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1. Introduction

The aim of this paper is to prove certain multiplier theorems for the Hermite
series. Given a function u defined on the set of positive integers we can define,
at least formally, the operator T, by the prescription

(1.1) T,f(x) = Z]o pQlal + n) N ()2 (x)

whenever f has the Hermite expansion

(1.2) fx) = Z}Of "(@)®,(x)

We want to find conditions on the function p so that the operator 7, is bound-
ed on L?, for all p, 1 < p < . Clearly the boundedness of the function u is
a necessary condition which is also sufficient when p = 2. But for p different
from 2 some more conditions are needed to ensure the boundedness. The
classical Marcinkiewicz multiplier theorem for the Fourier series asserts the
following. If f has the Fourier series expansion f(8) = > a,e™*® and if () is
a bounded sequence of complex numbers satisfying the condition

(1.3) sup 3 = meaal <C

Jj 2isk=2i+1
then the following inequality holds for 1 < p < 0.
(1.4) |2 meare™ ], < Cl L ae™|,

Our aim in this paper is to generalize this result to the Hermite expansions.
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A version of the Marcinkiewicz multiplier theorem for the Spherical Har-
monic expansions was proved by Bonami-Clerc [1] and Strichartz [17].
Bonami-Clerc used the arguments of Muckenhoupt-Stein [9] together with the
Cesaro summability results. On the other hand Strichartz used the method
employed by Stein [15] in his proof of Hormander-Mihlin multiplier theorem
for Fourier integrals. To state their results let us introduce the following finite
difference operators. These operators are defined inductively as follows:

Ap(N) = u(N + 1) — p(N)
and for k > 1, they are defined by
AFHIUNY = AFp(N + 1) — A*u(N).

The following is the Marcinkiewicz multiplier theorem for the Spherical Har-
monic expansions.
Let be (u;) a bounded sequence of complex numbers satisfying the condition

(1.5) sup 2/V=D 3 ANk < C

j 2i<k=2i+1

where N is the smallest integer greater than n/2. Then we have the inequality
forl<p<oo,

(1.6) | 2 meHief |, < ClL2Hef

where H, f is the orthogonal projection of f into the k-th eigenspace.

In [8] G. Mauceri studied Marcinkiewicz multiplier theorm for the Hermite
expansions. His conditions on u involve finite difference operators of order
(n + 1). If we use the summability results proved in [19] and [20] we can great-
ly improve Mauceri’s result. The arguments of Bonami and Clerc can be used
together with the summability results to prove the following result.

Assume that the function p satisfies the condition

sup 2D X AN < C

J 2/isN=2Jj+1

where k = [(3n — 2)/6] + 2. Then the operator 7, is bounded on L”, 1 < p < .

This result is already an improvement over Mauceri’s result when n > 1. As
we noted before, in the case of Spherical Harmonics and Fourier series the
number k of finite differences entering the conditions is the smallest integer
bigger than n/2. We will show that this is true in the case of Hermite series
also. The following is our version of the Marcinkiewicz multiplier theorem for
Hermite series.
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Theorem 1. Assume that the function p satisfies the conditions
|A"W(N)| <K CN™" for r=0,1,...,k,

where k > n/2. Then the operator T, is bounded on L?, 1 < p < .

Observe that our conditions on yu are just like the Hormander-Mihlin condi-
tions. The proof depends on some boundedness properties of g and g* func-
tions. We introduce and study these functions in section 2. So much for the
Marcinkiewicz multiplier theorem. Another multiplier theorem we are interested
in is given by the function

(1.7) w(|v]) = @lv| + n)~ @ +mir,
This defines the operator 7,(a) given by

(1.8) nmwuw=§yaw+nrﬂéw“”vwwaa)

This function u does not satisfy the conditions of Theorem 1 unless « > n and
so we cannot apply the Marcinkiewicz multiplier theorm. Fortunately, the
kernel of this operator can be calculated explicitly and studied by other
means. This operator behaves more or less like the operator given by convolu-
tion with the oscillating kernel |x| ~“e™*. Such operators have been studied
by many authors, see e.g. [12], and [13]. For these operators we prove the
following theorem.

Theorem 2. When o = n|l/p-1/2|, 1 <p < o, the operators T,(a) are
bounded on L?, i.e.,

(1.8) [ Te@) fl, < Clf,-

When p = 1 and a = n/2, T(c) is bounded from H* into L*, where H" is the
Hardy space.

(1.9 | TS < ClS g

This theorem extends the classical Hardy-Littlewood theorem for the Fourier
transform. Recall that Hardy-Littlewood inequalities state the following.

(1.10) j|fA(x)|P|x|"<P-2>dx<cj|f(x)|1’dx, for 1<p<2
(1.11) jifA(x)degcj|f(x)|1’lx|"<ﬂ-2>dx, for p>2
(1.12) [ 1/l =" dx S CLf -
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These inequalities were first proved by Hardy and Littlewood [5] in 1926. For
an easy proof see Sadosky [11]. The first two inequalities follow easily if we
apply Marcinkiewicz interpolation theorem to the operators f going to
S"(x)|x|" in the space L?(|x| ~*" dx). The third inequality can be proved using
the atomic theory of H' spaces.

We can rewrite the above inequalities in the following way. Consider the
fractional powers of the Laplacian defined as follows.

((—A)"%F 3N ) = |x| 72 ().

If we let T(a)f = (—A)~ %f, then the above inequalities take the following
form with o« = n|1/p — 1/2|.

(1.13) H{T(@) 3N, <C|fl,, for 1<p<2
1.149) Ifl, <CIH{T(@f}"],, for p>2
(1.15) IH{T@ 3" < Clf| s

Theorem 2 gives inequalities of this type for the operator (—A + |x|*) ™.
Observe that
(1.16) (=4 + X700 = 2 @Pl +m)” S 02,6

Let F stand for the Fourier transform. Since F commutes with the operator
(—A + |x]» ™% and F(®,(x)} = i"'®,(x) we have the following formula.

(L.17) F(=A + [x|) 720 = e™ "™ 3 Q|| + m)~ %@+ P4 3)@, (x)
v=0

Thus we get the Hardy-Littlewood inequalities for the operator (—A + |x|*) ™.
The inequalities of Theorem 2 have another application to the solutions of the
Schrodinger equation —id,u(x, t) = (—A + |x|?u(x, t). Let u(x, ) denote the
solution of the initial value problem

(1.18) —id,u(x, ) = (=& + [xulx, 1),  ux,0)=f()

The solution of this problem has the following expansion in terms of the Her-
mite functions.
(1.19) u(x, 1) = 25 e@MIN)S, (x)

v=0
We like to know if any inequality of the type |u(x, 7)|, < C(#)| f|, holds. But
this is too much to ask for. Indeed, u(x, ) is nothing but a fractional power

of the Fourier transform of fand as we know, Fourier transform, and for that
matter any fractional power of that, cannot map L” into itself unless p = 2.
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Therefore, following Sjostrand [14], we define the Riesz means
G f() = a7~ [ (r = O "ulx, 1) dt

and ask the question, «For what values of « the operators G,(c) will be bounded
on LP?». As we will see, this boils down to the study of the operators T,(c).
Using the Hardy-Littlewood inequalities we can prove the following theorem.

Theorem 3. Ifa > n|1/p — 1/2|, then the operators G () are bounded on L”.

(1.20) |G @ fl,<COD|fl,, 1<p<e.
When p =1 and a = n/2, G () is bounded from H' into L'.

This paper is organised as follows. In the next section we study the Little-
wood-Paley-Stein g functions. To fix the ideas we first consider the one
dimensional case and then indicate how we prove the results in the general
case. In section 3, we prove the Marcinkiewicz multiplier theorem. In section
4, we prove Hardy-Littlewood inqualities and study the Riesz means for the
solutions of the Schrodinger equation in the last section.

This paper forms one part of my Princeton University thesis written under
the guidance of Prof. E. M. Stein. The amount of help I got from him and
the real interest he showed in the progress of this work cannot be exaggerated.
I would like to thank him for everything. I am also grateful to Dr. Chris Sogge
for turning my attention towards Marcinkiewicz multiplier theorem.

2. Littlewood-Paley-Stein Theory of g Functions

The g functions are defined in [16] in the more general context of semigroups
of operators satisfying certain conditions. Here we are interested in the Her-
mite semigroup H'. For t > 0 these operators are defined by

H'f() = 2ie™ " (m)en()
where N = 2n + 1 as usual and they have the kernel
K,(x,3) = 2ie™ Mo, (0)e,(1).
In view of the Mehler’s formula K, is given by
K,(x,y) = (sinh 2t) ™ /2e*®

where
o(t) = —1/2(x* + y*) coth 2¢ + xy cosech 2z.
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It is easy to see that H' forms a semigroup of operators satisfying all the con-
ditions except the last one listed in [16]. We can now define the g function by
setting

g(f, 0 = "0 H'f ()| dt.

Since the Hermite semigroup fails to satisfy the condition H’1 = 1, the general
theory developed in [16] cannot be applied. But in view of the explicit form of
the kernel K,(x, y) we can prove the following theorem without much difficulty.

Theorem 2.1.  With some constants C,; and C, we have the following inequality
Cilfl, < leN, <Gl Sl 1<p<co.
Proor. The L? boundedness of the g function is easy. Since
dHf(x) = — 2l  MNf ), (x)
[g(f, 07 dx = j “tdt [ 10HF G| ax.
But it is immediate that
[18.H @) dx = 3 e MN?| f\(m)?

and hence we get

leNI3= 2 | te™ N dil f(m)l?

which is equal to 1/4 3, | fA(n)|* = 1/4| f| . This proves the L? boundedness.
We will now prove that g(f) is weak type (1, 1). That will prove the inequality
lg(f)|, < Co| f], and the deduction of the inequality in the other direction
is routine.

In proving the weak type (1,1) inequality we closely follow Stein [15]. We
consider g as a Hilbert space valued singular integral operator. To be precise,
g is a singular integral operator whose kernel d,K,(x, ) is taking values in the
Hilbert space L>(R*, tdt). Since g is already known to be bounded on L? we
need to check the following condition on K,.

2.1 19.K,(x,y) — 0, K, (x,y*)| dx < C

J.Ix—y Hz2ly -y
where |+ | is the norm of the Hilbert space L*(R*, ¢ df). Once this condition
is checked we can invoke Theorem 5.1 in [15] to get the weak type estimate.
The condition (2.1) is checked using the following estimate on the kernel
9,K,(x, ).
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Lemma 2.1. [0,0,K,(x,»)| < Ct *?|x — y| 7 'A + ¢t " |x - y|)~ 2.

Proor. The function ¢ can be written as
o(t) = —(x — »)*/(2sinh 2¢) — tanh # (x2 + »?)/2.

Since d,3,K,(x, ») is going to have many terms we indicate how to estimate one
typical term viz.

J = (sinh 2¢) = 7/% cosh 2t (x — y)’e*®.

First let us assume that 0 < # < 1 so that sinh 2¢ = O(¢) and cosh 2¢ = O(1).
Then it is clear that we have the estimates

V| <Ct™*?|x —y|™' and |J|<Ct V3x—y| 73
hence
[J| < Ct™ 32 x —y| 7 'A + 7 3x -y~ 2

The other terms are estimated similarly. Getting the estimates when ¢ is greater
than 1 is similar. In fact, we can get better estimates since sinh 2¢ = O(e’) and
cosh 2t = O(e") when ¢ > 1. The details are omitted. This completes the proof
of the Lemma.

Now it is easy to see how the condition follows from the Lemma. First we
see that

19,3, K.(x, )| < Clx - y| "Zf:t'z(l +t7 2 x —y))~*dt

which is less than or equal to |x — y| ~*. Now an application of the mean value
theorem shows that

@2 | oy 10K ) = 8K (6, y¥)] dx

lx—y* =2y -
< — p*
= lex—y*l z2|y-y* n 3y3,K,(x,y0)|| ly 7 | dx

<C o = ol 21y = y*|dx
x—y*=z2ly-y*

where y, lies between y and y*. Since |x — yo| = 1/2|x — y*| the condition
(2.1) is verified.

To prove the Marcinkiewicz multiplier theorem, we have to introduce some
more auxiliary functions. For any integer k£ > 1, we can define the functions

g (f, %) = J:tz" “HorH f(x)|? dt.

Then it is an easy matter to prove that g(f, x) < Cgi . ;(f, X). Indeed, by set-
ting u(x, ) = H'f(x) we see that all ¢ derivatives of u(x, ) tend to zero as ¢ goes
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to infinity. Therefore, writing
*u(x, t) = JT 3%+ u(x, s)s*s~* ds
we get the estimate
|0%u(x, 1> < Uja’; *lu(x, s)|%s%* ds} {JT.S‘_ 2k ds}

Thus g, (f, X) < Argr+1(f, x) and the claim is proved by induction. Another
function we need is the g* function which is defined by

g* (07 = [T "2 + 72 x = YD) O HS ) dy dt.

The basic result about g* which we are going to use is the following theorem.
The proof is easy and for the sake of completeness we sketch it here.

Theorem 2.2. |g*(f)|, < C|f|p, for2<p < .
Proor. Let ¥ be a nonnegative function. We claim
[&*(f, 0 ¥@ dx < C [ g/, 9°A¥(x) dx

where A is the Hardy-Littlewood maximal function. This is an easy conse-
quence of the fact that

supjt- V21 4 17125 — y) " ¥ (y) dy < CAY ().

t>0

Since A is bounded on L?, 1 < p < o0, an application of Holder’s inequality
proves the theorem.

3. Marcinkiewicz Multiplier Theorem

We will prove that g(F, x) < Cg*(f, x) where F(x) = T, f(x). Then in view of
theorems 2.1 and 2.2 it will follow that |F|, < C| f],. Again, we need only
to prove the inequality g,(F, x) < Cg*(f, x). To prove this we introduce the
function M.

3.1 M(t,x,y) = 2 e Mum)e,(x)e, ()

If we let u(x, t) = H'f(x) and U(x, t) = H'F(x), then we can write

(3.2) Ulx,t+5) = [u(y, OM(s, x, y) dy.
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Differentiating the above expression with respect to s and ¢ and then setting
=5 we get

3.3) 32U, 21) = [ 8,u(y, )3, M(t, x, 7) dy

Now we need to translate the hypothesis on the function u into properties of
M. This is done in the next lemma. For technical reasons we assume that
w(0) = 0 without losing any generality.

Lemma 3.1. Assume that p satisfies the condition k|Au(k)| < C. Then we
have

(3.4) |9, M(2, x, )| < Ct™*2
3.5) [ 1x = y*1a,M(t, x, y)I? dy < Ct= 2,

Assuming the lemma for a moment we will first prove the inequality g, (F, x)
< Cg*(f, %).

(3-6) GUE20 = [, 0u(y,08,M(t,x,)dy

t172

o,u(y, t)o,.M(t, x, y) dy

fiecsizas
= 4 + B0,

Applying Schwarz inequality and using (3.4) we see that

2 2 2
BN AP LB oPdy [ 10M x| dy

< Ct‘”j(l + 72 |x — y)) " 2a,u(y, 1) dy.

<tl/2 |

Another application of Schwarz inequality to B,(x) gives

|x — ¥ "2|9,u(y, 1)|*dy
Ix — y|?9,M(t, x, p)|* dy

(3.8) 1B, < |

lx—y|>¢172
Lx—y! >t1/72

In view of the estimate (3.5) the above becomes
(3.9) |B,(x)|* < Ct-S/ZJ(l + ¢ V2|x — y|) " 2|0,u(y, )|*dy
Thus we have

87U, 20> < ™2 [(1+ 172 x = y) " 23,u(r, ) dy
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and hence
(310 eFEX<C[ [0+ 7 x = y) T d,uy, 0l dydt
< Cg*(f, 9%

Let us now prove the Lemma 3.1. (3.4) is a simple consequence of the
boundedness of pu.

(3.11) |8, M(t, x, 9)|* = | 2 e~ VNum)e, (e, (0|

< (2 e VN, ()} {2 e VN, (»)*}.
Since

>1e " MNp,(x)? = —9,{> e M, (x)*} = —d,{(sinh 2¢)~?exp (—x*tanh #)},

(3.4) follows immediately. To prove (3.5) we use the following recursion for-
mula (see [18]).

(.12) 250, (X) = (201 + 1)}, 1(0) + @1) 20, _ 1 (1),

Let us introduce the operators A and B defined by 4 = —d/dx + x and
B = —d/dy + y. These operators have the following effect on the Hermite
functions:

Aey(0) = (n + 1)"?p, . 1(x) and  Be,(») = 20 + 1) ¢, 1(9).

We use the recursion formula to calculate 2(x — y)a,M(¢, x,y). An easy
calculation using the recursion formula and the action of 4 and B show that

(3.13) 20x — )3, M(t, x, y) = (B — A)( 2 A¥(M)e,(M)en(¥))

where ¥ () = e~ MNu(n). Applying the Leibnitz rule for the finite differences, a
typical term will be of the form (B — A){X e~ VDN + 2) Au(n)g, (X0, (1)}
Since (B — A) brings down a factor of (27 + 2)/? the square of the L? norm
of this series is bounded by

21e VDN + 2| Ap(n) PN + 1), (x)’.

By the hypothesis on u the term (N + 2)*|Au(n)|? is bounded independent of
n and hence the above sum is dominated by a constant times > e~ “Ng, (x)*
which is bounded by Cr~3/2. Similar estimates hold for all other terms and
this completes the proof of the Lemma.

Let us now consider the » dimensional case. The n dimensional Hermite
semigroup H' is defined by means of the kernel K,(x, y) which is given by

K, (x,p) = D e Gl 0@, (1)
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where &, are the n dimensional Hermite functions. In view of the Mehler’s
formula we have

K,(x,) = (sinh 2¢) " "?exp {®(7)}
where
®(t) = —1/2(]x|* + |y|® coth 2¢ + x - y cosech 2¢.

Denoting the differentiation with respect to y; by 9; the following estimates
can be obtained just like the one dimensional case.

(3.14) 19,0, K,0c, )| S Ct ™27 Nx = y| 1A+ 7 V2 x =y 77!

forj=1,2,...,n. If we define the g and g, functions as in the one dimen-
sional case, then in view of the above estimate it is easily seen that Theorem
2.1 holds true in the n dimensional case also. We also have the relation

g(f,X) SAkgk+l(fsx)

between g and g, . We need one more auxiliary function which is the » dimen-
sional version of the g* function. For k£ > 0 we define gf by

(2,00 = [ [Tt "2 + 17 2|x - y) "9, H' S () dy dt.

For k > n/2 the function (1 + |x — y|) ~2* belongs to L' and hence it is easy
to prove Theorem 2.2 for the g¥ function i.e. we have the inequality

|g¥NNp < CISfps

provided k > n/2. As in the one dimensional case we set F(x) = T, f(x) and
will prove that

&+ 1(F, x) < Cgi(f, %)

where k > n/2 is an integer. This will then prove the multiplier theorem. We
start by defining

(3.15) M(t,x,y) = Y e~ @l 0a) + 1)@, (0)2,(y).

The following Lemma translates the hypothesis on  into properties of M(¢, x, y).

Lemma 3.2. Assume the function p satisfies the hypothesis of Theorem 1.
Then we have

(3.16) |0*M(t, x, y)| < Ct~"**

(3.17) j lx — y|**|9"M(t, x, y)|* dy < Ct =2,
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Proor. The estimate (3.16) follows from the boundedness of u as in the
one dimensional case. The other estimate is a consequence of the following
estimates:

(3.18) j|(x—y)ﬁan(t,x,y)|2dy<Ct-"/z-", forall B with |B] = k.

To prove these estimates we have to introduce some more notation. Consider
the following operators 4; and B; defined by

A;= —d/dx;+x; and B;= —d/dy;+ y;.

These operators have the following effect on ®,:

A;®,00 = (2 + 1)}?®, 4 0s(0)
and

B3, () = (2Ae; + 1))@, 0s(¥)
where e/ is the j-th co-ordinate vector. Given a series

M(t, x,y) = 2, ¥(|a))® (), ()
we denote by A"M(¢, x, y) the series defined by

AM(t,x,5) = 2, A¥(|a))2, ()2, (7)

where A"V is the finite difference of order r of ¥. For technical convenience
we assume that ¥(|a]) =0 for all o with |a| < k. Let us first calculate
2(x; — y)M(t, x, y). Proceeding as in the one dimensional case we obtain

20x; — ypM(t, x,y) = (B; — A)) AM(t, x, ).

Now it is clear how to proceed further. Iteration of the above procedure pro-
duces

(*) 2m(xj - yj)mM(tv X, .y) = Z Crs(Bj - Aj)rAsM(t, X, y)

where the sum is extended over all r and s satisfying the conditions 2s — r
=m, s m.

The proof of (x) is by induction. As we have seen the result is true for
m = 1. Assuming the result for m, we will now consider

(3'19) 2m* 1(-xj - yj)m+ IM(ts X, J’) = Z Crsz(xj - yj)(B_[ - AJ)rAsM(t, X, y)
Let us write

(Xj - yj)(Bj - Aj)r = [(Xj - yj)s (Bj - Aj 1+ (Bj - Aj)r(xj - )’j)
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and calculate the commutator [(x; — ), (B; — A)']. It is easily seen that
[(x; — ), (A; — B)] = 21,
where [ is the identity operator. Now we claim that
[ — ), (B, — A)'1 = —2r(B;— A) ™.

We prove the claim by induction. Suppose we have [T, S] = 27 and [T, S"]
=2rS"" 1L

(3.20) [T,S"*Y = (TS" — ST+ S'T)S — S(S'T — TS" + TS")
= 4rS" + S/(TS — ST + ST) — (ST — TS + TS)S’
=4(r + 1)S"— [T, S"*]

so that [T, S"*!] = 2(r + 1)S” and this proves the claim. Thus we have the
equations

(B2D)  2x-y)B;—A) = —2r(B;— A) '+ (B, — A)2x; - )
(3.22) 2m + l(xj _ ,yj)m + IM(t, X, y)
=2 Csl —2r(B; — A) ™' + (B; — A)2(x; — y)} A°M(1, x,y)

which equals to > A,,(B; — A;)"A°M(t, x, y) with the conditions 2s — r = m + 1,
s <m + 1. This proves the equation (x).

Since the operator (x; — y;) commutes with (4; — B,) for i different from j,
repeated application of (x) produces the following result

(3.23) (x = »)’M(t, x,y) = 2,C,s(B — A"ALPIM(2, x, )

where 26; — v; = 8;,6; < 8, and (B — A)" stands for the product I1(B; — 4)".
Now we can complete the proof. Since

M1, x,y) = (=1 Ze™ C 2o + n)u2|al + M2, (02,(0),
the above result (3.23) applied to %Mz, x, y) gives
(3.24) (x — »)POrM(t, x, ) = X, C5(B — A) APIM,(t, x, y)
where
My (t,x, ) = 2, ¥(|a))®, ()8, ()
with

¥(|a]) = (= ke @lel*D'2|a| + n) 2’| + n).
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If we expand (B — A)” and apply Leibnitz rule for finite differences, we see
that a typical term in the sum (3.24) is of the form

(3.25) Se” @l =mia)y| + nykAllR2|a| + n)A°®,, (X)B™®,(¥)

where 2|6| — |7| — |o| = k. Recalling the definition of the operators A and B
we see that the square of the L? norm of the above sum is dominated by

(3.26) e ClRITQo| + pPk It I AR 2|l + n)| @, ()]
Since
|ARIu2la] + n)|> < CQRla| + n)~2°! and 2|8| - |7| — |o] = &,
the above sum is dominated by a constant times
2ie” Gl M| + ny¥|@, ()|

which is bounded by Ct~"?~%. All other terms are similarly estimated. This
completes the proof of Lemma 3.2.

Having proved the Lemma, Theorem 1 is proved just like the one dimen-
sional version. We write

H'*F(x) = [ M(s, x, DH'f (9) dy.

Taking k derivatives with respect to s and one derivative with respect to ¢ and
then putting ¢ = 5, we get the expression

(3.27) 3t HYF(x) = [ 9tM(t, x, )3, H'f(9) dy.

In view of the Lemma we get g, .. ;(F, x) < Cg#(f, x) and this completes the
proof.

4. Hardy-Littlewood Inequalities for (—A + |x|?)

We prove Theorem 2 when n = 1. There is absolutely no change in the proof
for the general case. We first prove the inequality (1.9). The operators 7;(c)
are all bounded on L2. The other inequality (1.8) is then proved by inter-
polating between the L2 result and the inequality (1.9). Then following inter-
polation theorem due Fefferman-Stein [3] is the one we are going to apply.

Theorem 4.1 (Fefferman-Stein). Suppose S, is an analytic family of operators
satisfying

(@ ISy Sl < Ao S| g

(i) 1S1+5fl2 <A S]2
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Sforally, —o <y < . Assume that A j( ¥) satisfies the condition log A ;)
<cjexp {d;|y|}, ¢;>0 and 0<d;<w. If 1/p=1—-1/2, 0<t<1, then
1Sefl, <Alfl,-

The inequality (1.9) is proved using the atomic theory of H” spaces. We say
that a function ¢ is a p-atom if there is a ball B in R" such that ¢ has the
following properties.

(4.1) supp(¢) C B, |ele<|B|™"”

(4.2) j o(X)P(x)dx = 0

for all polynomials of degree less than or equal to k = n(1/p — 1). If f belong
to H”(R") it can be shown that there exists a sequence of p-atoms (¢)) and a
sequence of complex numbers (\)) such that f = >)\;¢; in the sense of distribu-
tions and (3|\|”)"” < C, | f| - Conversely, if f has the form f= X \;¢;,

then f belongs to H”(R") and | £, < C,(Z [N\17)"7.
With these preliminaries consider the operator 7,(«) which is defined by

4.3) T(e) = 2 2n + 1)~ % Vi n)p,(x)
The operator 7,(c) has the following kernel

(4.4) K, (x, ) = 23 2n + 1)™ %" Vg, (1), (%)
We can write this kernel as

K,(x,y) =1/T'(x) L>o)\°‘_ LK¥*(x, », \) d\

where we have set
(4.5) K#(x,y,N) = 2@ DM 00, ()0, (X).

~2X the following expression

In view of Mehler’s formula we have with r = e
(4.6) K#(x,y,\) = ce” @701 — r?e™*") "2 exp { B,(t, X, %))
where

B(t,x,¥) = (1 — rPe™ )~ { —1/2(x? + y»)(1 + r’e™*") + 2xyre™*"}.

To prove that T,(a) is bounded on L” it is enough to show that
[ 1K xp)ldx<C,

with a C independent of y.
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It is easy to calculate the L' norm of K,(x, ). Let
Ct,x,y) = (1 — rPe™*") ™2 exp (B,(t, x, )}
Then an easy calculation shows that

“.7) G x, )
= a'?exp { ~1/2a°(1 = r)(x* + y) + 2rxya*(1 — r*) cos 2t}

where
a* = {(1 — r®? + 4r*sin®2¢} 1.
Letting b* = a*(1 — r*) and ¢ = 2rcos2¢(1 + >~ ! we have
(4.8) |C(t,x,y)| = a**exp { —1/2b%(x — cy)*} exp { —1/2b*(1 — cHy?).
It is easily seen that b*(1 — ¢?) = (1 — r?)/(1 + r?). Thus we have

@9 [1C0, x| dx
=a%exp { —1/2(1 — r/(1 + rA)y?} j exp { —1/2b%(x — cy)*} dx
which is equal to
Aa="*(1 - rY)y~2exp (—1/2(1 — /(1 + ).
Therefore, we have

(4.10) [ |K/(x, »)| dx
<A L\>o)\a—le~>\(1 — )" 12((1 — P2 + 4r?sin?2t) V4 d\.

From this we see that when sin 27 = 0, the kernel K,(x, y) is integrable for all
o > 0 but when sin2¢ is not 0 the kernel is integrable only if o > 1/2. Since
we are interested in the case o = 1/2 and ¢ = w/4, we have to study the
operators by other means. That is why we need the atomic theory of the Hardy
spaces.

Suppressing «, let us considet the operator T,(1/2) = T,. The kernel K, (x, y)
of this operator is given by

(4.11) K,(x,3) = 2,@2n + 1) 2@ Dl (3)g, (x)

Since

K¥(x,y,N) = 2,e@" DA Dg, (3)g,(x)
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we can write the kernel K,(x,y) as
K,(x,y)=c j:x- V2K %(x, y, \) d\.
A simple calculation shows that
(4.12) K¥(x, y,N) = c{sinh2(\ — ir)} ~ 12~ 4»: NeiBr(x:y. )
where A,(x, y,\) and B,(x,y,\) are given by the following equat.ions.

(4.13)  2A4,(x,y,)) = (sinh® 2\ + sin”27) " '(sinh 2)) {cos 2£(x — y)°
+ (cosh 2\ — cos 27)(x? + »?)}

(4.14) 2B,(x,y,\) = —(sinh? 2\ + sin®2¢) ™ !(sin 2¢) {cosh 2\(x — y)?
— (cosh 2\ — cos 28)(x? + y%)}.

First consider the integral taken from 1 to infinity. Since sinh 2\ behaves like
e for A > 1, it can be easily checked that the integral

[P (sinh 20\ — ir)) = V2 Pur Ve = AN g

defines a nice L' kernel and hence the operator corresponding to this kernel
is bounded on L?, for all p, 1 < p < «. So we can very well assume that the
kernel of the operator 7, is given by

K,(x,9) = [IA712(sinh 2(\ — i)} =12~ A2 VeiBece.r:D gy

In view of the atomic decomposition, 7, will be bounded from H' into L' once
we prove the following proposition.

Proposition 4.1. j' | T, f(x)| dx < C whenever f is an 1-atom.

In proving this proposition we closely follow Phong and Stein. In [10], they
studied the boundedness of the operator 7 whose kernel is of the form
K(x — y)e'B*» where K is a Calderén-Zygmund kernel and B is a non-
degenerate bilinear form. To prove the proposition we need certain estimates
for the kernel K,(x, y). These estimates are proved in the next lemma. Let us
write K,(x,y,\) = {sinh2(\ — if)} ~le~4®»N,

Lemma 4.1. We have the following inequalities.
| ] 1778, K, 7. e > D dx | < Clx = y| 2
| j;x “12K,(x, , N3, (P& N} g\ | < C(sin2¢)~ 32
| ]2 1720, OAK, (x, 3, N dN | < Clx = ] 2.
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Proor. The proof of this lemma is elementary. We prove it when 0 < ¢ < /8.
The proof of the lemma for other intervals of ¢ is similar. First we calculate
that

(4.15) |sinh 2(\ — it)|* = c(sinh®2\ + sin?2¢)

Observe that for 0 < \ < 1, (sinh? 2\ + sin?2¢) behaves like (\? + sin®2¢). Let
us prove the first inequality of the lemma. d, K, (x, y, ) has two terms. We will
estimate only the contribution of

(4.16) J = {sinh2(\ — if)} ~"/*(sinh® 2\ + sin®2¢) "
(sinh 2\)(cos 21)(x — y)e ~4 @M

Since 0 < ¢ < 7/8, cos2t > 2~ "2, We consider two cases. First assume that
t <\ In this case (sinh?2\ + sin?2¢) behaves like \2. Therefore,

4.17) [7] < Cx — »N"*2exp {—A " (x — »)*}.
Integrating this agains A\~ '? we have
x-y ﬁ)\‘ze“)‘_l("’”zd)\ =x-y) j:oe'“(x'y)z d\
<@x-y) JQ:)\VZe"')‘("‘y)z d.

This gives the estimate C|x — y| 2. Next assume that #>\. In this case
(sinh® 2\ + sin®2¢) behaves like #>. Therefore,

|J| < Clx — y)t ™32 exp { —cht ™ 2(x — y)*).
This gives the integral
(x — y)t=52 ﬁ N2 =M "2 =? < (c— y)t= 2 j:)\a/z— 1e—cxt‘2(x—y)2 dn

which is bounded by Ct'/?|x — y| ~2. This proves the first inequality when
0 <t < w/8. If t is in the neighbourhood of 7/4 we can use

(sinh?® 2\ + sin®2¢) ~ (sinh 2\)(cosh 2\ — cos 27)(x? + y?)
in place of
(sinh? 2\ + sin?2¢) ™ !(sinh 2)\) cos 2(x — y)?

since (cosh2\ — cos2¢) > 1 — cos 2t > 2sin®¢ > ¢. This completes the proof
of the first inequality.

The proof of the second inequality is similar. Unfortunately the estimate we
get is not uniform in #. We believe that a uniform estimate is possible though
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we are not able to prove it now. Again we will be having two terms. Consider
the term

G = K,(x,y, N(sin 2¢)(sinh® 2\ + sin®2¢) ~ Y(cosh 2\)(x — »).
Since ¢ < (sinh?2\ + sin®2¢) ™! < (sin?2¢) !, G in modulus is bounded by
(4.18) |G| < C(x — y)(sin2¢) " ¥ exp { —c\(x — ¥)?}.

Integrating this against A\~ 2% proves the desired inequality. The other term is
estimated similarly. The proof of the third inequality follows along similar
lines. Differentiation with respect to A brings down a factor of A and hence
we get |x — y| ~3. Hence the lemma.

