.S.) system has to be understood
as an equation in R

2. Condition ii), i.e. divu = 0, means that the fluid
is incompressible.

We know that, if u0 with divu0 = 0 and ∂Ω are smooth, then (N.S.)
has a unique smooth solution defined on R

+ ×Ω ([La], [Li], [C-F]) if u0

is C∞(Ω) and ([Ka], [Ko]) if u0 is analytic.

2) In a first step we weaken iv) and consider

(N.S.)′

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

i)
∂u

∂t
+ (u · ∇)u =

1
2

Δu−∇p ,
ii) divu = 0 ,

iii) u(0, ·) = u0 ,

iv) u · n(t, x) = 0 , for all t ≥ 0 , for all x ∈ ∂Ω .
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where n(x) denotes the normalized outer normal vector at x ∈ ∂Ω.
Since iv) in (N.S.) is stronger than iv) in (N.S.)′ the solutions of (N.S.)′

are not unique.
If w : R

2 −→ R we set

(1.1) ∇⊥w =
(
− ∂w

∂y
,+

∂w

∂x

)
.

Let us introduce the following operator K (K is the Biot and Savart
kernel associated with Ω)

(1.2)

Kf(t, z) = ∇⊥
z

∫
Ω

G(z, z′) f(t, z′) dz′ ,

=

⎧⎪⎪⎨⎪⎪⎩
− ∂

∂y

∫
Ω

G((x, y), z′) f(t, z′) dz′ ,

+
∂

∂x

∫
Ω

G((x, y), z′) f(t, z′) dz′ ,

where z = (x, y) and G is the Green function of Δ on Ω, i.e.

Δz′G(z, z′) = δz (δz being the Dirac measure at z) ,

G(z, z′) = 0 , if z′ ∈ ∂Ω .(1.3)

G(z, z′) = G(z′, z) .(1.4)

It is classical to replace the two-dimensional equation i) in (N.S.) (or
(N.S.)′) by an equivalent equation where the unknown parameter will
be a real function ω. ω is called the vorticity associated with u and is
defined by

(1.5) ω = rotu :=
∂u2

∂x
− ∂u1

∂y
.

Recall that it is supposed that Ω is a bounded simply connected open
set.

Lemma 1.1. 1) Suppose u : Ω −→ R
2 being a smooth function i) and

ii) below are equivalent

i) divu = 0 in Ω, u · n = 0 in ∂Ω .(1.6)

ii) There exists ω : Ω −→ R such that u = Kω .(1.7)
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In this case ω = rotu.

2) a) Assume (u, p) is a solution of (N.S.)′, then ω = rotu solves
the vorticity equation

(1.8)

⎧⎨⎩ i)
∂ω

∂t
=

1
2

Δω −Kω · ∇ω , in ]0,+∞[×Ω ,

ii) ω(0, ·) = rotu0 := ω0 .

b) Suppose that ω is a solution of (1.8); then there exists p such
that (u, p) solves (N.S.)′ where u = Kω.

Proof. 1) Ω being a simply connected open set, the condition divu = 0
implies the existence of a function ψ (the stream function) such that,

(1.9) u = ∇⊥ψ .

Obviously ψ is defined up to an additive constant. If we take a parame-
trization of ∂Ω, we easily verify

(1.10)
u · n(t, x) = 0 , for all t ≥ 0 , for all x ∈ ∂Ω

if and only if ψ(t, x) = c , for all t ≥ 0 , for all x ∈ ∂Ω .

ψ is unique if we choose c = 0.
We set ω = rotu. By a straightforward calculation we obtain

(1.11) ω = Δψ .

Since ψ vanishes on ∂Ω, it can be expressed through ω, via the Green
function

(1.12) ψ(t, z) =
∫

Ω

G(z, z′)ω(t, z′) dz′ .

(1.9) implies that u = Kω.
We now analyze the converse. Suppose that u = Kω. This means

that u = ∇⊥ψ when ψ is defined by (1.12). Hence, divu = 0 in
[0,+∞[×Ω and ψ(t, x) = 0 for any (t, x) ∈ R+ × ∂Ω. Then the equiv-
alence (1.10) implies that u · n = 0.

2) a) For any smooth functions, w : R
2 −→ R

2, and q : R
2 −→ R,

we have,

(1.13) rot (∇q) = 0 , rot ((w ·∇)w) = w ·∇(rotw)+(divw) rotw .
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Let (u, p) be a solution of (N.S.)′. We take the rotational operator on
both sides of (N.S.)′ i), we easily obtain (1.8) i).

b) Let us suppose that ω solves (1.8). We set u = Kω. Then
divu = 0, and u · n(t, x) = 0 for any t ≥ 0 and x ∈ ∂Ω. The former
calculation tells us that

rot
(∂u
∂t

− (u · ∇)u− 1
2

Δu
)

= 0 .

Hence there exists a function p such that

∂u

∂t
− (u · ∇)u− 1

2
Δu = −∇p .

We have proved that u solves (N.S.)′.

We have now to characterize among the solutions ω of (1.8), the
unique function such that u = Kω solves (N.S.), i.e.

(1.14) Kω · τ(x) = 0 , for all t ≥ 0 , for all x ∈ ∂Ω ,

where τ(x) denotes the tangent vector at x ∈ ∂Ω.

Lemma 1.2. Let ω be a solution of (1.8) and u = Kω. The four
following assertions are equivalent :

a) u(t, x) = 0, for all t ≥ 0 , for all x ∈ ∂Ω.

b)
∂

∂n

∫
Ω

G(z, z′)ω(t, z′) dz′ = 0 , for all t ≥ 0 , for all z ∈ ∂Ω.

c)
∫

Ω

h(z)ω(t, z) dz = 0, for any bounded and harmonic function

h defined on Ω.

d)
∫

Ω

h(t, z)ω(t, z) dz = 0, for any h : R+ × Ω −→ R verifying

1
2

Δh±Kω · ∇h = 0.

Proof. 1) Recall that u = Kω verifies (N.S.)′. Moreover

u · τ = ∇⊥ψ · τ = ±∇ψ · n = ± ∂

∂n
ψ .
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Since ψ is given by (1.12), a) if and only if b) follows immediately.

2) Let h : R+ × Ω −→ R, such that Δh = αKω · ∇h in ]0,∞[×Ω,
where α is a constant.

The Stokes formula and (1.11) tell us∫
Ω

h(t, z)ω(t, z) dz

=
∫

Ω

h(t, z)Δψ(t, z) dz

=
∫

Ω

Δh(t, z)ψ(t, z) dz +
∫

∂Ω

h
∂ψ

∂n
−
∫

∂Ω

ψ
∂h

∂n

= α

∫
Ω

Kω · ∇h(t, z)ψ(t, z) dz +
∫

∂Ω

h
∂ψ

∂n
−
∫

∂Ω

ψ
∂h

∂n
.

We calculate the first integral by integrating by parts, we obtain,∫
Ω

(Kω · ∇h)(t, z)ψ(t, z) dz

= −
∫

Ω

(ψ h div (Kω))(t, z) dz −
∫

Ω

(h(Kω · ∇ψ))(t, z) dz .

But ψ = 0 on R+×∂Ω, divKω = divu = 0 and Kω ·∇ψ = ∇⊥ψ ·∇ψ =
0, as a result ∫

Ω

h(t, z)ω(t, z) dz =
∫

∂Ω

h(t, ·) ∂ψ
∂n

.

It is now clear that b) if and only if c) if and only if d).

We will say that u (or ω) is a solution of (N.S.) if,

u = Kω , ω solving the vorticity equation (1.8) ,(1.15)

and u verifies one of the four conditions of Lemma 1.2.(1.16)
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2. The vorticity equation as a Kolmogorov equation.

Let u be the solution of the Navier Stokes system (N.S.), ω denotes
the vorticity, ω = rotu.

The operator

L(f) =
1
2

Δf − u · ∇f

is the generator of a diffusion process D. If Ω = R
2, it is classical to

represent ω through ω0 and D, the crucial fact being that ω(t− s,Ds)
is a martingale.

Here Ω is an open, bounded, simply connected open set. We
suppose moreover that the boundary is smooth. Let us introduce
the following reflected stochastic differential equation driven by a two-
dimensional Brownian motion (Bt, t ≥ 0), started at 0, and defined on
a probability space (Ω0, (Ft)t≥0, P )

(2.1)

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

X̃t,x
s = x+Bs −

∫ s

0

u(t− r, X̃t,x
r ) dr

−
∫ s

0

n(X̃t,x
r ) dÃt,x

r , 0 ≤ s ≤ t ,∫ s

0

1{ �Xt,x
r ∈∂Ω} dÃ

t,x
r = Ãt,x

s , for all s ∈ [0, t] ,

u being a smooth function and ∂Ω being of class at less C2, there exists
a unique strong solution (X̃t,x

s ; 0 ≤ s ≤ t) of (2.1), taking its values in
Ω, for any t > 0 and x ∈ Ω (cf. [P] or [SV]). Recall that n(x) is the
normalized outer normal vector at x ∈ ∂Ω.

The solution of (2.1) is denoted X̃, because we will see in Section
3 that there exists a process X such that X and X̃ are dual processes.

The drift coefficient −u corresponds to the mean velocity of X̃; if
Ω = R

2, it is easy to check that

(2.2) u(t− s, x0) = − lim
h→0+

E
[X̃t,x

s+h − X̃t,x
s

h

∣∣∣Fs

]
, 0 ≤ s ≤ t .

Recall that if u is a solution of (N.S.)′ (the weak form of (N.S.)), then
u · n = 0 on R+ × ∂Ω, and u solves (N.S.) if u · τ = 0 on R+ × ∂Ω. If
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Ω = R× ]0,+∞[ (Ω is not bounded), then ∂Ω = {(x1, x2) : x2 = 0}.
We choose ρ0(x1, x2) = x1. The analog of (2.2) would be

(2.3) (u · τ)(t− s, x0) = lim
h→0

E
[ρ0(X̃

t,x
s+h) − ρ0(X̃t,x

s )
h

∣∣∣Fs

]
,

where 0 ≤ s ≤ t, x ∈ ∂Ω. Our situation is more complicated. The
function ρ0 is replaced by the set V of velocity test functions. ρ : Ω −→
R belongs to V, if ρ is of class C∞ and

∂ρ

∂n
(z) = 0 , for all z ∈ ∂Ω ,(2.4)

∂ρ

∂τ
�= 0 almost sure on ∂Ω ,(2.5)

Δρ = 0 on {z ∈ Ω : d(z, ∂Ω) ≤ ε} , for some ε > 0 .(2.6)

We note that it is not possible to choose ρ such that (∂ρ/∂τ)(z) �= 0 for
all z ∈ ∂Ω. If (∂ρ/∂τ) never vanishes on ∂Ω, ∂ρ/∂τ being continuous we
suppose without loss of generality that ∂ρ/∂τ > 0. Let γ : [0, 1] −→ ∂Ω
be a parametrization of ∂Ω. Since t −→ ρ(γ(t)) is increasing, then
ρ(γ(0)) < ρ(γ(1)), this generates a contradiction with γ(0) = γ(1).

Two objects play a crucial role in our approach. The first one is

(2.7) ϕc(s, x) =

∂ω

∂n
ω + c

(s, x) , s ≥ 0 , x ∈ ∂Ω ,

where c is a positive constant such that ω + c > 0.
The second one is the stochastic process

(2.8) Z̃t,x
c (s) =

(
ω(t− s, X̃t,x

s ) + c
)
exp

(∫ s

0

ϕc(t− r, X̃t,x
r ) dÃt,x

r

)
,

where 0 ≤ s ≤ t.
We are now ready to state the martingale property concerning ω.

Proposition 2.1. Suppose t > 0, x ∈ Ω and ω is the vorticity solution
of (1.8).

1) a) (Z̃t,x
0 (s ∧ ξ̃) ; 0 ≤ s ≤ t) is a continuous local martingale

where

(2.9) ξ̃ = inf {s ≤ t : X̃t,x
s ∈ ∂Ω and ω(t− s ; X̃t,x

s ) = 0} ∧ t .
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(We assume the convention inf φ = +∞).

b) If c is large enough (i.e. c > Ct,Ω), (Z̃t,x
c (s) ; 0 ≤ s ≤ t) is a

square integrable continuous martingale, Ct,Ω being defined as

(2.10) Ct,Ω = −min {ω(s, x) : 0 ≤ s ≤ t , x ∈ Ω} .

2) For any positive t, x in Ω and velocity test function ρ,

(2.11)
1
h
E
[
ρ
(
X̃t,x

(�T+h)∧t
− ρ(X̃t,x

�T
) | F

�T

] a.s.−→
h→0

0 ,

with,

(2.12) T̃ = inf {s ≤ t : X̃t,x
s ∈ ∂Ω} ∧ t .

Proof. 1) t and x being fixed, we denote for simplicity X̃ = X̃t,x and
Ã = Ãt,x.

We apply the Itô formula

ω(t− s, X̃s) = ω(t, x)+
∫ s

0

∇ω(t− r, X̃r) dBr −
∫ s

0

∂ω

∂n
(t− r, X̃r) dÃr

+
∫ s

0

(
− ∂ω

∂t
− u · ∇ω +

1
2

Δω
)
(t− r, X̃r) dr ,

where 0 ≤ s ≤ t. ω solves (1.8), therefore,

(2.13)
ω(t− s, X̃s) = ω(t, x) +

∫ s

0

∇ω(t− r, X̃r) dBr

−
∫ s

0

∂ω

∂n
(t− r, X̃r) dÃr .

Let us introduce, for all integer n ≥ 1

(2.14) ξ̃n = inf
{
s ≤ t : |ω(t− s, X̃s)| ≤ 1

n
and X̃s ∈ ∂Ω

}
∧ t .

{ξ̃n}n≥1 is an increasing sequence of stopping times converging to ξ̃.
We set

(2.15) M̃c(s) = exp
(∫ s

0

ϕc(t− r, X̃r) dÃr

)
.
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Using again the Itô formula we get,

ω(t− s ∧ ξ̃n, X̃(s ∧ ξ̃n)) M̃0(s ∧ ξ̃n)

= ω(t, x) +
∫ s∧�ξn

0

M̃0(r)∇ω(t− r, X̃r) dBr

+
∫ s∧�ξn

0

(
− M̃0(r)

∂ω

∂n
(t− r, X̃r) + M̃0(r) (ω ϕ0) (t− r, X̃r)

)
dÃr .

But ∂ω/∂n− ω ϕ0 = 0, then

(2.16) Z̃t,x
0 (s ∧ ξ̃n) = ω(t, x) +

∫ s∧�ξn

0

M̃0(r)∇ω(t− r, X̃r) dBr .

Part 1) a) follows immediately.
We note that (ω+ c)(s, y) ≥ α > 0 for any (s, y) ∈ [0, t]×Ω, ω+ c

solves (1.8) and
∂(ω + c)
∂n

− (ω + c)ϕc = 0 ,

the former proof tells us that (Z̃t,x
c (s) ; 0 ≤ s ≤ t) is a local martingale

and

(2.17) Z̃t,x
c (s) = ω(t, x) + c+

∫ s

0

M̃c(r)∇ω(t− r, X̃r) dBr .

We write
∇ω = (ω + c)

∇ω
ω + c

.

The function ∇ω/(ω + c) being bounded on [0, t] × Ω, making use of
localization we have

E [(Z̃t,x
c (s))2] ≤ (ω(t, x) + c)2 +K

∫ s

0

E[(Z̃t,x
c (r))2] dr .

Gronwall lemma implies E [(Z̃t,x
c (s))2] ≤ (ω(t, x) + c)2eKs, 0 ≤ s ≤ t.

This shows 1) b).

2) Let ρ be a function of class C∞ verifying (2.4)-(2.6) (i.e. ρ is a
velocity test function). We apply the Itô formula to ρ

ρ(X̃t,x
s ) = ρ(x) +

∫ s

0

∇ρ(X̃t,x
r ) dBr

−
∫ s

0

(u(t− r, X̃t,x
r ) · ∇ρ(X̃t,x

r ) − 1
2

Δρ(X̃t,x
r )) dr .
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Consequently (for simplicity we write T for T̃ ).

ρ(X̃t,x
(T+h)∧t) − ρ(X̃t,x

T )

=
∫ (T+h)∧t

T

∇ρ(X̃t,x
r ) dBr

−
∫ (T+h)∧t

T

(
u(t− r, X̃t,x

r ) · ∇ρ(X̃t,x
r ) − 1

2
Δρ(X̃t,x

r )
)
dr ,

1
h
E [ρ(X̃t,x

(T+h)∧t) − ρ(X̃t,x
T ) | FT ]

= − 1
h
E
[ ∫ (T+h)∧t

T

(
u(t− r, X̃t,x

r ) · ∇ρ(X̃t,x
r )

(2.18)

− 1
2

Δρ(X̃t,x
r ) dr

)∣∣∣FT

]
.

On {T = t} ∈ FT , the integral is equal to 0, therefore the limit is
0. Suppose {T < t}. Recall that Δρ = 0 in a neighbourhood of ∂Ω,
u and ∇ρ are continuous functions, then the almost sure limit of the
right-hand side of (2.18) is −u(t−T, X̃t,x

T ) ·∇ρ(X̃t,x
T ). But on {T < t},

X̃t,x
T ∈ ∂Ω then u(t− T, X̃t,x

T ) = 0.

Applying the stopping theorem we get:

Corollary 2.2. Recall that ξ̃n is the stopping time defined by (2.14).
Then

ω(t, x) = E
[
ω(t− s ∧ ξ̃n, X̃t,x(s ∧ ξ̃n))

· exp
(∫ s∧�ξn

0

ϕ0(t− r, X̃t,x
r ) dÃt,x

r

)]
,

(2.19)

ω(t, x) + c = E
[
(ω(t− s, X̃t,x

s ) + c)

· exp
(∫ s

0

ϕc(t− r, X̃t,x
r ) dÃt,x

r

)]
,

(2.20)

c being larger than Ct,Ω.
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We would like to define a self-contained nonlinear stochastic system
–we call it the Stochastic Navier Stokes system (S.N.S.)– equivalent to
the Navier Stokes system. Proposition 2.1, tells us that X̃ is a good
candidate concerning the stochastic part. It remains to express the drift
term Kω through the underlying process X̃.

Let us detail the (S.N.S.) system and its three conditions (S.N.S.1),
(S.N.S.2) and (S.N.S.3). The unknown parameters are ω, {(X̃t,x

s ; 0 ≤
s ≤ t), (Ãt,x

s ; 0 ≤ s ≤ t), t ≥ 0, x ∈ Ω}.

(S.N.S.1) For any positive t and x in Ω, consider the following reflected
stochastic differential equation

X̃t,x
s = x+Bs −

∫ s

0

Kω(t− r, X̃t,x
r ) dr

−
∫ s

0

n(X̃t,x
r ) dÃt,x

r , 0 ≤ s ≤ t ,

(2.21)

∫ s

0

1{ �Xt,x
r ∈∂Ω} dÃ

t,x
r = Ãt,x

s , for all s ∈ [0, t] .(2.22)

(Ãt,x
s ; 0 ≤ s ≤ t) is the local time of X̃t,x on the boundary.

Recall that Kω is the function defined by (1.2).

(S.N.S.2) The process (ω(t − s ∧ T̃ , X̃t,x(s ∧ T̃ ))) is a martingale, for
any t > 0 and x ∈ Ω, where T̃ is the first hitting time of the boundary

T̃ = inf {s ≤ t : X̃t,x(s) ∈ ∂Ω} .

(S.N.S.3) For any t > 0 and velocity test function ρ

1
h
E [ρ(X̃t,x

�T+h
) − ρ(X̃t,x

�T
) | F

�T ] a.s.−→
h→0

0 ,

for any x in Ω.

We just now state the converse of Proposition 2.1.

Proposition 2.3. Suppose that (S.N.S.) has a unique solution

(ω, {X̃t,x
s , Ãt,x

s ; 0 ≤ s ≤ t}, t ≥ 0 , x ∈ Ω) ,
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where ω is smooth. Then u = Kω is a solution of (N.S.) equation (i.e.
verifies (1.15) and (1.16)).

Proof. 1) ω is bounded on [0, t] × Ω, therefore (ω(t− s ∧ T̃ , X̃t,x(s ∧
T̃ ) ; 0 ≤ s ≤ t)) is a bounded martingale. By the stopping theorem,

(2.23) ω(t, x) = E [ω(t− s ∧ T̃ , X̃t,x(s ∧ T̃ ))] , 0 ≤ s ≤ t .

The infinitesimal generator of ((t− s ; X̃t,x
s ) ; 0 ≤ s ≤ t) is L, with

Lf(s, x) =
(
− ∂f

∂s
+

1
2

Δf − u · ∇f
)
(t− s, x) .

(2.23) implies that ω is the solution to the Dirichlet problem in [0, t]×Ω
associated with L. Consequently ω solves the vorticity equation (1.8).

2) Let ρ be a velocity test function (recall that ρ is of class C∞

and solves (2.4)-(2.6)). We are allowed to use relation (2.18)

1
h
E [ρ(X̃t,x

�T+h
) − ρ(X̃t,x

�T
) | F

�T ]

= − 1
h
E
[ ∫ �T+h

�T

Kω(t− r, X̃t,x
r ) · ∇ρ(X̃t,x

r ) dr
∣∣∣F

�T

]
,

since for h small enough Δρ(X̃t,x
r ) = 0, T̃ ≤ r ≤ T̃ + h.

We take the limit h → 0+, the functions Kω and ∇ρ being boun-
ded, we have

(2.24) Kω(t− T̃ , X̃t,x
�T

) · ∇ρ(X̃t,x
�T

) = 0 , almost sure .

From part 1) of Lemma 1.1, we know that (Kω) · n = 0 on [0, t] × ∂Ω.
Consequently (2.24) is equivalent to

∂Kω

∂n
(t− T̃ , X̃t,x

�T
)
∂ρ

∂n
(X̃t,x

�T
) = 0 , almost sure .

Since x belongs to Ω, conditionnally to {T̃ < t}, the distribution of
(T̃ , X̃t,x

�T
) is absolutely continuous with respect to (1[0,t](u) du)⊗ λ̃(dv),

where λ̃ denotes the Lebesgue measure on ∂Ω. Assumption (2.5) implies

∂Kω

∂n
(t− s, y) = 0 , for almost every (s, y) ∈ [0, t] × ∂Ω .
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∂Kω/∂n being a continuous function, the former condition is equivalent
to (∂Kω/∂n) (s, y) = 0 for any s ∈ [0, t] and y ∈ ∂Ω. u is a solution of
the (N.S.) equation because Kω vanishes on R+ × ∂Ω.

Remarks 2.4. 1) (S.N.S.2) reveals the nonlinearity of X̃ inside Ω.
Indeed, (2.21) shows that X̃ depends on ω; and the martingale property
(S.N.S.2) involving ω depends on X̃.

2) (S.N.S.3) implies that the tangential component u ·τ of u = Kω
is equal to 0 on the boundary of Ω.

3) A priori, 1) a) of Proposition 2.1 seems a stronger condition
than (S.N.S.2). We claim that these two conditions are equivalent.

We remark that Z̃t,x
0 (t ∧ T̃ ) = ω(t − s ∧ T̃ , X̃t,x

s∧�T
), where T̃ is

the first hitting time of ∂Ω, and T̃ ≤ ξ̃ and ξ̃ is the stopping time
defined by (2.9). Therefore if ω solves the vorticity equation (1.8),
(Z̃t,x

0 (s ∧ ξ̃) ; 0 ≤ s ≤ t) is a local martingale, then (S.N.S.2) holds.
Let us analyze the converse. Suppose that the (S.N.S.) system has

a solution. Hence ω solves (1.8). Applying the Itô formula we have,

ω(t− s, X̃t,x
s ) = ω(t, x) +

∫ s

0

∇ω(t− r, X̃t,x
r ) dBr

−
∫ s

0

∂ω

∂n
(t− r, X̃t,x

r ) dÃt,x
r .

Recall that
ϕ0 =

1
ω

∂ω

∂n
,

using again the Itô formula we obtain,

Z̃t,x
0 (s) = ω(t− s, X̃t,s

s ) exp
∫ s

0

ϕ0(t− r, X̃t,x
r ) dÃt,x

r

= ω(t, x) +
∫ s

0

∇ω(t− u, X̃t,x
u )

· exp
(∫ u

0

ϕ0(t− r, X̃t,x
r ) dÃt,x

r

)
dBu ,

s belonging to the stochastic interval [0, ξ̃].
This proves that (Z̃t,x

0 (s∧ ξ̃) ; 0 ≤ s ≤ ξ̃) is a local martingale (i.e.
1) a) of Proposition 2.1 holds).
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We analyze the integrability of Ãt,x. This plays an important role
in Lemma 4.2.

Proposition 2.5. For any θ > 0, t > 0 and x ∈ Ω,

(2.25) E [exp (θÃt,x
t )] <∞ .

Moreover, for any k,

lim
u→0

sup
0≤t≤k

x∈Ω

E [Ãt,x
u ] = 0 .

Remarks. 1) In dimension 1, for the reflected Brownian motion, recall

that the local time at 0, L0
t , has exponential moments, since L0

t

(d)
=√

t |N |, whereN is a centered, unit variance, Gaussian random variable.

2) A similar estimation can be found in [S.V.].

Proof of Proposition 2.5. 1) Let λ > 0 be fixed.
We choose γ : Ω −→ R, a function of class C2 such that,

γ(x) ≥ 1 , for all x ∈ Ω .(2.27)

i)
∂γ

∂n
(x) = 2λ ,

ii) γ(x) = 2 , for any x ∈ ∂Ω .
(2.28)

A straightforward calculation based on the Itô formula and (2.28) shows
that (Us ; 0 ≤ s ≤ t) is a bounded martingale, where X̃s = X̃t,x

s ,
Ãs = Ãt,x

s and

Us = γ(X̃s) exp (λÃs) −
∫ s

0

H(r) exp (λÃr) dr ,(2.29)

H(r) =
1
2

Δγ(X̃r) − u(t− r, X̃r)∇γ(X̃r) .

γ being of class C2, H(r) is a bounded process, then there exists a
positive constant k such that |H(r)| ≤ k for any r in [0, t]. (2.27)
implies that

H(r) ≤ |H(r)| ≤ k γ(X̃r) , for all r ∈ [0, t] .
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Let {Tn}n≥1 be a increasing sequence of stopping times, converging to
t such that Ãt∧Tn

≤ n.
We replace s by s ∧ Tn in (2.29) and we take the expectation, we

easily obtain the following inequality

γ(x) = E [Us∧Tn
]

≥ E [γ(X̃s∧Tn
) exp (λÃs∧Tn

)] − kE
[ ∫ s∧Tn

0

γ(X̃r) exp (λ Ãr) dr
]
.

We set αn(s) = E [γ(X̃s∧Tn
) exp (λÃs∧Tn

)]. The former inequality is
equivalent to

αn(s) ≤ γ(x) + k

∫ s

0

αn(u) du , for all s ∈ [0, t] .

Using the Gronwall lemma and (2.27) we conclude that

E [expλ Ãs∧Tn
] ≤ γ(x) eks .

We take the limit n going to infinity,

E[expλ Ãs] ≤ γ(x) eks .

2) As for (2.26), we take γ0 : Ω −→ R of class C2, such that

∂γ0

∂n
(x) = 1 , for all x ∈ ∂Ω .

We apply the Itô formula and we take the expectation

E [Ãt,x
s ] = E [γ0(x) − γ0(X̃t,x

s )] +
∫ s

0

h(r) dr ,

h(r) = E
[1
2

Δγ0(X̃t,x
r ) − u(t− r, X̃t,x

r )∇γ0(X̃t,x
r )
]
.

Since γ0 is of class C2, h is bounded, moreover the continuity of (t, x, s)
−→ X̃t,x

s implies that (2.26) is verified.

Before ending this section we prove some properties concerning
the distribution of X̃t,x

s (respectively
∫ t

0
H(r, X̃t

r) dÃ
t
r) when X̃t

0 is uni-
formly distributed on Ω.



348 S. Benachour, B. Roynette and P. Vallois

Notations. 1) λ is the normalized Lebesgue measure on Ω: λ is pro-
portional to the Lebesgue measure on Ω and λ(Ω) = 1.

2) Let h : Ω −→ R and F : C([0, t]) −→ R, we set

(2.30)
Eh·λ[F (X̃t

s ; 0 ≤ s ≤ t)]

=
∫

Ω

E [F (X̃t,x
s ; 0 ≤ s ≤ t)]h(x)λ(dx) .

(2.30) is meaningfull if for instance h and F are positive.

Proposition 2.6. 1) Suppose f : Ω −→ R and F : [0, t] × ∂Ω −→ R,
H : [0, t] × ∂Ω −→ R are bounded Borel functions. Then, for any s in
[0, t],

Eλ[f(X̃t
s)] =

∫
Ω

f(x) (dx) ,(2.31)

Eλ

[ ∫ s

0

H(r, X̃t
r)dÃ

t
r

]
=

1
2

∫ s

0

(∫
∂Ω

H(r, x) dx
)
dr .(2.32)

Proof of Proposition 2.6. 1) The first identity is classical. Let L̃
be the infinitesimal generator of X̃ and L

L(f) =
1
2

Δf + u · ∇f .

L and L̃ are symmetric with respect to the probability measure λ (see
Section 3), therefore λ is the invariant probability measure of X̃.

2) We analyze (2.32). Let g : [0, t] × Ω −→ R be of class C2. We
apply the Itô formula and we take the expectation

Eλ[g(s, X̃t
s)]

=
∫

Ω

g(0, x) dλ(x) −Eλ

[ ∫ s

0

∂g

∂n
(r, X̃t

r) dÃ
t
r

]
+Eλ

[ ∫ s

0

(1
2
Δg(r, ·) − u(t− r, ·)∇g(r, ·) +

∂g

∂t
(r, ·)

)
(X̃t

r) dr
]
.

We use the former identity (2.31)

Eλ

[ ∫ s

0

∂g

∂n
(r, X̃t

r) dÃ
t
r)
]

= A1 +A2 ,
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where

A1 =
∫

Ω

g(0, x) dλ(x) −
∫

Ω

g(s, x) dλ(x) +
∫ s

0

(∫
Ω

∂g

∂t
(r, x)λ(dx)

)
dr ,

A2 =
∫ s

0

(∫
Ω

(1
2

Δg(r, x) − u(t− r, x)∇g(t, x)
)
λ(dx)

)
dr .

It is obvious that A1 = 0.
We transform A2 through Stokes formula, and an integration by

parts, ∫
Ω

Δg(r, x)λ(dx) =
∫

∂Ω

∂g

∂n
(r, x) dx ,

∫
Ω

u(t− r, x)∇g(r, x)λ(dx) = −
∫

Ω

g(r, x) div u(t− r, x)λ(dx) = 0 .

(Recall that divu = 0). Therefore

Eλ

[ ∫ s

0

∂g

∂n
(r, X̃t

r) dÃ
t
r

]
=

1
2

∫ s

0

(∫
∂Ω

∂g

∂n
(r, x) dx

)
dr .

For any g, of class C2. (2.32) is a direct consequence of the monotone
class theorem.

3. Fokker-Planck interpretation of the vorticity equation.

Let ω be the vorticity associated with u, u being the velocity solving
the Navier Stokes system. Recall that ω solves (1.8).

We know that if D is a diffusion process with drift term b, and
coefficient of diffusion identically equal to 1, the density ϕ of D verifies
the Fokker-Planck equation

(3.1)
∂ϕ

∂t
=

1
2

Δϕ− b∇ϕ− (div b)ϕ , t > 0 , x ∈ Ω .

Since divu = 0, if we choose u = b, we note that the vorticity equation
can be written as a Fokker-Planck equation.

If Ω is equal to the whole space R
2, ω is the “density” of D, D

starting with initial distribution ω0(x) dx

(3.2)
∫

R2
h(x)ω(t, x) dx =

∫
R2
ω0(x)E [h(Dx

t )] dx ,
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where Dx solves,

(3.3) Dx
t = x+Bt +

∫ t

0

u(s,Dx
s ) ds .

B being a two-dimensional Brownian motion, B0 = 0.
In our context we guess that the underlying process associated with

ω (or u) has to stay in Ω. It is a well-known problem solved by adding
a local time process in the right-hand side of (3.3).

More precisely let X = ((Xt,x
s ; s ≥ 0), x ∈ Ω, t ≥ 0) be the family

of diffusions, with normal reflection

(3.4)

⎧⎪⎪⎨⎪⎪⎩
Xt,x

s = x+Bs +
∫ s

0

u(t+ r,Xt,x
r ) dr −

∫ s

0

n(Xt,x
r ) dAt,x

r ,

At,x
s =

∫ s

0

1{Xt,x
r ∈∂Ω} dA

t,x
r ,

n(y) is the normalized outer normal vector at y ∈ ∂Ω, (At,x
s ; s ≥ 0)

is the local time process corresponding to a normal reflection at the
boundary. We know that Xt,x

s belongs to Ω for any (s, t, x) in R
2
+ ×Ω.

The aim of this section is double. We prove that X and X̃ are in
duality, X̃ = ((X̃t,x

s ; 0 ≤ s ≤ t) ; (t, x) ∈ R+ × Ω) being the family
of stochastic processes introduced in Section 2, and especially in (2.1).
We also come back to the interpretation of ω as a “density” function.

We keep the same notation we have introduced in (2.30)

Eh·λ[F (X̃t
s ; 0 ≤ s ≤ t)]

=
∫

Ω

E [F (X̃t,x
s ; 0 ≤ s ≤ t)]h(x)λ(dx) ,

(3.5)

Eh·λ[F (Xt
s ; s ≥ 0)] =

∫
Ω

E [F (Xt,x
s ; s ≥ 0)]h(x)λ(dx) ,(3.6)

where h : Ω −→ R and F : C(R+) −→ R are Borel functions. λ denotes
the normalized Lebesgue measure on Ω.

We begin with the duality between X and X̃ .

Proposition 3.1. i) Suppose t > 0 and F : C([0, t]) → R be a Borel
bounded function, then

(3.7) Eλ[F (X0
s ; 0 ≤ s ≤ t)] = Eλ[F (X̃t

t−s ; 0 ≤ s ≤ t)] .
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ii) In particular if 0 = s0 < s1 < · · · < sn ≤ t and f0, . . . , fn : Ω −→ R

are bounded Borel functions we have

(3.8)
Eλ[f0(X0

s0
) f1(X0

s1
) · · · fn(X0

sn
)]

= Eλ[f0(X̃t
t−s0

) f1(X̃t
t−s1

) · · · fn(X̃t
t−sn

)] .

Proof. The result is well-known if X or X̃ are homogeneous Markov
processes. Here they are not, therefore we briefly indicate the main
steps of the proof. The monotone class theorem implies that it is suffi-
cient to verify (3.8). Using the Markov property and induction we can
reduce to n = 1. We set

δ = Eλ[f0(X0
s0

) f1(X0
s1

)] ,

δ̃ = Eλ[f0(X̃t
t−s0

) f1(X̃t
t−s1

)] ,

0 = s0 < s1 ≤ t .

Let (∧r,s)0≤r<s (respectively (∧̃t
r,s)0<r<s≤t) be the non homogeneous

semigroup associated with X (respectively X̃t).
We denote by Lr and L̃t

r the infinitesimal generators of ∧ and ∧̃

Lrf(x) =
1
2

Δf(x) + u(r, x)∇f(x) ,

L̃t
rf(x) =

1
2

Δf(x) − u(t− r, x)∇f(x) ,

for any f of class C2 in Ω, and verifying

∂f

∂n
= 0 , on ∂Ω .

1) We claim that

(3.9) 〈g, Lrf〉λ = 〈f, L̃t
t−rg〉λ , 0 < r < t ,

where f and g are of class C2,

∂f

∂n
=
∂g

∂n
= 0
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and

(3.10) 〈f, g〉λ =
∫

Ω

f(x) g(x)λ(dx) .

We integrate by part, making use of Stokes formula∫
Ω

g(x)Lrf(x) dx =
1
2

(∫
Ω

f(x)Δg(x) dx+
∫

∂Ω

g
∂f

∂n
−
∫

∂Ω

f
∂g

∂n

)
−
∫

Ω

g(x) f(x) div u(r, x) dx

−
∫

Ω

f(x) (u(r, x)∇g(x)) dx +
∫

∂Ω

u g f .

Since ∂f/∂n, ∂g/∂n, u|∂Ω and divu cancel, we obtain (3.9).

2) In this second step, we prove

(3.11) 〈f, ∧̃t
t−s,t−rg〉λ = 〈∧r,sf, g〉λ , 0 ≤ r ≤ s ≤ t ,

for any f and g of class C2, ∂f/∂n = ∂g/∂n = 0.
We set

α(h) = 〈∧r,hf, ∧̃t
t−s,t−hg〉λ , h ∈ [r, s] .

We take the derivative of α

α′(h) = 〈Lh ∧r,h f, ∧̃t
t−s,t−hg〉λ − 〈∧r,hf, L̃t−h∧̃t

t−s,t−hg〉λ ,

because

∂

∂h
∧r,h f = Lh ∧r,h f and

∂

∂h
∧̃t

t−s,t−h = −L̃t−h∧̃t
t−s,t−h .

(3.9) implies that α′(h) = 0, for all h ∈ [r, s]. Hence α is constant

α(r) = 〈f, ∧̃t
t−s,t−rg〉λ = α(s) = 〈∧r,sf, g〉λ .

3) We come back to δ and δ̃. We have

δ = 〈f0,∧0,s1f1〉λ ,

δ̃ = Eλ[f1(X̃t
t−s1

)∧̃t
t−s1,t f0(X̃

t
t−s1

)] = 〈1, ∧̃t
0,t−s1

(f1(∧̃t
t−s1,t f0))〉λ .
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We apply twice (3.11),

δ̃ = 〈1, f1∧̃t
t−s1,tf0〉λ = 〈f1, ∧̃t

t−s1,tf0〉λ = 〈∧0,s1f1, f0〉λ = δ .

Propositions 2.5 and 2.6 admit a dual version.

Proposition 3.2. 1) Let f : Ω −→ R and H : [0, t] × ∂Ω −→ R two
Borel bounded functions then,

Eλ[f(X0
t )] =

∫
Ω

f(x)λ(dx) ,(3.12)

Eλ

[ ∫ t

0

H(r,X0
r ) dA0

r

]
=

1
2

∫ t

0

(∫
∂Ω

H(r, x) dx
)
dr ,(3.13)

Eλ[exp (θA0
t )] <∞ , for any θ > 0 ,(3.14)

lim
u→0+

sup
x∈Ω

0≤t≤k

E [At,x
u ] = 0 , (cf. (2.26)) .(3.15)

We omit the proof of the Proposition 3.2.
Before stating the analog of Proposition 2.1, let us introduce

(Ht
u)0≤u≤t the natural filtration generated by (Xt−u ; 0 ≤ u ≤ t)

(3.16) Ht
u = σ(Xv ; t− u ≤ v ≤ t) , Ht

u =
⋂
v<u

Ht
v .

Proposition 3.3. Suppose that t > 0 and ω is a solution of (1.8).

1) a) For any h : Ω −→ R Borel bounded function,

(3.17)

(
h(X0

t )ω(t− s ∧ ξ,X0(t− s ∧ ξ))

· exp
(∫ t

t−s∧ξ

ϕ0(r,X0
r ) dAr

)
; 0 ≤ s ≤ t

)
is a (Pλ,Ht) continuous local martingale, where ϕc is defined by (2.7)
and,

(3.18) ξ = inf {s ≤ t : ω(t−s,X0(t−s)) = 0 and X0(t−s) ∈ ∂Ω}∧t .
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b) If c > Ct,Ω (Ct,Ω is defined by (2.10)),

(3.19)

(
h(Xt) (ω(t − s,X0(t− s)) + c)

· exp
(∫ t

t−s

ϕc(r,X0
r ) dA0

r

)
; 0 ≤ s ≤ t

)
is a (Pλ,Ht) square integrable continuous martingale.

2) The tangential component of the velocity of X0 vanishes on the
boundary.

Let ρ be a velocity test function, then

(3.20)
1
h
Eλ[ρ(X0

T+h) − ρ(X0
T ) | Ht

T ] a.s.−→
h→0+

0 ,

where T is the Ht-stopping time,

(3.21) T = inf {s ≤ t : X0(t− s) ∈ ∂Ω} ∧ t .

Proof. For simplicity we write Xt instead of X0
t . We set, for any

c ≥ 0

Zc(s) = h(Xt) (ω(t− s,Xt−s) + c)

· exp
(∫ t

t−s

ϕc(r,Xr) dAr

)
, 0 ≤ s ≤ t ,

(3.22)

ξn = inf
{
s ≤ t : ω(t− s)X(t− s) ≤ 1

n

and X(t− s) ∈ ∂Ω
}
∧ t , n ∈ N .

(3.23)

{ξn}n≥1 is an increasing sequence of Ht-stopping times converging, as
n goes to infinity, to ξ.

Let 0 ≤ u0 < u1 ≤ t, 0 ≤ s0 < s1 < · · · < sn ≤ u0, Γ0,Γ1, . . . ,Γn

Borel subsets of R and

A = {Xt−s0 ∈ Γ0,Xt−s1 ∈ Γ1, . . . ,Xt−sn
∈ Γn} .

Using the duality property (3.7) we obtain

Eλ[Zc(u1 ∧ ξn)1A] = Eλ[Z̃t
c(u1 ∧ ξ̃n)1

�A]
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with Ã = {X̃t
s0

∈ Γ0, X̃
t
s1

∈ Γ1, . . . , X̃
t
sn

∈ Γn}. Recall that Z̃t
c and ξ̃n

were introduced in (2.8), respectively (2.14).
We apply 1) a) of Proposition 2.1

Eλ[Z̃t
c(u1 ∧ ξ̃n)1

�A] = Eλ[Z̃t
c(u0 ∧ ξ̃n)1

�A] .

The duality property implies (3.17).
A similar approach and (2.18) estimate prove (3.19). As for (3.20)

we mimic the proof of (2.11).
Recall that {ξn}n≥1 is the increasing sequence of stopping time,

converging to ξ. Using the stopping theorem and (3.12) we obtain:

Corollary 3.4. For any bounded Borel function h, t > 0 and n ≥ 1,
we have

〈h, ω(t, ·)〉λ =
∫

Ω

h(x)ω(t, x) dλ(x)

= Eλ

[
h(X0

t )ω(t− ξn,X
0(t− ξn))

· exp
(∫ t

t−ξn

ϕ0(t,X0
r ) dA0

r

)]
,

(3.24)

〈h, (ω(t, ·) + c)〉λ =
∫

Ω

h(x) (ω(t, x) + c)λ(dx)

= Eλ

[
ω0(X0

0 )h(X0
t ) exp

(∫ t

0

ϕc(r,X0
r ) dA0

r

)]
.(3.25)

Remark 3.5. 1) A priori we are not allowed to drop ξn in (3.24) since
we do not know if

(Z0(s) ; 0 ≤ s ≤ t)

=
(
h(X0

t )ω(t− s,X0(t− s)) exp
(∫ t

t−s

ϕ0(r,X0
r ) dA0

r

)
; 0 ≤ s ≤ t

)
is a (Pλ,Ht)-martingale.

We note that if ω0 is analytic, ω is also an analytic function defined
on R+ ×Ω ([Ko]). Therefore {(t, x) ∈ R+ ×∂Ω : ω(t, x) = 0} is a finite
union of C∞ curves. X being a nice diffusion process, it does not visit
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this set: for any t > 0, almost surely, ω(t,Xr) �= 0 for all r ∈ [0, t].
Hence,

(3.26)
∫ r

0

|ϕ0(r,Xr)| dAr < +∞ , almost sure .

We conjecture that

(3.27) 〈h, ω(t, ·)〉λ = Eλ

[
ω0(X0

0 )h(X0
t ) exp

(∫ t

0

ϕ0(r,X0
r ) dAr

)]
.

2) Following the convention (3.6) we rather write the former iden-
tity

(3.28) 〈h, ω(t, ·)〉λ = Eω0·λ
[
h(X0

t ) exp
(∫ t

0

ϕ0(r,X0
r ) dAr

)]
.

Recall (see Lemma 1.1) that u can be expressed through ω via an inte-
gral

u(t, x) = Kω(t, x) =
∫

Ω

∇⊥
x G(x, z)ω(t, z) dz ,

G being the Green function of Δ on Ω. Therefore we have the formal
expression of u

(3.29) u(t, x) = Eω0·λ
[
∇⊥

x G(x,Xt) exp
(∫ t

0

ϕ0(r,Xr) dAr

)]
.

We point out that the right-hand side of (3.29) is a double integral with
respect the probability measure λ⊗ P . It seems difficult to check that
this integral is convergent in some sense.

Let us define the stochastic differential system (S.N.S*.) based on
x:

(S.N.S*.1) Suppose x ∈ Ω. Let us consider the following reflected
stochastic differential equation in Ω,

X0,x
s = x+Bs +

∫ s

0

Kω(r,X0,x
r ) dr

−
∫ s

0

n(X0,x
r ) dA0,x

r , s ≥ 0 ,
(3.30)

∫ s

0

1{X0,x
r ∈∂Ω} dA

0,x
r = A0,x

s , s ≥ 0 .(3.31)
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Kω being defined by (1.2).

(S.N.S*.2) For any h : Ω −→ R Borel bounded function,(
(h(X0

t )ω(t−s∧ξ, X0(t−s∧ξ)) exp
(∫ t

t−s∧ξ

ϕ0(r,X0
r ) dA0

r

)
; 0 ≤ s ≤ t

)
is a (Pλ,Ht) continuous local martingale, where ϕc is defined by (2.7)
and ξ by (3.18).

(S.N.S*.3) Let ρ be a velocity test function,

1
h
Eλ[ρ(X0

T+h) − ρ(X0
T ) |Ht

T ] a.s.−→
h→0+

0 ,

where T is defined by (3.21).
We are able to state a second stochastic system equivalent to the

(N.S.) one.

Proposition 3.6. Suppose that (S.N.S*.) (= (S.N.S*.1)+(S.N.S*.2)+
(S.N.S*.3)) has a solution (ω, {(Xt,x

s ; 0 ≤ s ≤ t), (At,x
s ; 0 ≤ s ≤

t) ; t ≥ 0, x ∈ Ω} ω being a smooth function ; then u = Kω is a solution
of the (N.S.) equation. Conversly if u = Kω solves the (N.S.) equation,
then the (S.N.S*.) system has a unique solution.

Proof. It is a direct consequence of duality (Proposition 3.1) and
Proposition 2.3.

4. Branching particle system associated with the Navier-
Stokes equation.

1) Heuristically (see the Remark 3.5) ω(t, ·) can be interpreted as
a density function

〈h, ω(t, ·)〉λ = Eω0·λ
[
h(Xt) exp

(∫ t

0

ϕ0(r,Xr) dAr

)]
.

If the sign of ϕ0 is constant and negative, ω(t, ·) is truly the density
of Xt, starting with initial “distribution” ω0 · dλ, and killed with the
multiplicative functional(

exp
∫ t

0

ϕ0(r,Xr) dAr ; t ≥ 0
)
.
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Here ϕ0 is not negative. To take into account the sign of ϕ0, a branching
particule system Y is very adapted. We keep in mind that ϕ0 < 0 (re-
spectively ϕ0 > 0) corresponds to disappearing (respectively creation)
of mass.

More precisely we know that Y takes its values in the set of finite
linear combinations of Dirac measures

(4.1) Yt =
Nt∑
i=1

αi
t δY i

t
,

where αi
t belongs to N, Y i

t is an element of Ω.
Then if h : Ω −→ R is a bounded Borel function, we set

(4.2) 〈h, Yt〉 =
∫

Ω

h(x) dYt(x) =
Nt∑
i=1

αi
t h(Y

i
t ) .

The aim of this section is the construction of a branching particle system
Y such that

(4.3) 〈h, ω(t, ·)〉λ = E[〈h, Yt〉] .
ω appears as the mean value of the density of particles (Y i

t ) associated
with Y .

2) We follow the introduction of branching particle system given by
Dynkin [D] and we adapt directly the general definitions to our context.
Such a system is based on three ingredients:

a) a Markov process ((Xx,t
s ; s ≥ 0), x ∈ Ω, t ≥ 0) coming from

(3.4),

b) a positive continuous additive functional C of X,

c) an offspring distribution p = (pn(t, x) ; t ≥ 0, x ∈ Ω)n≥1 on N,
indexed by R+ ×Ω: for any n, pn is a non negative Borel function and

(4.4)
∑
n≥0

pn(t, x) = 1 .

We denote by α the generating function associated with (pn(t, x) ; t ≥
0, x ∈ Ω)

(4.5) α(t, x, u) =
∑
n≥0

pn(t, x)un , u ∈ [0, 1] .
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It is supposed, that

(4.6) β(t, x) =
∑
n≥0

n pn(t, x) is bounded .

The description of the branching particle system Y with parameters X,
C and p (we note for simplicity Y = (X,C, p)) is easy to understand.
Suppose that the system starts with on particle located at x ∈ Ω. We
choose ξ1 an exponential random variable with parameter one, inde-
pendent of X. The dynamic of the initial particle is given by X up to
the first branching time U1 = inf {s ≥ 0 : Cs > ξ1}. At time U1, the
particle dies and a random number NU1 of new particles spring from the
ancestor particle, according to p. The conditional distribution of NU1

given the past up to time U1, is (pn(U1,XU1) ; n ≥ 0). The NU1 parti-
cles move independently off each other, as X, up to a second branching
stopping time. A new branching occurs, and so on.

3) Let X, C and p be the parameters of Y .
We denote by (Y t,x

s ; s ≥ 0) the branching particle system starting
with one particle at x ∈ Ω, with dynamic (Xt,x

s ; s ≥ 0) and offspring
distribution (pn(t+ s, x) ; s ≥ 0, x ∈ Ω)n≥1 and

(4.7) W (t, x ; s) = E [exp (−〈h, Y t,x
s 〉)] ,

for any (s, x) ∈ R+ ×Ω, h : Ω −→ R+ Borel positive bounded function.
W solves the basic equation (see [D, (1.5)])

(4.8)
W (t, x; s) = E

[ ∫ s

0

α(t+ r,Xt,x
r ,W (u,Xt,x

r ; s− r)) dCr

]
+E[exp−h(Xt,x

s )] , s ≥ 0 ,

where

(4.9) α(t, x;u) = α(t, x;u) − u =
∑
n≥0

pn(t, x)un − u ,

where t ≥ 0, x ∈ Ω, u ∈ [0, 1].

4) We are interested by

(4.10) v(t, x; s) = E[〈h, Y t,x
s 〉] , s ≥ 0 ,
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h being a positive and bounded Borel function.
Obviously 〈h, Y t,x

s 〉 ≥ 0, however we do not know if this positive
random variable has a finite expectation. We are interested by branch-
ing processes Y such that,

(4.11) sup
x,0≤s≤t

E[〈h, Y t,x
s 〉] < +∞ ,

for all h Borel positive bounded functions. It is clear that previous
assumption is equivalent to

(4.12) sup
x,0≤s≤t

E[〈1, Y t,x
s 〉] < +∞ .

We remark that 〈1, Y t,x
s 〉 is the number of particles still living at time

s.

Proposition 4.1. Let Y be a branching process with parameters
(X,C, p). We suppose that (4.11) holds. Then the function v defined
by (4.10) solves the “integral ” equation

(4.13)
v(t, x; s) = E

[ ∫ s

0

(β(t+ r,Xt,x
r ) − 1) v(t,Xt,x

r ; s− r) dCr

]
+ E [h(Xt,x

s )] ,

where h is a positive and bounded Borel function and β defined by

(4.14) β(s, x) =
∑
k≥0

k pk(s, x) < +∞ ,

and verify

(4.15) sup
x,s≤t

β(s, x) < +∞ .

Proof of Proposition 4.1. Since t > 0 and x ∈ Ω are supposed
to be fixed we write X (respectively Y, v) instead of Xt,x (respectively
Y t,x, v(t, x; ·)). Let a be a positive number, and W the function defined
by (4.7), where h is replaced by ah

W (s) = E [exp−a 〈h, Ys〉] .
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Applying the dominated convergence theorem and (4.11), we have,

∂

∂a
W (s)|a=0 = −E [〈h, Ys〉] .

On the other hand, (4.15) and (4.11) imply,

sup
x,u,r≤s

∣∣∣∂ α
∂u

(t+ r, x, u)
∣∣∣ ≤ 1 + sup

x,r≤t+s
β(r, x) < +∞ ,

sup
x,r≤s

∣∣∣∂W
∂a

(r)
∣∣∣ ≤ sup

x,r≤s
E [〈h, Ys〉] < +∞ .

Since W solves (4.8), we are allowed to take the partial derivative with
respect to a, in (4.8). If we choose a = 0, we obtain immediately (4.13).

Lemma 4.2. Let (X,C, p) be the parameters of a branching process Y .
We suppose,

(4.16) Ex,t[exp (θ Cs)] < +∞ ,

for any x ∈ Ω, s, t ≥ 0, and θ > 0, and

(4.17) pk(s, x) = 0 , if k ≥ 3 .

Then (4.11) holds.

Proof of Lemma 4.2. 1) Let τ be the right inverse of C: τt = inf {s >
0, Cs > t}. By a changing of time,

(4.18) 〈1, Y t,x
τs

〉 = 〈1, Y t,x

s 〉 , s ≥ 0 ,

where Y is the branching process associated with (Xτ ·, t, p).
Assumption (4.17) tells us that

(4.19) 〈1, Y t,x

s 〉 ≤ ρs .

Where (ρs ; s ≥ 0) is the Yule process (each particle lives an expo-
nential time and then splits into two particles). It is well know ([AN,
p. 109]) that ρs is geometrically distributed with parameter ebs, b being
a positive constant

P (ρs = k + 1) = e−bs (1 − e−bs)k , k ≥ 0 .
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Therefore

(4.20) E(ρ2
s) ≤ 2 e2bs .

2) We set Ns = 〈1, Y t,x
τs

〉.
We have,

E(Ns) =
∑
n≥0

E [Ns1{τn≤s<τn+1}] .

Moreover,

E(Ns 1{τn≤s≤τn+1}]≤E (Nτn+1 1{s≥τn})≤(E [(Nτn+1)
2]P (s ≥ τn))1/2 .

On the one hand, (4.18), (4.19) and (4.20) imply

E [(Nτn+1)
2] ≤ E [ρ2

n+1] ≤ 2 e2b(n+1) .

On the other hand,

P (s≥τn)=P (Cs≥n)=P (eθCs ≥eθn)≤e−θnE[eθCS ]≤e−θnE(eθCt) ,

θ being a positive number.
Let us take θ = 3 b, making use of (4.16), we obtain

P (s ≥ τn) ≤ C e−3bn .

As a result
sup

x,s≤t
E (Ns) ≤ C′

(∑
n≥0

e−b(n/2)
)
<∞ ,

(4.12) (or (4.11)) follows immediately.
We now investigate uniqueness in (4.13).

Lemma 4.3. Let t > 0, and h be a bounded and positive Borel function.
We suppose that (4.15) holds and

(4.21) lim
s→0+

sup
x∈Ω

Ex,t(Cs) = 0 .

Then there exists at most one bounded function v solving (4.13).
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Proof of Lemma 4.3. Suppose that v1 and v2 are two bounded
solutions of (4.13). We set v = v1 − v2. Then

(4.22) v(t, x; s) = E
[ ∫ s

0

(β(t+ r,Xt,x
r ) − 1) v(t,Xt,r

r , s− r) dCr

]
,

(4.15) implies that,

λ := 1 + sup
x,s≤t

β(s, x) < +∞ .

Consequently, (4.21) implies that, there exists 0 < t0 ≤ t such that

sup
x∈Ω

Ex,t(Cs) ≤ 1
2λ

, for any s ≤ t0 .

We come back to (4.22)

sup
x,s≤to

|v(t, x; s)| ≤ λ
(

sup
x,s≤t0

|v(t, x; s)|) 1
2λ

.

Since v is bounded, the former inequality says that v(t, x; ·) vanishes on
[0, t0].

By the same way, v(t, x; ·) = 0 on [t0, 2 t0] ∩ [0, t].
This shows by induction that v(x, t; ·) = 0 on [0, t].

5) Let ((Xt,x
s ; s ≥ 0) , x ∈ Ω , t ≥ 0) be a diffusion process,

taking its values in Ω, and C be a continuous, non-decreasing additive
functional, vanishing at 0 verifying (4.16) and (4.21).

We introduce a new additive functional based on a Borel function
a : R+ × Ω −→ R

(4.23) C(a)(s) =
∫ s

0

|a(t+ r,Xt,x
r )| dCr , s ≥ 0 .

It is supposed

(4.24) sup
x,s≤t

|a(x, s)| < +∞ .

Consequently,

(4.25) C(a)(s) ≤ λt Cs , for all s ≤ t ,
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where λt is a positive constant, independent of x. We define the off-
spring distribution p(a) associated with a

(4.26)

p
(a)
k (t, x) = 0 , if k �= 0 or k �= 2 ,

p
(a)
0 (t, x) = 1 , if a(t, x) < 0 ,

p
(a)
2 (t, x) = 1 , if a(t, x) ≥ 0 .

In other words,

(4.27) p
(a)
· (t, x) = 1{a(t,x)<0} δ0 + 1{a(t,x)≥0} δ2 .

Theorem 4.4. Let Y be the branching process, Y = (X,C(a), p(a)).
We suppose that (4.16) and (4.21) hold. Then for any t ≥ 0, x ∈ Ω, h
Borel, positive, bounded function

(4.28) E
[
h(Xt,x

s ) exp
(∫ s

0

a(t+ r,Xt,x
r ) dCr

)]
= E[〈h, Y t,x

s 〉] .

Proof of Theorem 4.4. 1) Let t ≥ 0, x ∈ Ω and h ≥ 0 be fixed. We
set

(4.29) ṽ(t, x; s) = E
[
h(Xt,x

s ) exp
(∫ s

0

a(t+ r,Xt,x
r ) dCr

)]
and

(4.30) v(t, x; s) = E [〈h, Y t,x
s 〉] .

(4.16) and (4.25) imply that C(a) also verifie (4.16).
Obviously (4.17) is realized, therefore Lemma 4.2 tells us that Y

verifies (4.11). Applying Proposition 4.1, v solves

(4.31)

v(t, x; s) = E
[ ∫ s

0

(β(a)(t+ r,Xt,x
r ) − 1)

· v(t,Xt,x
r ; s− r) dC(a)

r

]
+E [h(Xt,x

s )] ,

β(a)(s, x) =
∑
k≥0

k p
(a)
k (s, x) .
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but

β(a)(s, x) − 1 = 2 · 1{a(s,x)≥0} − 1 = sgn (a(s, x)) ,

dC(a)
r = |a(t+ r,Xt,x

r )| dCr ,

(4.31) can be reduced as follows,

(4.32)
v(t, x; s) = E

[ ∫ s

0

a(t+ r,Xt,x
r ) v(t,Xt,x

r ; s− r) dCr

]
+ E [h(Xt,x

s )] .

2) Suppose that ṽ solves (4.32).
We have already remarked that Y verifies (4.11), then ṽ is bounded.
C(a) has the property (4.21) (it is an easy consequence of (4.25)

and (4.21)).
Applying Lemma 4.3, we can conclude that v = ṽ. This means

that (4.28) is verified.

3) We have to prove that ṽ solves (4.32).
We set

ρ = E
[ ∫ s

o

a(t+ r,Xt,x
r ) ṽ(t,Xt,x

r , s− r) dCr

]
.

Using the definition of ṽ, and Markovian notations,

ρ = E
[ ∫ s

0

a(t+ r,Xt,x
r )

·Et,Xt,x
r

[
h(Xs−r) exp

(∫ s−r

0

a(t+ u,Xu) dCu

)]
dCr

]
.

A straightforward application of the Markov property gives

ρ = E
[ ∫ s

0

a(t+ r,Xt,x
r )h(Xt,x

s )

·
(

exp
(∫ s−r

0

a(t+ r + u,Xt,x
u+r) dCu+r

))
dCr

]
.

It is convenient to introduce the following multiplicative functional,

Mr = exp
(∫ r

0

a(t+ u,Xt,x
u ) dCu

)
.
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We have

Ms = Mr exp
(∫ s

r

a(t+ u,Xt,x
u ) dCu

)
= Mr exp

(∫ s−r

0

a(t+ r + u,Xt,x
u+r) dCu+r

)
, r ≤ s ,

dMr = a(t+ r,Xt,x
r )Mr dCr .

Hence

ρ = E
[
Msh(Xt,x

s )
(∫ s

0

1
(Mr)2

dMr

)]
,

ρ = E
[
Msh(Xt,x

s )
(
1 − 1

Ms

)]
= E [Msh(Xt,x

s )] −E [h(Xt,x
s )] .

But ṽ(t, x; s) = E [Msh(Xt,x
s )], then ṽ verifies (4.32).

We are now able to prove that ω+c can be interpreted as the “den-
sity” of a branching process Yc, ω denoting the solution of the (N.S.)
equation. We apply the Theorem 4.4. We have to define the underlying
process and the functions a, p and C.

6) Let ((Xt,x
s ; s ≥ 0) ; x ∈ Ω , t ≥ 0) be the family of diffusions

defined by (3.4).

• c denotes a constant, c > Ct,Ω. (Recall that Ct,Ω is defined by
(2.10) and ω(s, x) + c > 0 for any s ∈ [0, t] and x ∈ Ω).

• We define the function a as follows

(4.33) a(s, x) =

( ∂ω

∂n
ω + c

)
(s, x)1{x∈∂Ω} .

• p is the offspring distribution based on a (cf. (4.26)),

pk(s, x) = 0 , if k �= 0 or k �= 2 or x �∈ ∂Ω ,(4.34)

p0(t, x) = 1 , if
∂ω

∂n
(t, x) < 0 and x ∈ ∂Ω ,(4.35)

p2(t, x) = 1 , if
∂ω

∂n
(t, x) ≥ 0 and x ∈ ∂Ω .(4.36)
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We will say that (s, x) is a annihilation (respectively creation) point
of the vortex if x ∈ ∂Ω and (∂ω/∂n) (s, x) < 0 (respectively (∂ω/∂n)
(s, x) ≥ 0).

• C(a) coincides with A(a), where A is the local time process asso-
ciated with X (see (3.4)), namely

(4.37) C(a)
s =

∫ s

0

∣∣∣∂ω
∂n

(r,Xt,x
r )
∣∣∣ 1
ω(r,Xt,x

r ) + c
dAt,x

r ,

Before stating the main result of this paper, we recall a notation (see
for instance (2.30))

(4.38) Eh·λ[〈f, Ys〉] =
∫

Ω

h(x)E [〈f, Y x
s 〉]λ(dx) ,

where h and f are two Borel and positive functions, λ is the normalized
Lebesgue measure on Ω, (Y x

s ; s ≥ 0) is the branching process starting
at δx associated with X0,x

· , C, and p).