Having proved the required estimates, we can now prove Proposition 4.1.
Assume that f is an l-atom supported in |x — y*| <6 i.e., f satisfies the
following two conditions.

@ | fle<o™!
(ii) j Fo) dx = 0.

Let Q; denote the ball of radius é centered at y* and let CQ, stand for the
complement of Q;. We write F(x) = T,f(x) as a sum of three functions,
F=F, + F, + F; where F;(x) = F(x) on Q,;, 0 elsewhere; F,(x) = F(x) on
CQ,;NQ;5-1, 0 elsewhere and F;(x) = F(x) on CQ,;NCQ;-1, 0 elsewhere.
We note that F, =0 when 6 > 2-12

To study F;, we apply the L? theory of T,. From the definition, it is clear
that T, is bounded on L?. Therefore

J |F1 ()] dx < lezsil/ZU |F1(x)]2dx} 172
< 61/2” |th(x)|2 dx}l/Z
< GOV [ fe dx V2.

Since
U |f(x)|2 dx}l/z <Cs™ 1/2

we get [|F,(x)|dx < C.
To study F, we write the kernel K,(x, y) in the following way.

K, (x,y) = E\(x,y) + Gi(x,)) + H/(x, )
where
E(6,7) = [N V2K, 060, )) = Ko, 7%, )P0
G,(x,y) — J';)\—I/ZKI(x’y*,)\){eiBr(x,y,)\) _ eiB;(x,y*,)\)} dn
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Since f has mean value 0, the kernel H,(x, y) does not contribute anything.
Observe that when x is in CQ,; and y is in Q; we have |x — y*| > 2|y — y*|.
In view of Lemma 4.1 we have the estimates

(4.19) |E,(x, )| < Cly — y*| |x — y*| 2
(4.20) |G,(x, »)] < Cly — y*|.
Therefore,

IFy(0) < C8{1 + |x — y*| 2],
Since F,(x) is supported in 28 < |x — y*| < 67!, we get
_ yx|~2
[iIR@lax<es(f _ dax+|  lx-y7tdx]<C.

Finally, we consider F;. We write the kernel as the sum of the following
three terms.

E,(%,9) = [INV2(K 06 2,0 = K6, 7%, )PV d)
G5, ) = [IN" 12K, (x, y*, N[V — g8y g
Hio2) = [Nty el D

Using Lemma 4.1 we get the following estimates.

(4.21) |E,(x, )] < C|y — y*||x — y*| =2
(4.22) |G,(x, »)| < Clx — y*| 73,

These estimates will imply that
|E.f0)] < Célx — y*|~% and |G ()| < Clx—y*| .

Therefore,

Q

E.f()| dx < 5U‘x_y*|aa-1 Ix — y¥| -zdx]

U|X-y"|aza [X—y*l“de}

J‘|x—y*|25‘1 |

N
8

N
P!

When 6 <1 we get

JoyrmsmsICfN ax <[] = y¥| dx} <’ < C

x—y*=6-1

and when 6 > 1 we have

|G,f(x)1dx<c{j |x-—y*|'3dx}<C5‘2<C.

le—y*lzZﬁ |x—y* =28
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This takes care of the terms E, f(x) and G,f(x). Finally H,f(x) is given by

Hf®) = Ff{ [ N™K 6, 7%, M dM] = Ff 00z, ()
where
F.f(x) = [ 0f(y) dy.

By Plancherel’s theorem |F,f |, = | f|, and we also have |g,(x)| < Clx — y*| ..
Hence by Schwarz inequality we obtain

|H, ()] dx < C{J ]F,f(x)|2dx}1/2[I
<C

_ uk|—2 172
Jlx—y*[za—l Ix y‘ dX}

lx-y*=s-1

since | f], <& /2. This completes the proof of the Proposition 4.1 and
hence proves that the operator T, maps H' boundedly into L!.

We can now prove Theorem 2. Consider the analytic family S, of operators
defined by S, = T,{(1 — 2)/2}. Then clearly S, , ;, = T,(—iy/2) is bounded on
L2. Also Sy = T, {(1 — iy)/2) and for this operator we can prove that it maps
H' boundedly into L! by repeating the proof of Proposition 4.1. By applying
the interpolation theorem of Fefferman and Stein we get the theorem for
1 < p<2. For p > 2, the theorem follows from duality.

5. An Application to the Solutions of the Schrodinger Equation

Consider the solution u(x, ¢) of the initial value problem for the Schrodinger
equation

(5.1 —id,ulx, 1) = (A + |x|Julx, 1), ux,0) = f(x)

where fis a nice function, say f belongs to the Schwartz class S(R"). The solu-
tion u(x, t) has the Hermite expansion

u(x, 1) = 2, e@lelmitrN )@ (x)

where f"(c) are the Hermite coefficients of the function f. f— u defines an
operator F(¢) which, in view of the above expansion, is given by a kernel as
follows:

(52) F(@) () = 7~ [ (sin20)~"2e™*“*)f () dy

where

o(t,x,y) = —x - ycosec2t + 1/2(|x|* + |y|*) cot 2¢.
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Clearly, F(¢) defines a unitary operator on L2(R"). It also has the group prop-
erty F(¢) F(s) = F(t + s), F(0) = identity. Furthermore, when ¢ takes values in
the set {w/k:k=1,2,3,...} F(¢) is a fractional power of F, the Fourier
transform. For example, F(x/4) = F and F(x/8) = F'/2. Because of this and
the group property the operators F(¢) cannot be bounded on L”. For otherwise
the Fourier transform has to be bounded on L? which, of course, is not true.

A similar situation occurs when we consider the Schrodinger equation
without the potential. Let H(f) be the solution operator for the equation
—id,u(x, t) = —Au(x, t), u(x, 0) = f(x). Formally this operator can be defined
by (H(@®) ) (&) = exp {it|£]*} f2(%). This operator is unitary on L*(R"). But
as shown in Hormander [6] and Littman et al. [7], it fails to be bounded on
L? when p is different from 2. In this connection Sjostrand [14] considered
the Riesz means of the operator H(¢) defined by

G f(0) = ar™* [T (r = 0" T'H(0) Sy dt

and proved that the Riesz means G, (o) are bounded on L? if and only if
a > n|l/p — 1/2|. So it is natural to ask the same question with regard to the
Riesz means G.(a) of the operators F(¢). It turns out that Theorem 3 is true.
For the sake of simplicity we treat the one dimensional case.

We write down the Hermite expansion of F(¢) f(x) for a smooth function f.

(5.3 F(0)f(x) = 25 e®"* DifN(m)p, (%)

When f is in the Schwartz class the series converges uniformly. Let g be the
inverse Fourier transform of the function A(¢) defined to be (1 — #)*~! for
0<t<1 and 0 elsewhere. Multiplying the above series by (o/7)h(¢/7) and
integrating with respect to ¢ we obtain

G4 G, (@) fe) =D el@n + )7} A (), (%).
The function g(#) can be calculated explicitly. We can write
&) = jl_ (1-s5)*"le™ds — Io_ (1 — 5)*~1ei® gs.

We have the following formula for the first integral as proved in Gelfand-
Shilov [4], p. 171.

(5.5) g,(t) =c,t~ %", ¢, =T(a)e” "2,

An integration by parts will show that the second integral is equal to
d,t~! + g,(t) where the function g,(¢) = O(¢ %) at infinity.
Thus G,(«) is a sum of three operators, G () f = TAx) f + To(1)f + Tf where

(5.6) Tf () = 208 (2n + D7} A (n)en ().
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Since |g;(2n + 1| < C2n+1)"% and [¢,]w|eal: < CRn + 1)VS, we see
that 7 is given by an L' kernel and so T is bounded on L?, for all p,
1 < p < . The operator T,(1) is clearly bounded on L?, 1 < p < « for the
same reason as we have noticed in the previous section. Finally we can apply
Theorem 2 to the operators T,(«). For a > |1/p — 1/2|, these operators are
bounded on L?, for 1 < p < and when p =1 and « = 1/2 it is bounded
from H' into L'. This proves Theorem 3.
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Weak Type Endpoint
Bounds for Bochner-
Riesz Multipliers

Michael Christ

The Bochner-Riesz multipliers are defined for testing functions f on R” by
(LON® = (1 - &P} FO).

Questions concerning the convergence or multiple Fourier series have led to
the study of their L? boundedness. It is conjectured that for »n > 1, for all
exponents p € (1,2(n — 1)/n), T, is bounded on L? for all

ASNp)=n(p~'-2"H-2"1>0.

What is known is that the conjecture holds for the full range of exponents in
dimension two [1], and for the smaller range 1 < p < 2(n + 1)/(n + 3) for all
n 2 3. Moreover it is very easy to see that 7, is unbounded for all A < \(p);
it suffices to compute the associated convolution kernel and to examine its
action on the characteristic function of the unit ball. Nevertheless there is
a positive result at the critical value N(p), at least for a certain range of
exponents:

Theorem. Foralln>2and1<p<2n+1)/(n+3), Ty, is of weak type
(p, D).

Temporarily define
(@ =A - [r e F®).

25
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Corollary. Foralln>2,1<p<2n+1)/(n+3) and fe LP(R"), T, f—=f
in measure as r — o,

The result for p = 1 was recently proved in [4]. Our proof involves an ap-
plication of the method of [4], a slight refinement of estimates already known
on L”, where p, = 2(n + 1)/(n + 3), and an interpolation between L' and L7°.

To begin fix pe(1,p,). Write p~ ' =60-1+ (1 — 8)p; !, where 0 < 0 < 1.
Fix \=Np)=n(p~' =271 271, and set m(¢) = (1 — |£»)} . Let feL”
and o > 0 be arbitrary. In order to estimate the measure of the set where
|T\.f| > «, apply the Calderon-Zygmund decomposition to f7 at height a? to
obtain f=g+ b where |g|,<C|f|,, |&le<Ca, and b=E,b, where
each bQ is supported on a dyadic cube Q,

[ 18017 < @”lQl,
the cubes Q have pairwise disjoint interiors, and
Eol0l < Ca?| f12.
Since T, is bounded on L?,
| (x: | The()| > /2)] < Ca™?|gl3 < Ca™?| f]5.
Let E be the union of the doubles of the cubes Q. Then
|E| < Ca™"| f]5,
so it suffices to show that
[{x ¢ E: |T\b(x)| > a/2}| < Ca™?|b|5.
This will follow by Chebychev’s inequality from
a | T36) 22 ons 5y < Ca® 7| B2

Fix ¢, € C3(R"™), radial and supported in {|x| < 1} and satisfying ¢,(x) = 1
for |x| <1/4 and

) [ @ @0/0ED® - €D\ dE =0
for k=0,1. Let
0;(0) =0o27x) and Y;=¢;— ¢;_;.
For j > 0 let
K;(9) = 4, @)m(),

and let K, = ¢, - 71, so that m = ZK;.
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ForO0<ieZlet B; = Eb the sum being taken over all Q with sidelength
2! when i > 0 and sxdelength less than or equal to one when i = 0. The con-
tribution of B, turns out to be relatively easy to treat, so we shall ignore it
until the end of the argument and concentrate instead on Z;. ,B;. Note that
if O has sidelength 2, then for all j < i, bQ * K is supported on the double of
Q, hence on E. Consequently for all x ¢ E,

N\(ZisoB)(X) = Li5 0B * (X5 i K)(X) = Eg5 0Xj> sBj_ s K;(x).
Hence (1) is a consequence of
(3) |Zj>sBj—s*K; "Lz(nen) < Cz_”az_pﬂbﬂﬁ

for all seZ™*, for some ¢ > 0.

Fix linear functions /;,/,: C— C such that Re(/;(z)) = p when Re(z) =1,
=p-py; ! when Re(z) =0, and Re(/,(z)) = n(p~' — 1) when Re(z) = 1 and
=n(p~'-p;!) when Re(z) =0. Then /;(6) =1 and L (6) = 0. Define

B; .(x) = [B; ()]"@, interpreted as is customary in the standard proof of the
Riesz-Thorin interpolation theorem. Define K; ,(x) = 2/2@K;(x). Then (3)
follows by interpolation between the two endpomt estimates

@ IZj5sBj—s.2*K; 2|5 < C27“a?|b]?
when Re(z) =1 and
®) 155 sBj—s,2*Kj, |3 < Ca?@®0 ’”llbll"

when Re(z) =
To justify (4) consider any collection {A4;:j> 0} of functions satisfying

[ol4 < calQl

for all cubes Q in R" of sidelength 2’. Consider further any collection of
kernels

H;(x) = ®(x)h;(x)
where
®(x) = cos 2w|x| — w(n — 1)/4)
and each 4; is supported in {2773 < |x| < ¢,2’} and satisfies
1A]w + 27| VAo <277
It is proved in [4] that
) |Z)>s4;- s+ Hjl; < C27“a®| 2|4 |,
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for a certain e > 0. This is done by first, for technical reasons, introducing a
finite partition of unity {5,} on R"\ {0} with each 5 homogeneous of degree
zero and supported in some cone {x:{x,vz) > é|x|} for some 6 >0 and
vgeS"~ 1. (4") follows from the variant of itself defined by replacing each H;
by J; = H;- ng, for then one may sum over 8. This modified (4') is an easy
consequence of the estimates

;= J;09| < C27"(1 + |x)~*
and
[Ji# il <277274 forall 0<i<j-3,

where .7j(x) = Jj(—x) and p = (n — 1)/2; these are not difficult to verify by
direct computation using the stated properties of { H}.

When Re(z) = 1, 4; = B andH K . have all these properties (H does,
by the known asymptotlcs for Bessel functlons) Therefore we con51der 4) to
be proved and concentrate on (5). For a single term B;_, z *K; ., it turns out
that the desired bound follows at once from the estimates in [7]; the technical
manipulations which follow are designed to enable us to pass from bounds for
these individual terms to a bound for the entire sum.

Let m; = K, = m+{, (for j > 0).

Lemma 1.

(6) [3°m;/35% | < Co271*1277 for all multi-indices o.

@) |m;®)| + 277|Vm;(®)| < C,,2 "™ for all M and all  ¢[1/2,3/2].

®) |m@)] + 277 |Vm®)] < Cp27N1 + 27|11 = [E])™M for all [E| €[1/2,
3/2].

(9) There exists 6 > 0 such that

[m; )| + 277|Vm;(®)] < C27 max (2/|1 — [¢][,277°)
forall |¢| e[l —277,1+27].

The conclusions are all totally routine bounds for m; = m * 1Zj except for (9),
which relies on the technical condition (2). To obtain the bound in (9) for
m;(£), observe that since [m;(#)| < C27/* when [£] = 1 + 27/ by (8), and since
|Vm] . < C2/1=P it suffices by the fundamental theorem of calculus to prove
(9) for |£] = 1. Both m and J/j are radial, so we may take £ = £ = (1,0,...,0).

(&) = [5G — ) 1A = [§P} = 20 = £k 148,

where ¢ = (¢4, £5, - - - ), since the term subtracted is actually zero by (2) (with
k = 0). The function (& — +) is essentially supported on a ball of radius 27/
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centered at &,. On this ball
1= [ - 20 = £+ 1 < 27

the best way to see this is to introduce new coordinates centered at &, and
rescaled by a factor of 2’. In such coordinates the boundary of the unit ball
becomes almost flat as j — o, producing an extra factor of 2 /. Hence (9)
holds for m;; we omit the precise details. Vm; may be estimated in the same
way, using (2) with k = 1.

Lemma 2. There exist positive radial functions {v;: j > 0} such that Enjz.e L»
and the multipliers n; = m;/v; satisfy (7) and (8).

Indeed, define 7;(§) =1 if |[§| =1x27/, =272 if |§ =1, where 6 is
the exponent in (9), and interpolate smoothly for intermediate values of |£|.
Proceed similarly for |£] ¢[1 —277,1+271].

We may now deduce (5). Suppose that Re(z) = 0.

1%)5:B;s2x K, 3 = [IZB,_, (9 - 22@n,(em,(9) d&
< [En,@NEIB_, - 2°Pn ) ag
<C[zlB_, - 2"@n )|’ dt

. . . -1_ -1 _ 2
= E”Bj-S,z*zﬂZ(Z)nj”; = E“Bj-s,z*zﬂl(p PO )”juz-

Therefore it suffices to show that for all Fe LP°(R") satisfying

10 F|P g

(10) J,IFI™<sl0]

for all cubes Q of sidelength 2/, we have

an |Fa2 @™ r 2 < B F R,

for B .. satisfies (10) uniformly for all seZ~, z€iR, with 8 = a”. Set

1 1

L; =2/ =ri D5 o and for all i >/ set L, =2/"%" =% Dji g We will
prove that there exists e > 0 such that for all Fe L”° and all i > j,
(12) [F L]} < €27 0D =m@d =0 |7
Since L; is supported on {|x| < 2}, it follows at once that
|FxLi)} < C2m<¢-Dgo ~1|F| 20

for all F e LP° satisfying (10). Summing over i gives (I :).
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Finally (12) is a straightforward consequence of the L? restriction theorem
of Tomas and Stein, as in [7]. For if I=[1/2,3/2] and B = {|¢| ¢}, then

[FeLil} = [, IFOPIL@Pde+ [ ([, _, IFeOPdo) - IL)r " dr

where we have written L, (r) for L,(§) when || = r, recalling that L, is radial.
For £€B,

IZ,®] =277 =D s 8 (or §; when i = j)
< Cp 27727 M + (g™

for all M < o, by the bounds (7) and (8) for n ; and its gradient, and routine
estimation. Hence the Hausdorff-Young inequality gives

[, JF@PIL®P dE < €272 2~ M| F |2

— 9~ eli=j)p ~ni@ps ' = Dj(~M+@py !

DR

where € =2 — n(2py ' — 1) = 2/(n + 1) > 0. Thus the desired bound follows
as soon as M > 2p; ! — 1. On the other hand for r € I we have

(oo, IFCOd6 < CIF]2,
by the restriction theorem. Hence

[ g FOPIL @O dE < CIF|2, [ L, ar.

It follows from (7), (8) and routine computation that for re,
IL,(r)] < Cpp2® ™ =79 2271 4 2|1 — [g||) M- 27

for all M < . Hence

1

»[I |£i(r)|2dr < 22.1'71(17_ -po 1)2--2j)\ L2=i.9=26-0)

— 2~ in@pi ' =1y ~eli-))

where again € = 2/(n + 1). This concludes the proof of (5).

Only the contribution of B, remains to be treated. Again form the analytic
functions B, , and K; . as above. When Re(z) =0 it follows from the L?
restriction theorem that

—1_
|By, . *K; |3 < Ca”® ~V|B,| 7

as above; now it is not necessary to introduce the n; and n;, so the proof is
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straightforward. On the other hand it is shown in [4] that when Re(z) = 1,
|B,, . *K; |5 < C277/ V2P| By |,.

Since the right-hand side is equal to C27/®~Y"2a?| B |2, interpolation gives
|By  *K; |53 < C27/°"= D22 =P |B | 7. So

| Bo* EK;|, < Z|Bo* K|,

<z
S Ca 2-p/2 ” BO ” 2/222 —-Jjo(m—-1)/4
<C

[ "7 | Bo| 712

Remark. In dimension n =2 T, is known [1] to be bounded on L” for all
A > N(p), for all p < 4/3, but our proof applies only in the smaller range
p < 6/5. It remains an open question whether weak type endpoint results hold
in the full range of exponents, even in dimension two. In [2] this has been
shown to be the case for radial functions.
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Total Curvature of
Non-Differentiable
Curves

Gustavo Corach and Horacio Porta

Introduction

This paper deals with the total curvature of curves v in euclidean space. It is
defined as the supremum of the expressions 2, «; where o; = angle formed by
succesive chords C;, C; . ; determined by a partition of the parameter interval,
and we denote it by 7(v). Notice that when v has a curvature £ then T(y)
= j' k ds, where ds is the element of arc-length (see comments at the end of sec-
tion 2).

Our aim is to study curves for which 7T(v) < + o without a priori conditions
regarding smoothness of v: in this sense, the paper is more «real variables»
than «differential geometry». This approach has been used by Borsuk [2],
Fary [3] and Milnor [7] among others in their study of knots, and some results
below are extensions or improvements of their findings. In particular, Pro-
position 4.5 below (whose proof was communicated to us by A. P. Calderén)
generalizes a statement by Fary (third paragraph on p. 130 of [3]; see also [1]).

Furthermore, the hypothesis 7' < + o in conjunction with an interior cone
condition was used by McGowan and Porta (see [6]) as a substitute for con-
vexity to extend Paul Levy’s integral representation to distances in the plane
which are not norms. This notion also appears in Finsler spaces (see Rund
[81), at least in the general form given in section 6 below, and in isoperimetric
problems (see Bandle [0]); however differentiability or rectifiability is usually
required. Finally we mention the following result of Gleason (see [4]): if 7,
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34 Gustavo CoracH AND Horacro Porta

is the longest polygon with n vertices all on a curve v, then the correspondir
lengths L, and L satisfy

limn*L - L,) = (1/24)( [ &2 ds)3.
Since
lim T(v,) = j kds

we may ask for other relations involving 7 and length and also for tl
geometric significance of other moments of the curvature (for the second, s
Weiner [12]).

The main results obtained are the following: under the hypothesis 7(y) < +
we pove that v has one-sided tangents everywhere (Theorem 2.3) which coi:
cide at all but countable many points (Corollary 3.8). Furthermore, v can |
decomposed into finitely many graphs of Lipschitz functions (Propositic
3.9) and, if 7 denotes the Gauss map of v defined by 7(¢) = right unit tange:
vector at v(?), then 7(y) = length of 7 considered as a curve in the unit sphe
S under the geodesic distance (the distance is relevant because 7 is disco:
tinuous in general).

The last two sections are devoted to the non-Hilbert case and to the rel
tions among total curvature, rectifiability, bounded variation and the like

We want to thank A. P. Calderdon and O. N. Capri for many valuable cor
ments.

1. Preliminary Remarks

1.1. In the sequel we often consider angles formed by elements of a Hilbe
space H. If U, V are non-zero elements of H we define ang (U, V') by

cosang (U, V) = (U, V)/|U| | V],

where we require that 0 < ang (U, V) < «. It is clear that ang is a continuor
function from (H — {0}) X (H — {0}) into [0, 7], and that it verifies

(1.1a) ang (U, V) + ang (V, W) = ang (U, W)

whenever U, V, W are non-zero. This angle triangle inequality has the usu
consequences (like its iterated form X ang(U;, U;.,) = ang(U,, U,), fi
example).

When restricted to the unit sphere S of H, ang is a distance. Furthermor

(1.1b) ang(U, V) > |U~- V| > (1 - d*/6)ang (U, V),
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when |U| =|V| =1 and d= |U - V|. Occasionally UV is used as an
abbreviation of ang (U, V).

1.2. Let G(u, v) be an interval function, i.e., a real valued function defined
for a < u < v<b. We denote by G'(c) = lim G(u, v) taken when u<c<v
and u, v — c. Admitedly, this limit may not exist; if G is monotonic, G’ exists
almost everywhere (see [5], page 94).

1.3. Suppose now that X is a metric space, with distance d and let o be a
(not necessarily continuous) function o¢:[a, b] > X. The total variation
Sup Xd(o(?), o(t; . ,)) is called the length of o. When the length is finite, we
say that o is rectifiable. This notion appears below in two different settings:
when X is a Hilbert space H with the norm distance (in which case the length
of ¢ is denoted by /(¢)) and when X is the unit sphere S of H and d = ang (and
then we use /(o) for the length of o).

We remark without proof that /(0) < /(o) for all o [a, b] = S with equality
when o is continuous (the proof uses 1.1b).

By a «curve» in H we mean a continuous simple curve defined by a
parametrization v: [a, b] = H; therefore v is a homeomorphism from [a, b}
onto its image, and /(v) is the length of the curve.

The following notation will be used throughout: if U, V are distinct vectors,
CUWV=(V-U)/|V-U|.Ifv@t),a<t<bisacurve,anda<u <v < b,
then C(u, v) = C(v(u), ¥(v)), so that C(u, v) is the normalized chord from v(u)
to v(v). Also, the curve ¥ is a shortcut of the curve v if y(¢) = v(f) fora<t<u
and v < f < a while ¥(7), u < ¢ < v, coincides with the straight line segment
joining y(u#) and y(v).

2. Total Curvature of Curves in Hilbert Space

Suppose that v(¢), a < ¢t < b is a curve in H, Hilbert space.

Let IT = {cyp,C1,Cpy .. -, Criq) SaAtiISTya< <y <<+ <18 D (a
«partition» in [a,b]). We set T(I) = T{cy,Cy5...,Chs1} = Za; wWhere
o; = ang (C(c;_ 1, ¢;), C(c;, ¢; 4 1)). If the particular curve under consideration
has to be identified, we write 7(v;II), etc.

Suppose now that 7 is a interval (of any kind) contained in [a, b], with end-
points u < v. We set T(I) = T(u, v) = Sup T(II), where IT ranges over all par-
titions satisfying u < ¢y < ¢; < - -- < ¢,, 1 < v. We repeat that this definition
does not distinguish between I = [u, v], I = [u, v), etc. Just as above we write
T(v; u, v) when necessary.

2.1. Definition. The curve v has finite total curvature when T(a, b) < +oo.
In thic race Tla b\ ic eallod the tntal curnature nf v
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This terminology is justified at the end of this section.
We list below a few properties of the interval function 7 and indicate
of the proofs.

2.2a. Positivity: T > 0.

2.2b. Monotonicity with respect to shortcuts: if 5 is a shortcut of 1
T(®) € T(). (cf. [7], Cor. 1.2).

Proor. Consider the family of partitions I, having # and v as adjace:
tition points, where u,v have the same meaning as in (1.3).
Sup T(v;IIy) < Sup T(v; II) = T(v). But for ¥ the partitions I, are j
good as all partitions since adding new points between u and v do
change the value of T(y;II,). Hence Sup T(;I1;) = T(¥) and 2.2b fo

Observe that this implies the following «bang-bang» principle. If the
7 is a polygonal line with vertices Py, Py, ..., P, ., then the total cur
of v is the smallest among the curves passing throught Py, P;,..., P
that order. In other words: «least twisted = shortest».

2.2¢.  Superadditivity with respect to intervals: if (u;, v;) are disjoint sul
vals of (u, v), then ZT(w;, v)) < T(u, v). In particular, T is monotonic

2.2d. Invariance under parameter changes: if v and 7, are parametriz
of the same curve, then T(y) = T(v1)-

The following theorem is the key result of this section.

2.3. Theorem. Let Y¥(t), a<t< b, be a curve with finite total curt
Then for each a < c < b the limit.

N

2.3a. T*(c) = lim, < p, poe C(t, V)

exists in the following sense: for each € >0 there exists 6 >0 suc
|C(u,v) — T*(c)| < e whenever c < u < v < c + 8. A similar statemeni

Sor
2.3b. T (o) =1lim, . ,cc,y-ec CH, V)

when a < ¢ < b. In particular, T* (c) and T~ (c) are the right and le
tangent vector to v at y(c), respectively.

Proor. First step: consider a sequence ¢, > u; >, > u, > - - - > ¢ with
and form the series

s=Xang(Clu, 1), Clup o 1, te . 1))
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If we abbreviate IT, = {u,, ¢,, 4, _1,%,_1, - .., Uy, t;) then the partial sums s,
of s satisfy s, < T(IL,), since the k™ term of s is majorated by
Wi =T{ug stk 1) and T(I,) = Z Wi -
l<k=sn-1

Thus s, < T(a, b) and s is a convergent series.
On the other hand, for k > j:

ang (C(ug, ), C(u;, 1)) < S, — Sj_4
and therefore we have

klim ang (C(uy, ty), C(u;, 1)) = 0.
sJ >
This means that { C(u,, ¢,)} is a Cauchy sequence for the ang distance whence,
by (1.1b), it is also a Cauchy sequence in the norm. Therefore there exists the
limit V = lim C(u,, t,).

This limit is independent of the particular sequence (u,, ¢,): if (u,, %)) is a
second such sequence with ¥’ = lim C(u,, ;) we can thin out both of them to
obtain subsequences (denoted by the same symbols) satisfying

>y >H>ui>hL>u,>t>uy> -
But this combined sequence is again convergent, which can only happen if
V=V
Second step: Suppose only that ¢ < u, < ¢, with ¢, = c. Any subsequence of
C(u,, t,) has itself a subsequence with limit V for, discarding enough terms,

we can obtain the alternation ¢, > u; > £, > u, > - - - and the argument of the
first step applies. But then the whole sequence C(u,, t,) converges to V.

Third step: Let now ¢ < u,, < ¢, with ¢, = c. Choose u,, < u}, < t, such that
|Cu,,t,) — C(u,,t,)| <1/n. Then, C(u,,t,) being convergent to V by the
second step, we also have lim C(u,, t,) = V as claimed.

We complete the definition of 7% and 7~ setting

T*(b) =T (b),
T (@) = T* (a).

Then:

2.4. Corollary. The functions T* : [a,b] = S, T™ : [a, b] = S have the follow-
ing properties:

2.4a. T7 is right continuous and T~ is left continuous.
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2.4b. T* ()= T (c,) when c—c,, c<cy.
T ()~ Tt (c) when c— ¢, c> ¢

2.4c. T* and T~ are rectificable for the ang distance on S, and
I(T") < T(v),
I(T7) < TM).

Note. The inequalities in 2.4c are equalities (see 4.5b).

Proor. Let ¢, ¢y, ¢, 2 ¢y. For e > 0 we have
|Clenscn + 1/7) = T (€| <6,
for n,j large enough. Taking limits as j — oo we get from 2.3
IT" (o) = T (co)] <e
for the same values of n, so that 2.4a is proved for T*. The proof for T~
is similar.
Assume now that ¢, — ¢y, ¢, < ¢ and let e > 0. Then by 2.3b there exists
N, such that for j > 1/(c, — ¢,) and n > N, we have
|Cens cn + 1/) — T™ (co)| <e.

Taking the limit as j > oo we get | 77 (c,) — T~ (co)| < e which proves the first
part of 2.4b. The second part is similar. :

Finally, if e>0 and a=7,<t,;<---<t,=b, we can find II:{, < 7}
<t <ty<---with

ang (T* (), C(t;, 1) < €¢/n.
Then
Sang(T* (), T* (ti 1)) < ang (C(ti 1), Clti 1 1, th4 1)) + 2¢ < T(e) + 2e

and therefore /((T") < T(v) as claimed. The proof for T~ is similar.

Remark. We close this section with a sketch of the proof that T(a, b) is the
«total curvature» of the curve v when v has a curvature k = dT/dS, where
T = unit tangent vector = dv/ds and s is arclength. For a complete proof see
[71, Theorem 2.2. For simplicity we assume that + is a curve in R® parametrized
by arclength.

Setting cartesian coordinates in convenient way we have (see [10], Vol. 1,
Chapter 1):



ToTtaL CURVATURE OF NON-DIFFERENTIABLE CURVES 39

2.5. ~ ¥(s) = se; + (1/2)s°ke, + terms of higher order in s

where e; = (1,0,0) and e, = (0, 1,0). Here k£ denotes the curvature of v at
s=0.

Let now ¢ > 0 and K > 1, and pick y > 0 so that 0 < 5 < ¢, that 2.5 is valid
in the interval 0 <s <, and that |e, — dy/ds| <e for 0 <s<n. Let
0=sy<s;<---<s,=nbechosensothat |v(s;) — v(s;— )| = dis independ-
ent of j. It is easy to see that 6 <s;—5;_; < (1 — €)d. Also, if # is small
enough, for C; = C(s, s;, ;) we have

ICi—1— C;| <ang(C;_;,C) <K|C;_; - Gj|.
Then
T(D) = Yang (C;_,, C) <K |G-y - C)l.
On the other hand C;_; = (¥(s;) — ¥(s;_))/é and therefore
1Ci—1 = Cil = [27(s;) — ¥(sj+1) — ¥(s;-1) | /8.
Using 2.5 we obtain
27(5) — ¥(sj ) — Y(S5-1) = (25, — 8541 — S;- ey

+ (k/2D@S;— 57, —s;_De+h-0-t.

(h - ot = higher order terms) so that, from s; —5s;_; =6+ h-0-t we con-
clude that

12v(s) = Y(sj4 1) — ¥(s5- D] = k6> + h-o-t.
Thus
TAD) < Knék+h-o-t=Kkn+h-0-t

because né = 4 + k- o - t. Therefore T(0, 7) < Kkn and K > 1 being arbitrary
we get dT/ds < k. It follows that T(a, b) < [ kds.
The converse inequality also holds since, using 2.4c, we get

dT
kds=||—
Jra- ]|

(2.6) T(a, b) = j kds,

ds = I(T) = 1i(T) < T(a, b).

Therefore

and this justifies the terminology «total curvature» used for 7(a, b).
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3. Further Properties of the Total Curvature
The following result is easy to obtain:

3.1. For U, V,WeH-— {0} we have
ang (U, V) + ang (V, W) = ang (U, W)

whenever U= —W or V =rU + sW for some r,s = 0.