Theorem 4.5. Let t > 0, c > Ct,Ω, ω be the vorticity solution of the
(1.8) system. Then

(4.39) E(ω0+c)·λ[〈h, Ys〉] =
∫

Ω

h(x) (ω(s, x) + c)λ(dx) ,

for any s ≤ t, and h Borel and positive function.

Proof of Theorem 4.5. We apply Theorem 4.4

E [h(X0,x
s )Ms] = E [〈h, Y 0,x

s 〉] , s ≤ t ,

where h ≥ 0 and

Ms = exp
(∫ s

0

( 1
ω + c

∂ω

∂n

)
(r,X0,x

r ) dA0,x
r

)
.

We multiply the former equality by (ω0(x)+c), we integrate with respect
to λ(dx), ω0 + c being non-negative, we have

E(ω0+c)·λ[〈h, Y 0
s 〉] = E(ω0+c)·λ[h(X0

s )Ms] .
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Let γ be equal to the right hand-side of the previous identity. Using
duality (cf. Proposition 3.1), we have

γ = Eλ[(ω0 + c) (X0
0 )h(X0

s )Ms] =
∫

Ω

h(x)E[(ω0 + c) (X̃0,x
s ) M̃s]λ(dx) .

Obviously M̃s = Ms, M̃s(ω0 + c) (Xx
s ) = Z̃s,x

c (s), (Z̃s,x
c (r), 0 ≤ r ≤ s)

being the process defined by (2.8), then

γ =
∫

Ω

h(x)E [Z̃s,x
c (s)]λ(dx) .

But (Z̃s,x
c (r) ; 0 ≤ r ≤ s) is a martingale (cf. 1) b)), Proposition 2.1),

therefore,
E [Z̃s,x

c (s)] = E (Z̃s,x
c (0)) = ω(s, x) .

This achieves the proof of (4.38).

Remark 4.6. We have proved,

(4.40)

E(ω0+c)·λ[〈h, Ys〉]

= E(ω0+c)·λ
[
h(X0

s ) exp
(∫ s

0

ϕc(r,X0
r ) dAr

)]
,

where
ϕc =

1
ω + c

∂ω

∂n
.

5. The particle algorithm associated with the branching pro-
cess.

In sections 3 and 4, we suppose that the solution u (or ω) of the
(N.S.) system is given, and then we defined two nonlinear stochastic
processes X and X̃, and a branching process Y . We proved that u and
ω can be expressed through X, X̃ and Y . In this nonlinear context, it is
classical [McK] to introduce a particle algorithm having the propagation
of chaos property. Our closed formulas allow us to guess the dynamic of
the particle system associated with the (N.S.) equations. Unfortunately
we are not able to check the convergence. We are convince that is it
interesting to write it out, it will appear as a program.
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1) Let N ≥ 1 be a fixed integer (N will go to infinity later). Recall
that u0 is the initial data in (N.S.), and ω0 = rotu0.

a) X1
0 , . . . ,X

N
0 denote N independent and equidistributed random

variables taking its values in Ω with common density

1∫
Ω

(ω0(x) + γ) dx
(ω0 + γ) ,

where γ is a constant, supposed to be large enough. In particular
ω0(x) + γ > 0, for all x ∈ Ω.

b) We define the underlying system of particles, up to the first
branching time in the McKean’s sens.

X = (Xi,N
t ; t ≥ 0 ; 1 ≤ i ≤ N) is the Ω

N
-values diffusion solving

the (linear) reflected stochastic differential equation

(5.1)

Xi,N
t = Xi

0 +Bi
t +

∫ t

0

uN (s,Xi,N
s ) ds

−
∫ t

0

n(XN
s ) dAN

s , 0 ≤ i ≤ N, t ≥ 0 ,

AN
t =

∫ t

0

1{XN
s ∈∂ΩN} dA

N
s , t ≥ 0 .

n denotes the outer normal of ∂ΩN , (Bi ; 1 ≤ i ≤ N) are N indepen-
dent two dimensional Brownian motions and Bi

0 = 0, independant of
(Xi

0 ; 1 ≤ i ≤ N).
The function uN will be defined in c). It corresponds to some

approximation of u.

c) Let μN be the empirical measure,

(5.2) μN (t) =
1
N

N∑
i=1

δXt
i,N ,

Recall (Lemma 1.1) that

(5.3) u(t, z) =
∫

Ω

�⊥
z G(z, z′)ω(t, z′) dz′ ,
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G being the Green function of Ω (see (1.3)).
If t is small (lower than the first branching time) the branching

process Yt reduces to δXt, therefore μN (t) is a good candidate to ap-
proximate ω(t, x) dx.

We set

(5.4)

ũN (t, z) = E
[ ∫

Ω

�⊥
z G(z, z′)μN (t, dz′)

]
=

1
N

N∑
i=1

E [�⊥
z G(z,Xi,N

t )] .

Unfortunately z −→ �⊥
z G(z, z′) has a singularity at z = z′, therefore

we regularize ũN , by replacing ũN by ũN ∗ VN , where VN (z) dz con-
verges (in R

2) to δ0 (choose for instance, VN (z) = N2 V (Nz), V ≥ 0,∫
R2 V (x) dx = 1, V of class C∞, with compact support)

(5.5) uN (t, z) = VN ∗ ũN (t, ·)(z) =
1
N

N∑
i=1

E [VN ∗ �⊥
· G(·,Xi,N

t )(z)] .

Hence uN is C∞, and x → uN (t, x) is of class C1, therefore the 2N -
dimensional stochastic differential equation (5.1) has a unique and
strong solution. It is meaningful to set

(5.6) ωN = rotuN .

2) The first branching time.

a) Let ξ1, ξ2, . . . , ξN be N independent, and exponential random
variable (with unit parameter), independent of the previous system of
particles. The first branching time T is defined as follows

T = inf {Ti : 1 ≤ i ≤ N} ,(5.7)

Ti = inf
{
t ≥ 0 :

∫ t

0

( 1
ωN + γ

∣∣∣∂ωN

∂n

∣∣∣)(s,Xi
s) dA

N
s ≥ ξi

}
.(5.8)

b) Suppose that T = Ti0 . Then Xi0,N
T ∈ ∂Ω. We have the alterna-

tive

aN (T,Xi0,N
T ) < 0 ,(5.9)−

aN (T,Xi0,N
T ) > 0 ,(5.9)+
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where

(5.10) aN (s, x) =
( 1
ωN + γ

∂ωN

∂n

)
(s, x) ,

aN is some approximation of a, a being defined by (4.33).

i) In the negative case (5.9)− according to (4.34)-(4.35), the par-
ticle i0 is killed at time T = Ti0 . The N − 1 remaining particles start
afresh

(X1,N
T , . . . ,Xi0−1,N

T ,Xi0+1,N
T , . . . ,XN,N

T )

and move as (5.1) with drift coefficient u(1)
N ,

(5.11) u
(1)
N (t, z) =

1
N

N∑
i=1
i
=i0

E [VN ∗ �⊥G(·,X1,i,N
t )(z)] .

u
(1)
N is associated with the empirical measure

μ
(1)
N (t, ·) =

1
N

N∑
i=1
i
=i0

δX1,i,N
t

.

Note that the factor of normalization is 1/N and not 1/(N − 1).
We define as in (5.2) the second branching time and the branching

dynamic.

ii) If (5.9)+ holds, the particle i0 dies and has two descendants.
Then the N + 1 processes move after T , as previously.

After having generatedN−1 or N+1 particles, a second branching
time is defined by the same way.

3) Conjectures. We claim that the offsprings of one particle (for
example, the first one), YN coming from the former procedure converges
in law, as N goes to infinity, to the branching process Y .

Another open question is : can we take γ = 0? In this situation we
introduce in the algorithm signed particles. Particle i is said positive
(respectively negative) if ω0(X

i,N
0 ) > 0 (respectively ω0(X

i,N
0 > 0), the

density of Xi,N
0 being equal to

|ω0(x)|∫
Ω

|ω0(x)| dx
.
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The sign ξi,N
0 of Xi,N

t remains constant, for any time t. μN is replaced
by the signed measure,

μN (t, ·) =
1
N

N∑
i=1

ξi,N
0 δXi,N

t
.

When Ω = R
2, Marchioro and Pulverenti [MP] has introduced signed

particles in order to take into account the non-positivity of ω.
If γ = 0, is this algorithm converging?
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non linéaires. Dunod. Gauthier Villers, 1969.

[Li] Lions, P. L., Mathematical topics in fluids mechanics. Vol. 1. Incom-

pressible models. Oxford Sciences Publications. Clarendon Press, 1996.

[M] Majda, A., Vorticity and mathematical theory of incompressible fluid

flow. Comm. Pure Appl. Math. 39 (1986), 187-220.

[M.P] Marchioro, C., Pulvirenti, M.. Hydrodynamics in two dimensions and

vortex theory. Comm. Math. Phys. 84 (1982), 483-503.

[McK] McKean, M. P., Propagation of chaos for a class of non linear parabolic

equation. Lectures Series in Diff. Equations 7 (1967), 41-57.

[P] Priouret, P., Processus de Markov sur une variété à bord compacte.
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An X�ray transform

estimate in R
n

Izabella �Laba and Terence Tao

Abstract� We prove an x�ray estimate in general dimension which is
a stronger version of Wol��s Kakeya estimate ����	 This generalizes the
estimate in ��
�� which dealt with the n � 
 case	

�� Introduction�

Let n � 
 be an integer	 Let Bn���� �� be the unit ball in Rn �
and for all x� v � Bn���� �� de�ne the line segment lx� v� � Rn by

lx� v� � fx� v t� t� � t � ��� ��g �
where we have parameterized Rn as Rn�� �R in the usual manner	 Let
G be the set of all such line segments� this space is thus identi�ed with
Bn���� ���Bn���� ��	 If l � G� we write xl� and vl� for the values
of x and v respectively such that l � lx� v�	

For any function f on Rn � de�ne the x�ray transform Xf on G by

Xfl� �

Z
l

f �

We consider the question of determining the exponents � � p� q� r � �
and � � � such that we have the bound

�� kXfkLqvLrx � kfkLp� �

where Lp� is the Sobolev space � �
p�����Lp	

���
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From scaling considerations or by letting f be a bump function
adapted to a small ball� we have the necessary condition

�� � �
n� �

r
� n

p
� � �

while if one lets f be adapted to a tubular neighbourhood of a line
segment l � G� we obtain the condition


�
n� �

q
�
n� �

r
� n� �

p
� � �

From the Besicovitch set construction we have

�� r� �� �� �� �� �

It was conjectured by Drury ��� and Christ ��� that these three necessary
conditions are in fact su�cient	 In ��� this conjecture was shown to be
true when p � n� ����	

By H�older� Sobolev� and interpolation with trivial estimates� the
full conjecture is equivalent modulo endpoints� to the Kakeya conjec�
ture� which asserts that �� holds for q � n� r � �� p � n� and � � �
for arbitrarily s mall �	

Wol� ���� showed �� was true when

q �
n� �� n� ��

n
� r �� � p �

n� �

�
� � �

n� �

n� �
� � �

this can of course be interpolated with the results in ��� to yield further
estimates	 However� this is not the best one can do in the p � n�����
case	 From �� and 
� one expects to have �� for

��

q �
n� �� n� ��

n
� r �

n� �� n� ��

n� �
�

p �
n� �

�
� � � � �

this would imply the results of ���� by Sobolev embedding in the v
variable	 Although we are not able to get that sharp result� we are able
to obtain the following interpolant� which is our main result	



An X�ray transform estimate in R
n ���

Theorem ���� For any � � �� we have �� for

��

q �
n� �� n� ��

n
� r � � n� �� �

p �
n� �

�
� � �

n� 


� n� ��
� � �

This result was obtained in the three dimensional case n � 
 by
Wol� ��
�� and the result is sharp up to endpoints for that value of n
and p	 Our arguments shall be based on those in ��
�� with some mild
simpli�cations based on the bilinear approach in ����	

Theorem �	� can be stated in a discretized adjoint form� which is
more convenient for applications	 Namely��

Theorem ���� Let � � �� � � 	 � �� and � � m � 	��n� Let E�
E � be 	�separated subsets of Bn���� ��� and let A 	 E � E � 	 G be a

collection of line segments such that

�� jfl � A � vl� � vgj � m�

for all v � E� Then we have

��
���X
l�A



Tl

���
p�
� 	�n�p����m��q���r 	n�� jAj���q� �

where p� q� r are as in ��	

As observed in ����� an x�ray estimate of this form reveals some in�
formation on Besicovitch sets in Rn 	 Namely� such sets have Minkowski
dimension at least n� ����� and if the dimension is exactly n� ����
then the line segments w hich comprise the set must be �sticky� in a
certain sense	 This observation was made rigorous in ���� where the re�
sults of ��
� were applied together with those of �
� and some additional
arguments� in the three�dimensional case to improve slightly upon the
Minkowski bound just stated	 We will use Theorem �	� to achieve a
similar result in higher dimensions ���	 Fortunately� one does not need
a sharp value of r in �� to obtain this type of observation� as long as
r is �nite of course	

�
The notation in the theorem will be explained shortly�
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To illustrate the connection between x�ray estimates and Besicov�
itch sets� we note the following simple application of Theorem �	��

Corollary ���� Let � � � � n � �� and E be a bounded subset of Rn

such that� for each direction � � Sn��� E contains a family of unit line

segments parallel to �� whose union has Minkowski dimension � � ��
Then the Minkowski dimension of E is at least n� ���� � ����

The proof follows standard discretization arguments see e�g� ����
���� and will be omitted	 A similar result holds when Minkowski di�
mension is replaced by Hausdor�	 This corollary is stronger than the
corresponding corollary of the Kakeya estimate in ����� which covers
the � � � case	 If one had an x�ray estimate for �� then one would be
able to improve the ��� term to the optimal � n� ����n� ��	

�� Notation�

We use � � 	 � � and � � �� � to denote certain small numbers�
and N 
 � denotes a certain large integer	 If l is a line segment in
G� we use Tl to denote the 	�neighbourhood of l� which is thus a 	 � �
tube	

We write A � B for A � CB� A� B for A � C��B� and A � B
for A � C log ��	���B� and C� � are quantities which vary from line
to line and are allowed to depend on � and N but not on 		 We write
A � B for A � B � B and A � B for A � B � B	

Our argument will require the introduction of many quantities�
which measure various angles or cardinalities in a collection of tubes	
For purposes of visualizing the argument we recommend that one sets
the values of these quantities as follows

jEj � jEij � 	��n � jAj � 	��nm�

 � � � � � � � � � pi � w �

for i � �� �	 The treatment of this case can be done while avoiding the
more technical tools in the argument such as the two�ends and bilinear
reductions� and most of the uniformization theory� while still capturing
the core ideas of the argument	 To improve the value of r in �� one
would probably start by considering this case	
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�� Derivation of Theorem ��� from Theorem ����

Assume that Theorem �	� holds	 In this section we shall see how
Theorem �	� follows	 The argument is standard cf� ���� ���� ����� ��
��
�����	

By a Littlewood�Paley decomposition� and giving up an epsilon in
the � index� one may assume that f has Fourier support in an annulus
f� � j�j � 	��g	 The case 	 � � is easy to handle� so we assume
henceforth that � � 	 � �	

Fix 		 It is then well known that �� follows from the variant

kX�fkLqvLrx � 	�� kfkp �
where

X�fl� � 	��n
Z
Tl

f �

By duality this is equivalent to

kX�
�Fkp� � 	��kFk

Lq
�

v Lr
�

x
�

for all F on G� where X�
� is the adjoint x�ray transform

X�
�F � 	��n

Z
G

F l�

Tl
dx dv �

Let E � E � by any 	�separated subsets of Bn���� ��	 By discretization it
su�ces to show that

k	n��
X
v�E

X
x�E�

F lx� v��

Tl�x�v�

kp�

� 	��
�
	n��

X
v�E

�
	n��

X
x�E�

jF lx� v��jr�
�q��r����q�

uniformly in E � E �	
Fix E � E �	 By pigeonholing and positivity it su�ces to verify this

when F is a characteristic function F � 

A

for some A  E � E �� so
that we reduce to��� X

l�A�v�l��E



Tl

���
p�

� 	�n��������r���q���
�X
v�E

jfl � A � vl� � vgjq��r�
���q�

�
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By a further pigeonholing and re�ning of E � we may assume that there
exists � � m � 	��n such that

��
m

�
� jfl � A � vl� � vgj � m�

for all v � E 	 Our task is then to show that��� X
l�A�v�l��E



Tl

���
p�
� 	�n��������r���q���m��r� jEj��q� �

From �� we then have jAj � m jEj	 The claim then follows from The�
orem �	� and the fact that �� is almost satis�ed with equality	

It thus remains to prove Theorem �	�	

�� A three�dimensional estimate�

For any collection A of line segments� we follow Wol� ��
� see also
����� and de�ne the plate number pA� by

��� pA� � sup
R

jfl � A � Tl 	 Rgj
w

	

�

where R ranges over all rectangles of dimension C�C w�C 	�� � ��C 		
By considering the w � 	 case we see that pA� � � for any non�empty
A	

The purpose of this section is to prove the following distributional
estimate on a set E assuming that the directions of A are e�ectively
constrained to a two�dimensional slab� and the intersection of the tubes
Tl with E satisfy a certain �two�ends� condition of the type used in �����
����	 This lemma will be key in the main argument� and also employs
several techniques� notably a hairbrush argument and a uniformization
argument both due to Wol��� which will re�appear in slightly di�erent
form in the sequel	

Lemma ��� ��
��� Let N 
 � be an integer� 	C �  � �� E be a

subset of Rn � and let A 	 E � E � be a collection of lines satisfying ��
which satisfy the uniform density estimate

��� jTl �Ej �  	n��
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and the two�ends condition

��� jTl �E �Bx� 	��N�j � 	���N 	n�� �

for all l � A� x � Rn � Suppose also that the set of directions fvl� � l �
Ag is contained in a C � C � � C 	 � � � � � C 	 box in Bn���� �� for

some 	 � � � �� Then� if 	 is su�ciently small depending on � and N �

we have

�
� jEj � 	C�N� jAjm��������� pA����� 	n���� �

Proof� We repeat the argument in ��
�	 We may assume that A is
non�empty� and that E is contained in

S
l�A Tl	

For every l � A and dyadic 	 � � � �� � � � � 	�C � we let
Yl���	�A 	 Tl � E denote the set

Yl���	�A

�
n
x � Tl � E �

X
l��A� ��jv�l��v�l��j�	



Tl�

x� �
X
l��A



Tl�

x� � �
o
�

���

In other words� Yl���	�A consists of those points x in Tl �X which lies
in about � tubes from A� most of which make an angle of about � with
Tl	 From the pigeonhole principle we see that

��� Tl �E �
�

��	��

�
������C

Yl���	�A �

We now prove a technical lemma which allows us to uniformize � and
�	 This type of argument will also be used in the sequel	 For a more
general formulation of this type of argument� see ��
��	 A somewhat
similar lemma appears in ���	

Lemma ���� Let the notation be as above� Then there exist quantities

	 � � � �� � � � � 	�C and sets

A���  A���  A��� � A

and for each i � �� �� l � A�i� there exists a set

Y
�i�
l  Tl �E
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such that

jA�i�j � jAj ����

jY �i�
l j �  	n�� ����

and

��� Y
�i�
l  Yl���i��	�i�� eA�i� �

for some set A�i�  eA�i�  A�i��� and ��i�� ��i� satisfying

	C�N� � ��i� � 	�C�N� ����

	C�N� � ��i� � 	�C�N� ����

The implicit constants may depend on N �

Proof� The �rst stage shall be to construct sequences

A � A� � A� � � � � � AN� �

Tl �E � Yl�� � Yl�� � � � � � Yl�N� �

and quantities �k� �k for all � � k � N� and l � Ak� such that

jAkj � jAj����

jYl�kj �  	n�� ����

and

�
� Yl�k  Yl��k�	k�Ak��
�

for all � � k � N�	
To do this� suppose inductively that � � k � N� is such that Ak

and Yl�k have been constructed for all l � Ak	 From ��� we have

Yl�k 
�

��	��

�
������C

Yl���	�Ak
�
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By the pigeonhole principle� for every l � Ak one can thus �nd �k��l��
�k��l� such that

jYl�k��j � jYl�kj �
where

Yl�k�� � Yl�k � Yl��k���l��	k���l��Ak
�

By the pigeonhole principle again� there exists �k��� �k�� independent
of l such that the set

Ak�� � fl � Ak � �k��l� � �k��� �k��l� � �k��g

satis�es ���	 It is clear that this construction gives the desired prop�
erties	

By the pigeonhole principle� there must exist � � k� � k� � N�

and �� � such that
	C�N� � �ki � 	�C�N�

and
	C�N� � �ki � 	�C�N�

for i � �� �	 The claim then follows by setting A�i� � Aki and Y
�i�
l �

Yl�ki 	

Let the notation be as in the above lemma	 From ��� and ��� we
have X

l�A���

jY ���
l j �  	n��jAj �

which we rewrite as Z
E

X
l�A���



Y
���
l

�  	n��jAj �

From ���� the nesting A���  eA���� and ���� the integrand is bounded
by 	�C�N�	 We thus see that  and � are naturally related by the
estimate

��� jEj� � 	C�N 	n��jAj �

One can reverse the inequality in ���� but we shall not need to do so
here	
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From ���� A��� is non�empty	 Let l� be an arbitrary element of
A���	 Consider the �hairbrush� Al�

brush de�ned by

Al�
brush � fl � A��� � Tl��Tl �� �� 	C�N� � 	�jvl���vl�j � 	�C�N�g �

From ���� ���� ��� we see that

X
l�A

l�
brush



Tl
x� � 	C�N� �

for all x � Y
���
l�

	 Integrating this using ���� we obtain

X
l�A

l�
brush

jTl � Y ���
l�
j � 	C�N� 	n�� �

From elementary geometry we see that

jTl � Y ���
l�
j � jTl � Tl� j � 	�C�N	n���

so we conclude that

��� jAl�
brushj � 	C�N�� 	�� �

We will shortly combine ��� with ��� and ��� to prove the estimate

���
��� �
l�A

l�
brush

Y
���
l

��� � 	C�N�	� pA���	n�� �

Assuming this bound for the moment� let us complete the proof of �
�	
From ��� and ��� we have

X
l��A� ��jv�l��v�l��j���C�N	



Tl��E

x� � 	C�N� �

for all l � Al�
brush and x � Y

���
l 	 From the de�nition of Al�

brush and the
triangle inequality we thus see that

X
l��A���jv�l���v�l��j���C�N	



Tl��E

x� � 	C�N� �
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for all x in the set in ���	 Integrating this and using ���� we thus
obtain X

l��A���jv�l���v�l��j���C�N	

jTl� �Ej � 	C�N��	� pA���	n�� �

From ��� we thus have

jfl� � A � 	 � jvl��� vl��j � 	�C�N�gj 	n��
� 	C�N��	� pA���	n�� �

However� from �� and the fact that vl�� is constrained to a C �C��
C 	 � � � � � C 	 box� we see from elementary geometry that

jfl� � A � 	 � jvl��� vl��j � 	�C�N�gj � 	�C�N�� 	��m�

Combining these two estimates we obtain after some algebra�

� � 	�C�N���� 	������pA����m��� �

and the claim �
� follows after some algebra from this and ���	
It remains to prove ���	 We �rst deal with a trivial case when

� � 	�C�N		 In this case we simply use the bound

��� �
l�A

l�
brush

Y
���
l

��� � Y
���
l � 	C�N 	n��

from ��� and the fact from ��� that Al�
brush is non�empty� and ���

follows since pA�� � � � and  � �	
Now assume � 
 	�C�N		 To prove ��� we will in fact prove the

stronger bound

��� jE�j � 	C�N�	� 	n�� pA��� �

where
E� �

�
l�A

l�
brush

Y
���
l � �

and
� � fx � Rn � 	C�N� � dist x� l�� � 	�C�N�g �
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From ���� ���� and elementary geometry we have

jTl �E�j �  	n�� �

for all l � Al�
brush	 Summing this in l we obtain

X
l�A

l�
brush

jTl �E�j � jAl�
brushj 	n�� �

which we rewrite asZ
E�

X
l�A

l�
brush



Tl�


� jAl�
brushj 	n�� �

We now use C ordoba�s argument see e�g� ����	 From Cauchy�Schwarz
and the above we have

jE�j���
��� X
l�A

l�
brush



Tl�


���
�
� jAl�

brushj 	n�� �

From this and ���� su�ces to show that

���
��� X
l�A

l�
brush



Tl�


����
�
� 	�C�N jAl�

brushj 	n��pA� �

since ��� then follows from algebra	
To prove ���� we expand the left�hand side as

X
l�A

l�
brush

X
l��A

l�
brush

jTl � Tl� � �j �

which we break up further as

X
��
��

X
l�A

l�
brush

X
l��A

l�
brush�Tl�Tl��
 ������jv�l��v�l

��j�


jTl � Tl� � �j �

From elementary geometry we have

jTl � Tl� j � 	n��� �
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It thus su�ces to show that

jfl� � Al�
brush � Tl�Tl� �� �� �� 	� jvl��vl��j � �gj � 	�C�NpA� �

	
�

for each l� � 	
Fix l� � 	 The conditions l� � Al�

brush and Tl � Tl� � � �� � force l�

to lie in a 	��C�N �neighbourhood of the ��plane spanned by l� and a
slight translate of� l	 Together with the condition 	� jvl�� vl��j � � �
this constrains Tl� to live in one of O	�C�N� boxes� each of dimension
C � C� � C 	 � � � � � C 		 The claim then follows from ���	

	� The bilinear reduction�

We now begin the proof of Theorem �	�	
Fix � � � � �	 For each � � 	 � �� let A	� � A�	� denote the

best constant such that

���
���X
l�A



Tl

���
p�
� A	� 	�n�p����m��q���r 	n��jAj���q� �

for all choices of m� E � E � and A satisfying ��	 Clearly A	� is �nite
for each 	� to prove Theorem �	�� we need to show


�� A	� � � �

It will be convenient to denote the right�hand side of ��� as Q	�A��
thus


�� Q	�A� � A	� 	�n�p����m��q���r 	n�� jAj���q� �

By an inductive argument it su�ces to prove 
�� assuming that


�� A	� � sup
����	�

A	�� �

Fix 	 so that 
�� holds	 We may �nd m� E � and A such that



�
��� X
l�A� v�l��E



Tl

���
p�
� Q	�A� �

The estimate 

� states that A is essentially an optimal con�guration	
This has several consequences� at least heuristically	 Firstly� it implies
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that the generic angle between two lines inA is � �	 Secondly� it implies
a �two�ends� condition� which roughly asserts that the contribution of
the generic tube Tl to 

� is not concentrated on a short interval	 We
make these claims rigorous in the following sections� together with a
technical uniformization reduction� these preliminaries will simplify the
ensuing argument	 We remark that one needs � � � in order to obtain
these reductions	

We begin with the assertion that the generic angle between two
lines is � �	 This is accomplished by

Proposition 	��� There exist subsets E�� E� of E such that


�� distE�� E�� � �

and


��
���� X

l�A� v�l��E�



Tl

�� X
l��A� v�l���E�



Tl�

�������
p���

� Q	�A� �

Without 
��� one could simply take E� � E� � E in the above
proposition	 The point of this proposition is that it allows one to restrict
one�s attention to pairs of tubes which intersect at large angle	 This
bilinear reduction allows us to avoid many but not all� of the di�culties
involving small angle intersections� which we have already encountered
when managing the � and � parameters in the previous section	

Proof� By squaring 

� we have


��
��� X
l�l��A



Tl


Tl�

���
p���

� Q	�A�� �

Now let � � c� � � be a small number to be chosen later� and consider
the quantity


��
��� X
l�l��A� jv�l��v�l��j�c�



Tl


Tl�

���
p���

�

Cover E by �nitely overlapping sets E �
S
� E� where each E� has

diameter Oc��� and such that for every v� v� � E with jv � v�j � c�
there exists an � such that v� v� � E�	 We thus haveX

l�l��A� jv�l��v�l��j�c�



Tl


Tl�
�
X
�

� X
l�A�



Tl

��
�
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where A� � fl � A � vl� � E�g	 Since p��� � �� we have the quasi�
triangle inequality


��
���X

�

f��

���
p���

�
�X

�

kf��kp
���
p���

���p�
�
�X

�

kf�kp
�

p�

���p�
�

see e�g� ������ and so we may estimate 
�� by


��
�X

�

��� X
l�A�



Tl

���p�
p�

���p�
�

We now claim that

���
��� X
l�A�



Tl

���
p�
� c

��n����p�

� Q
� 	

c�
�A�

�
�

To see this� �rst apply a mild a�ne map to make E� centered at the
origin� and apply the dilation x� xn�� x�c�� xn�� and then apply ���
to the result� cf� ����	

Since our choice of p� q satisfy the scaling condition q � n� �� p��
we may simplify ��� using 
�� and 
�� to

��� X
l�A�



Tl

���
p�
� c��

� jA�j
jAj

���q�
Q	�A� �

Inserting this back into 
�� and using the elementary inequality

X
�

� jA�j
jAj

�p��q�
�
�X

�

jA�j
jAj

�p��q�
� � �

which follows since p� � q�� we obtain


�� � c��Q	�A��� �

Comparing this with 
�� we see that��� X
l�l��A� jv�l��v�l��j
c�



Tl


Tl�

���
p���

� Q	�A��

if we choose c� to be a su�ciently small number depending only on n
and � so c� � ��	
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Now cover E by Oc��n� � balls of diameter c���	 By the pigeonhole
principle and the above estimate we see that there must exist at least
one pair E�� E� of such balls with dist E�� E�� � c��� such that

��� X
l�l��A� v�l��E��v�l���E�



Tl


Tl�

���
p���

� cC� Q	�A�� �

The claim follows	

Note that the above argument is not restricted to this particular
choice of p� q� r	 See ���� ����� ���� for variants of this argument	 The
arguments in the next three sections are similarly not restricted to the
exponent choices in ��	

Henceforth E�� E� will be �xed	


� Uniformity of multiplicity and density�

Let A be a subset of E � E � satisfying ��� and let E be a subset of
R
n 	 It would be convenient if we could ensure some uniformity on the

multiplicity function
P

l�A 
Tl and the density function jTl � Ej� as in
Lemma �	�	 This is achieved by

Lemma 
��� Let A be a subset of E � E � satisfying ��� and let E be a

subset of Rn � Let � � � � be quantities satisfying

��� � jEj �  	n��jAj �

and

��� � jEj��p� � Q	�A� �

Suppose E� 	 E� A� 	 A are such that

�
�

Z
E�

X
l�A�



Tl
� � jEj

or equivalently that

���
X
l�A�

jTl � E�j �  	n��jAj �
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Then we have

���

Z
x�E��

P
l�A� �Tl

�x���

X
l�A�



Tl
x� � � jEj

and

���
X

l�A��jTl�E�j��n��

jTl � E�j �  	n��jAj �

Equivalently� we have���nx � E� �
X
l�A�



Tl
x� � �

o��� � jEj
and

jfl � A� � jTl � E�j �  	n��gj � jAj �

The condition ��� is quite natural� cf� ���	 The condition ���
is a variant of 

�� and states that �jEj��p� is essentially as large as
possible	 Although this lemma is not phrased in a bilinear way� we will
be able to combine it with the bilinear reduction and the two�ends
reduction in the next section� in Section �	

Proof� We �rst prove ���	 Let B � log ��	��� � where � is a large
constant to be chosen later	 We trivially haveZ

x�E��
P

l�A� �Tl
�x��B���

X
l�A�



Tl
x� � B��� jEj �

We now claim that

���

Z
x�E��

P
l�A� �Tl

�x��B�

X
l�A�



Tl
x� � B��p����� jEj �

the claim then follows by subtracting these two estimates from �
� and
choosing � suitably	

To prove ���� we �rst observe that the left�hand side is bounded
by

� B����p
�

Z �X
l�A



Tl

�p�
�
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By ��� and ���� this is bounded by

� B ����p
�

� jEj��p��p� �

and ��� follows	
Now we prove ���� which is a dual of ���� the last two claims in

the lemma then follow easily	
As before we haveX

l�A��jTl�E�j�B���n��

jTl �E�j � B�� 	n��jAj �

It su�ces to show that

���
X
l�A��

jTl � E�j � B���q��� 	n��jAj �

for all B� � B� where

A�� � fl � A� � jTl � E�j � B� 	n��g �

by summing this for all dyadic B� � B and using the exponential decay

of the B���q��� we can obtain the analogue of ���	
Fix B�	 By de�nition of A�� we haveZ

E�

X
l�A��



Tl

�
X
l�A��

jTl �E�j � B� 	n��jA��j �

From H�older we thus have

��� jEj��p
��� X
l�A��



Tl

���
p�
� B� 	n��jA��j �

From ��� we have ��� X
l�A��



Tl

���
p�
� Q	�A��� �

from 
�� and ��� we thus have

��� X
l�A��



Tl

���
p�
� � jEj��p�

� jA��j
jAj

���q�
�
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Inserting this into ��� and using ��� we obtain

 	n�� jAj
� jA��j
jAj

���q�
� B  	n��jA��j �

which simpli�es to
jA��j � B��qjAj �

and ��� follows from the de�nition of A��	

�� The two ends reduction�

In order to apply Lemma �	� we need among other things� to
obtain the conditions ��� and ���	 The condition ��� can essentially
be guaranteed by Lemma �	�� but this lemma does not give us the two�
ends condition ���	 To obtain this we shall use the following lemma	

Lemma ���� Let N 
 �� E be a subset of Rn � and let A be a subset

of E � E � satisfying ��� and such that for every l � A there exists an

x � Rn such that

jTl � E � Bx� 	��N�j � 	���N jTl �Ej �
Then we have

���
X
l�A

jTl �Ej � 	���N jEj��pQ	�A� �

The factor of 	��N in the above argument will allow us to conclude
that for most tubes� the set jTl �Ej is not concentrated in a short end
of the tube	 This type of �two�ends condition� �rst appears in �����
����	

Proof� Cover ��� �� by � 	���N �nitely overlapping intervals I� of
width � 	��N � and let S� denote the slab Rn�� � I�	 For each l � A�
we can then �nd an � � �l� such that

jTl �E � S�j � 	���N jTl � Ej �
It thus su�ces to show that

���
X
�

X
l�A�

jTl � S� � Ej � 	��N jEj��pQ	�A� �
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where
A� � fl � A � �l� � �g �

Partition E into about 	���n��N re�nements E�� each of which is 	����N �
separated	 We can split the left�hand side of ��� as

X
�

X
�

Z
S��E

X
l�A���



Tl�E

�

where
A��� � fl � A� � vl� � E�g �

By H�older� we may estimate this by

���
X
�

X
�

jS� � Ej��p
��� X
l�A���



Tl�S��E

���
p�
�

The sets Tl � S� in the innermost sum can be rescaled to form a col�
lection of 	����N � � tubes which continue to satisfy ��	 Also� the set
of directions E� satis�es the correct separation condition for the scale
	����N 	 By a rescaled version of ��� and 
��� we can therefore bound
the norm in ��� by

� 	n�Np�Q	����N �A���� �

which can be estimated using 
��� 
�� and algebra by

� 	��NQ	�A� 	�n����qN
� jA���j
jAj

���q�
�

Inserting this back into ���� we may estimate the left�hand side of ���
as

� 	��NQ	�A�
X
�

jS� � Ej��p 	�n����qN
X
�

� jA���j
jAj

���q�
�

Since we have O	���n��N � ��s� we can use H�older to obtain

	�n����qN
X
�

� jA���j
jAj

���q�
�
� jA�j
jAj

���q�
�
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We can thus bound the left�hand side of ��� as

� 	��NQ	�A�
X
�

jS� �Ej��p
� jA�j
jAj

���q�
�

By H�older again� we bound this by

� 	��NQ	�A�
�X

�

jS� �Ejq�p
���q

�

Since q � p� we can bound this by

� 	��NQ	�A�
�X

�

jS� �Ej
���p

�

and ��� follows	

�� Plate number uniformization�

We now combine the tools developed in the previous three sec�
tions to obtain the following technical uniformization lemma� which is
analogous to Lemma �	�	 We use Ai�� for i � �� � to denote the set

Ai�� � fl � A � vl� � Eig �

Lemma ���� Let the notation be as in the previous sections� and let

N 
 � be a large number� Then� if 	 is su�ciently small depending on

� and N � there exist numbers �� �p��p� � � and sets

�
� A�	�
i 	 A���

i 	 A���
i 	 A���

i � Ai�� � for i � �� � �

and

��� E�	� 	 E��� 	 E��� 	 E��� 	 R
n

such that

��� jE���j� � jAj 	n�� �
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and

��� � jE���j��p� � Q	�A� �

Furthermore� one has

jTl � E�j���j �  jTlj ����

jTl �E�j��� �Bx� 	��N�j � 	���N jTlj ����

for all l � A�j�
i � i � �� �� j � �� �� 
� x � Rn �

���
X
l�A

�j�
i



Tl
x� � � � for all x � E�j�� i � �� �� j � �� �� �� 
 �

and

��� 	C�Npi � piA�j�
i � � 	�C�Npi � for i � �� �� j � �� �� 
 �

The implicit constants in these estimates may depend on N �

Proof� The �rst step is to �nd � and E���	
Let ��� �� range over all dyadic integers from � to 	�C 	 Let

E������ ��� denote the set

E������ ��� �
n
x �

X
l�Ai��



Tl
x� � �i for i � �� �

o
�

Clearly we have

��� left hand side of 
�� �
�X

��

X
��

�
p���
� �

p���
� jE������ ���j

���p�
�

Since the number of �� and �� is � �� we can use the pigeonhole
principle and conclude that there exist ��� �� for which ��� holds with
E��� � E������ ��� and � � �� ���

���	
Fix this choice of �i� � and E���� this also �xes 	 By construction

we have ��� X
l�Ai��



Tl

���
p�
� �i jE���j��p� �
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Combining this with ��� we have

�i jE���j��p� � Q	�A� �

for i � �� �	 Combining this with ��� we see that

�i � � �

From the de�nition of � we thus have �i � �	 Since � � 	�C � we see
from ���� ��� that jE���j�  � 	C 	

We now produce sets

E��� � E� � E� � � � � � EN�

and
Ai�� � Ai�� � � � � � Ai�N�

with the properties that

jEkj � jE�j � for all � � k � N� ����

jTl �Ek��j �  jTlj ��
�

jTl � Ek�� � Bx� 	��N�j � 	���N jTlj ����

for all l � Ai�k� i � �� �� � � k � N�� x � Rn � and

���
X

l�Ai�k



Tl
x� � � � for all x � Ek� i � �� �� � � k � N� �

Clearly ��� and ��� hold for k � �	 Now suppose inductively that
� � k � N� is such that Ek�A��k�A��k have been constructed satisfying
��� and ��� for this value of k	

We perform a certain sequence of dance steps	 From ��� and ���
we have Z

Ek

X
l�A��k



Tl
� � jE�j �

which by ��� implies

X
l�A��k

jTl � Ekj � jAj 	n�� �
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By Lemma �	� noting that Q	�A��k� � Q	�A�� we shall need similar
observations in the sequel�� we thus have

���
X

l�A���k

jTl � Ekj � jAj 	n�� �

where A���k  A��k is the set

A���k � fl � A��k � jTl � Ekj � 	n��g �

Now de�ne the set A��k��  A���k by

A��k�� � fl � A���k � jTl � Ek � Bx� 	��N�j
� 	���N jTl �Ekj for all x � Rng �

From Lemma �	� we haveX
l�A�

��k
nA��k��

jTl � Ekj � 	���N jE�j��pQ	�A� �

by ��� and ��� we thus haveX
l�A���knA��k��

jTl � Ekj � 	���N jAj 	n�� �

Combining this with ��� we obtain if 	 is su�ciently small�X
l�A��k��

jTl �Ekj � jAj 	n�� �

We may rewrite this using ��� asZ
Ek

X
l�A��k��



Tl
x� � � jE�j �

By Lemma �	�� we have
jE�

kj � jE�j �
where E�

k  Ek is the set

E�
k �

n
x � Ek �

X
l�A��k��



Tl
x� � �

o
�
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In particular� from ��� with i � �� we haveZ
E�k

X
l�A��k



Tl
x� � � jE�j �

By ���� we may rewrite this as

X
l�A��k

jTl � E�
kj � jAj 	n�� �

By Lemma �	� again� this implies

X
l�A�

��k

jTl � E�
kj � jAj 	n�� �

where
A���k � fl � A��k � jTl � E�

kj �  	n��g �
De�ning

A��k�� � fl � A���k � jTl � Ek � Bx� 	��N�j
� 	���N jTl �Ekj for all x � Rng �

we apply Lemma �	�� ���� ��� and the preceding estimate as before
to conclude X

l�A��k��

jTl �E�
kj � jAj 	n�� �

By ��� again� we rewrite this asZ
E�k

X
l�A��k��



Tl
x� � � jE�j �

By Lemma �	� we have
jEk��j � jE�j �

where
Ek�� �

n
x � E�

k �
X

l�A��k��



Tl
x� � �

o
�

This completes the dance sequence	 One can easily verify that ����
��� and ��� are all satis�ed for k�� and i � �� �	 One now replaces k
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by k��� and repeats the above dance	 Of course� the implicit constants
in the bounds will depend on k and hence on N 	

The quantities piAi�k� are clearly monotone decreasing� and sat�
isfy the trivial estimates � � piAi�k� � 	�C 	 By the pigeonhole prin�
ciple one can then �nd � � k � N� � � such that

piAi�k��� � 	C�NpiAi�k� � for i � �� � �

The lemma then follows by setting E�j� � Ek�j��� A�j�
i � Ai�k�j���

and pi � piAi�k� for j � �� �� 
 and i � �� �	

This argument can be extended to create arbitrarily longer se�
quences than the ones in the above lemma� but we shall not need to do
so here	

� Estimates for a slab�

Let the notation be as in Lemma �	�	 De�ne a ��slab to be a
����neighbourhood of a ��plane in Rn 	

In the sequel we shall prove two propositions	

Proposition ��� Let 	 � � � �� and let S be a ��slab� Then we have

��� jE��� � Sj � ��������njAj�n�����n���m���n��� 	n�� ��� �

Proposition ��� There exists a 	 � � � � and a ��slab S such that

��� jE��� � Sj � 	C�N����m���� ���� 	n�� �

Suppose for the moment that both propositions were true	 Then
we would have

	C�N����m���� 	n�� � ����n jAj�n�����n���m���n��� 	n�� ��� �

If one uses ��� to eliminate � this becomes using 
��� �� and a lot
of algebra�

� jE���j��p� � 	�C�N 	�Q	�A�A	��� �
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Comparing this with ��� one obtains 
�� if N is chosen su�ciently
large depending on �	

It remains to prove the Propositions	

��� Proof of Proposition ���

We now prove Proposition �	�	 The estimate ��� is not best pos�
sible� it was chosen primarily so that it cancelled nicely against ���	
Accordingly� our techniques shall be quite crude	

Fix � and S	 From ��� we have

jE��� � Sj � ���
Z
E����S

X
l�A

���
�



Tl

�

We can rewrite the right�hand side as

���
X

l�A
���
�

jE��� � S � Tlj � ���
X

l�A
���
�

jE��� � S � Tlj �

For each l� let �l� denote the quantity

�l� � � � �l� S� �

where �l� S� is the angle between l and the plane in the middle of S	
From elementary geometry we have

jS � Tlj � 	n�� � �l��� �

and so by ��� we have

jE��� � S � Tlj � 	n��minf� �l���� g � 	n�� ���� �l����� ��� �

Combining all these estimates we obtain

jE��� � Sj � ���	n��
X

l�A
���
�

���� �l����� ��� �

From ��� we have  � �� so that ��� � ����n	 It thus su�ces to
show that

���
X

l�A
���
�

�l����� � 	�� jAj�n�����n���m���n��� �
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We can estimate the left�hand side of ��� by

���
X

�����

X
l�A���l���

����� �
X

�����

����� jfl � A � �l� � �gj �

where � ranges over the dyadic numbers	 From �� and the 	�separated
nature of E we have

jfl � A � �l� � �gj � �n�� 	��nm�

Interpolating this with the trivial bound of jAj we obtain

jfl � A � �l� � �gj � ��n�����n��� 	��m���n��� jAj�n�����n��� �

Inserting this back into ��� we obtain ��� since n����n��� � ���	
This concludes the proof of Proposition ��	

It is clear that there is plenty of slack in the above estimate	 Indeed�
the only time when ��� is e�cient is when � �� � � �� and when
jEj � 	��n	 These phenomena seems to be a typical consequence of the
two ends and bilinear reductions respectively	

��� Proof of Proposition ���

We now prove Proposition �	�	 This shall be a modi�ed version of
the hairbrush argument in ��
�	

By symmetry we may assume

��� p� � p� �

Since pA�	�
� � � 	C�Np� by ���� we see from ��� that one can �nd a

	 � w � � and a C � Cw � C	 � � � � � C� rectangle R such that

���
jARj
w�	

� 	C�N p� �

where
AR � fl � A�	�

� � Tl 	 Rg �
This rectangle R shall form the stem of a hairbrush in S � E�	 Let
lR denote the line generated by the �rst direction of R� and �R be the
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��plane generated by the �rst two directions of R� thus R lies in the C 	
neighbourhood of �R and in the Cw�neighbourhood of lR	

By re�ningAR slightly if necessary� we may assume that w � 	��N �
this may worsen the power of 	��N in ���� but is otherwise harmless	
From 
�� we thus have

�
� jvlR�� vl�j � � � for all l � A���
� �

Since A�	�
� 	 E � E �� we have from elementary geometry that

jARj �
�w
	

��
�

Combining this with ��� we see that

��� w � 	C�Np� 	 �

From ��� we see that

��� jTl � E���j �  	n�� �

for all l � AR	 From this we conclude the following�

Lemma ����� We have

��� jE��� � Rj � 	C�N	��w��� p
���
� 	n�	�� �

Proof� Firstly� from ��� and elementary geometry we see that AR

must contain at least 	C�Np� parallel lines� which with ��� and ���
gives

jE��� � Rj � 	C�Np� 	
n�� �

It thus su�ces to show

jE��� � Rj � 	C�N� jARjp��� 	n�� �

since ��� follows by taking the geometric mean of these estimates and
then using ���	

To prove this estimate we invoke C ordoba�s argument as in the
proof of ���	 Summing ��� over all l � AR we obtainX

l�AR

jTl �E���j �  	n�� jARj
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which we rewrite asZ
E����R

X
l�AR



Tl
�  	n�� jARj �

By the Cauchy�Schwarz inequality we thus have

jE��� � Rj���
��� X
l�AR



Tl

���
�
�  	n�� jARj �

It thus su�ces to show that

���
��� X
l�AR



Tl

����
�
� 	�C�N jARjp� 	n�� �

Repeating the derivation of ���� we may estimate the left�hand side by

X
��
��

X
l�AR

X
l��AR�Tl�Tl� ������jv�l��v�l

��j�


	n ��� �

and the claim follows from the observation

jfl� � AR � Tl � Tl� �� �� 	 � jvl�� vl��j � �gj � 	�C�N	�� � p� �

which follows from ��� and elementary geometry	

Thus E��� has a large intersection withR	 We now wish to conclude

that there are many tubes from A���
� passing through R	

Combining ��� with ��� and ��� we haveZ
R

X
l�A

���
�



Tl
x� � 	���w��� p

���
� 	n�	�� �

which we rewrite asX
l�A

���
�

jTl �Rj � 	���w��� p
���
� 	n�	�� �

For each dyadic 	 � � � �� let A�
brush denote the set

A�
brush � fl � A���

� � Tl � R �� �� 	�w � �l� �R � �g �
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We thus haveX
��w����

X
l�A�

brush

jTl � Rj � 	���w��� p
���
� 	n�	�� �

By the pigeonhole principle� there must therefore exist a 	�w � � � �
such that X

l�A�
brush

jTl � Rj � 	���w��� p
���
� 	n�	�� �

Fix this �	 From �
� and the de�nition of A�
brush� we see from ele�

mentary geometry that jTl � Rj � 	n ���	 Combining this with the
previous� we see that

��� jA�
brushj � 	���w��� p

���
� � 	�	�� �

Thus to prove ��� it su�ces to show that

jE��� � Sj � 	C�N� jA�
brushjm���� �����w���� p

����
� 	n���� �

We will in fact show the slightly stronger

��� jE����S��j � 	C�N� jA�
brushjm���� �����w���� p

����
� 	n���� �

where � denotes the region � � fx � Rn � 	��N � dist x� lR� � �g	
We now foliate the hairbrush into three�dimensional regions in order to
apply Lemma �	�	

Let Sn�	 denote the portion of the unit sphere Sn�� in Rn which
is orthogonal to �R� and let ! be a maximal C��	�separated subset of
Sn�		 For each � � "� let V� denote the set

V� � �R � R � �Bn�� C 	� �

these sets are C 	�neighbourhoods of 
�spaces	 From elementary geom�
etry we may cover

A�
brush �

�
��

A���
brush �

where A���
brush � fl � A�

brush � Tl 	 V�g	 The sets V� � � have an
overlap of at most O	�C�N� as � varies	 Thus

jE��� � S � �j � 	C�N
X
��

jE��� � S � V� � �j �
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To show ���� it thus su�ces to show that

jE��� � S � V� � �j
� 	C�N� jA���

brushjm���� �����w���� p
����
� 	n���� ����

for each � � !	
Fix �	 The region S � V� �� is essentially a C �C �C ��C 	 �

� � � � C 	 box	 We cover this box by about w�� smaller boxes B� of
dimensions C � C � C w � � C 	 � � � � � C 	 such that lR is contained
in the plane generated by the �rst two directions of this box	 Note
that w � � 	 from the construction of �	 From elementary geometry we
see that for each l � A���

brush there exists a box B� such that Tl 	 B�	
Also� the boxes B� have an overlap of O	�C�N �	 Thus� by the same
argument as before� it su�ces to show that

��� jE��� �B�j � 	C�N� jA�����
brushjm���� �����w���� p

����
� 	n���� �

where A�����
brush � fl � A���

brush � Tl 	 B�g	 From ���� ��� and elemen�
tary geometry we note that

jTl � E��� � B�j �  	n�� � for all l � A�����
brush �

Also� from elementary geometry we see that the set of directions fvl� �
l � A�����

brushg is contained in a C�C w ��C 	�� � ��C 	 box in Bn���� ��	
The claim ��� now follows from Lemma �	�� and we are done	
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Dynamical instability

of symmetric vortices

Lu��s Almeida and Yan Guo

Abstract� Using the Maxwell�Higgs model� we prove that linearly
unstable symmetric vortices in the Ginzburg�Landau theory are dy�
namically unstable in the H� norm �which is the natural norm for the
problem��

In this work we study the dynamic instability of the radial solutions
of the Ginzburg�Landau equations in R� �

���

���
��

curl�A�
i

	
��D �� �D �� 
 � �

�D���
�

	
�j�j� � ��� 
 � �

where � � R� �� C is the Higgs eld� or condensed wave function
�j�j� is proportional to the local density of Cooper pairs�� and A is the
gauge potential ��form �it can also be seen as the vector potential of
the magnetic eld�� The covariant derivative is D� 
 r� � iA�� with
i 


p��� The electric eld is absent in the stationary model� and
H 
 curlA is the magnetic eld� The dimensionless coupling constant
� is positive� � � � corresponding to superconductors of type I and
� � � to those of type II�

Solutions of ��� are critical points of the Helmholtz free energy
associated to the Ginzburg�Landau model� which we may write as

�	� E 


Z
R�

��
	
jcurlAj� � �

	
jD�j� � �

�
�j�j� � ���

�
�

���
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There is a vortex number �charge� associated with every nite energy
solution of ���� It can be dened as

n �

�

	�

Z
R�

H 

�

	�
lim

N��

Z
jxj�N

Adx �

This number� which is always an integer� has a topological meaning �
it is the winding number of the Higgs eld � �see� for instance� �����

In the early seventies� Nielson and Olesen ����� interpreted the nite
energy solutions of ��� as string�like eld congurations and� soon after�
a family of topologically non�trivial solutions �one for every integer
value of the topological degree n and positive real value of the parameter
�� was constructed mathematically by Berger and Chen ��	�� and Plohr
������ In polar coordinates �r� 	� � R� these radial solutions �a� 
� are
of the form

��� a�r� 	� 
 a� dx� � a� dx� 
 nS�r� d	 � 
�r� 	� 
 R�r� ein� �

where n � Z and � � � are arbitrary� Here r 

p
�x��� � �x��� and

	 
 tan���x��x���
For studying the dynamics� one should consider the action on the

Minkowski space�time R��� �we add the time coordinate� t� which will
also be denoted by x��� with a metric g�� � ��  
 �� �� 	� with signature
�������� The action is then given by �see ��� ����a� and b���

A 

�

	

Z
R���

�
jF��j� � jD��j� �

�X
j��

�jDj�j� � jF�j j�� � �

�
�j�j� � ���

�



�

	

Z
R���

�
gijgklFikFjl � gijDi�Dj��

�

�
�j�j� � ���

�
�

���

where� in the last expression we used the Einstein convention for sum�
ming over repeated indices �we will continue to do so below�� Here�
A is now the electro�magnetic potential � it has also an electric po�
tential component A�� We denote partial derivatives by �� 
 �x� � for
� 
 �� �� 	� Then� since F�� 
 ��A� � ��A�� for � � ��  � 	� the elec�
tric eld is given by F�j � j 
 �� 	� and �F�� is the magnetic eld� We
denoted covariant derivatives with respect to space or time variables
by D� 
 �� � iA�� As usual� we will raise and lower indices by using
the metric g� For instance� Di �
 gijDj � and thus D� 
 �D�� while
D� 
 D��
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Dynamical stability is then investigated using the Maxwell�Higgs
system� which can be written as

���

��
�

��F�� 
 �j� �

D�D
���

�

	
�j�j� � ��� 
 � �

The charge and current densities are given by

j� 
 Im��D��� 
 � i

	
��D��� �D� �� �

for � 
 �� �� 	� and the conserved energy is

�

	

Z
R�

�
jF�� j� � jD��j� � �

�
�j�j� � ���

�
dx� dx� �

The Maxwell�Higgs model is invariant under a gauge transformation�
A� �� A� � ��� �

�� ei� � �

We will work under the temporal gauge condition A� � �� and thus we
just need to consider the variations of the spatial components of A �we
will be back to working with a 	�dimensional A� with real components
A� and A�� and a C � R� valued Higgs eld ��� Let v 
 �W���T � R

�

be a perturbation of the radially symmetric vortex �a� 
�� where W 

A � a and � 
 � � 
� The full nonlinear Maxwell�Higgs system� in
terms of v� can be written as

���

����
���

�t ���W� � ��W��� i

	
�t�
 � � 
 �� 


i

	
�� �t� � � �t�� �

d�v

dt�
� E ���a��� v 
 N�v� �

Here� E ���a��� denotes the second order variation of �	� around the vor�
tices �a� 
�� and the nonlinear term N�v� is equal to

�
BBB	

i

	
�� �k� � � �k���Wk j�j� �Wk �
 � � 
 ��� ak j�j� �

�iWj �j� � i �j�Wj���W �
j � � 	 aj Wj �

�
W �
j �

�

	
�j�j� �� � 	 
� � �� 
�



CCCA �
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where � � k � 	� and we have an implicit sum over � � j � 	�
Ever since the construction of these stationary radially symmet�

ric vortices� their stability against initial perturbations with the same

charge has been an interesting problem for both mathematicians and
physicists� In a classical paper of ���� the question of stability was
addressed by numerical and formal analysis� The study of the linear
operator E ���a��� indicates that for � � � and all charges n the vortices
are linearly stable� On the other hand� for � � � and jnj � 	� the vor�
tices are linearly unstable� Unlike in the nite dimensional dynamical
system� the passage form linear growing modes to a genuine nonlinear
instability in an innite dimensional partial di�erential equation is quite
delicate� This is due to the possible presence of the continuous spec�
trum for the linearized operator and to severe high order perturbations
arising from the nonlinearity�

In previous works ���� and ����� the dynamical instability of vortices
with large coupling constant � was proven in the norm

kfkX 
 kfkH��R�� � kfk� �

The k � k� was needed to control the H� growth estimate�
In this work� we improve the passage from linear instability to non�

linear dynamical instability in the more natural H� norm by a rened
bootstrap argument� Let the initial perturbation be of the order ��
Within a time�interval of the order of j ln �j we can estimate the H�

norm of the perturbation only by its H� norm �without any extra as�
sumptions on its L� norm�� A similar argument has also been used in
����

In fact� in Theorem �� we show that if the linear operator E ���a���
has a negative direction� then the vortex is dynamically unstable in H�

norm�
For given positive constants � and ��� and for any small parameter

� � �� we dene the associated escape time T � by

��� � e	T
�


 �� �

For a xed appropriately chosen ��� as � �� � the dynamical instability
will occur within � � t � T ��

Lemma �� Let v�t� be a solution of the full Maxwell�Higgs system ����
Assume

kv���kH� � kvt���kH� � C� � ����

kv�t�kH� � kvt�t�k� � C� e
	t � ����
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for � � t � T � where � � � and C� is independent of t� Then� there

exist C�� �� � � such that if � � t � min fT� T �g then

���� kv�t�kH� � kvt�t�kH� � C� � e
	t � C� �� �

where T � is de�ned in ����

Proof� We shall estimate kvkH� in terms of kvkH� by energy type es�
timates� Taking one spatial derivative �l 
 �xl through both equations
in ��� we obtain

����

��������
�������

�t����lW� � ���lW��� i

	
�t�
 �l� � 
 �l��



i

	
�t��l
 � � �l
 �� �

i

	
�l�� �t� � � �t�� �

d�

dt�
��lv�� L��lv� 
 L��v� � �lN�v� �

Here L��v� is

�
BBBBBB	

i

	
��l
 �k� � � �kl
 � �l
 �k� � � �kl
�

��lak�
 � � 
 ��� ak ��l
 � � �l
 ���Wk �lj
j� �
�	 i �laj �j� � 	 iWj �jl
 � i �jWj �l
 � �l �jaj� � �j
j���
�	Wj �l�aj 
�� �

	
�l�


���
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�

Dene y�t� �
 kv�t�k�H� � kvt�t�k�H� � Using estimate ������ in ��� with
su�ciently small �� we have that

��	�

y�t� �
�
C �kvkX � kvk�X� �

��

��

�Z t

�

y��� d�

� C	

Z t

�

�kvk�H� � kvtk��� d�

� C kv�t�k�H� � C �kv���k�H� � kvt���k�H�� �

We notice that due to typographical errors� the square was omitted in
������ for both kv�t�kH� and the initial data kv���kH� � kvt���kH� �
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Since kvkX � C kvkH� �

����

y�t� �
�
C �kvkH� � kvk�H�� �

��

��

�Z t

�

y��� d�

� C	

Z t

�

�kvk�H� � kvtk��� d�

� C kv�t�k�H� � C �kv���k�H� � kvt���k�H�� �

We now dene

����

T � 
 sup
n
t � for all s � ��� t��

kv�s�kH� � kvt�s�kH� � min
n �

�C
� �
oo

�

For � � t � min fT� T �g� since kv�t�kH� � �� we have

C �kvkH� � kvk�H�� � �

�
�

Moreover� from ����

C	

Z t

�

�kvk�H� � kvtk��� d� � C kv�t�k�H�

� C	

Z t

�

�C� � e
		 �� d� � C �� e�	t

� C �� e�	t �

Therefore� using ���� we obtain from ����

���� y�t� � �

	

Z t

�

y��� d� � C �� e�	t �

Now� proceeding as in the proof of the Gronwall inequality� we deduce
that �

e��	
��t
Z t

�

y��� d�
��
� C �� e�	t���
��	t 
 C �� e�

��	t �

Integrating over t� we obtain

e��	
��t
Z t

�

y��� d� � C ��
Z t

�

e�

��	s ds 
 C��e�

��	t �
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Therefore� Z t

�

y��� d� � C �� e�	t �

And plugging this into ���� yields

���� kv�t�kH� � kvt�t�kH� � C� � e
	t �

for � � t � min fT� T �g� where C� is some xed constant which depends
on � and C�� but is independent of ��

We now dene T � as in ���� choosing �� such that

���� C� �� � min
n �

�C
� �
o
�

Then� if T � � min fT� T �g� clearly the lemma follows� On the other
hand� if T � � min fT� T �g� we claim that T � T �� It thus follows that
min fT� T �g 
 T and� once more� the lemma follows easily�

To prove T � T �� we argue by contradiction� If not� we would have
T � T � and therefore min fT� T �g 
 T �� Letting t 
 T � in ���� would
yield

kv�T ��kH� � kvt�T ��kH� � C� � e
	T�

� C� � e
	T �


 C� ��

by the denition of T �� However� this is impossible by the choice ����
since it would contradict the denition of T � in �����

Now� we may prove our main result�

Theorem �� Let �a� 
� be a vortex such that

���� hE ���a����v��� v�i � � �

for some v� � H��R��� Then� there exist constants �� � �� C � ��
so that for any small � � � there exists a family of solutions v��t� of

the Maxwell�Higgs system ��� such that the vortex number of W ���� is
zero� and

kv����kH� � kv�t ���kH� � C � �

but

sup
f��t�C j ln �jg

kv��t�kH� � kv�t �t�kL� �
��
	
�
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Proof� By ��� Theorem ����� there exists a dominant growing mode
v� e

�t of the linearized Maxwell�Higgs system with � � � and v� �
H��R��� We normalize v� such that

���� kv�kH� � k� v�kL� 
 � �

Moreover� we assume that

kv�kH� � k� v�kH� 
 r �	 �

Now we solve the Maxwell�Higgs system with a family of initial data
vjt�� 
 � v� and vtjt�� 
 � � v�� Notice that the vortex number �charge�
of a �W is the same as that of a� We denote the corresponding H�

solutions by v��t�� They can be written as

�	�� v��t� 
 � e�t v� �

Z t

�

L�t� ��N �v�� d� �

where L is the solution operator for the linearized Maxwell�Higgs sys�
tem� and

N �v�� 

� i
	
��� �t�

� � �
�
�t�

��� N�v��
�
�

Let � � � � 	�� and

T 
 sup
n
s � for all t � ��� s��

kv��t�� � v� e
�tkH� � kv�t �t�� � � v� e

�tk� � �

	
� e�t

o
��	��

Using the triangle inequality� we see that for � � t � T �

kv��t�kH� � kv�t �t�k� � k� v� e�tkH� � k� � v� e�tk�
� kv��t�� � v� e

�tkH� � kv�t �t�� � � v� e
�tk�

� �

	
� e�t �kv�kH� � k�v�k���		�



�

	
e�t � �

For any � � �� from the sharp linear estimate for L as in ��� Theo�
rems ��� and ����� we know that the solutions of the linearized Ginzburg�
Landau equation grow no faster than e�����t� By Lemma � with � 
 ��
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C� 
 maxf��	� rg� there exist constants C�� �� � � such that for
� � t � min fT� T �g�

kv��t�kH� � kv�t �t�k� � C� � e
�t � C� �� �

From the Sobolev embedding�

kv��t�k� � C kv��t�kH� � C � e�t � C C� �� �

for � � t � min fT� T �g� where � e�T
�


 ��� From the linearized
estimate �	�� together with the linear estimate in ��� Theorem ����� for
� � t � min fT� T �g�
kv��t�� � e�t v�kH� � kv�t �t�� � � e�t v�k�

� C

Z t

�

e�

����t�	�
���� i

	
��� �t�

� � �
�
�t�

��
���
�
� kN�v��k�

�
d�

� C

Z t

�

e�

����t�	� �kv����k� kv����kH� � kv����k�� kv����k�� d�

� C

Z t

�

e�

����t�	� kv����k� kv����kH� d�

� C

Z t

�

e�

����t�	� �� e�	 � �� e�	 � d�

�	��


 C �� e�

���t
Z t

�

e��
���	 d�

� C� �� e
�t�� �

where C� is a constant�
Notice that both Lemma � and �	�� remain valid with the same

constants C� and C�� respectively� for all smaller ��� as long as we take
the corresponding T � in ���� In particular� if necessary we can x ��
su�ciently small so that

�	�� C� �� � �

	
�

Now� clearly T � � T � Otherwise� we would have T � T �� and from
����� �	��� �		� and �	�� it would follow that

kv��T �kH� � kv�t �T �k� � � e�T � �C� � e
�T �

� � e�T �
�

	
� e�T
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which would contradict the denition of T in �	���
Once we know T � � T � using ���� ���� and �	�� again� we see that

kv��T ��kH� � kv�t �T ��k� � � e�T
�

�kv�kH� � k�v�k��
� kv��T ��� � v� e

�T �kH�

� kv�t �T ��� � � v� e
�T �k�

� � e�T
� � C� �� � e

�T �

� ��
	

� � �

and the proof is complete�

Remark� In ��� and ���� we had already proved that when jnj � ��
such negative directions exist for large �� Very recently� Gustafson and
Sigal ����� proved that for all � � � and jnj � �� there exists a v�
such that hE ���a����v��� v�i � �� Thus� we obtain as an easy corollary of
Theorem �� the dynamic instability of symmetric vortices when jnj � �
and � � ��

Corollary �� For all � � �� radially symmetric solutions �a� 
� of

Ginzburg�Landau equations �i�e� solutions of ��� of the form ���� with
jnj � �� are dynamically unstable in H� norm� in the sense of Theorem

��
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Convexity and uniqueness

in a free boundary problem

arising in combustion theory

Arshak Petrosyan

Abstract� We consider solutions to a free boundary problem for the
heat equation� describing the propagation of �ames� Suppose there is a
bounded domain � � QT � R

n � ��� T 	 for some T � � and a function
u � � in � such that

ut � 
u � in � �

u � � and jruj � � � on � � �� �QT �

u��� �	 � u� � on �� �

where �� is a given domain in Rn and u� is a positive and continuous
function in ��� vanishing on ���� If �� is convex and u� is concave
in ��� then we show that �u��	 is unique and the time sections �t

are convex for every t � ��� T 	� provided the free boundary � is locally
the graph of a Lipschitz function and the �xed gradient condition is
understood in the classical sense�

�� Introduction and main result�

In this paper we consider solutions to a free boundary problem for
the heat equation� Suppose there is a domain � � QT � R

n � ��� T 	

���
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for some T � � and a positive smooth function u in � such that

ut � 
u � in � ���	

u � � and jruj � � � on � ���	

u��� �	 � u� � on �� ���	

where � � �� � QT is the �free	 lateral boundary of �� �� � R
n is

the initial domain and u� is a prescribed positive continuous function
in ��� that vanishes continuously on �� � ���� Then we say the pair
�u��	 or� when there is no ambiguity� � to be a solution to problem

�P	� This problem� in mathematical framework� was introduced by L�
A� Ca�arelli and J� L� V�azquez �CV�� It describes propagation of so�
called premixed equi�di�usional �ames in the limit of high activation
energy� In this problem the time sections

��	 �t � fx � Rn  �x� t	 � �g

represent the unburnt �fresh	 zone in time t� �t � ��t corresponds
to the �ame front� and u � c �Tc � T 	 is the normalized temperature�
For further details in combustion theory we refer to paper �V� of J� L�
V�azquez�

The existence of weak solutions to problem �P	 as well as their
regularity under suitable conditions on the data were established in
�CV�� However� we should not expect any uniqueness result unless we
impose some special geometrical restrictions� In this paper we study the
case when the initial domain �� is bounded and convex� and the initial
function u� is concave� Throughout the paper we make the following
assumptions concerning solutions �u��	 to problem �P	� First� the
boundary of � consists of three parts

��	 �� � �� � � � �T �

where �T is a nonvoid open set in the plane t � T � The presence of
nonempty �T excludes the extinction phenomenon in time t � ��� T ��
This assumption is rather of technical character� that can be avoided
with the following simple procedure� Consider the extinction time

��	 T� � sup ft  �t �� �g �

Then every domain ���� � � � f� � t � �g� � � ��� T�	� has nonempty
�upper bound� �� � Therefore we can consider �rst ���� instead of �
and then let � �	 T��
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Next� we assume that for every �x�� t�	 � � there exists a neigh�
borhood V in Rn � R such that �after a suitable rotation of x�axes	

��	 � � V � f�x� t	 � �x�� xn� t	  xn � f�x�� t	g � V �QT �

where f is a Lipschitz function� de�ned in

V � � f�x�� t	  there exists xn with �x�� xn� t	 � V g �

Further� for u we assume that it is continuous up to the boundary ��
and can be extended smoothly through �T � The gradient condition in
��	 is understood in the classical sense

��	 lim
�t�y�x

jru�y� t	j � � �

for every x � ��t� � � t 
 T �
The main result of this paper is as follows�

Theorem �� In problem �P	 let �� be a bounded convex domain and

u� be a concave function in ��� Suppose that �u��	 is a solution to this

problem in the sense described above� Then �u��	 is a unique solution�

Moreover� the time sections �t of � are convex for every t � ��� T 	�

The plan of the paper is as follows� In Section � we prove a theorem
on the convexity of level sets of solutions to a related Dirichlet problem�
In Section � we recall some properties of caloric functions in Lipschitz
domains� And �nally in Section � we prove Theorem ��

�� Convexity of level sets�

In this section we establish some auxiliary results� which are� how�
ever� of independent interest�

Let u� and �� be as in problem �P	 and a domain � � QT meets
conditions ��	 and ��	� Then by the Petrowski criterion �P� � is a
regular domain for the Dirichlet problem for the heat equation �in the
Perron sense	� and its parabolic boundary is given by

��	 �p� � �� � � �
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We �x one such domain � and denote by u the solution to the Dirichlet
problem

���	

���
��

ut � 
u �

u � u� � on �� �

u � � � on � �

Theorem �� Let the time sections �t of the domain � be convex for

t � ��� T �� Let also u� be a concave function on ��� positive in �� and

vanishing on ���� Then the level sets

���	 Ls�u��� t		 � fx � �t  u�x� t	 � sg

are convex for every �xed s � � and t � ��� T 	� where u is the solution

to the Dirichlet problem ���	�

The proof is based on the Concavity maximum principle originally
due to N� Korevaar �K�� and �K��� For a function v on � set

���	 C�x� y� t	 �
v�x� t	 � v�y� t	

�
� v

�x � y

�
� t
�
�

The function C is de�ned on an open subset D of the �ber product

e� � f�x� y� t	  �x� t	� �y� t	 � �g�

Note that D � e� if the time sections of � are convex� Note also that
if v is extended to the �upper bound� �T of �� then C is extended to
the �upper bound� DT of D� We denote �pD � D n �D �DT 	�

Lemma �Concavity maximum principle	� Let v in C���
x�t ��	�C����T 	

satisfy to a parabolic equation

���	 vt � aij�t�rv	 vij � b�t� x� v�rv	 � in �

with smooth coe�cients and such that b is nonincreasing in v and jointly

concave in �x� v	� Then either C 
 � in D �DT or

� � sup
�x�y�t��D�DT

C�x� y� t	 � lim sup
�x�y�t���pD

C�x� y� t	 �
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Proof� See �K��� the proof of Theorem ���� Though the result is
proved there for cylindrical domains� the proof is valid also in our case�

Remark� There are several formulations of this principle in the el�
liptic case� The strongest version states that it is su�cient to require
harmonic concavity of b in �x� v	 instead of concavity see B� Kawohl
�Ka�� and A� Greco and G� Porru �GP�� In the parabolic case� in or�
der to use such an extension� it seems necessary to assume also the
nonnegativeness of vt see A� Kennington �Ke��

Proof of Theorem �� Assume �rst� that the functions f in the local
representations ��	 of � are smooth in �x�� t	 and strictly convex in x�

and that u� is smooth� These assumptions imply the smoothness up
to �� of the solution u to ���	� Also� the positivity of u� implies the
positivity of u� De�ne now v � log �u	� We claim then that v��� t	 are
concave functions in �t for every t � ��� T �� Clearly� this will imply the
statement of the theorem� For this purpose� we consider the concavity
function C� de�ned above� and show that C 
 � on D � DT � Suppose
the contrary� Then take a maximizing sequence �xk� yk� tk	 � D � DT

such that

���	 lim C�xk� yk� tk	 � sup
D�DT

C � � �

Without loss of generality we may assume that there exists limit

�x�� y�� t�	 � lim �xk� yk� tk	 �

Direct calculation shows� that v satis�es

���	 vt � 
v � jrvj� �

in � and hence the Concavity maximum principle is applicable� Hence
we may assume �x�� y�� t�	 �� D � DT � We want to exclude also the
other possibilities� First� the case t� � � and x�� y� � �� is impossible�
since v��� �	 � log �u�	 is concave in ��� Next� x� � �t� but y� �� x� is
also excluded by the strict convexity of �t!s� since then C�xk� yk� tk	 �	
��� So� it remains to consider the last case x� � y� � �t� � We observe
now that by the boundary point lemma� the outward spatial normal
derivatives u� � � on � � �T � Besides� u� � � also on �� since u�
is concave and positive in �� and vanishes on ��� By the smoothness
assumption we have therefore u� 
 ��� � � on �� Hence we can carry



��� A� Petrosyan

out the same reasonings as in �CS� Proof of Lemma ���� �see also �GP�
Lemma ����	 to obtain that lim inf C�xk� yk� tk	 � �� which contradicts
���	� Therefore C 
 � in D �DT and v��� t	 is concave in �t for every
t � ��� T �� This proves the theorem in the considering case�

To prove the theorem in the general case� we use approximation of
� by domains with smooth lateral boundary and with strictly convex
time sections� and relevant smooth concave approximations of u��

�� On caloric functions�

In this section we recall some properties of caloric functions in Lip�
schitz domains� They will be used in the next section� where we prove
Theorem �� The main reference here is the paper �ACS� by I� Athana�
sopoulos� L� Ca�arelli and S� Salsa�

As in the previous section we consider a domain �� satisfying con�
ditions ��	 and ��	� Let also u be the solution to ���	� Consider a
neighborhood V of a point �x�� t�	 � �� where ��	 holds� The function
u vanishes on ��V � is positive and satis�es the heat equation in ��V �
In other words� u is caloric�

We start with the following lemma from �ACS�� which states that a
caloric function u is �almost harmonic� in time sections near the lateral
boundary ��

Lemma � ��ACS� Lemma ��	� There exist � � � and a neighborhood

Q of the point �x�� t�	 � � such that the functions

���	 w� � u � u��� � w� � u� u��� �

are respectively sub� and superharmonic in Q � � � ft � t�g�

We will need also the following lemma on asymptotic development
of u near the boundary point �x�� t�	�

Lemma � �ACS� Lemma ��� Suppose there exists an n�dimensional

ball B � �c � ft � t�g such that B � � � f�x�� t�	g� Then near x� in

�t�

���	 u�x� t�	 � 	�x� x�� 
	� � o �jx� x�j	 �

for some 	 � ����	 and where 
 denotes the outward radial direction

of B at �x�� t�	�
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In the next lemma we show that 	 in ���	 is in fact the nontan�
gential limit of jru�y� t�	j as y �	 x��

Lemma �� Under the conditions of Lemma �� let also K � �t� be

an n�dimensional truncated cone with the vertex at �x�� t�	 such that

jx� x�j 
 c� dist�x��t�	 for every x � K and some constant c�� Then

���	 lim
K�y�x�

ru�y� t�	 � 	 
 �

where 	 and 
 are as in the asymptotic development ���	�

Proof� By �ACS� Corollary ��� there exists a neighborhood V of the
point �x�� t�	 such that

���	 jut�x� t	j 
 c�
u�x� t	

dx�t
� dx�t � dist �x��t	 �

for all �x� t	 � V � �� Take an arbitrary sequence yk �	 x�� yk � K�
and consider the functions

���	 vk�z	 �
u�yk � rkz� t�	

rk
� rk � jyk � x�j �

de�ned on the ball B � B��� �	� � � ���� c�	� Using ���	 and ���	� we
obtain that for large k

���	 jvk�z	j � �	 � �	 �� � �	

and

���	 j
vk�z	j � rk j
u�yk � rkz� t�	j � rk jut�yk � rkz� t�	j 
 � c� c� �

uniformly in B� Then C��� norms of vk are locally uniformly bounded in
B for a  � ��� �	 see e�g� �LU�� Therefore a subsequence of vk converges
locally in C� norm to a function v� in B� We may also assume that over
this subsequence there exists e� � lim ek� where ek � �yk�x�	�jyk�x�j�
Then� using ���	� we can compute that v��z	 � 	�z� 
	 �	�e�� 
	 in B�
hence rv���	 � 	
� Therefore� over a subsequence� limru�yk� t�	 �
limrvk��	 � rv���	 � 	
� Since the sequence yk �	 x�� yk � K was
arbitrary� this proves the lemma�
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�� Proof of the main theorem�

In this section � will be a solution to problem �P	� under conditions
of Theorem �� Denote by �� the spatial convex hull of �� in the sense
that the time sections ��t are the convex hulls of �t for every t � ��� T 	�
Since � is assumed to satisfy ��	 and ��	� �� will also satisfy similar
conditions� In particular� we may apply the results of two previous
sections to ��� The lateral boundary of �� will be denoted by �� and
the solution to the Dirichlet problem� corresponding to ��	� by u��

In the proof of Theorem � we use ideas of A� Henrot and H�
Shahgholian �HS�� The key step is to prove the following lemma�

Lemma 	� For every x� � ��t� � � � t� 
 T �

���	 lim inf
��

t�
�y�x�

jru��y� t�	j � � �

Proof� From Lemma � it follows that there are � and s� such that
the function w��y	 � u��y� t�	 � u�������y� t�	 is subharmonic in the
ringshaped domain fu���� t�	 � s�g� Let now y � ��t� and u��y� t�	 �
s � s�� Then y � ��s � �Ls�u

���� t�		� By Theorem �� L�s � Ls�u
���� t�		

is convex and therefore there exists a supporting plane in R
n to L�s

at the point y� After a suitable translation and rotation in spatial
variable we may assume that y � �� the supporting plane is x� � �� and
L�s � fx� � �g� Let x� � ���t� have the maximal positive x��coordinate�
Since ��t� is the convex hull of �t� � there must be x� � ���t� � ��t� �
Take now  � ��� �	 and consider a function v�x	 � w��x	� x�� Since
��t� � fx� � �g � fu���� t�	 � s�g� v is subharmonic in ��t� � fx� � �g
and therefore it must admit its maximum value on the boundary of this
domain� Note that the maximum can be admitted either at x� or at y �
�� We show that the former case cannot occur� Indeed� the plane x� �
x�� is supporting to the convex set ��t� and therefore there exists a ball
B � ��t�

c � �c
t�

� �touching� both boundaries ���t� and ��to at x� and
with the outward radial direction 
 � �e� � ���� �� � � � � �	� Therefore
from Lemma � we will have the following asymptotic developments for
u and u� near x� in �t� and ��t� respectively

u�x� t�	 � 	�x�� � x�	
� � o �jx� x�j	 ����	

u��x� t�	 � 	��x�� � x�	
� � o�jx� x�j	 ����	
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Since ��	 is satis�ed at the point x�� we conclude by Lemma � that
	 � �� Next� u� � u in � and hence 	� � 	 � �� Observe now that w�

admits the same representation as ���	� Hence for the function v�x	
introduced above

���	 v�x	 � �	� � 	 �x�� � x�	 �  x�� � o �jx� x�j	 �

Let now 
� be a spatial unit vector with �
�� e�	 � � such that x� �
h 
� � �t� for small h � �� The existence of such a 
� follows from the
local representation of ��t� as the graph of a Lipschitz function� Then
v�x� � h 
�	 � v�x�	 by ���	 and consequently v has no maximum at
x�� Therefore v admits its maximum at the origin y � �� Hence

���	 jrw���	j � lim
h���

w���	� w��h e�	

h
� lim

h���

 h� �

h
�  �

Letting  �	 � we obtain that jrw��y	j � �� provided u��y� t�	 � s��
Now observe that rw� � �������	u��	ru�� This proves the lemma�

Proof of Theorem �� Prove �rst that the domain � coincides with
its spatial convex hull ��� studied above� For this purpose we apply
the Lavrentiev principle� As a reference point we take xmax � ��� a
maximum point for the initial function u�� Without loss of generality
we may assume that xmax � �� Since u� is concave�

���	 u���x	 
 u��x	 �

for every � � � and x � ����	 � ������ For � � � de�ne

���	 u���x� t	 � u���x� �� t	 �

in ����	 � f�x� t	  ��x� ��t	 � ��g� Suppose now that �� �� �� Then

���	 �� � inf f�  ����	 � �g � � �

�����	 � �� and there exists a common point �x�� t�	 � �����	 � �
with t� � ��� T 	� Show that this leads to a contradiction� Indeed� by
construction� u��� satis�es the heat equation in �����	� Comparing the
values of u��� and u on the parabolic boundary �p�����	 �see ���		� we
obtain that u��� 
 u in �����	� Let now 
 be the normal vector of
a supporting plane in Rn to the convex domain �����	t� at the point
x�� pointing into �����	t� � From lemmas �� � and � and the de�nition
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of u�� we conclude that ru����x� � h 
� t�	 �	 �� 	
�
 with 	� � �� as

h �	 ��� From elementary calculus there exists � � ��� �	 such that

���	

�

�

u�x� � � h 
� t�	

�

�

u����x� � � h 
� t�	

�
u�x� � h 
� t�	

u����x� � h 
� t�	
� �

and hence

���	 lim sup
�t�

�y�x�

�

�

u�y� t�	 � lim

h���

�

�

u����x� � h 
	 � �� 	

� � � �

which violates condition ��	 at the point �x�� t�	� Therefore �� � ��
i�e� the time sections �t are convex� for every t � ��� T 	�

It remains to prove the uniqueness of �� For this we make the
following observation� Let �� be another solution� Then if everywhere
in the proof of inclusion �� � � above we replace �� by ���	�� but
leave � unchanged� we will obtain that ���	� � �� Since � and �� are
interchangeable� also we will have �� � ��� Therefore �� � � and the
proof of Theorem � is completed�
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Parabolic equations involving

�
th

and �
st

order terms with L
�

data

Thierry Goudon and Mazen Saad

Abstract� This paper is devoted to general parabolic equations in�
volving �th and �st order terms� in linear and nonlinear expressions�
while the data only belong to L�� Existence and entropic�uniqueness of
solutions are proved�

�� Introduction�

In this paper� we are concerned with the following general parabolic
equation

�����

������
�����

�tu�r � �A�t� x�ru�
	B�t� x� u�ru� 
 f � in ��� T �� � �

ujt�� 
 u� � in � �

u 
 � � on ��� T �� �� �

where � is a regular open bounded set in R
N and B involves the un�

known u and its �rst derivatives� Precisely� B splits into terms which
are linear with respect to u and ru and a nonlinear term as follows

���� B�t� x� u�ru� 
 b�t� x� � ru	 d�t� x�u	 g�t� x� u�ru� �

���
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Here� A� b and d are given functions de�ned on Q 
 ��� T � � � with
values in R

N � R
N �RN and R� respectively� Our basic requirement on

A� b� d is

A � �L��Q��N�N � d � L��Q� ������

b � �L��Q��N � r � b � L��Q� ������

As usual� we also assume that there exists a � � such that the matrix
A satis�es

����� A�t� x� � � � � a j�j� �

for almost every �t� x� � Q and for all � � R
N � The function g �

Q�R�RN �� R is measurable on Q for all � � R� � � R
N � continuous

with respect to � � R� � � R
N � almost everywhere in Q� Furthermore�

g is required to satisfy both a sign condition and a growth condition
with respect to the gradient variable since we suppose that

����� � g�t� x� �� ��� � �

there exists � � � 	  such that

����� jg�t� x� �� ��j � h�j�j� �
�t� x� 	 j�j��

holds for all � � R� � � R
N � and almost everywhere in Q� with 
 �

L��Q�� h being a non decreasing function on R
� � Main di�culties in

this work arise from the fact that we consider data which only belong
to L�� namely

����� u� � L���� � f � L��Q� �

Many physicals models lead to elliptic and parabolic problems with
L��data� For instance� in ���� the authors study the modelling of an
electronical device� The derived elliptic system coupled the temperature
�denoted u� and the electronical potential �denoted ��� The temper�
ature equation is considered as an elliptic equation where the second
member f 
 jr�j� belongs to L����� In ����� a Fokker�Planck equa�
tion arising in populations dynamics is studied� The initial density of
individuals� i�e� u�� is considered to be positive and belongs to L�����

Models of turbulent �ows in oceanography and climatology also
lead to such kind of problems �see ���� and the references therein��
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Consider an incompressible �ow described by a velocity �eld u�t� x� 

u	 u� where u is the mean �eld and u� is related to some �uctuations�
Let k 
 ju�j�� For small Reynolds number� the following academic
model can be used as a simpli�cation of more general �k� �� models

�tk 	 u � rxk � divx��� 	 �t�rxk� 	 k��� 
 �t jrxu	t rxuj� �

where �t can depend on k� It is quite natural to expect that the right
hand side lies in L��Q� and� for given �� �t and u� the above equation can
be considered as a simpli�ed version of ������ In ���� more complicated
and coupled models are dealt with�

In ����� p� ������ the author studies the Navier�Stokes equations
completed by an equation for the temperature �u 
 T �� In this case�
if we denote by v the velocity of the �uid� then the temperature equa�
tion reduces to ����� with b 
 v� d 
 div�v� 
 �� g 
 � and f 

��ivj	�jvi�

� � L��Q�� Note that for compressible �ows the divergence
of the velocity does not vanish� and the temperature equation can be
considered with linear terms having the form b � ru 	 du� These lin�
ear terms introduce new di�culties in the sense that the compactness
results developped in ���� ���� ���� do not apply directly to ����� which
needs further technical investigations�

Assuming B 
 �� existence results for such parabolic problems
with non regular data are established in ��� �see also ���� ����� while
uniqueness questions� in the sense of entropic or renormalized formula�
tions� are considered in ����� ���� Existence�uniqueness of renormalized
solution for a linear parabolic equation involving a �rst order term with
a free divergence coe�cient is discussed in ����� Taking into account the
g term� the corresponding elliptic problem� with an integrable source
term� is treated in ��� when � 	  and the critical case � 
  is dealt
with in ���� In ���� the g term appears in ������ still neglecting the linear
terms involving b and d� with the restriction that g does not vanish for
large value of u� which induces some regularizing e�ects in the equa�
tion� Note that in view of the quoted papers� our results extend to
more general Leray�Lions operators � however� to avoid technical com�
plications and to emphasize the in�uence of the term B we restrict our
attention on a simple operator satisfying ����� Let us now introduce
some de�nitions and give the statement of our main results�

For the sake of clarity� we dropped the dependence on t� x of A� b� d
and g� When no confusion can arise� we will follow this convention in
the sequel�
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De�nition �� By weak solution of ����� we shall mean any function

u � Lq��� T �W ��q
� ���� � C���� T �L����� such that g�u�ru� belongs to

L��Q� and satisfying

�����

Z
�

u�T� x� dx�
Z
�

u� ��� x� dx�
Z
Q

u �t�t� x� dx dt

	

Z
Q

Aru � r dx dt	
Z
Q

�g�u�ru� 	 b � ru	 du� dx dt




Z
Q

f  dx dt �

for all T � ��  � C���� T �W ��q�

� ���� � C���� T �Lq
�

���� and for all q
such that � � q 	 �N 	 ���N 	 �� and ��q 	 ��q� 
 ��

All terms in ����� are clearly de�ned �by duality Lq� Lq
�

�� except
those involving g�u�ru�� However� since � � q 	 �N 	 ���N 	 ��� we
have q� 
 q��q � �� � N and by Sobolev�s embedding the test function
 actually lies in L��Q� so that the integral of g�u�ru� makes sense�

Theorem �� Assume that ����������� hold� Then� there exists a weak

solution of ������ in the sense of De�nition ��

Let us recall the de�nition of the truncated function Tk� Let k �
R
� � We set

������ Tk�z� 


���
��

z � if jzj � k �

k � if z � k �

�k � if z 	 �k �

and we denote Sk�z� 

R z
� Tk��� d� �

De�nition �� Let g 
 �� We say that u is a entropic solution of �����
if u � C���� T �L����� satis�es Tk�u� � L���� T �H�

����� for all k � ��
ru � L��Q� andZ

�

Sk�u� ���T � dx�
Z
�

Sk�u� � ���� ��� dx

	

Z T

�

h�t�� Tk�u� ��i
H������H�

�
���

dt

	

Z
Q

Aru � r�Tk�u� ���dxdt������
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Z
Q

�du	 bru�Tk�u� �� dx dt

�
Z
Q

f Tk�u� �� dx dt

for all k � � and � � L���� T �H�
����� � L��Q� � C���� T �L����� with

�t� � L���� T �H�������

Obviously� Tk�u��� lies in L��Q� and Sk is k�Lipschitzian� hence
with the requirements ru � L��Q� and Tk�u � �� � L���� T �H�

������
both term in ������ clearly makes sense except the product Aru �
r�Tk�u����� Remark now that r�Tk�u���� 
 �

ju��j�k
r�u��� can

be estimated by �
juj�k�k�kL�

jruj 	 jr�j 
 jrTk�k�kL� �u�j 	 jr�j
which belongs to L� since one chooses the test function � in L��Q��
Therefore Aru � r�Tk�u� ��� is integrable�

Theorem �� Let g 
 �� Assume that ����������� hold� Then� there

exists a unique entropic solution of ������

The strategy we adopt is rather close to those introduced in ����
However� new di�culties arise essentially related to the in�uence of the
linear �th and �st order terms� Then� this paper is organized as follows�
First� Section  is devoted to an independent preliminary result which
will be used to derive a bound in Lq on the gradient of the solutions�
in despite of the perturbation induced by the additional terms of lower
order� In Section �� we deal with sequences u� of approximate solutions�
We establish some a priori estimates on these solutions and we translate
the obtained bounds in terms of compactness properties� Then� we
explain how we can pass to the limit as � �� � in the weak formulation
satis�ed by u�� In Section �� we are concerned with the uniqueness of
entropic solution� Finally� in Section �� we slightly weaken the regularity
assumption concerning the coe�cient b�

�� A preliminary result�

The main idea in the proof of Theorem � consists in deriving a
Lq��� T �W ��q

� ���� estimate on the solutions depending only on the L�

norm of the data f and u�� Such an estimate will appear as a conse�
quence of the following lemma�
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Lemma �� Let u � L���� T �H�
����� satisfy

���� sup
t�	��T 


Z
�

juj dx � � �

and

���

Z
Bn

jruj� dx dt � C� 	 C�

Z
En

jruj dx dt � for all n � N �

where

Bn 
 f�t� x� � Q � n � ju�t� x�j � n	 �g �
and

En 
 f�t� x� � Q � ju�t� x�j � n	 �g �
Then� for all � � q 	 �N 	 ���N 	 ��� there exists C � �� depending
on �� C�� C�� j�j� T � and q such that

���� kuk
Lq���T �W

��q
�

����
� C �

Proof� In ���� ���� inequality ��� appears with C� 
 � and is used to
derive ����� Here� the additional term is related to the in�uence of the
�rst order term b �ru in the equation as we shall see in next section �see
Proposition ��� However� exploiting carefully the fact that the integral
in the right hand side is only taken over the large values of the unknow�
we can obtain ���� as a consequence of ����

Let � � q 	 � From ���� we �rst notice that

����

Z
Bn

jruj� dx dt � C� 	 C�

�Z
En

jrujq dx
���q

jEnj	q��
�q

� C� 	 C� krukLq�Q�
jEnj	q��
�q

holds by using Holder�s inequality� Thus� applying again Holder�s in�
equality� we obtain

Z
Bn

jrujq dx dt � jBnj	��q
��
�Z

Bn

jruj� dx dt
�q��

� jBnj	��q
��
�
C
q��
� 	 C

q��
� krukq��

Lq�Q�
jEnj	q��
��

�
����
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by ���� and the elementary inequality �a 	 b�q�� � aq�� 	 bq��� Let
r � � to be chosen later� Clearly� one has

����

����
���
jBnj � �

nr

Z
Bn

jujr dx dt �

jEnj � �

nr

Z
En

jujr dx dt � �

nr
kukr

Lr�Q�
�

Hence� ���� becomes

����

Z
Bn

jrujq dx dt

� C
q��
�

� �
n

�r	��q
���Z
Bn

jujr dx dt
�	��q
��

	 C
q��
� krukq��

Lq�Q�
kukr	q��
��

Lr�Q�

� �
n

�r��
�
�Z

Bn

jujr dx dt
�	��q
��

�

Let K � N to be determined� We split krukq
Lq�Q�

as follows

����

Z
Q

jrujq dx dt 

KX
n��

Z
Bn

jrujq dx dt	
�X

n�K��

Z
Bn

jrujq dx dt �

Since jBnj � T j�j and jEnj � T j�j� we simply evaluate the �rst term
in the right hand side of ���� as follows

����
KX
n��

Z
Bn

jrujq dx dt � KC�

�
� 	 krukq��

Lq�Q�

�
�

by ����� where C� 
 max fCq��
� �T j�j�	��q
��� Cq��

� �T j�j����g� Thus�
by using Young�s inequality in ���������� we get

����� krukq
Lq�Q�

� C�K� 	
�X

n�K��

Z
Bn

jrujq dx dt �

where C�K� tends to in�nity asK becomes large� It remains to proceed
to the study of the series which appears in the right hand side�
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Applying Holder�s inequality on the series with exponents ���q�
and �q and using ����� we have

�����

�X
n�K��

Z
Bn

jrujq dx dt

� C
q��
�

� �X
n�K��

�

nr	��q
�q

�q��� �X
n�K��

Z
Bn

jujr dx dt
�	��q
��

	 C
q��
� krukq��

Lq�Q�
kukr	q��
��

Lr�Q�

� �X
n�K��

�

nr�q

�q��

�
� �X
n�K��

Z
Bn

jujr dx dt
�	��q
��

� C
q��
�

� �X
n�K��

�

nr	��q
�q

�q��
kukr	��q
��

Lr�Q�

	 C
q��
� krukq��

Lq�Q�
kukr��

Lr�Q�

� �X
n�K��

�

nr�q

�q��
�

Note that the conditions

���� r
� q

q
� � and

r

q
� �

ensure the convergence of the series which appear in the right hand
side of ������ Consequently� these terms become arbitrarily small when
choosing K large enough as soon as ���� is ful�lled�

With the convention that ��K� denotes quantities which tend to �
as K goes to 	� by combining ����� with ������ we get

����� krukq
Lq�Q�

� C�K�	 ��K�
�
kukr	��q
��

Lr�Q�
	 krukq��

Lq�Q�
kukr��

Lr�Q�

�
�

Therefore� by using Young�s inequality on the last term in the right
side� it follows that

����� krukq
Lq�Q�

� C�K� 	 ��K�
�
kukr	��q
��

Lr�Q�
	 kukr

Lr�Q�

�
�

where we keep the notation C�K�� ��K� while the value of these terms
may have changed� still with the meaning that C�K� ��	� ��K� ��
� when K becomes large�
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We denote by q� 
 Nq��N � q� the Sobolev conjugate of q� The
Sobolev imbedding theorem implies that

�����

Z T

�

�Z
�

jujq� dx
�q�q�

dt � C

Z
Q

jrujq dx dt �

Assume now � 	 r 	 q� and set ��r 
 � 	 ��� ���q� with � 	 � 	 ��
For almost everywere t � ��� T �� one has

����� ku�t� ��kr
Lr���

� ku�t� ��kr�
L����

ku�t� ��kr	���

Lq����

�

Integrating ����� with respect to time and recalling the bound ���� in
L���� T� L����� yield

����� kukr
Lr�Q�

� �r�
Z T

�

�Z
�

jujq�dx
�r	���
�q�

dt �

Choose now r 
 q �N 	 ���N � noting that the convergence condition
���� is ful�lled as soon as � � q 	 �N 	 ���N 	 ��� Combining
����������� with Young�s inequality �since �� q�� 	 �� leads to

�����

Z T

�

�Z
�

jujq� dx
�q�q�

dt

� C�K� 	 ��K�
��Z T

�

�Z
�

jujq� dx
�q�q�

dt
�	��q
��

	

Z T

�

�Z
�

jujq� dx
�q�q�

dt
�

� C�K� 	 ��K�

Z T

�

�Z
�

jujq� dx
�q�q�

dt �

We �x K � � so that� for instance� �� ��K� � ��� Hence� we deduce
from ����� that

����� kuk
Lq���T�Lq� ����

� C

holds� and the asserted estimate ���� follows easily from ����� and
������
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�� Proof of Theorem ��

The proof falls naturally into several steps and we detail each of
them separetely�

���� Approximate solutions�

We introduce the following smooth approximations of the data

�����

�
u��� � C�� ��� � f� � C�� ��� �

u��� �� u� in L���� � f� �� f in L��Q� �

with

���� ku���kL���� � ku�kL���� � kf�kL��Q�
� kfk

L��Q�
�

Moreover� we regularize the function g as follows

����� g��u�ru� 
 g�u�ru�
� 	 � jg�u�ru�j �

Note that g� belongs in L
��Q� and satisfy the sign condition ����� and

the growth condition in ������ Then� classical results� see e�g� �����
���� ���� �or� in the linear case� use a Galerkin method�� provide the
existence of a sequence u� � C���� T �L����� � L���� T �H�

������ with
�tu� � L���� T �H������� of solutions of ����� where u�� f and g are
replaced by u���� f� and g� respectively� We have

�����

h�tu�� i
H������H�

�
���

	

Z
�

Aru� � r dx

	

Z
�

�g��u��ru�� 	 b � ru� 	 du�� dx 


Z
�

f�  dx �

for all T � � and  � L���� T �H�
������

���� A priori estimates�

In this section� we are concerned with a priori estimates satis�ed
by the sequence u� of solutions of ����� which lead to compactness
properties essential to the proof�
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Proposition �� Let A� b� d� g satisfy ������������ Then� there exist

� � �� C� and C� depending only on ku�k
L����

� kfk
L��Q�

� kbk
L��Q�

�

kdk
L��Q�

� j�j and T such that the sequence u� of solutions of �����
satis�es

����� sup
�	�

t�	��T 


ku��t�k
L����

� � �

and

�����

Z
Bn

jru�j� dx dt � C� 	 C�

Z
En

jru�j dx dt �

In view of Lemma �� we deduce immediately the following

Corollary �� Let A� b� d� g satisfy ������������ Let � � q 	 �N 	
���N 	��� Then� there exists C � � depending only on the data� such

that

����� sup
�	�

ku�k
Lq���T �W

��q
�

����
� C �

Proof of Proposition �� Since Tk is a Lipschitz function and u� �
L���� T �H�

������ one has Tk�u�� � L���� T �H�
������ see ����� ���� with�

moreover�
rTk�u�� 
 �

ju�j�k
ru� �

where �
ju�j�k

denotes the characteristic function of the set f�t� x� � Q �

ju��t� x�j � kg� Thus� we choose  
 Tk�u�� as test function in ������
Writing b � ru� 
 r � �b u��� �r � b�u�� one gets

�����

d

dt

Z
�

Sk�u�� dx	

Z
�

�
ju�j�k

Aru� � ru� dx

	

Z
�

Tk�u��g��u��ru�� dx




Z
�

f�Tk�u�� dx	

Z
�

�
ju�j�k

u�b � ru� dx

	

Z
�

��r � b�� d�u�Tk�u�� dx �
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By using Holder�s and Young�s inequalities� one obtains

�����

��� Z
�

�
ju�j�k

u�b � ru� dx
���

� a



Z
�

�
ju�j�k

jru�j� dx	
�

 a
kbk�

L��Q�

Z
�

�
ju�j�k

ju�j� dx �

Moreover� u�Tk�u�� is non negative and we assume that d and r � b
belong to L��Q�� Hence� after integration of ����� with respect to t
and using ������ we are led to

������

Z
�

Sk�u���t� dx	

Z t

�

Z
�

Tk�u��g� dx ds

	
a



Z t

�

Z
�

�
ju�j�k

jruj� dx ds

�
Z t

�

Z
�

jf�Tk�u��j dx ds	
Z
�

Sk�u���� dx

	
�

 a
kbk�

L��Q�

Z t

�

Z
�

�
ju�j�k

ju�j� dx ds

	 �kdk
L��Q�

	 kr � bk
L��Q�

�

Z t

�

Z
�

u�Tk�u�� dx ds �

where� by the sign assumption ����� and the de�nition of Sk� all the
terms in the left hand side of ������ are non negative� Next� we observe
that

������

� � z��
jzj�k

� z Tk�z�


 z� �
jzj�k

	 k jzj�
jzj	k

� z� �
jzj�k

	 � k jzj � k���
jzj	k


 Sk�z� �

which yieldsZ
�

Sk�u���t� dx �
Z t

�

Z
�

jf�Tk�u��j dx ds	
Z
�

Sk�u���� dx

	 C�b� d�

Z t

�

Z
�

Sk�u�� dx ds ������
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where C�b� d� stands for

 �kdk
L��Q�

	 kr � bk
L��Q�

� 	
�

a
kbk

L��Q�
�

We set z�t� 

R
�
Sk�u���t� dx� Thus� dropping non negative terms� we

have

� � z�t� � z��� 	

Z t

�

Z
�

jf�j jTk�u��j dx ds	 C�b� d�

Z t

�

z�s� ds

and we apply Gronwall�s lemma to deduce that

������ z�t� � eC	b�d
T
�Z

�

Sk�u���� dx	

Z
Q

jf�j jTk�u��j dx dt
�

holds�
We set k 
 � in ������� Remarking that jT��z�j � � and � �

S��z� � jzj leads toZ
�

S��u���t� dx � eC	b�d
T �ku�kL���� 	 kfk
L��Q�

�

by ����� Therefore� we end the proof of ����� with the following obser�
vation Z

�

ju�j dx 


Z
ju�j��

ju�j dx	

Z
ju�j	�

ju�jdx

�
Z
ju�j��

dx	

Z
ju�j	�

�
S��u�� 	

�



�
dx

� �


j�j	 eC	b�d
T �ku�kL���� 	 kfk

L��Q�
�


 � �

To achieve the proof of Proposition �� we are left with the task of
showing that ����� holds� According to ���� we introduce the function

������ n�z� 


���������
��������

� � if z � n	 � �

z � k � if n � z 	 n	 � �

� � if � n 	 z 	 n �

z 	 k � if � n� � 	 z � �n �
�� � if z � �n� � �
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and we set �n�z� 

R z
�
n��� d� � We note that n is a Lipschitz func�

tion� Thus� we have n�u�� � L���� T �H�
������ see ����� ��� with

rn�u�� 
 �
Bn
ru� �

�
Bn

denoting the characteristic function of the set Bn 
 f�t� x� � Q �

n � ju��t� x�j � n	 �g� Then� taking  
 n�u�� � L���� T �H�
����� as

test function in ����� gives

d

dt

Z
�

�n�u�� dx	

Z
�

�
Bn

Aru� � ru� dx	

Z
�

g�u��ru��n�u�� dx




Z
�

f� n�u�� dx�
Z
�

du� n�u�� dx�
Z
�

b � ru� n�u�� dx �
Thus� integrating the above equation with respect to t� we have

������

Z
�

�n�u���t� dx	

Z t

�

Z
�

�
Bn

Aru� � ru� dx dt

	

Z t

�

Z
�

g�u��ru��n�u�� dx dt




Z
�

�n�u���� dx	

Z t

�

Z
�

f�n�u�� dx dt

�
Z t

�

Z
�

du� n�u�� dx dt

�
Z t

�

Z
�

b � ru� n�u�� dx dt �
Since jn�z�j � �� and taking into account the estimate ����� we have

������
��� Z

�

du� n�u�� dx
��� � � kdk

L��Q�
�

Furthermore� we remark that u� n�u�� � �� Then� the third term in
the left side is non negative� From the coercivity of A �see ������� the
positivity of �n��� and ������ we deduce that

a

Z
Bn

jru�j� dx dt �
Z
Q

jn�u��f�j dx dt	
Z
�

�n�u���� dx

	 � kdk
L��Q�

	 kbk
L��Q�

Z
Q

jru�j jn�u��j dx dt

� kfk
L��Q�

	 ku�kL���� 	 � kdk
L��Q�

������

	 kbk
L��Q�

Z
Q

jru�j jn�u��j dx dt �
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Let us split the last integral in ������ as follows

Z
Q

jru�j jn�u��j dx dt 

Z
Bn

jru�j jn�u��j dx dt	
Z
En

jru�j dx dt

�
Z
Bn

jru�j dx dt	
Z
En

jru�j dx dt �������

since jn�u��j 
 � on En 
 f�t� x� � Q � ju�t� x�j � n 	 �g and
n�u�� 
 � if ju��t� x�j 	 n�

Using the fact � � �n�z� � jzj and ������� we deduce from ������
that

a

Z
Bn

jru�j� dx dt � kfk
L��Q�

	 ku�kL���� 	 � kdk
L��Q�

	 kbk
L��Q�

�Z
Bn

jru�j dx dt	
Z
En

jru�j dx dt
�
�

By using Holder�s and Young�s inequalities� we have

a

Z
Bn

jru�j� dx dt

� C 	
a



Z
Bn

jru�j� dx dt	 �

 a
kbk�L�	Q
 T j�j	

Z
En

jru�j dx dt �

where C 
 kfk
L��Q�

	 ku�kL���� 	 � kdk
L��Q�

� This �nishes the proof

of ����� with C� and C� depending on kfk
L��Q�

� ku�kL��Q�
� kbk

L��Q�
�

kdk
L��Q�

� a� j�j� T and the bound ��
Now� we are interested in the nonlinear term g�� We have

Lemma �� Suppose A� b� d� g satisfy ����������� and let u� be a sequence

of solutions of ������ Then� there exists C � � depending only on the

data such that the sequence g��u��ru�� satis�es

sup
�	�

kg��u��ru��k
L��Q�

� C �������

lim
k��

sup
�	�

Z
ju�j	k

jg��u��ru��j dx dt 
 � ������
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Proof� It is clear that

Z
ju�j	n��

jg��u��ru��j dx dt 

Z
ju�j	n��

n�u�� g��u��ru�� dx dt

�
Z
Q

n�u�� g��u��ru�� dx dt ������

since we recall that jn�z�j 
 � when jzj � n	 � and n�u�� g� is non
negative by the sign condition ������ In the sequel� we will often write
g� 
 g��u��ru�� when no confusion can arise� From the positivity of
the �rst and the second terms in ������� we obtain

����

� �
Z
Q

n�u�� g� dx dt

�
��� Z

Q

n�u�� f� dx dt
���	 ��� Z

�

�n�u���� dx
���

	
��� Z

Q

d n�u��u� dx dt
���	 ��� Z

Q

n�u��b � ru� dx dt
���

� kf�kL��Q�
	 ku���kL���� 	 kdk

L��Q�

Z
Q

ju�j dx dt

	 kbk
L��Q�

Z
Q

jru�j dx dt

since jn�z�j � � and � � �n�z� � jzj� By ����� ����� and the estimate
����� with q 
 �� we deduce

�����

Z
ju�j	n��

jg��u��ru��j dx dt � C �

It remains to evaluate the integral over fju�j 	 n 	 �g� Assumption
����� yields

�����

Z
ju�j
n��

jg��u��ru��j dx dt

� h �n	 ��

Z
ju�j
n��

�jru�j� 	 
�t� x�� dx dt �
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where we estimate as follows

�����

Z
ju�j
n��

jru�j� dx dt 

nX
j��

Z
Bj

jru�j� dx dt

�
nX
j��

jBjj�����
�Z

Bj

jru�j� dx dt
����

�

By using ������ ����� and Holder�s inequality� we get

�����

Z
ju�j
n��

jru�j� dx dt

� �T j�j������
nX
j��

�
C� 	 C�

Z
Q

jru�j dx dt
����

� C �

Combining ����� with ����� and ������ we conclude that g� is bounded
in L��Q� uniformly in ��

We turn to the proof of ������ Obviously� one has

�����

Z
ju�j	k

jg�j dx dt � �

k

Z
Q

Tk�u�� g� dx dt �

Similarly� replacing n�u�� by Tk�u�� in ������ we obtain� similarly to
����� that

�����

� �
Z
Q

Tk�u�� g� dx dt

�
Z
Q

jf�Tk�u��j dx dt	
Z
�

Sk�u���� dx

	 kdk
L��Q�

Z
Q

Tk�u��u� dx dt

	 kbk
L��Q�

Z
Q

jTk�u��j jru�j dx dt

holds� Let M � �� According to ����� we use the following trick

�����

�
� � Sk�z� �M� 	 k jzj�

jzj	M
�

jTk�z�j �M 	 k �
jzj	M

�
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which gives

Z
ju�j	k

jg�j dx dt � M

k
kf�k

L��Q�
	

Z
ju�j	M

jf�j dx dt

	
M�

k
ku���k

L����
	

Z
ju���j	M

ju���j dx

	
M

k
kdk

L��Q�
ku�k

L��Q�
	

Z
ju�j	M

ju�j dx dt������

	
M

k
kbk

L��Q�
kru�kL��Q�

	

Z
ju�j	M

jru�j dx dt �

by ����� and ������ Since� on the one hand� u� is bounded in Lq��� T�
W ��q

� ���� for some q � � and f�� u��� are convergent sequences in L
��Q��

L���� respectively� and� on the other hand�

sup
�	�

meas f�t� x� � Q � ju��t� x�j � Mg � �

M
sup
�	�

ku�kL��Q�
� � T

M

tends to � as M goes to 	� we can choose M large enough so that the
terms

sup
�	�

Z
ju�j	M

jf�j dx dt �

sup
�	�

Z
ju���j	M

ju���j dx �

sup
�	�

Z
ju�j	M

ju�j dx dt �

sup
�	�

Z
ju�j	M

jru�j dx dt �

are arbitrarily smalls� which� achieves the proof of ������

Let the assumptions of Proposition � be ful�lled� Then� u� is
bounded in Lq��� T �W ��q

� ����� g� is bounded in L��Q� which imply�
in view of the equation satis�ed by u� that �tu� is bounded in L���� T �
W���q���� 	 L��Q�� Therefore� possibly at the cost of extracting sub�
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sequences� see e�g� ����� ��� we can assume that

������

��������
�������

u� �� u � strongly in Lq�Q�

and almost everywhere in Q�

ju��t� x�j � ��t� x� � almost everywhere in Q�

with � � Lq�Q� �

ru� � ru � weakly in Lq�Q� �

���� Convergence almost everywhere of the gradients�

The weak convergence of the gradients is clearly insu�cient to pass
to the limit when � �� � in nonlinear terms� Then� we claim

Lemma �� Let the assumptions of Proposition � be ful�lled and let

u� satisfy ������� Then� the sequence fru�g� converges to ru almost

everywhere as � goes to zero�

Proof� It su�ces to show that fru�g� is a Cauchy sequence in mea�
sure� see ���� i�e� for all � � �

����� meas f�t� x� � Q � jru�� �ru�j � �g �� � �

as ��� � �� �� Let us denote by A the subset of Q involved in ������
Let k � � and � � �� Following ����� we remark that

������ A 
 A� � A� � A� � A� �

where

������

A� 
 f�t� x� � Q � jru�j � kg �
A� 
 f�t� x� � Q � jru�� j � kg �
A� 
 f�t� x� � Q � ju� � u�� j � �g �
A� 
 f�t� x� � Q � jru� �ru�� j � � � jru�j � k�

jru�� j � k� ju� � u�� j � �g �
By Corollary � and ������� we conclude easily for the three �rst sets�
Indeed� one has

jA�j � �

k
kru�kL��Q�

� C

k
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and an analoguous estimate holds for A�� Hence� by choosing k large
enough� jA�j	 jA�j is arbitrarily small� Similarly� one gets

jA�j � �

�
ku� � u��kL��Q�

which� for � � � �xed� tends to � when �� �� �� � since� by ������� u� is
a Cauchy sequence in L��Q�� Then� the proof is completed by choosing
� so that jA�j is given arbitrarily small� uniformly with respect to �� ���
To this end� we shall use the equations satis�ed by u� and u�� � Indeed�
we observe that

������

jA�j � �

��

Z
A�

jru� �ru�� j� dx dt

� �

��

Z
ju��u�� j��

jru� �ru�� j� dx dt



�

��

Z
Q

jr�T��u� � u����j� dx dt �

Substracting the relations obtained with  
 T��u��u��� as test funtion
in equation ����� satis�ed successively by u� and u�� leads to

d

dt

Z
�

S��u� � u��� dx	

Z
�

A�ru� �ru���rT��u� � u��� dx




Z
�

�f� � f���T��u� � u��� dx

�
Z
�

�d�u� � u���� br�u� � u����T��u� � u��� dx

������

�
Z
�

�g� � g���T��u� � u��� dx �

Since jT��z�j � � and � � S��z� � � jzj� integrating ������ with respect
to t and using the coercivity of A �see ������ yield

������

a

Z
Q

jr�T��u� � u����j� dx dt

� � �kf� � f��kL��Q�
	 ku��� � u����kL����

	 kdk
L��Q�

ku� � u��kL��Q�
	 kbk

L��Q�
kr�u� � u���kL��Q�

	 kg� � g��kL��Q�
� �



Parabolic equations involving �th and �st order terms with L� data ���

Therefore� by using ���� and the bounds ������ uniform in �� on
ku�k

L��Q�
� kru�k

L��Q�
and on kg�k

L��Q�
� we deduce from ������ that

a

Z
Q

jr�T��u� � u����j� dx dt �  � �kfk
L��Q�

	 ku�kL�����

	  � C �� 	 kbk
L��Q�

	 kdk
L��Q�

� �������

goes to zero as � goes to zero� uniformly in �� ��� This completes the
proof of Lemma ��

Having disposed of the proof of Lemma �� let us consider the be�
haviour of g� as � goes to �� when it is assumed that � � � 	 �

Corollary �� Let the assumptions of Proposition � be ful�lled and let u�
satisfy ������� Then� �up to subsequences � the sequence fg��u��ru��g�
converges to g�u�ru� almost everywhere in Q and strongly in L��Q��

Proof� This result is similar to those obtained in ��� in the context
of elliptic problems� For the sake of completeness� we sketch the proof�
By combining Lemma � and ������� it is clear that

g��u��ru�� �� g�u�ru�

almost everywhere in Q as � tends to �� since g�t� x� �� �� is a continuous
function with respect to � � R� � � R

N � Thus� by classical results� see
e�g� ���� the sequence g� will be actually strongly convergent in L��Q�
if one shows that g� lies in weakly compact set in L��Q�� This property
follows from ����� since � � � 	 � Indeed� let A be a measurable set
in Q� We split

������

Z
A

jg�j dx dt 

Z
A	fju�j�kg

jg�j dx dt	
Z
A	fju�j	kg

jg�j dx dt �

where it is clear thatZ
A	fju�j	kg

jg�j dx dt �
Z
ju�j	k

jg�j dx dt

tends to �� uniformly in � as k ��	� by ������ Moreover� the growth
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condition ����� and Holder�s inequality yieldZ
A	fju�j�kg

jg�j dx dt

� h�k�
�Z

A	fju�j�kg

jru�j� dx dt	
Z
A	fju�j�kg


�t� x� dx dt
�

� h�k�
�Z

ju�j�k

jru�j� dx dt
����

jAj	���
�� 	 h�k�

Z
A


�t� x� dx dt

������

� h�k�CkjAj	���
�� 	 h�k�

Z
A


�t� x� dx dt

by using ����� and ����� as in ������ Since � 	  and 
 � L��Q��
the right hand side of this last inequality goes to � as jAj �� �� We
conclude that

lim
jAj��

sup
�	�

Z
A

jg�j dx dt 
 � �

which completes the proof of Corollary �

���� Cauchy property in C���� T �L����� and passage to the

limit�

We end our review of the properties of the sequence u� with the
following result�

Lemma �� Let the assumptions of Proposition � be ful�lled� We as�

sume that the sequence fu�g� satis�es ������� Then� fu�g� is a Cauchy

sequence in C���� T �L������

Proof� We set w���� 
 u� � u�� � F���� 
 f� � f�� and G���� 
 g� � g�� �
We multiply the equations ����� satis�ed respectively by u� and u�� by
T��w������ Substracting the obtained relations yields

������

d

dt

Z
�

S��w����� dx	

Z
jw���� j��

Arw���� � rw���� dx




Z
�

F����T��w����� dx�
Z
�

G����T��w����� dx

�
Z
�

�b � rw���� 	 dw�����T��w����� dx �
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Since � � z T��z� 
 z� �
jzj��

	 jzj�
jzj��

� z� �
jzj��

	� jzj � ���
jzj��



S��w������ one gets

��� Z
�

dw����T��w����� dx
��� �  kdk

L��Q�

Z
�

S��w����� dx �

Moreover� one has jT��w�����j � �� Then� integrating ������ between �
and t and from the positivity of A� it follows

Z
�

S��w������t� dx

�
Z
�

S��w
�
����� dx	

Z t

�

Z
�

jF���� jdx ds	
Z t

�

Z
�

jG���� j dx ds

	 kbk
L��Q�

Z t

�

Z
�

jrw���� j dx ds	  kdk
L��Q�

Z t

�

Z
�

S��w����� dx ds �

�����

where w�
���� 
 u��� � u���� � Hence� Gronwall�s lemma implies that

������

Z
�

S��w����� dx � a���� �

where a���� stands for

a���� 
 eCT
�Z

�

S��w
�
����� dx	

Z
Q

jF���� j dx dt

	

Z
Q

jG���� j dx dt	
Z
Q

jrw����j dx dt
�

� eCT �ku��� � u����kL���� 	 kf� � f��kL��Q�

	 kg� � g��kL��Q�
	 kru� �ru��kL��Q�

� �

since S��z� � jzj� By ������ u��� and f� are convergent sequences in
L���� and L��Q�� respectively and by Corollary � g� is a convergent
sequence in L��Q�� Furthermore� by Corollary � and Lemma �� ru� is
both bounded in Lq�Q� and almost everywhere in Q convergent� which
implies that ru� is actually strongly convergent in Lp�Q� for � � p 	 q�
and in particular in L��Q�� Hence� it is clear that a���� tends to � as
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�� �� �� �� Finally� by Holder�s inequality� we haveZ
�

jw���� j dx




Z
jw���� j��

jw���� j dx	

Z
jw���� j	�

jw���� j dx

�
�Z

jw���� j��

jw���� j� dx
�����Z

jw���� j��

� dx
����

	

Z
jw���� j	�

jw����j dx

�
p
j�j
�Z

jw���� j��

S��w����� dx
����

	

Z
jw���� j	�

S��w����� dx �

since jzj

�
jzj��

�
� jzj


	
jzj � �



�
�
jzj��


 S��w������jzj��

and
jzj�


�
jzj��


 S��z��jzj�� �

By ������� we deduce thatZ
�

ju� � u�� j dx 


Z
�

jw����j dx �
p

 j�jpa���� 	  a����

tends to � as �� �� �� � which proves that u� is a Cauchy sequence in
C���� T �L��Q���

Finally� we achieve the proof of Theorem � by passing easily to the
limit � �� � in the following weak formulation

������

Z
�

u��t� dx�
Z
�

u������ x� dx

�
Z t

�

Z
�

u��t dx dt	

Z t

�

Z
�

Aru� � r dx dt

	

Z t

�

Z
�

�
b � ru� 	 d u� 	 g��u��ru��

�
 dx dt




Z t

�

Z
�

f� dx dt �

with  � C���� T�W ��q�

� ���� � C���� T� Lq
�

����� obtaining in this way
that the limit u is a solution of ����� in the sense of ������
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Remark �� We point out the fact that the assumption on the deriva�
tives of the coe�cient b is useful uniquely to obtain the uniform bound
����� in L���� T �L������

Remark �� A similar existence result may be obtained if the strong
convergences in ����� are replaced by weak L� convergences�

�� Entropic solutions� End of proof of Theorem ��

In this Section� we assume g 
 �� First� we prove that� besides
the weak  natural! formulation ������ the limit u of the sequence of ap�
proximate solutions u� also satis�es the entropic relation ������� Having
disposed of the existence of such a solution� we show that u is unique
in the class of entropic solutions�

���� Existence of entropic solution�

Let us recall the convergence properties obtained in Section � on
the sequence u�� after suitable extraction of subsequences� First� u�
converges to u strongly in Lq�Q�� with � � q 	 �N 	 ���N 	 ��� in
C���� T �L������ almost everywhere in Q and is dominated� Moreover�
ru� is bounded in Lq�Q� and converges almost everywhere in Q to
ru� thus� the convergence actually holds strongly in Lp�Q�� for � �
p 	 q and in particular in L��Q�� We can also assume that ru� is
dominated� Let k � �� Since Tk is continuous and bounded by k�
Tk�u�� converges almost everywhere in Q and� by Lebesgue�s theorem�
strongly in L��Q� to Tk�u�� Furthermore� from ������ it is easy to see
thatrTk�u�� is bounded in L��Q� �uniformly in �� the bound depending
on k�� Therefore� we may suppose that rTk�u�� � rTk�u� weakly in
L��Q��

Fix k � � and let � � L���� T �H�
����� � L��Q� with �t� �

L���� T �H������� We set P 
 k�k
L��Q�

� It is clear that jTk�u����j �
k and

����� jrTk�u����j 
 �
ju���j�k

jr�u����j � �
ju�j�k�P

jru�j	 jr�j �

which implies that Tk�u� � �� belongs to �a bounded set in� L���� T �
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H�
� ����� Then� plugging  
 Tk�u� � �� in ����� gives

����

Z
�

Sk�u� � ���T � dx�
Z
�

Sk�u��� � ���� ��� dx

	

Z T

�

h�t�� Tk�u� � ��i ds

	

Z
Q

Aru�rTk�u� � �� dx ds

	

Z
Q

�b � ru� 	 d u��Tk�u� � �� dx ds




Z
Q

f�Tk�u� � �� dx ds �

We shall study the behaviour of ���� when we let � go to �� Since Sk
is k�Lipschitz� one has��� Z

�

Sk�u� � ��� Sk�u� �� dx
��� � k

Z
�

ju� � uj dx �

for all t � ��� T � where the right hand side tends to � as � �� �� Next�
since we have assumed that �t� lies in L���� T �H������� we have to
prove that

����� Tk�u� � ��� Tk�u� �� � in L���� T �H�
����� �

Obviously� this convergence holds in L��Q� since u� converges to u al�
most everywhere in Q and Tk is continuous and bounded by k� Derivat�
ing Tk�u� � �� leads to

�����
rTk�u� � �� 
 rTk�Tk�P �u��� ��


 �
jTk�P �u����j�k

�rTk�P �u���r�� �

where� by the above mentioned convergences� rTk�P �u�� converges
weakly in L��Q� to rTk�P �u� which proves ������ We also deal easily
with the terms involving b� d and f� since it appears in these integrals
a product of the sequence Tk�u���� which converges almost everywh�
were in Q and is bounded in L��Q� with a sequence which converges
at least weakly in L��Q�� Finally� it remains to show that

�����

Z
Q

Aru�rTk�u��� dx ds � lim inf
���

Z
Q

Aru��rTk�u���� dx ds �
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By using ������ we split the integral in the right hand side as followsZ
Q

Aru� � rTk�u� � �� dx ds




Z
Q

�
jTk�P �u����j�k

Aru� � rTk�P �u�� dx ds

�
Z
Q

�
jTk�P �u����j�k

Aru� � r� dx ds


 A� � B� �

where� by the same argument as above� we have

lim
���

B� 


Z
Q

�
jTk�P �u���j�k

Aru � r� dx ds �

Therefore ����� is a consequence of Fatou�s lemma� applied by combin�
ing ����� with Tk�P and the positiveness property ������ Finally� letting
� �� � in ����� one gets �������

���� Uniqueness�

Let v be an entropic solution� To obtain the uniqueness� we will
show that v 
 u� u still being the solution obtained by approximation�
To this end� it would be natural to choose Th�u�� as test function �
in ������� However� as pointed out in ����� Th is not regular enough
which leads to di�culties in order to write the term involving the time
derivative of the test function� Then� it is necessary to regularize the
truncation� Let � � �� We introduce T �h � C��R�R� satisfying

�����

���
��

�T �h �
��z� 
 � � if jzj � h �

�T �h �
��z� 
 � � if jzj � h� � �

� � �T �h �
��z� � �Th�

��z� � � �

Note that jT �h �z�j � jTh�z�j� and �T �h �!�z� 
 � when jzj � h or jzj �
h� ��

In the sequel� let us denote

L�f� u� 
 f � b � ru� d u �
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We take � 
 T �h �u�� as test function in the entropic formulation ������
satis�ed by v� we have

�����

h Z
�

Sk�v � T �h �u��� dx
it
�

	

Z t

�

h�tu�� �T �h ���u��Tk�v � T �h �u���i ds

	