It corresponds to the fact that in any triangle an exterior angle is the sum
of the non-adjacent interior angles.

The next result is a corollary of 3.1. Consider distinct vectors Vy, V4, ...,
Varrin Hand let Vo=V, Vi=Vy,...,.Vio1=Vi_1, Vi=Vjips...,
Va="Vus1. Denote D;=V; - V;, Di=Vi, - Vi, n,=ang(D;,D;_,),
7; = ang (D}, D;_,). Then
3.2, 2im; = 2mj.

We leave the special cases j = 1 and j = n to the reader and prove 3.2 under
the assumption 1 <j < n. After cancellation of like terms, we get that 3.2
amounts to

3.2a. N1+ M+ M1 Z0j-1+70j
Using D;_, =D;_,, D;_, = D;_, + D;, D; = D;,, we obtain from 3.1
n; = ang (D;_y, Dj_,) + ang(Dj_,, D)).
On the other hand, by the angle triangle inequality 1.1a we get
nj-1+ang(D;_y,Dj_y) 2 nj_;
nj+1 +ang(Dj_q, D)) = nj

so that, adding up the last three relations, we get 3.2a.
In the sequel the following property, which sharpens 1.1, is used several
times:

3.3. When restricted to the unit sphere S = {|U| = 1}the function ang is a
distance equivalent to the norm distance, since

|U- V| <ang(U, V)< (x/2)|U - V].
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With the aid of 3.1, 3.2 and 3.3 we can obtain the following additional
properties of the function T for a curve v in a Hilbert space H.

3.4a. Monotonicity with respect to partitions: if I, is a refinement of IT,,
then T(IT,) < T(1,). In particular T(II) = lim T(IT). (see [2], pp. 254-256 or
[7]1, Lemma 1.1).

Proor. If suffices to consider the case where I, = {cy, ¢1,...,C,4 1} and
IT, = {¢p, €15+ - -5 €j_15Cj 15 - -+ 5 €y 41} and then apply 3.2 with V; = v(c).

3.4b. Total curvature of polygonal lines: if v is a polygonal line with vertices
at v(cp), v(cy), - - ., then T(y) = T(ITy) where I1, = {cy,Cyy ... }.

Proor. Using 3.4a we have T(y) = lim T(II); but T(IT) = T(I1,) for any II
finer than I,.

3.4c. Lower continuity with respect to intervals: if I; D I, D - - - are intervals
contained in [a, b] with N1, = ¢ and v has finite total curvature on [a, b]
then 7(Z,)— 0.

Proor. Itis clear from the hypothesis that NI, consists of exactly one point,
say r. Also denote a,, b, the left and right endpoints of ,,. Since r ¢ NI, we have
r ¢ I, for nlarge. This implies that 7 = @, foralln > Norr = b, foralln > N.
Consider the first case, the other being similar, and assume by contradiction
that 7(I,) > k > Oforalln > N. LetIl, = {¢,=r, ¢y, ..., €441 = by} be a par-
tition such that 7(I1,) > k. Replacing ¢, = r by e, = r + € we get a new parti-
tion IT}; using the continuity of ang (see 3.3) we may assume that 7(I1}) > k
by choosing e small enough. Then setting d; = b,, we get T(e,, d;) > k.

Since b, — r we have r < b,, < e; for some m and repeating the argument
we conclude that 7(e,, d,) > k for appropiate r < e, < d, = b,, < e,. Continu-
ing in this way we obtain disjoint intervals J, = (e,, d,) with T(J,) > k which
contradicts T(a, b) < + in view of 2.2c.

3.4d. Upper continuity with respect to intervals: If I, C I, C - - - are intervals
contained in [a, b] and I = UI,, then T(I,) > T().

Proor. Denote by a,, b, the endpoints of I,,. Fore > 0letII = {a,c;,c5,...,
¢k, b} be a partition of [a, b] with T(II) > T(a, b) — e. Using again the con-
tinuity of ang we see that T(IL,) > T(a, b) — ¢, whereI1,, = {a,, ¢, - . ., Cx, b,}
and n is large enough. But then

lim T(Z,) 2 lim T(1,) = T(a, b) — €

and the result follows since € > 0 is arbitrary.
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3.4de. If I, = (uy,vy), I, = (u,, v,) are contained in (@, b) then
ang (C(ula vl)’ C(uZ, UZ)) < T(a’ b)'

The following property of T is a valuable tool for the sequel.

3.5. Proposition (the addition formula). Let v be a curve with finite total
curvature and let a<u<c<v<b. Then

3.5a. T(u,c) +ang (T (c), T*(c)) + T(c,v) = T(u, v).

Proor. LetIl,, n=1,2,... be a sequence of partitions in [u, v] such that
T(I1,) — T(u, v). By 3.4a the convergence is preserved if we add partition
points to IT, so that we may assume that ¢ € IT, and that IT;, = {c;e€II,; ¢; < ¢}
and II; = {c;ell,;c;<c} satisfy T(II;)— T(u,c) and T(IL,)— T(c,v).
Abbreviate now «a; = angle formed by the chords C(c;_, ¢)) and C(c;, ¢;, 1)
and use 8 for the «; corresponding to ¢; = c. Then

TaL) = 2o,
T@L) = 2} {ay3¢;< c}
and
TaL) = 2 ta;¢> ¢},
and therefore
T(IL,) = T(AL) + 8 + TAL).

Taking limits we get the desired formula as an application of 2.3.
Using the notation

T'(c) = lim T(a,, b,), @,<c<b, b,—a,~0

introduced in 1.2, we have
3.6. Corollary. For any c€(a, b),
3.6a. T'(c)=ang(T (c), T"(c)).

PROOEF. Write
T(a,, b,) = T(a,, ¢) + ang (T~ (c), T* (c)) + T(c, b,).

Taking limits and using 3.4c we get 3.6a.
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Of course the addition formula 3.5a¢ holds more generally in the form

3.7. T(ag, ap 4 1) = 'Z% T(a; a;4 1) + 21 T'(a)
fora<agy<a;<---<a,,;<b.

3.8. Corollary. If v has finite total curvature, then

(@) The inequality T'(c) # 0 can happen only for countably many values
81585, . . . Of ¢ and the series 2, T'(s;) is convergent.
(b) The curve v has a unique tangent at all but countably many points.

Proor. From 3.7 we obtain
2iT'@) <T@, b) < +o

for any choice of ¢y < a; < - - - < @, ; and this suffices to obtain 3.8a. Using
3.6a we see that 3.8b follows from 3.8a.
Property 3.8b can be sharpened in the following way:

3.9. Proposition. If vy is a curve with finite total curvature, its graph splits
in a finite number of graphs of Lipschitz functions. In particular the curve is
rectifiable.

Proor. Observe first that given any m > 0 there is a partition @ = ¢, < ¢;
<+ < €, = bsuch that T(c;, ¢;, ;) < m for all i. In fact, there exist only
finitely many ¢ with 7'(¢) > m. Label them ¢, ¢,, ..., . For each u interior
to an interval J = [f;,¢;,,] we have T'(u) < m and therefore there is a
neighborhood (¥ — ¢, u + €) with T(u — ¢, u + €) < m. Also there exist ¢; < ¢}
and ¢}, <t;,, with T(¢;, t}) <m and T(¢;,,t,) < m, by 3.4c. Hence by
compactness we obtain a partition

ti=u0<u1<---<u,=t,-+1 with T(ui,u,-+1)<m.

This can be repeated for all J= [¢;,¢;,,] to obtain the desired partition
CosevesCpiy-

Suppose that 0 < m < w. Then on each I = [c;, ¢;, ;] we have T(/) < 7 and
therefore T'(c) < w for c interior to I. This means that W(c) = T*(c) + T~ (¢)
satisfies W(c) # 0 at all interior points.

Let now T* and T~ be arbitrary unit vectors with W= T* + T~ #0.
Denote by L = {aW; « real} the line generated by W and by L* the orthogonal
complement of L, L* = {UeH; (U, W) =0}. Suppose that X = | X|V
with V a unit vector satisfying |T* — V| < | W| /4, and write the decom-
position X = hW + Y (with 4 real, Ye L") induced by H=L @ L".
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Under these conditions we claim that

3.9a. 1Y] <2h.
In fact,

3.95. (X, Wy =(hW, W) =h|W|?

and

(X, Wy = |X|<V, W)
= |X|KT*, WY =(T* —=V,W))
> | X|(TH, Wy = |W[?/4).

But

(T, Wy =1+(T*, T y=Q1/|T* + T |*=(1/2)| W]
so that
3.9c. (X, Wy = |X||W|*/2.

Combining 3.96 and 3.9c we get |X| < 2h; then a fortiori |Y| :
claimed.

Fix now c interior to J = [c;, ¢;, ;] and apply this to the case T -
T- =T, X=7v@) —-76), V=C(s,t). Certainly the hy
|T* = V| <|W]|/4holds if c <s<t<c+eand e is small (by 2..
write Y(@W) = hW)W + Y(u), then X = h(@) — h(S))W+Y(@)-Y
therefore from 3.9a we get, for c<s<t<c+ e

3.9d. | Y() - Y()| < 20k(8) = h(s)).

In particular A(s) < A(¢). However A(s) = A(t) implies Y(s) = Y(¢) frc
and then v(s) = v(¢), impossible. Thus u — A(u) is a strictly monotor
tion for ¢ < u € ¢ + e. This allows us to use x = A(u) as a new variable
from x = A(x) to x, + 7 = h(c + €). Set Z(x) = Y(u) when x = A(u). "
x = h(s), y = h(t) we have | Z(x) — Z(»)| <2|x — y| and therefore .
is a Lipschitz function from [x, X, + 7] into L*. The equality

XW + Z(x) = h(u)W + Y(u) = v(u)

shows that the curve v(f), ¢ < ¢ < ¢ + € is the graph of Z.

A similar reasoning yields the definition of Z on the interval [x, — 7
glueing both halves together we conclude that the curve is the gre
Lipschitz function on an interval with v(c) corresponding to an interis
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The special case when c is an end point of J is handled in the same way taking
T* and T~ both equal to the one-sided tangent available.
Finally, a compactness argument yields a desired decomposition.

3.10 Corollary. A curve with finite total curvature can be parametrized by
Y(@®), a<t<binsuch a way that the right and left derivatives of v exist at
all t and neither of them vanishes. Further these derivatives coincide except
at countable many values of t.

4. Associated Functions

From this section on, all curves (unless specified) will be assumed to have
finite total curvature.

4.1. Definition. Fora<u<v < b set
4.1a. E(u,v) = ang(C(u, v), T* () + ang (C(u, v), T~ (v)).
4.1b. E(u,v) = T(u,v) — E(u, v).
In order to study these functions we begin with a lemma about partitions.
4.2 Lemma. For_any partition Il = {u,uy,...,u, v} of [u,v] we have
T(u, v) = ang (T (u), C(u, uy)) + T(AT) + ang (T~ (v), C(u,, v)).
Proor. Pick u < u’'<u; and u, < v’ < v. Then
T,v) 2 T{u,u',uy, Uy, ..., U, V', V}.
But this last number is the sum of
x = ang (C(u, u’), C(u', u;)) + ang (C(u,, v"), C(v', v))

and z = T(W’, uy, Uy, . . . , U,, U), so that taking limits as ¥’ — u and v’ = v we
get that x and z approach, respectively,

ang (T (), C(u, uy)) + ang (C(u,, v), T~ (v))

and T(IT), which proves the lemma.

4.3. Proposition. The function E has the following properties:
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4.3b. 21 B, v) < E(u, v)

JSor any system of disjoint intervals (u;, v;) contained in (u, v). In part
is monotonic.

4.3c. E'(c) =0 for all c.

ProoF. (a) Taking the trivial partition IT = {u, v} we obtain from
T(u, v) > ang (T* (u), C(u, v) + ang (T~ (v), C(u, v))

so that T > E which means that Z > 0.
(b) 1t suffices to prove that

4.3d. E(u,v) 2 E(u,c) + E(c,v), for u<c<ou.
Denote

U=T"w), V=T (v),C =T (c),C* =T"(c), L=C(u,0), R =
and abbreviate UL = ang (U, L), LC™ = ang(L,C™), etc.; by defini

E(u,v) = T, v) — (WU + WV)
B(u,c) = T(u,c) — (LU + LC™)
E(c, v) = T(c,v) — (RC™ — RV).

Using the addition formula 3.7 we get
E(u,v) = E(u,c) + E(c,v) + A
where
4.3e. A=LU+LC'+RC* +RV+T'(c)- WU- WV

and therefore the desired inequality 4.3d is equivalent to A > 0.
Observing that T'(c) = C~C*, from the triangle inequality 1.1 w

4.3f LC™ +RC™ +T'(c) 2LR

and from the fact that v(u), v(c) and v(v) are the vertices of a triangle
clude (see the figure 1 in the following page), that LR = WL + Wk
from 4.3e and 4.3f we obtain (using again the triangle inequality):
AZLU+RV+ WL+ WR-WU- WV~
=WLU+ WL - WU)+ (RV+ WR - WV)
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v(u) _ r(c)

Figure 1

(c) First observe that if B is a limit of chords C(c — ¢,, ¢ + §,), then
B=pT (c)+qT* (0

for some p, g > 0. In fact, write

C(c— ¢, ¢+ 6,) =p,Clc—€,0) +g,Clc,c+ 6y)
with

Pn= 17 = v(c = e)|/[¥(c + 8,) — ¥(c — &)

an = [7(c+8,) = v@|/|v(c+8,) —v(c— el
Taking limits we get p = limp, > 0, g = limg, > 0. This means that

BC™ +BC* =C~C* =T0).
On the other hand, T% (¢ — ¢,) = C~ by 2.4a, whence
VC~ =limang (C(c — €,, ¢ + 8,), T* (c — €,));

similarly

VC* =limang (C(c — €,, ¢ + 6,), T~ (¢ + §,))-

MLin Af mnviwna ~dvvan 1ea T/ A - P A TN A TSN N
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Another function associated to a curve is the Gauss map : [a, b] = S (where
S is the sphere |X| =1) defined by 7(t) = T*(t), a<t<b, and 7(d)
= T~ (b). In general, 7 is discontinuous.

Recall that the length /(7) is defined by

Iy(1) = Ig(a, b) = Sup 2 ang (1(x), 70¢; 4 1)),

the supremum taken over all partitions.
Observe that we have

4.4. lg(a,b) = Ig(a, c) + T'(c) + I(c, b),

for a < ¢ < b, so that «arc length» is additive only if the partition point is a
point of continuity of 7. For the same reason, the length of 7, considered as
a map in H, will be equal to /¢(7) only if 7 is continuous everywhere.

The main property of 7is given in 4.7, which requires the following proposi-
tion.

4.5. Proposition. Let f:[a, b] = L (L a Hilbert space) be a Lipschitz func-
tion with right (resp. left) derivative f', (t) (resp. f'_ (¢)) at all a < t < b (resp.
a<t<gb), and let v:[a,b] > R @ L be the graph of f, i.e., () = (¢, f(?)).
Suppose that ', is a function of bounded variation on [a, b) with I(f',) < 1.
Then

4.5a. v has a finite total curvature;
4.5b. T(v) = Ily(7).

Proor. The hypotheses on f imply that v is absolutely continuous with
¥, =(1,f’,) of bounded variation. Hence, for ¢ < u < v < b we have

1) - 7@ = v @dr = [ rOlv. o) dt.

Now the integrand 7|v’, | = 7', is a function of bounded variation, hence
Riemann integrable, and therefore v(v) — v(u) is the limit of Riemann sums

R =277, @) At

(A;t = t; — t;_ ). On the other hand, R = A 2 a;7(t;) with a; = |v',. ()| Ait/h
and 2 = 2} | 7', (¢)| A;t. Taking limits we get that (v(v) — v())/I(7) is the limit
of convex combinations of points of the form 7(¢), u < ¢ < v. In particular,
C(u, v) belongs to the closed convex cone spanned by {7(¢); u << v}.

L ) & ZFURNSUNRE. RS Y D L R R A R o R S e e
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4.6. Lemma. Let N C S be a subset with diameter strictly less than = /2 for
the ang distance, and let M denote the intersection of S with the closed convex
cone spanned by N. Pick U, V in N and denote by g the function defined on
S by g(X) = ang (U, X) + ang (X, V). Then Sup,,g = Sup, &.

Let now Il = {#,,¢;,...,t,}, ¥, = a, t,, = b be a partition of [a, b] and let
e> 0.
Observe that, for a <s,1< b,

ang (7(2), 7(5)) < (x/2) | 7(t) — 7(s)| < (=/2) |7 (&) — ¥ ©)|
< (@/2)I(vy) = (n/DU(f) < 7/2
so that the set {n(¢); a < t < b} has diameter less than 7/2 for the ang distance.
Thus, the lemma applies with U= 7(¢;), V=17(t;, ) and N= {7(¢), ;< ¢

< t41). Clearly there is u;e[t;,t;,,] with Sup, g < g(7(u;)) + ¢/m, and
therefore (by the lemma),

ang (7(¢;), X) + ang (X, 7(¢; ;. 1)) < ang (7(#), 7(u;)) + ang (7(uy), 7(¢; 4 1)) + ¢/m

for all X in M. In particular, as proved above, this inequality holds for
X = C(ti’ ti+ 1).
Abbreviating C(t;, t;) = C;;, 7(f;) = 7; and ang (X, Y) = XY, we get

T(II) = Cy;Cip + C13Co5 + - -+
L 79Co1 + Co171 + 11C15 + Ciamp + 7,Co5 + -+
S 7o7(Ug) + T(Ue)T; + TT(U) + T(U)T, + -+ €
<L)+

whence T(v) < [¢(7) which proves 4.5a. The converse inequality was proved
in 2.4c, so that T(v) = [4(7), as claimed in 4.5b.

Proor oF 4.6. It suffices to prove that if F'is a spherical polygon with ver-
tices Py, P,,...,P, in N (each side is a maximum circle segment) with
diameter of F strictly less than x/2 (for the ang distance), then

4.6a. g(X) < max (g(Py), &(Py), . - . , 8(P)}.

for X inside F.
Observe that g is the sum of functions of the form g,(X) = ang (X, U). It
is not hard to see that 4.6a follows if we prove that g, is convex, i.e.,

4.6b. &1 (XM + (1 = N§) < hgi (X)) + (1 — Mg (X(§)
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where X(f) runs on a maximum circle. We will assume that coordinates ar
set on a three-dimensional subspace containing U, X(6), so that

X(0) = (cosf,senb,0), U=(v,0,w), o0v<l1 oswgl.

Then, letting o(f) = g,(X(6)), we have 0 < a < /2 and cos a(f) = vcosé
Differentiating,
d2
703—( () = cotan o(1 — v*sen?6/sen’ «)

= cotan a(l — v?)/sen’ o > 0

and this implies 4.6b, which completes the proof of the lemma.
Observe that the same proof applies to the case of

gX)=ang(X,U) + --- + ang(X, U)),

and that the U; need not belong to N as long as NU {U,,...,U,} ha
diameter less than /2.

4.7. Corollary. For a curve to have finite total curvature it is necessary an
sufficient that it can be parametrized as Y(t), a <t < b, in such a way tha

4.7a. (t) is a Lipschitz function;

4.7b. ', =d*v/dt exists and satisfies |v'. (¢)| =1 for all t;

4.7c. v, is rectifiable.

4.8. Corollary. Any curve vy with finite total curvature satisfies T(v) = I4(7,

For the proofs, combine 2.4c, 3.7, 3.9, 3.10 , 4.4 and 4.6.

We close this section by indicating a measure-theoretic interpretation of 7
Recall that any non-decreasing function g: [a, b] > R determines a positiv
regular Borel measure p by means of the Lebesgue-Stieltjes integral, whic
satisfies plu, vl =g(™) —gw™), plu,v)=gw™)—gm™), etc. Takin
g(t) = T(a, t), it follows from 3.4c, 3.4d and 3.5 that g is non-decreasing an
left-continuous so that:

4.9. Proposition. Let v(t), a < t < b, be a curve with finite total curvature
Then there is a unique positive real Borel measure v on la. bl such that for an
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Proor. Leta<c<c+ h<b. Then from 3.5
T@a,c)+ T'(x) + T(c,c + h) = T(a,c + h).

Letting A— 0* and using 3.4c we obtain T(a,c) + T'(x) = T(a,c*) ¢
+ T'(c) = g(c™). Since g(c™)=g(c) we get T'(c)=g(c*) —g(c™)
proves that u({c}) = T'(c). On the other hand, takea<u<v<b. T
T(u,v) = T(a,v) — T(a,u) — T'(u) = g(v) — gw) — gu™) + g(w)
=g() ~ g*) = u(u, v),
as claimed. The case ¢ = u is similar.

We have no answer for the following question: (a) which measures p &
in this way? (b) what is the measure-theoretic interpretation of = and

5. Total Curvature of Plane Curves

In this section we assume that H is the plane R

5.1. Theorem. Let~(¢), a <t < b bea plane curve. Then the followin
ditions are equivalent:

5.1.1. v has finite total curvature.

5.1.2. v is the union of finitely many graphs of real functions f wi
properties:

(a) f has a right derivative f', everywhere,
(b) f', is a function of bounded variation.

5.1.3. v is the union of finitely many graphs of functions which ai
ferences of Lipschitz convex functions.

Proor. The equivalence between 5.1.1 and 5.1.2 is a special case ¢
(2) implies (3): A theorem-of-the-mean-like argument shows that und
hypothesis of 5.1.2 f satisfies: for x < y there exists £ and » between x
with

Fim< (fO) =/ —x) <SL ().

But then, /', being (of bounded variation, hence) bounded we concluc
fis a Lipschitz function. Therefore
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f@) =f@)+ j:f; (t)dt.

Write now f), =h—g with £ >0, g>0 and A, g non-decreasing. Then
f=H—- G where G, H (the indefinite integrals of g and A) are convex
Lipschitz functions.

(3) implies (1): If fis the difference of two Lipschitz convex functions then
f', exists at all points and, being the difference of two non-decreasing func-
tions, it has bounded variation.

It is clear that in any Hilbert space T = 0 characterizes straight lines. For
plane curves the next result gives and interpretation of Z = 0.

5.2. Proposition. The plane curve v(t) with finite total curvature is convex
on the interval a <t < b if and only if Z(a,b) = 0.

Proor. Convex plane curves can be characterized by the following property:
whenever u < u’ < v’ < v, the line segment [v(x), Y(v)] and [y(u'), v(v')] do
not cross each other, i.e., either they are disjoint or the first contains the
second.

Suppose now that v is not convex and that u, #’, v and v’ have been chosen
so that the segments do cross (see the figure 2).

Denote also the following angles (not all drawn) by the indicated letters

a = ang (T (), C(u, v))

o' = ang(T* (u), C(u, u")
6 = ang (C(u, u"), C(u, v))

Figure 2
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€

ang (7~ (v), C(u, v))
ang (T~ (v), C(v', v))
ang (C(v', v), C(u, v)).

Using the angle triangle inequality 1.1.a we obtaina’ > a — dand 8’ = 8 — e.
Now, according to 4.2

T(u,v)?a""'a] +a2+61
Za-0+ota+B-—e=at+wt+ow+f,
so that F(u, v) > 2w > 0. This shows that v is convex when Z is zero.

The converse is easy since all polygonal lines inscribed in a convex curve
satisfy o' + 8’ =y + oy + - -+ + o,

Figure 3

and taking limits we get T=E, or & = 0.

In view of 5.1.3 and 5.2 it may be true that functions in general euclidean
spaces whose graphs have finite total curvature can be written as differences
of functions with 5 = 0; we know no proof of this.

6. The non-Hilbert Case

Let X be a real Banach space, S the unit sphere |x| = 1 and é the geodesic
distance on S: &(x, y) = inf [((¢) where o ranges over all continuous curves in
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S joining x and y and /; denotes the length of the curve o,

Is(0) = Sup 3 |o(ti, 1) — a(t)].
It is well known that ([6]):

lx —y] <60, ») <2|x -]

for any pair x,y €S.

Of course, in a Hilbert space 8(x, ¥) = ang (x, y) and the inequalities
are trivial consequences of 3.3. This suggests that we define, for a curv
X and a partition IT = {¢,, #;, . .. }, the number T(IT) by T(D) = > 6(C;_
where C; = C(t;, t;,,) and, as above,

Clu,v) = (v() — @)/ |v() — @) €8.

In the same way, we set 7(y) = Sup T(II), and define curves of finite cur:
by the property T(v) < +oo. With these definitions, all the results in Sec
hold true without changing their proofs.

For the results in Section 3 the situation is different. In fact, the are
on 3.1, 3.2 and 3.3. Now 3.3 is valid in any Banach space with w/2 rej
by 2, as observed above, which does not affect the use it is made of 3.:
on. Also, 3.2 is a corollary of 3.1. Thus, only 3.1 has to be checked f
validity of all results in Section 3.

It turns out however that 3.1 holds for some Banach spaces and do
hold for others (see below), so it may be thought of as too restrictive
is not the case if the monotonicity of T with respect to partitions (3.4a) i
sidered a natural condition. In fact we have:

6.1. Proposition. Let X be a Banach space. Then the following proy
are equivalent:

6.1.1. For any curve v in X, T(II) increases when more partition poir.
added to I1.

6.1.2. The equality (U, V) + &V, W) = 6(U, W) holds for any U, V
S with U= —W or V = pU + gW for some p,q = 0.

6.1.3. For any U,V in with U + V # 0, the function
o)=L - DU+ tV)/|(1 - HU + tV|

defines a curve with minimal length joining U and V, i.e., I (o) = 8(L

Proor. First let us see that 6.1.1 is equivalent to
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6.1.4. For any U, W, V, R and Z in S satisfying V = pR + qZ for son
D,q =0, the inequality

6.1.5. U, VY+6(V,W)<O6U,R)+ (R, Z) + 6(Z, W)
holds.

Assume 6.1.1 and consider a curve 7y satisfying v(z,) =0, v(¢,) = U, v(
=U+dpR, v(t;)) = U+ dV, v(t,) = U+ dV + eW for a partition IT = {i
11, by, t5, 14} of its domain, where 0 < d <1 and 0 < e < 1 are convenient
chosen to avoid selfintersections (we are also assuming that V' # R and V #
since in either case 6.1.5 follows from the triangle inequality). If IT, = {4, i
13, 14} then T(I1,) and T(II) are equal, respectively, to the left and right ha:
side terms of 6.1.5.

Conversely, if 6.1.4 holds it is easy to see that for any curve and any pe
of partitions IT; and IT with IT having one more point than II; we ha
T(I1,) < T(D). An induction argument finishes the proof. '

Setting R = Uand Z = Win 6.1.5 and using the triangle inequality we g
6.1.2; conversely, from 6.1.2 we obtain 8(R,Z) =6R, V) + &(V,Z) a1
using twice the triangle inequality we get 6.1.5. This shows that 6.1.2 a1
6.1.4 are equivalent.

We prove that 6.1.3 implies 6.1.2: let

o) =((1-DU+tW)/|(A - HU +tW|

and denote by o, and g, the restrictions of o that join U to ¥V and Vto }
respectively. We have, using 6.1.3,

(U, W) = I(0) = [((a1) + 5(03) = 8(U, V) + &(V, W).

To prove the converse, pick a partition 0 =¢,<?; <-:-<t,=1 such th
(with ¢ as above):

Is(0) — e < 2% Jo(tisy) — o).
From 6.1.2,

2ot ) = o@)] < 228(0(), 0(ti.41)) = 8(a(0), o(1))
=6(U, V)
so that, e being arbitrary, /() < (U, V) whence /((0) = 6(U, V) and 6.1
follows. Thus 6.1.1, 6.1.3 and 6.1.4 are all equivalent.

6.2. Theorem. All properties of T stated in Sections 2 through 5 are va.
in Banach spaces having the equivalent properties of 6.1.
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6.3. Remark. Hilbert spaces and two-dimensional Banach spaces have t}
equivalent properties of 6.1. It is possible that these are the only ones, but v
know no proof of this fact. In support of this observe that such spaces hax
the following property, not hard to obtain from 6.1.3: all curves of the for:
SNV, where Vis a two-dimensional subspace of X, have the same length. St
also [9] for related notions. Finally we observe that R® with the nor:
(x* + y)'?* + |z| is a Banach space where 6.1.1 (and then also 6.1.2 and 6.1.
fails.

7. Related Concept

Let v be a plane curve given in polar coordinates by v(6) = r(6)(cos 6, sin 6
0 <6 < o< 2w, where r(f) > 0 is a continuous function.

7.1. Proposition. Consider the following properties:

(a) There exists s > 0 such that for each 0 < 6 < « and each point z in t
Dplane satisfying |z| < s, the line segment joining z to v(6) meets t
curve only at v(0) («interior cone condition»).

(a’) r(6) is a Lipschitz function.

(b) r() is a function of bounded variation.

(b') v is a rectifiable curve.
(¢) v has finite total curvature.

Then:

7.1.1. (a) and (a') are equivalent.

7.1.2. (b) and (b') are equivalent.

7.1.3. () implies (b) and (c) implies ().
7.1.4. All other implications fail in general.

Proor. (a') = (a)is proved in [6], 7.1, and (a) = (a’) is proved in [11]; tt
settles 7.1.1.

Assume now that 7 is rectifiable. Then r(6) cos 6 and r(f) sin 6 are functio
of bounded variation, which is equivalent to r = (r* cos? 8 + r? sen®§)'/? bei
of bounded variation (use r > minr > 0 and the differentiability of squa

root away from 0). The converse is just as easy, so that 7.1.2 is proved.
Nevt (AN = (A and (A = (h"\ (cee R O) ¢n that 7 1 3 follows.
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We finish the proof with three examples: first, let 7v; be the curve whos
graph is the cusp [x|"* + y2 =1, -1 <x< 1, 0 < y < 1. Next, let v, be th
curve described by the figure 4

Figura 4

Here r increases from 6 =0 to 6 = w/2. Finally, let P,P,,P;,... be
sequence on x2 + y% = 1 converging orderly to (0, 1), and let 5 be the cur
obtained by joining P; to P;, ; with the broken line formed by tangents to tt
circle x2 + y? = 1/4 (see the figure 5 in the next page).

It is not hard to see that () holds for v,, but (a’) and (c) fail; (c) holds fc
v, but () fails, and (@) holds for v, but (c) fails. This completes the proof ¢
7.1.

Remark. Observe that 7.1 improves the statement (@) + (c) = (a') = (i
proved in [6].
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Figure 5
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Hankel Forms and
the Fock Space

—

Svante Janson, Jaak Peetre and Richard Rochberg

Abstract

We consider Hankel forms on the Hilbert space of analytic functions square
integrable with respect to a given measure on a domain in C". Under rather
restrictive hypotheses, essentially implying «homogeneity» of the set-up, we
obtain necessary and sufficient conditions for boundedness, compactness and
belonging to Schatten classes S,, p > 1, for Hankel forms (analogues of the
theorems of Nehari, Hartman and Peller). There are several conceivable notions
of «symbol»; choosing the appropriate one, these conditions are expressed in
terms of the symbol of the form belonging to certain weighted L”-spaces.

Our theory applies in particular to the Fock spaces (defined by a Gaussian
measure in C"). For the corresponding L”-spaces we obtain also a lot of other
results: interpolation (pointwise, abstract), approximation, decomposition
etc. We also briefly treat Bergman spaces.

A specific feature of our theory is that it is «gauge invariant». (A gauge
transformation is the simultaneous replacement of functions f by f¢ and du
by |¢| ~2dy, where ¢ is a given (non-vanishing) function). For instance, in the
Fock case, an interesting alternative interpretation of the results is obtained
if we pass to the measure exp (—y%) dxdy. In this context we introduce some
new function spaces E,, which are Fourier, and even Mehler invariant.

0. Introduction

0.1. Background. By a Hankel form we will in this paper informally refer
to any (continuous) bilinear form H defined on a Hilbert space JC of analytic

61
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functions (usually consisting of (all) functions square integrable with respect
to a given measure p; cf. infra §0.2) such that its value H(f, g) for any f, g€ 3C
only depends on the product f- g. In particular, one then has the functional
equation

H(¢f, 8) = H(/, $2)

where ¢ is any (analytic) multiplier on JC.

Example 0.1. In the case of the usual Hardy class 3¢ = H*(T) (T = unit cir-
cle) the Hankel for H} with symbol b is defined by

H‘lﬂ;(fs g) = -21? J‘Tl;fgldzl = (fg’ b>H2(‘|]')

In the canonical basis {z’} j=0 it is given by the Hankel matrix (b(i + j )i j=0-
For the (classical) theory of Hankel forms in this case, highlighted by a
number of agenda such as the issue of

finite rank (Kronecker)

boundedness (Nehari)

compactness (Hartman)

belonging to Schatten-von Neumann class (Peller),

we refer to, Sarason (1978), Power (1980, 19824), Nikol’skii (1985, 1986),
Nikol’skii and Peller (19877).