Z t

�

Z
�

ArvrTk�v � T �h �u��� dx ds

�
Z t

�

Z
�

L�f� v� �T �h �
��u��Tk�v � T �h �u��� dx ds �

By using ������ we write the term involving the time derivative of the
test function as follows

�����

Z t

�

h�tu�� i ds 

Z t

�

Z
�

�L�f�� u��� Aru�r� dx ds �

where  
 �T �h �
��u��Tk�v � T �h �u��� and� consequently�

r 
 ru��T �h ����u��Tk�v � T �h �u��� 	 �T �h �
��u��r�Tk�v � T �h �u���� �

By ������ the entropic formulation ����� is equivalent to

�����

h Z
�

Sk�v � T �h �u��� dx
it
�

	

Z t

�

Z
�

A�rv � �T �h �
��u��ru��rTk�v � T �h �u��� dxds

�
Z t

�

Z
�

Aru�ru��T �h ����u��Tk�v � T �h �u��� dxds

�
Z t

�

Z
�

�L�f� v�� L�f�� u�� �T
�
h �
��u���Tk�v � T �h �u��� dxds �

Now� according to ����� let successively � �� �� � �� � and h �� 	�
Di�culties only arise from the third integal in the left hand� denoted by
I� which involves the second derivative of T �h � the remaining integrals
being treated by using the Lebesgue theorem� Indeed� it is clear that

jSk�v � T �h �u���j � k jvj	 k h �

jTk�v � T �h �u���j � k �

j�T �h ���u��Tk�v � T �h �u���j � k �
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and
jrTk�v � T �h �u���j � �jrTk�h�v�j	 jrTh�u��j� �

Next� we wish to obtain an estimate on I� � Following ���� �see also
���� we de�ne another C� function R�

h� satisfying for z � �� �R�
h�
��z� 


�� �T �h �
��z�� R�

h��� 
 �� R�
h��z� 
 R�

h�z��
Take �R�

h�
��u�� as test function in ������ By using the positivity

of R�
h and the fact that �R�

h�
���z� 
 j�T �h ����z�j� we obtain according to

���� the following estimate

������

jI� j � k

Z t

�

Z
�

jL�f�� u��j�ju�j�h�� dx ds

	 k

Z
�

ju���j�ju���j�h�� dx �

By Lebesgue�s theorem� we can pass to the limit � �� � in the right
hand side of ������� obtaining without di�culties

lim sup
���

jI� j � k

Z t

�

Z
�

jL�f�� u��j�ju�j�h dx ds	 k

Z
�

ju���j�ju���j�h dx �

Collecting these results� we get from ����� the following estimate

������

h Z
�

Sk�v � Th�u��� dx
it
�

	

Z t

�

Z
�

Ar�v � Th�u���rTk�v � Th�u��� dx ds

�
Z t

�

Z
�

�L�f� v�� L�f�� u�� �Th�
��u���Tk�v � Th�u��� dxds

	 k

Z t

�

Z
�

jL�f�� u��j�ju�j�h dx ds	 k

Z
�

ju���j�ju���j�h dx �

The assumptions on the sequence of data and the properties of u� re�
called above allow us to apply the Lebesgue theorem to pass to the limit
as � �� � in the �rst term of the left hand side as well as in the right
hand side� In addition� the coercivity of A �see ������ and the following
almost everywhere convergence

rTk�v � Th�u��� 
 �
jv�Th�u��j�k

�rv � �
ju�j�h

ru��
�� �

jv�Th�u�j�k
�rv � �

juj�h
ru� �
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permit us to apply Fatou�s lemma on the second term in the left hand
side�

It remains to deal with h ��	 in the following relation

�����

h Z
�

Sk�v � Th�u��dx
it
�

	

Z t

�

Z
�

ArTk�v � Th�u��rTk�v � Th�u�� dxds

�
Z t

�

Z
�

�L�f� v�� L�f� u��Th�
��u��Tk�v � Th�u�� dxds

	 kO�h� �

where O�h� stands for

Z t

�

Z
�

�jf j	 kbk
L��Q�

jruj	 kdk
L��Q�

juj��
juj�h

dx ds

	

Z
�

ju�j�ju�j�h dx �

which goes to � as h ��	 because f� u�ru belong to L��Q��

We search for another expression of the integral in the right hand
side of ������ We write� on the one hand�

������

L�f� v�� L�f� u��Th�
��u�


 f � b � rv � d v � �f � b � ru� d u� �Th�
��u�


 L�f� u� ��� �Th�
��u��� b � r�v � u�� d �v � u�

and� on the other hand

������

Z t

�

Z
�

�b � r�v � u��Tk�v � Th�u�� dx ds


 �
Z t

�

Z
�

�v � u�b � rTk�v � Th�u��

	 �r � b��v � u�Tk�v � Th�u�� dx ds �
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By �������������� inequality ����� becomes

������

h Z
�

Sk�v � Th�u�� dx
it
�

	

Z t

�

Z
�

ArTk�v � Th�u��rTk�v � Th�u�� dxds

�
Z t

�

Z
�

j�v � u� b � rTk�v � Th�u��j dxds

	

Z t

�

Z
�

j�d� �r � b�� �v � u�Tk�v � Th�u��j dxds

	

Z t

�

Z
�

jL�f� u���� �Th�
��u��Tk�v � Th�u��j dxds

	 kO�h� �

We remark that �� �Th�
��u� tends to � as h ��	� and by Lebegue�s

theorem the third term of the right hand side can be included in the
general expression kO�h� which tends to � as h ��	�

Proceeding as in Section � leads to

������

Z
�

Sk�v � Th�u���t� dx

	
a



Z t

�

Z
�

jrTk�v � Th�u��j� dx ds

�
Z
�

Sk�v � Th�u����� dx

	
�

a
kbkL�	Q


Z t

�

Z
�

�jv�Th	u
j
k jv � uj� dx ds

	 �kdkL�	Q
 	 kr � bkL�	Q
�

�
Z t

�

Z
�

j�v � u�Tk�v � Th�u��j dx ds

	 kO�h� �

In classical way� by Lebesgue�s theorem and Fatou�s lemma� letting h go
to 	� we are led to inequality ������ where Th�u� is replaced by u and
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the last term in the right hand side vanishes� By using � � z Tk�z� �
Sk�z�� � � z� �

jzj�k
� Sk�z�� we deduce as in Section  that

������

Z
�

Sk�v � u��t� dx	
a



Z t

�

Z
�

jrTk�v � u�j� dx ds

�
Z
�

Sk�v � u���� dx	 C�b� d�

Z t

�

Z
�

Sk�v � u� dx ds �

where

C�b� d� 
  krbk
L��Q�

	  kdk
L��Q�

	
�

a
kbk

L��Q�
�

Therefore� it su�ces to apply Gronwall�s lemma to deduce thatZ
�

Sk�v � u��t� dx 
 � �

since v� 
 u�� which gives v 
 u�

	� Lower regularity requirement on b�

Our aim in this section is to weaken the regularity requirement on
b� replacing the L��Q� condition by b � Ls�Q� for s � q�� precisely one
has

Theorem �� Let A� d� g satisfy ����������� and let b � Ls�Q� with s �
q� 
 q��q��� �recall that � � q 	 �N 	���N 	��� and r� b � L��Q��
Then� there exists a weak solution of ����� in the sense of De�nition ��

Proof� The outline of the proof is the same of Theorem �� Consider
the approximate solution of ������ In the �rst step� we show� according
to ������ that

����� u� is uniformly bounded in L���� T �L����� �

Reproducing the proof of Proposition �� we take  
 Tk�u�� as test
function in ������ and we �nd ������ All terms are treated as above
except those involving u�b � rTk�u�� which becomes��� Z

Q

u�b � rTk�u�� dx dt
���

� a



Z
Q

jrTk�u��j� dx dt	 �

 a

Z
Q

�
ju�j�k

jb u�j� dx dt �
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by using Holder�s and Young�s inequalities� Since s �  the last integral
is bounded by ��� a� k� �T j�j�s�	s��
 kbk�Ls	Q
� Then� from ������ we
deduce that Z

�

Sk�u���t� dx � �� 	 ��

Z t

�

Z
�

Sk�u�� dx ds

holds where �� depends on kfkL�	Q
� ku�kL�	�
 and kbkLs	Q
 and ��
depends on kdkL�	Q
� krbkL�	Q
� Gronwall�s Lemma permits us to
conclude as in Proposition � and leads to ������

To establish an estimate on the solutions in Lq��� T�W ��q
� ����� we

follow step by step the proofs of estimate ����� and of Lemma � which
need to be adapted� For that� take  
 n�u�� in ������ We deduce
from ������

a

Z
Bn

jru�j� dx dt �
Z
Q

jn�u��f�j dx dt	
Z
�

�n�u���� dx

	 � kdk
L��Q�

	

Z
En

jb � ru�j jn�u��j dx dt

� kfk
L��Q�

	 ku�kL���� 	 � kdk
L��Q�

	
�Z

En

jbjq� dx dt
���q��Z

Q

jru�jq dx dt
���q

�

Since s � q�� using Holder�s inequality� with exponents s�q� and s��s�
q��� yields the following substitute to �����

����

Z
Bn

jru�j� dx dt � C� 	 C�kru�kLq	Q
 jEnj	s�q
�
�	sq�
 �

where C� stands for

�

a
�kfk

L��Q�
	 ku�kL���� 	 � kdk

L��Q�
�

and C� 
 kbkLs	Q
�
Recall that q 	 � Therefore� Holder�s inequality yieldsZ

Bn

jru�jq dx dt � jBnj	��q
��
�Z

Bn

jru�j� dx dt
�q��

� jBnj	��q
�������

� �Cq��
� 	 C

q��
� kru�kq��Lq�Q�

jEnj		s�q
�
�	sq�

	q��
� �
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Let r and K as in Lemma �� By using ����� one getsZ
Bn

jru�jq dx dt

� C
q��
�

�

nr	��q
��

�Z
Bn

ju�jr dx dt
�	��q
��

	 C
q��
� kru�kq��

Lq�Q�
ku�kr		s�q

�
�	sq�

	q��

Lr�Q�

� �

nr		s�q�
�	sq�

	q��
�r	��q
��

�Z
Bn

ju�jr dx dt
�	��q
��

�

Repeated use of Holder�s inequality� as in ������ implies

�X
n�K��

Z
Bn

jru�jq dx dt

� C
q��
�

� �X
n�K��

�

nr	��q
�q

�q��
ku�kr	��q
��Lr�Q�

	 C
q��
� kru�kq��Lq�Q�

ku�kr			s�q
�
�	sq�

	q��
�	��q
��


Lr�Q�
�����

�
� �X
n�K��

�

nr			s�q�
�	sq�

�	��q
�q


�q��
�

The conditions

����� r
� q

q
� � and r

�s� q�

s q�
	

� q

q

�
� �

ensure the convergence of the series� As in Section � we deduce from
����� that

kru�kqLq�Q�

� C�K�

	 ��K� �ku�kr	��q
��Lr�Q�
	 kru�kq��Lq�Q�

ku�kr			s�q
�
�	sq�

	q��
�	��q
��


Lr�Q�
� �

holds where ��K� tends to zero asK goes to in�nity� Therefore� Young�s
inequality yields

�����
kru�kqLq�Q�

� C�K�

	 ��K� �ku�kr	��q
��Lr�Q�
	 ku�kr		s�q

�
�	sq�
q���q

Lr�Q�

� �
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If we choose r 
 q �N 	 ���N � estimate ����� becomes

ku�krLr	Q
 � C ku�kqLq	��T �Lq�	�

 �

Using Sobolev�s theorem� as in Section � we derive the following esti�
mate on u� in Lq��� T �Lq

�

����

ku�kqLq	��T �Lq�	�


� C�K� 	 ��K� �ku�kq	��q
��Lq	��T �Lq

�
	�



	 ku�kq		s�q
�
�	sq�
q���q


Lq	��T �Lq
�
	�



� �

Since �� q�� 	 � and q �s� q����s q�� 	  � q 	 �� we can use again
Young�s inequality which� choosing K large enough� leads to a bound
on u� in Lq��� T �Lq

�

���� and� thus� in Lq��� T �W ��q
� ����� Finally� let

us verify the compatibility of conditions ������ For

r 
 q
N 	 �

N
�

the �rst condition is equivalent to

� � q 	
N 	 

N 	 �

and the second condition means that

s �
�N 	 �� q�

q� � �

which is clearly satis�ed since it is yet required s � q��
Finally� one can easily verify that Lemma � Lemma �� Corollary

 and Lemma � are valid in the context of Theorem � and the proof
follows�
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Liouville type theorems for

��subharmonic functions

Marco Rigoli and Alberto G� Setti

Dedicated to the memory of Franca Burrone Rigoli

Abstract� In this paper we presents some Liouville type theorems for
solutions of di�erential inequalities involving the ��Laplacian� Our re�
sults� in particular� improve and generalize known results for the Lapla�
cian and the p�Laplacian� and are new even in these cases� Phragmen�
Lindelo� type results� and a weak form of the Omori�Yau maximum
principle are also discussed�

�� Introduction�

Let �M� h�� �i� be a smooth� connected� non�compact� complete Rie�
mannian manifold of dimension m� We �x an origin o� and denote by
r�x� the distance function from o� and by Bt 	 fx � M 
 r�x� � tg
and �Bt 	 fx � M 
 r�x� 	 tg the geodesic ball and sphere of radius
t � � centered at o�

To avoid inessential technical di�culties we will assume that �Bt

is a regular hypersurface� This is certainly the case if o is a pole of M 
in the general case one could overcome the problem using a Ga�ney
regularized distance instead of the Riemannian distance function r�x��

We denote by volBt and vol �Bt the Riemannian measure of Bt

and the induced measure of �Bt� respectively� Integrating in polar
coordinates then gives

���
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volBt 	

Z t

�

vol �Bs ds �

In this paper� we will always denote with � a real valued function in
C����������Co�������� satisfying the following structural conditions

�����

i� ���� 	 � �

ii� ��t� � � � for all t � � �

iii� ��t� � A t� � for all t � � �

for some positive constants A and ��
We will focus our attention on the di�erential operator de�ned for

u � C��M� by

����� div �jruj�� ��jruj�ru� �

and which could be referred to as the ��Laplacian� Of course� if the
the vector �eld in brackets is not C�� then the divergence in ����� must
be considered in distributional sense� Note that the vector �eld in
consideration may fail to be C� at the points where ru 	 �� even if u
is assumed to be C��

We also note that the ��Laplacian arises naturally when writing
the Euler�Lagrange equation associated to the energy functional

��u� 	

Z
��jruj� �

where ��t� 	
R t
� ��s� ds�

As important natural examples we mention


�� the Laplace�Beltrami operator� �u� corresponding to ��t� 	 t

�� or� more generally� the p�Laplacian� div �jrujp��ru�� p � ��
corresponding to ��t� 	 tp��

�� the generalized mean curvature operator� div �ru����jruj�����
	 � �� corresponding to ��t� 	 t��� � t����

The general philosophy is to explore the mutual interactions be�
tween the behavior of solutions of di�erential equations�inequalities in�
volving the ��Laplacian� and geometric properties of the underlying
manifold� As it will become clear in the sequel� many of the results we
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present can be generalized to a slightly more general class of operators
including� for instance� the A�Laplace operators as de�ned in �HeKM��
For some related results in this setting we also refer to some recent work
by I� Holopainen �Ho�� We have decided to concentrate on operators of
the form given in ����� since all the main ideas appear already� and the
techniques are more transparent in this setting� In any case� our results
have interesting consequences in non�linear potential theory� and many
of them appear to be new even for the Laplacian�

We introduce some notation� A function u � C��M� is said to be
��subharmonic if

����� div �jruj�� ��jruj�ru� � � � on M �

Reversing the inequality� or replacing the inequality with an equality
one obtains the de�nition of ��super harmonic� and ��harmonic func�
tion� respectively� Note that the notion of ���sub� super�harmonicity
is una�ected by adding a constant to u� In accordance with what re�
marked after ������ if the vector �eld jruj����jruj�ru is not C�� the
inequality in ����� must be understood in weak sense� Explicitly� u � C�

is ��subharmonic if

�

Z
hr
� jruj����jruj�rui � � �

for all � � 
 � C�c �M�� or equivalently� for all nonnegative compactly
supported Lipschitz functions on M �

One of the basic problems is to determine su�cient conditions so
that ����� has only constant solutions� In the case of the Laplace�
Beltrami operator� typically one considers the problem where u be�
longs to two main function classes
 fu � C��M� 
 sup u � ��g and
fu � C��M� 
 u � �g�Lq�M�� q � �� The fact that the only solutions
of ����� in these two cases are constant amounts to the parabolicity of
the manifold �M� h�� �i�� and to an Lq�type Liouville property� respec�
tively� It is well known� see for instance the recent survey paper by A�
Grigor�yan� �Gr��� that

�����

i�
r

vol �Br�
	� L����� �

ii�
rZ

Br

uq
	� L����� �
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are su�cient to guarantee parabolicity or the validity of an Lq�type
Liouville property� respectively� However� both conditions are far from
being necessary� as shown by a counterexample due to R� Greene and
quoted in �V���

On the other hand� it may be shown that parabolicity is equivalent
to

�����
�

vol ��Br�
	� L�����

if the manifold �M� h�� �i� is a model in the sense of Greene and Wu�
�GW�� but the equivalence fails in general �see for instance �Gr�� exam�
ple ���� p� �����

In this connection� we note that ����� is always implied by �����
i�� for instance� Further� it is easy to construct examples of manifolds
of exponential volume growth where ����� holds� while ����� i� obvi�
ously does not� We shall therefore concentrate on conditions involving
vol �Br� as in ������ rather than volBr itself�

Following the classical terminology� we shall say that �M� h�� �i� is ��
parabolic if the only bounded above solutions of ����� are constant� As
a consequence of the results presented in Section � below �see Theorem
���� we have


Theorem A� Let �M� h�� �i� be a complete manifold� let � and � be as

in ����� and assume that

�vol ��Br�
������ 	� L����� �

Then M is ��parabolic�

Note that the same � may correspond to di�erent operators� For
instance� � 	 � may be associated both to the Laplacian and to the
mean curvature operator div �ru�

p
� � jruj��� It follows that if �����

holds� then M is parabolic both in the usual sense� and with respect to
the mean curvature operator�

As for Lq�type Liouville Theorems we have


Theorem B� Let �M� h�� �i� be a complete manifold� let � and � be as

in ����� and let u be a C�� non�negative ��subharmonic function� If�Z
�Br

uq
�����

	� L����� �
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for some q � �� then u is constant�

Theorem B generalizes two recent results for the Laplacian and
the A�Laplacian �see the above remark� due to K� T� Sturm� �St�� and
Holopainen� �Ho�� respectively� In these papers� constancy of u is es�
tablished assuming that the following stronger condition holds

�
rZ

Br

uq

����

	� L����� �

More interestingly� our result extends to solutions of a large class of
di�erential inequalities� see Theorem ���� and� in a di�erent direction�
Theorem ���� It should be pointed out that Sturm and Holopeinen have
a version of Theorem B for nonnegative �p��superharmonic functions
satisfying the above growth condition with q � �� In Proposition ���
we show that our techniques are �exible enough to recover their result�

Note that the case � 	 q is quite special� Indeed� for a rather
long time it was not known whether an L��Liouville property was true
on an arbitrary Riemannian manifold� even in the case of the Laplace�
Beltrami operator� At the beginning of the ����s� reference was made
to a preprint by L� O� Chung where the �rst example of a complete
Riemannian manifold admitting a non�trivial integrable harmonic func�
tion u was constructed� A further example was published by P� Li and
R� Schoen� �LS� in ����� However� the constancy of integrable harmonic
functions can be obtained provided we impose some further condition�
for instance an appropriate bound on the growth� This was �rst ob�
served by N� S� Nadirashvili� �N�� The following result may be viewed
as a generalization and an improvement of �N� Theorem ��� even for the
Laplace�Beltrami operator�

Theorem C� Let �M� h�� �i� be a complete manifold� and let � and � be

as in ������ Let u be a C�� non�negative ��subharmonic function� If

����� i�

Z
�Br

u� �
C

r logb r
and ii� u�x� � C exp �r�x������� �

for some positive constants b and C� and r�x� su�ciently large� then u
is constant�
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We point out that the assumptions do not force u to belong to
L��M�� and refer to Section � below for a more precise statement and
a detailed discussion�

As mentioned above� many of our results extend and improve pre�
vious results valid for the Laplacian and the p�Laplacian� In many in�
stances the latter have been obtained using capacity techniques� These
techniques in general depend on the solvability of the Dirichlet problem
�at least on annuli�� and the fact that p�harmonic functions are min�
imizers of the appropriate energy integral� Underlying the method is
the even more basic relationship between the energy density ��jruj�
and the expression ��jruj� jruj� which is crucial when applying the
divergence theorem� In the case of the p�Laplacian the two expressions
coincide and are equal to jrujp� Since none of these facts holds in the
general case of the ��Laplacian� a capacity approach to ��parabolicity
appears to be infeasible� and alternative methods must be devised�

In the last section of the paper we show that� under suitable geo�
metric assumptions� a weak version of the Omori�Yau maximum prin�
ciple holds for the ��Laplacian�

Theorem D� Assume that

����� lim inf
r���

log volBr

r���
� �� �

and let u be a smooth function on M with u� 	 sup u � ��� Suppose

further that the vector �eld jruj����jruj�ru is of class at least C��

Then there exists a sequence fxng 
M � n 	 �� �� � � � � such that

�����

���
u�xn� �� u� � as n �� �� �

div �jruj�� ��jruj�ru��xn� �
�

n
�

Observe that the regularity condition in the statement is certainly
satis�ed in the case of the Laplacian� of the p�Laplacian �p � ��� or the
generalized mean curvature operator� once u is assumed to be at least
C��

We also note that in a recent paper� K� Takegoshi �T� asserted that�
if ����� holds with � 	 �� then the Laplacian satis�es the full strength
Omori�Yau maximum principle� i�e�� there exists a sequence fxng sat�
isfying ����� and the additional condition jrunj � ��n� However� there
seems to be a gap in his proof� which the present authors have not been
able to �ll�
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The paper is organized as follows
 in Section � we prove Theorem
A� Theorem C and some related results� Section � is devoted to a
generalization of Theorem B� In Section � we presents some extensions
of Theorem A� Examples show that the main results in each of these
sections are fairly sharp� In Section � we state some Phragmen�Lindel o�
type results� and make some further comments� In Section � we discuss
the weak Omori�Yau maximum principle� and some related topics�

�� Proof of theorems A� C and related results�

We keep the notation of the Introduction in particular the con�
stants A and � refer to the structural conditions ����� satis�ed by ��

The following observation will be repeatedly used in the sequel�
Assume that ! is a bounded domain in M with smooth boundary �!�
and outward unit normal �� Denote by ��x� the distance function from
�! �with the convention that ��x� is � � if x � ! and � � if x 	� !��
so that � is the radial coordinate for the Fermi coordinates relative to
�!� By Gauss Lemma� jr�j 	 � and� r� 	 �� on �!� Finally� let
!� 	 fx � ! 
 ��x� � g� and let 
� be the Lipschitz function de�ned
by


��x� 	

�		�		�
� � if x � !� �

�


��x� � if x � ! n !� �

� � if x � !c �

Given a continuous vector �eld Z de�ned on !� the following version
of the divergence theorem holds

����� lim
����

hdivZ� 
�i 	

Z
��

hZ� �i �

Indeed� by de�nition of weak divergence� and by the co�area formula�

hdivZ� 
�i 	 �
�



Z
�n��

hZ�r�i 	
�



Z �

�

dt

Z
��t

hZ�r�i �

and ����� follows letting  �� �� With slight abuse of notation� we will
refer to ����� as the divergence theorem� and write� even in this case�Z

�

divZ 	

Z
��

hZ� �i �
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Assume now that the di�erential inequality divZ � � holds in weak
sense for some real valued continuous function � de�ned on !� Substi�
tuting into ����� yieldsZ

�

� 	 lim
���

Z
�

�
� � lim
���

hdivZ� 
�i 	

Z
��

hZ� �i �

This observation will allow us to deal with continuous vector �elds sat�
isfying weak di�erential inequalities as if we were working with smooth
vector �elds satisfying pointwise inequalities�

The next simple technical lemma� and its companion Lemma ����
are key ingredients in the proofs of our main results�

Lemma ���� Let f � Co�R�� and let u be a non�constant C� solution

of the di�erential inequality

����� div �jruj�� ��jruj�ru� � ��jruj� jrujf�u� �

Assume that there are functions 	 � C��I� and � � Co�I� de�ned on

an interval I � u�M� such that

	�u� � � ������

	��u� � f�u�	�u� � ��u� � � ������

on M � Then there exist Ro depending only on u and a constant C � �
independent of 	 and �� such that� for every r � R � Ro�

�����
�Z

BR

��u���jruj� jruj
���

� C
�Z r

R

�Z
�Bt

	�u����

��u��

�������
�

Proof� Let Z be the continuous vector �eld de�ned by

Z 	 	�u� jruj����jruj�ru �

Observing that 	�u� is C�� we compute the distributional divergence of
Z� and use our assumptions on u� 	� and � to obtain

divZ � �	�u� f�u� � 	��u����jruj� jruj � ��u���jruj� jruj �

Integrating over Bt and applying the divergence theorem gives

�����

Z
�Bt

hZ�rri �

Z
Bt

��u���jruj� jruj �



Liouville type theorems for � subharmonic functions ��	

On the other hand� using Schwarz inequality� the assumed positivity of
��u�� H older inequality with conjugate exponents � � � and � � ����
and the inequality ��t������ � A�����t� t� we estimate

�����

Z
�Bt

hZ�rri �

Z
�Bt

jZj

	

Z
�Bt

	�u���jruj�

� A�������
�Z

�Bt

	�u����

��u��

��������
�
�Z

�Bt

��u���jruj� jruj
������

�

Combining ����� and ����� yields

�����

Z
Bt

��u���jruj� jruj � A�������
�Z

�Bt

	�u����

��u��

��������
�
�Z

�Bt

��u���jruj� jruj
������

�

Denoting by H�t� the left hand side of ������ and noting that� by the
co�area formula

H ��t� 	

Z
�Bt

��u���jruj� jruj �

we may rewrite ����� in the form

����� H�t� � A�������
�Z

�Bt

	�u����

��u��

��������
�H ��t��������� �

Further� since u is non�constant� ��u� � � and ��t� � � if t � ��
we deduce that there exists Ro such that H�t� � � for every t � Ro�
It follows that the right hand side of ����� is also strictly positive for
t � Ro� Rearranging we �nally obtain

H�t�������H ��t� � A����
�Z

�Bt

	�u����

��u��

�����
� t � Ro �
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whence� integrating between R and r� Ro � R � r� yields

H�R������H�R������H�r������
�

�A���

Z r

R

�Z
�Bt

	�u����

��u��

�����
dt �

and ����� follows with C 	 ���A���

Theorem ���� Let u � C��M� be a non�negative ��subharmonic func�

tion� If there exists b � � such that�Z
�Bt

u� �� � log �� � u��� �� � logb���� � log ���u���
�����

	� L����� �������

then u is constant�

Proof� We argue by contradiction� and assume that u is not constant�
For every integer n � �� let 	n be the function de�ned for t � � by
	n�t� 	 logb �� � log �� � ��n� t��� and let

�n 	 	�n�t� 	
b logb�� �� � log �� � ��n� t��

�� � log �� � ��n� t�� �� � ��n� t�
� for all t � � �

It is readily veri�ed that 	n and �n satisfy the conditions in the state�
ment of Lemma ���� with f  �� so that

������

� Z
BR

�n�u���jruj� jruj
���

� C
�Z r

R

�Z
�Bt

	n�u�
���

�n�u��

�������
�

with C 	 ���A�� independent of n� It is also easy to verify that there
exists a positive constant � which depends only on � and b such that

�� � s�� logb���� � log �� � s�� � �s� �� � logb���� � log �� � s��� �

for all s � �� and therefore �using s 	 ��n� u�

	���n �u�

��n�u�
� �

� �
n
� u

���
� � log

�
� �

�

n
� u

���
�
�
� � logb��

�
� � log

�
� �

�

n
� u

���
b�� �
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on M � It follows that the expression in ������ is bounded below by a
multiple of�Z r

Ro

�Z
�Bt

� �
n
� u

���
� � log

�
� �

�

n
� u

���
�
�
� � logb��

�
� � log

�
� �

�

n
� u

����������
�

We substitute into ������� let n tend to in�nity in the resulting inequal�
ity� and apply the monotone convergence� and dominated convergence
theorems to conclude that�Z

BR

��jruj� jruj

�� � u� �� � log �� � u�� log��b�� � log �� � u��

���
� C�

�Z r

R

�Z
�Bt

u� �� � log �� � u���

� �� � logb���� � log �� � u���
�������

�

with C� 	 b�����A� ���� Letting r tend to in�nity� we contradict
assumption ������

Proof �of Theorem C�� We use conditions ����� to deduce that�Z
�Bt

u��� � log �� � u��� �� � logb���� � log �� � u���
�����

�
C

r log r
�

for large enough r� Thus ������ holds� and the conclusion follows from
Theorem ����

Remark� We de�ne� for t � �� L��t� 	 � � log �� � t�� and� for k � ��
Lk�t� 	 � � logLk���t�� It is a simple matter to verify that condition
������ in the statement of Theorem ��� can be replaced by the weaker

������
�Z

�Bt

u�
� n��Y
k��

L�k�t�
�
�� � logb�� Ln���u��

�����
	� L����� �

for some n � � and b � ��
It follows that Theorem C may be correspondingly improved� In�

deed� denoting by �k the kth�composition power of log� so that �k�t� 	
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log ��k���t��� for su�ciently large t � �� conditions ����� in the state�
ment of Theorem C can be replaced by

������ i�

Z
�Br

u� �
C

r �bn�r�
and ii� u�x� � C exp �r�x������� �

for some integer n � �� some positive constants b and C� and su�ciently
large r�

The following example shows that Theorem C is rather sharp� For
the sake of simplicity� we restrict our considerations to the case of the
p�Laplacian� p � �� This corresponds to the values A 	 � and � 	 p� �
in ������

Let � � C��������� be a positive function such that ��t� 	 t for
t � ��� ��� and de�ne

h�� �i 	 dr� � ���r� d�� �

where �r� �� are the polar coordinates on Rm n f�g 	 ������� Sm���
and d�� denotes the standard metric on Sm��� Clearly� h�� �i extends
to a smooth complete metric on Rm � Next� let a � Co�������� be a
non�negative function such that� for t � ��� ��

a�t� 	



� � if � � p � � �

tp�� � if p � � �

We de�ne the non�negative function

������ u�x� 	

Z r�x�

�

��t���m�����p���
�Z t

�

a�s���s�m�� ds
����p���

dt �

where r�x� denotes the distance function from �� It is easily veri�ed
that u is C�� and satis�es

div �jrujp��ru��x� 	 a�r�x�� �

on �Rm � h�� �i�� Thus u is not constant and p�subharmonic� Since u is
radial� for ease of notation we will write u�r��

To construct the required example we �x To � �� and choose the
functions a�t� and ��t� so as to satisfy the further conditions

������ a�t� 	 � and ��t� 	 t����m��� exp
�
�

�p� �� tp��p���

m� �

�
�
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on �To����� Inserting these in the de�nition of u� we deduce that there
exist constants C�� C� such that

u�r� 	 C� � C�

Z r

To

���m�����p����t� dt

	 C� � C�

Z r

To

t���p��� exp �tp��p���� dt �

Thus there exist constants Ci � � such that

u�r� � C	 exp �r
p��p���� �

and Z
�Br

up�� 	 C
 �
m���r�up���r� �

C�

r
� as r �� �� �

showing that ����� ii� is satis�ed� while ����� i� barely fails to hold�
On the other hand� let  � � and choose

��t� 	 t����m��� �log t����p�����m��� exp
�
�

�p� ��tp��p����log� t�

m� �

�
�

on �To����� Then

u�r� � C� exp �r
p��p��� log� r�

and Z
�Br

up�� �
C

r log��p��� r
�

as r �� ��� so that� in this case� ����� i� holds� while ����� ii� does
not�

We also observe that if  � ���p� ��� then u belongs to Lp���M��
In particular� in the case of the Laplacian� where p 	 �� this gives a
further example� in the spirit of �LS� quoted in the Introduction� of an
integrable non�negative subharmonic function� We note that in this
case� the manifold �M� h�� �i� has �nite volume�

We now show how to recover Theorem � of Nadirashvili� �N�� from
Theorem ���� For this� and for later comparison� we �rst state the
following
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Proposition ���� Let �M� h�� �i� be a complete Riemannian manifold�

let h � Co�M�� h � �� and set

v�t� 	

Z
Bt

h

so that

v��t� 	

Z
�Bt

h �

Fix R � �� and let r � R� Then for any � � ��

������

Z r

R

� t� R

v�t�

����
dt � C

Z r

R

dt

v��t����
�

for some constant C � � independent of r� In particular�

������
� t

v�t�

����
	� L����� implies

�

v��t����
	� L����� �

We remark that the reverse implication in ������ does not hold in
general� In some interesting cases� the two conditions can be equivalent�
For instance� it was showed by Varopoulos� �V��� that if �M� h�� �i� is
a regular cover of a compact manifold� then r�volBr 	� L����� is
equivalent to ��vol �Br 	� L������ The same is true if we impose
curvature conditions� for instance if the Ricci curvature is non�negative
�see �V���� For further results in this direction� see �LT��

Proof� Proposition ��� is well known� We provide an elementary proof
for completeness and the convenience of the reader� Fix  � �� and set

v��t� 	

Z
Bt

h�  �

so that� by the co�area formula�

v���t� 	

Z
�Bt

h�  �

Applying H older inequality with conjugate exponents �� � and �����
yieldsZ r

R

� t� R

v��t�

����
dt

� C
�Z r

R

� t�R

v��t�

������
v���t�

���������Z r

R

dt

v���t�
���

��������
�

������
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Integrating by parts the �rst integral on the right hand side we getZ r

R

� t� R

v��t�

������
v���t� 	 ��

�r �R������

v��r����
� �� � ��

Z r

R

� t� R

v��t�

������
� �� � ��

Z r

R

� t� R

v��t�

����
dt �

whence� substituting into �������

������

Z r

R

� t� R

v��t�

����
dt � �� � �����

Z r

R

dt

v���t�
���

�

By dominated convergence� as  �� �� v� and v�� decrease to v and
v�� respectively� Inequality ������ follows by applying the monotone
convergence theorem to both sides of �������

Since � t�R

v�t�

����
� �����

� t

v�t�

����
� for t � �R �

it is clear that ������ follows from �������

Proposition ��� shows that condition ������ in Theorem ��� may
be replaced by the stronger�

rZ
Bt

u� �� � log �� � u��� �� � logb���� � log �� � u���

����

	� L����� �
������

for some b � ��
Assume now that u is a non�negative ��subharmonic function sat�

isfying u � L��M� and u�x� � C exp �r�x���������� for some  � �
and C � �� as in �N� Theorem ��� It is easy to verify that the left

hand side of ������ is bounded below by a multiple of r���� log���b���
which is not integrable at in�nity� In light of what remarked above�
Theorem ��� applies and u is necessarily constant� This shows that
Theorem ��� extends the work of Nadirashvili� The case where the as�
sumption of non�negativity of u is replaced by the condition that there
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exists xo � M such that u�xo� � �� may be treated using similar tech�
niques and will be taken up in Section � below �see Theorem ��� and
the comment thereafter��

At this point� it also looks natural to consider the case of a non�
negative ��subharmonic function u � C��M� satisfying u � Lq�M��
with � � q � �� It turns out that to obtain constancy of u we need to
impose some additional conditions on � and on the geometry of M �

As far as � is concerned� one could consider two kinds of conditions�
namely that there exists B � � such that

������ Bt� � ��t� � on ������ �

or that there exist constants co and c� such that

������ co �
t ���t�

��t�
� c� �

Note that both condition are satis�ed in the case of the p�Laplacian�
while neither of them holds for the mean curvature operator�

We brie�y consider the case where ������ is satis�ed� leaving the
case where ������ holds to the interested reader� who may refer to �Lb�
for the general theory of operators satisfying this kind of conditions�

We are going to be sketchy since the arguments are standard� The
starting point is the following Caccioppoli type inequality� Arguing as
in the proof of Lemma ��� with the vector �eld

W 	 
��� �u� �q��jruj����jruj�ru �

one shows �no additional assumption on � is needed here� that if 
 is
a smooth� compactly supported function and u is a C�� non�negative
��subharmonic function� then� for every eq � ��

������

Z
Br


��� ueq���� �
�
jruj

������
�

A����� �� � �����

�eq � �����

Z
Br

ueq jr
j��� �

Let � � � � r and apply ������ when 
 is a smooth cuto� function such
that

������


 	



� � on B� �

� � on Br nB� �

jr
j �
Co

r � �
�
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with Co independent of r and �� Further� assume that ������ holds� and
that the Sobolev inequality

������
�Z

Br�o�

jf jk�����
���k�����

� Sk	����r�
�Z

Br�o�

jrf j���
��������

is valid for some k � �� and every r � � and f � C�
o �Br�o��� Then one

deduces the fundamental inequality�Z
B�

ueqk
���k

� CS���k	����r�
��A

B

������� eqeq � �

��
��
�
�r�������

Z
Br

ueq �

which holds for every � � � � r with a constant C that depends only �
and on the constant Co in �������

The M oser iteration procedure allows to deduce that for every q � �
there exists a constant C which depends only on �� k� q� A� B and Co

such that� for every � � R � R

������ sup
B
R
�o�

u � C �Sk	����R� �R�R����k��������k���q�
� Z

BR

uq
���q

�

Note now that if M satis�es the doubling condition

������ vol �B�r�o�� � C vol �Br�o�� �

for every r � � and o �M � and the �weak� Poincar"e inequality

������

Z
Br�o�

jf � fBr�o�j

� C r vol �B�r�o��
���������

�Z
B�r�o�

jrf j���
��������

�

for each r � �� o �M and f � C��M�� where fBr�o� denotes the aver�
age of f over Br�o�� then� by �HK� Theorem ��� the Sobolev inequality
������ holds for some k � � and for every o �M and r � �� with

������ Sk	����r� � C �vol �Br�o���
��k�����k������ �

and C depending only on �� k and the constants in the doubling con�
dition and in the weak Poincar"e inequality�
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We remark that ������ implies that �M� h�� �i� has at most polyno�
mial growth�

Setting R 	 R � �� and inserting ������ into ������ yield the fol�
lowing

Theorem ���� Assume that � � C��������� � Co�������� satis�es
the structural conditions

���� 	 � � and B t� � ��t� � A t� � for all t � � �

for some � � B � A� Let M� h�� �i be a complete Riemannian manifold

satisfying the doubling condition ������ and the weak Poincar�e inequality
������� Let u � C��M�� be a non�negative ��subharmonic function on

M� Then� either u  � or� for every q � ��

lim inf
r���

�

vol
�
Br�o�

� Z
Br�o�

uq � � �

We present now the following further application of Lemma ����
from which Theorem A follows immediately� Related� and somewhat
stronger� results are presented in Section ��

Theorem ��	� Let u � C��M� be a solution of the di�erential inequal�

ity

div �jruj�� ��jruj�ru� � ��jruj� jruj f�u� �

where f � Co�R� is such that

inf
M

f�u� � �� �

for some � � R� If

������
�Z

�Bt

e
u
�����

	� L����� �

then u is constant�

Proof� If u were not constant� one could apply Lemma ��� with 	�t� 	
e
t and ��t� 	 � e
t� � 	 infM f�u� � �� and contradict assumption
�������
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We end this section observing that the conclusion ����� of Lemma
��� holds if M is a manifold with smooth boundary �M � with the only
additional assumption that �u��� � �� where � denotes the outward
unit normal to �M � Correspondingly� one obtains a version of Theorem
��� for manifolds with boundary�

In analogy with the situation of the Laplacian� we may de�ne a
manifold with boundaryM to be ��parabolic if the only ��subharmonic
functions onM which are bounded above and satisfy �u��� � � on �M
are the constants� Applying the version of Theorem ��� for manifolds
with boundary� we then conclude that if vol ��Br�

�� 	� L������ then
M is ��parabolic�

�� Proof of Theorem B and related results�

The same reasoning used in the proof of Lemma ��� yields the
following


Lemma ���� Let f � Co�M� let u be a non�constant C� solution of

the di�erential inequality

����� u div �jruj�� ��jruj�ru� � ��jruj� jruj f�u� �

Assume that for some functions 	 � C��I� and � � Co�I� de�ned in

an interval I � u�M�

	�u� � � ������

u	��u� � �� � f�u��	�u� � ��u� � � ������

on M � Then there exist Ro which depends only on u� and a constant

C � � independent of 	 and � such that� for r � R � Ro we have

�����

�Z
BR

��u���jruj� jruj
���

� C
�Z r

R

�Z
�Bt

ju	�u�j

��u��

����������
�
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Remark� As in Lemma ���� if the vector �eld jruj����jruj�ru is not
C� on M� the di�erential inequality ����� must be considered in the
weak sense� Namely�

�

Z
M

hjruj����jruj�ru�r�u
�i �

Z
M


 ��jruj� jruj f�u� �

must hold for every non�negative� compactly supported Lipschitz con�
tinuous function 
�

Proof� The proof follows the lines of that of Lemma ���� Applying
the divergence theorem to the continuous vector �eld

Z 	 u	�u� jruj����jruj�ru �

and using H older inequality we deduce that

H�t� � A�������
�Z

�Bt

ju	�u�j

��u��

�����������
�H ��t��������� �

where� as in Section �� we have set

H�t� 	

Z
Bt

��u���jruj� jruj �

Since u is not constant� there exists Ro which depends only on u� such
that H�t� � � for t � Ro� Thus we also haveZ

Bt

ju	�u�j

��u��

���

� � and H ��t� � � �

for t � Ro� Rearranging and integrating the resulting di�erential in�
equality yield the required conclusion�

Theorem ���� Let f � Co�R�� and let u � C��M� be a solution of the

di�erential inequality ����� on M � with

����� inf
M

f�u� � �� �

Let q � R be such that

����� q � � � inf
M

f�u� �
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If

�����
�Z

�Br

jujq
�����

	� L����� �

then u is constant� If u � �� the same conclusion holds without assum�

ing ������

Proof� Assume by contradiction that u is not constant� For every
integer n � �� let 	n�t� 	 �t� � ��n��q������� � Then

u	�n�u� � �� � f�u��	n�u�

	
�
u� �

�

n

��q����������
�q � � � f�u��u� �

�

n
�� � f�u��

�
�

and assumptions ����� and ����� imply that the second factor on the
right hand side is bounded below by

�
q � � � inf

M
f�u�

�
u� �

�

n

�
� � inf

M
f�u�

�
� C

�
u� �

�

n

�
�

with C 	 minfq��� infM f�u�� ��infM f�u�g� We therefore conclude
that

u	�n�u� � �� � f�u��	n�u� � �n�u� � �

with

�n�t� 	 C
�
t� �

�

n

��q�������
�

We apply Lemma ��� and deduce that there exist Ro � � independent
of n and C� � � independent of n and r such that� for every r � Ro�Z

BRo

�
u� �

�

n

��q�������
��jruj� jruj

���
� C�

�Z r

Ro

�Z
�Bt

juj���
�
u� �

�

n

��q��������������
�

Letting n �� ��� and using the dominated and monotone convergence
theorems we conclude that for every r � Ro�Z

BRo

juj�q������� ��jruj� jruj
���

� C�

�Z r

Ro

�Z
�Bt

jujq
�������

�
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which contradicts ������
If we assume that u � �� we can repeat the reasoning using 	�t� 	

tq���� and ��t� 	 C tq����� with C 	 q � � � infM f�u��

Theorem B in the Introduction is an immediate consequence of
Theorem ���� We also note that in the case of subharmonic and p�sub�
harmonic functions� we can compare with L� Karp� �K�� and Holopai�
nen� �Ho�� respectively� Indeed� using Proposition ���� assumption �����
can be replaced by any of the following�

tZ
Br

jujq

����

	� L����� ������

lim inf
r���

�

r���

Z
Br

jujq � �� ������

lim sup
r���

�

r���F �r��

Z
Br

jujq � �� �������

where F �t� is a positive function de�ned for su�ciently large values of
t� and such that ���t F �t�� is not integrable at in�nity� the remaining
assumptions of Theorem ��� being unchanged� It is easily veri�ed that
both ����� and ������ imply ������

Lemma ��� also allows to obtain the following Liouville type result
for p�superharmonic function� which compares with Sturm� �St�� in the
case of the Laplacian� and with Holopainen� �Ho�� in the case of the A�
Laplacian� This is also an instance of a situation where the di�erential
inequality ����� arises naturally�

Proposition ���� Let u � C��M� be p�superharmonic and non�nega�

tive on M � If

������
�Z

�Br

uq
�����p���

	� L����� �

for some q � R� q � p� �� then u is constant�

Proof� For every integer n � �� let vn 	 �u � ��n���� Then rvn 	
�v�nru and

div �jrvnj
p�� jrvnj�	�v

��p���
n div �jrujp��jruj��� �p��� v��n jrvnj

p �
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Since u is p�superharmonic and vn � �� it follows that

vn div �jrvnj
p��rvn� � � �p� �� jrvnj

p �

showing that vn satis�es ����� with ��t� 	 tp��� and f�t�  � �p� ���
The proof now follows the lines of that of Theorem ���� If we set

	�t� 	 t�p�q� we have

t 	��t� � �� � f�t��	�t� 	 �p� �� q� t�p�q � for all t � � �

so that ����� is veri�ed with ��t� 	 �p� �� q� t�p�q�
Assume by contradiction that u is not constant� By Lemma ��� we

conclude that there exist C and Ro � �� such that�Z
BRo

v�p�qn jrvnj
p
���

� C
�Z r

Ro

�Z
�Bt

v�qn

�����p���
dt
�p��

�

for every r � Ro� Note that both C and Ro are independent of n� as it
can be easily veri�ed from the proof of the Lemma� Indeed� C depends
only on the structural constants in ������ in the case at hand� A 	 �
and � 	 p � �� while Ro is the in�mum of the values t such that the
function

Hn�t� 	

Z
Bt

v�p�qn jrvnj
p 	

Z
Bt

�
u�

�

n

�p�q
jrujp

is positive� It is clear that the right hand side is bounded below by
H��t��

Rewriting the main inequality in terms of u� letting n �� ��� and
using the monotone and dominated convergence theorems we obtain�Z

BRo

up�q ��jruj� jrujp
���

� C
�Z r

R

�Z
�Bt

uq
�����p���

dt
�p��

�

Letting r �� �� we contradict �������

The following easy consequence of Theorem ��� will be useful to
show its sharpness�

Corollary ���� Assume that

������ vol �Br � C r��� �
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for some � � �� C � �� and su�ciently large r� Let u � C��M� be a

non�negative ��subharmonic function on M � If there exist q � � and a

constant C� � � such that

������ u�x�q � C� r�x�
����� log��r�x�� �

for r�x� su�ciently large� then u is constant�

Remark� Assumption ������ deserves some further comment� Indeed�
if � � � � � � �� then u tends to zero at in�nity and the validity of the
maximum principle would force u to vanish identically� with no need for
������� Therefore� this begs the question
 when does the ��Laplacian�
div �jruj�� ��jruj�ru�� satisfy a maximum� or at least a comparison
principle# The following elementary result answers in the a�rmative if
� is non�decreasing �see also �PSZ���

Proposition ��	� Let � satisfy conditions ����� i� and ii�� i�e�� ���� 	
� and ��t� � � if t � �� and assume moreover that � is non�decreasing

on ������� Let ! be a bounded domain with smooth boundary �!� and
let u and v � C��!� satisfy

div �jruj�� ��jruj�ru� � div �jrvj�� ��jrvj�rv� � on ! �

u � v � on �! �

Then u � v on !�

Proof� We choose 	 � C��R� such that

i� 	�t� 	 � on ���� ��� ii� 	��t� � � on ������ �

and consider the vector �eld W de�ned on ! by

W 	 	�u� v� �jruj����jruj�ru� jrvj����jrvj�rv� �

A computation that uses the properties of u� v and 	� shows that

divW � 	��u� v�h � on ! �

where

h�x� 	 hjruj����jruj�ru� jrvj����jrvj�rv�ru�rvi�x� �
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Applying the divergence theorem �see the observation at the beginning
of Section �� and noting that u � v on �! implies 	�u� v� 	 � there�
we obtain

������

Z
�

	��u� v�h � � �

Observe now that a simple computation shows that h�x� is equal to

���jruj�� ��jrvj�� �jruj � jrvj��x�

� �jruj����jruj� � jrvj����jrvj�� �jrujjrvj � hru�rvi��x� �

Since � is non�decreasing� we deduce from Schwarz inequality that
h�x� � � for every x� with equality if and only if ru�x� 	 rv�x��
Therefore� it follows from ������ that 	��u�v�h vanishes identically on
!�

Next� we assume by contradiction that

O 	 fx � ! 
 u�x� � v�x�g 		 � �

Since 	��u�v� � � on O� we must have ru 	 rv on O� so that u�v is
constant on each connected component of O� But u � v on �O �indeed�
u�z� 	 v�z� if z � �O � ! by de�nition of O� while u�z� � v�z� by
assumption if z � �O � �!� and therefore u � v on O� contradicting
the de�nition of O�

We explicitly observe that the structural condition ����� iii� was not
used in Proposition ���� Since constants are ��harmonic� the Proposi�
tion easily implies that if � is non�decreasing� then a ��subharmonic
function on ! attains its maximum on �!� In particular� a nonneg�
ative� ��subharmonic function on M that vanishes at in�nity is nec�
essarily identically zero� Indeed� under the further assumption that
lim inft��� t ���t����t� � �� a slight modi�cation of the proof of �PW�
Theorem �� pp� ������ shows that the usual strong maximum principle
holds� namely� u cannot attain an interior maximum unless it is con�
stant ��P��� For a version of the strong maximum principle valid under
slightly di�erent� and somewhat weaker� assumptions see also �PSZ�
Theorem ���

To show that Corollary ��� is sharp we proceed as in Section �� We
keep the notation used there� and consider the case of the p�Laplacian�
Here ��t� 	 tp��� p � �� is increasing� and therefore we only need to
consider the case where assumption ������ holds with p � � � ��
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Given any q � p� �� choose a�t� as in ������� and

��t� 	 t��p�����m��� �log t��p�����m��� �

on �To����� with constants � and � to be speci�ed later� Then

vol�Br 	 Cm �m���r� 	 Cm r��p��� �log t��p��� �

for r � To� Proceeding as in Section � it is easy to verify that if u is
de�ned in ������ then

u�r� 	 C� � C�

Z r

To

t�� �log t�� dt

� C

�	�	�
r��� �log r�� � if � � � �

�log r���� � if � 	 � � � � � �

log �log r� � if � 	 � 	 � �

as r �� ���
Consider �rst the case p � �� Let q����� 	 p�� and ��q 	 p���

i�e�� � 	 �q� p� ���q � � and � 	 ��p� ���q� Then the non�constant
p�subharmonic function u satis�es

u�r�q � C rp�� �log r�p�� � as r �� �� �

and condition ������ is met� On the other hand�

vol �Br 	 C r�p������p�q��q�log r���p���
��q �

The exponent of r on the right hand side is greater than ��� for every
q � p��� and tends to ��� as q tends p��� showing that ������ barely
fails�

Turning things around� if we take � 	 �� � ����p � �� � � and
� 	 �� then ������ is satis�ed� while

u�r�q � C rq�p�����p��� � as r �� �� �

Again� the exponent of r on the right hand side is greater than p � �
for every q � p � �� and tends to p � � as q tends to p � �� showing
that the non�constant p�subharmonic function narrowly fails to satisfy
�������
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The case p 	 � is dealt with similarly� To show that if ������ fails�
then there are non�constant p�subharmonic functions satisfying �������
it su�ces to take � 	 �� and � 	 �q � p� ���q� Then

u�r�q � C logp�� r � as r �� �� �

while

vol �Br 	 Cm rp�� �log r��p����q�p����q � r � To �

so that ������ is o� only by a logarithmic term� On the other hand� if
we take � 	 � and � 	 �� then ������ holds� while

u�r�q � C logq r � as r �� �� �

so that ������ is not satis�ed for every q � p� ��

�� Further results�

Lemmas ��� and ��� give estimates from above for the quantity

H�t� 	

Z
BR

��u���jruj� jruj �

The next lemma provides an estimate from below� By combining the
two estimates� we will obtain new results�

Lemma ���� Let f � Co�R�� and let u � C��M� be a solution of the

di�erential inequality

����� u div �jruj�� ��jruj�ru� � ��jruj� jruj f�u� � on M �

Assume that there exist functions � � C��I� and � � Co�I� de�ned in

an interval I � u�M� such that

��u� � � ������

��u� � � ������

ju ��u�j

��u�
� L � �� ������

u ���u� � �� � f�u�� ��u� � � ������
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on M � Then there exist Ro � � and a constant C � � such that� for

every r � R � Ro�

�����

Z
BrnBR

��u���jruj� jruj � C

Z r

R

�Z
�Bt

��u��
�����

dt �

Proof� Note �rst of all that� using the structural condition ��t� �
A t�� we may estimateZ

�Bt

��u���jruj� jruj � A����
Z
�Bt

��u���jruj������ �

Now� by H older inequality with conjugate exponents �� � and ������
we haveZ

�Bt

��u���jruj�

�
�Z

�Bt

��u�
���������Z

�Bt

��u��
�
jruj

��������������
�

whence� using ��u� � �� rearranging and substituting� we obtain

�����

Z
�Bt

��u���jruj� jruj

� A����
�Z

�Bt

��u�
������Z

�Bt

��u���jruj�
������

�

Next� we consider the continuous vector �eld X de�ned by

X 	 u ��u� jruj����jruj�ru �

and set

��t� 	

Z
�Bt

hX�rri �

so that� by Schwarz inequality and assumptions ����� and ����� we get

����� ��t� �

Z
�Bt

ju ��u�j��jruj� � L

Z
�Bt

��u���jruj� �

On the other hand� computing the divergence of X and using the as�
sumption ��u� � � we estimate

divX � �u ���u� � �� � f�u�� ��u����jruj� jruj �
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so that� by the divergence theorem�

��t� 	

Z
Bt

divX �

Z
Bt

�u ���u� � �� � f�u�� ��u����jruj� jruj �

Since u is not constant� and ����� holds� there exist Ro and a constant
Co � �� both depending on � and f only through the quantity u ���u��
�� � f�u�� ��u�� such that

��t� � Co � for all t � Ro �

Combining this with ����� and inserting into ����� yieldZ
�Bt

��u���jruj� jruj � A����
�Z

�Bt

��u�
�����

�L����t�������

� C
�Z

�Bt

��u�
�����

�

with C 	 A���� �Co�L�
������ Integrating over �R� r�� Ro � R � r� and

using the co�area formula we obtain ������

Remark� In some applications it is crucial to avoid the explicit depen�
dence on � and � of the quantity Ro and the constant C in ������ It is
clear from the above proof that this may be achieved if we assume that
L is independent of � and � and replace ����� with

����� u ���u� � �� � f�u�� ��u� �  �

for some absolute constant  � ��

Putting together the estimate from below just obtained with the
estimate from above provided by Lemma ��� we obtain

Lemma ���� Let f � Co�R�� and let u � C��M� be a solution of

the di�erential inequality ������ Assume that there exist functions � �
Co�I� and 	� � � C��I� de�ned in an interval I � u�M� such that

��u� � � � 	�u�� ��u� � � �������

u	��u� � �� � f�u��	�u� � ��u� �������

u ���u� � �� � f�u�� ��u� � � �������

ju ��u�j

��u�
� L � �� �������
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on M � Then there exist Ro � � and a constant C � � such that� for

every r � R � Ro�

������
�

supBr

u	�u�
��u�


Z r

R

�Z
�Bt

��u�
�����

dt � C �

Remark� As it will become clear from the proof below� if we can guar�
antee that the constants appearing in the conclusion ����� of Lemma
��� do not depend explicitly on � and �� then the quantity Ro and the
constants C above do not depend explicitly on 	� � and �� In particu�
lar� this is the case if we assume that L is independent of � and � and
replace ������ with ������ This will be used in Theorem ��� below�

Proof� The assumptions of Lemma ��� and Lemma ��� are satis�ed� so
there exist Ro and constants C�� C� � � such that for every r � R � Ro

����� and ����� hold with constant C� and C�� respectively�
Denote as above

H�t� 	

Z
Bt

��u���jruj� jruj �

and let r � R � R � Ro� It follows from ����� that

H�R��� �
C�

supBr

u	�u�
��u�

���
�Z r

R

�Z
�Bt

��u�
�����

dt
��

�

while ����� yields

H�R��H�R� � C�

Z R

R

�Z
�Bt

��u�
�����

dt �

Combining the two inequalities we deduce that

� �
H�R��H�R�

H�R�

� C	

�
sup
Br

u	�u�
��u�

�������
�
�Z r

R

�Z
�Bt

��u�
�����

dt
�� Z R

R

�Z
�Bt

��u�
�����

dt �
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for every r � R � R � Ro� with C	 	 C� C�� We claim that we can
choose R in such a way that the product of the two integrals on the
right hand side is equal to

��

�� � ���

�Z r

R

�Z
�Bt

��u�
�����

dt
����

�

Indeed� having set

B 	

Z r

R

�Z
�Bt

��u�
���

� x 	

Z r

R

�Z
�Bt

��u�
���

�

the claim amounts to �nding a solution xo � ��� B� to the equation

x� �B � x� 	
��

�� � ���
B��� �

and it is easily veri�ed that the �unique� solution xo in ��� B� to the
given equation is

xo 	
�

� � �
B �

We conclude that� for every r � R � Ro

� � C


�
sup
Br

u	�u�
��u�

��������Z r

R

�Z
�Bt

��u�
�����

dt
����

with

C
 	 C	
��

�� � �����
�

whence� rearranging� we obtain �������

As a �rst consequence of Lemma ��� we have

Theorem ���� Let u � C��M� be a solution of the di�erential inequal�

ity

������ u div �jruj�� ��jruj�ru� � � �

on M � If

������ lim inf
r���

supBr
jujZ r

R

�vol �Bt�
���� dt

	 � �
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for some R � � su�ciently large� then u is constant�

Proof� Assume by contradiction that u is not constant� We apply
Lemma ��� with 	 	 � 	 �� ��t� 	 �� � t������ �and f  �� to
conclude that there exist Ro � � and a constant C � � such that for
every r � R � Ro�

�

supBr
juj

Z r

R

�vol�Bt�
���� dt � C �

It is clear that this contradicts our assumption �������

Remark� If u is non�negative we can replace ������ with

������ lim inf
r���

supBr
uZ r

R

�vol �Bt�
����dt

	 � �

for some R � � su�ciently large� Observe that� if u 	 �� then ������
implies that

������ �vol �Bt�
���� 	� L����� �

This in particular implies that a non�negative ��subharmonic function
u satisfying ������ is necessarily constant� In this connection we remark
that in �RSV� Theorem ��� it was shown� with a di�erent proof� that
the same conclusion holds without any sign condition on u if ������ and
������ hold� This also follows from the results presented in Section �
below� We note however that the proof in �RSV� does not seem to adapt
to the case of solutions of the di�erential inequality ������� and therefore
does not yield the further consequences of Lemma ��� presented below�

The following corollary is the companion of Corollary ��� and will
be useful to show the sharpness of Theorem ����

Corollary ���� Assume that

������ vol �Br � C r���

for some � � �� C � �� and su�ciently large r� Let u � C��M� be a

non�negative ��subharmonic function on M � If

u�x�� 	 o�r�x������� � if � � � � � �������

u�x� 	 o�log r�x�� � if � 	 � � � �������
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as r�x� �� ��� then u is constant�

As in the examples in sections � and �� we consider the case of the
p�Laplacian� and keep the notation used there� In particular� � 	 p���
a�t� is de�ned in ������� and u is the p�subharmonic function de�ned in
������� As in Section �� it su�ces to consider the case p � �� The con�
struction done there provides examples of manifolds satisfying �������
and admitting non�constant p�subharmonic functions which barely fail
to satisfy ������ or ������ respectively in the case p � � and p 	 ��

On the other hand� if we choose

��t� 	



t�������m��� �log t��p�����m��� � if p � � �

t�������m��� �log log t��������m��� � if p 	 � �

on �To����� for some � � �� then we have

vol �Br 	 Cm



r��� �log r��p��� � if p � � �

r��� �log log r��p��� � if p 	 � �

and

u�r� � C



r�p�����p��� �log r�� � if p � � �

log r �log log r�� � if p 	 � �

as r �� ��� Thus u satis�es condition ������ or ������� respectively�
while ������ barely fails to hold�

Lemma ��� also yields the following

Theorem ��	� Let f � Co�R�� and let u � C��M� be a solution of the

di�erential inequality ����� on M satisfying

u � � � inf
M

f�u� � �� �

for some � � �� If

������ lim inf
r���

�supBr
u������Z r

R

�vol �Bt�
���� dt

	 � �

for some R � � su�ciently large� then u is constant�
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Proof� Assuming by contradiction that u is not constant� we set

� 	 � � inf
M

f�u� � �

and let 	� �� � be the functions de�ned on ������ by 	�t� 	 t� �
��t� 	 � t� and ��t� 	 t���� It is easy to verify that the assumptions of
Lemma ��� are satis�ed� and we deduce that there exist Ro � � and a
constant C � � such that for every r � R � Ro

������

supBr
u

Z r

R

�Z
�Bt

u�
�����

dt � C �

which contradicts �������

When u is not assumed to be positive� we have the following version
of the above result�

Theorem ��
� Let f � Co�R�� and let u � C��M� be a solution of the

di�erential inequality ����� on M satisfying

inf
M

f�u� � �� �

If

������ lim inf
r���

�supBr
juj������Z r

R

�vol �Bt�
���� dt

	 � �

for some R � � su�ciently large� then u is constant�

Proof� Again� we assume by contradiction that u is not constant� Let
S 	 � � infM f�u� � �� and� for every integer n � �� de�ne 	n�t� 	
�t� � ��n����� �n 	 S	n and �n�t� 	 ��t�  �� Then

u	�n�u� � �� � f�u��	n�u� � �n�u� �

u ���u� � �� � f�u�� ��u� 	 � � f�u� � S � � �

Moreover

ju ��u�j

�n�u�
	

juj

S�u� � ��n����
�

�

S
� on M �
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independently of n� By Lemma ��� and the remark thereafter� there
exist Ro � � and a constant C � � independent of n such that� for
every r � R � Ro�

�

supBr
juj

Z r

R

�Z
�Bt

�
u� �

�

n

���������
dt � C �

Letting n �� ��� and using the monotone and dominated convergence
theorems we deduce that� for every r � R � Ro�

�

supBr
juj

Z r

R

�Z
�Bt

juj
�����

dt � C �

and this contradicts assumption �������

�� Phragmen�Lindel�o type results�

Lemma ���� Let u � C��!� � Co�!� be a ��subharmonic function on

an unbounded domain ! 
M � and assume that u � $ on �!� for some

$ � R� Given B � $� de�ne

!B 	 fx � ! 
 u�x� � Bg �

and suppose that !B is not empty with boundary �!B� Let 	 � C� and

� � Co be de�ned in �B���� and such that 	�u� � �� 	��u� � ��u� � �
on !B� Let also � � C��R� be such that ��t� 	 � for t � B� ��t� � �
for t � B and ���t� � �� Then there exist Ro and a constant C � �
independent of 	 and � and � such that� for every r � R � Ro�Z

BR��B

��u� ��u���jruj� jruj
���

� C
�Z r

R

�Z
�Bt��B

��u�
	�u����

��u��

�������
�

Proof� Observe �rst of all that since B � $� then !B 
 !� Thus u 	
B on �!B� and it follows that u cannot be constant on any component
of !B � In particular ru does not vanish identically on !B �

The argument now follows the lines of the proof of Lemma ���� LeteZ be the vector �eld on !B de�ned by

eZ 	 ��u�	�u� jruj����jruj�ru �
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Note that eZ can be extended to a continuous vector �eld on M by
setting it equal to � on !c

B � Similarly� we can and will similarly extend
to all of M every product containing a factor ��u�� Set also

eH�t� 	

Z
Bt

��u� ��u���jruj� jruj �

so that� by the co�area formula�

eH ��t� 	

Z
�Bt

��u� ��u���jruj� jruj �

Since
divZ � ��u� ��u���jruj� jruj � on M �

integrating over Bt� applying the divergence theorem� H older inequality
with exponents � � � and � � ���� and using the structural condition
��t���� � A��� t� we obtain

����� eH�t� � A�������
�Z

�Bt

��u�
	�u����

��u��

��������
� eH ��t��������� �

Since ru is not identically zero on !B � and ��u� and ��u� are there
strictly positive� there exists Ro � � �independent of 	� � and �� such

that eH�t� � � if t � Ro� It follows that the right hand side of �����
is also strictly positive for t � Ro� In particular� !B is necessarily
unbounded�

Rearranging and integrating between R and r� Ro � R � r� we
obtain

eH�R����� �
�

� A���

Z r

R

�Z
�Bt

��u�
	�u����

��u��

�����
dt �

To conclude we only have to observe that� since ��u� 	 � o� !B� the
integrals over Bt and �Bt may be replaced with integrals over Bt �!B

and �Bt � !B � respectively�

We remark that if in the above proof ! is assumed to be bounded�
then for t su�ciently large ����� leads to a contradiction� This in turn�
forces !B 	 �� and we conclude that u � $ on !� In other words� if
u is C� in a bounded domain !� continuous up to the boundary� and
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��subharmonic in !� then u attains its maximum on �!� Of course� if
� is non�decreasing� then this follows also from Proposition ����

As a consequence of Lemma ��� we have the following Phragmen�
Lindel o� type result


Theorem ���� Let ! be an unbounded domain in M and let u �
C��!� � Co�!�� be a non�negative ��subharmonic function on ! such

that u � $ on �!� Assume that� for some q � ��

�����
�Z

�Br��

uq
�����

	� L����� �

Then u � $ on !�

Proof� Assume by contradiction that fx � ! 
 u�x� � $g 		 �� and
choose B � $ � � su�ciently close to $ that !B 	 fx � ! 
 u�x� �
Bg 		 �� We apply Lemma ��� with the choices

	�t� 	 tq�� � ��t� 	 	��t� 	 �q � �� tq���� � t � B �

and � � C��R� satisfying the conditions in the statement of the lemma�
and sup

R
��t� 	 �� It follows that there exist Ro and C � � such that�

for every r � R � Ro��Z
BR��B

��u�uq���� ��jruj� jruj
���

� C
�Z r

R

�Z
�Bt��

uq
�������

�

By virtue of ������ letting r �� �� this yields the required contradic�
tion�

Lemma ��� also allows us to prove the following� slightly more
general version of Theorem B�

Theorem ���� Let u � C��M� be a ��subharmonic function on M �

Assume that there exists xo � M such that u�xo� � � and let u��x� 	
maxf�� u�x�g� If there exists q � � such that�Z

�Br

uq�

�����
	� L����� �

then u is constant on M �
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Proof� Arguing as above� assume by contradiction that u is not con�
stant� and let B � � be su�ciently small that !B 	 fx �M 
 u�x� �
Bg is a non�empty set with boundary �!B� Applying Lemma ��� with
the same choice of 	� � and � as in Theorem ���� we obtain

�Z
BR��B

��u�uq������jruj� jruj
���

� C
�Z r

R

�Z
�Bt��B

uq
�������

�

for every r � R � Ro� Since the surface integral on the right hand
side is bounded above by

R
�Bt

uq�� a contradiction is reached letting
r �� ���

Similarly� applying Lemma ��� with 	�t� 	 logb���log ��� t�� and
��t� 	 	��t�� and arguing as above� one proves a version of Theorem ���
valid for functions of arbitrary sign� Namely� if u is a ��subharmonic
function such that u�xo� � � for some xo � M and ������ holds with
u� instead of u then u is necessarily constant� This� in turn� yields a
version of Theorem C valid for functions of arbitrary sign�

The next lemma is a version of Lemma ��� on a domain�

Lemma ���� Let f � Co�R�� Let ! 
 M be an unbounded domain�

and let u � C��!� � Co�!�� satisfy

u div �jruj�� ��jruj�ru� � ��jruj� jruj f�u� � on ! �

and assume that u � $ on �!� Given B � $� de�ne !B 	 fx �
! 
 u�x� � Bg� and suppose that !B is not empty with boundary

�!B� Assume that there exist functions � � Co��B����� and 	� � �
C���B����� such that

��u� � � � 	�u�� ��u� � � �

u 	��u� � �� � f�u��	�u� � ��u� �

u���u� � �� � f�u�� ��u� � � �

ju ��u�j

��u�
� L � �� �

on !B� Finally� let � � C��R� be such that ��t� 	 � for t � B� ��t� � �
for t � B and ���t� � �� Then there exist Ro and a constant C � �
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such that� for every r � R � Ro�

�

sup
Br��B

ju	�u�j

��u�

Z r

R

�Z
�Bt��B

��u� ��u�
�����

dt � C �

Remark� As in Lemma ���� if we assume that L is independent of �
and �� and that u ���u� � �� � f�u�� ��u� �  � � on !B� then Ro and
C do not depend explicitly on 	� �� � and ��

Proof� The proof is modeled after that of Lemma ���� Set

bH�t� 	

Z
BR��B

��u� ��u���jruj� jruj �

Arguing as in Lemma ���� one shows that there exist R� and C� � �
�independent of 	� � and �� such that� for every r � R � R��

bH�R��� � C�

�Z r

R

�Z
�Bt��B

��u�
ju	�u�j

��u��

����������
�

C�

sup
Br��B

� ju	�u�j
��u�

���� �Z r

R

�Z
�Bt��B

��u� ��u�
�������

�

On the other hand � a minor modi�cation of the proof of Lemma ���
shows that there exist Ro � R� and C� � � such that for every R �
R � Ro�

bH�R�� bH�R� � C�

Z R

R

�Z
�Bt

��u� ��u�
�����

dt �

The required conclusion follows as in the �nal part of the proof of
Lemma ����

Theorem ��	� Let ! be an unbounded domain in M � and let u �
C��!� � Co�!� be a ��subharmonic function on ! such that u � $ on

�!� Assume that

vol ��Br � !����� 	� L����� �
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and

����� lim inf
r���

sup
Br��

uZ r

R

vol ��Br � !�����
	 � �

for some R � � su�ciently large� Then u � $ on !�

Proof� Note �rst that if C is a constant and v 	 u � C� then v is
��subharmonic on !� v � $ � C on �!� and v satis�es ������ Clearly�
u � $ on ! if and only if v � $ � C on !� Without loss of generality�
we can therefore assume that $ � ��

Assume by contradiction that fx � ! 
 u�x� � $g 		 �� and choose
B � $ close enough to $ that !B 	 fx � ! 
 u�x� � Bg is not empty�
We apply Lemma ��� with the choices

	�t� 	 � � ��t� 	 � � and ��t� 	 �� � t������ �

and with � satisfying the further condition supR � 	 �� We conclude
that there exist Ro and C � � such that� for r � R � Ro�

�

sup
Br��B

u

Z r

R

vol ��Bt � !B�
���� dt � C �

Since vol ��Bt � !����� � vol ��Bt � !B�
���� and supBr�� u 	

supBr��B u� this clearly contradicts ������

We observe that if � is non�decreasing� by Proposition ����
supBr�� u may be replaced by sup�Br�� u�

We conclude this section by showing how Theorem ��� allows us
to recover the conclusion of �RSV� Theorem ��� quoted in Section ��

Corollary ��
� Assume that

vol ��Bt�
���� 	� L����� �

and let u � C��M� be a ��subharmonic function on M � If

lim inf
r���

supBr
uZ r

R

vol ��Br�
����

	 � �
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then u is constant on M �

Proof� Assume that u is not constant� and choose $ � sup u in such
a way that � 		 ! 	 fx 
 u�x� � $g and �! is of class C�� Since
vol ��Bt�

���� � vol ��Bt � !����� and supBr�� u 	 supBr�� u� both
the assumptions of Theorem ��� hold� and we conclude that u � $ on
!� contradicting the de�nition of !�

	� A weak maximum principle�

We begin by proving a weak maximum principle asserting that�
under suitable volume growth conditions� given a smooth function u
which is bounded above on M � the set where u is close to its supremum
and div �jruj�� ��jruj�ru� is less that any given positive constant is
nonempty� A special case of this result for the Laplacian was proved
by Karp in �K�� Theorem ����� His proof made use of the stochastic
completeness of the underlying manifold� In our general setting� such
an approach is clearly not feasible� The proof presented below is direct
and based on elementary considerations� We recall that A and � are the
constants that appear in the structural condition ����� iii�� Throughout
this section it will be assumed that the vector �eld jruj����jruj�ru is
of class at least C�� As mentioned in the Introduction� if u is C�� this
is certainly the case for the Laplacian� or the p�Laplacian with p � �
and for the �generalized� mean curvature operators�

Theorem 	��� Let u � C��M� be such that u� 	 supM u � ��� and

assume that the vector �eld jruj����jruj�ru is of class at least C��

Given 	 � u�� let !� 	 fx �M 
 u�x� � 	g� and assume that

����� lim inf
r���

log vol �Br � !��

r���
� �� �

Then�

����� inf
��

div �jruj�� ��jruj�ru� � � �

Proof� According to ������ there exist � � � � ��� a constant
Co � �� and a sequence Rk � �� such that

����� vol �BRk
� !�� � Co e

�R���
k �
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for every k 	 �� �� � � � � Fix � � � and de�ne v 	 u� u� � �� so that

!� 	 fx �M 
 v�x� � 	� u� � �g �

We are going to prove that

�����
inf
��

div �jruj�� ��jruj�ru� 	 inf
��

div �jrvj�� ��jrvj�rv�

� A� �� ���� �� �

whence the required conclusion follows letting � �� ���
To prove ������ we assume by contradiction that for some � � �

����� div �jruj�� ��jruj�ru� � A� �� ���� �� �� � �� 	 B � on !� �

We choose a C� function � such that ��t� 	 � if t � 	�u���� ��t� � �
if t � 	� u� � �� �� � �� and sup��t� 	 �� Fix  � �� and let � 	 ����
� 	 � ��  and � 	 ����� ��������� so that � � � � �� Finally� choose
a smooth cuto� function h 	 hk such that h 	 � on B�Rk

� h 	 � o�
BRk

and jrhj � C����� � ��Rk�� for some C� � � independent of k�
and de�ne the vector �eld

W 	 h��� ��v� e�
v���r
���

jrvj����jrvj�rv �

We compute the divergence of W � and use ������ �� � �� Schwarz in�
equality� jrrj 	 �� the inequality � v� � � �� and the structural condi�
tion jrvj � A������jrvj����� to obtain� after some computations�

divW

� � �� � ��h� ��v� e�
v���r
���

��jrvj� jrhj� h��� ��v� e�
v���r
���

� �B � �� � �� �r� ��jrvj� � � A���� r��� ��jrvj������� �

We claim that� if  � � is small enough�

B � �� � �� � r���jrvj� � � A���� r��� ��jrvj������

� � r�����jrvj������ ������

with � 	 ��� � ��
Postponing the proof of the claim� we insert ����� into the above

inequality� integrate over !� �BRk
� and apply the divergence theorem�



Liouville type theorems for � subharmonic functions ���

Since every factor containing ��v� vanishes o� !�� while every product
containing h vanishes o� BRk

�so that we may equivalently integrate
over BRk

thus avoiding possible problems due to the non�smoothness
of the boundary of !� � BRk

�� we obtainZ
���BRk

h��� ��v� e�
v���r
���

r��� ��jrvj������

�
� � �

�

Z
���BRk

h� ��v� e�
v���r
���

��jrvj� jrhj �

Applying H older inequality with conjugate exponents �� � and �����
to estimate the right hand side� rearranging and using the properties of
the cuto� function h and the inequality ��v� � �� we conclude that

�����

Z
���B�Rk

r��� e�
v���r
���

��v���jrvj������

�
C�

R
������

k

Z
BRk

nB�Rk

e�
v���r
���

�

with C� 	 ��� � ��C������� �� �������� Now� using the de�nitions of
�� �� �� and sup v 	 �� we have � v � � � ��� � �� ThusZ

BRk
nB�Rk

e�
v���r
���

�

Z
BRk

nB�Rk

e������r
���

� e��������Rk�
���

volBRk
�

and it follows from the de�nition of � and ����� that that the right hand
side is bounded above by Co � �� Inserting into ������ we deduce thatZ

���B�Rk

r��� e�
v���r
���

��v���jrvj������ �
C	

R
������

k

�

Letting k �� ��� we conclude that the integrand vanishes identically
in !�� Since ��v� � � in !�� and ��t� � � if t � �� this implies that v
is constant on every connected component of !�� and this contradicts
assumption ������

To conclude it remains to prove ������ Setting x�� 	 r���jrvj�
this amounts to showing that

� 	 inf
x��

fB x����� � �� � �� � x��� � � A����g � � �
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It is easily veri�ed that the function in braces attains its minimum on
������ at xo 	 ��B�� � ����� where it is equal to

�

A���
�
� ������

B���
�

Recalling the de�nitions of the quantities involved� an easy computation
shows that the latter quantity is equal to

�

A��d �

�
��

�� � �� �������

�� � �����

�
�

which is strictly positive if  is small enough�

Theorem ��� immediately yields the following weak version of the
Omori�Yau maximum principle for the ��Laplacian�

Corollary 	��� Assume that

����� lim inf
r���

log volBr

r���
� �� �

and let u be a smooth function on M with u� 	 supu � ��� such that

jruj����jruj�ru is of class at least C�� For every n the set

Zn 	
n
y �M 
 u�y� � u� �

�

n
� div �jruj�� ��jruj�ru� �

�

n

o
		 � �

In particular� this yields Theorem D in the Introduction�

Proof� We de�ne the sets An 	 fy 
 u�y� � u�� ��ng and Bn 	 fy 

div �jruj�� ��jruj�ru��y� � ��ng so that Zn 	 An �Bn�

Clearly� An 		 �� and� by Theorem ��� we also have Bn 		 �� We
may therefore de�ne u�n 	 supBn

u� and the required conclusion follows
from u�n 	 u��

Indeed� assume by contradiction that u�n � u�� and let !u�n
	 fx 


u�x� � u�ng 		 �� By de�nition� !u�n

 Bc

n� and therefore

div �jruj�� ��jruj�ru� �
�

n
� on !u�n

�

and this contradicts Theorem ����
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In a forthcoming paper we shall see how the validity of this weak
form of the maximum principle for the Laplacian is tightly related to
stochastic completeness �see �PRS���

The next theorem provides a version of the weak maximum prin�
ciple when the boundedness of the function is replaced by a suitable
condition on the growth at in�nity� We note that Theorem ��� corre�
sponds to the limit case b 	 � � �� For the case of the Laplacian� our
result generalizes �K�� Theorem ���� �where it is considered the case
b 	 ���

Theorem 	��� Assume that� for some � � b � � � ��

lim inf
r���

log volBr

rb
	 �o � �� �

Let u � C��M� be such that the vector �eld jruj����jruj�ru is of

class at least C�� and assume that

����� lim sup
r�x����

u�x�

r�x������b���
� ao �

for some ao � �� Then

������ inf
M

div �jruj�� ��jruj�ru� �
A�o�ao��

� �� b����

�� � �����
�

Proof� The proof is a modi�cation of that of Theorem ���� Let a � ao�
and � � �o� We are going to show that

������ inf
M

div �jruj�� ��jruj�ru� �
A��a��� �� b����

�� � �����
�

whence the required conclusion follows letting a �� ao and � �� �o�
By adding a suitable constant to u� it may be assumed that

������
i�

u�x�

�� � r�x�������b���
� a � on M �

ii� there exists xo �M such that u�xo� � � �

Clearly it su�ces to show that ������ holds when the in�mum is taken
over the set ! 	 fx 
 u�x� � �g instead of M � To prove this� we
assume by contradiction that for some � � ��

������ div �jruj�� ��jruj�ru� �
A� �a ��� �� b���� �� � ��

�� � �����
	 B � � �
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on !� Let � � C��R� such that ��t� 	 � if t � �� ��t� � � if t � ��
���t� � � and sup � 	 �� Let also  � �� and de�ne

� 	
�

a
� � 	

� �

� � 

���b
� and � 	 � � �  �

By the volume growth assumption and the inequality � � �o� there
exist a sequence Rk � �� and a constant Co � � such that

������ volBRk
� Co e

�Rb
k �

For every k� we let h 	 hk be a smooth cuto� function such that h 	 �
on B�Rk

� h 	 � o� BRk
� and jrhj � C����� � ��Rk� with C� � �

independent of k� Finally� let W be the vector �eld de�ned by

W 	 h�����u� %�u� jruj����jruj�ru �

where we have set� for notational convenience�

%�u� 	 exp
�
�� � r�b

� � u

�� � r������b���
� �

��
�

A computation that uses ������� �� � �� and Schwarz inequality� shows
that

divW � h�����u� %�u�B � �� � ��h���u� %�u���jruj� jrhj

� � �� � r��b����������h�����u� %�u���jruj� jruj

� h�����u� %�u� jruj����jruj� hru�rri

� �� � r�b��
�
�b� ��

�
� �

�

�

� � u

�� � r������b���
� b �

�
�

Using ������ i�� it is easily veri�ed that the quantity in braces on the
right hand side is negative on !� It follows that the last term in the
above inequality is bounded below by

h�����u� %�u���jruj� �� � r�b�� �� � � �

� �h�����u� %�u���jruj� �� � r�b�� b � � on ! �
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where we have used the fact that u � � on !� Substituting� and using
the structural condition ����� iii�� we obtain

divW

� � �� � ��h���u� %�u���jruj� jrhj

� h��� ��u� %�u� �B � b � �� � r�b�� ��jruj�

� �A������jruj�������� �� � r��b����������� �

Setting x�� 	 �� � r�b�� ��jruj� and arguing exactly as in the proof
of the claim in Theorem ��� one shows that for  su�ciently small the
quantity in braces on the right hand side is bounded from below by

� �� � r��b���������� ��jruj������ �

At this point the proof proceeds as in Theorem ���� Integrating divW
over !�BRk

� applying the divergence theorem� H older inequality with
exponents � � � and � � ���� and using the properties of the cuto�
function h and sup� 	 � we obtain

������

Z
��B�Rk

��u� %�u� �� � r��b������������jruj������

�
C�

R
b�����
k

Z
BRk

nB�Rk

%�u� �

for some constant C� � � independent of k�
It follows from ������ i�� and from the de�nition of the quantities

involved that

%�u� � exp ��� � r�b �� a� ��� 	 exp ���� � � �� � r�b� �

so that� using the volume estimate ������� we deduce that the integral
on the right hand side of ������ is bounded above by Co for every k�
ThusZ

��B�Rk

��u� %�u� �� � r��b������������jruj������ �
C	

R
b�����
k

�

with C	 independent of k� Letting k �� �� we conclude that the
integrand must be identically equal to zero on !� and therefore that u
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is constant on every connected component of !� But this contradicts
������� as required to �nish the proof�

We conclude by showing that Theorems ��� and ��� are sharp with
respect to the volume growth conditions in their statement� We consider
the p�Laplacian� and keep the notation introduced in Section �� For
� � b � p� let ��t� satisfy

��t� 	 exp �tb log t� � for all t � To �

for some To � �� and let u be the p�subharmonic function de�ned in
������� with a�t� 	 � for every t� Then div �jrujp��ru� 	 � on M� and
there exist constants C� and C� such that� for r � To�

u�r� 	 C� �

Z r

To

��t���m�����p���
�
C� �

Z t

To

��s�m�� ds
����p���

dt �

It is easy to verify thatZ t

To

��s�m�� ds � C t��b �log t�� exp ��m��� tb log t� � as t �� �� �

and therefore

log volBr

rb
� C �log r� � as r �� �� �

Furthermore�

��t���m�����p���
�
C� �

Z t

To

��s�m��ds
����p���
�

C

t�b�����p��� �log t���p���
�

To show that Theorem ��� is sharp� we choose b 	 p and � � p � ��
Then u is bounded� and the conclusion of the theorem clearly does
not hold� Since u�r� is increasing� the set !� �	 � sup u� is a ball�
and log vol �!� � Br� � log volBr� showing that the volume growth
condition in the statement of the theorem fails by a log factor�

On the other hand� if we take � � b � p� and � � � then� the
volume growth condition ����� fails �again by a log term�� In this case

u�r� � C r�����p����b��p��� � as r �� �� �
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so that assumption ����� is satis�ed with ao 	 �� while ������ clearly is
not�
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Endpoint multiplier theorems

of Marcinkiewicz type

Terence Tao and James Wright

Abstract� We establish sharp �H�� L��q� and local �L logr L�L��q�
mapping properties for rough one�dimensional multipliers� In partic�
ular� we show that the multipliers in the Marcinkiewicz multiplier the�
orem map H� to L��� and L log���L to L���� and that these estimates
are sharp�

�� Introduction�

Let m be a bounded function on R� and let Tm be the associated
multiplier dTmf��� � m��� bf��� �

There are many multiplier theorems which give conditions under which
Tm is an Lp multiplier� We will be interested in the mapping behaviour
of Tm near L�� Speci�cally� we address the following questions	

� For which 
 � q � � does Tm map the Hardy space H� to the
Lorentz space L��q�

� We say that Tm locally maps the Orlicz space L logr L to L��q if

kTmfkL��q�K� � CK kfkL logr L�K� �

for all compact sets K and all functions f on K� For which r � � and

 � q � � does Tm locally map L logr L to L��q�

���
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Standard interpolation theory �see e�g� 
�� shows that if Tm locally

maps L logr L to L��q� then it locally maps L loger to L��eq whenever eq � q
and er � r � 
�eq � 
�q� Also� extrapolation theory �
��� 
��� shows
that Tm maps L logr L to L� if and only if the Lp operator norm of Tm
grows like O��p� 
��r��� as p �� 
�

Here and in the sequel� � is an even bump function adapted to
�
��� �� which equals 
 on ����� ���

De�nition ���� If m is a symbol and j is an integer� we de�ne the jth

frequency component mj of m to be the function

mj��� � ����m��j �� �

We say that Tm is a H�ormander multiplier if the frequency com�
ponents mj are in the Sobolev space L�

���� uniformly in j� These

multipliers are Calder�on�Zygmund operators and hence map H� to L�

�and even to H��� and L� to L���� see e�g� 

�� By interpolation one
then sees that Tm locally maps L logr L to L��q whenever r � 
�q�

We now consider multipliers not covered by the H�ormander theory�
We say that Tm is a Marcinkiewicz multiplier if the frequency compo�
nents mj have bounded variation uniformly in j� The Marcinkiewicz
multiplier theorem �see e�g� 

�� shows that Tm is bounded on Lp�

Our �rst result characterizes the endpoint behaviour of Marcinkie�
wicz multipliers	

Theorem ���� Marcinkiewicz multipliers map H� to L���� and locally

map L logr L to L��q whenever r � 
�� � 
�q� Conversely� there exist

Marcinkiewicz multipliers which do not map H� to L��q for any q ���

and do not locally map L logr L to L��q for any r � 
�� � 
�q�

We can generalize the notion of a Marcinkiewicz multiplier as fol�
lows�

De�nition ��� ����� Let X denote the set of all functions of the form

m �
X
I

c
I
�
I
�

where I ranges over a collection of disjoint intervals in �
��� ��� and
the cI are square summable coe�cients

�
�
�X

I

jcI j�
����

� 
 �
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Let X denote the Banach space generated by using the elements of X
as atoms� note that this space includes all functions of bounded varia�

tion on �
��� ��� We say that Tm is a R� multiplier if the frequency

components mj are in X uniformly in j�

This class is more general than the Marcinkiewicz and H�ormander
classes� In �� it was established that R� multipliers are bounded on all
Lp� 
 � p ���

We can extend the positive results of Theorem 
�� as follows�

Theorem ���� All the statements in Theorem 
�� continue to hold for

R� multipliers�

One can also show the Lp norms of these multipliers grow like
maxfp� p�g��� by converse extrapolation theorems �see 
���� This is
sharp� Theorem 
�� also has an easy corollary to multipliers of bounded
s�variation as studied in ��� we detail this in Section ��

We now consider another multiplier class which is slightly smoother
than the R� multiplier class�

De�nition ��� ����� Let X � denote the set of all functions of the form

m �
X
I

c
I
	
I
�

where I� cI are as in the de�nition of X� and the 	I are C�� bump

functions adapted to I� Let X � be the atomic Banach space generated

by X �� We say that m is in R�
����� if

��� k	m���j ��kX� � 
 �

for all integers j� where 	 is a bump function adapted to �
��� �� which
equals 	 on �
� ��� We say that Tm is a R�

����� multiplier if the fre�

quency components mj are in X � uniformly in j�

This class was �rst studied in ��� it contains the H�ormander class�
is contained in the R� class� and is not comparable with the Marcinkie�
wicz class� In �� Theorem ���� the R�

����� multipliers were shown to

map H� to L���� we can improve this to
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Theorem ��	� R�
����� multipliers map H� to L���� and locally map

L logr L to L��q whenever r � maxf
��� 
�qg� Conversely� there exist

R�
����� multipliers which do not map H� to L��q for any q � �� and do

not map L logr L to L��q whenever r � max f
��� 
�qg�

The converse extrapolation theorem in 
�� thus shows that these
operators have an Lp operator norm of O�max fp� p�g�� and this is sharp�

Thus� to summarize our main results� R� multipliers map both H�

and L logL��� to L���� while the smoother R�
����� multipliers map both

H� and L logL��� to L���� with all exponents being best possible�
From the classical study �� of the multipliers

��� m��� �
eij�j

�

�
 � j�j�����

it is known that the condition �
� cannot be replaced with a weaker lq

condition� q 
 �� if the intervals I are the same size� However� even if
the intervals are di�erent sizes� one still cannot relax this condition� as
the following result shows�

De�nition ��
 ����� For any 
 � q � �� let X �
q be de�ned as in X �

but with �
� replaced by

�X
k

� X
I�jIj��k

c�I

�q�����q
� 
 �

Let X �
q be the atomic Banach space generated by X �

q� We say that Tm is

a R�
����q multiplier if the frequency components mj are in X �

q uniformly

in j�

Theorem ���� For any q 
 �� there exist R�
����q multipliers which are

unbounded on Lp for j
�� � 
�pj 
 
�q� In particular� there are no

mapping properties near L��

One can obtain positive �Lp� Lp� or �Lp� Lp��� mapping results
when � � q � � for these operators by complex interpolation be�
tween Theorem 
�� and trivial L� estimates �cf� ���� but we shall not
do so here�

The space H� has of course appeared countless times in endpoint
multiplier theory� but the appearance of the Orlicz space L log��� L
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space is more unusual� This space �rst appeared in work of Zygmund

��� who showed the inequality

���
� �X
j�	

j bf��j�j�
����

� kfkL log��� L �

for all f on the unit circle S�� This inequality can be viewed as a rudi�
mentary prototype of the multiplier theorems described above �indeed�
one can derive ��� from either of the above theorems by transplanting
the results to the circle� and considering multipliers supported on the
dyadic frequencies �j�� As we shall see in Section �� the space L log��� L
is in fact very similar to the Hardy space H� in that it has an associated
square function which is integrable�

The space L��� has appeared in recent work of Seeger and Tao 
��
Very roughly speaking� just as the space L��� is natural for maximal
functions and L� is natural for sums� the space L��� is natural for certain
square functions� A concrete version of this principle appears in Lemma
��
�

This paper is organized as follows� After some notational prelimi�
naries we detail the negative results to the above Theorems in Section
�� In Section � and the Appendix we show how both H� and L log��� L
functions are associated with an integrable square function� In Sec�
tions �� �� � we then show how control of this square function leads to
L��� and L��� multiplier estimates� Finally� we discuss the Vq class in
Section ��

�� Notation�

We use C to denote various constants� and A � B� A � O�B�� or
�B majorizes A� to denote the estimate A � CB� We use A 	 B to
denote the estimate A � B � A�

Here and in the sequel� �j denotes the Littlewood�Paley multiplier
with symbol ����j ��� where � is as in the introduction� For integers j�
we use �j to denote the weight function

��� �j�x� � �j �
 � ��j jxj�����
 �

Similarly� for intervals I we use �I to denote the weight

��� �I�x� � jIj �
 � jIj� jxj�����
 �
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These weights are thus smooth and decay like jxj���� at in�nity� Many
quantities in our argument will be controlled using the �j � �I � the reason
why the decay is so weak is because we are forced at one point to use the
Haar wavelet system� which has very poor moment conditions� �The
exact choice of ��� has no signi�cance� any exponent strictly between

 and � would have su�ced��

�� Negative results�

In this section we detail the counter�examples which yield the neg�
ative results stated in the introduction� In all of these examples N
is a large integer which will eventually be sent to in�nity� fejgj�Z is
the standard basis of l��Z�� and 	 is a non�negative even bump func�
tion supported on fj�j 
 
g which equals 
 at the origin and has a
non�negative Fourier transform� Some of our counter�examples will be
vector�valued� but one can obtain scalar�valued substitutes by replacing
ej with randomized signs �j � �
 and using the Lorentz�space version
of Khinchin s inequality� we omit the details�

���� Marcinkiewicz multipliers and R� multipliers need not

map H� to L��q for any q ���

Consider the symbol

��� m	��� � �
�����

���	��� 
� �

The convolution kernel cm	 of this function is bounded for jxj � 
� and
can be estimated via stationary phase as

��� cm	�x� �
e��ix

x
� O�jxj��� �

for jxj � 
� If we then test this multiplier against a bump function f

with bf��� � � and bf�
� �� �� we see that f is in H�� but jTm�
f�x�j 	 
�x

as jxj �� �� so Tm�
f is not in L��q for any q ���
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���� Marcinkiewicz multipliers and R� multipliers need not

locally map L logr L to L��q for any r � 
�� � 
�q�

De�ne the vector�valued multiplier

mN ��� �
NX
j�	

ejm	

� �
�j

�
�

where m	 is de�ned in ���� this multiplier satis�es the requirements of
both Theorems�

By testing TmN
against a function f whose Fourier transform is a

bump function which equals 
 on ��N � �N � and is adapted to a slight
dilate of this interval� �so that kfkL logr L 	 N��r� we see that we must
have

kdmNkL��q��	���� � N��r

in order for TmN
to locally� map L logr L to L��q� However� by ��� we

have

jdmN �x�j 	 log �
�jxj����
jxj

for �N 
 jxj 
 
� and the necessary condition r � 
�� � 
�q follows
by a routine computation�

���� R
�����
� multipliers need not map H� to L��q for any q � ��

We use the multiplier

m�
N ��� � N����

NX
j�	

	��j �� � 
�� 
� �

This multiplier is in the class of Theorem 
��� Now suppose for contra�
diction that Tm�

N
mapped H� to L��q� Since m�

N is supported in a single
dyadic scale� we may factor Tm�

N
� Tm�

N
S	 where S	 is a Littlewood�

Paley projection to frequencies j�j 	 
� From the Littlewood�Paley
square�function characterization we see that S	 maps H� to L�� hence

�
Strictly speaking f is not quite compactly supported but the error incurred be�

cause of this is extremely rapidly decreasing in N and can be easily dealt with�
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Tm�

N
maps L� to L��q� In particular� the kernel dm�

N must be in L��q�
However� a computation shows that

jdm�
N �x�j � N����

jxj �

for 
 
 jxj 
 �N � which contradicts the assumption that q � ��

���� R�
����� multipliers need not locally map L logr L to L��q for

any r � 
���

We consider the vector�valued multiplier

m��
N ��� �

NX
j�	

ej 	�� � �j� �

this is a multiplier in the class of Theorem 
��� By repeating the argu�
ment with the mN multipliers� we must have

kdm��
NkL��q��	���� � N��r �

However� a computation shows that

jdm��
N �x�j 	

p
N �

for jxj 
 
� and this contradicts the assumption r � 
���

���� R�
����� multipliers need not locally map L logr L to L��q for

any r � 
�q�

We consider the Hilbert transform H� which of course is of the
class in Theorem 
��� and test it against the function f � �N �

�	���N �
�

Clearly f has a L logr L norm of Nr but the Hilbert transform of this
function has a local L��q norm of about N��q� hence the claim�
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��	� R�
����q multipliers need not be bounded on Lp for j
��

�
�pj 
 
�q�

By duality it su�ces to show unboundedness when 
�p�
�� 
 
�q�
We de�ne the vector�valued multiplier

m���
N ��� � N���q

N��	X
j�N��		

ej 	
�

�j
�
� � j

N

��
�

This multiplier is in the class of Theorem 
��� We test this against the
function

f�x� �
X

jkj��N

	�x�Nk� �

We expand

Tm���

N
f�x�

� N��q

N��	X
j�N��		

ej
X

jkj��N

Z
	�x� y �Nk� e��ijy�N ��j b	���jy� dy �

Making the change of variables y �� y �Nk� this becomes

N��q

N��	X
j�N��		

ej
X

jkj��N

Z
	�x� y� e��ijy�N ��j b	���j�y � Nk�� dy �

The function e��ijy�N has real part bounded away from zero� so

jTm���

N
f�x�j

	 N���q
� N��	X
j�N��		

�Z
	�x� y� ��j

X
jkj�K

b	���j �y�Nk�� dy
������

�

If jxj 
 �N � then jyj 
 �N and the inner sum is 	 �j�N �note that
N �N � �j � N�� Thus we have

jTm���

N
f�x�j 	 N��q

� N��	X
j�N��		

� Z
N��	�x� y� dy

������
	 N���q���� �
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for jxj 
 �N � Thus

kTm���

N
fkp � N���q���� �N�p �

On the other hand� an easy computation shows

kfkp 	 N���p �N�p �

which demonstrates unboundedness when 
�p� 
�� 
 
�q�

�� The spaces H� and L log��� L�

Our positive results involve the spaces H� and L log��� L� As is well
known� L log��� L functions are in general not in H� and thus do not
have an integrable Littlewood�Paley square function� However� there
is a substitute square function for these functions which are indeed
integrable� which is why all our results for H� also extend to L log��� L�
More precisely	

Proposition ���� Let f be a function which is either in the unit ball

H��R�� or in the unit ball of L log��� L��C�C�� and with mean zero�

Then there exists non�negative functions Fj for each integer j such that

we have the pointwise estimate

��� j�jf�x�j � Fj  �j�x� �

for all j � Z and x � R� and the square function estimate

�
��
����X

j

jFj j�
�������

�
� 
 �

This proposition is easy to prove when f is in H�� Indeed� one
simply chooses Fj � je�jf j� where e�j is a slight enlargement of �j

such that �j � �j
e�j � The claim ��� follows from pointwise control on

the kernel of �j � while �
�� follows from the square function character�
ization of H��

The corresponding claim for L log��� L is much more delicate� We
remark that this claim implies Zygmund s inequality ���� To see this� we
�rst observe that we may assume f satis�es the conditions of the above
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Proposition� in which case bf��j� can be estimated by k�jfk� � kFjk��
The claim then follows from �
�� and the Minkowski inequality

�X
j

kFjk��
����

�
����X

j

jFj j�
�������

�
�

The same argument shows that L logL��� cannot be replaced by any
weaker Orlicz norm� However� the Proposition is substantially stronger
than Zygmund s inequality�

As an example of the Proposition� let f � �NN����	N � where N
is a large integer and 	N is a bump function of mean zero adapted
to the interval ���N � ��N �� This function is normalized in L log��� L

and has mean zero� but is not in L�� Indeed� if one lets Fj � je�jf j as
before� then for each 
 
 j 
 N � Fj is comparable to �jN����	j on the
interval ���j � ��j�� and is rapidly decreasing outside of this interval�
From this we see that the left hand side of �
�� is too large �about
N����� The problem here is that the functions Fj have very di�erent
supports� and so their contributions to �
�� add up in l� rather than
l�� To get around thi s we can redistribute the mass of the Fj � setting
Fj � �NN�����

����N ���N �
for each 
 
 j 
 N � one veri�es that ��� is

still satis�ed� and that �
�� is now satis�ed because the Fj are summing
in l� rather than l�� �The frequencies j � 
 or j � N can be handled
by the original assignment Fj � j�jf j without di�culty��

To handle the general case we shall follow a similar philosophy�
namely that each Fj shall be a redistribution of j�jf j� whose supports
overlap so much that their contributions to �
�� are summed in l� rather
than l�� To do this for general functions f we will use a delicate recursive
algorithm� In order to control the error terms in this algorithm we shall
be forced to move to the dyadic �Haar wavelet� setting� and also to
reduce f to a characteristic function�

The argument is somewhat lengthy� and the methods used are not
needed anywhere else in the paper� Because of this� we defer the argu�
ment to an Appendix� and proceed to the key estimate in the proofs of
Theorems 
��� 
�� in the next section�

�� Positive results� the main estimate�

In this section we summarize the main estimate we will need to
prove in order to achieve the positive results in theorems 
�� and 
���
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�The positive results in Theorem 
�� follow immediately from those in
Theorem 
����

By interpolation with the trivial L� boundedness results coming
from Plancherel s theorem� it su�ces to show that the operators in
Theorem 
�� map H� and L log��� L to L���� and the operators in
Theorem 
�� map H� and L log��� L to L����

We will use two key results to obtain these boundedness properties�
The �rst is the square function estimate obtained above in Proposition
��
� The second is an endpoint multiplier result associated to an arbi�
trary collection of intervals� which we now state�

Proposition ���� Let N � 
 be an integer� and let fIg be a collection

of intervals in R which overlap at most N times in the sense that

�

�
���X

I

�
I

���
�
� N �

For each I� we assign a function fI � a non�negative function FI � and a

multiplier TmI
with the following properties�

� For each I� mI is supported on I� there exists a �I � I such that

the symbol mI �� � �I� is a standard symbol of order � in the sense of

e�g� 

��

� For any I � I and x � R we have the pointwise estimate

�
�� jfI�x�j � FI�x�  �I�x� �

where �I was de�ned in ����

Then we have

�
��
���X

I

TmI
fI

���
L���

� N���
����X

I

jFI j�
�������

�
�

If we strengthen the condition on mI and assume that the mI are actu�

ally bump functions adapted to I uniformly in I� then we may strengthen

�
�� to

�
��
���X

I

TmI
fI

���
L���

� N���
����X

I

jFI j�
�������

�
�
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We will prove this proposition in sections �� �� For now� we see
how this proposition and Proposition ��
 imply the desired mapping
properties on R� and R�

����� multipliers�
Let us �rst make the preliminary reduction that to prove the

L log��� L local mapping properties on Tm it su�ces to prove global es�
timates on Tmf assuming that f is supported in �� 
�� is normalized in

L log��� L� and has mean zero� The normalization to �� 
� follows from
dilation and translation invariance� the mean zero assumption comes
by subtracting o� a bump function and observing from the L� theory
that Tm applied to a bump function is locally in L�� hence locally in
L��� and L����

Our task is now to show that any f satisfying either of the condi�
tions in Proposition ��
� we have

�
�� kTmfkL��� � 
 �

for R� multipliers and

�
�� kTmfkL��� � 
 �

for R�
����� multipliers�

Fix f � and let Fj be as in Proposition ��
� We �rst prove �
���
We may assume without loss of generality that m is supported inS
j even�j � �j��� �The case of odd j is similar and is omitted�� By a

limiting argument we may assume that only �nitely many of the fre�
quency components mj are non�zero for even j� By a further limiting
argument we may assume that each mj for even j is a rational linear

combination of elements in X� e�g� mj �
PNj

i�� j�imj�i where the mj�i

are uniformly in X and the j�i are non�negative rational numbers� By
placing the rational j�i under a common denominator N � and repeating
each mj�i with a multiplicity equal to Nj�i� we may thus write

m �



N

NX
i��

m�i� �

where the frequency components m
�i�
j are uniformly in X for even j� In

particular� this implies that

m �
X
I

c
I
�
I
�
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where each interval I belongs to �jI � �jI��� for some even jI � the inter�
vals I satisfy �

�� and

�
��
X
I�jI�j

c�I � N�� �

for each j� We may assume that jIj 
 �jI for all I� We split �
I

as

�
�� �
I
��� � 	I 	

l
I H�� � �lI� � 	I 	

r
I H��rI � �� �

where H � �
�	���

is the Heaviside function� �lI and �rI are the left and

right endpoints of I� and 	lI � 	
r
I � 	I are bump functions adapted to

�l � jIj� �l � jIj�� �r � jIj� �r � jIj�� and �I respectively�
We thus need to prove���X

I

c
I
T�I T�lIH����lI �

f
���
L���

� 
 �

together with the analogous estimate with the l index replaced by r�
We show the displayed estimate only� as the other estimate is proven
similarly�

Write mI � 	lIH�� � �lI�� �I � �lI � fI � cI T�If � and FI �
jcI jFjI � The estimate �
�� follows from eqreffj�support� the identity
T�I � T�I�jI and kernel estimates on T�I � Applying �
�� we thus see
that

���X
I

c
I
T�I T�lIH����lI �

f
���
L���

� N���
����X

I

jFI j�
�������

�
�

The claim then follows from the de�nition of FI � �
��� and �
��� This
proves �
���

The proof of �
�� is similar� but with �
I

replaced by a bump func�

tion e	I adapted to I� The only change is that the splitting �
�� is

replaced by e	I � 	I e	I � where 	I is a bump function adapted to �I
which equals 
 on I� and that �
�� is used instead of �
���

It remains only to prove �
�� and �
��� This shall be done in the
next two sections�
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	� Proof of �
���

Fix I� N � fI � FI � mI � we may assume by limiting arguments that
the collection of I is �nite� From �
�� we can �nd bounded functions
aI for each I � I such that

fI � aI �FI  �I� �
Our task is then to show that���n���X

I

TmI
�aI�FI  �I��

��� � 
o��� � ��N���kFk� �

where F denotes the vector F � �FI�I�fIg�
We now perform a standard vector�valued Calder�on�Zygmund de�

composition on F at height N���� as

F � g �
X
J

bJ �

where g � �gI�I�I satis�es the L� estimate

�
�� kgk�� � N����kFk� �
while the bad functions bJ are supported on J � satisfy the moment
condition

R
J
bJ � �� and the L� estimate

kbJk� � N���� jJ j �
Finally� the intervals J satisfyX

J

jJ j � ��N���kFk� �

Consider the contribution of the good function g� By Chebyshev� it
su�ces to prove the L� estimate

����
���X

I

TmI
�aI�gI  �I��

����
�
� N���

����X
I

jFI j�
�������

�
�

From Plancherel� the overlap condition on the I� and Cauchy�Schwarz�
we have the basic inequality

��
�
���X

I

TmI
hI

����
�
� N

X
I

kTmI
hIk�� �
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for any hI � We may thus estimate the left�hand side of ���� by

N
X
I

kTmI
�aI�gI  �I��k�� � N

X
I

kaI�gI  �I�k��

� N
X
I

kgI  �Ik��

� N
X
I

kgIk��

� NN����
����X

I

jFI j�
�������

�

as desired�
It remains to deal with the bad functions bJ � It su�ces to show

that ���n���X
I

X
J

TmI
�aI�bJ�I  �I��

��� � 
o��� �X

J

jJ j �

From uncertainty principle heuristics we expect the contribution of the
case jIj jJ j � 
 to be easy� Indeed� this case can be treated almost
exactly like the good function g� As before� it su�ces to show the L�

estimate ��� X
I�J �jIjjJj��

TmI
�aI�bJ�I  �I��

����
�
� �

X
J

jJ j �

By repeating the previous calculation� the left�hand side is majorized
by

N
X
I

��� X
J �jIjjJj��

bJ�I  �I
����
�
�

From the triangle inequality� it thus su�ces to show that

X
I

��� X
J �jIjjJj���m

bJ�I  �I
����
�
� ���mN���

X
J

jJ j �

for all m � �� This in turn follows if we can show

����
X

I�jIj���m�j

��� X
J �jJj��j

bJ�I  �I
����
�
� ���mN���

X
J �jJj��j

jJ j �
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for all m � � and j � Z�
Fix m� j� and observe from ��� that �I � ��m�j � By moving the I

summation inside the norm� we can estimate the left�hand side of ����
by ��� X

J �jJj��j

bJ  ��m�j
����
�
�

where  is now a vector�valued convolution� From the normalization
and moment condition on bJ we have

bJ  ��m�j � N�����
J
 ��m�j �

Inserting this into the previous� the claim then follows from Young s
inequality and the L� normalization of the ��m�j �

It remains to treat the case jIj jJ j 
 
� We split

bJ�I  �I � �
�J

�bJ�I  �I� � �
� �
�J

� �bJ�I  �I� �

The contribution of the latter terms can be dealt with in a manner
similar to that of the jIj jJ j � 
 case� As before� it su�ces to show the
L� estimate��� X

I�J �jIjjJj��

TmI
�aI�
� �

�J
� �bJ�I  �I��

����
�
� �

X
J

jJ j �

As before� the left�hand side is majorized by

���� N
X
I

��� X
J �jIjjJj��

�
� �
�J

� �bJ�I  �I�
����
�
�

A computation shows the pointwise estimate

j�
� �
�J

� �bJ�I  �I�j � kbJ�Ik� jJ j�� �M�
J

���� �

�In fact there is an additional decay if jIjjJ j is large� but we shall
not exploit this�� Inserting this estimate into ���� and moving the I
summation back inside� we can majorize ���� by

N
����X

I

���X
J

kbJ�Ik� jJ j���M�
J

����
������������

�
�
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Using the triangle inequality for l� we may move the I square�summa�
tion inside the J summation� If one then applies Minkowski s inequality

����
�X

I

kbJ�Ik��
����

� kbJk� � N����jJ j

we can thus majorize ���� by

�
���X

J

�M�
J

����
����
�
�

The claim then follows from the Fe�erman�Stein vector�valued maximal
inequality ���

It remains to show that

����
���n��� X

I�J �jIjjJj��

TmI
BJ�I

��� � 
o��� �X

J

jJ j �

where
BJ�I � aI ��J �bJ�I  �I� �

For future reference we note from ���� that the BJ�I are supported on
�J and satisfy

����
X
I

kBJ�Ik�� � N��� jJ j� �

for all J �
For each I� J in ����� let PJ�I be a multiplier whose symbol is a

bump function which equals 
 on the interval �I � jJ j��� �I � jJ j����
and is adapted to a dilate of this interval� We split

TI � TIPJ�I � QJ�I �

where QJ�I � TI �
�PJ�I�� The point is that even though the kernel of
TI decays very slowly� the operators PJ�I and QJ�I have kernels which
are essentially supported on an interval of width jJ j�

We �rst consider the contribution of the TIPJ�I � It su�ces as before
to prove an L� estimate

����
��� X
I�J �jIjjJj��

TmI
PJ�IBJ�I

����
�
� �

X
J

jJ j �
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By ��
� again� the left�hand side of ���� is majorized by

N
X
I

��� X
J �jIjjJj��

PJ�IBJ�I

����
�
�

From kernel estimates on PI�J we have the pointwise estimates

jPJ�IBJ�I j � kBJ�Ik� jJ j���M�
J

���� �

The contribution of the TIPJ�I is thus acceptable by repeating the ar�
guments used to treat ����� and using ���� instead of �����

It remains to consider the contribution of the QJ�I � For this �nal
contribution we will not use L� estimates� but the more standard L�

estimates outside an exceptional set

��� X
I�J �jIjjJj��

QJ�IBJ�I

���
L���

S
J CJ�

c�
� 

X
J

jJ j �

By the triangle inequality it su�ces to prove this for each J separately

��� X
I�jIjjJj��

QJ�IBJ�I

���
L���CJ�c�

� jJ j �

By translation and scale invariance we may set J � �� 
�� Let � denote
a bump function which equals 
 on �
� 
� and is adapted to ��� ���
Let rI denote the symbol

rI � qJ�I � qJ�I  � �

where qJ�I is the symbol of QJ�I � Observe that QJ�IBJ�I � TrIBJ�I

outside of CJ � Thus it su�ces to show that��� X
I�jIj��

TrIBJ�I

���
L���CJ�c�

�  �

By H�older s inequality it su�ces to show the global weighted L� esti�
mate ���x X

I�jIj��

TrIBJ�I�x�
���
�
�  �
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By Plancherel� this becomes��� X
I�jIj��

�rI dBJ�I�
�
���
�
�  �

where the prime denotes di�erentiation�
The function dBJ�I is very smooth� in fact it satis�es the estimates

kdBJ�IkC� � kBJ�Ik� �

for all I� A computation using the construction of QJ�I and rI shows
that the symbol rI satis�es the estimates

jrI���j� jr�I���j � �
 � j� � �I j���	 �

Combining these two estimates we see the pointwise estimate

j�rI dBJ�I�
�j � kBJ�Ik��M�

��I����I���
�� �

From the Fe�erman�Stein vector�valued maximal inequality �� it thus
su�ces to show that��� X

I�jIj��

kBJ�Ik� ���I����I���

���
�
�  �

However from �

� and the hypothesis jIj 
 
 we see that the charac�
teristic functions �

��I����I���
overlap at most O�N� times at any given

point� The claim then follows from Cauchy�Schwarz and ����� This
completes the proof of �
���

We remark that the one can modify this argument so that one does
not need the full power of Proposition ��
 in the L log��� L case� using
a rescaled version of Zygmund s estimate ��� �for arbitrary lacunary
frequencies� not just the powers of �� as a substitute� we omit the

details� On the other hand� the �L log��� L�L���� result in Proposition

�� seems to require the full strength of Proposition ��
�
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� Proof of �
���

We now prove �
��� As before we �x I� N � mI � fI � FI � and assume
that the collection of I is �nite� We may also assume that the functions
FI are smooth�

To prove �
�� it su�ces to prove the stronger estimate

����
���X

I

TmI
fI

���
L���

� N���
����X

I

jFI  �I j�
�������

L���
�

This is because of the following lemma� which illustrates the natural
role of the Lorentz space L����

Lemma 
��� Let I be an arbitrary collection of intervals� and FI an

arbitrary collection of non�negative functions� Then

����X
I

jFI  �I j�
�������

L���
�
����X

I

jFI j�
�������

�
�

Proof� The desired estimate is the p � � case of the more general
estimate ����X

I

jFI  �I jp
���p���

L��p
�
����X

I

jFI jp
���p���

�
�

This estimate is trivial for p � 
 by Young s inequality and the integra�
bility of the �I � For p � � the claim follows from the Hardy�Littlewood
maximal inequality and the pointwise estimates

jFI  �I �x�j �MFI�x� �M�sup
I
FI��x� �

The complex interpolation theorem of Sagher �� for Lorentz spaces
then allows one to obtain the p � � estimate� Alternatively� one can
interpolate manually by writing FI � jF jaI � where jF j � �

P
I jFI j������

and exploiting the Cauchy�Schwarz inequality

jFI  �I�x�j� � ��Fa�j�  �j�x�� �jF j  �j�x�� � jF ja�I  �I�x�M jF j�x�

and the H�older inequality for Lorentz spaces ��

k�fg����kL��� � kfk���� kgk���L��� �
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We omit the details�

It remains to prove ����� Let G denote the square function

G �
�X

I

jFI  �I j�
����

�

Note that G is continuous from our a priori assumptions� It would be
nice if the distributional estimate���n���X

I

TmI
fI

��� 	 �j
o��� � jfG 	 N�����jgj

held for all j� as this easily implies ����� While this is not quite true�
we are able to prove the substitute

����
���n���X

I

TmI
fI

��� � �j
o��� � ���jN kmin fG�N�����jgk�� �

for all j� Indeed� if ���� held� then we have

�j
���n���X

I

TmI
fI

��� 	 �j
o���

� N���
X
s

��jsjN���� �j�s jfG 	 N�����j�sgj �

the claim then follows by square�summing this in j� using the estimate

kFkL��� 	
�X

j

��j jfF 	 �jgj��
����

and using Young s inequality�
It remains to prove ����� Fix j� and consider the set ! � fG 


N���� �jg� Since G is continuous� ! is an open set� and we may de�
compose it into intervals ! �

S
J J such that G�x� � N���� �j on the

endpoints of J � Note that

����
X
J

jJ j � j!j � ���jN kmin fG�N�����jgk� �
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We can therefore split

��
�

X
I

TmI
fI �

X
I

TmI
�fI ��c � �

X
I�J �jIjjJj��

TmI
�fI �J �

�
X

I�J �jIjjJj��

TmI
�fI �J � �

To treat the contribution of the �rst term in ��
� we use L� estimates�
By Chebyshev it su�ces to show that

���X
I

TmI
�fI ��c �

����
�
� N kminfG�N���� �jgk�� �

However� by ��
� the left�hand side is majorized by

N
X
I

kfI ��ck�� � N
����X

I

jfI j�
����

�
�c

����
�

� N
����X

I

jFI  �I j�
����

�
�c

����
�

� N kmin fG�N����jgk�� �

as desired�
To treat the second term in ��
� we also use L� estimates� As

before� it su�ces to show

����
���X

I

TmI

� X
J �jIjjJj��

fI �J

�����
�
� N kminfG�N�����jgk�� �

Using ��
� as before� we can majorize the left�hand side of ���� by

N
X
I

��� X
J �jIjjJj��

�FI  �I��J
����
�
�

Since the J are all disjoint� we may re�arrange this as

N
X
J

X
I�jIjjJj��

kFI  �Ik�L��J� �
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For each J let xrJ be the right endpoint of J � so that G�xrJ � � N���� �j�
Now we exploit the assumption jIj jJ j � 
 to observe that

jFI  �I �x�j � jFI  �I�xrJ�j �

for all x � J � Applying this to the previous� we can thus majorize ����
by

N
X
J

jJ j
X
I

jFI  �I�xrJ �j� � N
X
J

jJ jG�xrJ�� � ��j
X
J

jJ j �

The claim then follows from �����
It remains to treat the third term in ��
�� By Chebyshev and ����

it su�ces to prove an L� estimate outside the exceptional set
S
J CJ��� X

I�J �jIjjJj��

TmI
�fI �J �

���
L���

S
J CJ�

c�
� �j

X
J

jJ j �

By the triangle inequality it su�ces to prove this for each J separately��� X
I�jIjjJj��

TmI
�fI �J �

���
L��CJc�

� �j jJ j �

We now adapt the arguments in the previous section� By dilation and
translation invariance we may set J � �� 
�� De�ne � as before� and
let rI be the multipliers

rI � mI �mI  � �

Then we have TmI
�fI �J � � TrI �fI �J � on �CJ�c� and it su�ces to

show that ��� X
I�jIj��

TrI �fI �J �
���
L��CJc�

� �j �

By H�older as before� it su�ces to show the global weighted L� estimate���x X
I�jIj��

TrI �fI �J ��x�
���
�
� �j �

By Plancherel� this becomes

����
��� X
I�jIj��

�rI�fI �J ��
���
�
� �j �
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The multipliers rI can be estimated as

jrI���j� jr�I���j � jIj�	 �M �
��I����I���

��	 �

The functions�fI �J can similarly be estimated as

k�fI �J kC� � kfI �J k� � kFI  �IkL���	���� �

From the positivity of FI we have

FI  �I�x� � jIj��	FI  �I���

and so we thus have

k�fI �J kC� � jIj��	�FI  �I���� �

We can thus majorize the left�hand side of ���� by��� X
I�jIj��

�FI  �I���� �M �
��I����I���

��	
���
�
�

By the Fe�erman�Stein vector�valued maximal inequality ��� �

�� and
Cauchy�Schwarz as in the previous section� this is majorized by

N���
�X

I

�FI  �I�����
����

� N���G��� � �j �

as desired� This completes the proof of ���� and hence �
���

�� Remarks on multipliers of bounded svariation�

Let 
 � s ��� For any function f supported on an interval a� b��
we de�ne the s�variation of f to be the supremum of the quantity

� NX
i�	

jf�ai���� f�ai�js
���s

�

where a � a	 � a� � � � � � aN � b ranges over all partitions of a� b� of
arbitrary length� We say that a multiplier Tm is a Vs multiplier if the
frequency component mj have bounded s�variation uniformly in j�
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Clearly the Marcinkiewicz class is the same as the V� class� but for
s 
 
 the Vs class contains multipliers not covered by the Marcinkiewicz
multiplier theorem�

In �� it was shown that the Vs class was contained in the R� class
for s � �� In particular� they showed that Vs multipliers were bounded
on Lp for 
 � p � � and s � �� From Theorem 
�� and Theorem 
��
we have the sharp endpoint version of this result when s � �

Corollary ���� Let 
 � s � �� Then the statements of Theorem 
��
�both positive and negative� continue to hold when the Marcinkiewicz

class is replaced by the Vs class�

Now consider the case s 
 �� By complex interpolation it was
shown in �� �see also earlier work in ��� that Vs multipliers were
bounded in Lp when ���


�
� 


p

��� � 


s
�

From the study �� of the multipliers ��� it is known that this restric�
tion on p is sharp up to endpoints� However� the endpoint problem
remains unresolved� The most interesting case is when s � �� From
the counterexamples in Section � we see that negative results in Theo�
rem 
�� hold for V� multipliers� and so one may conjecture that these
multipliers also map both H� and L log���L locally to L���� If this
were true� th en for s 
 � the Vs multiplier class would map Lp to Lp�p

�

when 
�p � 
�s � 
�� by complex interpolation �cf� ���� However� we
have been unable to prove these estimates using the techniques in this
paper� A natural model case would be when the frequency components
mj not only have bounded ��variation� but have the stronger property
of H�older continuity of order 
�� uniformly in j� �In �� it was shown
that a general function of bounded ��variation can be transformed into
a H�older continuous function of order 
�� by a change of variables��

In �� V� multipliers were shown to be bounded on Lp for all 
 �
p � �� By going through their argument carefully one can show that
the Lp operator norm grows like O�
��p� 
�C� for some constant C as
p �� �� so by extrapolation they map L logC L to L� locally for some
su�ciently large C� However these results are far from best possible�
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�� Appendix� proof of Proposition ����

We now prove Proposition ��
 when f is in L log��� L��C�C�� and
has mean zero�

It will be convenient to move to the dyadic setting� as we will need
to perform a delicate induction shortly� Accordingly� we introduce the
Haar wavelet system

	I � jIj���� ��
Il
� �

Ir
�

de�ned for all dyadic intervals I in �� 
�� where Il� Ir are the left and
right halves of I respectively�

The dyadic analogue of Proposition ��
 is

Proposition ���� Let f be a function on �� 
� such that

Z
jf j log����� � jf j� � 
 �

Then for each integer j � � we may �nd a non�negative function fj
supported on �� 
� such that

���� jhf� 	Iij � jIj����

Z
I

fj �

for all j � � and dyadic intervals I � �� 
� of length ��j� and that

����
����X

j�	

jfjj�
�������

�
� 
 �

We now show that Proposition ��
 implies Proposition ��
� The
idea is to use an averaging over translations to smooth out the dyadic
singularities of the Haar wavelet system�

Let f be as in Proposition ��
� we may assume that f is supported
on the interval 
��� ����� For negative j� we de�ne Fj � je�jf j as in the
H� theory� so that ��� holds as before� From the mean zero condition
of f we see that kFjk� � �j � so the contribution of these j to �
�� is
acceptable�

�
We remark that Zygmund�s original proof of �
� also proceeded via a dyadic model�
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For all �
�� � � � 
��� let f	 denote the translated function
f	�x� � f�x���� These functions all satisfy the requirements of Propo�
sition ��
� with the associated functions f	j � We now de�ne Fj for j � �
by

Fj�x� �
X
k�	

��jj�kj��
Z ���

����

f	k �x � �� d� �

We now verify ���� Fix x � �� 
� and j � �� We say that a number
�
�� � � � 
�� is normal with respect to x and j if

dist�x � �� ��k Z� � 



��
��jj�kj��	 ��k �

for all integers � � k � j�
Let "x�j denote the set of all normal �� it is easy to see that

j"x�j j 	 
� Let � be any element of "x�j � We compute

j�jf�x�j � j�jf
	�x � ��j

�
���X

I

hf	� 	Ii�j 	I�x � ��
���

�
X
k

X
I�jIj���k

�Z
I

f	k

�
jIj���� j�j	I�x � ��j �

If k � j� then a computation shows that

jIj���� j�j	I�x� ��j � ��j�k �
 � �k dist�x � �� I����		

� ��jk�jj�� �j �
 � �j dist�x � �� I������

and thus thatX
I�jIj���k

�Z
I

f	j

�
jIj����j�j 	I�x � ��j � ��jk�jj�� f	k  �j �

Now suppose that k � j� A computation using the normality of � shows
that

jIj���� j�j 	I�x � ��j � ���		jk�jj �j �
 � �j dist�x � �� I����		

and hence thatX
I�jIj���k

�Z
I

f	j

�
jIj���� j�j 	I�x � ��j � ��jk�jj�� f	k  �j �
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Combining these estimates and then averaging over "x�j we obtain ���
as desired�

Now we show �
�� for the non�negative j� From Young s inequality
and Minkowski s inequality we see the pointwise estimate

�X
j

jFj�x�j�
����

�
�X

k

��� Z ���

����

f	k �x � ��� d�
��������

�
Z ���

����

�X
k

f	k �x � ���
����

d� �

The claim then follows from Fubini s theorem and �����
It remains to prove Proposition ��
� To do this� we �rst reduce to

the case when f is a characteristic function� More precisely� we shall
show

Proposition ���� Let N � � be an integer� I	 be a dyadic interval�

and let I	 be the collection of all dyadic intervals in I	 of side�length

at least ��N jI	j� Let E be the union of some intervals in I� Then for

each dyadic interval I � I	 of length at least ��N jI	j� we may �nd a

non�negative function fI supported on I such that

���� jh�
E
� 	Iij � jIj���� kfIk� �

for all such I� and that�

����
���� X

I�I�

jfI j�
�������

�
� A jEj log

�
� �

jI	j
jEj
����

�

for some absolute constant A�

Indeed� by setting I	 � �� 
� and N ���� we see that Proposition

��� immediately implies Proposition ��
 for the L log��� L�normalized
functions jEj�� log�
�jEj������

E
for any set E with measure � � jEj 



� A general L log��� L function can be written as a convex linear
combination of such functions �see e�g� 
���� so the general case of
Proposition ��
 obtains �observing that the L��l�� space appearing in
���� is a Banach space��

�
If jEj�	 we adopt the convention that jEj log���jI�j�jEj�

����	�
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It remains to prove Proposition ���� This shall be done by in�
duction on N � Clearly the claim is true for N � � simply by setting
fI� � �

E
� We warn the reader in advance that the inductive nature of

the argument will require some delicate estimates in which one cannot
a�ord to lose constant factors in the main terms�

Now �x N 
 �� m 
 �� I	� E� and suppose the claim holds for all
smaller values of N � We may rescale I	 to be the unit interval �� 
��

Let � � �
 
 be a small absolute constant to be chosen later� We
�rst prove the claim in the easy case jEj � �� In this case we set

fI � jIj���� jh�
E
� 	Iij�I �

The estimate ���� is trivial� To verify ����� we use H�older s inequality
and the orthonormal nature of the Haar basis���� X

I�I�

jfI j�
�������

�
�
���� X

I�I�

jfI j�
�������

�

�
� X
I�I�

jh�
E
� 	Iij�

����

� k�
E
k�

� jEj log
�

� �



jEj
����

�

as desired �if A is su�ciently large depending on ���
Now suppose jEj � �� Let I denote the set of all intervals I � I	

such that

���� � jEj jIj � jE � Ij � � jEj jIj �
holds� where � � �
 
 is an absolute constant to be chosen later� Let
J denote the set of all intervals not in I which are maximal with respect
to set inclusion� From our assumptions on E we see that J is a partition
of �� 
� into disjoint intervals� and each interval J � J satis�es

��N � jJ j � 
 �

Let J be any element of J� From the induction hypothesis we can
associate a function fI to each I � I	� I � J such that

h�
E
� 	Ii � h�

E	J
� 	Ii � jIj����

Z
I

fI �
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for all such I� and

���� kFJk� � A jE � J j log
�

� �
jJ j

jE � J j
����

�

where we have written FJ for the function

FJ �
� X
I�I��I
J

jfI j�
����

�

We have now de�ned the fI for all intervals contained in one of the
intervals J � J� It remains to assign functions fI to the intervals I in
I�

Let I� denote those intervals I in I such that jE � Ij 
 �� We will
set fI � � for all I � InI�� note that ���� holds vacuously for these I�
For I � I�� we de�ne fI by the formula

fI � jIj��� jh�
E
� 	Iij

X
J�J�J�I

jE � J j
jE � Ij

FJ
kFJk� �

Since I is the union of the intervals J � J contained inside it� we see
that

kfIk� � jIj��� jh�
E
� 	Iij

X
J�J�J�I

jE � J j
jE � Ij � jIj��� jh�

E
� 	Iij �

so that ���� holds for these I�
We now verify ����� For any J � J and x � J � we haveX

I�I�

jfI�x�j� �
� X
I�I��I
J

jfI�x�j� �
X

I�I��IJ

jfI�x�j�
����

� FJ�x�� �
X

I�I��IJ

jIj jh�
E
� 	Iij� jE � J j�

jE � Ij�
F �
J �x�

kFJk��

�
FJ �x��

kFJk��
�
kFJk�� �

X
I�I��IJ

jIj jE � J j�
jE � Ij� jh�E � 	Iij

�
�
�

Taking the square root of this and integrating� we obtain

����

���� X
I�I�

jfI j�
�������

�

�
X
J�J

�
kFJk�� �

X
I�I��IJ

jIj jE � J j�
jE � Ij� jh�E � 	Iij

�
����

�



��� T� Tao and J� Wright

Now de�ne the function

g �
X
J�J

jE � J j �JjJ j �

For all I � I� we see that 	I is constant on intervals in J� and hence
that hg� 	Ii � h�

E
� 	Ii� Thus

��
� ���� �
X
J�J

�
kFJk�� �

X
I�I��IJ

jIj jE � J j�
jE � Ij� jhg� 	Iij

�
����

�

For future reference we observe from the construction of J and g that
kgk� � jEj and kgk� � � jEj� hence

����
X
I�I�

jhg� 	Iij� � kgk�� � kgk� kgk� � jEj� �

To estimate ��
�� we de�ne

J� � fJ � J 	 � jEj jJ j � jE � J j � � jEj jJ jg �
J� � fJ � J 	 jEj�	jJ j � jE � J j � � jEj jJ jg �

J� � fJ � J 	 jE � J j � jJ j jEj�	g �
note from ���� and the construction of J that J � J� � J� � J�� Thus
���� is the sum of

����
X

J�J��J�

�
kFJk�� �

X
I�I��IJ

jIj jE � J j�
jE � Ij� jhg� 	Iij

�
����

�

and

����
X
J�J�

�
kFJk�� �

X
I�I��IJ

jIj jE � J j�
jE � Ij� jhg� 	Iij

�
����

�

We �rst consider ����� the contribution of the very sparsely occupied
intervals� In this case we use crude estimates� From the estimate �a� �
b���� � a� b��� we have

���� �
X
J�J�

kFJk� �
X
J�J�

� X
I�I��IJ

jIj jE � J j�
jE � Ij� jhg� 	Iij

�
����

�
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To estimate the �rst term� we observe from ���� that

kFJk� � A jEj�	 jJ j log
� 


jEj
����

and so X
J�J�

kFJk� � A jEj�	 log
� 


jEj
����

� A jEj�

since we of course have

����
X
J�J�

jJ j � 
 �

To estimate the second term� we use Cauchy�Schwarz and ����� to ob�
tain

���� � C A jEj� �
� X
J�J�

jJ j��
X

I�I��IJ

jIj jE � J j�
jE � Ij� jhg� 	Iij

�
����

�

Using the estimate jJ j�� jE � J j � jEj�	� and then interchanging sum�
mations� we obtain

���� � C A jEj� �
� X
I�I�

X
J�J�J�I

jEj�	 jIj jE � J j
jE � Ij� jhg� 	Iij

�
����

�

Performing the J summation� this becomes

���� � C A jEj� � jEj�
� X
I�I�

jIj
jE � Ij jhg� 	Iij

�
����

�

Applying ���� and then ���� we thus obtain

���� ���� � C A jEj� � jEj� �jEj��jEj����� � A jEj� �

Now we turn to the more interesting term ����� From ���� we have

���� �
X

J�J��J�

��
A jE � J j log

�
� �

jJ j
jE � J j

������

�
X

I�I��IJ

jIj jE � J j�
jE � Ij� jhg� 	Iij

�
����

�
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Using the inequality

p
a� � b �

r
a� � b �

b�

� a�
� a�

b

� a
�

for a� b 
 �� we thus have

���� � ���� � ���� �

where ���� and ���� are given by

����
X

J�J��J�

A jE � J j log
�

� �
jJ j

jE � J j
����

and

����

X
J�J��J�




�A jE � J j log
�

� �
jJ j

jE � J j
����

�
X

I�I��IJ

jIj jE � J j�
jE � Ij� jhg� 	Iij

� �

Let us �rst estimate the error term ����� Since J � J��J�� we see that

log
�

� �
jJ j

jE � J j
����

	 log
� 


jEj
����

�

Applying this� re�arranging the summation� and simplifying� we obtain

���� � log
� 


jEj
����� X

I�I�

X
J�J�J�I

jIj jE � J j
jE � Ij� jhg� 	Iij

� �

Performing the J summation� we obtain

���� � log
� 


jEj
����� X

I�I�

jIj
jE � Ij jhg� 	Iij

� �

From ���� and ���� we thus have

���� ���� � jEj log
� 


jEj
�����

�
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It remains to treat ����� which is the main term� We split this as
���� � ����� ��
� � ����� where ����� ��
�� ���� are given by

X
J�J��J�

A jE � J j log
�

� �



jEj
����

�����

X
J�J�

A jE � J j
�

log�� �



jEj
����

� log
�

� �
jJ j

jE � J j
�����

��
�

X
J�J�

A jE � J j
�

log
�

� �
jJ j

jE � J j
����

� log
�

� �



jEj
�����

�����

Note that ����� ��
�� ���� are all non�negative� We can estimate ����
by

���� � A jEj log
�

� �



jEj
����

�

which is exactly the quantity needed for the induction hypothesis� Col�
lecting all the terms and using ����� ���� we see that we have to show
that

���� ��
� � ���� � C A jEj� � C jEj log
� 


jEj
�����

�

We thus seek good lower bounds on ��
� and good upper bounds on
�����

We �rst deal with ��
�� We may write this as

��
� � A
X
J�J�

jE � J j log �� � 
�jEj�� log �� � jJ j�jE � J j�
�log �� � 
�jEj���� � log �� � jJ j�jE � J j���� �

Both terms in the denominator are comparable to log �
�jEj����� while
the numerator is bounded from below by

log
�

� �



jEj
�
� log

�
� �




� jEj
�
	 
 �

Thus we have

��
� 	 A log
� 


jEj
���� X

J�J�

jE � J j �
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To obtain lower bounds for this� we observe thatX
J�J�

jE � J j � jEj �
X

J�J��J�

jE � J j

and X
J�J��J�

jE � J j �
X
J�J

�jEj jJ j � � jEj �

Thus

��
� � A jEj log
� 


jEj
�����

�

Now we attend to ����� As before� we may write

���� � A
X
J�J�

jE � J j log �� � jJ j�jE � J j�� log �� � 
�jEj�
�log �� � 
�jEj���� � log �� � jJ j�jE � J j���� �

Again� the denominator is comparable to log �
�jEj����� while the nu�
merator is comparable to log �jEj jJ j�jE � J j�� Thus

���� � A log
� 


jEj
����� X

J�J�jE	Jj�
jEjjJj

jE � J j log
� jEj jJ j
jE � J j

�
�

We estimate this dyadically as

���� � A log
� 


jEj
�����

�
X

k���k�


X
J�J�jE	Jj���kjEjjJj

jE � J j log
� jEj jJ j
jE � J j

�

� A log
� 


jEj
����� X

k���k�


X
J�J

��k jEj jJ j k

� A jEj log
� 


jEj
����� X

k���k�


��k k

� A jEj log
� 


jEj
����� X

k���k�


��k��

� A���� jEj log
� 


jEj
�����

�
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Thus ���� resolves to

C��A jEj log
� 


jEj
�����

� C A���� jEj log
� 


jEj
�����

� C A jEj� � C jEj log
� 


jEj
�����

�

and this is achieved if � is chosen su�ciently small �recall that jEj � ���
and then A is chosen su�ciently large depending on ��
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Morera type problems

in Cli�ord analysis

Emilio Marmolejo Olea

Abstract� The Pompeiu and the Morera problems have been stud�
ied in many contexts and generality� For example in di�erent spaces�
with di�erent groups� locally� without an invariant measure� etc� The
variations obtained exhibit the fascination of these problems�

In this paper we present a new aspect� we study the case in which
the functions have values over a Cli�ord Algebra� We show that in this
context it is completely natural to consider the Morera problem and its
variations� Speci�cally� we show the equivalence between the Morera
problem in Cli�ord analysis and Pompeiu problem for surfaces in Rn �
We also show an invariance theorem� The non�commutativity of the
Cli�ord algebras brings in some peculiarities�

Our main result is a theorem showing that the vanishing of the �rst
moments of a Cli�ord valued function implies Cli�ord analyticity� The
proof depends on results which show that a particular matrix system
of convolution equations admits spectral synthesis�

�� Introduction�

The framework provided by Cli�ord Algebras has proven to be
very useful to generalize many aspects of one variable complex analysis
to Rn � The subject has come to be known as Cli�ord Analysis� Un�
expected links to classical harmonic analysis� several complex variables
and representation theory have been discovered� Many books on the
subject have recently appeared �		
� �	�
� �	�
� ��
� ��
 and it has grown

���
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to be an important area of research�
It is therefore completely natural to ask which aspects of the Mor�

era problem in the complex plane are valid in this context� Let us point
out that the non�commutativity of the Cli�ord Algebras brings many
peculiarities to Cli�ord Analysis� In particular many familiar proper�
ties are not valid in this context� Nevertheless we will show a positive
result for the Cli�ord Morera problem�

The plan of the paper is as follows� In the �rst section� we give
a short survey on the Pompeiu problem and on the Morera problem�
We include the results and examples that we will use later on� We also
comment a little about the methods involved to prove this results�

In the second section� we set up the framework of Cli�ord analysis�
We reproduce the most fundamental results for the Cli�ord holomor�
phic functions or regular functions� This includes the corresponding
versions of the Stokes formula� the Cauchy representation formula and
the Morera theorem� The Vahlen�Ahlfors representation of Moebius
transformations in Rn is also presented�

After these two preliminary sections we start our study properly� In
the third section we present �rst the equivalence of the Morera problem
and the Pompeiu problem for surfaces in Rn � Although this is an easy
fact to prove it has many consequences� We discuss these consequences
in a sequence of corollaries� Then we show a non�invariant version of
the Morera problem�

Section Four� our main contribution� deals with the statement and
proof of a First Moments Theorem� Roughly speaking� this correspond
to proving that a matrix system of convolution equations admits spec�
tral synthesis� It turns out that the determinant minors of this matrix
satisfy the H�ormander condition and the theorem follows� We note
that in most Euclidean cases of the Pompeiu problem a reduction to
the fundamental theorem of mean periodic function is made� This is
not the case here�

Finally� in the last section� we discuss some problems for future
research� The advantage of being able to carry speci�c calculations was
important to prove the moments result but for generic surfaces we do
not know how to proceed� The easy proof for one complex variable
proof cannot be adapted to this context�



Morera type problems in Clifford analysis ���

�� Preliminaries about the Pompeiu and Morera problems�

���� Notation�

As usual� let E�Rn � denote the space of all in�nitely di�erentiable
functions on Rn with the topology of uniform convergence of all deriva�
tives on compact subsets of Rn � Let E ��Rn� be its dual space of distri�
butions with compact support�

Also let C�Rn� denote the space of all continuous functions on Rn
with the usual topology of uniform convergence on compact sets� We
will denote the Fourier transform of a function or a distribution f by bf
or by F�f��

Let us also recall that the algebra bE �

�Rn� can be characterized
as the space of all holomorphic functions F � C n �� C satisfying the
Paley�Wiener estimates� for some constants C�A�N greater than zero
and all z in C n � z � Re z � i Im z

jF �z�j � C �	 � kzk�NeAjIm zj �

���� The Pompeiu problem�

A general version of the Pompeiu problem can be formulate as
follows �	�
� Let X be a locally compact space� � a non�negative Radon
measure on X� fCigNi�� a �nite family of compact subsets of X� and G
a topological group acting on X and keeping � invariant� The Pompeiu
map

P � C�X� �� �C�G��N

is de�ned by

�Pif��g� ��

Z
gCi

f d� �

where Pi is the ith component of P and we denote by gx the action of
the element g � G on the point x � X�

We say that the family fCig has the Pompeiu property if P is
injective� The Pompeiu problem consists of deciding as explicitly as
possible whether the family has the Pompeiu property� For a historical
introduction to these problems as well as their rami�cations� general�
izations� progress and a complete bibliography we refer to ��	
� ���
� ��
�
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�	�
� ��
� �	
� In �	�
 a general method is explained and some theorems
are proved for symmetric spaces of real rank 	�

When G is a separable unimodular Lie group� the Pompeiu map
may be interpreted as a system of convolution equations on E ��G�� the
space of distributions of compact support on G� Further reduction
is made rewriting the problem as a problem of spectral analysis� We
illustrate this line of reasoning in the case when X � Rn � G � M�n��
and � � dx� where M�n� is the group of orientation preserving rigid
motions� that is� the group generated by all translations and by all
rotations in SO�n�� and dx is Lebesgue measure�

A translation invariant subspace M of bE �

�Rn � is said to admit
spectral analysis ifM contains an exponential� If the exponential poly�
nomials belonging toM are dense inM we say thatM admits spectral
synthesis�

To decide whether the map P is injective one can assume by a
standard approximation argument that f is a smooth function� Now
for smooth f � we rewrite the conditions Pf � �Z

gCi

f dx � � � g �M�n� � i � �� � � �N �

where g�x� � � x � y with � � SO�n� and y � Rn � as the �in�nite�
system of convolution equations in E ��Rn �

��
�Ci

� f � � � � � SO�n� � i � 	� � � � � N �

where �
C
denotes the characteristic function on the set C and �h�x� �

h��x��
Consider the convolution ideal I in E ��Rn� generated by the ��

�Ci

�

If I is dense in E ��Rn �� then for any solution f � E�Rn� of the system
and a generic element in I�

P
g� � ���Ci

� we have�X
g� � ���Ci

�
� f �

X
g� � ����Ci

� f� � � �

thus by the density
f � � � f � � �

A necessary condition for I to be dense is that the Fourier transformsb�
�Ci

have no common zeroes� Moreover if x� is the common zero� then

f�x� � eix�x� is a non�zero solution of the system since

��
�Ci

� f � f � b�
Ci

�x�� � � �



Morera type problems in Clifford analysis ���

In the real case �n � 	� the condition is also su�cient� This result
is a consequence of the Schwartz spectral synthesis theorem� Unfortu�
nately the theorem is not true in Rn � n � 	� �	�
� Nevertheless� under
certain symmetric conditions for the sets Ci� if their Fourier transformsb�
Ci

have no common zeroes� a reduction to the Schwartz theorem can
be made�

In the case of a single set C� the above discussion can be carried
further� �	
� to prove that C has the Pompeiu property if and only ifb�
Ci

does not vanish identically on any of the analytic varieties

C� � fz � C n � z�� � z�� � � � �� z�n � 	g � 	 �� � �

Note that no ball has the Pompeiu property ��
� We now state some
of the known results ��
� ���
�

Theorem ��� �Two balls Theorem�� Let Bi denote the closed ball

of radius ri� Then fB�� B�g has the Pompeiu property with respect to

Lebesgue measure if and only if r�
r� 
� Zn � f�
� � �� � non zero

roots of the Bessel equation Jn���z� � �g�

Theorem ��� �Two spheres Theorem�� Let Si denote a sphere of radius
ri� Then fS�� S�g has the Pompeiu property with respect to surface

measure if and only if r�
r� 
� Zn���

In the case when X is a irreducible symmetric space of rank 	�
there are analogues to the two balls and two spheres theorems above
�	�
�

In the case we discuss below� a link to overdetermined problems is
given in ��
� It has proven to be very important� When C � �� for �
a bounded open set in Rn� if Cc is connected� then the failure of the
Pompeiu property for C is equivalent to the existence of an eigenvalue
for a overdetermined Neumann boundary value problem� Namely�

Theorem ���� Let C � � � where � is a bounded open set� Cc is

connected and �C is �at least� Lipschitz� Then C fails to have the

Pompeiu property if and only if there is an eigenvalue 	 and a function

u on � satisfying the overdetermined Neumann problem��
�
	u� 	u � � � in � �

u � 	 �
�u

�n
� � � on �� �
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Theorem ���� Let � be as above� If �� is Lipschitz but not real

analytic everywhere then � has the Pompeiu property�

���� The Morera problem�

There is already a discussion on Morera type theorems ��
� but new
results and di�erent aspects keep appearing� We will mention only the
results that we will try to generalize�

Let � be a Jordan curve in C � We say that � has the Morera prop�
erty if each continuous complex valued function f on C which satis�es

Z
����

f�z� dz � �

for every rigid motion � of C is entire�
A similar de�nition holds for a family of Jordan curves f�ig� The

Morera problem is to decide as explicitly as possible whether the family
has this property� We can also consider the hyperbolic case in which the
function is de�ned only in the unit disk and the group is the Moebius
group�

The Morera and Pompeiu problems are equivalent in the following
situation ��
� �	
�

Theorem ���� Suppose that f�ig is a family of Jordan curves and

�i � int ��i� is a family of Jordan domains� Then the family f�ig
has the Pompeiu property if and only if the family f�ig has the Morera

property�

This theorem follows from the following version of the Green for�
mula

d

d z
�
	
� �

�	
�

taken in the distributional sense� Because of this equivalence and The�
orem 	��� many classes of curves satisfy the Morera property�

As the example of the circle shows� one single curve is not in general
enough to solve the Morera problem� The following Theorem� �	
� solves
the problem of giving necessary and su�cient conditions for a single
curve to determine holomorphycity�
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Theorem ��	� �Moments Theorem�� Let f � C�C �� and let � be a

piecewise smooth Jordan curve� Then f is entire if and only if

Z
����

zkf�z� dz � � � k � �� 	� � � � �

for every rigid transformation � of C �

Remark ���� 	� This result at �rst sight seem obvious� since for
every � the vanishing of the moment implies that the function can be
extended holomorphically inside the region bounded by ����� But we
do not know that these extensions agree on overlaps�

� The proof follows from an averaging argument and the argument
principle�

�� A similar result is true in the unit disk D �

�� The proof of � follows from the maximality of invariant algebras
of functions in D under Moebius transformations� �	
�

�� Actually� it is enough to request that the moments do not grow
too fast ��
�

In the case of a circle only  moments are required ��
�

Theorem ��
 �Two Moments Theorem�� Let f � C�C � and let r � ��
n � 	 be �xed� Suppose thatZ

�B�z�r�

f�� d �

Z
�B�z�r�

�z � �nf�� d � � �

for all z � C � Then f is an entire function�

Remark ���� This result follows from rewriting the hypothesis as two
convolution equations and appealing to the Schwartz spectral synthesis
Theorem�

The last result is true if we consider functions de�ned in the unit
disk but it is interesting that the following variation of the Morera
Problems gives di�erent results� Suppose f � C�D � satis�es

Z
�

f���z�� dz � �
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for all Moebius transformation � in D � Is it true that f is holomorphic
in D �

Observe that the measure dzj� is not invariant under the action of
the Moebius group M 
 SU�	� 	� also note that now we are moving
the values of the function� The following Theorems ��
 give the answer
to this problem in the circular case and in the general case�

Theorem ���� �Circular Morera Theorem�� Let r � � and let f �
C�D � satisfy Z

�B�c�r�

f���z�� dz � �

for every Moebius transformation � in D �

a� If c �� � then f is holomorphic on D �

b� If c � � then f is not necessarily holomorphic on D �There are

counterexamples��

Theorem ����� Let � � D be a Jordan domain of class C��� for some

� � � and suppose that the Jordan curve � � �� is not real analytic�

Assume f � C�D � satis�es

Z
�

f���z�� dz � �

for every � � M� Then f is holomorphic on D �

�� Rudiments of Cli�ord analysis�

���� Basic results�

The goal of this section is to present the basic de�nitions in Cli�ord
Algebras and the basic concepts and results in Cli�ord Analysis as we
will need them later on� For a complete development of the subject we
refer to the books �		
� �	�
� ��
� �	�
�

We consider the real n dimensional Cli�ord algebra A n generated
out of Rn as follows� let e�� � � � � en be an orthonormal basis for Rn �
Then A n is de�ned by the anti�commutation relationship

ei ej � ej ei � � �ij �
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where �ij is the Kronecker delta function� Consequently� the algebra
A n has as basis elements

	� e�� � � � � en� � � � � ej� � � � ejr � � � � � e� � � � en �

where j� � � � � � jr and 	 � r � n� Hence for an element a � A n we
write

a �
X
�

a� e� �

where a� � R and where we identify e� with ej� � � � � � ejr for 	 �
fj�� � � � � jrg and e� with 	�

Note that if x � Rn we have that x� � �kxk�� It follows that every
non zero x � Rn is invertible with inverse x�� � �x
kxk�� Observe that
A � � C � and A � � H � the quaternionic division algebra� For n � �� A n
is no longer a division algebra�

We will use the following two involutions� First the anti�automor�
phism de�ned by

 � A n �� A n � ej� � � � ejr �� ejr � � � ej� �

For an element a � A n � we write �
a instead of  �a�� Second the anti�

automorphism de�ned by

� � A n �� A n � ej� � � � ejr �� ��	�r ejr � � � ej� �

Again we write a for ��a�� This anti�automorphism is a generalization
of complex conjugation�

The Cli�ord algebra A n becomes a Hilbert space and a Banach
Algebra when the inner product on A n is de�ned by putting for any
a� b � A n �

ha� bi �
X
�

a� b� �

Note that for x� y vectors �i�e� x� y � R � Rn �� we have hx� yi �
�x y � y x�
� In particular� kxk� � xx and kx yk � kxk kyk� but for
general a� b � A n � kak� �� a a and ka bk �� kak kbk�

We will consider the space E�Rn � A n� of smooth A n valued func�
tions� which is an A n module under pointwise multiplication� The topol�
ogy we will consider in E�Rn � A n� is the one of uniform convergence of
all derivatives over compact subsets� Similar considerations are made
for the space of continuous A n valued functions C�Rn � A n ��
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Two basic de�nitions are

i� The Dirac operator is the di�erential operator

D �
nX
i��

ei
�

�xi
�

ii� Let f� g � C��Rn � A n� be di�erentiable functions� Then f is
called left regular if

Df �

nX
i��

ei
�f

�xi
�

nX
i��

X
�

ei e�
�f�
�xi

� � �

and g is called right regular if

gD �

nX
i��

�g

�xi
ei �

nX
i��

X
�

e� ei
�g�
�xi

� � �

In the literature left regular� left monogenic or left Cli�ord holomorphic

are used indistinctly� Note that since
�

Df � �
�

fD� a function f is left

regular if and only if
�

f is right regular� Also note that if f�x� is a left
regular function then so is f�x� a for any a � A n but not in general for
af�x��

An important property is that D� � �	� the Laplacian over Rn �
hence� each component of a left or right regular function is harmonic�
The function

G�x� �
	

�n

�x
kxkn �

	

�n

x��

kxkn
� �

where �n is the surface area of the unit sphere in Rn is left and right
regular� This function G�x� plays the role of the Cauchy kernel�

The Green Formula can be formulated in the framework of Cli�ord
algebra valued functions as follows �		
� �	�
�

Theorem ���� Let f and g be Cli�ord algebra valued functions de�ned

in a domain U � Rn and letM be a bounded domain in U with Lipschitz

boundary� ThenZ
�M

g�x�n�x� f�x� dS�x� �

Z
M

��gD��x�f�x� � g�x��Df��x�� dv�x� �



Morera type problems in Clifford analysis ���

Note that� here and in the following theorems� dS is the canonical sur�
face measure� n�x� stands for the outward unit normal to �M regarded
as a Cli�ord algebra�valued function� dv is the volumen element� and
the integrands are interpreted in the sense of Cli�ord algebra multipli�
cation�

The Borel�Pompeiu formula for Cli�ord valued functions is the
following�

Theorem ���� Let M be a bounded domain with Lipschitz boundary�

Then for f � C��U� A n� and x �M�

f�x� �

Z
�M

G�y � x�n�y� f�y� dS�y��
Z
M

G�y � x�Df�y� dv�y� �

The Cauchy integral formula is given by the following theorem�

Theorem ���� Let M be a bounded domain in U with Lipschitz bound�

ary� If f is a left regular function on U� then for each x in M�

f�x� �

Z
�M

G�y � x�n�y� f�y� dS�y� �

We also have the Morera theorem�

Theorem ���� If f is a Cli�ord algebra valued continuous function on

the domain U such thatZ
�M

n�y� f�y� dS�y� � � �

for every bounded domain M in U with Lipschitz boundary� then f is

left regular�

Of course there are similar versions of this theorems for right regu�
lar functions� Taylor series where the polynomial are regular functions
are also possible �		
� In this paper� we will use only the polynomials

Pi�x� � xi e� � x� ei � i � � � � � � n �

which are a basis for both the right �left� module of homogeneous left
�right� regular polynomials of degree 	�
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���� Vahlen matrices�

We now introduce the Vahlen matrices� The collection of all prod�
ucts of non�zero vectors in Rn form a group A �n lying in A n � Let V�n�
be the set of �  matrices

�
a b
c d

�
such that

i� a� b� c� d � A �n �

ii� a
�
c� c

�

d� d
�

b and d
�
a � Rn �

iii� a
�

d � b
�
c � �	�

A matrix
�
a b
c d

� � V�n� is called a Vahlen matrix� The usefulness
of this concept is given by the following theorem �
�

Theorem ���� Let
�
a b
c d

� � V�n�� Then the function ��x� � �a x �
b� �c x� d��� de�nes a Moebius transformation over Rn � f�g� More�

over this representation gives a surjective group homomorphism from

V�n� with matrix multiplication to the orientation preserving Moebius

group over Rn � f�g with kernel �I�

A computation shows that the Jacobian of ��x� � �a x� b� �c x�
d��� is given by

Jac ���x�� �
	

kc x� dk�n �

The following theorem can be seen as a change of variable for Cli�ord
valued functions under Moebius transformations �
�

Theorem ��	� Suppose that y � ��x� � �a x � b� �c x � d��� is a

Moebius transformation and f and g are Cli�ord valued functions� If

S is a closed� bounded and oriented surface thenZ
S

g�y�n�y� f�y� dS�y�

�

Z
����S�

g���x�� �J��� x�n�x� J��� x� f���x�� dS�x� �

where

J��� x� �
�c x� d

kc x� dkn �
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The factor J��� x� is called the covariance of ��x��
The Dirac operator and the covariance are intertwined as follows

�see for example �
��

Theorem ���� Let f be a Cli�ord valued function and ��x� � �a x�
b� �c x� d��� a Moebius transformation� Then

DJ��� x�f���x�� � J����� x�Df���x�� �

where

J����� x� �
�c x� d

kc x� dkn
� �

As the composition or product of regular functions is not regular�
the following theorem provides a kind of substitute �
�

Theorem ��
� Let y � ��x� be a Moebius transformation and f�y�
a Cli�ord valued function� Then f�y� is left regular if and only if

J��� x�f���x�� is left regular�

Finally note that

�

J����� x�J��� x� � Jac ���x�� �

This end our summary on the basic facts in Cli�ord Analysis� We are
now ready to start our study properly�

�� First results�

���� Equivalence of Morera and Pompeiu�

In this section we give the results which are easy to prove and
similar to the complex case�

By a Jordan surface S we be will mean a Lipschitz embedding of
the �n� 	��sphere in Rn �i�e� S is homeomorphic to the �n� 	��sphere
by a Lipschitz function�� Let M � intS� We say that a Jordan surface
S in Rn �or a collection of them fSjg�� has the Morera property if any
f � C�Rn � A n� satisfying

�	�

Z
�S

n�x� f�x� dS�x� � � �
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for every rigid motion � � M�n� is left regular� Note that here as in
the rest of the section� the integrals and product are considered in the
Cli�ord analysis setting�

The Morera problem consist of deciding as explicitly as possible
whether a surface �or a family of them� has the Morera property�

More generally we can state the Morera problem on a di�erent
space or with a di�erent group or with a more general surface� For
example we can take the space as the unit ball in Rn and the group as
the group of Moebius transformation of the ball�

Remark ���� The Morera problem is stated for the case in which
the function is continuous but it is equivalent to the case in which the
function is smooth� This follows from a standard smoothing argument�
We reproduce it in here for the sake of completeness�

Suppose that f � E�Rn � A n �� satisfying �	� implies that f is left
regular� Let g � C�Rn � A n� satis�es �	�� Let � be a �real value� ap�
proximate identify of compact support� Then g � � � E�Rn � A n� and
satis�es �	�� Therefore g � � is left regular� Now since

g � ��n �� g

uniformly on compact sets as �n �� �� we conclude that g is left regular�
Therefore� we will assume from now on that the function is smooth�

Let fSjg be a collection of Jordan surfaces and let Mj � intSj �
As in the complex case we have�

Theorem ���� fSjg has the Morera property in A n if and only if fMjg
has the Pompeiu property in Rn �

Proof� Let g � C��Rn �R�� Then there is a Cli�ord valued function
f such that f solves the Dirac equation Df � g ��		� Theorem 	��
��
Then by the Green formula �Section � Theorem �	�� for every rigid
motion � �M�n�� we haveZ
��M�

g�x� dv�x� �

Z
int���M��

n�x� f�x� dS�x� �

Z
��S�

n�x� f�x� dS�x� �

Hence� if S satisfy ��	 then M has the Pompeiu property�
Conversely if f � E�Rn � A n �� then by Stokes Theorem and the

Pompeiu property for M we have that Df � �� so f is left regular and
S has the Morera property�
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This equivalence has several consequences� Using the results of
Section  we get at once the following corollaries�

Corollary ����

	� No sphere has the Morera property�

� Two spheres have the Morera property if and only if their radii

r�� r� satisfy the condition in Theorem 	�	 of Section 	� namely r�
r� 
�
Zn � f�
� � �� � non zero roots of the Bessel equation Jn���z� � �g�

�� We have a condition for the Morera property in terms of the

Fourier transform of the characteristic function of M �

Note the di�erence with the two spheres Theorem of Section 	�
Among the concrete examples for which the Morera property holds

are ellipsoids� tori� and some surfaces of revolution� �	�
�

Corollary ���� If the Jordan surface S is Lipschitz but not real analytic

everywhere then S has the Morera property�

It follows that polygonal surfaces have the Morera property� e�g�
n�cubes� polyhedra� etc�

Another corollary to the equivalence of Morera and Pompeiu prob�
lem is the study of the local situation� This is what can we say if the
function is de�ned only on a domain D � Rn and the vanishing of
the integrals is required only when �S � D� It turns out that the
local Pompeiu problem is a harder question ��
� As before we get the
following corollary�

Corollary ���� Let r�� r� � � be such r�
r� 
� Zn� and let R � r�� r��
If f � C�B�R� ��� A n � satis�esZ

�B�y�ri�

n�x� f�x� dS�x� � � � i � 	�  �

for all y � Rn such that �B�y� ri� � B�R� ��� then f is left regular�

Moreover the condition is sharp�
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���� Noninvariant measures�

We now study a non�invariant measure variant of the Morera prob�
lem� Using the result of section � we can state the problem as follows�
Let � � M� where M is the group of Mobius transformations of the
unit ball B in Rn� We know that ��x� � �a x � b� �c x � d��� with�
a b
c d

� � V�n� a Vahlen matrix� If f is a regular function de�ned in B �
then J��� x� f���x�� is also left regular in B � Therefore by the Cauchy
Theorem� Z

S

�

J��� x�n�x� J��� x� f���x�� dS�x� � � �

for every surface S in B � The problem is to determine whether for a
�xed surface S and a continuous function f the above condition implies
that f is left regular�

The next proposition shows that the above problem could be re�
duced to the Pompeiu Problem for the unit ball and the Moebius group�

Proposition ��	� Let f be a continuous Cli�ord valued function de�

�ned in the unit ball B in Rn and let S be a Jordan surface in B � IfZ
S

�

J��� x�n�x� J��� x� f���x�� dS�x� � � �

for every � � M� where M is the group of Mobius transformations of

the ball� then f is left regular if and only if M � intS has the Pompeiu

property with respect to M�

Proof� By the Cli�ord algebra version of Stokes Theorem we have
thatZ

S

�

J��� x�n�x� J��� x� f���x� dS�x�

�

Z
M

�

J��� x�D�J��� x� f���x��� dv �

Now using Theorem � of Section  we get that the integral is equal toZ
M

�

J��� x�J����� x�Df���x�� dv �

By using that
�

J����� x� J��� x� � Jac ���x�� we get that the last integral
is equal to Z

M

Jac ���x�Df���x�� dv �
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Now by a change of variable this integral is equal toZ
����M�

Df�y� dv�y� �

Using that d� � dv
�	� kyk��� is the hyperbolic measure for the ball
the last integral is equal toZ

����M�

Df�y� �	� kyk��� d��y� �

Hence that we get the Pompeiu problem for the function Df�y� �	 �
kyk�� in the ball B with the group M� The conclusion follows�

�� The moment condition for Cli�ord valued functions�

���� Introduction�

In this section we show that a sphere has the Morera property if
we add the �rst Cli�ord moments� Namely we show that a continu�
ous function in Rn with values in the Cli�ord Algebra A n � whose �rst
moments over all spheres of �xed radius r vanish is a regular function�
We prove this result by �rst reducing the problem to a overdetermined
matrix system of convolution equations in Rn � Then we need to see
than spectral synthesis holds for this kind of system�

It turns out that the determinants of the maximal minors of this
matrix of convolution operators satisfy the H�ormander conditions and
thus spectral synthesis holds�

���� Statement of the problem�

We saw in Section � than no sphere has the Morera property� The
natural question is to look for the extra conditions needed� In the
spirit of the Two Moment theorem of Section 	 we found the following
Theorem�

Theorem ���� Let f � Rn �� A n be a continuous function with

Cli�ord values� Let r � � be �xed� If for each x � Rn �Z
�B�x�r�

n�y� f�y� dS�y� � � �
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and Z
�B�x�r�

Pi�y � x�n�y� f�y� dS�y� � � �

for

Pi�x� � e� xi � ei x� � i � � � � � � n �

then f is a left regular function�

Of course the integrals are understood in the sense of Section �

Proof� As before we can assume that f is smooth� Applying the
Cli�ord version of the Green formula ��	 in Section � and using that
Pi is right regular� we get thatZ

B�x�r�

Df�y� dV �y� � �

and Z
B�x�r�

Pi�y � x�Df�y� dV �y� � � �

for each x in Rn � Let g � Df � Then the above conditions can be
rewritten as

�r � �g � �

and
Pi �r � �g � � � i � � � � � � n �

where �r denotes the characteristic function on the ball of radius r and
the �Cli�ord� convolutions are understood in the natural way�

We have a system of convolution equations for Cli�ord valued func�
tions� We want to show that g � � is the only solution to the system� In
order to do that we �rst need to have a short discussion about general
systems of convolution equations and present some properties of Bessel
functions� We will do that in the next two sections� and then come
back to the system�

���� Spectral synthesis for modules�

Given an r�tuple of functions F�� � � � � Fr � bE �

�Rn�� the H�ormander
condition� �	�
� gives a necessary and su�cient condition to guarantee
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that the r�tuple generate this algebra� i�e�� that there exist G�� � � � � Gr �bE �

�Rn� such that
P

Gi Fi � 	� Namely� there must exist �� L�B � ��
such that all z � C n �

�� jF��z�j� � � �� jFr�z�j � �
e�BjIm zj

�	 � kzk�L �

Given a matrix system of convolution equations

�					�
					�

��� � �f� � ��� � �f� � � � �� ��N � �fN � � �

��� � �f� � ��� � �f� � � � �� ��N � �fN � � �

���
� � �

���

�m� � �f� � �m� � �f� � � � �� �mN � �fN � � �

where �j�i � E ��Rn� and fi � E�Rn �� for i � 	� � � � � N and j � 	� � � � �m�
Let T � ��j�i
 be the m�N matrix of convolution operators and f the
vector with components fi� We represent the above system as Tf � ��

The representation of solutions of convolution equations is a very
deep� big and delicate subject as the survey ��
 shows� Here we just
need a condition which guarantees that the only solution to the matrix
system is fi � �� Under technical conditions� the solutions of convo�
lution equations have an integral Fourier representation� For us the
following particular case will be su�cient�

Suppose than we can solve the equation

RT � � I �

where R and T are respectively N �m and m � N matrices with co�
e�cients in E ��Rn �� i�e� R is a left inverse of T � Then clearly in this
case� the only solution to Tf � � is f identically zero�

The above equation becomes� via Fourier transform in each entry
of the matrices in the Bezout equation�

MF � In �

where M and F are the matrices with coe�cient in bE �

�Rn��
The existence of a solution to the Bezout equation is given by the

following theorem from �	�
 �cf� ��
��
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Theorem ���� Let F be a m �N matrix with coe�cients in the ringbE �

�Rn�� If the N �N minors of F generate bE �

�Rn�� then there exists

a solution M of the Bezout equation MF � IN�

���� Some lemmas about Bessel functions�

Here we collect some properties of the Bessel functions and its zeros
that will be used further on� Our references are ��
� �	�
� We assume
v � 	�

For the Bessel function Jv�z� of real order v� we consider its nor�
malized function jv�z� � Jv�z�
z

v� Note that jv�z� is an entire even
function and that z � � is not a zero of jv�z�� For z � C n we write
z� � z�� � z�� � � � �� z�n�

Lemma ���� Let Q�x� be a homogeneous� harmonic polynomial of

degree k in Rn � Then the complexi�ed Fourier transform of Q�r is

given by

F�Q�r��z� � � r�	Q�z� jn��
k�r
p
z� �� �

where � is a constant depending only on k and n� and � � n
 � k�

Proof� The proof follows from ��� Theorem ��	�� p� 	��
 and a simple
computation�

Remark ����

	� The Macmahon�s asymptotic development of the positive zeros
	k�v of Jv�z��

� � 	��v � 	��v � � � � �
is given by

	k�v � � k � 	�
�


� � v � 	�

�

�
� O

� 	
k

�
�

� The positive zeros of Jv�z� are interlaced with those of Jv
��z�

� � 	��v � 	��v
� � 	��v � 	��v
� � � � � �

The next lemma will estimate the growth of jv�z� away from its zeroes
Vv� Let d�z� V � � min f	� dist �z� V �g�
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Lemma ���� Let � � � be given� If d�z� Vv� � � and jzj is big enough�

then

jjv�z�j � ejIm zj

�� e
p
� jzjv
��� �

Proof� We use the following asymptotic development of the Bessel
function Jv�z� �see �	�
��




Jv�z��
r



�z
cos
�
z � �

�
� v � 	�

�


 � � e

�

r
�


�� v� � 	�

ejIm zj

jzj���

which is valid when jzj � ��
�� �� v��	�� On the other hand� the cosine
satis�es the Lojasiewicz inequality

j cos zj � 	

�e
d�z� V � ejIm zj �

where V � f� l� 	��
 � l � Zg�
It follows that if d�z� Vv� � �� then





r



�z
cos
�
z � �

�
� v � 	�

�


 �
r



�

	

�e

� ejIm zj

jzj��� �

After subtracting the bounds above and taking jzj big enough� we get
the desired conclusion�

���� Proof of the Moments Theorem�

Let us recall that we want to solve the system

�r � �g � �

and
Pi �r � �g � � � i � � � � � � n �

where the Pi are the regular polynomials and g is a Cli�ord valued
function�

In order to do that �rst we consider A n as the matrix subalgebra of
M�n�n�R�� In this way we will see the system of Cli�ord valued con�
volution equations as an overdetermined matrix system of convolution
equations�
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First we view A n as a matrix subalgebra ofM�n�n�R� as follows
��
� �	�
� Consider the matrices ej �� En

j � j � 	� � � � � n� where for each

	 � k � n� fEk
j gkj�� are inductively de�ned by

E�
� ��

�
� �	
	 �

�
�

and in general for 	 � k � n� 	� and 	 � j � k

Ek
�
j ��

�
Ek
j �

� �Ek
j

�

and

Ek
�
k
� ��

�
� �I�k
I�k �

�
�

Then it is easy to check that the generator relations hold� Thus A n is
isomorphic to the subalgebra ofM�n�n�R� consisting of all matrices
generated by the En

j �
It is important to note that under this representation� the Cli�ord

conjugation corresponds to the transposition of matrices� In particular�
if a � A n is such that aa � R �for example for vectors�� then the
determinant of the corresponding matrix A is given by

Det �A� � �a a��
n��

�

It follows using the representation in M�n� n�R� that the system of
Cli�ord valued convolution equations is equivalent to a matrix system of
convolution equations in E ��Rn�� Indeed� let T be the �n n��n matrix
of convolution operators whose blocks Ti are the matrices corresponding
to the distributions �r �i � 	� and Pi �r for i � � � � � � n� Let G be the
matrix corresponding to g� Thus we can write the system as

TG � ��

where T �M��n n�� n� E ��Rn �� and G �M�n � n� E�Rn���
Let F be the �n n��n matrix obtained from T via Fourier Trans�

form in each entry� We will show that the minors of F generate bE �

�Rn ��
Note that the blocks Fi correspond to the Fourier transform of the

matrix representation of Pi �r � Then from the form of Pi� Lemma ���
and the note above about determinants� we get that

Det �Fi� � �� �z�� � z�i � jn��
��r
p
z� ���

n��

�
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for i � � � � � � n� where � is a constant depending only on r and n�
Similarly for the distribution �r the determinant of the matrix F� is
given by

Det �F�� � �� jn���r
p
z����

n��

for a constant � as above�
So far we have obtained the determinant of n minors of T � we will

need only one more� Note that taking a minor of T is equivalent to
taking a linear combination of the Pi �r� In other words� since the Pi
are a basis of the left regular homogeneous polynomial of degree 	� any
left regular homogeneous polynomials of degree 	 can be obtained as a
minor of T � Hence� we can repeat the argument used for the Pi �r said
for q �r with q � e� x� � e� x�� We then get that the determinant of
this minor Fn
� is given by

Det �Fn
�� � �� �z�� � z��� jn��
��r
p
z����

n��

�

We will drop the exponent n�� from these functions as they are not
relevant�

It is clear that the functions fi �� Det �Fi� for i � 	� � � � � n � 	�
have no common zeros because the two Bessel functions which appear
have no common� zeros and the polynomials have no common zeros�
Moreover� we claim that the set ffig generate bE �

�Rn��
Since the zeroes of jn�� and jn��
� interlace� and they are separated

from each other by a �xed number �see Remark ����� we can �nd an
estimate as in Lemma ��� that works for the sum of the two functions�
Thus for all w � C �

jjn���r w�j� jjn��
��r w�j �
� e�jImwj

�	 � jwj�n
��� �

where � is a positive constant� Now note that for z � C n �

jIm
p
z�j � jIm zj �

It follows that for all z � C n �

jjn���r
p
z��j� jjn��
��r

p
z��j � � e�jIm zj

�	 � kzk�n
��� �

Now for a set of polynomials� the H�ormander condition ����� is equiv�
alent to that the polynomials have no common zeros� In that case� we
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can take B � �� It then follows from this and the above inequality that
the set of functions ffig satis�es the H�ormander condition�

Applying Theorem ��� the proof is completed�

Remark ���� We need all the �rst moments in the theorem� Indeed if
we have less of the Pi �r � the respective convolution system will have a
non�zero solution�

Remark ���� It follows from the proof of the theorem that for the mo�
ments of order greater than one� what we need is that the corresponding
minors have no common zeros� This will follow from dimensionality�

�� Conclusions�

There are many directions for which the type of problems we have
considered could be investigated� This includes the study in other
spaces� other operators of Dirac type or more concrete surfaces�

As we showed in Section Four some of the results in the plane gen�
eralize to the Cli�ord analysis setting but the proofs are more involved
than the ones for the case of the plane� Hence some di�culties are ex�
pected for the other variations� Of course� it would not be possible to
recover all the results in the plane in part because there is no Riemann
Mapping Theorem when n � � For instance� for the case of higher
order moments we can only o�er the following remarks�

Using the Premelj formulas �	
 and the Taylor series expansion
for regular functions �see �		
�� it is easy to show that if S is a Jordan
surface and f is a continuous function de�ned on S with Cli�ord values
then f can be extended to a left regular function inside S if and only if

Z
S

Vl��


�lk�x�n�x� f�x� dS�x� � � �

for every k and for every homogeneous regular polynomial Vl��


�lk�x�
of degree k� This means that a function could be extended to be left
regular inside a surface if and only if all its Cli�ord moments vanish�
Using this we can formulate the general version of the moments problem
as follows�

Let S be a Jordan surface and let f � C�Rn � A n�� Suppose that for
every � � M�n�� f can be extended to be left regular inside �S� Does
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it follow that f is left regular� that is if

Z
�S

Vl��


�lk�x�n�x� f�x� dS�x� � � �

for every k� and for every homogeneous regular polynomial Vl��


�lk�x� of
degree k� and for every � �M�n� is then f left regular� As we mention
in Section One� the proof for the complex case relies on the argument
principle� But in Cli�ord analysis there is no argument principle�

It is shown in ��
 that we do not need vanishing of moments but
only that they do not grow too fast� Whether or not this is true in the
situation of Section Four is another interesting problem�
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Non�symmetric hitting

distributions on the hyperbolic

half�plane and

subordinated perpetuities

Paolo Baldi� Enrico Casadio Tarabusi�

Alessandro Fig�a�Talamanca and Marc Yor

Abstract� We study the law of functionals whose prototype isR ��
� eB

���
s dW

���
s � where B����W ��� are independent Brownian motions

with drift� These functionals appear naturally in risk theory as well as in
the study of invariant di�usions on the hyperbolic half�plane� Emphasis
is put on the fact that the results are obtained in two independent� very
di�erent fashions �invariant di�usions on the hyperbolic half�plane and
Bessel processes��

�� Introduction�

LetWt� Bt be two independent one�dimensional Brownian motions�
and set

W
���
t � Wt � � t � B

���
t � Bt � � t �

where � � 	 and � � R� In this paper we prove some results concerning
the distribution of the random variable�

�
�
�

Z ��

�

eB
���
s dW ���

s �

���
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First we prove that it has a density given by

�
��� f�x� � c���
e��� arctan x

�
 � x�������
�

which belongs to the type IV family of Pearson distributions� The
functional �
�
� has been much studied because it appears in risk theory�
The density �
��� was derived in P� Example ��
�� with a proof for
� � 
 only� easy derivations for � � 	 in the particular case � � 	
can be found in BCF� Remark ��
� �if� in addition� � is a half integer
see also AG� p� ����� Interestingly� random variables as in �
�
� also
appear in connection with invariant di�usions on the hyperbolic half�
plane � � fz � C � Im z � 	g�

On � consider the di�usion process associated to the in�nitesimal
generator

L �
y�

�
�� � y

�

�x
�
�
� � 


�

�
y
�

�y
�

where the real coe�cients � and ��
�� measure the horizontal� respec�
tively vertical component of the drift �positive for leftward and down�
ward drift� negative for rightward and upward drift�� The di�erential
operator L is invariant under the orientation�preserving isometries of
� that �x the point at in�nity �� that is� under the real a�ne trans�
formations z ��� a z � b with a � 	 and b � R� The di�usion process
associated to L corresponds to the stochastic di�erential equation

�
���

���
dXt � Yt dWt � �Yt dt �

dYt � Yt dBt �
�
� � 


�

�
Yt dt �

where� as before� Wt� Bt are independent one�dimensional Brownian
motions� The solution of �
��� with starting point i y � �	� y� is

�
���

�����
Yt � y eB

���
t �

Xt �

Z t

�

y eB
���
s dW ���

s �

Consider the hitting distribution of the di�usion associated to L and
starting at x� i y on any horizontal line Ha � fIm z � ag with 	 � a 	
y� For a � 	 the line Ha is the boundary portion ��nf�g �in this case
the expression �hitting distribution� is a slight abuse of terminology��
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while for a � 	 it is a horocycle through�� Thus the law of the random
variable �
�
� is the hitting distribution of the di�usion associated to L
in H� and starting at i� If a � 	 the hitting distribution is given by the
law of the random variableZ �a

�

y eB
���
s dW ���

s �

where 
a � inf ft � 	 � Yt � ag is the hitting time on Ha�
In this paper we prove �
��� and compute the characteristic func�

tion of f in two di�erent fashions�
One is based on a computation of the Poisson kernel of the in�nites�

imal generator associated to the process� Exploiting the invariance� this
kernel can be written in terms of a single function of one real variable
that satis�es a second�order linear ordinary di�erential equation and
is determined explicitly� Conjugating by the inverse Fourier transform
another second�order linear ordinary di�erential equation is obtained
whose solution is a con�uent hypergeometric function and the char�
acteristic function of the hitting distribution� This is done in Section
��

The second method uses probabilistic techniques �mostly classical
properties of Bessel processes� and is the object of Section �� It is based
on the representation formulae �
���� �
���� and uncovers interesting re�
lations between Brownian exponential functionals and previous work of
Ph� Biane� J� Pitman� and the fourth�named author on Bessel processes
�see PY
�� PY��� and the references therein��

In Section � we discuss an alternate derivation of the ordinary
di�erential equation satis�ed by the characteristic function� by means
of the Feynman�Kac formula�

In Section � we prove that� as the parameters �� � as well as the co�
ordinates of the starting point of the process take their admissible values
�namely � � R� � � 	 and Im z � 	�� the corresponding hitting distribu�
tions belong to the domain of attraction �extended domain of attraction
for � � 
� of nearly all stable laws with exponent � � min f�� � �g� for
	 	 � � ��

Finally� Section � is devoted to the study of the hitting distribution
on Ha for y � a � 	� Using the invariance properties of the di�usion
process and the strong Markov property it is possible to derive an ex�
pression for the characteristic function of this distribution� and to prove
that it still belongs to the domain of attraction of a stable law with ex�
ponent � � � �� However� in this case we are not able to give an explicit
expression for the density�
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�� The hitting distribution on H� and its characteristic func�

tion�

We perform computations both on the hyperbolic half�plane � and
the Poincar�e disk D� They are isomorphic via the Cayley map z �
i �
 � w���
 � w� �where z � � and w � D�� which corresponds to
� � tan ���� on the boundaries� with � � R � f�g � �� and fei� �
�� 	  � �g � �D�

The density P ��� z� at � of the hitting distribution on R of the
process associated to the operator L and starting at z � � is called
the Poisson kernel of L in the domain �� and satis�es the following
conditions�


� Lx�yP ��� x� i y� 	 	 for all � � R�

�� P ��� z� � 	 for all � � R and z � ��

��
R
R
P ��� z� d� � 
 for all z � ��

�� limy��� P ��� x� i y� � 	 if � 
� x and �� x � R�

Since L is invariant under the maps z ��� a z � b� then so is the
measure P ��� z� d� on R for the diagonal action of the same maps� that
is� P ��� z� � aP �a � � b� a z � b�� Setting f�x� � P �x� i�� we therefore
have

���
� P ��� x� i y� �



y
P
�� � x

y
� i
�
�




y
f
�� � x

y

�
�

In other words� the hitting distribution with arbitrary starting point is
obtained� by a simple rescaling� from the one starting at i�

The di�erential operator on D corresponding to L is invariant un�
der the maps w ��� ��
 � a � i b�w � �
 � a � i b�����
� a � i b�w �
�
 � a� i b��� Its Poisson kernel Q satis�es

Q��w� �
a
�

 � tan�



�

�

 �

�
a tan



�
� b
��

�Q
�
� arctan

�
a tan



�
� b
�
�
�
 � a� i b�w � �
� a� i b�

�
� a� i b�w � �
 � a� i b�

�
�

so that� if g�� � Q�� 	�� then

Q��w� �

� jwj�
jei� � wj� g

�
� arctan

j
 � wj� tan 
�
� � Imw


� jwj�
�
�
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Furthermore f�x� � � g�� arctanx���
 � x���
Condition 
� can be translated for f using ���
�� then setting � � 	

�since L is autonomous in x this may also be done beforehand� and y �

� The result is the second�order linear ordinary di�erential equation
Mf � 	� with

�����

Mf�x� �

 � x�

�
f ���x� �

�
��

�
� �

�

�

�
x
�
f ��x� �

�
� �




�

�
f�x�

�
d

dx

� d

dx

�
 � x�

�
f�x�

�
�
�
��

�
� � 


�

�
x
�
f�x�

�
�

proportional to

d

d

��
g��� �

�
��

�
� � 


�

�
tan



�

�
g��

�
cos�



�

�
if  � �arctanx� The �rst�order linear equation obtained by equating
the expression in square brackets to a constant multiple of cos�� ����
is solved by

g�� �
� c
�
�k

Z �

�

e�� cos�����


�
d
�
e��� cos����



�
� with c� k � R �

Since P � whence f�Q� g� must be positive by condition �� and since for
 � ���� �� the above integral takes arbitrarily large values of either
sign because � � 	� then k � 	 and f is given by �
����

Since
R �
��

g � 
 as a consequence of condition ��� then by GR�
������� and ������
� and the basic properties of the Euler Gamma func�
tion we have

�����

c � c���

� �
�Z �

��

e��� cos����


�
d
�
��

�
�����

�����

�
� � � i �

�����
� ��� ��

�

In particular� by GR� ������� ��

c����� �
�

sinh��
� c��� �




�
� ���

cosh��
�
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and� more generally�

c��� �

�������������

�����

��� � 
�!� sinh��

�����Y
j��

�j� � ��� � if ��



�
�
�

�
�
�

�
� � � � �

�����

��� � 
�! cosh��

���Y
j��

��
j �




�

��
� ��

�
� if ��
� �� �� � � � �

as can also be checked by elementary means from the integral expression
of c��� � On the other hand� for � � 	 from GR� ������
� we have

c��� �
�
�

�
� �

�
p
� ����

�

We now compute the characteristic function of the hitting distribution�
Again by invariance� the expression for an arbitrary starting point x�
i y � � can be derived from the special case of starting point i� Indeed�
if u � F��f is the inverse Fourier transform of f � then by ���
� the
required characteristic function is F��P � � � x� i y� � ei	x u�� y��

We have u���� � u��� because f is real�valued� and u�	� � 

by condition ��� Moreover� for k � 	� 
� � the function xkf �k��x� is
integrable� whence �ku�k���� �exists and� is continuous� and vanishes
at in�nity� in particular� u is continuous on R and twice continuously
di�erentiable outside 	� and vanishes at in�nity� Thus u is in the kernel
of the operator N � F��MF � given by

����� Nu��� �
��

�
u������

�
� � 


�

�
�u�����

���
�

� i � �
�
u��� �

With the change of variables v�w� � ew�� u�w��� the equation Nu � 	
becomes

�����

w v���w� � �b� w� v��w�� a v�w� � 	 �

where

	
a �




�
� � � i ��

b � 
� � � �

This is a con�uent hypergeometric equation in one of its standard forms
EMOT� Chapter VI�� T�� and its solutions are called con�uent hyper�

geometric functions� One solution for w � 	 is the Tricomi "�function�
de�ned as in EMOT� ��

��
��� by

"�a� b�w��
���b ��
� a� ew��

�

Z ���

�

cos
�w
�
tan ���� a�b� �

�
cos�b � d� �
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For this formula to hold it is required that Re b 	 
 and a is not
a positive integer� both of which hold for a� b given in ������ Since
"�a� b�w� has a �nite non�zero limit for w � 	� and since

lim
w���

e�w��"�a� b�w� � 	

EMOT� ��
���
��� then the solution of Nu � 	 we are looking for is� for
� � 	� a multiple of e�	"�a� b� ���� After some obvious manipulations
����� gives




� c���
�

Z ���

�

cos �� i � �� cos���� � d� �

so that

"
�

�
� � � i �� 
� � �� 	

�

�
��� �

�

�
� � � i �

�
�

Z ���

�

cos �� i � �� cos���� � d�

�



� c��� �
��� �

�

�
� � � i �

�
�

��� ��

�
�

�
� � � i �

� �

We summarize the results of this section�

Proposition ���� For every � � 	 and � � R� as t �� �� the dis�

tribution of Xt with starting point i converges to the probability de�ned

by the density �
���� Its characteristic function is

�����
�
�

�
� � � i �

�
��� ��

e�	"
�

�
� � � i �� 
� � �� ��

�
�

where " is the Tricomi "�function�
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�� Use of the Feynman�Kac formula�

We now prove in a di�erent way that the characteristic function u
of X� with starting point �X�� Y�� � �	� 
�� i�e�� thanks to �
�
�� the
function

u��� � E���e
i	X� � � E

h
exp

�
i �

Z
�

�

eB
���
s dW ���

s

�i
�

is in the kernel of the ordinary di�erential operator ������ Hence�
forth we denote by Px�y the law of the di�usion with starting point
�X�� Y�� � �x� y� and by Ex�y the corresponding expectation� Since the
Y �component is independent from W � then

u��� � E���

h
exp

�
i �

Z
�

�

Ys dWs � i � �

Z
�

�

Ys ds
�i

� E���

h
exp

�
��

�

�

Z
�

�

Y �
s ds� i � �

Z
�

�

Ys ds
�i

� E
h
exp

Z
�

�

�
� �� eB���

s ��

�
� i � � eB

���
s

�
ds
i

� E��	

h
exp

Z
�

�

G�Ys� ds
i
�

where G�y� � �y���� i � y�

Proposition ���� Let N be given by ������ and let u��� be a solution

for � � 	 of Nu � 	 such that

lim
	���

u��� � 
 �

lim
	��

u��� � 	 �

Extend u to the negative half�line by setting u��� � u���� for � 	 	�
Then u��� � E���e

i	X� ��

�Unlike in the previous section� we require lim	�� �k u��� � 	
only for k � 	��
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Proof� For 	 	 a 	 
 let

�a � inf
n
t � 	 � Yt � a or Yt �




a

o
be the exit time of Yt from the interval �a� 
�a�� Then the Feynman�Kac
formula gives

u��� � E��	

h
u�Y
a� exp

Z 
a

�

G�Ys� ds
i
�

As a �� 	 we have �a �� �� and u�Y
a� �� u�	� � 
 almost surely�

	� A probabilistic computation of the hitting distribution�

We shall now compute again the law of
R
�

� eB
���
s dW

���
s � as a con�

sequence of the following three simple observations�


� For a �xed real number x �the starting point�� consider the two
processes

X
�����
t � eB

���
t x�

Z t

�

eB
���
s dW ���

s �

eX�����
t � eB

���
t

�
x�

Z t

�

e�B
���
s dW ���

s

�
�

Then X
�����
t � eX�����

t have the same law for every �xed t �although the
two processes do not have the same law�� More generally this holds
whenever B�W are independent L�evy processes CPY� Lemma �����

�� The process � eX�����
t � t � 	� is a di�usion process with generator

M� �

 � x�

�

d�

dx�
�
�
��

�
� � 


�

�
x
� d

dx
�

the adjoint of the operator M given in ������

�� The distribution at time t of this di�usion process converges to
the invariant distribution� whose density f�x� is given in �
����
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Proof of ��� By It#o$s formula

d eX�����
t � eX�����

t

�
dB

���
t �

dt

�

�
� eB

���
t e�B

���
t dW

���
t

� eX�����
t dBt � dWt �

�
��

�
� � 


�

� eX�����
t

�
dt �

from which one derives easily that eX����� is a di�usion process with a
generator as stated�

Proof of ��� From 
�� eX�����
t converges in law as t �� ��� sinceeX�����

t

law� X
�����
t � and X

�����
t �� X

�����
� � It is easy to see that the

limit distribution is invariant� that is� it is annihilated by M � whence it
necessarily coincides with f �

As remarked in Section �� the hitting distribution on H� under P��y

is the law of the random variable
R
�

�
y eB

���
s dW

���
s � If we set

A���
�

�

Z
�

�

e�B
���
s ds � A�����

�
�

Z
�

�

eB
���
s ds �

then X� can be written in the form of a subordinated perpetuity as

X� � �
A
���
�

� �A�����
�

�

where � is a Brownian motion independent of B�W � It is thus clear
that the law of X� is the same as that of

Z

q
A
���
� � �A�����

�
�

where Z is an N�	� 
� random variable� independent of B�W � If h is
any bounded Borel function on R� then

Eh�X��� � E
h
h
�
Z

q
A
���
� � �A�����

�

�i
�

Z
R

e�z
���

p
��

E
h
h
�
z

q
A
���
� � �A�����

�

�i
dz

� E
hZ
R

h�x�q
��A

���
�

e��x��A
�����
�

�����A���
�

� dx
i
�
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Since h is arbitrary� this yields a representation formula for the density
f of X� �

Theorem 	��� We have

f�x� � E
h 
q

��A
���
�

e��x��A
�����
�

�����A���
�

�
i
�

Next comes a representation formula of the density f in terms of Bessel
processes� The main tool is Lamperti$s representation formula for the
geometric Brownian motion RY� Exercise 

�
����� which states that

���
� eB
���
s � R

����

A
���
s

�

where R���� is a Bessel process with index ��� Taking s �� �� in

this relation� since the left�hand side tends to 	 one has R
����

A
���
�

� 	� so

that A
���
� coincides with the �rst passage time T��R

����� of R���� by
	� Moreover one can write

A�����
�

�

Z
�

�

eB
���
s ds �

Z
�

�

dA
���
s

eB
���
s

�

Z
�

�

dA
���
s

R
����

A
���
s

�

Z T��R
�����

�

du

R
����
u

�

This can be summarized by stating that

����� �A���
�
� A�����

�
�
law�

�
T��R

������

Z T��R
�����

�

du

R
����
u

�
�

Theorem 	��� Denote by P ��� the law of the transient Bessel process

�R
���
u � u � 	� with dimension d � � �� � 
� starting at 	� and de�ne

Hs �

Z s

�

du

R
���
u

�

Then

f�x� �

r
�

�
E���

h �

R
���
�

e��xR
���
� ��H��

���
i
�

In the particular case � � 
�� we have that �R
���
u � u � 	� is the

��dimensional Bessel process starting at 	�
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Proof� Recall D� Williams$ time reversal result� which states that

�R
����

T��R������u
� u � T��R

������
law� �R���

u � u � L��R
����� �

where the right�hand side denotes the Bessel process with index � start�
ing from 	� and L� its last passage time by 
� Thus ����� may be written

�A���
�
� A�����

�
�
law�

�
L��R

�����

Z L��R
����

�

du

R
���
u

�
�

It is now su�cient to use a result of absolute continuity between the
laws of �R���

uL�p
L�

� u � 

�

and of �R
���
u � u � 
�� a transient Bessel process starting at 	 BLY�

Th�eor%eme ��� Y� sections � and ���

Techniques based on Bessel processes give also an alternative proof
of expression ����� for the characteristic function of the hitting distri�
bution�

We assume y � 
� Lamperti$s representation formula ���
� implies

also that A
���
�x � Tx�R

������ where we denote by 
x the hitting time in x

of Yt � eB
���
t and Tx�R

����� the hitting time in x of the Bessel process
R����� The same arguments leading to ����� give

�A���
�x
� A�����

�x
�
law�
�
Tx�R

������

Z Tx�R
�����

�

du

R
����
u

�
�

Thus for � � R� using PY
� Proposition 
���� p� ���� �see PY�� for
more information� and the expression of the density of the law of a
Bessel process with index �� with respect to the law of a Bessel process
with index 	 �see� e�g�� RY� Exercise 

�
�
���� we have

Eei�X�x � � E
h
exp

�
i �

Z �x

�

eB
���
s d�s � i � �

Z �x

�

eB
���
s ds

�i
� E

h
exp

�
��

�

�

Z �x

�

e�B
���
s ds� i � �

Z �x

�

eB
���
s ds

�i
� E

����
�

h
exp

�
��

�

�
Tx�R

������ i � �

Z Tx�R
�����

�

du

R
����
u

�i
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� x������
W�i����� ��

W�i����� � x�
�

where W � � � denotes the Whittaker functions� This gives the character�
istic function of the hitting distribution on Hx� Recalling the relation
between the Whittaker and Tricomi "�functions T� ��������

Wk���z� � z����� e�z��"
�

�
� � � k� 
 � ��� z

�
and a functional property of the " function T� ��������

"�a� c� 
� �� c� z� � zc��"�a� c� z� �

we get

W�i����� �� � �� ������� e�� "
�

�
� � � i �� 
 � � �� � �

�
� �� �������� e�� "

�

�
� � � i �� 
� � �� � �

�
�

so that

Eei�X�x � � x������
�� �������� e�� "

�

�
� � � i �� 
� � �� � �

�
�� � x������� e��x"

�

�
� � � i �� 
� � �� � � x

�

�
e�� "

�

�
� � � i �� 
� � �� � �

�
e��x"

�

�
� � � i �� 
� � �� � � x

� �
This gives the characteristic function of the hitting distribution on the
horocycle Hx� Taking x �� 	� one gets easily

Eei�X� � �
e�� "

�

�
� � � i �� 
� � �� � �

�
"
�

�
� � � i �� 
� � �� 	

� �

which is consistent with Proposition ��
�
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� Hitting distributions and stable laws�

The de�nitions and the theorem below are taken from H� sec�
tions ��
� and ������

De�nition 
��� A probability distribution is stable if and only if its

characteristic function  is of the following form S�z� c� �� ��

�t� �

�������������

exp
�
i z t� c jtj�

�

 � i � sgn�t� tan

��

�

��
�

if 	 	 � � � and � 
� 
 �

exp
�
i z t� c jtj�

�

 � i � sgn�t�

�

�
log jtj

��
�

if � � 
 �

where c � 	� 
 � � � 
� and z � R�

De�nition 
��� A probability law m� is said to belong to the domain of

attraction of a stable law m if there exist two sequences of real numbers

fangn� fbngn such that

X� � � � ��Xn � bn
an

law�� m� as n ��� �

where fXngn is a sequence of independent and identically distributed

random variables with common law equal to m��

De�ne

C��� �

�����
������ cos ��

�
� if 	 	 � 	 � and � 
� 
 �

�

�
� if � � 
 �

Note that C��� � 	 whenever 	 	 � 	 ��

Theorem 
��� Let fXngn be a sequence of independent and identically

distributed random variables and assume that

lim
x��

x�P �X� � x� � a � lim
x��

x�P �X� 	 �x� � b �
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where 	 	 � 	 �� and a� b � 	 with a� b � 	� Set

mn �

���������
	 � if 	 	 � 	 
 �

nE
h
sin
� 

n
X�

�i
� if � � 
 �

EX�� � if 
 	 � 	 � �

c � � �a� b�C��� �

� �
b� a

b� a
�

Then
X� � � � ��Xn � nmn

n���
law�� m� as n ��� �

where m is S�	� c� �� ���

We have determined in the previous sections that the density f
of the random variable X� is given by �
��� if the starting point is
i � �	� 
�� If the starting point is �	� y�� then the hitting distribution is
the same as the law of yZ where Z is distributed according to f � We
now check that such a distribution belongs to the domain of attraction
of a stable law� of which we determine the parameters�

Assume �rst that 	 	 � 	 
� We have

lim
x��

x��P �Z � x� �
c���
��

e���� lim
x��

x��P �Z 	 �x� � c���
��

e�� �

so that� if the starting point is i y � �	� y�� then

a � lim
x��

x��P��y�X� � x� �
c���y

��

��
e��� �

b � lim
x��

x��P��y�X� 	 �x� � c���y
��

��
e�� �

Thus the assumption of Theorem ��� is satis�ed and this density belongs
to the domain of attraction of the stable law S�	� c� � �� ���

Let us investigate the possible values of the parameters c� �� Clearly

c � � c��� y
��C�� �� cosh�� � � � tanh ����� �

Thus the parameter � can take all the values in the range ��
� 
�� that
is� all possible values except the extremal ones 
� Finally� by tuning
the value of y� one can make c take any positive value�
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It is clear that if � � 
 then the hitting distribution� having a
�nite second order moment� belongs to the domain of attraction of a
Gaussian law� If � � 
 then a �nite second moment does not exist� but
it is known GK� Theorem ���
� that a probability law � belongs to the
extended domain of attraction of a Gaussian distribution if and only if

lim
x���

x�
�

�

Z x

�x

��dy�
�

Z x

�x

y���dy�

� 	 �

It is immediate to check that the above condition is satis�ed for the
density �
��� with � � 
� This means that there exist two sequences
fangn� fbngn of real numbers� with an � 	� such that if fXngn is a
sequence of independent� identically distributed random variables with
density �
��� for � � 
� then

X� � � � ��Xn

an
� bn

law�� N�	� 
�

�although an is not necessarily equal to n�����

�� The case a � 	�

Recall that we denote by 
a the �rst hitting time of the di�usion
associated to L on the horocycle Ha� with a � 	� We now show how
the characteristic function of the hitting distribution on Ha can be
derived from that of X�� This will allow us to prove that the hitting
distribution on Ha is still in the domain of attraction of a stable law
with exponent � �� but we are not able to give its density� Denote by
K the Fourier transform of the hitting distribution on H� with starting
point i� that is� with the notation of Section �� the distribution of X�

under P���� Then the characteristic function with starting point i y is
t �� K�y t�� By conditioning with respect to the ��algebra F�a and
using the strong Markov property� for a 	 y one has

K�y t� � E
h
exp

�
i t

Z ��

�

y eB
���
s dW ���

s

�i
� E��y

h
exp

�
i t

Z ��

�

Ys dW
���
s

�i
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� E��y

h
exp

�
i t

Z �a

�

Ys dW
���
s

�i
E��a

h
exp

�
i t

Z ��

�

Ys dW
���
s

�i

� E
h
exp

�
i t

Z �a

�

y eB
���
s dW ���
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Thus� if we denote by Ka�y the characteristic function of the hitting
distribution on Ha� starting at i y� then

Ka�y�t� �
K�y t�

K�a t�
�

We already know that there exist sequences fangn� fbngn of real num�
bers� with an � 	� such that
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where  is the characteristic function of a stable law� as described at
the beginning of Section �� Thus we have
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It is easy to check now that� if  is the characteristic function of a stable
law S�z� c� �� ��� then t �� �y t���a t� is the characteristic function
of a stable law


S�z �y � a�� c �y� � a��� �� �� � if � 
� 
 �

S�z �y � a� � c � �y log jyj � a log jaj�� c�y� a�� 
� �� � if � � 
 �

Thus the law of X�a is still in the domain of attraction of a stable law
with exponent � � � �� More precisely� if � 	 
� if fXngn is a sequence
of independent� identically distributed random variables with the same
law as X�a � and if mn is de�ned as in Theorem ���� then

X� � � � ��Xn � nmn

n���
law�� m� as n ��� �
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where m is a stable law S�	� c� �� �� with

� � min f�� � �g �
c � � c����y

�� � a���C�� �� cosh�� �

� � tanh ����� �

We omit the� otherwise obvious� statement for � � 
�

References�

�AG� Alili L� Gruet J��C� An explanation of a generalized Bougerol�s iden�

tity in terms of hyperbolic Brownian motion� Exponential function�

als and principal values related to Brownian motion� Ed� M� Yor�

Biblioteca de la Revista Mat� Iberoamericana ������ ������

�BCF� Baldi P� Casadio Tarabusi E� Fig�a�Talamanca A� Stable laws arising

from hitting distributions of processes on homogeneous trees and the

hyperbolic half�plane� Paci�c J� Math� ��� ������ ��������

�BLY� Biane Ph� Le Gall J��F� Yor M� Un processus qui ressemble au pont

brownien� S�eminaire de Probabilit�es XXI� Eds J� Az�ema P��A� Meyer

M� Yor� Lecture Notes in Math� ���� ������ ��������

�CPY� Carmona Ph� Petit F� Yor M� On the distribution and asymptotic

results for exponential functionals of L�evy processes� Exponential func�

tionals and principal values related to Brownian motion� Ed M� Yor�

Biblioteca de la Revista Mat� Iberoamericana ������ �������

�EMOT� Erd�elyi A� Magnus W� Oberhettinger F� Tricomi F� G� Higher

transcendental functions Vol� I� Reprint of the ���� original� Krieger

�����

�GR� Gradshteyn I� S� Ryzhik I� M� Table of integrals� series� and products�

Academic Press ���	�

�GK� Gnedenko B� V� Kolmogorov A� N� Limit distributions for sums of

independent random variables� Addison�Wesley Math� Ser� ��
��

�H� Ho�mann�J�rgensen J� Probability with a view toward statistics� I�

Chapman � Hall Probability Series ���	�

�N� Nagahara Y� The PDF and CF of Pearson type IV distributions and

the ML estimation of the parameters� Statist� Probab� Lett� �� ������

�����
	�

�P� Paulsen J� Risk theory in a stochastic economic environment� Stochas�

tic Process� Appl� �� ������ �����
��



Non�symmetric hitting distributions on the hyperbolic half�plane 
��

�PY�� Pitman J� W� Yor M� Bessel processes and in�nitely divisible laws�

Stochastic integrals �Durham ������ Ed D� Williams� Lecture Notes in

Math� �	� Springer ������ ��������

�PY�� Pitman J� W� Yor M� Quelques identit�es en loi pour les processus de

Bessel� Hommage �a P� A� Meyer et J� Neveu� Ast�erisque ��� ����
�

�	����
�

�RY� Revuz D� Yor M� Continuous martingales and Brownian motion�

Grundlehren Math� Wiss� ��� Springer �����

�T� Tricomi F� G� Funzioni ipergeometriche con�uenti� Monogr� Mat� �

Cremonese ���	�

�Y� Yor M� Random Brownian scaling and some absolute continuity rela�

tionships� Seminar on Stochastic Analysis Random Fields and Appli�

cations� Ascona ����� Eds E� Bolthausen M� Dozzi F� Russo� Progr�

Probab� �� Birkh�auser ���� �	������

Recibido� �� de febrero de ��			

Paolo Baldi
Dipartimento di Matematica

Universit%a di Roma Tor Vergata
Via della Ricerca Scienti�ca

		
�� Roma� ITALY
baldi�mat�uniroma��it

Enrico Cassadio Tarabusi� Alessandro Fig%a�Talamanca
Dipartimento di Matematica �G� Castelnuovo�

Universit%a di Roma �La Sapienza�
Piazzale A� Moro �

		
�� Roma� ITALY
casadio�science�unitn�it

sandroft�mat�uniroma��it

Marc Yor
Laboratoire de Probabilit�es� Universit�e P� et M� Curie

Tour ��� � Place Jussieu
&���� Paris� FRANCE

deaproba�proba�jussieu�fr

Partially supported by research funds of the Italian MURST� 	Processi stocastici

�


��



Rev� Mat� Iberoam� �� ������� 	�
�	��

Weak slice conditions�

product domains�

and quasiconformal mappings

Stephen M� Buckley and Alexander Stanoyevitch

Abstract� We investigate geometric conditions related to H�older
imbeddings� and show� among other things� that the only bounded Eu�
clidean domains of the form U�V that are quasiconformally equivalent
to inner uniform domains are inner uniform domains�

�� Introduction�

Two Euclidean domains are K�quasiconformally equivalent if there
is a K�quasiconformal mapping from one onto the other� Determining
what domains are quasiconformally equivalent to a ball or other nice
Euclidean domain is an important and open problem when n � �� Some
partial results are known� notably those of Gehring and V�ais�al�a �GV��
�V	�
 see also �R�� In �V	�� V�ais�al�a classi�es cylinders in R� that are
quasiconformally equivalent to a ball�

Inner uniform domains� as de�ned by V�ais�al�a �V��� satisfy a uni�
formity condition with respect to the inner Euclidean metric� These
domains form a class intermediate between uniform and John domains
and� in particular� they include all Lipschitz domains
 see Section  for
de�nitions� We prove the following theorem which indicates that this
class is well suited to the study of quasiconformal equivalence�

���
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Theorem ���� Suppose that � � U � V � Rn � Rm is a bounded

domain� n�m � N� The following are equivalent �

i� � is quasiconformally equivalent to an inner uniform domain�

ii� � is an inner uniform domain�

iii� Both U and V are inner uniform domains�

In particular� since balls are inner uniform� a bounded product
domain � � U � V must be inner uniform if it is quasiconformally
equivalent to a ball �this criterion alone� however� is not su�cient as
we explain in Remark 	���

The following two theorems show that among product domains�
inner uniformity is closely connected with the concept of broadness�
as introduced by V�ais�al�a �V	�
 the inner ��wSlice� condition� de�ned
in Section �� is a technical assumption satis�ed in particular by inner
uniform domains and their quasiconformal images�

Theorem ���� If � � U�V � Rn�Rm � n�m � N� is a bounded inner

��wSlice� domain� then � is broad if and only if it is inner uniform�

Theorem ���� Suppose that � � U � V � Rn � Rm is bounded�

and quasiconformally equivalent to a broad inner ��wSlice� domain G�

Then � is inner uniform�

Obviously� one can remove every instance of the word �inner� from
the above theorems if � is assumed to be quasiconvex �i�e�� the Eu�
clidean and inner Euclidean metrics are comparable�� However it is
easy to construct non�quasiconvex counterexamples to the non�inner
versions of these theorems� In the case of Theorem ���� though� the
counterexamples are for one implication only since inner uniform do�
mains are always broad �BHK� Example ����b���

The rest of the paper is organized as follows� After some prelimi�
naries� we introduce the slice conditions in Section �� In Section �� we
show that a large class of domains satisfy the various weak slice con�
ditions� In Section 	� we classify bounded product domains satisfying
weak slice conditions and prove the above theorems� We examine some
further results in Section � and� �nally� we discuss some open problems
in Section ��
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�� Preliminaries�

���� Notation�

We adopt two common conventions� First� we drop parameters
if we do not wish to specify their values
 for instance� we de�ne C�
uniform domains� but often talk about uniform domains� Second� we
write C � C�x� y� � � � � to mean that a constant C depends only on the
parameters x� y� � � � �

If S � Rn is measurable� then jSj is the Lebesgue measure of S� and
uS is the average value of a function u on S� We write A �� B if A � CB
for some constant C dependent only on allowed parameters
 we write
A � B if A �� B �� A� We write A�B and A	B for the minimum and
maximum� respectively� of the quantities A and B� Unless otherwise
stated� � and G are proper subdomains of Rn �

Let x� y � U � Rn � We denote by �U �x� the distance from x to
�U � and by �U �x� y� the class of recti�able paths � � ��� t� 
� U for
which ���� � x� ��t� � y� If � � R� 	 is a recti�able path in U � and ds
is arclength measure� we de�ne

len��U �	� �

Z
�

����U �z� ds�z� �

d��U �x� y� � inf
���U �x�y�

len��U �	� �

Of course� d��U �x� y� � � if x� y lie in di�erent path components of U �
We are mainly interested in d��U when � � ��� � and U is a domain

d��U is then a metric� Note that d��U �geodesics may fail to exist if
� 
 � �BS� Proposition ���� but they do exist when U is a domain and
� � � �GO��

We write len in place of len��U � the Euclidean length of a path�
Note that len��U and d��U are the well�known quasihyperbolic length

and distance� and d��U is the inner Euclidean metric� For brevity� we
abuse notation by writing� for instance� len��U �	S� for the d��U �length
of those parts of a path 	 lying in a subset S of U � We write �x� y� for
the line segment joining a pair of points in Rn � and �x� y� for the path
parametrized by arclength that goes from x to y along �x� y��

Given x � U � E�F � U � and a metric � on U � we write d��E�F �
for the ��distance between E and F � dia��E� for the ��diameter of E�
and B��x� r� � fy � U � d��x� y� � rg� If � � d��U � we instead
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write dU �E�F �� diaU �E�� and BU �x� r� for these concepts� while if � is
the Euclidean metric �and so U � Rn �� we write d�E�F �� dia�E�� and
B�x� r�� We write dU � d��U 
 in particular� dRn is the Euclidean metric�
Note that distance to the boundary of U is the same with respect to
dRn and dU � and that BU �x� r� � B�x� r� if r � �U �x�� We de�ne the
inradius of U � r�U� � supx�U �U �x��

���� Uniform domains and mean cigar domains�

Let C �  and let d be the Euclidean metric� A domain G is a
C�uniform domain if for every x� y � G� there is a C�uniform path� i�e��
a path 	 � �G�x� y� of length l and parametrized by arclength for which
l � Cd�x� y�� and t � �l
 t� � C�G�	�t��� An inner C�uniform domain

is de�ned similarly except that d � dG� Uniform domains include
all bounded Lipschitz domains� as well as some domains with fractal
boundary� such as the interior of a von Koch snow�ake� All uniform
domains are inner uniform� and a slit disk is a standard example of an
inner uniform domain that is not uniform� For more on inner uniform
domains� see �V���

Suppose that � � � �  � C and let d � G�G 
� ������ We say
that G is an ���C
 d��mCigar domain if for every pair x� y � G� there
is a ���C
 d��mCigar path� i�e�� a path 	 � �G�x� y� such that

len��G�	� � Cd�x� y�� � � � � �  �

len��G�	� � C log
�  � d�x� y�

�G�x� � �G�y�

�
� � � � �

In particular� if d is the Euclidean metric� we simply say that G is
an ���C��mCigar domain� while if d � dG� we say that G is an inner

���C��mCigar domain� ��mCigar conditions for � � � �  imply the
existence of a path � that satis�es a type of cigar condition on average

see �BK�� Lemma ���� and Lemma 	�� below� In practice we shall not
use this terminology for � � � we prefer to use the more common term
C�quasiconvex domain rather than �� C��mCigar domain�

Uniform domains are ��mCigar domains for all �� Gehring and Os�
good �GO� showed that the classes of ��mCigar domains and uniform
domains coincide� and V�ais�al�a �V	
 ����� showed that the classes of in�
ner ��mCigar and inner uniform domains coincide� The class of �inner�
���mCigar domains includes the class of �inner� ��mCigar domains if
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and only if � � ��� The Euclidean version is dealt with in �L� and �BK��

inclusion follows similarly in the inner case and the counterexamples in
�L� also handle the inner version� Thus mCigar domains include do�
mains with rough �even fractal� boundary� Note that the class of inner
uniform and inner mCigar domains contain their Euclidean analogues
�strictly� since a planar slit disk is in all of the inner classes but none
of the Euclidean classes��

We refer the reader to �BK��� �GM�� and �L� for more information
about ��mCigar domains
 these domains are called �weak cigar do�
mains� in �BK�� and �Lip� extension domains� in �GM� and �L� when
� 
 �� The last name derives from the fact that for � 
 �� G is
��mCigar if and only if all functions de�ned on G which are locally
Lipschitz of order � are globally Lipschitz of order �
 see �GM��

�� Slice domains�

The conditions de�ned in Section  rather strongly restrict the ge�
ometry� For instance� among planar domains� inner uniform domains
cannot have external cusps� while uniform and mCigar domains can
have neither internal nor external cusps� By contrast� the slice condi�
tions that we de�ne in this section are all quite weak� at least in two
dimensions� they are satis�ed by any domain quasiconformally equiv�
alent to a uniform domain and hence by all simply�connected planar
domains�

We �rst discuss weak slice conditions� as �rst de�ned in �BS�� The
adjective �weak� refers to the fact that for all �� an ��wSlice condition
is implied by the analogous �strong� slice condition which we de�ne
later
 see �BS� Lemma �����

Suppose � � � �  � C and let d be a metric on G satisfying
dRn � d � dG� Then G is an ���C
 d��wSlice domain if every pair
x� y � G satis�es the following ���C
 d��wSlice condition� there exist a
path 	 � �G�x� y�� pairwise disjoint open subsets fSigmi�� of G� m � ��
and numbers di � �diad�Si���� such that for all  � i � m

len��  Si� � di
C

� for all � � �G�x� y� ��WS��

len��G�	� � C
�
��G�x� � ��G�y� �

mX
i��

d�i

�
��WS���
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�
B
�
x�
�G�x�

C

�
�B

�
y�
�G�y�

C

��
 Si � � ��WS���

If d is the Euclidean metric� we say that G is an ���C��wSlice domain�
while if d � dG� we say that G is an inner ���C��wSlice domain
 these
are the two metrics that mainly interest us� Note that the metric d
enters the de�nition only in limiting the size of the numbers fdig� and
that for � � �� �WS��� simply says that len��G�	� � C�� � m��

Roughly speaking� a wSlice condition for a pair of points x� y limits
the amount of �oating boundary and slab�shaped regions in the domain
that lie �between� x and y
 by a �slab�shaped� region� we mean a piece
of the domain which is much larger in two coordinate directions than a
third such as ��� �� ��� �� ��� �� for some small � 
 �� The �tolerance
level� of an ��wSlice domain for �oating boundary components and
slab�shaped regions is lower for smaller �� In particular it follows from
Theorem 	� that the product of an externally cusped domain and an
interval is never an ��wSlice domain for any � � ��� �� The reader
should feel more comfortable with the geometry of this condition after
working through the examples in Section �� and reading the statements
of results in Section 	�

As discussed in �BS� ���� we can essentially take di � diad�Si�
in the de�nition� but allowing inequality is sometimes convenient� A
signi�cant di�erence between the � � � and � 
 � cases is that� whereas
�WS��� is an essential part of the de�nition for � � � �lest every domain
be a ��
 d��wSlice domain�� it can be dropped when � 
 � �as shown in
Theorem ���� Modulo a change in the value of C by a factor at most 	�
it is shown in �BS� ��� that we may add the following condition to the
de�nition of an ���C
 d��wSlice condition for x� y �and all  � i � m�

�WS�	� len��G�	  Si� � Cd�i �

Given a path � intersecting a slice Si� let �i denote the component
of �  Si with maximal d�diameter� We de�ne an ���C
 d��wSlice�

domain to be an ���C
 d��wSlice domain in which the slice data satisfy
the following extra pair of conditions for all  � i � m

diad��
i� � di

C
� for all � � �G�x� y� ��WS���

exists zi � Si � Bi � B
�
zi�

di
C

�
� Si ��WS���

���C��wSlice� and inner ���C��wSlice� domains are de�ned in the
obvious way� �For �WS���� di comes from the inner metric but the ball
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is Euclidean�� We need the extra conditions �WS��� and �WS��� for
some of our proofs but intuitively one should think of wSlice� domains
as being very similar to wSlice domains� In fact� we believe it likely
that the classes of ��
 d��wSlice and ��
 d��wSlice� domains coincide

see the discussion before Open Problem A in Section ��

We recall �BS� Lemma �����

Lemma ���� If the data 	� fSi� digmi�� satisfy �WS�� and �WS���
for the pair x� y � G� and di 
 �� then dia�Si� � � �G�z��C � ��
for all z � Si and  � i � m� Furthermore� if di � dia�Si� and

jx
 yj � ��G�x� � �G�y���� then there exists a constant C � � C ��C���
such that

����� ��G�x� � ��G�y� �
mX
k��

d�i � C � len��G��� � � � �G�x� y� �

We next de�ne �strong� slice conditions� Suppose C �  and let
d be a metric on G satisfying dRn � d � dG� Then G is a �C
 d��
Slice domain if every pair x� y � G satis�es the following �C
 d��Slice
condition� there exist a path 	 � �G�x� y� and pairwise disjoint open
subsets fSigji�� of G� with di � diad�Si� ��� such that�

i� x � S�� y � Sj � and x and y are in di�erent components of GnSi�
for all � � i � j�

ii� len��  Si� � diC� for all � � i � j and � � �G�x� y��

iii� For all t � ��� �� we have B
�
	�t�� C���G�	�t��

� � Sj
i�� Si�

Also� for all � � i � j� there exists xi � 	i� such that x� � x� xj � y�
and B

�
xi� C

���G�xi�
� � Si�

iv� For all � � i � j and z � 	i � 	���� ��  Si� we have di �
C�G�z��

If d is the Euclidean metric� we say that G is a C�Slice domain�
while if d � dG� we say that G is an inner C�Slice domain� The �Eu�
clidean� Slice condition was de�ned in �BK�� De�nition ��� �for a �xed
y but uniformly in x��

The d�Slice condition for a pair of points implies an ��
 d��wSlice
condition� for the same pair of points� quantitatively
 see �BS� Lem�
ma ����� However� if � 
 �� then there are ��wSlice domains which are

�
We suspect but cannot prove that a d	Slice condition implies an ���d�	wSlice

�

condition
 it certainly implies �WS	�� because of iii� and the fact that the slices are left

unchanged in the proof that a Slice condition implies an �	wSlice condition�



��	 S� M� Buckley and A� Stanoyevitch

not Slice domains
 see �BS� Proposition 	���� The d�Slice condition is
quite similar to the ��� d��wSlice but even less tolerant of �slab�shaped�
regions� as discussed after Open Problem C in Section �� Although
a ��wSlice condition does not necessarily quantitatively imply an Slice
condition� we suspect that the classes of Slice and ��wSlice domains

coincide�

�� Inner uniform and inner slice domains�

In this section� we show that inner uniform domains and their
quasiconformal images satisfy certain inner slice conditions�

Theorem ���� Let � � ��� � and let f be a K�quasiconformal mapping

from an inner C�uniform domain G � Rn onto �� Then � is an

inner C ��Slice domain and an inner ���C ���wSlice� domain for some

C � � C ��C� n�K� ���

Suppose that E�F are disjoint subsets of a domain G � Rn � The
conformal modulus� mod�E�F 
G�� of the pair E�F relative to G is
de�ned to be the in�mum of

R
G
�n� as � � G 
� ����� ranges over

the class of Borel functions for which every line integral over a path
	 � ��� � 
� G joining E and F is at least � We refer the reader
to �V�� for the fundamentals of conformal modulus and quasiconformal
mappings�

We say that a domain G � Rn is ��broad if

��t� � inf fmod�E�F 
G� � �G�E�F � � tg 
 � � t 
 � �

where E�F designate non�degenerate disjoint continua in G and

�G�E�F � � dG�E�F �

diaG�E� � diaG�F �

denotes the relative inner distance between E and F �
Before proving Theorem ��� we need some lemmas� The �rst is

a special case of results of Bonk� Heinonen and Koskela �see Exam�
ple ����b� in �BHK��
 in the terminology of that paper� G is broad if it
is Loewner with respect to dG�


This concept was introduced by V�ais�al�a �V��� Our de�nition looks a little di�erent

but is equivalent to V�ais�al�a�s in the Euclidean setting according to �HK� Theorem �����
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Lemma ���� An inner C�uniform domain G � Rn is ��broad� with �
dependent only on C and n�

Lemma ���� Suppose G � Rn is a domain and E�F � G are disjoint

compact subsets in G and �G�E�F � � �� Then there exists a constant

C � C�n� such that

mod�E�F 
G� � C �log �G�E�F ���n�� �

Proof� Without loss of generality� we assume that diaG�E��diaG�F ��
Let us �x a point x � E and write r � diaG�E�� R � dG�E�F �� so
that �G�E�F � � Rr � �� Let N � blogRrc� let Ai � BG�x� �ir� n
BG�x� �i��r� for each  � i � n and de�ne the function � � G 
� �����
by the equation

��x� �

��
�



�i��Nr
� x � Ai �  � i � N �

� � otherwise �

Clearly � is an allowable modulus test function and� since jAij is dom�
inated by the measure of a Euclidean ball of radius �ir� it follows that
mod�E�F 
G� �� N�n��� The lemma now follows readily�

Our next lemma implies that an inner ��mCigar domain is an inner
��wSlice� domain and� if � � �� it is also an inner Slice domain�

Lemma ���� Suppose that � � � �  and that G � Rn � If there is

an inner ���C���mCigar path for the points x� y � G� then the pair x� y
satis�es an inner ���C��wSlice

� condition for some C � C�C�� �� n��
If � � �� x� y also satis�es an inner C��Slice condition for some C� �
C��C�� n��

Proof� Without loss of generality� �G�y� � �G�x�� We write Bw �
B�w� �G�w��� for w � G� Suppose that z � Bx� If � 
 �� then

d��G�x� z� � len��G��x� z��

�

Z �G�x�

�G�x��

t��� dt

�
��G�x�

�

����� 
 

�

�
� ��G�x� �
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By a separate calculation� we see that d��G�x� z� � ��G�x� even for
� � �� Thus if Bx and By overlap� then d��G�x� y� � ��G�x� � ��G�y��
so x� y satisfy an inner ��� ��wSlice� condition with zero slices� We
may therefore suppose that Bx and By are disjoint and so dG�x� y� �
��G�x� � �G�y����

De�ne annuli Si � BG�y� �i��G�y�� n BG�y� �i���G�y�� for every
i � N � Let m � � be the smallest integer for which Si�� intersects
B�x� �G�x���� and let di � �i���G�y�� Consider the slice data 	�
fSi� digmi��� where 	 is any inner ���C���mCigar path for x� y� First
�WS��� is automatically true� and �WS��� is true because the dG�
diameter of each annulus is comparable to its thickness�

Suppose � 
 �� Since 	 is an inner ���C���mCigar path� we have

len��G�	� � C� dG�x� y�� � C� �dm � �G�x��� �

which implies �WS���� If instead � � �� note that

m � log

�� dG�x� y�

�G�y�

�
�

Since dG�x� y� 
 �G�y��� the inner ��mCigar property of 	 then implies
�WS����

We have now proved that all conditions other than �WS��� hold
with some preliminary constant value C � C�� To prove �WS��� we
shall discard some of the slices� leaving enough of them that �WS���
remains true with C � �C�� For  � i � m� let fi � G 
� R be de�ned
by fi�z� � dG�y� z��i���G�y�� Thus Si � f��i ��� ���� and we also
de�ne the thinner annuli S�i � f��i ��	�� ���� � Si and their �inner
and outer boundaries�� Ii � f��i �	��� Oi � f��i ����� Since Ii and Oi

are separated by an inner Euclidean distance di�� and 	 must pass
from one to the other on its way through S�i� we see that

����� len��G�	  S�i� �M���
i

di
�

�

where Mi is the maximum value of �G on S�i� Let z � zi � S�i be any
point for which �G�z� � Mi
 this will be the point zi in �WS��� for
appropriate i�

We partition the set of integers i � ��m� into two sets� the set of
good indices G for which diMi � K� and the set of bad indices B for
which diMi 
 K� where the cut�o� value K equals ��� � �	C��

��������
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Since �WS��� readily follows for any value of i for which diMi �� �
it su�ces to �nd a value K� dependent on allowable parameters� such
that �WS��� remains true with C � �C� if we sum up only over good
indices on the right�hand side�

Consider �rst the case � 
 �� We may as well assume that ��G�x� �Pm
i�� d

�
i since otherwise x� y satisfy an inner ��� �C���wSlice� condition

�with m � ��� By simple geometry� we see that dG�x� y� � dm �
�G�x�� � � dm� and so

�� � �	C�

X
i�B

d�i � K���
X
i�B

d�i

�
X
i�B

M���
i di

� � len��G�	�

� �C� dG�x� y��

� �C�

�
�

mX
i��

di

��

� �� � �C�

mX
i��

d�i �

where the second inequality follows from ������ and the third from the
��mCigar condition� It follows that

P
i�B d

�
i �

P
i�G d

�
i � and so �WS�

�� holds C � �C� for the set of good indices G alone�
As for the case � � �� we have dG�x� y� � � dm � �m �G�y�� and so

since m � ��

��C��
��

mX
i��

M��
i di � C��

� len��G�	�

� log
�

 �
dG�x� y�

�G�y�

�
� log � � �m�

� m�

It follows that �WS��� holds with C � �C� for the set of good indices
alone�

We omit the proof of the last statement of the lemma� as it merely
involves making straightforward adjustments to the proof for the Eu�
clidean case� which is �BK�� Lemma ����a���
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Theorem ���� Suppose f is a K�quasiconformal mapping from a ��
broad inner ��� C��wSlice� �or inner C�Slice� domain G � Rn onto

�� Then � is an inner ��� C ���wSlice� domain �or inner C ��Slice�

respectively� domain for some C � � C ��C� �� n�K��

If f � G� and � are as in Theorem ��� then Lemma ��� tells us that
G is broad and the � � � case of Lemma ��	 tells us that � is an inner ��
wSlice� domain� Thus Theorem �� follows from Theorem ���� at least
when � � �� The � 
 � case requires little extra e�ort� First� according
to �BS� Lemma ����� an inner Slice domain is an inner ��wSlice domain�
quantitatively� for all � � ��� �� so the Slice part already implies most
of the ��wSlice� part of Theorem ��� It remains to verify �WS��� and
�WS���� The former immediately follows from the Slice condition�
while the latter is implicit in the proof of the Slice part of Theorem ����

Recall that ��wSlice� domains are ��wSlice domains that satisfy
two extra conditions� �WS��� and �WS���� �WS��� will play an im�
portant role in the proof of Theorem ��� but� by contrast� the proof
would work as well if �WS��� were not part of the de�nition of an inner
��wSlice� domain
 it will� however� play an important role in Section 	
when proving the theorems stated in the introduction�

In proving Theorem ���� we will make use of a few basic properties
of quasiconformal mappings which we describe here� Suppose that f
is a K�quasiconformal mapping from G onto �� where G� � are do�
mains in Rn � Then f�� is K ��quasiconformal� where K � � K ��K�n��
If B � B�x� r� � G with r � C��B� �G� for some  
 C 
 ��
then for any y � fB� we have c����y� � dia� fB � C ����y� and
B�f�x�� c����f�x��� � fB� where c� and C � depend only on C�K� n

furthermore we can choose c�� C � tending to � as C 
� �� Brie�y� qua�
siconformal mappings send Whitney balls to Whitney type objects� K�
quasiconformal mappings quasipreserve conformal modulus �i�e�� they
preserve it up to a multiplicative constant dependent on K and n� and
they also quasipreserve large quasihyperbolic distance� in the sense that
 � d��G�x� y� and  � d����f�x�� f�y�� are comparable� For details of
these and other properties of quasiconformal mappings� we refer the
reader to Theorem �� and other parts of �V��� �V�� ��	�� and �GO�
Theorem ���

Proof of Theorem ���� Given x�� y� � �� let 	� fSi� digmi�� be ��� C��
wSlice� data for the pair x� y� where x � f���x�� and y � f���x���
Since we are working with an ��wSlice� condition with � � �� we
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may a fortiori take di � diaG�Si�� Here and throughout the proof�
our notation for objects associated with G and corresponding objects
associated with � di�ers only by the use of superscript primes in the
latter case�

Multiplying the size of C by 	 if necessary� we may also assume
that �WS�	� holds� If m � �� then x�� y� satisfy a ��wSlice� condition
with m� � � �since f quasipreserves large quasihyperbolic distance��
We may therefore assume that m 
 �� Let 	i � 	���� ��  Si� let 	i

be a component of 	i of inner diameter at least diC� as guaranteed by
�WS���� and let �i � �G�zi� for some �xed but arbitrary point zi � 	i�
By elementary estimation� we see that the quasihyperbolic length of any
component K of 	i must be at least log ��G�z���G�z���� for any pair of
points z�� z�� � K� Thus �WS�	� implies that �G�z� � �i� z � 	i� By
�WS��� and �WS�	�� it follows that di�i �� len��G�	i� � C� while
the �rst statement in Lemma �� says that di�i 
� � Consequently�
�G�z� � di� z � 	i�

Fix xi � 	i and let x�i � f�xi�� for each  � i � m� For a
constant C �

� 
 � to be chosen later� let B�
i � B��x�i� C

�
����x�i�� and

S�i � f�Si�  B�
i� Writing m� � m� d�i � dia��S�i�� and choosing 	� to

be a quasihyperbolic geodesic in �� we claim that 	�� fS�i� d�igm
�

i�� are
��� C ���wSlice� data for x�� y�� as long as C � 
 C �

� are both suitably
large�

Since f maps Whitney balls to Whitney type objects� the slice
data for x�� y� inherit the conditions �WS��� and �WS��� from G �in
general not with the same constant� of course�� Since f quasipreserves
large quasihyperbolic distance� the slice data for x�� y� inherit condition
�WS��� from G� It remains to prove �WS����

We claim that x� and y� lie in separate components of � n S�i�
provided that C �

� is large enough� Suppose that they lie in the same
component� and so there exists a path �� � ���x�� y�� which does not
intersect S�i� Let � � f�� � ��� let �i be as in �WS���� and de�ne

F � �i� F � � fF � E � B�xi� c �G�xi��� and E� � fE� where c �
c�K�n� is the largest constant in ��� �� for which E� � B�x�i� ���x�i����
Then diaG�F � � di� dG�E�F � �� di� and by the quasiconformality of
f � diaG�E� � di� Thus �G�E�F � �� � and so mod�E�F 
G� � � �
����C� n�K� 
 ��

Now d��E�� F �� � �C �
�
�� ���x�i� and dia��E�� � ���x�i�� and so

���E�� F �� � C �
�
�� Thus by Lemma ��� and the quasiconformality

of f �

mod�E�F 
G� � mod�E�� F �
 �� �� �log �C �
� 
 ����n�� �
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Since mod�E�F 
G� � �� we get an upper bound for C �
� in terms of ��

C� n� and K
 we may assume that this upper bound is at least �� For
any C �

� larger than this bound� the claim follows�
We �x C �

� to be a little more than twice as large as this bound� so
that f�Si����B�

i separates x� from y�� Let �� � ���x�� y��� � � f���
��� let �i be as in �WS���� and de�ne F � �i� F � � fF � We wish to
show that dia��F �� 
� d�i� We may assume that F � � S�i since otherwise
F � contains points in both � n B�

i and ���B�
i� and so dia��F �� �

C �
����x�i�� � d�i	�

Now for each z � 	i� we have di � �G�z� �� diaG�	i�� so we can
choose a connected compact subset E� of 	i for which

�G�z� �� diaG�E�� � �G�z�

�
�

for all z � E�� Letting E�
� � fE�� it follows that d�i � ���z�� �

dia��E�
�� for each z� � E�

�� We choose continua E�
�� E

�
 � E�

� such that
dia��E�

��� dia��E�
� � dia��E�

��	 and d��E�
�� E

�
� � dia��E�

��	� If
d��F �� E�

j� � dia��E�
��� for j � � �� then dia��F �� 
� dia��E�

�� � d�i
as required� Suppose therefore that d��F �� E�

j� 
 dia�E�
��� for some

j � f� �g� We write E� � E�
j � E � f��E�� Note that diaG�F � � di�

dG�E�F � �� di� and by quasiconformality of f � diaG�E� � di� Thus by
Lemma ��� we obtain

mod�E�� F �
 �� � mod�E�F 
G� 
�  �

But dia��E�� � d�i� d��E�� F �� 
� d�i� and so by Lemma ����

dia��F �� 
� di �

The proof for the Slice version is similar� so we omit it�

�� Product domains�

One of the main lessons of this section is that �inner� slice condi�
tions are rather restrictive when imposed upon product domains� This
stands in contrast to Section �� where we saw that the various slice
conditions are very weak� at least in the plane� We note that simply�
connected planar counterexamples are easily constructed to each of the
product domain results in this section if we remove the product domain
hypothesis�
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Our main theorem in this section is as follows�

Theorem ���� Suppose that � � � �  and that � � U�V � Rn�RN
is a bounded domain� n�N � N� The following are equivalent �

i� � is an inner ���C���wSlice
� domain�

ii� Both U and V are inner ���C��mCigar domains�

iii� � is an inner ���C���mCigar domain�

The constants Ci depend only on each other and on ��
dia����r���� n� and N �

A result of Lappalainen �L� ���� says that� for every � � � � � � �
there exists a planar domain D� which is an �inner� ��mCigar domain
but not an �inner� ��mCigar domain
 D� happens to be bounded� qua�
siconvex� and simply�connected� Lappalainen s result extends to the
case � � � � � �  since a ��mCigar domain is a uniform domain and
so any ��mCigar domain which is not a �����mCigar domain is certain
not a ��mCigar domain� Taking U � D� and letting V be the unit ball
in Rn� � we thus get the following corollary of Theorem 	��

Corollary ���� For any � � � � � �  and � � n � N� there exists an

�inner� ��wSlice� domain � � Rn which is not an �inner� ��wSlice�

domain but is homeomorphic to a ball�

Note that ��wSlice domains may be inner unbounded even if they
are bounded �e�g�� many simply�connected planar domains with a spi�
ralling cusp�� If however � is assumed to be inner bounded in The�
orem 	�� then the reader can verify from the proof that the inner
��wSlice� condition in this theorem can be weakened to an inner ��
wSlice condition� Lappalainen s examples are certainly inner bounded�
so the same examples show that for any � � � � � �  and � � n � N �
there exists an �inner� ��wSlice domain � � Rn which is not an �inner�
��wSlice domain but is homeomorphic to a ball�

To prove Theorem 	�� we shall need some lemmas�

Lemma ���� Let � be an inner ���C��mCigar domain� � � � � �
For every x� y � �� there exists an inner ���C��mCigar path 	 such

that all initial and �nal segments of 	 are inner ��� �C��mCigar paths

�for the segment endpoints��
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Proof� Fixing x� y � �� we may assume that jx 
 yj � ���x� 	
���y�� since otherwise �x� y� has minimal d����length among all paths
connecting x and y� and so all segments of this line segment are ���C��
mCigar paths� Let Bx � B�x� ���x��� and By � B�y� ���y����

By symmetry� it su�ces to prove the result only for initial seg�
ments� Consider �rst the case � 
 �� Let � � �x � �y� where �z �
������ 
 � ����z��� for z � fx� yg� The desired path 	 will be an
inner ���C��mCigar path for x� y with some extra properties� First� we
assume that len����	� � d����x� y� � �� Since the d����mimimal length
paths from x to any x� � �Bx� and from y to any y� � �By� are line
segments� we may also assume that the only subarc of 	 lying in either
Bx or By is a single line segment� Finally by reparametrization� we
may assume that 	j������� and 	j������� are the line segments in question�
from x to x� � �Bx and from y� � �By to y� respectively� and that both
of these line segments are traversed by 	 at a constant Euclidean speed�

By direct calculation� it is easy to check that 	j���t� is an inner
��� f��t���mCigar path for t � 	� with f��t� � �
�
� t���� �� t��

this largest constant is attained by picking x� so that ���x�� � ���x���
Since f� is increasing on ��� 	�� we have f��t� � f��	� � ���
���
t � ��� 	�� By calculus� we see that f��	� � f��	� � � � � ��� ��
Thus these initial segments are �inner� ��� ��mCigar paths�

To go from x to 	�t�� t 
 	� one must �rst exit Bx� and so
d����x� 	�t�� � minu��Bx

d����x� u� � � �x� Suppose for the purposes
of contradiction that 	j���t� is not an inner ��� �C��mCigar path for the
pair x� 	�t�� The d����length of an inner ���C��mCigar path for x� 	�t�
is less than half that of 	j���t�� and so shorter by an amount in excess of
�x� Thus splicing the �reparametrized� shorter path into 	 in place of
	j���t�� we get a new path� contradicting the near�minimal d����length
of 	�

Taking � � log
p

��� the proof when � � � is similar� so we omit
it� Alternatively� it follows from the fact that quasihyperbolic geodesics
in an inner ��� C���mCigar domain are inner C�uniform paths for some
C � C�C��
 see �V	� ���!��

Lemma ���� If � � � �  and � � U�V � Rn�RN is a bounded inner

���C��wSlice� domain� then � is also inner bounded� and dia���� �
C � dia���� where C � � C ����C� dia���r���� n� N��

Proof� Without loss of generality� we may assume that C � 	 and that
dia��� �  �the latter because of the scale invariance of the hypotheses
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and conclusion�� By symmetry it su�ces to prove that diaU �U� �� �
We choose v� � V such that �� � �V �v�� � r�V �� Note that r��� �
�� � � and that dU �u�� u� � d���u�� v��� �u� v����

Suppose that there exist points u�w � U such that dU �u� v� 
 �
Writing x � �u� v��� y � �w� v��� we assume that inner ���C��wSlice�

data for x� y are 	� fSi� digmi��� with the indexing chosen so that fdigmi��
is non�decreasing� It is also convenient to de�ne d� � � and dm�� � ��
Let m� � ���m� be the unique integer for which dm�

� ��� � dm����
Using only �WS��� we claim that d� � � ����x� � ���y��C� and

that there exist constants C�� t 
 �� dependent only on C� such that
di � C� ��i�j�t dj whenever j � i � m�� We �rst construct two paths
�� and �� from x to y� each consisting of three segments� The �rst
segment of �� is �x � x��� where x� � �u� v� � v�� � �B�x� ����� The
second segment� from x� to y� � �w� v��v��� has constant V �component�
and the �nal segment is �a reparametrization of� �y� � y�� The path
�� is de�ned in a similar fashion except that we replace v� by 
v�
throughout�

Let i � m�� By �WS��� both �� and �� intersect Si on a set of
length at least diC
 we denote the sets of intersection by S�i and S�i �
and write S�i � S�i � S�i � Since di � ��� � 	� it follows that S�i
�in fact� all of Si� is contained in either B�x� ���� or B�y� ����� The
argument is the same in both cases� so we assume that S�i � B�x� �����
Since S�i and S�i lie outside B�x� ���x�C�� and on opposite sides of
�u� v��� we have di � � ���x�C� giving the �rst half of our claim�
For the same reason� we actually have S�i � B�x� di�� In particular� if
di � �a�� a� for some positive number a � ���� then Si intersects both
�� and �� on sets of length at least a�C lying in B�x� a� � B�y� a��
Slices are disjoint� and the total intersection of either �� or �� with
B�x� a��B�y� a� has length � a� so there can be at most 	C such slices
Si� The second half of our claim now follows�

Suppose that � 
 �� To prove inner boundedness of U � we �nd a
bound for len�	�� Since dia��� � � we have len�	� � len����	�� Thus
it su�ces to bound

Pm
i�� d

�
i � The geometric growth of fdigm�

i�� ensures
that

m�X
i��

d�i �� d�m�
�
���

�

��
�

By �WS���� we have

�di
C

�n�N
� jSij � j�j �  �
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and so di � C for all i� If i � m� then di � ��� and so jSij �
�����n�N � Since the slices are disjoint� we deduce that m 
 m� �
�����

n�N � Thus

mX
i�m���

d�i � �m
m�� d�m � �n�N ��n�N� C� �

It follows that
Pm

i�� d
�
i
�� � as desired�

Suppose instead that � � �� It is not hard to show that

�	��� d����x� y� 
� log
�

 �
d��x� y�

���x� � ���y�

�
�

For the Euclidean version of this inequality� see �GP� Lemma ���� whose
proof also handles this inner version
 see also �V	� ����� As in the case
� 
 �� we have m
m� � �n�N�n�N� � The size and growth properties
of fdigm�

i�� obtained above imply that m� ��  � log �����x�� ���y����
Thus

d����x� y� �� ��m �� �log
� 

���x� � ���y�

�
�� log

�
�



���x� � ���y�

�
�

Comparing this last inequality with �	���� we deduce that d��x� y� �� �

The Euclidean version of the next lemma is part of the � � � case
of �BK�� Lemma ������ We omit a proof� as it is entirely analogous to
the Euclidean case�

Lemma ���� Let � � � �  and let 	 � ��� l� 
� � be an inner

���C��mCigar path� parametrized by arclength� for the points x� y in

a domain � � Rn � Let us denote by r � ��� l� 
� ����� the non�

decreasing rearrangement of t �
� ���	�t��� Then there exists exists

a constant C� � C��C��� such that len�	� � C� d��x� y� and r�t� �
C��
� �t d��x� y������������ In particular� r�c l� � C��

� c�������d��x� y�
for all c 
 ��

Proof of Theorem ���� i� implies ii�� Assuming that � is an
inner ���C���wSlice� domain� it su�ces by symmetry to prove that

�
The version there is stated for �	mCigar domains � but the proof merely uses the

fact that that there exists an �	mCigar path for a particular pair of points� Also � is

assumed to be bounded� but this is not used�
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U is an inner ��mCigar domain� Fix a point v� � V such that �� �
�V �v�� � r�V �� Let 	� fSi� digmi�� be inner ���C���wSlice� data for
a pair of points x � �u� v��� y � �w� v�� � �� We may assume that
d��x� y� 
 ����x� 	 ���y���� since otherwise a line segment satis�es
an ��mCigar condition� We index the slices so that fdigmi�� is non�
decreasing
 it is also convenient to de�ne d� � � and dm�� � �� Let
m� � ���m� be the unique integer for which dm�

� s � dm���� where
s � ��� � d��x� y����

As in Lemma 	�	� we see that d� � � ����x� � ���y��C� and that
there exist constants C �� t 
 �� dependent only on C� such that di �
C � ��i�j�tdj whenever j � i � m�� Fixing a path � � ���x� y� such that
len��� � � d��x� y�� �WS�� implies that

�	���
mX
i��

di � �C d��x� y� �

Thus m
m� � �C d��x� y�s � �C diaU �U���� Thus by Lemma 	�	�
m
m� �� �

Consider the case � � �� By the size and growth properties of
fdigm�

i��� we see that

m� ��  � log
� d��x� y�

���y� � ���x�

�
�� log

�
 �

d��x� y�

���y� � ���x�

�
�

Since also m 
m� �� � �WS��� now implies an inner ��mCigar condi�
tion for x� y� When we project from � to U � Euclidean length cannot
increase� and distance to the boundary cannot decrease� Therefore we
deduce an inner ��� C��mCigar condition for u�w� with C � C�T ��
where T denotes the data ���C�� dia����r���� n� N��

Consider next the case � 
 �� Suppose� for the purposes of con�
tradiction that U is not an inner ��mCigar domain� For each k � N �
there exist points uk and wk for which d��U �uk� wk� � k dU �uk� wk��

also let xk � �uk� v�� and y � �wk� v��� Regardless of the values of
k� �� we must have � d��xk� yk� � ���xk� 	 ���yk� since otherwise by
consideration of the segment �xk � yk�� the points uk and wk would
violate the previous inequality� But

�	��� d����xk� yk� � d��U �uk� wk� � k dU �uk� wk�� � k d��xk� yk�� �

and so d����xk� yk� � k �������xk� 	 ���yk��� Let 	� fSi� digmi��� be
inner ���C���wSlice� data for the pair xk� yk� with fdigmi�� non�decrea�
sing
 for ease of notation� the dependence on k is implicit� Taking
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k 
 � � ��C�� it follows from �WS��� that len����	� � �C�

Pm
i�� d

�
i �

Combining this inequality with �	��� and �	���� we get

�	�!�

mX
i��

d�i

� mX
i��

di
�� � len����	�

�C�

� mX
i��

di
��

� len����	�

�C���
� � �� � d��xk� yk��

� k

�C���
� � �� �

But the growth rate of the fdigm�

i�� and the bound on m
m� imply that
both

Pm�

i�� d
�
i and

Pm
i�m���

d�i are no more than a constant multiple

of �
Pm

i�� di�
�

� Taking k to be larger than some constant C � C�T ��
we get the desired contradiction to �	�!��

ii� implies iii�� Assume �rst that � 
 �� By the triangle inequality�
it su�ces to verify the inner ��mCigar condition for pairs of points
x� y � � with one common coordinate
 by symmetry� we may assume
that x � �u� v�� y � �w� v�� Let us �x a point v� � V such that
�� � �V �v�� � r�V �� Let � � ��� � 
� V and 	 � ��� � 
� U be inner
���C��mCigar paths from v to v� and from u to w respectively� where
� has the additional properties guaranteed by Lemma 	�� �applied to
V �� Letting L � len�	�� 	� � 	j������� 	 � 	j������� z � 	���� we
may assume that 	 is parametrized so that len�	�� � len�	� � L��

Suppose also that L � � len���� We wish to de�ne an inner ��
mCigar path " � ���x� y�� We choose "�t� � �	�t�� ��t��� where � is a
path in V which starts and �nishes at v but� in between times� moves
along � and back� More precisely� for � � t � �� � coincides with
a reparametrized initial segment of �� with the parametrization chosen
so that len�	j���t�� � len��j���t��� For � � t � � � traces its way back
along the curve of � in such a way that len�	j�t���� � len��j�t�����

Since ����a� b�� � �U �a� � �V �b�� a � U� b � V � we obtain

len����"� �

Z
�

�U �	�t����� ds�t� �

Z
�

�V ���t����� ds�t�

�
p

� �len��U �	� � len��V ���� �
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Now len��U �	� � C dU �u�w�� � C d��x� y��� By Lemma 	�� we may
assume that L �� dU �u�w� � d��x� y�� and so by Lemma 	�� applied to
the segments 	� and 	�

len��V ���

	C
� dV

�
v� �

�

�

���
�
�L

�

��
�� d��x� y�� �

The inner ��mCigar condition for " now follows�
The construction for L 
 � len��� is similar� ��t� moves along

����� �� from v at the same speed as before� except now it reaches v� at
some t � t� � �� Similarly� there is some number t� 
 � such that
len��t�� �� � len���� The path � is now continued so that ��t� � v� for
that t� � t � t�� and �nally for t� � t � � ��t� moves back along �
to v at the same speed as before� The estimates are the same as before
except for Z

�j�t��t��

�V ���t����� ds�t� � L�V �v��
��� �� L� �

We must still consider the � � � case� Since the ��mCigar condition is
quantitatively equivalent to uniformity �V	� ������ it su�ces to verify
that if U and V are uniform� then � is uniform� Let v� � V be as in the
� 
 � case� but now we seek to �nd a uniform path between a pair of
points �u�� v�� and �u� v�� Let 	 � ��� l�� 
� U and � � ��� l� 
� V be
uniform paths parametrized by arclength for the pairs of points u�� u
and v�� v in their respective domains
 without loss of generality l� � l�
Let � � ��� l�� 
� V be a uniform path in V � parametrized by arclength�
for the pair ��l��� v�� We now de�ne a new path � � ��� l�� 
� V
linking v� and v� If l� � l � � l�� then

��t� �

�											�
											�

��t� � � � t � l
�
�

�
�
t
 l

�

�
�

l
�
� t � l�

�
�

�
�
l� 
 l

�

 t
�
�

l�
�
� t � l� 
 l

�
�

��t
 l� � l� � l� 
 l
�
� t � l� �

while if l� � l�� l�� then the de�nition is similar except that � �rests�
at v� for an interval of length l�
 l
� l� before turning back� We leave
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it to the reader to verify that the path " � �	� �� is a uniform path in
� for the pair �u�� v�� and �u� v�� with quantitative dependence only
on allowed parameters� namely dia����r���� n� N � and the uniformity
constants for U� V �

iii� implies i�� This follows from Lemma ��	�

Proof of Theorems ���� ��	� and ���� We �rst prove Theorem ���
Trivially ii� implies i�� Since an inner ��mCigar domain is just an inner
uniform domain� the equivalence of ii� and iii� follows from Theorem 	��
If � is K�quasiconformally equivalent to an inner C�uniform domain
then Theorem �� ensures that it is an inner ��� C���wSlice� domain�
with C� � C��C� n�N�K�� and so Theorem 	� tells us that i� implies
ii��

Theorem ��� follows similarly by combining Theorem ��� and The�
orem 	�� As for Theorem ���� one direction is given by Lemma ����
while the other follows from Theorem ��� with G � ��

Remark ����� The implication i� implies ii� of Theorem �� also fol�
lows from recent work of Bonk� Heinonen� and Koskela
 see �BHK�
Remark ���	�� Their methods �based around Gromov hyperbolicity�
are however quite di�erent and do not apply to the � 
 � case of
Theorem 	��

Remark ����� Theorem �� does not tell us what product domains
are quasiconformally equivalent to a ball� In fact� V�ais�al�a �V	� showed
that if G is a simply�connected proper subdomain of the plane� then
G � R is quasiconformally equivalent to a ball if and only if there is a
BLD �bounded length distortion� mapping from G to a disk or a half�
plane� It is not hard to modify his proof to show that for a bounded
domain G� G � ��� � is quasiconformally equivalent to a ball if and
only if there is a BLD �bounded length distortion� mapping from G
to a disk� It follows that there are inner uniform domains of product
type that are not quasiconformally equivalent to a ball� For instance�
the planar domain U bounded by a von Koch snow�ake is a uniform
domain but� because its boundary is not locally recti�able� no such
BLD mapping can exist and consequently � � U � R is uniform but
not quasiconformally equivalent to a ball�

Remark ���	� The ��wSlice� hypothesis cannot be removed from
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Theorems ��� and ���� For example� let Bk denote the unit ball in
Rk � let n 
 � and consider the product domain � � B n N � where
B � Bn � Bm and N � A � Bm� A �

S�
j��Aj � and Aj consists of

�j#�n�� points on the sphere Sj � fjzj �  
 ��jg � Rn � spaced so
that the distance from any x � Sj to Aj is at most Cj#� for some
C � C�n�� Clearly B is broad� and we claim that � is also broad�
To see this� let E�F be non�degenerate disjoint continua in �� Since
B n� has Hausdor� dimension at most m � n�m
 � it is an null set

for extremal distance �V� and so mod �E�F 
B� � mod �E�F����
The restriction of dB to �� � coincides with d�� and so �B�E�F � �
���E�F �� The claim now follows readily� However Bn nA� and hence
�� is not inner uniform since a path from the origin to a point x of norm
nearly  must pass through very narrow bottlenecks as it approaches x�

	� Further results�

We �rst use some of the ideas developed in the last section to
prove� as promised in Section �� that �WS��� can be removed from the
de�nition of �inner� ��wSlice conditions when � 
 � without changing
the class of domains
 we shall need this result in the �nal section�

Theorem 	��� Suppose that � � � � � x� y � G � Rn � and that 	 �
�G�x� y�� fSi� digmi�� satisfy �WS�� and �WS���� with di � diad�Si� for

some metric satisfying dRn � d � dG� Then x� y satisfy an ���C �
 d��
wSlice condition for some C � � C ��C���� with slice data 	�� fTi� eigMi��
satisfying