Usually, though, one formulates the results for operators, not forms. With
the form H one can associate the Hankel operator H defined by

Notice that A is an anti-linear operator in JC. To get a linear operator one
combines A with a conjugation; e.g. on T one usually considers f+~ Hf with
the range H*(T), or a variant with range H> (T).

For various reasons we prefer to work with bilinear forms instead. For
instance, this «zwanglos» suggests the extension of our theory to the multilinear
case (§5).

An easy extension of the H?(T)-theory concerns the space B2(D) (s < 0; D
unit disc, D = T) defined by the condition

1
?J /@A - |z dmiz) <o (a=-1-25>—1),

D
where the letter B may at will be read as Bergman on Besov (see Peller (1982),
Peetre (1983, 1984, 1985) and, for an extension to the case of the unit ball in
several complex variables, Ahlmann (1984) and Burbea (1986)); one also
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writes A% (D) for the same spaces. Actually, already on this level the theory
bifurcates according to (speaking of (linear) operators) whether one wants the
range to be BXD) or B%(D)*. Here we will only be concerned with the first
alternative. (The study of Hankel operators of the second species —which do
not correspond to Hankel forms in our sense —was initiated only recently by
Axler (1985) and thén further pursued in Arazy, Fisher and Peetre (1986)).

See also the works of Luecking (1985) and Zhu (1985) for Toeplitz operators
in Bergman space. (Some remarks in the case of general (homogeneous) domains
are further made in Arazy and Upmeier (1985)).

As a formal limiting case (¢ — —1) of the spaces B2(D) one recaptures the
previous Hardy class H*(T) (the normalized 2-dimensional measure (a + 1) -
(1 — |z|»" dm(z)/w over D tends to the 1-dimensional measure |dz|/27 con-
centrated on T).

Another limiting case (¢ — o) deals with the Fock space F2(C) (a > 0)
defined by the condition

E'j | /@)™ dm(z) < .
T JC

(If one writes the definition for the B-spaces for a concentric disc of radius
R then the weight factor becomes [1 — |z|*/R?]°. If now @ = «aR? and R = o

we formally get the weight e'“‘z‘z).
The number « plays a role similar to Planck’s constant in physics.

Remark 0.1. Besides Fock, other names occasionally are attached to this
spaces, viz. Bargmann-Segal, Fisher and possibly others. The same is true for
Bergman spaces (see e.g. Dzhrbashyan (1983)), so perhaps a more appropriate
appelation, without digging too deeply into the history of the subject, would
have been spaces of Bargmann-Besov-Bergman-Dzhrbashyan-Fisher-Fock-
Segal type.

Toeplitz operators in Fock space are considered in Berger and Coburn
(1985), (1986?) and Berger, Coburn and Zhu (1985).

6.2. Main Results (General Theory, §§1-6, 14). The aim of the present work
is to develop a theory of Hankel forms over quite general (in practise
«homogeneous») domains, which comprises both the Bergman and the Fock
case (the other limiting case of the Hardy class being exc/uded) and this in any
number of dimensions (a few results for the Fock space being formally valid
also in the physically most interesting case of dimension <, see §7). As there
is in general no boundary (and no Besov spaces) one has to proceed differently
then before. Note that potentially our theory is applicable to a much broader
range (including arbitrary symmetric domains and vasious limiting cases).
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More precisely, we consider the following set-up. Let Q be a domain in C"
and as in the beginning of §0.1, let 3C be a Hilbert space of analytic functions
now defined on Q. If £ is a positive measure on , which we, for simplicity,
assume to be absolutely continuous with respect to the Lebesgue measure m
on (2, we say that a Hankel form H defined on JC has symbol b with respect
to £ if (with a convenient interpretation of the integral, if the latter is not
absolutely convergent; cf. §6)

H(f,e)= [ bfed:  (f,8€%0),
notation:
H = Hj.

The point is that a form may have several (interesting) symbols with respect
to different measures and to some extent our theory is about the interplay be-
tween various symbols.

In most of the discussion we fix once and for all one such measure (fulfilling
the assumption VO stated in Section 1) and take JC = A%(y), the subspace of
L?(p) consisting of all square integrable (with respect to p), analytic functions
on Q. Clearly A%(y) is a Hilbert space with a reproducing kernel denoted by
K(z, w) or K,,(z). We let P denote the orthogonal («Bergman») projection of
L*(n) onto A*(p) and we further set

1
Kz 2)

w(z) =

It then turns out to be advantageous to take symbols not with respect to pu,
but with the associated measure v defined as

dv=w@)du=

# .
K(z,2)
We will in the sequel use the notations

Fb = H;; ) Hb = Hg .

We further let L and Q denote the reproducing kernel in the Hilbert space
A?*(») and the corresponding projection, respectively.

Remark 0.2. For a general measure we similarly have the Hilbert space A%(£)
with a reproducing kernel K* and the projection P£. We will use these concepts
only for £ = p or », where u and » are as above. We summarize the special
notations used for these cases in the form of a table. (The notation 42 will
be explained in (0.3) below).
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The Hankel forms always act in A%(p).

Measure Hilbert space | Kernel | Projection | Hankel form
£ (general) A%(®) K¢ Pt HE
u (fixed) A%(w) K P H,
v (associated) A? L Q T,

We occasionally write I'(d) for I'y, etc.

To get a reasonable theory one has to introduce some supplementary
assumptions V1, V2 and V3 (see §3). The most severe of these is V2 which
amonts to requiring that

L(z, w) = xK(z, w)* 0.2)

where x is a constant.

Before stating our main result (infra) we need one more concept, the natural
scale of weighted L” and A”-spaces pertinent to our situation. We say that f
is in L7 iff

[ 1/1PeP2dy < w0 0.3)

(fis in LY if and only if wf is essentially bounded on @), and let A? be the
subspace of L? consisting of analytic functions in L?. Let a{; be the closure
of A2 in the A%-metric.

We can now announce:

Scholium 0.1. Under the assumptions VO — V3 the following is true.

(a) T, is bounded (in A*(p)) if and only if Qbe AZ.
(b) Ty, is compact if and only if Qbeal,.
(¢) Ty isin S,, where 1 <p < o, if and only if Qbe A%.

The Schatten-von Neumann classes of bilinear forms S, (where in general
0 < p < o) are discussed in Sub-Section 0.3. Some other comments are in order.

Comment 0.1. From this it is in principle easy to get results for general sym-
bols, because H} has the symbol b d£/dy with respect to », Hj = I'pg;/q,. This
is discussed in §6. Notice also that H§ = H%,,, so that in many cases it is
natural to confine oneself to analytic symbols.

Comment 0.2. We expect part (c) of the Scholium to be true also in the range
0 < p <1 but this we have not been able to show.
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Comment 0.3. The proofs can be found in §4, where also other results can
be found, especially pertaining to the «Hankel projection». A crucial step is
however taken already in §3, where the boundedness of the projection Q in
L?, 1< p< o, is proved.

Our assumptions, in particular the crucial hypothesis V2, are fulfilled in all
cases when the situation admits sufficiently many «automorphisms». This can in
principle be found in the literature, but of course not in the Hankel context. We
refer especially to Selberg (1957), Stoll (1977) and Inoue (1982). In particular,
our theory applies in the B-case (the group is the Mobius group PSU (1,1)), see
§§12-13, and in the F-case (the group is now its «contraction», the Heisenberg
group).

We do not know of any other cases than homogeneous domains with highly
symmetrical measures when the assumption V2 is fulfilled.

However, there is a deeper reason for the appearance of the strange looking
hypothesis as condition V2 relating the square of the kernel K to the kernel
L: Namely, that the whole set-up admits certain «supersymmetries», here
termed gauge transformations. Let us briefly indicate what this is about.

Consider, quite generally, a closed subspace 3C of L*(Q, p), where Q is some
space equipped with a positive measure . We argue that we get an essentially
equivalent theory if we simultaneously replace f by ¢fand p by |¢| ~ >4, where
¢ is any non-vanishing (measurable) function. This is gauge transformation
or change of gauge. The point is that one should work only with gauge
invariant quantities. (A related point of view can be found e.g. in the works
of Berezin (see e.g. Berezin (1975) for a start), but also elsewhere). Especially
in our case (confining ourselves to analytic ¢'s), the («given») kernel K
transforms according to the rule K(z, w) = ¢(2)¢(w)K(z, w), where as the
(«associated») kernel L experiences the change L(z, w) = ¢(z)*¢(w)*L(z, w)
(see §§1 and 3). Thus V2 is a gauge invariant condition. Similarly, our
preference for the Hankel operator I', with symbol taken with respect to the
measure v (and not u, as would seem natural at the first glance) is explained
by the fact that T', is gauge invariant (with the symbol transforming b — ¢ 2b).

Note also that the measure \ defined as

d\z) = K(z, z) du(z)

has a gauge invariant meaning; in all group theoretic cases it reduces to the
usual invariant measure, in the very special case of the unit disc thus to a cons-
tant multiple of the Poincaré measure (1 — |z|*) ™% dm(z).

Finally, let us mention that we also prove a very general Kronecker theorem
(concerning the structure of finite rank Hankel forms). This is basically an
excercise in commutative algebra (sic!) and has little to do with the rest of the
paper so it has been relegated to the end of the paper, more or less as an
appendix (§14).
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0.3. Schatten-von Neumann classes of bilinear forms. The Schatten-von
Neumann classes (or trace ideals) S,, 0 < p < «, of (bounded) operators in
Hilbert space have been studied extensively (see e.g. McCarthy (1967),
Gohberg and Krein (1965), Simon (1979) and, as far as interpolation goes,
Bergh and Lofstrom (1976)). To define the same classes for bilinear forms
there are several (equivalent) avenues.

(a) Via operators (cf. Peetre (1985)). If H is a bilinear form on 3C; X 3C,,
then A defined by

H(g):f~ H(/, 8) 0.4)

is a linear operator from J3C, into 3C}. (The natural, anti-linear, identification
of 3C¥ and 3JC, yields the anti-linear operator from JC, into 3C; defined by
(0.1)). We say that H is in S, if and only if Hisin S,, i.e. if and only if the
positive operator (H*H)?’? has finite trace. We define S, to be the space of
all bounded bilinear forms (operators). (Some authors prefer to let S, denote
the compact operators). _

One can also associate with H a linear operator H: 3¢, — 3C; doing the same
job, but not in a canonical way. Indeed, if J: 3C; — 3C, is any conjugation on
3C, (J is antilinear with J? = Id), then J defines a linear isometry of 3C§ onto
JC; (which we also denote by J) and we can take H = J o H. Notice in par-
ticular that A*H = H*H independently of J. (If {4;;} is the matrix of H with
respect to some orthonormal bases in JC, and JC,, then this operator has the
matrix {b;} with by = X hjihy).

Remark 0.3. For some spaces there is a natural choice of J, e.q. if 3¢, = 3,
(say 3¢, = L*(w)), Jf = fand if 3C, is a suitable Hilbert space of analytic func-
tions in the unit disc (or the complex plane) Jf(z) = f(Z).

(b) Directly using s-numbers (Schmidt, approximation). Put

So(H) = inf |H - F|, ©.5)

where | +|, is the supremum norm and F runs through the set of all forms
of finite rank <n. We say that H is in S, if and only if (s,(H));-0€/p,
0 < p < . (Note that H is compact if and only if (s,(H));- o € Co)-

0.4. Hankel forms of class .S, (Hilbert-Schmidt). To give the reader at least
a feel what it all is about we now briefly outline a direct treatment of the S,

theory.
The Hankel form I'(L,) with symbol L, with respect to » is

(f,8)~ [ L.fedv = f5@) = f@8(@) = < f, K.)<&, K. (0.6)
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(This is a continuous form of rank 1, and belongs thus to every S,). Thus
(P(L, T(Ly))s, = (K, K)(K,, K;) = K(z, W),
If now
Lz, w) = xK(z, w)’, x>0,
it follows that
x(I'(L), TL,)> = L(z,w) =<(L,, L), 0.7)

whence b — x !/ 2I‘b is an anti-linear isometry of A%(») into S,. Conversely, if
b— x'?T", is an isometry of A%(») into S, for some »x, then the argument
above shows that

L(z, w) = (L,, L,y = xK(z, w)>.

This is closely related to the criterion by Aronszajn (1950), Theorem 8 II, p.
361, for L = K>,

0.5. Contents. Results for Fock and Bergman spaces (§§7-13). Again for the
benefit of the reader we pass to a more detailed description of the contents
of the individual divisions, including an explicit mention of the main results
in the Fock and Bergman cases.

Section 1 sets forth some basic material connected with Hilbert spaces with
a reproducing kernel (for a more detailed treatment we refer to Aronszajn
(1950)).

In the analytic case we also state the basic assumption VO (p. 74).

In Section 2 we study the reproducing kernels when there are sufficiently
many automorphisms. The main result is Theorem 2.1 proving the aforemen-
tioned condition V2 in such cases.

In Section 3 we introduce the assumptions V1-V4 (pp. 80-81) and we study
the «Bergman» projection Q, especially establishing its boundedness in the
full scale L?, 1 < p < o (Theorem 3.1). This result has a number of impor-
tant corollaries (Cor. 3.1-3.8).

Section 4 is devoted to the study of Hankel forms in the general context of
the assumption V0-V3 and we establish in particular all the results which
above were summarized in Scholium 0.1.

In §5 the extension to the multilinear case is briefly treated. As far as we
know, no theory is yet developed for S,-classes of multilinear forms. Here we
propose to define S,, 1 < p < o, using interpolation between S, and S,; in
the two latter cases the definition is unambiguous.

§6 gives various complements to the previous discussion (§§1-5). In par-
ticular we discuss a more general definition of symbols (hitherto the defining
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integral was taken to be absolutely convergent) and consider also symbols
with respect to a general measure £.

We also establish the minimality of A in a certain sense, and prove a weak
factorization result for AL.

In §7 we begin the study of Fock space proper. It then turns out to be
natural to study the whole family of measures

du, = (/e dmz)  (@>0),

on C", letting L% (1 < p < =) to the space of measurable functions fsuch that
fRe~ alzl?/2 ¢ LP(m) and F” be its analytic subspace, denoting the correspon-
dingly projection by P,. More precisely, we consider the action of Hankel
forms on some fixed Hilbert space F> but take symbols with respect to an ar-
bitrary measure dusz. The main result is Theorem 7.5 (= an almost immediate
convergence of the results in §§1-6 in the «abstract» case; cf. Scholium 0.2
infra).

We turn also the reader’s attention to Theorem 7.8, which gives an exact
result (not just a norm equivalence), and thus is potentially susceptible to an
extension to infinitely many variables. This is however only for the special
powers p = 2 and p = 4 and why this is so is a tantalizing question we do not
quite understand.

In §8 we go on studying the spaces FZ and especially establish decomposi-
tion approximation and interpolation (pointwise, not abstract interpolation!)
descriptions.

We interrupt at this junctune the exposition by the collecting the results for
Hankel forms on the Fock space F as a Scholium (for those who like many
equivalent conditions). For simplicity we state them in terms of the symbol
taken with respect to the measure du,, which corresponds to the associated
measure dv in the general case (§4), when du = du,. We thus consider the
Hankel form H32* given by

Hy(f,9) = |, b dm,

acting in the Hilbert space F2. Let k2 be the normalized reproducing kernel
in F2, viz.

_ 2
kﬁ;(Z) — ea(z,w} afw| /2,
and use the notation k2* in the same sense.

Scholium 0.2. The following are equivalent for 1 < p < o« and any entire
Sfunction b.

() H>€S,.
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() H3X(f,8) = ZNCS ki) <g, kY where (N} el (and ki= ky, for a
suitable sequence {w;}, separation condition etc.).

(iii) b = XNAkZ with (\;} € [P (same qualifications for k*).

(v) beP, (IZ).

) {dy)ge!? where d,, = inf {|b — gIIF?&:gEPN}, P, being the set of
linear combinations 2.7 | a;k3* of length N.

(vi) beF%,.

In §9 we first investigate for which values of the parameters involved the
projection P, is bounded as a map from Lf into F/. (Answer: The n and
s condition is a?/y > 2« — B). This improves on an old result of Sjogren’s
(1976), who was interested when P, maps LP(u,) into L(p,). (Answer:
g<4/p, or p=¢q=2). It is also connected with a duality result (Theorem
9.2):

(FO* = F?, ,,

in the duality induced by the inner product in F2. We also study the (complex)
interpolation of the 2-parameter family F% (Theorem 9.3). It is somewhat sur-
prising but at second thought quite understandable that the parameter « inter-
polates «logarithmically» (Theorem 9.4):

1 1-0 6
[F?, FP), = F if — = +—  a=a; .
o p Po 41

It is an interesting (open) question to determine the spaces which arise by
real interpolation from this scale. This can for p fixed be rephrased as a prob-
lem about spectral analysis for the dilation operator Dj;: f(z) = f(62) 0 < 6 < 1)
in the space F?.

Example 0.2. Let

o (az)n

J@= 2 nl(1 + 167

where a is complex, ¢ > 0 and 6 fixed, 0 < 6 < 1. Is it true that
[[17@le” " dm(@) = 0e™,

with a constant independent of t? If this were the case we could prove that
D; is a «positive» operator so the usual Grisvard type machinery can be set
at work (see e.g. Triebel (1977), Section 1.14).
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§10 is likewise devoted to Fock space and treats various left-overs from the
previous sections.

In §11 we treat Fock space in a different gauge (from the group representa-
tion point of view this is something half way in between the Bargman-Segal
representatition thriving on F* i(C") and the Heisenberg representation acting
in L*(R"). In this connection we are led to introduce some new function
(distribution) spaces E,, whose definition formally reminds of the use of
Besov spaces, only that the convolution parameter enters in an additive way
(f€E, < ¢,+f(-) e LP(L”) where ¢,(£) = ¢(£ + ) and ¢ is a «test» func-
tion) and have the conspicuous property of being Fourier, and even Mehler
invariant. Indeed, it turns out that they are special cases of more general
spaces known as modulation spaces and studied by Feichtinger (see, e.g.
Feichtinger (1981a), (1981b) and the discussion in remark 11.3).

The following two sections (§§12 and 13) are devoted to B space theory. In
§12 we spell out our results in the case of weighted Bergman spaces on the
complex unit ball (the «Rudin» ball). In §13 again we make changes of
variables and gauge and consider the case of the upper half plane, but only
for n = 1. (This is really a pity, for the case n > 1 when one thus has a Siegel
domain of the second kind (a generalized upper half plane) should be suscepti-
ble to potentially interesting considerations. Cf. Gindikin (1964)).

Finally, as already recorded at the end of §0.2, we give in §14 our general
Kronecker result.

Acknowledgement. The authors are grateful to several colleagues, including,
especially, Hans Feichtinger, for pointing out misprints and other obscurities
in the manuscript.

Note. (added Jan. 1988). In two loose appendices (written in the spring of
1987), for which the middle author alone is responsible, we indicate some further
developments after the main body of the paper was completed (June 1986).

1. Reproducing Kernels

In this section we collect some elementary, presumably well-known results
which will be used later. We begin with a very general setting, see Aronszajn
(1950).

Let J3C be a Hilbert space of functions on some set @ such that the point
evaluations f — f(z) are continuous linear functionals on JC for all z € Q. Then
there exist unique functions K € 3C, z € 2, such that

f@=(f,K;>, fe3 and zeQ, 1.1
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and we define the reproducing kernel as the function

K@z, w) = K,,(2), (z, w) e Q% 1.2)

The definitions (1.1) and (1.2) yield (for z, we Q)

K(Z, W) = Kw(z) = (Kw3 Kz> (13)

Consequently,
K(w,z2) = K(z, w) (1.4)
K@ 2) = |K,]*>0 (1.5)
|K(z, w)|* < K(z, 2)K(w, w) (1.6)
If@I < | f] K| = Kz, 22| f]. 1.7

Furthermore,
Kiz,2)=0< K, =0 < f(z2)=0 forevery fel. (1.8)

If {¢,} is an ON-basis in JC, then

K(z, w) = K, (2) = 21<{K,, 349, (2)
= 21 { b K\ 9, (2)
= 26,29 (W).

(The sums converge absolutely).
Finally we note that the linear span of {X_} is dense in JC, because no non-
zero function is orthogonal to every K.

We next impose additional structures on .

Continuity. If Qis a topological space and every function in JC is continous,
then K(w, z) is separately continuous (because of K, € 3C and (1.4)), but not
necessarily continuous. (Counterexamples are easily constructed, but we leave
that to the reader).

Proposition 1.1.  If every function in 3C is continuous, then the following are
equivalent.

() (z, w) = K(z, w) is continuous;
(ii) z— K(z, ) is continuous;
(iii) z — K, is continuous (mapping Q into 3C).
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ProOOF. (i) = (ii). Trivial.

(ii) = (iii). Fix z. If w—z then K(w,w)— K(z,z) by (ii)) and K(w,2)
= K,(w) = K,(2) = K(z, z) because K, € IC.

Hence, using (1.3),

|K, — K;|* = <K,,K,,) + {K,,K,) — 2Re (K, K,

= K(w, w) + K(z,2) — 2Re K(w, 2)
- 0.

(1.10)

(iii) = (i). Immediate by (1.3). O

L?-spaces. In the remainder of this section we assume that y is a measure on
Q and that 3C is a closed subspace of L?(y) such that the point evaluations are
continuous on JC. (Note that the functions in JC thus are defined everywhere
although functions in L?(u) are defined only a.e.).

Let P denote the orthogonal projection L%(p) — 3C. Then, if fe L?*(u) and
zeQ, by K, €3, (1.2) and (1.4),

Pf() = (Pf,K;) = ([, K> = [ SONK (W) du(w) =

(1.11)
= [ K, W) (w) du(w).

Change of gauge. Let ¢ be a non-zero measurable function on 2 and con-
sider the map

f=ef,  w—lél %, (1.12)

which maps L2%(p) isometrically onto ¢L*(u) = L*(|¢| ~2x) and 3C onto the
subspace ¢3C = {2 ¢~ fe 3} of L*(|o| ).

This map, which we call a change of gauge, obviously gives an isomorphic
theory. It will later be important to see how various entities transform.

Proposition 1.2. The reproducing kernel for ¢3C is ¢(2)p(W)K(z, w).
Proor. E.g. by (1.9), since {¢¢,} is an ON-basis in ¢JC. O
Corollary 1.1. The measure K(z, 7) du(2) is invariant under all changes of gauge.

Proor. A change of gauge transforms du(z)— |6(2)| " 2du(z) by
definition. [

Change of variables. Let ¥ be a bijection of Q onto . Then ¥ maps  onto
po ¥~ ! and the map f— fo ¥~ ! maps JC isometrically onto

Jeo¥ 'CL¥(po¥ '=L*(upo¥ ).
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Proposition 1.3.  The reproducing kernel for 3¢ o ¥ =1 is K(¥ ~ (), ¥ ~}(w)),
zwe. O

This triviality will be useful in conjunction with a simultaneous change of
gauge in the next section.

Analytic functions. In the remainder of the paper (except in §14), we make
the following assumptions, for future references denoted VO.

VO0: Q is a connected open subset of C" and p is an absolutely continuous
measure on  with continuous, strictly positive Radon-Nikodym derivative
dp/dm (m is the Lebesgue measure).

Our basic Hilbert space is the space 4%(p) = 3C(Q) N L*(p), i.e. the space of
square integrable analytic functions. (FC(Q) is the Frechet space of all analytic
functions in Q. It is easily seen that A%(y) is a closed subspace of L*(y) and
that point evaluations are continuous; in fact, the embedding A4%(x) — 3C(Q)
is continuous). We let K denote the reproducing kernel in A%(y); all previous
considerations of this section apply. (In the special case p = m, K is known
as the Bergman kernel (in Q)).

We will henceforth only consider analytic changes of gauge and analytic
changes of variables, and note that they preserve our setting; e.g. if ¢ is
analytic and non-zero, then ¢pA%(u) = A*(|6| ~2w).

Proposition 1.4. K(z, w) is continuous on Q X Q, analytic in z and anti-
analytic in w.

Proor. K(z, w) = K,,(2) is analytic in z because K,, € A%(n). By (1.4), K(z, w)
then is anti-analytic in w. Hence K(z, w) is analytic in each variable on © X Q
and thus, by Hartogs’ theorem, analytic, in particular continuous. [

Corollary 1.2. Proposition 1.1 yields that z — K, is a continuous map of Q
into A*(p). O

We next prove that K is determined by its restriction to the diagonal and
the properties above.

Proposition 1.5. Suppose that J(z, w) is analytic in z and anti-analytic in w
on Q X Q and that J(z,2) = K(z,2), 2z€Q. Then J(z, w) = K(z, w).

Proor. We may assume that 0 € Q. The function f(z, w) = J(z, W) — K(z, W)
is analytic, and f(z,Z) = 0 in a neighborhood of 0. Hence f= 0, see e.g.
Bochner and Martin (1948), Chapter II, Theorem 7. [
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2. Symmetries

Let @ C C" and pu be as in VO (see above). In §§3-6, we will impose further
restrictions on Q and pu. These restrictions seem very restrictive and we guess
that the theory developed there only covers very special cases. The purposes
of the present section is to show that at least highly symmetric cases, such as
the Fock and Bergman spaces, are covered. Our main results extend results
by Selberg (1957), Stoll (1977) and Inoue (1982). A general reference to the
theory of automorphism groups is Narasimhan (1971), Chapters 5 and 9.

Let Aut (2) denote the group of analytic bijections of 2 onto itself. This group
is too large for our purposes, while the subgroup of maps that leave y invariant
is too small (and has the further defect of not being gauge invariant). Instead,
we study the subgroup of maps that leave p invariant modulo an analytic change
of gauge.

Definitions. G(p) is the set of all v € Aut (Q) such that, for some analytic
function ¢ on ,

pov ! =¢p @2.1)
(Cf. (1.12). Since necessarily ¢ # 0, we may here replace ¢ ~! by ¢).
G*(w) = (v, $) € Aut (@) X H@):po v~ ' = |[7n).
G*(p) is a group with the natural group law
o) oG, =(rod,¢-(Wor™ )

G(p) is a subgroup of Aut(2) and a quotient group of G*(u).

Remark 2.1. ¢ is determined by (2.1) up to a unimodular constant. Hence
G*(u) is an extension of G(u) by T. A unitary representation of G*(u) in A%(p)
is defined by

R, /@ = 6@ f(r7'(@). 2.2)

Remark 2.2. For the Fock spaces (§§7-11), G(u) is strictly smaller than
Aut (), while G(x) = Aut (Q) for the Bergman spaces (§§12-13), and for any
domain Q when p is the Lebesgue measure (let ¢ in (2.1) be the Jacobian of

v .
Proposition 2.1. If (v, ¢) € G*(n), then

K(’Y_l(z)9 'Y—l(w)) = ¢(z)_1W—IK(Z’ W), Z, wefl (23)
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Proor. Immediate by propositions 1.2 and 1.3, since the change of gauge
induced by ¢ ~! and the change of variables induced by v map A?(x) onto the
same space, and thus they transform K into the same kernel. []

Corollary 2.1. The measure K(z, ) du(z) is invariant for all ve G(p). [

Corollary 2.2. |K(z, w)|*/K(z, 2)K(w, W) is a G(u)-invariant function of
(Z,WmedxQ 0O

Transitivity. We say that G(u) is transitive if for every z, w € Q there exists
v € G(u) with v(z) = w.

Lemma 2.1. If G(p) is transitive and A*(x) # {0}, then K(z,z) # 0 for all
ze.

Proor. Otherwise, by Proposition 2.1, K(z,z) = 0 for every z e Q, which
contradicts (1.7). [

Theorem 2.1. Suppose that G(y) is transitive and A*(u) # {0}. Let r be an
integer and let v be the measure K(z, z) ~ " du(z). Denote the reproducing kernel
for A*(v) by L. Then, for some constant c, >0,

L(z, w) = ¢,K(z, wy' * . 24
In other words, if f is analytic and fe L*(K(z,2) " du),

K(Z, w)r +1

f(Z)=C,Lf(W) Kw, wy du(w). @.5)

Furthermore, G(») D G(u).

Proof. Let v e G(u) and choose ¢ such that (2.1) holds. Then, using (2.3)

dvoy™! @ = K '@,y ') dpovy!
dv K(z,2)7" du

— i¢l2rl¢|2 - l¢r+1|2.

()

Since ¢"*! is analytic, v belongs to G(»). Corollary 2.1 now shows that v
preserves the measures K(z,z) du(z) and L(z,z)dv(z) and thus the Radon-
Nikodym derivative

L(z, z) dv(z)

Lz, 2)avz) _ o
K(z, z) du(z) Lz, 2)K(z, 2) .
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Hence this function is left invariant by every v € G(u), and, since G(p) is tran-
sitive, it has to be a constant, ¢, say, i.e.

L(z,z) = ¢,K(z,2)"* .

The proof is completed by Proposition 1.5. [J

Remark 2.3. If Q is simply connected, the theorem holds for any real number
r. In particular, K(z, w)" is well-defined unless ¢, = 0, i.e. unless A%(») = {0}.
(The Lu Qi-keng conjecture states that K(z, w) # 0 for any simply connected
domain (with the Lebesgue measure), cf. Lu Qi-keng (1966), Skwarczynski
(1969)).1

Remark 2.4. A similar argument shows that the group of u-invariant automor-
phisms (i.e. those with ¢ = 1 in (2.1)) is transitive only in trivial cases. (K(z, z)
has to be constant, whence K(z, w) is constant and A%*(x) = {0} or C. We do
not know whether 4%(x) = C actually is possible). Note also the related fact
(valid without any assumptions on G(p)) that A*(K(z, z) du) = 0 or C, the lat-
ter case occuring if and only if A%(u) has finite dimension. (Sketch of proof.
It follows from (1.9) that if f € A*(K(z, 2) dp), then M:g— fg defines a Hilbert-
Schmidt operator in A%(x). Thus, the spectrum of Mfis discrete which implies
that f is constant).

Isotropy. Define, for z€Q, G(p), = {7 € G(n): ¥(z) = z}. In this subsection
we assume that G(u), is large enough, more precisely:

There exists a compact group H with H C G(p), such that
(v, 2) = Y(z) is continuous H X @ — Q and that the only (2.6)
H-invariant analytic functions on Q are the constant functions.

We let dvy denote the normalized Haar measure on H.

Lemma 2.2. Assume that z € Q is such that (2.6) holds. Then, for any f € 3C(2)
and wef(l,

[ S ar = 1.

Proor. The integral defines an analytic H-invariant function of w, and is thus
independent of w. Choosing w = z we obtain

t Added May 1987. After the above was written we have been told that the Lu-Gineng conjecture
has been settled by Harold Boas.
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[fa@)dv = f@. 0

The next lemma may be compared to the Lu Qi-keng conjecture in Remark
2.3.

Lemma 2.3. Suppose that z € and that K(z,z) # 0 and that (2.6) holds.
Then K(z,w) # 0 for all we (.

Proor. Suppose on the contrary that K(w, z) = 0 for some w. By proposi-
tion 2.1,

K,(v(w)) = K(v(W), 2) = K((W), 7(z)) =0 for all yveHCTI'(u),.
Lemma 2.2 with f = K, yields
K@ 2) = K.() = [K.(v(W)) dv = 0,

a contradiction. []
We may now extend the reproducing formula to functions outside A2(p).

Theorem 2.2. Suppose that z € Q is such that (2.6) holds and K(z,z) # 0. If
fis an analytic function such that

[ [K(z, W) 79| du(w) < oo,
then
| K@ W W) du(w) = f().

Proor. Corollary 2.2 implies that |K(z, w)|*>/K(w, w) is a G(),-invariant
function of w. This and Corollary 2.1 imply that |K(z, w)|* du(w) is a G(i)-in-
variant measure. Consequently, if g = f/K, (which is analytic by Lemma 2.3),
then for any v € H C G(),,

[ Kz, w)f W) duw) = [ gWK(w, DK (@, W) du(w) = [ g(rW)|K(z, w)|* dp(w).
Integrating over H, we obtain by Fubini’s theorem, Lemma 2.2 and (1.4)-(1.5),
[ KWW duw) = [ [ g(rO)IKG, w)I* du(w) dy
= [, [ .20 av|K Gz, w)|* d(w)

= [e@IK. W) du(w)

= g(2)| K, |?
= g(2)K(z, 2)
=f(z). O
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Proper actions and invariant measures. We say that a topological group
G C Aut (Q) acts properly on { if the action v(z) is continuous G X @ — Q and
the map G X Q= Q X @, (v, 2) = (¥(), 2) is proper. If G acts properly, then
its topology coincides with the compact-open topology. Aut () with the
compact-open topology is a topological group, but is does not always act
properly.

A related question concerns the existence of G-invariant metrics (defining
the usual topology) on Q. In fact, if such a metric exists and G is a closed
subgroup of Aut(Q), then G acts properly, see van Dantzig and van der
Waerden (1928) and Kaup (1967).

Now assume that

K(z,z) #0 for every ze€Q.