C �
�
��G�x� � ��G�y� �

MX
i��

e�i

�
� C

�
��G�x� � ��G�y� �

mX
i��

d�i

�
�

Proof� Without loss of generality �G�x� � �G�y�� We may as�
sume that jx 
 yj 
 �G�x�� since otherwise the conclusion is true
with M � � and 	� � �x � y�� Writing Bz � B�z� �G�z��C� andeBz � B�z� �G�z���� for z � fx� yg� we note that eBx and eBy are dis�
joint� The �rst step is to de�ne new slices S�i � Si nBx �By� and leave
the numbers di unchanged� Certainly� these new slices satisfy �WS����
but �WS�� may now fail� We discard any slice S�i for which �WS��
still fails even after we replace C by �C� Renumbering the remaining
pairs �S�i� di�� we get new slice data 	� � 	� fTi� eigMi���
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By construction� the new data satisfy �WS���� and �WS�� with
constant �C� It remains to prove �WS��� �with C replaced by some C ���
If S�i is a discarded slice then there must exist some path � � �G�x� y�
whose intersection with S�i has length less than di�C� Now �WS��

for Si tells us that len��  Si  Bx � By� 
 di�C� If we alter � so
that for z � x� y the only segment of 	 lying in Bz is a single line
segment �of length �G�z��C�� but otherwise leave � unchanged� this
inequality must remain true� Thus ��G�x�� �G�y���C � di�C� and

so di � �G�x�	� If Si Bx is non�empty� then Si must lie fully in eBx�
On the other hand� if Si Bx is empty� then Si By is non�empty and

di � �G�y�	� In either case� we deduce that Si lies fully in either eBx

or eBy�
Let us enumerate the discarded slices and the corresponding num�

bers as fS�ji � d�igki��� with d�i � dji � We choose the enumeration so that

fd�igki�� is non�decreasing� As in the proof of Lemma 	�	� we obtain the
growth estimate

d�i � C� ��i�j�td�j � for  � j � i � k �

In fact to get this estimate� the two paths used should be as follows� The
�rst one� ��� starts o� as any line segment of length ���x�� emanating
from x� and ends as any line segment of length ���y�� ending at y�
the middle part of the path being any path joining the outer endpoints
of these two segments in � which stays outside eBx � eBy� The second
path �� has the same construction except that the initial and �nal line
segments are in directions opposite to those of the ���

The growth estimate and �WS�� now give

kX
i��

�d�i�
� �� �d�k��

�X
j��

��tj �� �d�k�� �� ����x� � ����y� �

Thus

��G�x� � ��G�y� �
MX
i��

e�i 
� ��G�x� � ��G�y� �
mX
i��

d�i

and so if we replace C by an appropriate C �� then the remaining slices
satisfy all three conditions �WS��� �WS���� and �WS����

Next we wish to state a John�Separation version of Theorem 	��
but let us begin with two de�nitions that we need�



Weak slice conditions ���

Let us �x a constant C �  and a point x� in the domain G� A
C�John path for x �with respect to x�� is a path 	 � �G�x� x��� 	 �
��� l� � G� which is parametrized by arclength such that ��	�t�� � tC
for all t � ��� l�� We say that G is a C�John domain �with respect to x��
if there exists a C�John path �with respect to x�� for all x � G�

Let C� x� be as above and let Bz � B�z� C�G�z��� z � G� As
de�ned in �BK�� a C�Separation path for x �with respect to x�� is a
path 	 � ��� � 
� G� 	 � �G�x� x��� such that for each t � ��� �� any
path from a point in 	���� t�� n B��t� to x� must intersect �B��t�� We
say that G is a C�Separation domain �with respect to x�� if there exists
a C�Separation path �with respect to x�� for all x � G� A C�John
domain is a C�Separation domain �since 	���� t�� n B��t� is empty� but
there are many more Separation domains� including all quasiconformal
images of uniform domains �BK��

Theorem 	��� Suppose that � � U � V � Rn � RN is a bounded

domain� x� � �u�� v�� � �� and n�N � N� The following are equivalent �

i� � is a C��Separation domain with respect to x��

ii� Both U and V are C�John domains with respect to u� and v�
respectively�

iii� � is a C��John domain with respect to x��

The constants Ci depend only on each other and on n� N � and

dia����d��x���

Proof� We omit the easy veri�cations of the implications ii� implies
iii� implies i�� Supposing that � satis�es i�� we shall prove ii�� We may
assume that C� 
 � and� by symmetry� it su�ces to show that U is a
John domain with respect to u�� We claim that the �rst coordinate pro�
jection 	� of any C��separation path 	 for the point x � �u� v�� must be
a C�John path for u� with C � C�C�� dia������x���� To see this� we
write r�t� � C� ���	�t��� Bt � B�	�t�� r�t��� If 	���� t�� � Bt� then 	�
satis�es the �C��John condition for x at 	��t�� so we shall assume that
	���� t�� �� Bt� We may also assume that r�t� � �V �v��� since otherwise
the claim follows with C � �C� dia�V ��V �x�� � �C� dia������x���

If j	�t�
 x�j � ���x���� then r�t� � C� ���x���� On the other
hand� if j	�t�
x�j 
 ���x��� and x� � Bt� then r�t� � ���x���� Both
of these contradict the bound on r�t�� so we conclude that x� � Bt�

Suppose that x � Bt� We construct two paths ��� �� � ���x� x��
by �rst moving in a straight line from �u� v�� to points x� � �u� v��w��
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x� � �u� v�
w�� respectively� where w � RN is chosen so that � r�t� �
jwj � �V �v��� The second segment of each paths has constant second
coordinate and recti�able �rst coordinate �nishing at a point with �rst
coordinate u�� and the last segment of each is a straight line segment
back to �u�� v���

Now �Bt must intersect both �� and ��� But �Bt cannot intersect
the middle segment of either path since its distance from the other path
exceeds � r�t�� Neither can it intersect the �rst segments� or the last
segments� of both paths� since it would then follow that either x � Bt

or x� � Bt� Finally suppose that �Bt intersects the �rst segment of one
path at �u� v��� say� and the last segment of the other at �u�� v�� say�
Thus

� r�t� 
 jv� 
 vj 
 � �jv� 
 v�j � jv 
 v�j� �
and so �Bt contains either x or x�� The claim follows as before�

We are left to consider the case where x � Bt� By assumption�
there is a point bx � 	���� t�� n Bt� which by continuity we may assume
to lie in the annulus �Bt nBt� We now de�ne a pair of paths ��� �� �
���bx� x�� by �rst moving in a straight line from bx to points x� �bx � ��� w�� x� � bx � ���
w�� respectively� where w � RN is chosen so
that 	 r�t� � jwj � �V �v�� 
 � r�t�� As before� the second segment of
each path has constant second coordinate and recti�able �rst coordinate
�nishing at a point with �rst coordinate u�� and the last segment of both
paths is a straight line segment back to x�� This claim now follows as
in the previous case�

We now discuss the case of unbounded domains � � Rn � As
we shall see below� most of the implications in Theorem 	� fail if we
simply drop the boundedness assumption� but we do have the following
theorem�

Theorem 	��� Suppose that � � � �  and that � � U � V where

U � Rn � V � RN � r�U� � r�V � � �� and n�N � N� The following are

equivalent �

i� � is is an inner ���C���wSlice
� domain�

ii� Both U and V are inner ���C��mCigar domains�

iii� � is an inner ���C���mCigar domain�

The constants Ci depend only on each other and on �� n� and N �
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Sketch of proof� Let � satisfy the hypotheses and that it is an
inner ���C��wSlice� domain� By symmetry� it su�ces to prove an
inner ��mCigar condition for U � We �x points u�w � U � and choose
a path 	 � �U �u�w� such that L� � len��U �	� � � d��U�u�w�� Let
L� � len�	� and let M denote the largest value of �U �z� on the image
of 	� Now choose v� so that �� � �V �v�� 
 M 	 �CL�� Let x � �u� v���
y � �w� v��� and de�ne the path " by "�t� � �	�t�� v��� It follows
that len����"� � L� and that d����x� y� � d��U �u�w�� We deduce that
the pair x� y possesses ��� �C��wSlice� data of the form "� fSi� digmi���
with the indexing chosen so that fdigmi�� is non�decreasing� By �WS�
�� we see that dm � ���� Arguing as in Lemma 	�	� it then follows
that the numbers di satisfy a geometric growth condition and the inner
��mCigar condition for U now follows as before�

As for the implication ii� implies iii�� assume u� v� w are as in the
corresponding part of the proof of Theorem 	�� and let 	 be an ���C��
mCigar path from u to w of length L� say� Choosing v� so that jv
 v�j
exceeds L�� the proof then follows as before� The implication iii�
implies i� follows from Lemma ��	�

The assumption r�U� � r�V � � � can be weakened in the above
theorem� although it cannot be dropped since we shall give counterex�
amples in the case where only one domain is unbounded �it might su�ce
for both domains to be unbounded but we cannot prove this�� The as�
sumption r�U� � r�V � � � can be dropped altogether from the impli�
cation iii� implies i�� and for ii� implies iii� above� it su�ces that U and
V are both unbounded �but this is hardly more general� since it is easy
to see that an inner ��mCigar domain must have in�nite inradius if it
has in�nite inner diameter�� Finally for i� implies ii�� the following sub�
stitute assumption su�ces �we leave to the reader the straightforward
task of adapting the proof��

The following condition is satis�ed by both W � U and W � V for
some constant c � ��� �� for every A 
 �� there exists a point w� � W
and paths ��� �� parametrized by arclength and of total length A� such
that ����� � ����� � w�� and for every t � ��� A�� the distances from
���t� to the image of ��� and from ���t� to the image of �� are both
at least c t�

Of course any domain W satisfying such a condition but having
�nite inradius is certainly not an inner ��mCigar domain� For a typical
example of such a domain� we �rst let ��� �� be the Archimidean
spirals given in polar coordinates by ����� � ��� ��� ����� � ��� �����
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both for all t � �� and let W be the planar domain consisting of all
points in the unit disk together with all points within a distance �
of the union of the images of �� and ��� Then for each A 
 �� we can
take w� � � and ��� �� to be suitably reparametrized initial segments
of ��� ���

For an arbitrary pair of domains U � Rn � V � RN � the impli�
cations iii� implies i� and iii� implies ii� hold �the former because of
Lemma ��	� while the latter is easy�� but we now give three counterex�
amples which show that the other four possible implications fail� In all
examples� � � U � V � and U is the open interval ��� �� which is of
course an inner ��mCigar domain for every � � ��� ��

First� we see that V � ����� is uniform� and so an inner ��mCigar
domain for every � � ��� �� Moreover � is simply connected� and so
an inner ��wSlice� domain by Theorem �� and the Riemann mapping
theorem� However � is not an inner ��mCigar domain for any such ��
This neither i� nor ii� imply iii��

Next taking V � ��� � � ������ we see that V is not an inner
��mCigar domain� However � is an inner ��wSlice� domain for every
�� In fact if x� y � � and jx
 yj � �� then zero slices su�ce� Suppose
instead that jx 
 yj � �� with x� � y�� where x�� y� are the third
coordinates of x� y respectively� Then y� � x� � 	 and we take as slices
all cylinders ��� ����� ���i� i��� i � N � for which x�� � i � y�
�

we leave the veri�cations to the reader� Thus i� does not imply ii��

Finally� V � ������ ����� is uniform and so an inner ��mCigar
domain for every �� However � is not an inner ��wSlice domain� In
fact for any constant C� the points �u� v�� and �u� v� fail to satisfy an
���C��wSlice condition if u � �� v� � �t� t�� v � �t� �t�� and t � t�
for some su�ciently large number t� � t��C�� We leave the veri�cation
of this to the reader� with the hint that the techniques of Lemma 	�	
can again be adapted to this purpose� Thus ii� does not imply i��

�� Open problems�

In this �nal section� we discuss the basic relationships between the
various slice� conditions� We use the term zero�point implications for
implications between slice conditions for a �xed pair of points� Note

�
Below� the term slice is used to refer generically to Slice� �	wSlice� �	wSlice

�
� and

all other slice conditions�
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that all slice conditions hold for a �xed pair of points if we choose a suf�
�ciently large constant� so zero�point implications are only of interest if
we insist that the implied slice constant depends quantitatively only on
the assumed slice constant and other reasonable parameters such as the
dimension� We also discuss one�point implications involving one�point

slice conditions� where the slice condition is assumed to be true uni�
formly for one �xed point x � x� and all y in the domain
 we call the
classes of domains satisfying such conditions one�sided slice domains�
Finally� we discuss two�point implications involving two�point slice con�
ditions� where the slice condition is assumed to be true uniformly for
all pairs x� y in the domain
 as in previous sections� we use the term
slice domains to refer to the associated domains�

We shall �rst note some quantitative zero�point implications
 these
immediately imply the corresponding one� and two�point implications�
Most other quantitative zero�point implications will be seen to be false
and the corresponding one�point implications are also false� Actually�
these facts are essentially equivalent since a counterexample to a one�
point implication immediately gives a counterexample to a quantitative
zero�point implication� while the opposite direction involves the usual
trick of gluing successively worse appendages either to each other or to
a central subdomain� By contrast� we have few answers as to whether
or not the corresponding two�point implications are true�

As a convenient reference� we include the following diagram of some
of the basic quantitative zero�point implications among the various slice
conditions that have been used in this paper�

Inner Slice �� Inner ��wSlice �� Inner ��wSlice�ww
 ww
 ww

Slice �� ��wSlice �� ��wSlice�

As mentioned at the end of Section �� the two left�to�right implications
were established in �BS�� The remaining implications are immediate
consequences of the de�nitions� The authors conjecture that the second
and third columns of this diagram coincide
 see Open Problem A below
and the accompanying discussion� Eliminating the third column� the
counterexamples in this section together with those in �BS� Section ��
show that the four remaining one�point implications cannot be reversed
�and so the zero�point implications cannot be reversed with quantitative
dependence�� In fact� we even have a one�sided Slice domain which is
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not a one�sided inner ��wSlice �after Open Problem D� and a one�sided
inner ��wSlice domain that is not a one�sided Slice domain ��BS� for
� 
 �
 the example after Open Problem B for � � ��� We also know
that the one�sided ��wSlice��� conditions are incomparable for di�erent
values of the slice parameter � �see the example after Open Problem B
for one direction and Corollary 	�� for the other��

At this point� the authors know much less in terms of being able to
reverse the two�point versions of the four implications discussed above�
We do know that the two left to right implications cannot be reversed
when � 
 � �a counterexample appears in �BS�� but we conjecture that
these arrows can be reversed in case � � �� The same examples in �BS�
prove the diagonal non�implications

��wSlice �� Inner Slice � � 
 � �

Inner ��wSlice �� Slice � � 
 � �

But when � � �� we again conjecture that these implications are valid�
Below we give some more details on these open questions and related
examples�

For any constants C�C �� it is not hard to concoct a set of slices for
a pair of points x� y that satis�es the ���C��wSlice condition� but not
the ���C ���wSlice� condition� For instance� let us begin with annular
slices fSigmi��� as given by Lemma ��	� for a pair x� y in a ball� Cut
each annulus Si into �N equally thin subannuli for some N � N � and
redistribute each of these subannuli in alternating order into two new
slices S�i and S��i � The set of new slices fS�i� S��i gmi�� still satisfy the ��
wSlice condition �although we must double the size of C to ensure �WS�
�� but no longer satisfy the extra wSlice� conditions with any given
constant if N is very large� However in this and all other examples
we have constructed� there always exists a �better� set of slices which
demonstates that the pair x� y satis�es an ��wSlice� condition� We
suspect that in fact that the logically weaker ��wSlice condition implies
the ��wSlice� condition quantitatively� but this seems hard to prove�

Open Problem A� If the pair x� y � G � Rn satis�es an ���C��wSlice
condition� show that it also satis�es an ���C ���wSlice� condition for
some C � � C ��C��� n��

Let � � �� � � � For the class of ��mCigar domains to contain
the class of ��mCigar domains it is necessary and su�cient that � � �

see �L� and �BK��� One might suspect that an analogous result might
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be true for wSlice� �or wSlice� domains� Indeed� Corollary 	�� gives
us necessity� We suspect that su�ciency is also valid� but proving this
appears to be di�cult�

Open Problem B� Suppose � � � � � � � Show that a ��� C��
wSlice� domain is an ���C ���wSlice� domain for some C � �
C ��C��� �� n��

The analogous result for mCigar domains is rather easy� In fact� an
��mCigar condition for a �xed pair u� v � G implies an ���C ���mCigar
condition for u� v� with C � � C ��C��� �� n�� as can be seen from the
proof of �BK�� Proposition ��	�� By contrast� the wSlice� variant for a
�xed pair of points cannot be true� Indeed� given � � � � � � � we
now describe a bounded domain G � R� which is a one�sided ��wSlice�

domain �with respect to x� � G�� but it is not a one�sided ��wSlice�

domain �with respect to x��� It is not hard to modify this example to
handle also the case � � ��

Our counterexample G � R� is got by gluing together a sequence
of open rectangular boxes Fn� Ln �n � �� of dimensions Rn � Rn � rn
and Sn � sn � sn� respectively� where Rn � ��n� rn � ��n�����

��

�
Sn � ��n� sn � ��n������

������	����
 note that for large n� rn is
much smaller than Rn and sn is much smaller than Sn so that Fn is
a �at box and Ln is a long box� For each n� we choose a line seg�
ment of length Rn �and Sn� linking the centers of opposite faces of
Fn �and Ln� respectively� and call this the main axis of this box� G
is then de�ned by gluing these boxes together according to the order
F�� L�� F�� L�� � � � � Fn� Ln� � � � � so that all the main axes line up to form
a single main axis �of symmetry� for G� Let fk�t and lk�t denote the
dt�G�length of the main axis of Fk and Lk respectively� for k � ��

We claim that lk�	 � fk�	 � �k���	�������� whereas fk�� �  and
lk�� � ��k���	�����	�� Let us �rst consider ln�	� for large n� It is
easy to see that if we de�ne a truncated box by chopping o� a cube �of
sidelength sn� from both ends of Ln� then the d	�G�length of the part of
the main axis lying in the truncated box is comparable to s	��n Sn � ln�	�
The length of the parts of the axis that were chopped o� is at most
comparable to Z rn

�

t	�� dt � r	n �

which is much smaller� The estimate for ln�� is similar� For fn�� and
fn�	� the estimates are derived in a similar fashion once we chop o� a
box of size rn�Rn� rn from both ends of Fn in such a way that these
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little boxes cover the ends of the main axis of Fn� This establishes our
claim�

The choice of x� is not important
 we may as well take it to be
the center of F�� There is no di�culty in choosing slices for x�� x when
x � Fn�Ln for some small n� since dt�G�x� x�� is bounded in such cases
�t � � or t � ��� so zero slices will su�ce� Let us look at the case
where x � xn is the center of Fn for large n
 it is easy to adjust the
arguments to handle other points� Notice that the d	�G geodesic 	n
from x� to xn is simply �x� � xn�� For the ��wSlice� condition� we
slice up the boxes Lk� � � k � n� perpendicular to their main axes into
cubes of sidelength sn� discarding any remnant at one end of Li which
is too small to make another cube� Gathering together all these slices�
it is easy to see that �WS���� �WS���� and �WS��� hold� Almost all
the d	�G�length of 	n  Lk� � � k � n� lies in some slice� Since also
lk�	 � fk�	� �WS��� follows easily�

Suppose for the purposes of contradiction that an ��wSlice� con�
dition also holds for the pair x�� xn� uniformly in n� We show that this
is untenable for large n� This is rather tricky but the idea is simple�
�at boxes� unlike long boxes� cannot be �nicely sliced�� which causes a
problem since most of the d��G�distance between x� and xn consists of
�at boxes�

We denote by F �
k and L�k the parts of a box Fk or Lk� respectively�

that lie within a distance sk� of a face of that box that is glued to
another box� and by T�k and T�

k the transitional part of Lk � Fk  G
or Lk � Fk��  G that lies within a distance sk of a glued face of one
of its component boxes� We �rst modify the slices so that there only
two types of slices� nice slices which are contained in a single F �

k or L�k�
and transitional slices that are contained in either T�k or T�

k for some
k� This can be done �with a controlled change in the slice constant� by
replacing each original slice S with S  Fk� S Lk� S  T�k � or S  T�

k �
for some k
 we leave the details to the reader�

Let us �x a box B from among the boxes intersecting �x�� xn�� Take
x to be the point in the box to the immediate left of B which lies on
�x�� xn� and whose Euclidean distance from B equals r�B� �note that
r�B� is rk or sk for some � � k � n� depending on whether B is a
�at or a long box�� and take y to be the corresponding point in the
box to the immediate right of B� There are two endpoint cases where
these de�nitions do not make sense� if B � F�� instead let x � x� and
if B � Fn� instead let y � xn� The d��G�length of the line segment
joining x and y is easily seen to be comparable to the d��G�length of
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the main axis of B� which we call l��B� for short� By construction�
the nice slices in B also satisfy �WS�� and �WS��� for the pair x� y�
so Lemma �� implies that the contribution to the sum in �WS��� of
the numbers di that correspond to these slices is at most some constant
multiple of l��B�� Similarly� for large n� the transitional slices between
two adjacent boxes B�� B cannot contribute more than a small multiple
of l��B�� � l��B � ���

Since fk�� �  is much larger than lk�� for large k� the last estimates
imply that the contributions of the nice slices contained in Fk must be
bounded below� at least for some �xed fraction of the numbers � � k �
n� However �WS�� implies that nice slices in Fk must have diameter
comparable with Rk� It follows that their number is bounded and that
their total contribution can be at most comparable with R�

k � Since R�
k

is much smaller than � we get a contradiction�

Note that above we have only used the wSlice conditions� not �WS�
�� or �WS���� so as to emphasise that the peculiarity of this example is
not because of the latter extra conditions� The proof that an ��wSlice�

condition does not uniformly hold for pairs x�� xn is a little easier if
we use �WS���� Also note that G is not a ��wSlice� domain� as can
be shown by considering the ��wSlice� condition for points near either
end of Fn for large n�

Open Problem C� Show that a ��� C��wSlice domain is a C ��Slice
domain for some C � � C ��C� n��

According to Corollary 	��� the classes of ��wSlice� domains are
distinct for all � 
 �� and according to �BS� Proposition 	��� there
are domains that are ��wSlice� domains for all � 
 �� but not Slice
domains� However� even if the �rst two open problems can be made into
theorems� Open Problem C remains unresolved� Furthermore� taking
� � � � � � �� the counterexample G to the one�point variant
of Open Problem B is also a counterexample to the one�point variant
of this problem since� as mentioned in Section �� any Slice condition
implies an ��wSlice condition quantitatively�

Open Problem D� Suppose � � � � � Show that an ���C��wSlice
domain �or C�Slice domain� is an inner ���C ���wSlice domain �or inner
C ��Slice domain� respectively� for some C � � C ��C� n��

Note that if this can be shown then the class of ��
 d��wSlice do�
mains is the same for every metric d lying between the Euclidean and
inner Euclidean metrics�
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Yet again� there are counterexamples for the one�point variant of
this problem� Consider for example the planar domain G � ��� � �
�
S�
k��Rk�� where

Rk�����k 
 ��sk� ��k � ��sk����  � ��k�� n �f��kg���  � ��k���
�

for some s 
 �
 note that G consists of the unit square with disjoint
narrow slitted rectangles attached� Taking u� � ��� �� and v to
be arbitrary� we claim that the pair u�� v satis�es any of the Euclidean
slice conditions with a constant independent of v � �v�� v�� but that
it does not uniformly satisfy any inner Slice condition� nor any inner
��wSlice condition if s 
 �
 ���

In the positive direction� we sketch only the ��wSlice� condition for
� 
 �
 the case � � � and the Slice condition are left as exercises� The
cases where v � ��� �� or v � Rk with v
 �� ��sk� are easily handled
since d��G�u�� v� is then bounded so u�� v satisfy an ��wSlice� condition
with zero slices� Suppose instead that v � Rk and v 
  � 	 � ��sk�
For each i � N de�ne

Si � Rk  �R � � � ��sk���i
 ��  � ��sk�� i�� � i � N �
Letting 	 � �G�u�� v� be such that len��G�	� � � d��G�u�� v�� and
letting m be the integer such that v � Sm�� it is straightforward
to verify a uniform ��wSlice� condition for u�� v with slice data 	�
fSi� dia�Si�gmi���

For the negative results� it su�ces to show that for every � � ��� ��
s 
 �
 ��� and C 
 � there always exists v � G such that the pair
u� � ��� ��� v fails to satisfy the inner ���C��wSlice condition� We
consider only the case � 
 �
 the case � � � is left as an exercise� We
write vk � ���k � ��sk���  � ��k���� k � N � We claim that if the data
	� fSi� digmi�� satis�es �WS�� and �WS��� for the pair u�� vk � G� and
di � dG�Si�� then $ �Pm

i�� d
�
i
�� � Since d��G�u�� vk� � �k�s��������

grows arbitrarily large as k ��� it follows from this claim that pairs
u�� vk cannot uniformly satisfy any inner ��wSlice condition�

We may as well assume that the slices Si are contained in ��� � �
Rk� since if we remove those parts of Si lying in Rj� j �� k� it follows
that �WS�� must still be true with the same constant C� Let $� be
the subsum of $ corresponding to those slices contained entirely in

Ak � G  �R � ���  � ��sk���� �

The subset of slices contained in Ak� together with the corresponding
numbers di� forms a set of data satisfying �WS�� and �WS��� for the
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pair of points u�� v
�
k� with v�k � ���k � ��sk���  � ��sk��� Since

d��G�u�� v
�
k� �� � it follows from Lemma �� that $� �� �

Next let $ be the subsum corresponding to those slices contained
entirely in Rk� Since we can move from u� to vk by going up either
side of the slit in Rk� an argument similar to that used in the proof
of Theorem �� shows that the numbers di satisfy a geometric growth
condition� It readily follows that $ �� �

Finally� we consider slices Si that intersect both ��� � and RknAk�
If by replacing Si by SiAk �but leaving di unchanged� we get a would�
be slice that satis�es �WS�� with C replaced by �C� then we can include
the term d�i in $�� Assume instead that Si Ak fails to satisfy �WS��
even with C replaced by �C� Let w� � �x�� � be the point of �rst
entry into Rk of a path �� for which this version of �WS�� fails� Since
len���  Si� � diC and len���  Si  Ak� � di�C� it follows that

len���  Si  ��� �� �
di

�C

 ��sk�� �

Suppose that there exists �� � �G�u�� vk� such that len���Si Rk� �
di�C� We de�ne a path � � �G�u�� vk� as follows� � coincides with
�� as far as the point w�� then it traverses a path in G � ��� �� ��� � �
of length at most ��sk�� from w� to the last point of entry of � into
Rk� and �nally it traverses the �nal segment of ��� Such a path �
would satisfy len��Si� � diC in contradiction to �WS��� Thus if we
replace Si by Si Rk� and C by �C� then �WS�� is still satis�ed� and
so we may include the term d�i in $� There are no remaining terms�
so our claim is proved and we are done�
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Quasicircles modulo

bilipschitz maps

Ste�en Rohde

Abstract� We give an explicit construction of all quasicircles� mod�
ulo bilipschitz maps� More precisely� we construct a class S of planar
Jordan curves� using a process similar to the construction of the van
Koch snow�ake curve� These snow�ake�like curves are easily seen to be
quasicircles� We prove that for every quasicircle � there is a bilipschitz
homeomorphism f of the plane and a snow�ake�like curve S � S with
� � f�S	� In the same fashion we obtain a construction of all bilipschitz�
homogeneous Jordan curves� modulo bilipschitz maps� and determine
all dimension functions occuring for such curves� As a tool� we con�
struct a variant of the Konyagin�Volberg uniformly doubling measure
on ��

�� Introduction�

Quasicircles are images of circles under quasiconformal maps of the
plane� see Section 
 for de�nitions and basic properties� They appear
in many di�erent settings in analysis� for instance as Julia sets of some
rational maps� as limit sets of some Kleinian groups� or as boundaries
of those domains for which every BMO�function extends� There are a
large number of characterizations of quasicircles� see G�� In this pa�
per we present a simple construction of Jordan curves that yields all

quasicircles� up to applying a bilipschitz map of the plane�
To give a rough description of our snow�ake�like curves S� proceed

as in the inductive construction of the standard van�Koch snow�ake�

���
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with the main di�erence that there are two replacement options instead
of just one� Each of the �n line segments of the n�th generation can be
replaced by a rescaled and rotated copy of one of the two polygonal arcs
of Figure ���� The sidelength p of the �rst alternative is a parameter
that is �xed throughout the construction of each individual S� See
Section � for a more precise description� Denote S the collection of all
curves S obtained in this way�

|| |
1/4 1/4p 1/4 1/4p

p p

Figure ���� The two polygonal arcs allowed

in forming a snow�ake�like curve�

Theorem ���� A Jordan curve � � R
� is a quasicircle if and only if

there are S � S and a bilipschitz map f of R� such that

� � f�S	 �

If � is a K�quasicircle� then there is p � p�K	 and a bilipschitz f
with � � f�S	� If in addition diam� � �� then the bilipschitz norm of
f depends on K only�

As a possible application� consider a domain property that is in�
variant under bilipschitz maps� To decide if such a property holds for
all quasidiscs �domains bounded by quasicircles	� it is su�cient to test
all snow�ake�like curves� To illustrate what we have in mind� notice
that the domains bounded by our snow�ake�like curves are easily seen
to be John domains �every point x in the boundary can be joined to
an interior point x� by a curve � such that for every point y � �� the
distance of y to the boundary is comparable to the diameter of the arc
of � between x and y	� Since this John property is obviously preserved
under bilipschitz maps� we conclude from Theorem ��� the �well�known	
fact that quasidiscs are John�domains�

The proof of Theorem ��� is based on the construction of a uni�
formly doubling measure � on � which� in a scaling invariant way� is
bounded above resp� below by ��dimensional respectively ��dimensio�
nal Hausdor� content� where � � 
� More speci�cally� we prove
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Theorem ���� Let � be a K�quasicircle� Then there are a probability

measure � on � and constants C � �� � � 
 depending only on K such

that

C��
r

s
�

��B�x� r		

��B�x� s		
� C

�r
s

��
�

for all s � r � diam� � � and all x � ��

Measures satisfying the upper bound have been constructed in ar�
bitrary metric spaces by Konyagin and Volberg KV�� with any exponent
larger than the Assouad dimension of the space� A simpler construc�
tion for arbitrary compact sets in Rn was given by Wu W�� It is clear
that measures having the lower bound do not exist in such generality�
a minimal �though not su�cient	 requirement being that the Hausdor�
dimension of � is ��

A Problem� Our construction of the measure of Theorem ��
 is not
canonical� Natural measures such as harmonic measure or Hausdor�
measures don�t work in general� Is there a natural �for instance M�obius
invariant	 construction�

The idea of the proof of Theorem ��� is as follows� Given � and
� as above� we obtain a quasisymmetric homeomorphism f � T ��
� such that jIj � ��f�I		 for all arcs I � T� where T is the unit
circle and jIj denotes normalized length� Here and in what follows we
write a � b if the ratio a	b is bounded above and below away from
zero� We construct a snow�ake�like curve S together with a natural
parametrization g � T �� S satisfying jIj � ��g�I		� Then we use the
trivial but useful observation that quasiconformal maps are determined
by their Jacobian determinant� up to composition by bilipschitz maps�
Lemma 
�� below� Applied to extensions of f and g this shows that
f � g�� is a bilipschitz homeomorphism mapping S to ��

The same idea can be applied to bilipschitz�homogeneous curves� A
Jordan curve � is called bilipschitz�homogeneous if there is a constant
L such that for every pair of points a� b � � there is a L�bilipschitz
homeomorphism f � � �� � satisfying f�a	 � b� These curves have
been extensively studied by Mayer M�� Ghamsari and Herron GH��
HM�� Recently Bishop B� succeeded in proving that they are always
quasicircles� Now consider the class HS of homogeneous snow�ake�like
curves S de�ned by requiring that during the construction of S all of
the �n line segments of the n�th generation are replaced by the same
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�rescaled and rotated	 polygonal arc of Figure ���� Our next theorem
says that these curves are precisely the bilipschitz�homogeneous curves�
modulo bilipschitz maps�

Theorem ���� Let � � R
� be a Jordan curve� Then the following

statements are equivalent �

i	 � is bilipschitz�homogeneous�

ii	 There is S � HS and a bilipschitz map f of R� such that � �
f�S	�

iii	 There is a quasiconformal map F of R� with � � F �T	 such

that the Jacobian determinant JF satis�es

C�� �
JF �w	

JF �z	
� C

� �� jzj

�� jwj

��
�

for some constants C � �� � � � � � and all z� w � D with jzj � jwj�

iv	 There is a quasiconformal map F of R� with � � F �T	 such

that JF is almost radial �i�e� JF �x	 � JF �jxj	 for all x � R
�	�

It is an open problem to characterize Jacobian determinants of
quasiconformal maps �up to a bounded factor� say	� David and Semmes
conjectured that a weight 
 � R� �� R

� is comparable to a Jacobian
determinant if and only if 
 is a strong A��weight� In this context� part
iv	 of Theorem ��� can be viewed as a characterization of su�ciently
regular almost radial Jacobian determinants of quasiconformal maps�

Corollary ���� Let 
 � �� �	 �� R
� be non�decreasing� There is a

quasiconformal map F of R� with JF �z	 � 
�jzj	 in D if and only if

C�� �

�s	


�r	
� C

��� r

�� s

��
�

for some C � �� � � � and all � � r � s � ��

For a compact set A � R
� � denote NA�r	 the minimal number of

discs of radius r needed to cover A� Then ��r	 � NA�r	
�� is a canonical

choice of a dimension function in order to obtain a Hausdor� measure
supported on A� Part iii	 of Theorem ��� solves the problem posed in
HM� about characterizing the dimension functions � � �� �� �� �� ��
that can occur for bilipschitz homogeneous curves�
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Corollary ���� Let � � �� �� �� �� �� be non�decreasing� Then � is

comparable to N��r	
�� for a bilipschitz homogeneous curve � if and

only if
��s	

��r	
� C

�s
r

��
�

for some C � �� � � 
 and all � � r � s � ��

Organization of the paper� Section 
 provides the �well�known	
background concerning quasiconformal maps� The snow�ake�like curves
and their parametrizations are described in Section �� Section � con�
tains the construction of the doubling measure and is independent from
the rest of the paper� Theorem ��� is proved in Section �� Section � is
devoted to bilipschitz homogeneous curves� There we prove Theorem
��� and the corollaries�

�� Quasiconformal maps and their Jacobians�

In this section we collect the facts about quasiconformal maps
needed throughout the rest of the paper� The expert may safely skip
it� Let K 	 � and consider an orientation preserving homeomorphism
f � R� �� R

� � Then f is K�quasiconformal if f � W ���
loc ��rst order

distributional derivatives being locally square�integrable	 and if the in�
equality jDf�x	j� � KJf�x	 between the operator�norm of the deriva�
tive Df and the Jacobian determinant Jf holds almost everywhere�
We have K � � unless f is conformal� The standard references to the
basic theory are A� and LV��

Recall that homeomorphisms f of R� are called L�bilipschitz if

�

L
jx� yj � jf�x	� f�y	j � L jx� yj �

for all x� y � R
� � The smallest such L is refered to as the bilipschitz

norm of f � It is clear that bilipschitz maps are quasiconformal� whereas
the converse is false in general�

Quasiconformal maps are quasisymmetric �if jx�yj � jx�zj� then
jf�x	 � f�y	j � C jf�x	 � f�z	j	 and vice versa� If f � T �� f�T	 is
quasisymmetric� then there is a quasiconformal extension f � R� �� R

�

such that

�
��	 diam f�I	 � jIj jDf�x	j �
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for every arc I � T and every point x � R
� for which dist �x�T	 �

dist �x� I	 � jIj� We may further assume that jDf�x	j � � for jxj � 
�

Lemma ���� If f� g are quasiconformal homeomorphisms of R� and if

Jf�x	 � Jg�x	 � almost everywhere �

then

F � f � g��

is bilipschitz�

Proof� By the chainrule JF �x	 � � almost everywhere� Since F is
quasiconformal� we obtain jDF j � � almost everywhere� The lemma
follows from F �W ���

loc �

The images of circles under quasiconformal maps of the plane are
called quasicircles� A simple closed curve �Jordan curve	 � is a quasi�
circle if and only if

�
�
	 sup
x�y��

diam��x� y	

jx� yj
�
 �

where ��x� y	 denotes the subarc between x and y of smaller diameter�
This is the Ahlfors three�point condition�

�� Snow	ake
like curves�

To describe the construction� �x a parameter �	� � p � �	
 de�n�
ing the �rst arc � of Figure ���� Denote by �� the second arc �the line
segment	 of Figure ���� Inductively de�ne polygons Sn consisting of �n

line segments as follows� Denote the unit square by S�� To pass from
Sn to Sn��� for each of the �n edges x� y� of Sn replace x� y� by a
scaled copy of � or ��� Here we assume that x follows y in the positive
orientation of Sn� that the scaling map is orientation preserving� and
that it maps the left endpoint of � respectively �� onto x� See Figure
��� for a possible S��
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Figure ���� A possible S��

For a given Sn there are 
�
n

possibilities for choosing Sn��� It is
clear that each sequence Sn thus obtained converges �geometrically	
to a closed limit curve S� Below we will show that these limit curves
are quasicircles� in particular they are Jordan curves� Denote S�p	 the
collection of all limit curves S� and set

S �
�

����p����

S�p	 �

Next� consider the class

HS �
�

����p����

HS�p	

of homogeneous snow�ake�like curves de�ned as follows� A curve S �
S�p	 belongs to HS�p	 if and only if the approximating curve Sn�� is
formed from Sn by replacing all edges of Sn by a scaled copy of the
same arc � or ��� Hence there are only two choices of Sn�� for a given
Sn�

Lemma ���� Every curve S � S�p	 is a K�quasicircle� with K depend�

ing on p only�

Proof� For an edge I of some Sn� denote T �I	 the isosceles triangle
with base I and height

p
p� �	� jIj� So T �I	 is the convex hull of the

rescaled arc �� Then the �smaller	 arc S�I	 of S with the same endpoints
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as I is contained in T �I	� If J is another edge �of some Sm	� one easily
proves by induction that either I � J �� � or

dist �T �I	� T �J		 	 cpmin fdiamT �I	� diamT �J	g �

Using the Ahlfors three�point condition �
�
	� the lemma easily follows�

Next we will describe a one to one correspondence between S�p	
and certain labelled graphs� Let G � �V�E	 be the in�nite planar graph
depicted in Figure ��
� It is obtained from a rooted homogeneous tree
of degree � by cyclically joining the �n vertices v � V of graph�distance
d�v	 � d�v� v�	 � n from the root v��

o o

o
o

o

o

o o

o

o
o

o

o

o

oo

o

o

o
o

o

Figure ���� The graph G�

The correspondence between a vertex v and an arc S�v	 of S is
characterized by the following four properties�

i	 S�v�	 � S�

ii	 If d�v	 � n� then S�v	 is an arc obtained from an edge of Sn�

iii	 If d�v	 � d�v�	 � n and if v� v� are adjacent in G� then S�v	
and S�v�	 have a common endpoint�

iv	 If v� is a descendent of v �i�e� d�v� v�	 � d�v�	 � d�v		 then
S�v�	 � S�v	�

De�ne the labelling S � V �� R� by

����	 S�v	 � diamS�v�	 �
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where v� is any child of v �that is d�v� v�	 � d�v�	� d�v	 � �	�
This process of passing from S to  clearly is reversible� If  � V ��

R� is given and has the property that

���
	
�v�	

�v	
�
n
p�

�

�

o
�

whenever v� is a child of v� then there is a curve S � S� � S�p	� unique
up to rotation� such that  � S �

Given S � S�p	� there is a canonical homeomorphism �S � S� ��
S� where S� is the unit square� It is the map that sends a four�adic
interval S��v	 on S� onto the corresponding arc S�v	� More formally�
the labelling ��v	  ��d�v	 satis�es the above assumption ���
	 and
obviously yields S� � S�� � With this interpretation� �S is given by

����	 �S�S��v		 � S�v	 �

for every v � V �
The next lemma can be proved in the same way as Lemma ����

Lemma ���� Given S � S�p	� the homeomorphism

�S � S� �� S

is quasisymmetric if and only if there is C such that

C�� �
�v�	

�v	
� C �

for all adjacent vertices v� v� � V �

Notice that for every S � S�p	 there exists a quasisymmetric
parametrization � � S� �� S� But the natural parametrization de�
scribed above need not be quasisymmetric�

�� The doubling measure�

This section is devoted to the proof of Theorem ��
� Throughout
this section � is a K� quasicircle� We are �rst going to show that the
uniform metric dimension �Assouad dimension	 of � is bounded away
from 
� depending only on K� More precisely� we have
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Lemma ���� There are constants C�K	 � � and a�K	 � 
 such that�

for every q � �� every arc I � � contains at most

n �
C

qa

disjoint subarcs I�� � � � � In of diameters dm 	 q diam I�

Proof� It is well�known �and easily follows from quasisymmetry	 that
quasicircles are porous� There is a constant c�K	 such that for every
disc D�x� r	 there is a disc D�y� cr	 � D�x� r	 n �� Let S be a square
of sidelength l� subdivided into k� subsquares Sj with sidelength l	k�
Then porosity and induction shows that � meets at most Cka of the
Sj � where a � 
 depends only on c� Setting l � diam I and k � �	q��
the lemma follows from the fact that only a bounded number of the
arcs Im can meet a �xed Sj � by the three�point property�

Proof of Theorem ���� We may assume diam� � �� Let a be the
constant from Lemma ���� pick any a � b � 
 and choose a su�ciently
small number q � �� speci�ed during the course of the proof�

First choose a sequence In � fIn�jg of subdivisions of � into dis�
joint half�open arcs In�j with the following two properties�

a	 qn � diam In�j � 
 qn for all n� j�

b	 For I � In and J � In��� either J � I �in this case we write
J � I	� or J � I � ��

Such a sequence is easy to �nd by successive �bisection� of arcs�
Next� de�ne a sequence �n of probability measures on � by specifying
�n�In�j	 for each n� j� Our measure � will be the weak limit of �n� The
�n will have the following properties�

�	 For all n and all pairs of adjacent arcs I� I � � In�

�

��
�

�n�I	

�n�I �	

diam I �

diam I
� �� �


	 For all n and all arcs I � In� the mass �n�I	 is distributed over
its �children� J � I� i�e� no mass from I is transported away from I

X
J�I

�n���J	 � �n�I	 �



Quasicircles modulo bilipschitz maps ���

�	 For all n� all arcs I � In and all arcs J � I we have

diam I

diamJ
�

�n�I	

�n���J	
� q�b �

It is immediate from 
	 and a	 above that �n weakly converges to a
measure � on �� Before we proceed with the construction of �n� let
us show that � will have the required properties� To this end� consider
x � � and � � r � R � �� By a	 and b	 there are arcs I � In and
J � Im with x � J � I and diam I � R � qn � diamJ � r � qm� It
easily follows from the three�point property� together with �	 and �
	�
that ��B�x�R		 � ��I	 and ��B�x� r		 � ��J	� Now �	 implies

diam I

diamJ
�

��I	

��J	
� q�b�m�n	 �

�R
r

�b
�

proving the theorem�

Now we describe the inductive construction of �n� Set

���I��j	 �
�

�I�
�

for all j� where � denotes cardinality� Then �	 is clear from a	� and 
	�
�	 are void�

To obtain �n�� from �n� let I � In and let J�� � � � � Jr denote the
children of I �i�e� Jl � I	� where r � r�I	 is the number of children�
We assume the labeling is such that Jl and Jl�� are adjacent for all l�
A �rst attempt is to set

ml � m�Jl	 � �n�I	
diamJl
rX

k
�

diamJk

and to try �n���Jl	 � ml� Notice that ml � �n�I		r so that we would
roughly equidistribute the mass of I over its children� But then there is
no reason for the ratio in �	 to remain bounded after some generations�
To �x this� we proceed similarly to W� and de�ne

�n���Jl	 � wlml

with weights wl � w�Jl	 described below�
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Let us denote I� and I� the two arcs of In adjacent to I� and by
J� � I�� Jr�� � I� the arcs of In�� adjacent to J� respectively Jr� Set
m� � m�J�	 and mr�� � m�Jr��	� Notice that m� � �n�I

�		r�I�	 �
�n�I		r�I

�	�
We �rst de�ne w� and wr� Set

Q�J� J �	 �
m�J	

m�J �	

diamJ �

diamJ

and let w� � � if Q�J�� J�	 	 �	��� and w� � �	���Q�J�� J�		 if
Q�J�� J�	 � �	��� In the same way de�ne wr � � if Q�Jr� Jr��	 	 �	���
else wr � �	���Q�Jr� Jr��		� This de�nition applies to all those J �
In�� that have an endpoint in common with their parent J � I � In�
In particular we have de�ned w� and wr���

Notice that w� 	 �� and that w� � � if w� � � since Q�J�� J�	 �
Q�J�� J�	

��� Next� set w� � � � � � wr�� � � if w� � wr � �� Otherwise
we may assume w� 	 wr and choose a sequence w�� � � � � wr�� in such a
way that

rX
j
�

wj mj � �n�I	 �����	

�



�

wj

wj��
� 
 ����
	

and that

����	 � � wj � w� �

for j � �� � � � � r � � and some universal constant �� The existence of
such a sequence is easy to establish if q is su�ciently small� Indeed�
from Lemma ��� we have w� � r�I		r�I�	 � C q��a � C �r�I	a���
Hence w�m� � w� r�I	

�� �n�I	 � o ��n�I		 as q �� �� Now de�ne
wj � 
�j��w� for j � �� 
� � � � � j�� let the wj have a constant value w
for j��� � j � j� and �nally set wj � 
j�r�I	wr for j��� � j � r�I	�
It is clear that j�� j� and w can be chosen so that ����	 and ���
	 are
ful�lled� Since the contribution to

Pr
j
�wj mj from � � j � j� and

from j� � j � r is o ��n�I		 as q decreases� w is bounded away from �
and we have ����	�

It remains to verify that �n���Jl	 � wlml satis�es �	��	 above� To
see �	 for the pair �J�� J�	� just notice that

�n���J�	

�n���J�	

diamJ�
diamJ�

�
w�

w�
Q�J�� J�	 �

�

��
� Q�J�� J�	 or �� �
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if Q�J�� J�	 � �	���� �	��� ��� or greater to �� respectively� Similarly�
�	 holds for �Jr� Jr��	� For the pairs �Jk� Jk��	 with � � k � r� �� the
ratio in �	 equals wk	wk�� which is bounded above and below by �	

and 
�

Property 
	 is immediate from ����	�
To check the lower bound of �	� let us begin with J � J�� If

w� � � �the case Q�J�� J�	 	 �	��	 this follows at once from the
triangle inequality diam I �

Pr
� diamJl� Otherwise we have w� �

�	���Q�J�� J�		 � � and w� � � Hence we have the lower estimate of
�	 for J��

diam I�

diamJ�

�n���J�	

�n�I�	
� � �

Using property �	 for In� we obtain

�n�I	

�n���J�	
�

�

diamJ�

�� diamJ�
m�

�n�I	

	
�

diamJ�

�� diamJ�
�n���J�	

�n�I
�	 diam I

�� diam I�

	
diam I

diamJ�
�

To prove the lower bound of �	 for Jl with 
 � l � r� use wl � w� to
obtain

�n�I	

�n���Jl	
	

�n�I	

w�ml
�

�n�I	

�n���J�	

diamJ�
diamJl

	
diam I

diamJl
�

The upper bound of �	 easily follows from Lemma ��� if q is small
enough� since the wj are bounded below �independently of q	 by ����	�

�� The proof of Theorem ����

Proof of Theorem ���� Given a quasicircle �� apply Theorem ��

to obtain the probability measure � on �� Use � to de�ne a homeomor�
phism

� � S� �� �

between the unit square S� and � in such a way that the push�forward
under � of length on S� is � � Fix points a � S� and b � �� and for
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x � S� de�ne ��x	 to be the unique point on � such that the �oriented	
arc ����x		 from b to ��x	 has

������x			 �
lengthS��x	

lengthS�
�

where S��x	 is the arc from a to x�
From � we obtain a function �labelling	  � V �� R� in the canon�

ical way� compare ����	 and ����	� For vertices v � V set

�v	 � diam��S��v		 �

We �rst observe that

����	 �v	 � �v�	 �

if v and v� are adjacent� To see this� just notice that the arcs ��v	 �
��S��v		 and ��v�	 have measure � ��d�v	� that � is a quasicircle� and
use the doubling property of � �no uniformity is needed yet	�

Next� let � � 
 be the exponent from Theorem ��
� set

A � ���� � 


and observe that for all v � V and all descendents v� of v we have

���
	 C����d�v�v
�	 �

�v�	

�v	
� CA�d�v�v

�	 �

To see this� observe that the four�adic interval S��v
�	 is contained in

S��v	 and has lengthS��v
�	 � ��d lengthS��v	� where d � d�v� v�	�

Then ���
	 is obtained from Theorem ��
� applied to any x � ��S�v�		�
by choosing r� s comparable to the diameters of ��S�v		 and ��S�v�		�

For every labelling  satisfying ����	 and ���
	 there is a labelling

����	 � � 

�that is ��v	 � �v	 for all v � V 	 satisfying ���
	 with p � A��� Just
set ��v�	 � � and inductively de�ne

����	 ��v�	 �

���
��

�

�
��v	 � if ��v	 	 �v	 �

�

A
��v	 � if ��v	 � �v	 �
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if v� is a child of v� Then ���
	 is obvious and � �  is easy�
From ���
	 we obtain a snow�ake�like curve S with S � �� Now

S �  together with ����	 and Lemma ��
 imply that both � � S� �� �
and �S � S� �� S are quasisymmetric� Let �� respectively �S be
quasiconformal extensions to the plane satisfying �
��	 with T replaced
by S� �the disc in �
��	 can be replaced by any chord�arc domain� as
can be seen by applying a bilipschitz homeomorphism of the plane	�
Then �
��	 together with ����	 implies jD��x	j � jD�S�x	j in R

� � and
the theorem follows from Lemma 
���

�� Bilipschitz homogeneous curves�

Proof of Theorem ���� By HM� and B�� our de�nition of bilip�
schitz�homogeneity coincides with the one used in M� �existence of a
bilipschitz group acting transitively on ��	 To prove i	 implies ii	 we
use M� Theorem ����� Hence there is a parametrization h � T �� �
satisfying

jh�x	� h�y	j � C jh�u	� h�v	j

whenever jx� yj � ju� vj� Set

an � minfjh�x	� h�y	j � jx� yj � ��ng

and consider the labelled graph �G� V 	 of Figure ��
 with l�v	 � an if
d�v	 � n� We proceed as in the proof of Theorem ���� First we claim
that there is a labelling � �  satisfying ���
	� Now jh�x	 � h�y	j �
N�r	��� where N�r	 is the minimal number of discs of radius r needed
to cover �� So ���
	 follows from Lemma ���� and � can be constructed
by ����	 as in the proof of Theorem ���� Since ��v	 � ��v�	 whenever
d�v	 � d�v�	� the curve S � S with S � � belongs to HS� As in the
proof of Theorem ��� we observe that the Jacobian determinant of the
extension of h is comparable to J�S and we obtain ii	�

Now we show ii	 implies iii	� Let S � HS�p	� By Lemma ��
�
the canonical homeomorphism �S � S� �� S constructed in Section
� is quasisymmetric� Denote its quasiconformal extension satisfying
�
��	 for x � D by �S � too� Given z� w � D with jzj � jwj� consider
the four�adic intervals I� J with � � jzj � dist�z� I	 � jIj � ��n and
�� jwj � dist�w� J	 � jJ j � ��m� It follows from �
��	 that

C��
��
�

�m�n
��� jzj	 jD�S�z	j � ��� jwj	 jD�S�w	j

� C pm�n ��� jzj	 jD�S�z	j �
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We obtain iii	 with � � log �� p		 log 
 � ��
Since iii	 trivially implies iv	� it remains to show iv	 implies i	�

Pick two points x� y on � and let R denote the rotation

R�z	 �
F���x	

F���y	
z �

By assumption we have JF � J�F �R	� and by Lemma 
�� F �R���F��

is bilipschitz� �xing � and sending x to y�

Proof of Corollary ���� First� let 
 as in the Corollary be given�
De�ne ��s	 � s 
�� � s	��� for � � s � �� Similar to the proof of
i	 implies ii	 above� set an � ����n	 and consider the labelled graph
�G� V 	 of Fig� ��
 with l�v	 � an if d�v	 � n� Then

�v�	

�v	
� C ��������	d�v�v

�	 �

Proceeding as above �cf� ���
		� we obtain a quasiconformal map �S

onto a bilipschitz�homogeneous curve S � HS�p	 with p � ������ such
that J�S � 
 in D �

The converse easily follows from Lemma ����

Proof of Corollary ���� Given a bilipschitz�homogeneous �� let
F be the quasiconformal parametrization from Theorem ��� �iii	 and
set 
�s	 � JF �s	 for � � s � �� From �� � s	
�s	��� � dist �F �s	��	
�quasisymmetry and �
��		 we conclude

���	 �
�

�� s
if and only if ��� s	
�s	��� � � �

Thus the Corollary follows from Corollary ����
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Moduli of certain Fano ��folds

Walter L� Baily� Jr�

Dedicated to the Memory of Professor Kunihiko Kodaira

Abstract� In this brief note we give a proof that a certain family
of Fano ��folds� described below� is complex �locally� complete and
e�ectively parametrized in the sense of Kodaira�Spencer �Ko�Sp	


In this note we consider a speci�c family of Fano ��folds which is
analogous in some ways to the family of nodal Enriques surfaces� con�
sidered in my article which appeared in the March� �� issue of the
Asian Journal of Mathematics� dedicated to the late Professor Kunihiko
Kodaira
 This is all part of a program intended to investigate certain
moduli problems of a very special nature related to trying to �nd some
family of algebraic varieties whose moduli would be related to the ex�
ceptional ���dimensional domain associated to the real form E������ of
the exceptional Lie group E�
 In this note we settle a conjecture left
open in my Asian Journal article
 Numerous authors have considered
Fano ��folds and their classi�cation� notably Iskovskikh� Kollar� Mori�
and others
 Little has been known about Fano ��folds� and the current
article is intended to break some new ground here
 Actually I strongly
suspect that the methods used here could be used to investigate a much
wider family of Fano varieties� and suggesting such possibilities is one
of its aims
 The immediate background of the current note is to ex�
tend the results of the Asian Journal article and also of my article �AA	
in the volume �Algebra and Analysis�� Eds
 Arslanov� Parshin� and
Shafarevich� dedicated to N
 G
 Chebotarev


At this point we shall state the main result of this note
 In it
we prove that a certain family of Fano ��folds� to be described be�
low� is everywhere locally complex�analytically complete and e�ectively

���
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parametrized
 At this point we can say little about whether these Fano
��folds have a global complex moduli space
 This still seems to be a
di�cult problem
 But we believe that the main result here is new and
rather interesting
 In achieving it we have had a lot of help from Dr

Brendan Hassett� now at the Chinese University of Hong Kong� Pro�
fessor Yujiro Kawamata of Tokyo University� and Professor Thomas
Peternell of the University of Bayreuth
 We acknowledge this help
gratefully


Notation� Let Y � G��� �� � G��� ��� the variety of planes in the
��dimensional linear space or the variety of projective lines P� in P�


We embed Y into P�� by Pl�ucker coordinates
 Let Q be� at �rst�
a generic quadric hypersurface in P�� and P�� be a generic linear sub�
space of codimension � in P��
 Thus� Q � P��� Q is a generic quadric
of codimension � in P��� while dimY � �� therefore X � Y � Q is
a smooth variety of dimension �� and the canonical class KX of X is
f�Lg� where L is a hyperplane section of X� thus� the anti�canonical
class of X is very ample
 Moreover� X is easily seen to be simply�
connected
 Therefore X is a Fano ��fold and is clearly of index �� and
Pic �X� � Z � L
 Let TX be the sheaf of germs of holomorphic cross�
sections of the holomorphic tangent bundle on X


We shall prove that the family of all X � Q � P�� � Y � assuming
the intersection to be proper� is complete and e�ectively parametrized

To achieve this� it is su�cient by Kodaira and Spencer�s criterion �Ko�
Sp	��Ko	 to show that

H��X�TX� � fg

and
H��X�TX� � fg �

Thanks to a communication from Prof
 T
 Peternell� the vanishing of
H��X�TX� can be seen as follows� From Serre duality one has �n � ��

H��X�TX� �� Hn���X���
X �KX� �

Now apply the vanishing criterion of Kodaira�Akizuki�Nakano for L �
�KX � If L is ample on X � X�n�� then

H�p�q��X�L�� � fg �

for p � q � n
 �Here n � � and L� is the sheaf dual to L� namely
L� � ��

X � ��L���
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Thus it remains to prove that H��X�TX� � fg
 Henceforth� if
A is a coherent analytic sheaf on X� we shall write simply Hk�A� �
Hk�X�A�


First we make a calculation of the number of independent complex
parameters needed to describe X as a subvariety of P��� We can easily
see that the space of codimension � subspaces P�� has dimension equal
to

dimG���� ��� � ��� � �� ���� ��� � �� �

The dimension of the space of homogeneous quadrics in P�� is equal
to the dimension of the space of �� � �� symmetric matrices � ���
this is the linear homogeneous dimension
 The ideal of quadric rela�
tions among the Pl�ucker coordinates� i�e�� the ideal of quadric rela�
tions vanishing on G��� ��� has dimension ��� The dimension of the
space of quadrics belonging to the ideal generated by � linear forms�
i�e�� the dimension of the space of quadrics vanishing on P��� is ���
Moreover� dim �Aut �G��� ���� � dimPGL��� � ��
 Then the num�
ber of e�ective parameters to describe X as a subvariety of P�� is
���������������� � ��� where we have subtracted � to account
for the change from linear to projective coordinates in calculating the
number of quadrics in P��


It has been shown by O
 K�uchle �Ku�	� and by Borcea �Bor�	� that
every su�ciently small deformation of X is described by the same type
of equations as a subvariety of G��� ��� In fact� X can be described as
the projection on Y � G��� �� of the set of zeros of a cross�section of
a rank � vector bundle E over Y 
 Speci�cally� according to �Bor�	� let
H be a smooth irreducible divisor on Y which generates Pic �Y �� let
d� � d� � d	 � � and d� � ��� let E be the rank � vector bundle on Y
given by

E � �H	� �H	� �H	� ��H	 �

where �D	 is the complex line bundle over Y associated to the divisor
D
 Then X belongs to the family F of smooth� global complete inter�
sections in Y � parametrized by the open set of H��Y�E� consisting of
sections of E transversal to the zero�section
 According to �Bor�� Theo�
rem	� F is complex�analytically complete� and every small deformation
of X is contained in Y and is obtained by a small change in the cross�
section de�ning X� i�e�� by small changes in P�� and in Q� modulo the
relations described above
 Since H��TX� � fg� it is well known that
the versal deformation space VX of X is smooth� has dimension equal
to dimH��TX�� and by the above calculations� this dimension is ��
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Now the calculation of h��TX� is based on the three articles by
K�uchle� �Ku �����	� numerous communications and conversations with
Brendan Hassett� email correspondence with Prof
 T
 Peternell� and
conversations with Y
 Kawamata


Brendan Hassett has noted the following facts
 In order to compute

Hi�Gr ��� ��� IX � TGr ���
��

we take the Koszul resolution of IX � the homogeneous ideal of X in
Y � Gr ��� ��� which is

 �	 OGr���� �	 OGr����
�	 �OGr����

�	 OGr����
�	 �OGr����

�	 �	 OGr����
�	 �OGr����

�	 IX �	  �

OGr being the structural sheaf on Gr
 By examining the roots and
simple roots of SL
 and applying Bott�s Theorem IV �see �Bot	�� we
obtain

Hi�Gr� TGr����� � 

for all i and

Hi�Gr� TGr��n�� � 

for i � � and n � �� Since TGr� the holomorphic tangent bundle to Gr�
is a locally free sheaf� we can tensor the above resolution by it to obtain
another exact sequence which implies� �nally� that

�a� Hi�Gr ��� ��� IX � TY � �  � i � � � �

Now one has the exact sequence

�b�  �	 TX �	 TY jX �	 NX �	  �

where NX is the normal bundle to X in Y � and

�c� NX
�� OX����

�	 �OX���� �

so that

�d� dimH��NX� � �h��OX���� � h��OX����� �



Moduli of certain Fano �folds ���

Now by �Ku�� �
�	 one has by Riemann�Roch� for the Fano ��fold X of
index ��

h���mKX� � � �
m �m� ��

��
��KX�

� c��X� �
m� �m� ���

��
��KX�

� �

Since X is a smooth ��fold of degree �� in P��� where the class of its
hyperplane section is ��KX�� one has

h���KX� � �� �

and so
��KX�

� � ��

leading to

�� � � �
�

��
��KX�

� c��X� �
��

�
�

or ��KX�
� c��X� � ��� hence h����KX� � ��
 Finally�

h��NX� � ���� � �� � �� �

Now Prof
 Peternell has called attention to the exact sequence

 �	 IX � TY �	 TY �	 TY jX �	  �

and this leads to a long exact cohomology sequence of which a part is

 �	 H��Y� TY � IX� �	 H��TY �

�	 H��TY jX� �	 H��Y� TY � IX� �	

of which we now know that the second and last terms are fg� namely�

Hi�Y� TY � IX� � fg � i � � � �

and hence

h��TY jX� � h��TY � � dimAut �Y � � �� �

Now by �Ku�� �
�b	 we have

H��X�TY jX� � fg �
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so from the exact sequence

 �	 H��TX� �	 H��TY jX� �	 H��NX�

�	 H��TX� �	 H��X�TY jX� � fg �

and from h��TX� � �� we obtain

�� � h��NX�� h��TY jX� � h��TX� � ��� �� � h��TX� �

Therefore� h��TX� � dimH��TX� �  as claimed earlier
 Thus� by
Theorem �
� on page �� of Kodaira�s Springer text �Ko	� the fam�
ily of X is complete and e�ectively parametrized at all its points and
the dimension of the base � of any complete� e�ectively parametrized
complex analytic �ber system �M���� �� with X as one of its �bers�
X � ������� � 
 �� is m�X� � ��
 What remains open is whether this
family has a global moduli space
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