Then the Bergman (pseudo)metric (with respect to p) is defined as the Rieman-
nian (pseudo) metric with the infinitesimal from
0*log K(z, —
s> = 3 T oe k@) o @.7)
i dz;0%;
cf. Bergman (1950), Chapter 1X.3.
The form (2.7) is positive semidefinite (the proof of Kobayashi (1959),
Theorem 3.1, holds verbatim in our situation too) and is positive definite if
and only if

{grad f(z): f€e A*(u) and f(z) = 0} = C". , 2.8)

For example, if [ (1 + |z]?) du < oo, then all affine functions belong to A%(x),
whence (2.8) is satisfied for every z € @ and the Bergman metric is a metric.
Furthermore the form (2.7) is invariant under (analytic) changes of coor-
dinates and changes of gauge; hence (2.7) and the Bergman metric are G(u)-
invariant.
We are now prepared to show that (1.7) can be improved to

f@) = o(K(z,2)'"?)

in some cases, cf. Kobayashi (1959), Section 9.

Theorem 2.3. Assume that G(p) is transitive and that (2.8) holds for some
(and thus all) z € Q. Then, for every fe A*(u),

f@)/K(z,2)"* € Cy(D). (2.9)

Proor. It suffices to prove (2.9) when f = K,,, we Q, because of (1.7) and
the fact that these functions span a dense subspace of .-.%(x). Assume thus, in
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order to achieve a contradiction, that we @ and that (2.9) fails for f= K,,.
Then there exists a sequence {z,,} C Q that is not relatively compact such that
inf K,,(z,)/K(z,, 2,)*"% > 0. Thus, for some 6 > 0 and every n,

n

|K (2, W)| > 26K(w, )" K (2, 2,)" 2. (2.10)
Let k,(w) = K,(w)/|K,| = K(w,2)/K(z,2)""*. Then |k,| =1 and

(K., K,) K(w, 2)
(kz) kw> = = *
K] K Kz, K (w, w)''>

Let A = {zeQ: |k, — k,| < &}. Since z— k, is continuous, A is open. Choose
¥, € G(p) such that v,w = z,,. Then, if z€ A, using Corollary 2.2,

|<kw’ k'y"—lz>| = ’<k7nw’ kz>| 2 |<kz"’ kw>| - "kz - kw" >26—-6=0.
Consequently, by Corollary 2.1, for every n,
[l @Pdu@) = [ 1k k) PK G 2) du(2) > [, 8K (2,2 dut@) > .
Now, let B be a compact subset of @ such that
2 2
jm |k, |2 du <6 L K(z, 2) du(z).

Then BN v, A # & for every n. Since the Bergman metric is G(u)-invariant,
and G(u) is a closed subgroup of Aut(2), G(r) acts properly by the result
referred to above. Hence {v:vANB # 0} is compact, whence {v,} and
{z,} = {v,w]} are relatively compact, a contradiction. [

Remark 2.5. The assumptions of Theorem 2.3 imply also that G(y) is a real
Lie group, and Q thus a homogenous space, cf. e.g. Kobayashi (1959).

3. The Bergman Projection

We assume that Q and p satisfy the basic condition VO in Section 1 and fur-
thermore:

V1: If zeQ then f(z) # 0 for some fe A%(n).
Equivalently, K(z,z) > 0 for zeQ.

We introduce, as in §0.2, additional notations and assumptions which will
be used in the remainder of the paper (except Section 14).
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Definitions. A\ and » are the measures given by
d\z) = K(z, 2) du(z), (3.1
dv(z) = K(z,2) "' du(z). (3.2)

L(z, w) is the reproducing kernel for A%(»). Q is the projection L%(») = A%(»).
(K and P denote as before the corresponding objects for 4%(p)). w is the
function

w(z) = K(z,2) " (3.3)
LP

b, 1< p< o, is the weighted LP-space {f: wfeLP(\)} with the obvious
norm, and A” is the subspace of analytic functions.

Note that \ is the invariant measure of Corollaries 1.1 and 2.1, and that
Ll = L'(u) and L? = L*(v), whence A2 = A*®»).

We wish to stress that the spaces L? are the natural LP-spaces to consider
in our setting, and not the differently weighted spaces L?(»). (For example,
the results for L? in this section do not hold for L?(»), see Section 9).

It is easily seen that under the (analytic) change of gauge (1.12), » = |¢| ~*»,
L(z, w) = ¢(2)*¢(W)*L(z, w), @ = |¢| “%w and L2 — ¢*LP, A® — ¢*AP . Hence
the transformation f— ¢f («of weight 2») operates on L? and A” (in par-
ticular, on A%(»)).

We make two additional basic assumptions. Presumably, the first is very
restrictive while the second is more technical. Both assumptions are gauge
invariant.

V2: L(z, w) = x(K(z, w))* for some constant x > 0.
V3: If fis analytic on @ and
[1LG, w).fow)] dyw) <
for every z, then
(L@ wimdvw) =f@),  zeQ. (3.4)

At a few places we need a further assumption.

V4: If fe A*(p), then f(2)/K(z,2)"? € Co(D).
(It suffices that this holds when f= K,,, w € Q, because of (1.7) and density.
Hence V4 is equivalent to |K(z, w)|*/K(z, 2)K(w, w) € C,(Q) for every fixed w).

We will always let » denote the constant in V2; it will appear in various
norm estimates.
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If VO and V1 hold, then K2e A*(») because, by (1.6) and (1.5),
[ 1% dv < [ 1K 0Kz, DKOw, w) do(w)
= K(z,2) [ |K.(w)[* du(w) (3.5)
=K(z,2)* <o

Hence (1.8) implies that L(z, z) > 0 and thus, if V2 too holds, » > 0. In fact,
by (1.5) and (3.5), then

L@ 2) = |Lg|2ag) = #* [ [K.J* dv < x*K(2, 2% = xL(z, 2,

and thus » > 1 (with equality iff A%(p) is one-dimensional).

Remark 3.1. An inspection of the proofs below shows that in most places
we could replace V2 by the weaker L, € A%*(x) ® A*(x) with norm bounded by
xK(z,z) for each z. However, we do not know of any example that satisfies
this condition but not V2. (Cf. the Appendices, written much later).

We collect the: main results of Section 2. S

Proposition 3.1. Suppose that VO holds and A*(u) # {0}. Suppose further
that G(p) is transitive and that (2.6) holds for some z € Q. Then V1, V2 and
V3 hold. If furthermore (2.8) holds for some z€Q, then V4 holds too.

Proor. V1 and V2 follow by Lemma 2.1 and Theorem 2.1. Since G(u) is
transitive, (2.6) holds for every z. Since G(u) C G(») by Theorem 2.1 and, as
was shown above, L(z,z) > 0, V3 follows by Theorem 2.2 applied to » and
L. V4 follows from (2.8) by Theorem 2.3. [

This proposition gives us the only non-trivial examples satisfying VO — V3
that we know. After these preliminaries, we show that the «Bergman» projec-
tion Q can be extended to L? for any p €[1, «]. Note that this contrasts to
the classical case of H?*(T), where the analytic projection is a bounded
operator in L? for 1 < p < o, but not for p = 1 or p = . Recall (cf. (1.11))
that if fe L? = L(»),

0f (@ = [ Lz WS dv(w). (3.6)

We use this formula to extend the domain of Q.

Theorem 3.1. Suppose that VO — V3 hold. Then

(@) (3.6) defines Q as a bounded linear operator L. + L2 — A%,
(b) Q is a bounded linear projection of L? onto A® for everyp, 1 < p < .
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Proor. If feL!, then, by V2 and (1.6),
J1LG, Wy fO0)] dv(w) = x [ 1K@, WS 0)] (W) dNw)
< x [ K@, 2| fw)w(w) dNw) 3.7

= %K@z, )| fl; -

Hence Qf(z) is well defined and QfeL’,. Next we observe that, by V2 and
1.5),

[ 1L, W) aNow) = x [ [K(w, 2)|Pw(w) d\(w)
(3.8)
= x [ |K.|*du = xK(z,2)

Hence, if feL,

[ 12 wfom) dvw) = [ | Fme)] |L&, w)|w () d\w)
< Sl 22Kz 2),

(3.9)

whence QfeL’.

It follows that Q maps L, + L% into LY. Furthermore, by Morera’s theorem
(using Fubini’s theorem and the estimates (3.7) and (3.9)), Qf is analytic if
feLl +L?, ie. QfeAZ. This proves (a). We have proved in (3.9) that

w?

Q:L2— L2. Dually, if fe L., then by (3.8),

10f 115 < [[ 1Lz, w).F(w)] dv(w)(z) dNG)
= [[ 1LOw, D)) AN@)| F )] dv(w) (3.10)
= x [ |SW)IKOw, w) dv(w)
= xSl

Hence Q:L! > L!. .

By interpolation, Q:L” — L” for every p € [1, ]. Since Qf is analytic for
any felL” C Li + L? by (a), Q: L? > A®. Finally, V3, (3.7) and (3.9) show
that if fe Li + L7 is analytic (in particular, if f € A” for some p € [1, ©]), then
of=rf 0O

Remark 3.2. The proof shows that the norm of Q as an operator in L?,
1 < p < =, is at most »x. It is easily seen that this norm equals » for p = 1 and
p = . On the other hand, when p = 2 the norm is 1. Interpolation yields bet-
ter estimates for p # 1,2, o, but these estimates are presumably not sharp.
The norm is strictly greater that 1 for any p #2 (unless A%(u) is one-
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dimensional), since otherwise a result of Strichartz (1986) would imply that
the norm would equal 1 for all p, 1 < p < o, which contradicts the fact that
the norm for p=1is x > 1.

Corollary 3.1. If1<p<g< o, then A C A?.
Proor. If feA? then f=Qfel’NLTCL?. [

Corollary 3.2. The spaces A”, 1 < p < =, interpolate as expected for the
real and complex methods:
1-6 0

1
LA, AZY, = (A2 A2, = A, where —— = L.
[} 0 1

It is obvious that, if 1 < p < oo, (LP)* = Lﬁ' (1/p + 1/p’ =1 as usual) with
the pairing {wf, wg), = ([, &),.

Corollary 3.3. Q is self-adjoint in the sense that if feL? and geLﬁ',
1< p< o, then

(Of,&),=(f,08),. @3.11)

Proor. By (1.4) and Fubini’s theorem, justified by (3.7) and (3.9). O

Corollary 3.4. If 1< p< o, then (A%)* = A” with the pairing { »,. [

v

Corollary 3.5. The linear span of {L,} is a dense subspace of A” for every
P, 1<p<co,

PROOF. LzeA:, CA® by (3.8) and Corollary 3.1. If ge(49)* = A‘Z' is
orthogonal to every L,, then g(z) = Qg(z) = {g,L;) =0 for every z. [

Corollaries 3.4 and 3.5 fail for p = «, but we have the following substitute.
Define a;, as the closed linear span of {L,} in 4.

Corollary 3.6. If 1 <p <, then A” C a2 densely. (a¥)* = A, with the
pairing { ).

v

Proor. The first assertion follows by Corollaries 3.1 and 3.5. Thus, if
X € (@2)* there exists ge(A2)* = A2 such that x(f) = (f,g), for every
feA? CaZ. Hence, if fe L2NLZ, by Theorem 3.1 and Corollary 3.3,

. (f7g>,,= <fs Qg>,,= (Q.f’g>,,= X(Qf)
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and

|[oJedr| = K50, < IX1 1QF Lig < CI Sz
This implies g€ L,,, i.e. g€ A.. The rest is easy. O

Corollary 3.7. AP is reflexive when 1 < p < . (@X)** = A?. Thus A} and
A are reflexive iff a, = A7,. [

Corollary 3.8. Suppose that also V4 holds. Then
a;={feXQ):ufecC,(D)].

ProoF. A7Nw™ 1C,(Q) is a closed subspace of A, which by assumption con-

tains every L, = xK? and thus a7. On the other hand, if fe AN w ™ 'C,(9),

let f; = X f, where {K} is an increasing sequence of compact subsets of
J

with UTint (K)) = Q. Then ;e L2 N L7 and f;— fin L7, whence Qf, € A2 C @}
and Of;,— Qf=fin A7. O

4. Hankel Forms

We assume throughout this section that the conditions VO — V3 are satisfied.
We continue to use the notations introduced in §§0 and 3.

As explained in the introduction, we will in this section study Hankel forms
on A%(y) with symbols taken with respect to », i.e.

T,(/,8) = (fg, by, = [ Bfedy, @.1)
where f, g € A% (p).

Theorem 4.1. Let beL. + L?. Then T, is a bounded bilinear form on
A¥w), T, =T, and

1T Ob] e < T, 1 < 1Qlas 4.2)
Proor. By Hoélder’s inequality,

17202 = 1281 1y S 1S Lazgy 18] a2 4.3)

Thus fg eAi C Li NL? (Corollary 3.1) which proves the first assertion, and

IT,1 < 1l - (4.4)
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By Corollary 3.3 and Theorem 3.1,
Loy (f,8) = (fe, Qb), = (O(fe), b), = (fe,b),=T,(/, &),
which proves the second assertion, and
IT,| = [Tl < 19P] 4o
Finally, if z€Q,
|x7'0b(z)| = |x (b, L), = [<b,K2) |
= |Ty(K K| < [Tl - K[
= |T,|K(z,2). O

We proceed to the Schatten-von Neumann theory. We define an anti-linear
operator I L) + L?— S_by T'(b) =T,.

Theorem 4.2. If1<p< o and bel?, thenT €S, and |T,|s < |b|,,.
P W

Proor. If suffices to prove the result for p = 1, since the general case then
follows by (4.4) and interpolation. Thus, assume that beLi. The Banach
space valued integral jb(z)Lz dv(z) then converges in A%(») = Az , because the
integrand ‘is measurable (recall that z— L, is continuous by Corollary 1.2
applied to ») and '

[16@I L] 02y @ = [ 16| L(z, ) dv
= j *2|b(z)|w(z) " dv 4.5)
= ”1/2||b||1,3, < .
Evaluating the integral pointwise by (1.2) and (3.6), we obtain
b = [_b@L, dv(@). (4.6)
Since, by Theorem 4.1, I" is a bounded anti-linear operator:
A2CLl+L?-S,,
this yields
T() =T(Qb) = [ B@I(L,) dv) @7

with the integral convergent in S_.
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However,
L)/, &) =<fg L), =/2@)=([,K),(&K),. 4.8)
Thus I'(L)) is a bilinear form of rank 1, and
IT@)ls, = ITE)s_ = 1K %2, = Kz 2)- 4.9
Thus |
[ 1P@r @)l dv = [ @K@ D dv = [B], < . (4.10)

Furthermore, since I'(L,) — I'(L,) has rank at most 2,
ITZL) - T, s, <2|T'L) -T)| s, S C|L, - Lw'"Az(.,) -0

as z = w, whence z — I'(L ) is'a continuous map of Q into S, and z %P(LZ) v
is a measurable map into S,. Consequently the integral (4.7) converges in S,
as well and I'(b) € S, with norm bounded by (4.10). [T

Next we defin.e, for every bounded bilinear form T on A%(p),
T*(T)@) = TK, K,). | (4.11)

Cf. (for operators) Aronszajn (1950) and Berezin (1975).

Theorem 4.3. T'* is é bounded anti-linear mapping of S, intd AT that maps
S, into AP with '

My <ITls,  1<p<e. @.12)

Proor. Fix we . Since f— T(f, K,) is a bounded linear form on A?(), there
exists g € A*(p) such that T(f, K,) =< f,g). Thus

T(K,K,)=<K,g =<8 K, =g@)

is analytic in z. By symmetry, T(IT,K_J is analytic in w too, whence it is
analytic in (z, w) by Hartogs’s theorem. In particular, I'*(7")(z) is analytic.

It remains to prove that |I'*(T)|,, < | T| . By interpolation, it suffices
to consider p = «© and p = 1. The case p = oo follows by

IT*T@)| < | Tls_IK 152 = 1 Tls K@ 2) = | T|s_w@"

Next, if T is of rank 1, say 7(f,g) = (f, $>,(g, ¥),, then

I'*7T(@) = (K, 8>, (K, ¥), = 6(2)¥(z) (4.13)
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and thus by Holder’s inequality
IT*T | s = 1991 11y < 191z ¥ a2y = 1 Tl s, .

Since S, is spanned by forms of rank 1, the case p = 1 follows. []

Next we prove that, as our notation suggests, I'* is the adjoint of I'. (Recall
that the operators are anti-linear which explains the form of (4.14)).

Theorem 4.4. I[f1<p<oandl/p+ 1/p' =1, then
(T,T,) =(b,T*T),, TeS,, bel?’ (4.14)

Proor. We study two cases separately. If 1 < p < «, then forms of finite
rank are dense in Sp,. Since both scalar products in (4.14) are bounded
bilinear forms on S, X L? (by Theorems 4.2 and 4.3), it suffices to prove
(4.14) when T has rank one, say 7(f,g) = (f,qs)“(g, 1&)“. In this case
I'*T = ¢y by (4.13), and

(T,T)) =T, (9, ¥) = (DY, b), = (b, dY), = (b, T*T),.

If p = 1 we use the representation (4.7)
T, = [b@I(Ly)dv,
which converges in S, by the proof of Theorem 4.2. Since
TS, 8) = ([, K,(8& K,
by (4.8),
(T,T(L)) = TK,, K,) = T*T(2),
and
(T,T,) = [b@T,TLY) dv = [b@T*T@ dv = (b, T*T),. O

We proceed to study I'*I" and I'T**.
Theorem 4.5. T*I'(b) = x ~'Qb for every be L’ + LZ.
PRroOF.

I*I' (b)) =T, K, K) = (K% by, =<b,x 'L,y =x"'Qb(z). O (4.15)

Theorems 4.1, 4.2, 4.3 and 4.5 yield one of our main results.
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Theorem 4.6. Let beL, + L and 1 <p < . Then T, €S, if and only if
QbeA?. O

Theorem 4.7. Let1 < p < o. ThenT is an anti-linear isomorphism mapping
AP onto the set of Hankel forms in Sp. The inverse is given by xI'*. If p = 2
then Vx T' is an anti-linear isometry.

Proor. The first assertions follow immediately. That »'/?T" is an isometry
was proved in the introduction (0.7), and follows also by Theorems 4.4 and
4.5. O

Remark 4.1. The proof of Theorem 4.6 yields the estimates
urb"sp< ||lel,45<%||f'b|lsp, 1<p<K o,

but Theorem 4.7 shows that improved estimates can be obtained for 1 < p < o
by interpolating with the case p = 2.

Theorem 4.5 yields xI'T'*I' = I'Q = I and »I'*I'T" = I'*. The results above
now give the following results on the Hankel projection.

Theorem 4.8. xI'T'* is a linear projection of S, onto the subspace of Hankel
forms. xI'T'* is bounded on S, 1<p< oo, and {xI'T*S, T) = (S, »I'T'*T)
for S eSp, TesS,, 1 /p + 1/p' = 1. In particular, the restriction of xI'T* to
S, is the orthogonal projection onto the space of Hilbert-Schmidt Hankel
Sforms. O

Remark 4.2. This contrasts to the classical case H>(T), where the Hankel
projection is bounded when 1 < p < oo, but not at the endpoints, see e.g.
Peller (1980).

Corresponding results for compactness are easily obtained using the fact
that the space of compact forms equals the closed hull of S, in S_ together
with Corollary 3.6.

Theorem 4.9. T, is compact if and only if Qbea,. T maps a;, onto the set
of compact Hankel forms. The Hankel projection xI'T'* maps compact forms
to compact Hankel forms. [

5. Multilinear Hankel Forms

The theory above for bilinear Hankel forms is easily generalized to multi-
linear forms. We will here sketch this generalization omitting most of the
details.
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Let m > 2 be an integer (m = 2 gives the results of the preceding sections)
and define the measure dv,, = w™d\ and, for f,,... ,meAz(/.L) and b a
suitable function on ,

Ty(fysoosd) = [ B fyyy (5.1)

The weight ™ in the definition of »,, makes the expression (5.1) gauge invariant,
with b transforming as b — ¢™b («weight m») under an analytic change of gauge
(1.12).

Let L, denote the reproducing kernel in Az(Vm). We assume throughout this
section that VO and V1 hold, that L (z, w) = x,,K(z, w)" for some constant
%, and that

[L,@wimadr,w=1@, ze (5.2)

for every analytic function f such that the left-hand side is defined for all z.
(The natural generalizations of V2 and V3 to the present situation). Note that
these conditions are satisfied, for every m, whenever VO holds, A%(p) # {O},
G(p) is transitive and (2.6) holds for some (and thus all) ze Q. (Because
the proof of Proposition 3.1 extends immediately, using Theorem 2.1 with
r=m-1).

Define Q,, by

0,/ @ = [ L@ WS (W) dv,,(w)
and let
L2, = {fi0"?fe PV}, AP,,=1L2,,N3C(Q).
Note that if fe A%(n), then
||w1/2fl|L2(>\) = "f”AZ(,L)
and, by (1.7),
[0 %f | oy < 1 Lazgy -
Hence also
[0 | imoy < 1S Lazg
and, by Holder’s inequality,
[0+ o Sl mioy S Wil " - -+ 1 foal sz (5.3)

||wm/2f1 T 'fm”L‘”()\) < "f1 ”AZ(u) Tt “fm"AZ(u)' (-4
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Consequently,
fiooo o fn€AL L, NAL, ,, if f,....f,eA%pw.
In particular,
L,.=x,Ke Al,,NAZ,,.

It is now easily seen, as in Section 3, that Q,, is a projection of L?,,,, onto
AP, for 1 <p < oo, and that the analogues of Corollaries 3.1-3.8 hold.
Equipped with these results, we proceed to study the multilinear Hankel form
defined by (5.1). Theorem 4.1 extends easily.

Theorem 5.1 Letbe Li,,,,z + L, ThenT, is a bounded multilinear form
on Aw), T, =T, ,and

Hn 1 Qnblus,, < IT,1 < 19,00 4o, (5.5)

m/2

Proor. We prove (5.5) and leave the rest to the reader. We may assume that
b=Q,b. Then, if | f; {|AZ(F), - j|A2(u) < 1, (5.3) yields
Ty ar- syl = | [ 250, . f ] < 108 sy = 1B

wm/2

which proves the right inequality. The left inequality follows by
10,,b()| = | | BLm,dem. = ‘ %, | DK,
Sy, ”Fb” ||Kz||2'2(“)

=x,|T,|0@ ™™ O

= % T, (K, - .-, K|

z

Also the S,-results of Section 4 extend. However, as far as we know, no
theory is so far developed for S ,-classes of multilinear forms on a Hilbert
space JC. Hence we confine ourselves to the case p = 1,2, o.

Let S_ be the space of all bounded multilinear forms on JC X - - - x JC. Let
S, be the space of nuclear forms, i.e.

{(xls---’xm)_) ‘Zlaj H <x1’yu):2|aj| H ||yu||3(’.< OO};
J= J !

S, is the m-fold projective tensor product JC® - - - ® JC (identyfying 3C and
its dual).

Let S, be the space of Hilbert-Schmidt forms; S, is the Hilbert tensor prod-
uct X ®,--- &, 3.

It follows that S, C S, C S_, and S¥=S_.
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Furthermore,
[S1, Sl = (S), Soo)l/2,2 =38,.

Remark 5.1. This is an instance of the general principle that interpolation
between a space and its dual (by one of these two interpolation methods) gives
a Hilbert space. (We call this a «principle», not a «theorem», because it is not
yet proved in a complete generality, see Janson (1986)).

LetI'(b) = T,. ', ) is a multilinear form of rank 1 and it follows as in
Theorem 4.2 that b eLi,m*I‘beSl. For the converse we define for any
multilinear form 7 on A%(),

I*T(z) = TK, - .., K)

(cf. (4.11)) and obtain as in Theorem 4.3, using (5.3), that I'* maps S, into
A%, and S, into Aim/z. Furthermore, »,,I'*I" = Q, . Hence we obtain the
extension of Theorem 4.6.

Theorem 5.2. Ifp=1,2,, then
FbeSp if and only if Q,beA”,,. U
It is also easy to treat the case S, directly as in §0.4.

Remark 5.2. If we define Sp for 1 < p < o by (real or complex) interpola-
tion between S, and S_, Theorem 5.2 holds for every p > 1. Indeed, this seems
to be the only reasonable definition one can think of if one wants to carry over
the usual theorems on Hankel forms (operators) to the multilinear situation
(see Peetre (1985)).

6. Miscellaneous Complements
We assume that VO — V3 hold.

6.1. More general symbols. In §4 we assumed for technical reasons that
be Li + L, which made all occurring integrals finite. In the next subsection
we have to consider more general symbols, which may be done as follows.
Recalling that the linear span of {K } is dense in A%(p), we say that ', exists
when

j|b1<zl<w|dv< w forall z,w,
and

|[ofeav| <Clrl gl forall fgespan(K,). ©.1)
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Then T, is defined on A?(p) X A%(p) by continuity. The assumption (6.1)
implies that Qb is well-defined and

Ob() = [bL dv = x [bK2dv = xT*T, € A7

by Theorem 4.3, whence the preceding theory applies to

If we assume that T') = I‘Qb for all b such that (6.1) holds, then the results
of §4 can be carried over to this enlarged classs of symbols; in particular, it
follows that I', € S, if and only if Qbe A% .

An alternative formulation of this assumption is:

If (6.1) holds and

JEKidu =0 for every z
then
[BK K, dv=0 forall z,w (6.2)
To see this equivalence, notice that
[@-0opK2dy=o.
Thus, by (6.2),
j bK K, dv = j ObK K, dv,

that is, I'y = T',,.
Unfortunately, we have not been able to prove (6.2) in general, but it is easily
verified in the examples in §§7-13. Note that (6.2) is gauge invariant.

6.2. Symbols with respect to other measures. The time has come to treat
Hankel forms with symbols with respect to general absolutely continuous
measures. We recall the notations, cf. §0.2,

Hi(f,) = | bfgdg (6.3)
and, as a special case,
H, = Hj. (6.4)

More precisely, we say that H' f, exists if f bfg dt is absolutely convergent and
defines a bounded form for f, g espan {X,].
If follows from the definition that

f _ ﬁ)
H —I‘<bd 6.5)

14
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where the two sides are defined (in the sense of this section) for the same set
of b. Hence the previous results for I' can be transfered. The condition (6.2)

is equivalent to
If

|[bfede| <Clfllgl.  fizespan(k), and [bK1dE=0 (6.6)

for every z, then
[BK K, dE =0

for all z, w.
The discussion above and Theorem 4.6 and 4.9 yield:

Corollary 6.1. Suppose that (6.6) holds. Then

H}eS, if and only if Q<b%> €ed?, 1<p< .
P . . dt
Hj is compact if and only if Q b—d— ea’.
14

Note that, for & = W(H§ = Hy), Qb - du/dv) = Q(w ™ 'b).

It remains to identify Q(b - d¢/dv), in particular for analytic symbols b. Here
the general theory fails us (even for £ = p), and this has to be done by a
separate analysis in each case (because b — Q(b - du/dv) = Q(b(2)K(z, 2)) is
not gauge-invariant, cf. §§7 and 11). We observe nevertheless the formula

Q<b§>(z) = jbﬁizdv = Jbizdé (6.7)
dv dv

and that b —» Q(b - d¢/dv) formally is the adjoint of the (possibly unbounded)
identity map A%(v) = A%(£) because, for fe A%(»),

dt _ d¢ _
<Q<b dy>’f>f<” = ’f>y— (b, f). 6.8)

6.3. Minimal and maximal invariant spaces. The representation f = f J@L,dv
expresses any function in Ai as a continuous linear combination of {L_}.
There is also a discrete counterpart.

Theorem 6.1. fe Al if and only if f= 2.Ta,0(z)L, for some sequences
{z;) CQand {a;} ell. | f| 41 is equivalent to the infimum of 2. |a;| extended
over all such representation;.
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Proor. By (3.8),
lw@L,| 1 = w(@)xK(z,2) = » for every ze€Q.
Hence we may define a linear operator T:/'(2) = A. (with norm x) by

T{a} = %azw(z)Lz.

The adjoint T* maps AZ = (A))* (cf. Corollary 3.4) into /°(Q) = (/'())*. Let
geA?. Since

(g L), =08k =gk,

it is easily seen that 7#g = {w(2)g(z)}, and thus | T#g|,uq, = |8 4o-
Consequently 7* is an isomorphism into, and 7 is onto. [ “

In other terms, Ai is the smallest Banach space that contains all L_ with
norms bounded by some constant times K(z, z).
It is easily seen that G*(n) acts isometrically in each A” by the action

R /@ = 6@’*f(v"'(2)) (6.9)

(Cf. (2.2) and recall that A” transforms with weight 2). Using (2.3), it follows
easily that

R, 4L, @ =6@L(y™ (), w) = 6(v(W)) "*L(z, Y(W))
and
R, 5@WL,) = o(WS(YW)) ~°L,,, = sign s(v(W)’w(YW)L ,, -

Hence, if G is a transitive subgroup of G(p) and G* is the corresponding
subgroup of G*(u), the theorem above shows that Ai is the smallest
G *-invariant (under the action (6.9)) Banach space that contains some L_.

Dually, A7 is the largest G*-invariant Banach space of analytic functions
in Q@ admitting continuous evaluation at some point. This follows because, if
|f(z))] < C| f]| for every function in the space, (v, ¢) € G* implies by (2.3)
and (6.5) )

1

l¢(20)|2w(20)|f (r 'z
Wz R, 4/ ()l
< Cw(zo) “R('y,Q‘)f“

= Calzg) | f1-

(v NSz

Il
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We will not pursue the investigation of invariant spaces here, but refer to the
surveys Arazy and Fisher (1984) and Peetre (1984), (1985).

6.4. Factorization.
Theorem 6.2. fe A if and only if f= 2.7a;8:h; for some sequences {g;}
and {h;} in the unit ball of A*(p) and {a;} ell. | f1 41 is equivalent to the

infimum of 2. |a;| over all such representations.

Proor. Holder’s inequality yields

21: a,8;h;

| < 210 18] gace 1l -
Al

The existence of representations follows by duality as in the proof of Theorem
6.1, or alternatively, from Theorem 1 by taking g,=h,=K_/|K | and
replacing a; by xa; (because then

’fgihi = "Ki/ HKz,. "2 = w(zi)in). O

This is a so-called weak factorization. We do not know whether a similar
strong factorization is valid in general, i.e. whether each fe Ai can be fac-
torized as gh with g and 4 in A*(y) and |g| || < C| f| 4 - For the special
case of Bergman spaces in the disc, Horowitz (1977) provedw strong factoriza-
tion.

6.5. Another S, criterion. Let k, =K/ |K_| be the normalized reproduc-
ing kernels. If T is any bounded linear operator of A%(x) into a Hilbert space

JC,, then if {e } is an ON-basis in JC,,

[ 1Tk 1> dN@) = [ I TK | du@) = [ 5 KTK,, e,>[> du(z)

= S [ KK, T*e )P du@) = 3 [ 1 T*e, () du(2)

(6.10)
= ST, |2 = | T*I2,
_ 2
= T2,
It follows, by interpolation with p = oo, that
Tk lse, ey < I T, 2<p <o (6.11)

and, by duality,
[Tk dse, lpoy 2 1T, 1<P<2 (6.12)
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For Hankel operators there exist converses to (6.11) and (6.12) (within con-
stants). Let f‘b be the operator corresponding to the form I' as in (0.1). We
may assume that b€ A°. We begin with the case p > 2, where there are no
problems.

Theorem 6.3. If2 < p < o, then

F,eS, ifand only if [T,k |eL’(N. (6.13)

Proor.
IT,k | = KTk, k)| = [Tylk,, k)| = 0@IT,(K,, K)| = x ™ w(@)|bR)],
cf. (4.15). Thus, by Theorem 4.2,
ITyls = 1Tyl < 10Blpgy < %1 IEpk] Iorgye O

The converse for p < 2 only holds in some cases, however.

Theorem 6.4. Suppose that

|K(z, w)|
d\z) < . 6.14
3'2’3j Kz, K (v, w7 PO < 619
Then, for every 1 < p < o,
F,eS, ifand only if |k |eLP(N. (6.15)

Conversely, if (6.15) holds for p = 1, then (6.14) holds.

Proor. By Theorem 6.3 and Theorem 4.6, it suffices to prove that if (6.14)
holds, b € A? implies |T',k,| € LP(\). By interpolation we may assume p = 1,
and by Theorem 6.1 this implication is equivalent to

sup { [T,k [ 10y: & = @(WIL,} < 0. (6.16)

A simple calculation shows that (6.16) is the same as (6.14). [

If G(p) is transitive, then, by Corollaries 2.1 and 2.2 the integral in (6.14)
is independent of w, whence it is sufficient that it is finite for some w. Hence
(take w = 0) (6.14) and (6.15) hold for the Fock space (§§7-11), and for the
Bergman spaces (§§12, 13) with parameter ¥ > n — 1, but (6.14) does not hold
for Bergman spaces with ¥ < n — 1. (Presumably, (6.13) holds for some p < 2
even in the latter case; more research is needed).
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The corresponding result for H*(T) and p = o is given by Bonsall (1984);
it is equivalent to an oscillation condition.

7. Fock Space

The general theory will now be applied to the Fock space. Let, as in the in-
troduction, @ = C" (n = 1,2, ... will be fixed in the sequel) and, for o > 0,

du, = (a/7)"e™ % dm. 7.1

We define F2 (Fock space) as the Hilbert space A%(u,).

More generally, let L% be the space of measurable functions f on C" such
that f(z)e‘“'zlz/ 2 e LP(m), and let F” be the subspace of entire functions. (We
normalize the norms so that | 1| = 1. In any case, the results below in general
hold only up to equivalence of norms).

Remark 7.1. Note that L% is not the same as L”(u,) unless p = 2; in fact,
L?(p,) = L%, ,,. The parametrization L% is, as we will see, very natural. We
return to L?(p,) is Section 9.

Remark 7.2. Inour analysis it is natural to consider the whole scale of spaces
F? at this time. The parameter o which plays something like the rdle of
Planck’s constant, is of course devoid of intrinsic interest. Notice that the
dilation f+~f((8/2)'/?*z) maps F% into F% isometrically. This is exploited
several times below.

Whenever necessary, we add a subscript « to the notation. Thus

(f:8)a = [ [Eduqs

K, is the reproducing kernel in F2, etc.
It is easy to see that {z”}, where v ranges over all multi-indices, is an or-
thogonal basis in F2 and that |z”|2 = o~ "ly!. Hence, by (1.9),

K, (z, W) = 2, 2"Wa"/y] = e*&", (7.2)

((z, w)y = X z;w; is the scalar product in C").
It is easy to see that, for each we C”, the mapping C_(w) defined by

C. (W) ) = f(z — wye=m> =’/ (71.3)
is an isometry of F” (and L”) onto itself, 1 < p < . Further,

C,(w, + w,) = C,(w))C, (w,)e'm 172, (7.4)
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Hence (w, t) — ei"“Ca(w) is a unitary representation of the Heisenberg group
in Fﬁ. (Recall that the Heisenberg group is C" X R with the group law
@z, ) o (w,s) =(z+ w,t+s—Im(z, w))).

In the notation of Section 2, G(u_) contains the group of translations of C”,
and the corresponding subgroup of G*(u,) is essentially the Heisenberg
group. (It is the quotient group C" X T = (C" x R)/2#Z). In particular, G(n_)
is transitive. Furthermore, G(u_) obviously contains the group U(n) of linear
isometries, which satisfies (2.6) for z = 0.

Proposition 3.1 shows that VO — V4 holds, so our theory is applicable.

Let us identify the notations in §3. p = p_ and K = K are given above.
Hence

d\ = e** du_ = (/)" dm,
a constant multiple of the Lebesgue measure, and
dv=e"Tay_ = (a/m)ye 2" dm =2""dy,_. (1.5)
Thus, e.g. by Proposition 1.2, the reproducing kernel for » is
L=2K, =2"K2 (7.6)

which gives a direct proof of V2 and shows that x = 2". Q is the orthogonal
projection onto

Ap) = F2; (1.7)

hence Q = P, . By (7.2), w(z) = e“""zlz, and thus L? = L7 and A = F} .If
we write f©= {fe 3C(C"): f(z) = 0(e*¥*/2) as |z| - »}, then a®=f3 by
Corollary 3.8.

Thus translating, and replacing a by «/2, the results of Section 3 yield the
following for every a > 0.

Theorem 7.1. P_, defined by
P f@ = [ =" f(w)dp, (W), (7.8)
is a bounded self-adjoint projection of
L? onto F%, I<p<<o O
Theorem 7.2. If 1 <p<q< =, then
FPCFICfrCF,.

This first and second inclusions have dense ranges. [
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Theorem 7.3. If 1<p,<p, <o and 0<0<1,
[F2, F™, = (F7, 7)), = F7,
where 1/p, = (1 - 0)/p, + 0/p,. O

Theorem 7.4. (F2)* =FP 1< p<oo, and (f2)* =F. with the pairing
=

Since e%/2 ¢ F>\f7, the spaces Fi, F? and f7, are not reflexive. It is also
easily seen that F% # F? when p # q.

We turn to Hankel forms in F i Let H g, B8 > 0, denote the Hankel form
with symbol b with respect to p, (i.e. H f, with £ = p, in out general notation);

H{(f,8) = [ bfg dug (7.9)

(suitably interpreted).
Thus H, = H; and, by (7.5), ', = 2'"H§'1. Note that (6.2) and (6.6) hold

because K K, = K7, . Furthermore, by (6.7), (7.6), (7.2) and (7.8),

Q<b ﬂ"’1>(z) = jb]:z dpg = J‘b(w)Z"eZ"‘(Z'w> dpg(W)
dv

2
=" J b(w)Kﬁ<—g— z, w> dug(W) (7.10)
n 200
=2 Pﬁb<—6— Z> .
Thus, if we restrict attention to analytic b,
dpg P D 20 p D
ol b a €A’ =F, < b ?z eF,, < beFy,,,. (7.11)

Consequently, the results of §§4 and 6 yield

Theorem 7.5. Suppose that b is an entire function on C" and a > 0, 3 > 0,
1< p< . Then

(@) HieS,(F2) ifand only if be F%, , , i.e. if and only if b(z)e” @ /4e)zI?
€ LP(dm). The respective norms are equivalent within constants.

(b) HY is compact if and only if bef5,,,, i.e. if and only if b(z) =
o(e(52/4a)|z|2)_

(c) The Hankel projection is bounded in every Sp.

In particular, I‘beSp if and only if beF} , and HbeSp if and only if
beF?, O
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(As the family {H 5} is independent of B, there is only one Hankel projection
in S_(F2)). Note the formula

Hy=H} 50 B71>0, (7.12)

which is proved as (7.10), or by checking f = K; ., 8=K; .

Remark 7.3. Strictly speaking, the argument above presumes 3 < 4, because
otherwise e.g. the integral

j bK K, du,

may diverge for b € F;z 2~ Theorem 7.5 is true for all 8 with a suitable inter-
pretation of H? (e.g. by (7.12)).

We may also study the Hankel form (7.9) when f and g are in two different
Fock spaces F2 _and Fiz. (Cf. Feldman and Rochberg (1986)).

Theorem 7.6. Let1<p< o, a,>0,a,>0,B>0and assume that b is an
entire function. Then erSp(Fil X Fiz) if and only if b Eng/(D‘l*“z)'

Proor. The case 8 = a; + «, is proved exactly as in §4, using the fact that
+a, = K, K, - The general case follows by (7.12). [

oy
Theorem 7.5 also generalizes to multi-linear forms as is shown in Section 5.

Theorem 7.7. Letm>2,a>0,8>0,p=1,2or «, and b € 3C(C"). Then
j'l_af1 oo Spdpgis an Sp multilinear form on Fi if and only if b ngz/ma.

Proor. By Theorem 5.2 if 8 = ma; the general case follows by a multilinear
version of (7.12). [

We end this section with some remarks on the norms in Theorem 7.5 and
their dependence on n. For simplicity we take 8 = «; the general case is
covered by (7.12). We obtain from the estimates in §4 (cf. Remark 4.1) by
straight-forward computations.

A, 1bley, < Hyls <B, by, (7.13)
with
Ap — 2nmin 1/p,1 - l/p)p -n/p

and

1/p,1-1/p),, — n/i
szznmax( 4 p)p n/p.
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In particular, |H,| s, = |&] 2, However, if p # 2,
b,/A,=2""""Pl5> 0 as n-ow

(a consequence of the fact that » = 2" — o« as n — o). The constants given
above are not best possible, as we soon will see for p = 4, but simple examples
(take b = 1,z,...) show that |b| and |H,| are not strictly proportional for
any p # 2,4, even when n = 1. By considering symbols of the type b(z;) - b(z,)
-...-b(z,) (i.e. tensor products), we then easily see that it is impossible to
have A, and B, in (7.13) independent of n, except when p = 2 or 4. Surprising-
ly, however, there is an exact result for p = 4.

Theorem 7.8. It b is entire, then

nd " Hb " 5, = “ b " F2,, = ”b“ L2(n, )

“Hb”54 = ||b||F3/2 = ”b”L“(ua)'

Proor. The S, result was given above. Let us for notational convenience
assume n =1 and o = 1, and let

N .
b(z) = 2. b7’
0
be a polynomial. {z/(j!)~V 2}?fis an ON-basis in F f In this basis, H, has the
matrix representation {4 77 P with
by = H&G) V22500 ) = by, G+ IGH ™2k ™2

Let Hb be the corresponding linear operator F' f - (F f)*. H gﬁb corresponds
to the matrix {24,k ), . Thus

|Hyl5, = | A3, |5, = TrAH,A3A,
= S b by (7.14)
jkl

G+ )G+ Ik + DYI+ i) .

=ijzklbi+jbj+kbk+lbl+i ik

Let @, = b, - i!. Then (7.14) may be written

od 1
HHb"‘;4 = mZJO Wzm9

with

m!

Ym= a4, a,, .a,. . .4a,,;.
) K% +1%

ivj+rkel=m LYIKEUY PHITH HITEHE
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A combinatorial argument, which we omit, shows that

m 2 m 2
Fm = pgo <P>apam_p - p=0m!b”bm‘p
Hence
w © 2 w w 2
||Hb||f;4 = mgom! IZJO bpbm_p = mZJO <p=0bpbm_p>z'" L
(ry)

= ”bZHEZ(ﬂl) = "b"“LA(I»Ll) D

If we study the Fock space in infinitely many dimensions (a well-known object in
physics), we obtain (at least formally, ignoring all questions of definition etc.)

H,eS, < bely,,, and H,eS, < bel’(p).

We repeat that Theorem 7.8 does not extend to any other p. (In particular,
interpolation between p = 2 and p = 4 is not possible!)

Problem. What happens on the infinite-dimensional Fock space for p # 2, 4
(in particular for p = «)?

8. Decomposition, Approximation and (Pointwise) Interpolation
Theorem 6.1 yields, replacing « by «/2, the following.

Theorem 8.1. feF. if and only if
f(Z) — i a'ea(z,zﬁ - O(|Zj|2/2
J 3
1

for some sequences (z;} C C" and (a;} €l'. O

Let the Heisenberg group act on functions on C” by (w, t) = ei“'Ca(w), cf.
(7.3)-(7.4). Then, by Section 6, we have the following.

Corollary 8.1. F i is the smallest Heisenberg invariant Banach space that
contains the constant functions. F, is the largest Heisenberg invariant space
such that f— f(0) is continuous. [l

Theorem 8.1 says that the functions k, = K/ |K_| are atoms in F.. We
will show that suitable subsets of them can be employed as atoms in F? also
forp>1.
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We will call a set of points {z;} C C”" e-dense if every point of C" is within
distance ¢ of some Zjs i.e. if every ball with radius e contains at least one z;.
We call the set separated if there exists a constant M such that any ball with
radius 1 contains at most M points. (Any other fixed radius would do as well).
In particular {z;} is separated if inf — z;| > 0. The lattice ed "~ 17272n is
e-dense and separated.

i#j'zi

Theorem 8.2.  There exists ¢, > 0 such that if {z;} is e-dense with € < e;o ™/

and separated, and 1 < p < , then fe F? if and only iff
f(z) - leajea(z,z_j) —Dt|z_,'[2/2 (8.1)

with {a;} € I” (and similarly for f7, and c;). The norm | f | ., is equivalent to
inf | {a;}|,, within constants depending on o, e and the “constant in the
separation definition.

Remark 8.1. The coefficients a; are not unique, but the proof shows that
they may be chosen as continuous linear functions of f.

Remark 8.2. A characterization of the lattices {z;} for which {e*‘*%}
span F i is given by Bargmann et al. (1971).

Proor. We assume, without loss of generality, that = 1. Let G=C" X T
be the quotient group of the Heisenberg group defined by

(z,u) © (W, v) = (z + w,uvexp (—iIm{z, w)))

cf. the discussion after (7.4). As Haar measure on G we choose dm (z)|du|/
27!'" + 1.

Given a function f on C” we define 7f on G by
Tf(z, u) = uf@e” 7%, (u)eG=C"xT.

T is a linear isometry of F¥ onto a subspace of LP(G) (with the norm in F}
suitably renormalized).
Let ¢ = T'1. We write in this proof

g=(z,u) and h=(w,v).
Thus ¢(g) = ue™19"/? and

d(gh™1) = Bz — w, up~ le!m<EW) = yy=lgitmzw) - lz—w|*/2 62

2 2
=uv~ le(z,w> —|z|*72 - |w| /2.
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Consequently, if F = Tf, the reproducing formula (Theorem 7.1) yields,
$#F(g) = |_o(gh™HF(h)dh
= IG up ~ le<@w> = (2772 = w2y £y 0 = W72 gy (w)|dv|/27"*?
= ue™ 12 [ fwe ™™ dy, (w) 8.3)
= ue™ 14721 (z)
= F(g).

Let N = [27/e] + 1 and hy, = (z, ™M), 1 <j < 0, 1 < k < N. Partition G
into disjoint sets G, such that lhhj;’ —(0,1)] <2ewhen he G, . ((0,1) is the
unity in G).

Define

- f,

Jk

F(g)dg}lsjsm,lsksN
and

— 2 N g2
S({ak})(z) Zkajke 2mik/N +{z,2) — |zj|°/2

8.4)

© N
. J
Jj=1
It is easily seen that R: L?(G) — /”. Since
IS({a;, ))@)e™ 72| < <> |y e =412
<N2e lz - zif? /Zsupl I

< Csupa,|,

because {z,} is separated, S({ak})eF“ when {a; } el®. Also,

J
"S({ajk})”FI Zl kl ”e<z 7-!>” e - |zj*/2

= C" { k} ”11
By interpolation, S:/” = F%, 1 < p < . Next we observe that, by (8.2),

. N 10279 — 2
TS({a;,))(e) = Z,:cajkue“z’”"/”e“’zﬂ 72~ 1272

Z a, $(ghy
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Hence, if fe FT and F = T,
TSRF(g) = 3, [ F(h) dhe(ghy")
5 kG

and, by (8.3),

Flg) = TSRF(®) = 3} | . (8(eh™") = 6(gh; NF(R) dh.

Jrk ¥
Define
8(g, €) = sup {|p(g) — d(M)|: |g~'h — (0, 1)] < ¢}

and

59 = |, 8(g, 9 dg.

8.5)

Note that 6(g,e) >0 as e—>0 for every g, and thus, by dominated con-

vergence, 6(e) ~ 0 as ¢ — 0. (8.5) now yields

|F(g) — TSRF(g)| < Zl]( fG 8(gh™",2¢)|F(h)| dh < 6Q26) | F| ;.
Js Jk

Thus
| Tf — TSRTf | ;. < 8Q2€)| Tf | ;-
Since T is an isometry of F7 into L*(G), this gives
|7~ SRT | =< 8(26).
Similarly, if fe F},
|F = TSRF| 136 < [[ 8(gh ™", 2¢)|F(h)| dh dg
- J 8(2¢)|F(h)| dh
=020 F| 1,
and

|1 SRT| s < 8Q2e).

It follows by interpolation (Theorem 7.3), that if e is sufficiently small,
|I— SRT| m<l whence SRT is invertible and S maps /” onto F¥, for every

D, 1 < p < co. The conclusion of the theorem follows easily.

As a corollary we obtain an approximation definition of F?. Let P, be the
set of entire functions of the type Zf’aje“’z”, with ¢,eC and z;eC",
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J=1,...,N.(Pyisnot alinear space!). If b € Py, then H, has rank <N; the
converse is almost true, see Section 14.

Theorem 8.3. Let «>0and 1 <p <. Then feF” if and only if feF?,
and the sequence {dN}O €l”?, where d,=inf {|f— g||F,,, gePy} is the
distance from f to P, in F;,

Proor. If feF?, then (8.1) holds for suitable sequences {z;} and {aj} el”.
Reordering the sequences simultaneously, we may assume that {aj} is decreas-
ing. Then

-]
2. ae
NT1

alz, zj) — alzj|?/2

st <C“[aj}:/'+1||lﬂ°=ciaN+1|’

F>
@

by another application of Theorem 8.2. Thus {d,;} € /*. Conversely, if g€ P,
then H, has rank < N as a bilinear form on F_ 2 . Thus, on that Hilbert space,
Sy(H, < |H,— H, ||s @2y S C|f- gHFQ, because of Theorem 7.5. Thus
Sy (H. ) < Cd,. Hence {d,} €!” implies that H eSp(an) and, by Theorem
7.5 again, feFf{. O

In the classical case H*(T), Adamjan, Arov and Krein (1971) have proved
that sy(H) = inf { | H, — H,|: H, is a Hankel operator of rank < N}. Theorems
8.3 and 7.5 suggest that something similar may be true on the Fock space too,
possibly in a weaker version such as

Sy(H) < Cyinf { |H, - Hg||:gePC2N}.

Another consequence of Theorem 8.2 is the following weak factorization,
cf. Theorem 6.2. We do not know whether strong factorization is possible (as
for Bergman spaces by Horowitz (1977)).

Corollary 8.2. Let a=ay+a; and 1/p=1/p,+ 1/p, with oy, >0,
Py, Py < ®and1 < p<oo. Then fe F? if and only if f = 2.Ta,g;h,, for some
sequences {g;} and {h;} in the unit balls of F*° and F"', respectively. The
norm of f is equivalent to inf >, |a |, extended over all sulch representations.

Proor. Let {zj} be an e-dense lattice, with e sufficiently small. Any fe F”
has a representation of the type (8.1), and it is easily seen that it suffices to
consider functions that has a finite representation

N >
f= E;a e%$% ) —alg|"/2
1 J .
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Let b; = |aj"’/”° sign (;) and ¢; = |aj|P/”1, and define, for each sequence
I=(y,... 1) with each ¢; = 1,

— 00<z, 2j) — ao|zj|%/2 _ o142, ) — ay|zj|2/2
g jZijje , h,= ;chje .

It is easily seen that
f= 2_NZI]g[h1

and, by Theorem 8.2 again, for each 7,
l&slpm < CLB o = ClUa} |77 and  [h)] gy < ClUa} |77

The remaining, simple, details are left to the reader. [
Theorem 8.2 has also an interesting dual.

Theorem 8.4. Let {z,} be edense and separated with €< eja™'?. If
1 <p< o and feF?, then

C, 1S @)e™ )| 1y < 1 £ < G 1S @De™ W21 |,

with C, and C, depending only on «, € and the constant in the separation
definition.

Proor. If p> 1, let p’ be the conjugate exponent. The linear mapping
{aj} - Z aje_ alzj|2/2sz

is by Theorem 8.2 a quotient mapping of /* onto F? ', whence the adjoint
map, which maps fto { f(zj)e“"'zf‘z/ 2} is an isomorphism of F” = (F”)* (cf.
Theorem 7.4) into /*. If p = 1, we use ¢, and f. [

In fact, the left inequality in (8.6) holds as soon as {zj} is separated and
the right inequality holds as soon as {zj] is e-dense, because then {zj} can be
enlarged or reduced, respectively, to become both separated and e -dense (for
any €, > €). In particular, if fe F” vanishes on an e-dense set (¢ small enough),
then it vanishes identically.

The right inequality in (8.6) is not valid without some a priori assumption
on f. (E.g., if n = 1, Welerstrass’ theorem shows that f may vanish at every
z; but not elsewhere). It is easy to show that the condition f € F” may be relaxed
to fe€ FZ. We have proved that the mapping f— { f(z,)e” «13*/2y maps FP” in-
to /7, if (and, as it is easily seen, only if) {z;} is separated. If the set is suffi-
ciently well separated, this map is also onto.
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Theorem 8.5. There exists D < o such that, if {z;} is a sequence in C" with
inf, _; |z, — zj] > Do~ 2, and 1 < p < ©, a sequence {a;} of complex numbers
equals { f(z)} for some feF”, if and only if {aje‘“lzflz/z} el”’.
Proor. We may assume that o = 2. Define
- ~ |zil? _ 2§z, 2> - |z

Tf= (f(z)e™ ¥} and S{a;} = 2 aq;**% 14

Let
6 =inf|z; — g/ > 0.
i=j

T'maps F? into [” by Theorem 8.4, and it is easy to see, interpolating between
p=1and p = o, that S maps /” into F?. Furthermore,

TSt = [Saetso i 157)
i

J

and thus, again interpolating between p = 1 and p = oo,

||I— TS Hlp < sup Z |e2(Zj,Zi> - |zil® - !zjlzl = sup Z e~ |zi = zil? <1,
i Jj#i i j#i

provided 6 in large enough. Hence 7S is invertible and 7 is onto. [J

9. More on Projection, Duality and (Abstract) Interpolation

We have shown that the projection P_ is a bounded operator in L?(1 < p < ),
but it is also of interest to study the action of P_ on Lg when ( # «. In par-

ticular, this applies to the spaces L”(u_) = L% o

Theorem 9.1. Let a >0, 8 <2a, 1 <p < «. Then P, maps Lf onto F{'; with
1/v =2/a - B/a®. P, is not bounded on L% unless 8 = o.

Remark 9.1. 'We may here allow g8 < 0. In particular, P, (L") = F? ,.

Proor. We introduce explicitly the dilation and multiplication operators
defined by

D, f(z) =f(6z2) 9.1)
E_f(z) = e f(2), 9.2)

the idea being that D, maps F” isometrically onto F%, (c,d > 0) and E, maps

L§ isometrically onto Lg +2. (B, e€R). Furthermore, it follows by the same
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argument as in (7.10) that, for any «, 8 > 0,

oo ()3

(at least when fe L‘;° for some v < 2B), i.e.

PE .= <%>nDa/BPB. 9.3)

Hence, substituting 2o — 8 for 8 in (9.3),
Pa(Lg) =PE;_ oL - 8 = Do - 5Pre- 6(L§a )
= Dot/(th - B)(FIZJa - /3) = F§2/(2a -B"

The last statement follows because v > 8 unless 8 = . [

Applying the theorem to L”(n_ ), we obtain (and refine) a result by Sjogren
(1976).

Corollary 9.1. Let «a>0, 1<p< o and 1/p+ 1/p’'=1. Then P maps
LP(p,) onto F%, .. Hence P, maps L”(u,) into L(p,) (0 < g < ) if and on-
ly if either g < 4/p’ or p = q = 2. P_ does not map L”(u) into itself unless
p=2.

Proor. We may assume that o = 1. Theorem 9.1 shows that P, maps
LP(p) = L’z’/p onto F{’, with v = 2 — 2/p) ™' = p’/2, which is contained in
Li(p) = Lg/q if and only if 2/g > v =p’/2 or 2/q = p’'/2 and g > p. Since
pp’ > 4 unless p = 2 (e.g. by the inequality between geometric and harmonic
means), the latter case entails p =g =2. [

Let A”(u) be the space of analytic functions in L”(n,). Thus A”(n,) = F%,_,,.

Sjogren (1976) used the above result to show that the dual of 4”(n ) (for
the pairing ( ) ) is strictly larger than A” '(ua), unless p = 2. More generally,
now we can prove the following.

Theorem 9.2. Let o,$>0, 1<p<o and 1/p+1/p'=1. Then (Fp)*
= FZ,,; with the pairing { ). Similarly, (f5)* = F,, ;.

Remark 9.2. j fgdp,, does not necessarily converge when fe F4, g eFﬁ’z /85
but ( ) _ is easily extended. We omit the details.
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Proor. Since

B

<fsg>3=<g> <fsEa_/3g>a’ (Lg)*EEQ_BLg,

with this pairing. The Hahn-Banach theorem and the fact that

([, 8, =<, P&,
shows, using (7.3), that

(FO*=PE, _ B(Lg') =D_,,P,(IL5) =D, F5 = FP, .

o [+4

(f;;)* = F;z/ﬁ is proved similarly (using C} = M), or by letting p — oo, noting
that all constants stay bounded. [

Corollary 9.2. If1 < p < o, then A”(p )* = Fﬁ;/z, with the pairing ) . U

If p#2, pa/2>2a/p', whence F2, , 2 F% . = A”(u,), and we recover
Sjogren’s result.

We may now extend the interpolation theorem (Theorem 7.3) for the com-
plex method. Since Fock spaces with different values of « are related by dila-
tions, this is related to interpolation between spaces of functions defined in
different discs, cf. Lions and Peetre (1964).

Theorem 9.3. Let oy, >0, 1<p,p, <, and 0<60<1. Let 1/p,
=1 -0)/p, + 0/p, and o, = o}~ ’a’. Then

[F22, F2'], = F2,  p, <, 9.4)
(F2 F2l,=fo,  ag#a, 9.5)

" (Note that Py = if and only if p, = p, = ). (9.4) and (9.5) hold also with
F? replaced by f7, (j =0 or 1) on the left hand side.
J J

Proor. Define, for {€C, T, = Daoxa1(§ —-0)/2, i.e.

a &-6)7/2
TefR) =f < <a—°> z> . (9.6)

1

T, is an isometry of Ff(‘(’) onto Fﬁ‘; when Re ¢ = 0, and of Fﬁ‘l onto leo when
Re¢=1.

Furthermore, T, Sand T =1 ¢ f are analytic in ¢ (when fis analytic).
Hence, by the abstract Stein interpolation therorem, see e.g. Cwikel and Jan-
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son (1984), Theorem 1, T, = I is an isometry of [F{:‘(’), F‘;‘l] p ONtO

[Feo, Fp1], = Fpo
g g

%

(using Theorem 7.3), provided p, and p, < .

The same argument holds if p, = o or p; = o, provided we use /* instead
of F*. However, an extra argument is needed for F*, because e.g. t = T},f
is, in general, not a continuous map of R into F:o when fe F :’O, cf. Cwikel
and Janson (1984). One possibility is to use duality (Theorem 9.2) and the
result just proved (with pg, of ! etc.) to conclude that, see e.g. Bergh &
Lofstrom (1976), Theorem 4.5.1,

po P19 — P
o Fal” =Fgl, 1 <pysp; < . 9.7
Berg (1979) proved that, for any Banach couple [X,, X|], equals the closed
hull of X, N X, in [XO,XI]", which gives (9.4) and (9.5) from (9.7). [

Remark 9.3. Also (9.7) remains valid if F, is replaced by /7 on the left
J J

hand side (except in the trivial case p, = p, = ®, o, = «,). This follows from
(9.4) and (9.7) when p,, or p, is finite. That

U2 f21=F2  (@#ay)

follows directly from the definition (Bergh & Lofstrom (1976), Chapter 4), taking

gw) = [T_cfdt

with 7 as in (9.6) and fere.
Note that o, is the (weighted) geometric mean of «, and «,, while

PO JP1] — JPo
[Lao’ Lal]f} =L

(1- 6)ay+ ba,

with the arithmetic mean of o, and «,.

Exercise 9.1. Let us review Theorem 9.1 in the light of Theorem 9.3. First,
Theorem 9.1 plainly may be restated as follows: Given «, the set of pairs (8, v)
such that P, : L — F§ is precisely given by the inequality o®/v < 2a — 8.

We leave it to the reader to show that this region cannot be enlarged by the
interpolation theorem.

10. Addenda

10.1. Convolutions. The Hankel operator, which is a modified multiplica-
tion, is surprisingly aiso a convolution operator on the Fock space.
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Theorem 10.1. IfbeF., andf,geFi, then
H,f@) = (D@ + *),.f ), = [ bz + w)JW) du, (W) (10.1)
and
H,(f,8) = ([5G + W)/ @e) du,@) du, (w). (10.2)

Proor. Since both sides of (10.1) are continuous anti-linear functionals of
/f, it suffices to verify the formula when f= K, for some ¢. Then

H, K (2) = (H,K,K,)) = H,(K,K,) = (b, KK,

=(b,K,, > =bE+9)

= [ bz + WK, () du, (W).
(10.2) follows. [
10.2. Finite rank. It follows from (10.1) that (for be F7, ) I-?wa = b(s + w).
Hence the linear span of the set of translates of b is a dense subspace of the
range of ﬁb. In particular, invoking our general Kronecker’s theorem (Cor-
ollary 14.1):
Theorem 10.2. The following are equivalent (for b entire).

() H, has finite rank.
(ii) Span {b(« + W)} has finite dimension.

(ii) b(z) = % >, c;,2’e™j for some m, k;, w;.
iv) b eI-T’NJf—olr I;;rfé N, with P, as in §8. (Closure e.g. in F?).
If n=1, we can add:
(v) Db = 0 for some constant coefficient linear differential operator D.

10.3. An abstract characterization. Let A be any Hankel form on F (21 ©).
Then it is abstractly characterized by (cf. the introduction) the property

H(zf, g) = H(f, z8).

Notice that in terms of the associated anti-linear Hankel operator H this can
be written as

HA* = AH
where, taking oo = 1, A* and A are the creation and annihilation operator
respectively, Af = f’, Af= zf. This should be contrasted with the well-
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known abstract characterization of Hankel operators H,: H*(T) — H*(T)
using the shift operator S, Sf = zf, and its compression to A% (T) (cf. e.g.
Nikol’skii (1986), p. 180).

10.4. Other Gaussian measures. Let A be a positive definite matrix. Then
we may define

_detA .
=—=

Py -<{Az,z) dm

and F’ = A*(u,). The results of §7 extend immediately (because F is mapped
onto F i by a (linear) change of variables). The results of §9 extend too
(Foy*=F: , for 1<p<e (while =L~ )
in the duality ¢ >ﬂ1’ and
PO Pl — Po
[F2, F511, = F5! (p,< )

for some A, (a «geometric mean» of 4, and 4)).

11. Fock Space with a Different Gauge

In this section we for simplicity consider only the case n =1. We write
z=x+iyand w=u + iv.

The gauge transformation f(z) > e~ az?/ 2f(z) maps F' ? onto the space of en-
tire functions g such that

|g@)|eReex 21272 = | g(z)|e= 0" € LP(dx dy).

We denote this space by G?. In particular, Gi is the Hilbert space
Az<ﬁe'2""vz dxa’y>-
s

The reproducing kernel for Gi is, by Proposition 1.2 and (7.2),
K(z, w) = ™2 72= a2t aa¥ _ o= aa=@)/2 (11.1)

Thus K(z, 2) = e~ @72 = 207 and ((z) = e~ 2. Consequently, AP =G?,
1<p< oo, cf. §7. It follows from (7.3) that the Heisenberg group acts
isometrically in every G” by (w, t) = e"'C,(w), with

C.(wegz) = e‘azz/Zerx(z—w)z/zg(z _ W)eazw—a|w|2/2
(11.2)

iav(w — 22)

=gz — w)e
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Remark 11.1 From the group theory point of view this is something which
lives «half way» between the Bargmann-Segal representation of the
Heisenberg group, which lives in Fock space Fi (C), and the Heisenberg
representation of the same group, which lives in L*(R).

Letge Gz, let g,(x) =gx + iy) and let g € S'(R) be the Fourier transform
of g(x), xe R. Then gy(g) = e ¥3(¥) and, by Plancherel’s theorem,

||g“205 = %f lf(Z)Ize’Z"‘yzdxdy

07 2
-2 [1g1e ey
(11.3)

« = 5 -2
=Wje >4 g(e) %> dedy

al/Z 2
Conversely, it is easily seen that if
[ 1@ d < e,

2
then & = g for some g € G2 . Thus, g = g(£)e* /** is an isomorphism of G2 on-
to L?(R); with a suitable constant factor we obtain an isometry.

Remark 11.2. The composition of the isometry F2— G2 given above and
this isometry is the Bargmann transform F2 — L*(R) which maps the function
7% to the k:th Hermite function k, (e™%/** times the k:th Hermite
polynomial; the normalization depends on o). Now let g e G2 for some p,
1<p< o, let v(E) = §(9)ef /* and ¢(&) = e~ ¢7**. Then

£,(5) = e = V(DB + 20p)e™”
and thus

llgllog =11 8y I Lp(dx)e"’;yzﬂ 12(dy)
= | [7(®dE + 209)| 2o | 1»
= Qa)~ Ve ” ” Y(®)e(§ + ) “ p “ P

Again the converse holds, i.e. the mapping g = v maps G” onto the space of
all distributions 7 such that | |v - ¢(s + )| z» | ,» < o. Furthermore, the lat-
ter space is a kind of generalized Besov space defined by translations instead
of dilations of the kernel ¢ (cf. Peetre (1976), Chapter 10 with, formally,
Af = f(s + i) on L*(R)), and it is seen, just as for ordinary Besov spaces, that



116 SvANTE JANSON, JAAK PEETRE AND RICHARD ROCHBERG

the space remains the same if ¢ is replaced by an arbitrary test function (ex-
cept 0). Also, it suffices to restrict y to the integers, provided some non-
degeneracy condition holds. We omit the details.

Theorem 11.1. Let ¢ € Cy(R) with ¢ = 0. Then the space
E,={ved" | (e +y)7”1:” ”Lp(dy)< o} (11.4)
does not depend on the choice of ¢, and if ¢ #0 on [0, 1],

= (veD": | |é( + myv| | p < ).

5401

The mapping g — §(&)e is an isomorphism of G4 onto E,, 1 <p < . [

Note that E, does not depend on «. Define mappings M, by
e — n 2
M,g(%) = (9e.

Corollary 11.1. Let o,3>0 and a = 1/4a — 1/4B. Then M, is a isomor-
phism of G* onto Gg, I<p<g o, O

We are now prepared to deal with the Hankel forms I', and H, on Gi. Cf.
Theorem 7.5 and recall that the results for I', are gauge invariant, but as we
see here, not those for H,.

Theorem 11.2. Let b be entire and 1 <p< . ThenT, €S, if and only if
beG% , i.e. if and only sz(z)e‘z"‘y eL"(dxdy), and H € S if and only if
be sza, i.e. if and only if b(z)e™ "3 e L”(dx dy).

Proor. The result for I', follows by Theorem 4.6. The result for H, follows
by Corollary 6.1 once we note that Q(w~ 'b) = c¢M, b for some constant ¢
and thus Q(w ™ 'b) € G, if and only if b€ G4, by Corollary 11.1. The latter
formula follows by (6 8) and (11.3):

(Q@™'B),/), = (b,f, = C, [ BE© F@e* > dt
= C, [ (4,,,, 0 O F @™ dg = CM, 0 0,15, O
One can similarly show, more generally, that if 0 < 8 < 4a, then the Hankel

form H f, with df = e™2¥ : dx dy belongs to Sp(Gi) if and only if b € G4 with
1/v=2/8-1/2a.

Remark 11.3 The spaces E, are interesting in their own right . They are
essentially special cases of more general function spaces studied intensively
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(also in the context of general locally compact Abelian groups) by Feichtinger.
Here we briefly recapitulate some of their salient properties. They form an in-
creasing scale of spaces of distributions, with E, = L2 E, is the minimal
strongly character invariant Segal algebra, see, e.g., Feichtinger (1981a),
(1981b). The spaces are translation invariant (isometrically) and dilation in-
variant. They are also preserved by (Feichtinger) the Fourier and (new!)
Mehler transforms. This follows because F” is mapped onto E, by the
Bargmann transform (see Remark 11.2), which maps z’ to A, with, for
a =1/2, h; = (27)""*(=i)’h;. Hence the Bargmann transform intertwines the
rotation f'~ f(iz) (which obviously preserves F4 ,) and the Fourier transform
on E . (In particular, we may take a Fourier transform in (11.4) and obtain
the definition of ‘Ep given in the introduction). More generally, the Mehler
transform h; — §’h; (¢ is fixed with |¢| < 1) corresponds to f~ f($2) in FY,.

(Cf. Peetre (1980)).
Note also that Theorems 7.3 and 7.4 imply (already in Feichtinger (19815))
[EPO’EP1]9 = (EPo’EPI)"Pe =E,, (11.5)

0

and (Ep)* = Ep, (1 € p < =), with the usual pairing on R.

Remark 11.4. An argument similar to the proof of Theorem 9.3, using the
operators M, with @ complex, can be employed to show that (11.5) implies (for

Dy < )
(G2, G, = GEY (11.6)

with p, as before and 1/a, = (1 — )/ + 0/, .

Thus «, is the harmonic mean of o, and «, , while we obtain the geometric
mean for F¥ (Theorem 9.3) and the arithmetic mean for L?. In fact, both
these results can be understood from the point of view of the Shale-Weil
representation of the so-called metaplectic groups. (Cf. again Peetre (1980)).

12. Bergman Spaces in a Ball

In this section we study the case Q = the open unit ball in C" and
dp = c(1 - |z|*)" dm, (12.1)
where v > —1 is fixed, m is the Lebesgue measure, and
c=x""T(n+v+ 1/T(r+1)

is a normalization constant making u(Q) = 1. Thus A?*(n) is the (weighted)
Bergman space in the unit ball.
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It is easily seen that {z®}, where o ranges over the set of multiindices, is
an orthogonal basis in A%(x). An integration shows that

w2 QT +n+1)
21" = T'(a| +v+n+1) (12.2)

and thus the reproducing kernel is

2127w/ |z%|?

K(z,w)

Sz, Wy T(m +v+n+1)/T(y+n+1) (12.3)
m=0

(1—<(z,wy)~r "1

(Cf. Rudin (1980), Chapter 7.1.)

The group Aut(Q) is the Mobius group PSU(n, 1) (Cf. Rudin (1980),
Chapter 2). Every automorphism acts on x as an analytic gauge transforma-
tion, i.e. G(u) = Aut(Q) = PSU(n, 1). Since the Mobius group is transitive
and isotropic in the sense of (2.5) (choose z = 0 for convenience), the results
Sections 2-6 apply. The invariant measure is by Corollary 2.1 and (12.3)

d\z) = K(z,2) du(z) = c(1 — |z|) ™"~ 1 dm(z). (12.4)

(Conversely, since this measure can be shown directly to be invariant, Propo-
sition 1.5 yields an alternative proof of (12.3)). We observe that

w(z) = (1 — |zt (12.5)
An elementary computation yields

n+2y+1+j
w= [T ITS
i=1 Y+J

We will, after some preliminaries, apply the general theory to the Hankel
forms H, and I', on A%(p). The same argument yields similar results for
Hankel forms H f, with £ = ¢(1 — |z|»)? for any 8 > 0, but that is left as an
exercise for the reader. See also Burbea (1986), where (independently) this
type of Hankel operator is treated by a different method.

It is convenient to relate the Bergman spaces to the (analytic) Besov spaces
on the unit sphere §2” ! C C". These Besov spaces can be defined as follows,
in complete analogy with the standard Besov spaces on R, cf. e.g. Peetre
(1976), Ahlmann (1984), Mitchell and Hahn (1976). Let ¢ € L'(R) with
e C;(0, ) and define, for any analytic function (or formal power series)

f@) = Zf(@z",
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/= [l fe D) ds = £ d(|a) (", (12.6)

Define ¢,(x) = 1~ '¢(x/); thus ,(¢) = (%), and
- . dt
By = [f J;) (| ¢x*f”Lp(s2n-l))qT < oo} : (12.7)

Hence —o <s< 00,1 <p<oand 1< qg< o (with the standard modifica-
tion if g = ). These spaces are independent of the choice of ¢; furthermore,
it is equivalent to use only the discrete values {2~ % } for z. In the sequel we
let BY = BP*.

When s < 0, we may in the definition of B3? allow $(¢) = e, £> 0 (and
#(0) = 0; thus ¢ ¢ L', but that does not matter). This choice gives

¢, *f(2) = goe'”“'f(a)z“ = f(e™'z) — £(0).

Restricting attention to # < 1, as we may do, and changing variables, we find
that, when s < 0,

feBY < t7°| fe™"2)| oeszn-1y € LU0, 1), dt/1)
< (1 =171 f0D)] oesza-1y € LU0, 1), (1 — )™ dr).

(12.8)

Hence these Besov spaces coincide with the weighted Bergman spaces in the
unit ball. In particular, in the important case g = p,

B°={f:(1 - 1z (@ e L@, — |z[») "' dm)}, (12.9)

provided s < 0.
We now see that A%(p) = B2

(v+ 12 @nd, cf. the definitions in §3,

AP = {f:(1 = 2" S e (1 - |2/ """ 'dm)) = BY

-n—1-%"

Define

n af
D = z,——.
4 jgl 7 9z,
Thus Dz® = |a|z®. The Taylor coefficient multiplier D” gives an isomorphism
of B?? onto B??  (modulo constants) for any real s, and 1 <p, g < .

Similarly, f€ B%? if and only if af/azj eB? ,j=1,...,n. This yields a way
to extend (12.8) and (12.9) to s > 0; e.g.

feBy < (1-z)|IDfR)| < C < (1 - z2P|Vf@I<C

(By is the n-dimensional Bloch space).
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We will also consider a related multiplier. Taking f=z* (and &£ = p) in
(6.8), we see that

(Q(w™'b),2%), = <b,2*), = b(@)|2*|?,
and thus

Q@™ 'b) = 21 ¥(@)b(@)z®,

with
W) = [2%],/ 1212 =T(a| + 2y + 21+ 2) /T(|la| + v+ n + 1)

(cf. (12.2)). It is easy to show that the multiplier y(c)|c| ~7~"~! maps any
space B?? onto itself. Hence,

Q™ 'b)e A = B”

n/p—-n—-1-v
if and only if

Dn+1+'ybEBp

n/p—-n—1-«

if and only if
beB, .

The results of §§4 and 6 thus yields the following. (To see that (6.6) holds,
let g(z, w) = (f, K _K,) and note that g is analytic and

D2DPg(z, w)|, _, = const { £(§), £(1 — (¢, z)) "~ 1=l
AL = (g, zy) T IAy

= const D**#g(z, 2).)

Theorem 12.1 Let b be analytic and 1 <p < . Then T, eSp if and only

ifbeB:,, . ,_ ifandonlyif (1 - |2I)"*'*7bz) e LP((1 - |z|") """ " dm)
and H, € Sp if and only if be B p- I particular, H, is bounded if and only

if |Vb(z)| = O((1 — |z|» ™), T, is compact if and only if |Vb(z)| = o((1 —
|z1)~""'"") and H, is compact if and only if |Vb(z)| = o((1 — |z|)~") as
|zl —=1. O

When 7 = 1, this result is due to Peller (1982). Note that H*(T) formally
is the limit of A%(p) as ¥ = —1, and recall that the result above for H, is valid
on H*(T) too, provided p < =, see Peller (1980), (1982).
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For multilinear Hankel forms we obtain by Theorem 5.2 and arguments as
above the following, with H,(f,,...,f,) = [bf,- ... f, dp.

Theorem 12.2. Letm >2andp = 1,2 or . Then, if b is analytic, the m-linear
formT, €S, ifand only if (1 — |z[?Y"*1* V2 e LP((1 — |2|*) ="~ ' dm) if and
only if be B? and Hy€ S, ifand only ifbe BY, ,, ., ,, D+

—m(n+1+~)/2+n/p

The same result is true for A, on H(T) too, cf. Peetre (1985), Lecture 5.

Theorems on decomposition, approximation and interpolation for
Bergman spaces are given by Coifman and Rochberg (1980) and Rochberg
(1985).

Theorem 3.1 shows that the Bergman projection Q is bounded on L”. The
problem of telling exactly when such a projection is bounded on L?(Q, m) is
solved by the Forelli-Rudin Theorem, see Rudin (1980), Chapter 7.1.

13. Bergman Spaces in a Half Plane

In this section we consider Q = the upper half plane (n = 1) and du = y" dxdy,
v > —1. Thus, by Plancherel’s formula,

1/ 12 = [[ IF@Py dxdy = [7["le” /@)y dy dg

o (13.1)
=c, [(f@OPE s @=x+iy).
Hence the (weighted) Bergman space A%(p) equals the analytic Besov space
B* ()2 (See Peetre (1976) for definition and properties of Besov spaces.
We do not distinguish between functions in 2 and their boundary values on R).
The change of variables z — (z — i)/(z + i) maps @ onto the unit disc, and
the measure c(l — |z|»)dxdy (c = (v + 1)/x) on the disc corresponds to
4"z +i| "~ *yYdxdy on Q, which is mapped to y” dxdy by the change
of gauge f— 2" We(l - iz)" T2 (z).
It follows from (12.3) and Proposition 1.3 and 1.2 that the reproducing
kernel in A%(p) is

Y+1[z-—w) "2
Kz w) =~ < 5 > . (13.2)

Thus, the invariant measure

+1
K@z, 2)du = -%T—y-zdxdy
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We, again, for simplicity consider only the Hankel forms I', and H,. We
obtain by §§4 and 6, if b is analytic in Q,

ryes, < Y 2b(x + iy) e LP(y " 2dxdy) < beB” ;. .,
If g = Q(w™ 'b), then by (13.1) and (6.8), for suitable f,
&>, = C, [JEOF Ot = (0., = G, ;6O S©OE " dk.

Hence £()) = £"*?h(¢), and Q(w™'b)eB” ifand onlyif b €B?, . .,
—oco< 5§ < o, We thus obtain

Theorem 13.1. Let b be analytic in the upper half plane and 1 < p < . Then
I'yeS,ifand only if b eB"_v_ZH/p and Hy € S if and only ifbeB‘;’,p. O
For this and similar results, see Peller (1982), Rochberg (1982), Semmes
(1984), Janson and Peetre (1985).
Note that H*(R) formally is a limit of B> __  ,as v~ —1.

Remark 13.1. By conformal mapping followed by a suitable change of
gauge one can also get interesting formulations in other domains (not
necessarily (generalized) discs). For instance in the case of the standard strip
0 < Imz < 1, the condition on the symbol takes the form

fi . J; |b(2)|P(sin 7y)* dm(z) < . (13.3)

Such a condition can be made more explicit using Besov spaces on the bound-
ary lines Im z = 0, 1. Some limiting cases are likewise of interest. If one writes
(13.3) for the strip 0 < Im z < s then s — « gives back the upper halfplane.
Similary taking the strip —s/2 <Imz < s/2, so that we have the weight
(cos wy/s)®, then if we let @ = a\, w2/2s*=X"1, A= o then Fock space
evolves once more (use cos 7y/s = 1 — 72y%/2s* = 1 — y%/\).

14. A General Kroneckers’s Theorem

The classical Kronecker’s theorem asserts that an ordinary Hankel form (or
operator), in the Hardy space H(T), is of finite rank if and only if its symbol
is a rational function. Here we wish to establish an analogous result in max-
imal generality. A closely related multivariable Kronecker theorem, contain-
ing the algebraic part of the proof below, is otherwise in Power (1982b).

We consider the following set-up, which differs considerably from the one
used in the main part of the paper; in particular, we do not any longer require
the Hankel forms to be defined on a Hilbert space.
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Q is a domain in C". Let R be the ring of all polynomial functions in Q. We
say that a bilinear form H defined on a space X that contains R (or, more
generally, or a pair X, Y of such spaces) is a Hankel form if

H(f,g) = H(fg,1), f,g€R. (14.1)

We will study spaces X that satisfy the following assumptions.

W1: X is a topological vector space of analytic functions in Q.

W2: X contains R as a dense subspace.

W3: The inclusion X C H(f) is continuous.

W4: If zeC"\Q, then the mapping f— f(z), f€ R, has no continuous
extension to X.

Note that W3 implies that the mapping f— D’f(z) is continuous for every
multi-index » and every z € Q. Conversely, if e.g. X is a Banach space, it
follows from the Banach-Steinhaus theorem that W3 is equivalent to

W3': If zeQ, then f— f(2) is continuous on X.

Hence, in that case, W3 and W4 may informally be summarized by
«f— f(2) is continuous if and only if z € Q».

The Fock spaces in Section 7-10 and the Bergman spaces in Section 12 are
examples where these assumptions are satisfied (also for p # 2 as long as
p < ), but W2 fails to hold for the related spaces in Sections 11 and 13.
Another example where the assumptions hold is the classical Hardy space
H?*(T) (a limiting case of Bergman space hitherto not permitted).

Theorem 14.1. Assume that X and Y are two vector spaces such that X
satisfies W1-W4 and Y satisfies W1-W3. Then every (separately) continuous
Hankel form H on X X Y of finite rank is given by

N

H(f,9)= 2. 2 ¢, D'(/8)z), (14.2)

j=1 Iv|skj

for some finite sequence {zj}]lV in Q, integers kj and constants Cpe Conversely,
(14.2) defines a continuous Hankel form for any {zj}f' cQ, kj and Cpye

Proor. The last statement is obvious by Leibniz’ rule. In order to prove that
a Hankel form H has the sought representation, it is by continuity sufficient
to show that (14.2) holds for all £, g € R. Hence we will study the restriction
of Hto R, and the remainder of the proof will be almost purely algebraic. Let

J={feR:H(f,g)=0 forall geR}.
If feJ and h, g€ R, then

H(fh,g) = H(fhg, 1) = H({, hg) = 0.
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Thus fh € J. This proves that J is an ideal in R. Furthermore, J has finite
codimension because H has finite rank. (In fact, dim (R/J) equals the rank
of H).

To fix the ideas, let us first study the case » = 1. The structure of the ideals
in R = C[z] is well-known and, since J# 0, we conclude that here exist
Z;,..-,2y€C and integers kj such that

J={feR:Df(z)=0,0<v<k;,j=1,...,N}. (14.3)
Since J thus is described by finitely many linear functionals, and the linear

functional f— H(f, 1), f€ R, vanishes on J, there exist contants ¢;, such that

N kj
H(f )= 3 3¢,Df@), feR. (14.4)
Jj=1rv=
The formula (14.2) follows by (14.1), but it remains to show that z;€ 2. We
may assume that Cip # 0 for j=1,...,N. Define, for i <N,
J

N
g@ =TI @-z)v*' %
i=1
Then, by (14.1) and (14.4),

N Kk
H(f’ g,’) = H(fg," 1) = jZI vZO cij”(fgi)(zj) = Cikiki!f(zi)’ JSER.
Consequently the mapping f— f(z;) is continuous, and z; €  follows by W4.
This completes the proof when n = 1.
When n > 1, we will require the following result which is an exercise in com-
mutative algebra, see Power (1982b). For completeness we will supply the
details of the proof. Our reference will be van der Waerden (1959).

Remark 14.1 When one of the authors was a young student he bought a copy
of that venerable treatise. Now after many years he has finally got use for it.

Lemma 14.1. If J is an ideal of finite codimension in R = C[{,...,{,],
then there exist finitely many points z,, ...,z €C" and integers k., . . . , ky,
such that

JO{feR:Dfz) =0,[v|<k;,j=1,...,N}. (14.5)
Proor. Let V= {zeC": f(z) =0 for all feJ} be the algebraic variety cor-

responding to J. If V is an infinite set, let {zj}"fbe distinct points in ¥ and
pick f},f,, ... in R such that

fi(z1)= "':.fi(z,'_])zoa f,'(z,')= 1.
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Thenf,,f,, ... arelinearly independent mod J, which contradicts the assump-
tion that J has finite codimension. Hence V is finite, V' = {z,,...,2,].
Let us now invoke the primary decomposition: since R is Noetherian, J is a
finite intersection of primary ideals (van der Waerden (1959), p. 73). Thereby it
suffices to prove the lemma for primary ideals (of finite codimension).

Claim. 1If Jis primary, then V is a point.

ProoF. Suppose that N> 1. Choose f in R such that f(z,) =1, f(z,)
= f(z;) = -+ - = f(z5) = 0. Then f(1 — f) vanishes on V. Thus, by Hilbert’s
Nullstellensatz (van der Waerden (1959), p. 102), f™(1 — f)" e J for some
m > 1. Since (1 — f)™ ¢J and J is primary, f™ e J for some k > 1; a con-
tradiction. The claim is proved.

Let now J be primary and V= {z}. Let M be the maximal ideal
{feR:f(z) = 0}. If fe M, then, by the Nullstellensatz again, some power of
f lies in J. It follows that, for some &k,

JOM*={feR:Df(z) =0, |v| <k}

(van der Waerden (1959), p. 70). The lemma is proved for primary ideals, and
thus in general. [J

We may now complete the proof of Theorem 14.1 as in the case n = 1. It
follows by (14.5) that H(f, 1) = X 2. ¢, D’f(z). Hence, using (14.1), (14.2)
holds for some {zj]llvc C". Fix j. We may assume that ¢;, # 0 for some » with
|| = k;.Letg = (z — z)’h"™ where h(z;) = 1, h(z) = O for i # j, and m > max k;.
Then, by (14.2), H(f, g) = cjyv!f(zj), and W4 implies that z;€Q. O

Let us now specialize to the case when X is a Hilbert space. Define the symbol
of the Hankel form H as the function b € X which satisfies H(f, 1) = {f, b),
fe X. Equivalently, by (14.1) H(f, g) = { fg, b), f,g€R.

Let K, be the reproducing kernel defined in Section 1. Then K is the symbol
of the Hankel form (f, g) — f(2)g(z). Recalling that K is an antianalytic X-
valued function in Q, we obtain the following.

Corollary 14.1. Assume that X is a Hilbert space which satisfies W1-W4. Then
a continuous Hankel form with finite rank on X has a symbol of the form

N
bwy= >, 2] ¢;,(3/92)’K (W), (14.6)
ji=1 = kj
withz,, ...,z €%Q, and every such symbol defines a continuous Hankel form

with finite rank. O



126 SVANTE JANSON, JAAK PEETRE AND RICHARD ROCHBERG

Theré is no problem to extend the results above to multilinear Hankel forms
of finite rank. We leave the details to the reader.

Remark 14.2. Theorem 14.1 implies that any finite rank continuous Hankel
form H is a limit (pointwise, and uniformly on bounded subsets of X X Y)
of Hankel forms

Nm
H,(f,8)= Zl Cpnj S8 (2>
=

z,,€Q, with {N,,} bounded (e.g. N,, < % Y(k; + 1)"). The converse is obvious.
We conjecture that it is possible to take /V,, as the rank of H, i.e. that the set
of continuous Hankel forms of rank <r coincides with the closure (in any
reasonable topology) of the set {(f, g~ ;cjfg(zj): ¢,---,6€C,z,...,
z,€Q } (For n = 1, this follows easily from (14.3), but we have been unable
to find a proof in higher dimension). For the Fock space, this would imply,
in the notation of Section 8, that H, has rank <rif and only if b € 17, (e.g.in

F).

Remark 14.3. What can be said about the kernel { f: H(f, g) = 0 for all g}
of a general Hankel form (not of finite rank)? Again restricting attention to
R, we see that the kernel is an ideal J. Let V be the corresponding subvariety
of Q. Then the Hankel form is «concentrated» on V. Examples of such forms,
given V, are those of the type jVBfg do, where o is (e.g) the are measure. What
can be said about the boundedness or smoothness of such forms?

We end with another open question: How can the results of this section be
extended to the case of a general complex manifold! Is there an analogue of
the polynomial ring R?
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APPENDICES by Jaak Peetre

Appendix I. Hankel Forms in Weaker Assumptions

In the main body of the paper, referred to below as [JPR], a general theory
of Hankel forms is developed but in rather severe restrictions (essentially a
homogeneous situation). As the title indicates, the aim of this note is to
establish all the essential general results of that paper in much weaker assump-
tions. We assume that the reader is somewhat familiar with the contents of
[JPR] so we repeat only the most rudimentary notions.

Let Q be a domain in C? and p a positive measure on Q. Denote by 4%(Q, )
the space of analytic functions over Q which are square integrable with respect
to u and let K(z, W) be the reproducing function in A%(Q, x), L(z, W) the one
in A%(Q, »), where » is the «measure» associated to »

dv(z) = w(z)du(z) where w(z) =1/K(z,3?).

We make the following hypothesis:

§s°S

vweQ wecan write L =X uv
(weak-V) . "
with Z:s ” us "AZ(Q,,;,) ” Us ”AZ(Q’”,) S C/O.)(W),

(that is, L, is in the image of A%, ) ® A*(Q, p) with norm <C/w(w)).
Then we have in particular

) [, 1L, W) du@) < C- K(w, W)

(ProOF. Just use Schwarz’s inequality).
We consider Hankel forms I, with (usually) analytic symbol b with respect
to »:

T,(/,8) = | 5@ /(@) dv(2).
We require the following spaces of symbols

£P(Q, v) = {b: b locally integrable, wb € LP(Q, 0)},
GP(Q, ») = £P(Q, v) N {b: b analytic}.

Here o is the «invariant» measure corresponding to u, »:

do(z) = du(2)/w(z) = dv(z)/w(z)’.
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It is clear that

£2(Q, v) = LA(Q, »),
L@, ) =L'Q,p

and, generally,
£, ) = LP@, 0" " %0) = LP@, 0" 'p).
Similarly with @ and A instead of £ and L.

Proposition. The projections Q: £1(Q, ») = @X(Q, ») and Q: £2(Q, ) = @°(Q, »)
are continuous.

Proor. As the kernel of Q is L(z, w),
0/@) = [ L(z, w)S(w) dv(w),
this follows from the estimate (1); the latter can also be rewritten as
[ 1L W) / (@) (@) < Clow). O

By interpolation (real or complex) we obtain

Corollary. The projections Q: £°(Q, v) > G°(Q, v), ]l < p < =, are continuouﬁ

Corollary. (G@%°, @"),, = [@"°, @"'], = @® if 1/p=Q0-0)/p,+ 6/p,
O0<o<1). O

We can now prove
Proposition. T, is bounded (on A%Q, p) X AXQ, p)) if and only if b e @™(Q, ).
ProoF. <« If be @(Q, ») then |b(z)| < Cw(z)~'. Therefore
0, (/8] < [, 16@)] /)] @) dv@)
< [, 7@ @] dut2)

S ClS | azca, 18l a2, 10

where we in the last step used Schwarz’s inequality.
= Assume that I' is bounded. We may write

[bw)| < [T ; | us”AZ(Q,“) I Us“AZ(Q,M) < C|T, | /w(w),

completing the proof. [
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Without «any» assumptions we can prove
Proposition. b e @'(Q, v) implies T, €S, .

Proor. For each we Q introduce the Hankel form
I',(f,8) =f(Wegw) = (£, K,) (g K,).
It is clear that
ITW 1 < 1K, [Gac, 1y = K9, ) = 1/w(w).
Now formally we may write
T, = [ BT, dv(w).
Therefore, if is legitimate to use Minkowski’s inequality in this situation, we get
IT, 1, < [ 160)] [T, ], dv(w)
< [, 16D - (1/w(w)) - w(w) du(w)
= [ 1bow)| du(w)
= [blara,n- U

Remark. Notice that the constant in this imbedding is 1.
By interpolation we obtain at once

Corollary. b e ®”(Q, ») implies ', € S,(1<p<e). O

Remark. In particular thus b € G*(Q, ») = I', €S, (= Hilbert-Schmidt (H. S.)
forms). Is it possible to prove this directly (without using interpolation)?
So far we have only proved «direct» results (except for p = ). We now
come to the «converse».
We have the following formula

() Ty Ty s = | B@ER dua),
where ¢ is determined from c via the formula
&@) = | K, £c(§) du(s).
PROOF OF (). The Hilbert space A%(Q, p) admits the «continuous» basis

{Kw/ ||Kw ”Az(Q,;L) }WEQ )
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Therefore, for any bilinear forms B, C on A*(Q, u) X A*(Q, ) one has

(B,CYyy = | BK,,K,)CK,K,)du(w) du(w).

For a Hankel form B =T, the «matrix elements» in this basis are given by
I,K,.K,) = [ B@KGE WK, ) dv().
Similarly for C =T',. This gives
Ty Toys = [ B@e®) [ K@ WKE, W) du(w) -
- [ Kl WK (G, W) du(w') - dv(@) dv(§)
=[], o PR, §) dv(z) dv(s),

which is the «bilinear» form of formula (¥). [
By a standard duality reasoning we now obtain

Proposition. T' €S, implies ¢ e GQ°(Q, »).

Proor. IfT' € Sp then by a previous proposition <I",, T, ), ; makes sense
for any be @”'(v) (where 1/p + 1/p’ = 1). In other words we have a con-
tinuous linear functional b+~ (I',, T}, ¢ on @”" (Q, v). By one of the cor-
ollaries then ¢e @P(Q, »). O

Let us introduce an operator J by the relation Jc = ¢ and let us make the
new assumption, supplementing the previous assumption (weak-V),

I g is invertible in each of the spaces Q@7P(, ») (1< p<oo).

Then we can summarize our findings in an elegant

Theorem. T, eSp(l < p £ ) if and only if be @”(Q, v) (or if and only if
be GP(Q,»)). O

Remark. In [JPR], apparently, the case & = » ~'b was considered, that is
g = »~'. (Identity operator) so hypothesis (I) is trivially fulfilled. (Also in this
case the strong(er) hypothesis (V), implying our present (weak-V), is fulfilled).
We know as yet no other cases when (I) is fulfilled.

Reference

[JPR] Janson, S., Peetre, J., Rochberg, R. Hankel forms and the Fock space. This
issue.
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Appendix II. Recent Progress in Hankel Forms

On these pages I would like to report very briefly on work done by me —in
one instance, jointly with Svante Janson— since last summer (’86). One of my
main objectives has been to push beyond the limitations on the entire theory
put in [JPR]. (It is assumed that the reader us somewhat familiar with the
main ideas of that paper).

Here is an appropriate quotation: «Then, English, French, and mere
Spanish will disappear from this planet. The world will be Tlén.» ([B], p. 35).

1. Weak factorization and boundedness. Let Q be a domain in C%. If y is
a positive measure on Q we denote by A”(Q, u) the subspace of L?(Q, u) con-
sisting of analytic functions. Let K = K(z, w) denote the reproducing kernel
in A%Q,p) and L = L(z, w) the one in A*Q,p) where » is the measure
«associated» with u (definition:

dv(z) = () du(z) where w(z) = 1/K(z,7))

or, possibly, an equivalent measure. The basic hypothesis in [JPR] is («fac-
torization» of the reproducing kernel):

V) L =xK*  (x a constant > 1).

But already there the following weaker hypotehsis is mentioned («weak fac-
torization»)

veQ onecan write L = ; U,

(weak-V)
where 25 (4| yoq. 0 | Vsl azga, oy < €/0(W).

(Then sum may be finite or infinite). It is shown in Appendix 1 that, under
the hypothesis of (weak-V), holds:

I', is bounded on A*Q,p) X A*Q,p) if and only if be@%(Q,).
Here I', is the Hankel form with (usually) analytic symbol b with respect to »,
T,(/,8) = | 5@ /(@) dv(),
and, generally speaking, the symbol class @?(2, »), 0 < p < o, is defined as
{b: b analytic, wb e L?(Q,0)},

where again ¢ is the «invariant» measure (definition:

do(z) = du(z)/w(2) = dv(z)/w(2)?).
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The condition (weak-V) has been verified in several concrete cases.

In [P1] the case d = 1, @ = an annulus {z:1 < |z] < R} is treated. In this
case there is a natural family of measures u = p, (o > —1) to be considered:
dp(z) = M2)* dE(z) where ds = |dz|/\Mz) is the Poincaré metric on Q@ and E
is the Euclidean area measure dE(z) = dxdy = i/2 - dz dZ). (This construction
applies to any plane domain @ bounded by finitely many smooth arcs (a
«regular» domain); if Q is the unit disk then \(@) = 1 — |z|* so one gets back
the usual weighted Bergman (or Dzhrbashyan) spaces). For « integer (a = 0,
1,2,...) the weak factorization can be verified on the basis of the fact that
the kernel L ( and K') can be expressed in terms of elliptic functions. Here it
is natural to take » = pgs B =20+ 2, so it is not exactly the associated
measure, only equivalent to it.

In [P2] I plan to extend the analysis in [P1] to the case of arbitrary regular
planar domains. My idea is to invoke the Shottky double § of Q (= set
theoretically the union Q U QU 3Q, where @ is Q with the «opposite» complex
structure) and thus the theory of «symmetric» compact Riemann surfaces
(= real algebraic curves). However, if the genus is >1, this cannot be done
as explitly as in the above case of genus 1, because no such nice tool as the
theory of elliptic functions is available.

Let me also remark that the case o not an integer is entirely open, also in
genus 1.

In [JP] the case of «periodic» Fock space is considered, that is, entire
periodic functions (with period, say, 2«) which are square integrable with
respect to the measure e > dxdy (if «Planck’s constant» is taken to be 1/2).
The basic fact about this case is now that the reproducing kernel can be written
in terms of theta functions so the desired weak factorization can be obtained
by just looking up in the literature the appropriate formulae for theta functions.

Again [P3] is addressed to the case of subspaces of Fock space singled out
by symmetries. Example: f(—z) = f(z) (even functions), f(—z) = —f(z) (odd
functions). In this case the reproducing kernel is expressed in terms of Ayper-
bolic functions (cosh, sinh) and the weak factorization follows from the
duplication formulae for the latter (viz. cosh 2x = cosh?x + sinh?x, sinh 2x
= 2sinh x cosh x). In a more general situation one similarly requires generalized
hyperbolic functions.

I have assigned to a student the task of extending the analysis in [P3] to the
case of weighted Bergman spaces. This seems to involve a sort of generaliza-
tion of the generalized hyperbolic functions.

In [P4] I determine explicitly the reproducing kernels for certain Hilbert
spaces of holomorphic tensor fields over the unit ball in C? (the «Rudin ball»).
Of course, these are then tensorial too. In this case «strong factorization»
holds true (an appropriate tensor version of the previous condition (V)), so
a corresponding boundedness result for Hankel like forms can be established.
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Again the case of the ball is just the simplest case of a symmetric domain
(essentially the rank one case). It is conceivable that one has similar results for
other symmetric domains in E. Cartan’s list.

Finally, in [P5] I have reformulated the relevant portions of [JPR], that is,
as far as the issue of boundedness goes, in the language of holomorphic line
bundles and, more generally, holomorphic vector bundles.

2. Sp Theory. In [P6] I address myself to the question of generalizing the
Sp-theory in [JPR]-carried out in the hypothesis of condition (V)-to a more
general setting. It turns out that besides condition (weak-V), which seems to
be virtually indispensable, one requires basically only one more assumption.
To formulate it let us introduce the «square operator» g on @*(Q, ») (@ and
u are general now, as in the beginning of Sec. 1), defined by

9/ @ = [ K@, Wf W) du(w).
The relevant hypothesis is then
() g is invertible in  @P(Q, »).
In this hypotheses ((I) + (weak-V)) it is easy to establish that
I'yeS, ifand only if be@®@?(Q,7), 1<p<oo.

It is trivial that (V) = (I). Indeed, if (V) is fulfilled then clearly § = » ~* (iden-
tity) where x is a constant >1. So far I have no non-trivial case when (I) is
fulfilled but it should not be difficult to establish it in some of the simpler
cases mentioned in Sec. 1. Work is in progress! (Note (added Jan. 88). See
[JPI].)

3. Some related investigations. In [P7] I study the action of the metaplectic
group on the spaces F# (C), which are the natural L” symbol classes correspon-
ding to the scale of Fock spaces F%(C); see [JPR] for details. (Similar results
as those now described are expected in C?, d > 1). In particular I verify that
this action is bounded continuous but not isometric, which is a result at least
implicit in the work of Feichtinger (see e.g. [F1], [F2], [FG]). To get an
isometric action one has to consider a new «caloric» representation of the
Heisenberg group (and the metaplectic group as well), a «caloric Fock space».
This leads also to the idea of a «caloric Bloch space» and a «caloric minimal
space», which ought to be studied more. In this context, «caloric» means that
the elements of the spaces are (analytic) solutions of the heat equation.

Turning to the situation of regular planar domains treated in [P1], [P2] (see
Sec. 1), there is for any fixed halfinteger /€ 1/2N a natural duality between
the following type of objects
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holomorphic (1 — /)-forms F(z)(dz)' ~' — «integrals»
and
holomorphic /-forms g(z)(dz)" — «differentials»,

embodied in the presence of the pairing

[F./1= [, FR@)' ™ g@)da).

In particular, it gives a possibility to lift invariant Hilbert metrics for differen-
tials (for instance, the Dzrbashyan metric mentioned in Sec. 1) to a metric for
integrals. One can then define corresponding «minimal» and «maximal»
spaces, thus obtaining a new opportunity to extend Arazy’s great program for
Moébius invariant spaces (cf. [P8]). This connects also with lots of interesting
notions such as (real) projective structures of Riemann surfaces, uniformiza-
tion, Eichler cohomology, Schottky double, real algebraic curves etc. I have
started a cooperation on these matters with Bjérn Gustafsson (Stockholm),
who is a specialist on quadrature domains (see e.g. [G]). In particular, we have
begun to study invariant differential operators on compact Riemann surfaces
equipped with a projective structure (generalizing the classical Schwartz
derivative).

It is not clear how much, if anything, of the above can be extended to
several variables but on the whole I am about to believe that there must exist
interesting illustrations to the theory of Hankel forms with higher dimensional
algebraic varieties, especially algebraic surfaces (complex dimension 2).

4. A small selection of open problems.

4.1. To extend the AAK theorem beyond its classical H*(T)-setting (see e.g.
[N], App. 4).

4.2. The Sp—theory in [JPR] and its extension indicated in Sec. 3 below is
confined to the case 1 < p < . It would be interesting to have any general
results for 0 < p < 1 too. In the case of Fock space rather complete results
have been obtained by Svante Janson’s student Robert Wallstén [W].

4.3. To extend the theory of higher weight Hankel forms in [JP2] to more
general cases, for instance the unit ball in C?. This is basically a question of
Invariant Theory.

4.4. Is there an analogue of the metaplectic group in the case of Bergman
space (cf. [P6])?
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A Harnack Inequality
Approach to the
Regularity of Free
Boundaries.

Part I: Lipschitz Free
Boundaries are C!'*

Luis A. Caffarelli

Introduction

1. This is the first in a series of papers where we intend to show, in several
steps, the existence of «classical» (or as classical as possible) solutions to a
general two-phase free-boundary problem.

2. We plan to do so by

(a) constructing rather weak generalized solutions of the free-boundary
problems,

(b) showing that the free boundary of such solutions have nice measure
theoretical properties (i.e., finite (#n — 1)-dimensional Hausdorff
measure and the associated differentiability properties),

(c) showing that near a «flat» point free boundaries are Lipschitz graphs
and

(d) showing that Lipschitz free boundaries are really C*>“.

From then on, the theory of regularity developed by Kinderlehrer-Nirenberg
and Spruck applies.
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We start here with the last part of the project, that is, to show that Lipschitz
free boundaries are C**®, mainly for two reasons: the first because many of
the ideas in this part reappear in a much more entangled way than in the
others, and the second, because this part is of immediate interest, since the
existence of solutions to which these theorems will apply has been obtained
already in many cases by different means.

An heuristic discussion of this paper can be found in [C]. The ideas
presented here originated in a joint work with J. Athanasopoulus (see [At-C]).

Notion of Weak Solution

We denote a point in R"*! as X or (x, ), with x = (x,, . . ., x,,). To state the
simplest version of our results, let us define what we mean by a weak solution
of a free-boundary problem.

Definition 1. In the unit cylinder C; = B, X [—1, 1] of R"*, we are given
a continuous function u satisfying
@ Au=0o0nQ* = {u>0},
(i) Au=0o0n Q" = {u<0}°,
(iii) (The weak free-boundary condition). Along F = d{u > 0} u satisfies
the free-boundary condition

uV+ = G(uv—)

in the following sense.

If X, € F and F has a one-sided tangent ball at X, (i.e. 3B,(Y) such that
X, €3B,(Y) and B,(Y) is contained either in Q* or Q) then

u(X) = a(X — Xo,v)* — B(X — Xo, v) ™ + 0(|X — X))

and a = G(B).
The basic requirements on G will be strict monotonicity and continuity in u, .

Theorem 1. Let u be a continuous function in the unit ball. Assume that u
satisfies

() Au=0in Q% = {(u>0) and @~ = {u<0}°.

@) 27 = {(x,»):y > f(x)}, with f(x) a Lipschitz continuous function.

(iii) 0 F = 0Q" and along F, the free-boundary condition u;= G, ) is

satisfied in the sense described above.

Assume further that G(s) is strictly increasing and for some C large, s~ ©G(s)
is decreasing. Then, on B, ,,, f is a C* function.
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1. Some Properties of Harmonic Functions in a Lipschitz
Domain

In this section we recall some properties of nonnegative harmonic functions
in a Lipschitz domain.

Lemma 1. (Dahlberg, see [D], see also [C-F-M-S]). Let u,,u, be two
nonnegative harmonic functions in a (Lipschitz) domain D of R"*! of the
form

D=(|x|<1,|y|<M,y>f(x)}

with f a Lipschitz function with constant less than M and f(0) = 0. Assume
Sfurther that u, and u, take continuously the value u; = u, = 0 along the graph
of f. Then, on the domain

M’y<f(X)}’

1
D = <-—> <
172 {|x| ) |7l D)

we have

3 <O >

v<c <&y T\ 2
' ux,) < M>
U 0’7

with C,, C, depending only on M. In particular, if

<G

U, (0, M/2)
u; (0, M/2)

we get

ul(x’y) <C
2-

0<C, < <
'S U, (x, )

Lemma 2 (Jerison and Kenig [J-K], see also [At-C]). Let D, u, and u, be as
in Lemma 1. Assume further that

(0, M/2)
u,(0,M/2)
Then, u,(x,y)/u,(x, y) is Holder continuous in D, ,, (i.e. up to the graph of

f(x)) for some coefficient , both o and the C* norm of u,/u, depending only
on M.
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Lemma 3 (Dahlberg [D], see also [C-F-M-S]). Let u be as u, (or u,) above.
Then, there exists a constant 6 = (M) such that for

D; = {|x| <6, |y| <M,y > f(x)}
we have

1 M
u|D6 < E u<0’ 7) *

Lemmad. Letu beasin Lemma 3. Assume further that D,u > 0 on D. Then,

(&)

0<C < <GC,.

As usual C; = C;(M).

Proor. From Lemma 3,

1 M M72 M
e — | < < —_— -
2 u<0, > > <, D,u(0,t)dt < u<0, 2 >

But D, is positive and harmonic in . Therefore, by Harnack’s inequality, all
the values along the segment of integration are comparable, and the formula
with d = M/2 follows. For 0 < d < M/2 we may use rescaling. [

Lemma 5. Let u be as in Lemma 3. Then, in D;, for some 6(M), D,u > 0.

Proor. Let u; = u and u, be the (bounded) auxiliary function

u,=C>0, on dD\graph f
u, =0, on graph f
Au, =0, on D.

If we compare u, with vertical translations in their common domain of defini-
tion, we obtain

D,u,>0 on D.

Let us adjust C so that
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Then, from Lemma 2, on D,

ul(x’y) <C

0<C < <
Sy P

and further, from Lemma 3

ul(x’y) _ ul()_csj)
uZ(x’y) uZ(X’y)

SC(x—x| + [y -yD*

In particular, if we freeze (%, y), at distance d from graph of f, and let (x, »)
vary in a d/2-neighborhood of (X, ), we get

ul()?’y)

uy(x,y) — “2(x,)’)[m] ! < Cup(x, y)(|x — x| + |y = F]*

< Cuy(x, y)d*
< CD,u, (%, y)d**!

(we may substitute u,(x, y) by u,(¥, ¥) by Harnack’s inequality, and u, (X, ¥)
by d(D,u, (%, y)), because of Lemma 4). Therefore, taking D, derivative on the
unfrozen variable y, and evaluating at y, we get, from standard interior a
priori estimates for w = u; — u,k, k = u, (%, y)/u,(%, y)

D,u,(%,7) — [Z:—g:%]pyuz(x, y)‘ < CD,u(%, 7) - d*
that is
Dyuy(%,5) > {[%} - Cd“} . Dyuy(%, 3).

And this last term is positive if d* is small enough. [

2. Subsolutions to Our Free-Boundary Problems and
Comparison Principles

In this section we define weak subsolutions to our free-boundary problem,
and discuss a comparison principle.
We start by defining the notion of a weak subsolution.

Definition 2. The continuous function v(X) is a subsolution to our free-
boundary problem in Q if

() Av>=0bothin Q" = (v>0} and @~ = {v<0})°

(i) let Xoe F=027)NQ,
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assume that at X,, F has a tangent ball B, from the Q* side (i.e. B.C Q™,
X,€0B.NF). Then, for some o. = 0, B = G(c), v the unit inner radial direction
of 0B, at X,,

(X)) 2 B(X — Xy, v) T — ol X — X, v) ™ + 0o(| X — Xy|).
Definition 3. Given a subsolution v to our F.B. Problem, a point X, € F, at

which F has a tangent ball from Q" (as in Definition 2(ii)) will be called a
regular point.

We now state a strong comparison principle.

Lemma 6. Let v < u be two continuous functions in Q, v<uin Q* (), va
subsolution and u a solution. Let X, € F(v)NF(u) (the free boundaries of v
and u). Then X, cannot be a regular point for F(v).

Proor. Since Q% (v) C 27 (u), X, automatically will be a point for which u
has the desired asymptotic development (Definition 1)

uX) = (X - Xo, )" — alX — X, 7)™ + 0(| X — X,|)
with 8 = G(x)

V(X) = B(X — Xy, v) " — (X — Xp, v) ™ + 0(|1X — X))

with 8 = G(&). This implies that 8 > 8 and « < &.
Since G is assumed to be monotone « = & and 8 = 8. But u — v is a positive
superharmonic function in 2" (v). By Hopf principle, since X, is regular

W — 0)(X) = €| X — X,|

radially into 2" (v), along v from X,. O
We refine the previous lemma to a continuous family of subsolutions.

Lemma 7. Letv,, for 0 <t < 1, be a continuous family of subsolutions in Q
(continuous in @ x [0, 1]). Let u be a solution in Q, continuous in Q. Assume that

(i) vo<uinQ.
(i) v,<uondQand v,<uin[Q ()N for 0Kt < 1.
(iii) every point X, € F(v,) is regular and
(iv) the family Q* (v,) is continuous, that is Q*(v,l) C Ne(9+(vt2)) whe-
never |t, — t,| < 6(e) (N, denotes the e-neighborhood of the set).

Then v, < u in Q for any t.
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Proor. The set of #’s for which v, < u is obviously closed. Let us show that
it is open: first, if v, S U, it follows from (ii) and the strong maximum principle,
that U, < U inQ* (v,o). And since every point of F(v,o) is regular (assumption
(ii)), it follows that [Q* (v,,)] is compactly contained in @ * () (up to 99, from
assumption (ii)). From assumption (iv), the openness follows. [

Remark. Since u may be the solution of a one-phase problem, that is
uln_(u) = 0, assumption (iv) is necessary (an easy counterexample where
Q" (v,) = Q for ¢ > 0, can be constructed).

3. Continuous Families of Subsolutions

In this section we construct particular families of subsolutions, starting from
a given solution. The simplest family is the following:

Lemma 8. Lef u, a continuous function in Q, be a weak solution of our F. B.
Problem. Let

v(X) = glg{)) u(Y), t>0.
t

Then v, is a subsolution of our F. B. Problem in its domain of definition. Fur-
thermore, any point of F(v,) is regular.

PROOE. v, is the supremum of a family of translations of #, and as such, v
is subharmonic both in @* (v) and 2~ (v,). Let now X, € F(v,). That means
that B,(X,) is tangent from @~ (#) to F(u) at a point Y,. Therefore

(@) X, is regular since B,(Y,) C @* (v) and is tangent to F(v) at X,.
(b) At Y,, u has the asymptotic behavior

U=p(X—-Ypr)" —adX =Yy, v) +0(X - Yy,
with 8 = G(a), and » the outer normal to dB,(X,) at Y,, and hence
V2RX — X )" — X — X, v)~ +0(|X — X,|). O

The family v, on the previous lemma is an admissible family for the com-
parison lemma (Lemma 7) and as such it can be used for a comparison princi-
ple that says: «If u; and u, are two weak solutions, with u#; < u, and near 92,
SUPg (x, 41 < ©,(X), then also in the interior of Q sup B0 %1 < U, (X)», keeping,
in particular F(u,), e-away from F(u,).

This family has the problem of being too rigid. If u, is, for instance, much
larger than u; in some section of 2, one cannot exploit that fact. Therefore,
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we will now introduce a more delicate family of perturbations, where we make
the radius of the ball B,(X,) dependent on Xj itself (¢t = #(X,)).
The key lemma is the following.

Lemma 9. Let o(x) be a C*-positive function satisfying

C|ve|?

Ap 2
el

(for C large enough) in B,(0) (the unit ball of R"). Let u be continuous, defined
in a domain Q large enough so that the following function be defined in B;(0)

w(X) = sup u(X + o(x)»).

v|=1

Then, if u is harmonic in {u > 0}, w is subharmonic in w > 0.

Proor. Assume w(0) to be positive. We will show that

lim L HBI@ W(X) — w(0)) dx] > 0.

=0 r

For that purpose, we will estimate w(x) by below near 0, choosing an appropriate
value for » = »(X): Choose the system of coordinates so

(1) w(0) = u(¢(0)e,)
) Ve(0) = ae, + Be,.

We evaluate w by below by choosing »(X) = »*/|»*| with

% _ (Bx, ) Y " .
(3) v*(X)=e, + 20 e; + SD(O)<‘2,2Jx,-e,~>

Here 7 is chosen so that
@ d+7?=01+p8)>+a>

Let us examine the point Y obtained by such a choice.

Y=X+ iw(O) + Vo(0)X + %(D,-jso)x,-x,- + o(|X Iz)}

(Bx; — ax,) y "3 J
He” o0 O 3N

_@ﬁ—_cfﬁf,_(l)“'l 2 4B
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The above expression has a constant (translation) term ¢(0)e,, . A first-order term
Y* — o(0)e, = X + (ax; + Bxp)e, + (Bx; — axy)e; + ¥ 2, X

than can be thought as a rotation followed by and expansion by 1 + v since

1+ ... —a
1+ 1+
[Y* — o(0)e,] = . I - | x=Mx.
1 . . .
+ «a 1+8
1+y 77 147%

where M is a rotation in the e;, e, plane (by the definition of v) and a
quadratic term

1 Bx; —ax)?  y* "2l 2] <|ng;|2 2)
Y- Y*=| = (Dyo)xx; — + (e, + O 21 1 x
|: 2 ( U‘P)xtxj (p(O) gD(O) ; Xi|€n © l I 2

with p L e, and |p| = 1. Hence
f w(X) — w(0) > qu(Y(X )) — u(Y(0))
= qu(Y(X)) — u(Y*(X)) + Iu(Y*(X)) — u(Y(0))
= ](u(Y(X)) — u(Y*(X)).

(Since the last term is zero, due to the fact that  is harmonic and Y* is a rigid
rotation plus a dilation of X). We now point out that, by the definition of
w, Vu must point in the direction of e, at Y(0). Hence

u(Y) —u(Y*)=Vuo (Y —Y*) + O(Y — Y*|)?

Bx —ax) | 7
0@ 00

1
= |Vu| [ED,-J«px,-xj - lez:i + O(|X|4)

and hence

1 .
— [u¥) —u(r) + 01X ) =

1 1
= |Vu(Y(0))| {7 <A¢ = 8%+ o + (n - 27] TO)» >0

A 2
A¢> C_L_ﬂ
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Remark.

1

if o' 7€ is superharmonic.

We now study a more flexible family of perturbations, namely, given a
solution u of our F. B. Problem and a function ¢ satisfying the properties of
Lemma 9, we want to consider v = v,, defined by

v(x) = sup u(y).
B, x)®)

We start with the asymptotic behavior of v at the free boundary.

Lemma 10. Let u be a continuous function and

v(X)= sup u(Y).
B,oxyX)

with ¢ a positive C* function, and |Vo| < 1. Assume that
X, €007 (v), Y,€90Q" (u)
and that they are related by the fact that
Y, €0B,x,)(Xo)-

Then

(@) X, is a regular point for F(v).
(b) If near Y,, u™ (resp. u™) has the asymptotic behavior

ut(respu ) =al{¥Y - Yo, )" +0o(|Y — Yy|)
then
vt >l X = Xo, v+ Vo) ¥ + o(|X — X))

(resp. v~ < a{X — Xy, v + Vo) + o(| X — X,)))-

(¢) If F(u) is a Lipschitz graph, and |Ve| is small enough (depending on
the Lipschitz norm, N\, of F(u)), then F(v) is a Lipschitz graph with
Lipschitz norm

N <N+ Csup |Ve|.
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Proor. To prove (@), we notice that Q* (v) contains the set
0 = {|X - Y,|* < *(X)).
The boundary of this set is a smooth (C?) surface, since
V(X = Yol? - 0%(X)) = 2(X — Y — o(X)Vo(X)) # 0

along the surface. Since this surface goes through X,, (@) is proven.
To prove (b) we use the fact that near X,

P(X) = o(Xo) + (X — X - Vo(Xo)) + o(|X — Xo|?).

Hence

V(X)) 2 ol X — X, v + Vo(Xo)) ¥ + o(|X — X))
and

0™ (X) € adX — Xo, v + V(X)) ™ + 0o(| X — Xo))
respectively.

To prove (¢) it is enough to assume that Q* (x) is above the graph of a
smooth convex cone f(x), since the general case is a union of such sets. Then
if X, and Y, are as before, Y, — X, is by definition parallel to the inner unit
normal » to a supporting plane to F(u) at Y,,. About » we can say that it must
lie in a cone of apperture arctan \ around e, ; . On the other hand at X, F(v)
has the upper and lower envelopes the implicit surfaces

S = {|X - Yo> - ¢*(X) =0}
and
S, = {d(X, 1)° — *(X) =0}

where 7 is the support plane to F(u) at Y. Both surfaces are smooth with unit
normal vector, 7, parallel to

Yy — Xo + ¢(Xo)Ve(Xo)
or to
v + Vo(Xy).
Therefore, the angle between 7 and e, ; is less than

arctan A + |Vo|.
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If |Vo| is small enough depending on \, more precisely |Vep|, a small multiple
of 1/(1 + \), the angle between 7 and e, . , is less than

arctan (\(1 + (¢ + N)|Ve))
i.e., F(v) is Lipschitz, with Lipschitz constant
N =N1 + (c + N)|Ve)).

An important corollary is our next lemma.

Lemma 11. Let u be a solution of our F. B. Problem and both ¢ and v = v,
be the functions of Lemmas 9 and 10 (i.e. ¢ satisfies the hypothesis of both
lemmas). Then

(@) v is subharmonic in Q* (v) and Q~ (v).
(b) Every point of F(v) is regular.
(c) At every point of F(v), v satisfies the asymptotic inequality

VX)) 28X — Xy, v) T —adX — Xy, v) ™ + 0(| X — Xp|)

with

=G .
1- Ve 1+ |Vel

4. Main Harnack

In this section we develop the basis of our iteration technique. First, two
preliminary lemmas:

Lemma 12. Let 0 < u; < u, be harmonic functions in B, (0). Let ¢ < \/8 and
assume that on B, _.(0)

ve(X) = sup u;(Y) < u(X)
B0
and further
u,(0) — v.(0) = geu,(0).
Then, for some C = C(\), = p(\) > 0, we have in B4,

Uy (X) — V(1 4 yoye(X) = Coer (0).
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Proor. For any |v| <1
WX) = u(X) — u; (X + ev)

is harmonic and positive in B, _.. By Harnack’s inequality in B, /4
w(X) = Cw(0) = Coeu,(0).

Also, both

c
V0] <50 <5 160)

on B3)‘/4 . It follows that

Uy(X) — u; (X + (1 + op)er) = w(X) + u (X + ev) — u (X + (1 + ap)ev)

> 0a,0) ~ 7 i 0)

> Coeu, (0)

if p is chosen small. []

Lemma 13. Lef 0 <\ < 1/8, then there exists a 6 and a p. > 0, (p(N), 6(N\))
and a C? family of functions ¢, (0 < t < 1) defined in B,\B,,(0, 3/4), such
that

) 1<e <1+

(ii) pAp > C|Vol|?

(iii) ¢ = 1 outside of B4

(iv) ¢|Bl/2 =1+ 06t

v) [Vo| < Ctp.

Proor. It is not hard to construct a smooth function v, in B;\B,,»(0, 3/4)

such that

0<yp<1

Yo=0 outside B,,5(0)

|Vyo| < CAYy, for some C large
\llolsm >v>0.

Then ¢, = 1 + tuyy is our desired function, provided that  is small enough. [

Now, a comparison theorem:
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Lemma 14. Let u, < u, be two solutions of our free-boundary problem in
B, C R"*! with F, = F(u,) a Lipschitz free boundary through the origin.
Assume further that

V(%) = sup u; () < uU,(x)

3

UE<0r%> <1 - ae)u2<0,%>

3
B)\<0, Z) C Q% (uy).

in B, _,, that

and that

Then, for e small enough, there exists a 8, depending only on \ and the various
constants C, such that on B,,,

Va+sae®) = sup  u(») <u(x).
B(l + 6a)e(x)

ProorF. We construct a continuous family of subsolutions 7,, such that
Uy < Uy, Ty By, 2 Va+8e> and for which the comparison lemma (Lemma 7),
applies. More precisely

U,(x) = sup u;(y) + Coew, = v,(x) + Coew,
€0g ()

for a small constant C > 0, with w, a continuous function in
Q = By,10 — By2(0,3/4)
defined by
Aw,=0 in QT{(v)N2=Q,

Wila@ + wpnB,,,e) =0
Wielap, ,,0,3/4) = 42(0,3/4).

Let us check that 7, satisfies the hypothesis of Lemma 7 in @ with respect to
U=1u,:

(i) comparison in By, — 2% (vp) is clear. In Q; we compare the boundary
values of 9, and u, thanks to Lemma 12

(ii) follows from our hypothesis and Lemma 12, provided that u = p(\) is
kept small (we should really replace ¢ by any smaller €', to ensure the
validity of (ii) along dB,, but that is a minor detail)
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(iii) follows from part (@) of Lemma 10
(iv) is by constrution.

It only remains to check the fact that v, are indeed subsolutions.
The subharmonicity in Q% and @~ follows from Lemma 9. About the
asymptotic behavior, we write

U, = v, + Coew;.

From Lemma 11, v, satisfies the asymptotic inequality (c) with

B G< “ )
1 - flv¢at| ~ 1+ 5|V¢at|

Since outside B, /5, |Vo| = 0 the right inequality is satisfied by v, and hence
by ¥, since w, is positive. Inside B,,3 N2 (v,), we notice that by Dahlberg’s
theorem (Lemma 1) (w,/v,) > C, provided that ex and hence €|Ve|, is kept
small to make sure that the F(v,) are uniformly Lipschitz domains (see Lemma
10(c)). Therefore, from the asymptotic development of Lemma 11(c), we may
say that

(v, + Coew)™ = B(X — Xo, v) T + 0(| X — Xp|)

with B8 > (1 + Coe)B8. Therefore, to complete the proof of the theorem, we
must prove that, for p in the definition of ¢, small enough,

B2 G(o).

From the properties of G(s), s~ €G(s) is decreasing. Hence

-c
“ () 1 + €|Vey,| 1 + €|Ve,|

or

1+ Ce|v
G < (1 +ce|v¢,,|)a< “ >< G2

1 + 6|V‘Potl 1 - elvsoatl

1 + Ce| Ve, B )
1 —€|Voy| 1+ Ce

Since |V, < Cut, the proof is complete for p small. [

5. Intermediate Cones

In this section we state an auxiliary lemma about cones in R”.
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We denote by af(e, f) the angle between the vectors e and £, and by I'(8, e)
the cone of axis e and apperture 6, i.e.

T',e) = {r:a(r,e) < 0}.

Lemma 16. Let 0<0,< 6 < 7/2 and let

T'0,e) C r<% »> = H®).
For 1eT(6/2,e), let

T 0

E(r) = 2 <(¥(T, v) + E)

and for p small, define
. [0
o) = llsin (3 + 4B -

Finally, let
S " = U B (D) (T) .

7€I’'(6/2,€)
Then, 30, & such that
I'6,e)cT@,2)CS,
and
-0

71__/2_—0 2 Q(6y, u) > 0.

Proor. Wereduce it to a problem in the plane through stereographic projec-
tion. We first restrict ourselves to the sphere, and then project using » as the
north pole. By symmetry, the lemma reduces to the following question in the
plane (changing slightly 6, 6,, )

Let Dy(e) be a disc in R of radius 6 > 6, > 0. Assume that D, C D, , the unit
disc. For 0 < \g <X < \; < 1, for any 7€ D,y4(e), define
E(r) =1 - [|7] + (1 =MD
(note that E(7) > 0, since Dy, C D;) and p(7) = (1 = N)f + pE(7) O < p < 1).
Then
S,= U B,u(7) D D5@) D Dyle)

TE€D, 4(e)
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with

6-0
19 = Q(r, 09, Ngs A > 0.

The proof is an elementary computation. [

6. The Basic Iteration
We are now ready to prove our basic iterative lemmas.

Lemma 17. Let u be a weak solution of our F. B. Problem on B;. Assume
that, for some 0 < 0, < 0 < /2, u is monotonically increasing for any direc-
tion TeT'(0,e,). Then, 3u < 1, (w(6,)) and e a unit vector such that, for

6— /2 =p@ - /2),
the cone
I'@,e) DI, e,

and, on B, ,,, u is monotonically increasing for any direction T T'(8, e).

Proor. We first point out that B, ,,n é,o(‘%e,,) is all contained in @* by the
monotonicity of #. Let » be the direction of Vu at %e,, . Then for any 7€ I'(0, e,),
we have that on By (3€,), D,# is harmonic and nonnegative, and

3
D’“(Ze"> = (Vu, 1) = |Vu|{», 7).
From Lemma 4 and Harnack’s inequality applied to both D,u and u in

3
B1/4sin oo(Zen)’ we get

DTuIBl/4sin90(3e’l/4) > C(sup |Vu|){7,») > supD u > C<B sup u)(v, .
1/8sin g\~ 1

Let 7 be a small vector in I'(6/2, e,), and let #1(x) = u(x — 7). We now apply
the main Harnack-type Lemma 14 with

Uy (x) = u(x)
Uy (x) = u(x)
. 6
€= |7|sin—

2
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and o defined as

o= C<% —~ <a(‘r, v) + g—)) ~ Ccos <Ot(7, v) + %)

(C to be chosen). Then, the only nontrivial hypothesis is that

Ue<0’%> < - 0'6)112(0’%-)-

Let YeB.(X), uyy(Y)=u(Y - 1) =u(X - 7—- (X - Y)) = u(X — 7) with
a(7,7)<0/2

(since |7 — 7| = | X — Y| < |7 sin6/2). Also

since, 7€6/2 < w/4. It follows that

inf D;u;C[ sup u}o},?)
B, 5(3/4ey) B, 4(3/4¢,)

= C(sup u)|7| cos (v, 7)

def
= oe(sup u).

(Here we chose C in the definition of ¢). Hence
u(X - 7) <u(X) — D;u(X) > (1 — se)u(X)

and the hypotheses of the Harnack lemma (Lemma 14) are satisfied.
It follows that on B, ,,

sup u(y — 7) < ux).
B(l +8Me (]

Recalling that € = |7|sin6/2, ¢ = C(x/2 — (a7, v) + 6/2)), we get, for any 7
in I'(6/2, e,), that
.0
(1 + d0)e = |1I<sm—2—>(l + 6CE(7))

(in the notation of Lemma 16) and for 6, < 6 < w/2 we get

9
(1 + 60)e > |7 sin <% + [;LE(T)>’ p= 507"-
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The statement above then translates into saying, for any Z of the form
Z=Y -7 (for YEB sino2+eipX) =X - (Y- X)—7=X—17, with 7
in S, (of Lemma 16), we have

u(Z) < u(X).

That is, u is monotone for any direction 7 in §,, and in particular in the
intermediate cone I'(9, &).
The proof of the lemma is now complete.

ProoOF oF THEOREM 1. To prove Theorem 1, we repeat inductively Lemma
17, (notice that if u is a solution of our F. B. Problem; #(AX)/\ is also a solu-
tion in the corresponding domain). We get that if u is a weak solution as in
Theorem 1, then on B,_«, u is monotone in a cone of directions

T (0, ex)
with
I-‘(6k+ 1€k + 1) o 1—‘(eks ek)
and
T/2 = Ok sy
———=yu<l1.
7l'/2 - Gk #

It follows that 7/2 — 6, < b* and hence the fact that the free boundary is C**®
at the origin for some a(b) > 0. (Note: the first step in the inductive process,
i.e. the free boundary being Lipschitz implies # to be monotone in a cone of
directions, follows from Lemma 5). [

7. A Generalization

In this last section, we show how to treat the case in which X and » dependence
is introduced in the free-boundary relation and how the restriction on G at
infinity are unnecessary. That is, we now consider weak solutions to the free-
boundary problem

u =G, ,X,»)
in the same sense as before, i.e. whenever X, has a tangent ball from Q* or @~
Uu=p(X—-Xp, vyt —a{X - Xp,v) "
with '
B = G(a, Xg, v)
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(v given by the radial direction of the tangent ball at X,) and assume that

(a) log G is Lipschitz continuous on X and » for bounded values of u,,
(b) for u,” in a compact interval [0, M], G is strictly monotone in #, and
s~ €G(s, X, v) is decreasing in s, (C = C(M)).

Then we have

Theorem 2. Same geometric situation as in Theorem 1, u and G satisfying
now the conditions above, the same conclusion as in Theorem 1 holds.

In order to prove Theorem 2, we must do two things. First, to show that
u is Lipschitz continuous, eliminating the need to impose conditions at infinity
on G. Second, to verify that the dependence in X and » introduce controllable
perturbations in our argument. The first step is achieved by the following
monotonicity formula, due to Alt, Friedman and myself.

Lemma 18. (See [A-C-F]). Let u be a continuous function in B, u(0) = 0.
Assume that on {u>0}, Au>0 and on {u <0}, Au<0. Then, (p, o are
radial and spherical coordinates in R")

2 -2
IB (Vu+)pdpdojB’(Vu )p dp do

gr) = . 4

is an increasing function of r.

Remark. g is shown to be finite from the continuity of # by an approxima-
tion of say, u*, by a smooth function and the fact that

1
VutP < (VutY +utAut =EA(u‘“)2

and

1

de.

pdpdo =

By integrating by parts, this allows us to control g(r) for say, r < 1/2, by
(supp, u)*.

Lemma 19. (Corollary to Lemma 18). Let u be a weak solution as in Theo-
rem 2. Then u is Lipschitz continuous in (say) B, ,,.

Proor. It is enough to prove that |u(X)| < Cd(X, F).
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From Lemma 18 and from the remark following it,
g < C(sup Iul>4
Bl

for any r < 1/2 and taking as origin any point X, on FNB,,,. We consider
two cases:

(@ ulg_ =0or,
(b) u|, - is never zero.

In Case (@) let Xe ™, u(X) = g, d(X, F) = p, and X, €dB,(X)NFNB,,,.
Then by Harnack’s inequality, u|, 200 > Co and hence
p.

u|Bp(X) >h

where 4 is the auxiliary radially symmetric harmonic function on B,(X) —
Bp,z().( ) with values A| a8,00 =0 and A 98,00 = Co. Since h has linear
behaviour

h=CZ(X- X, v
)

near X, and

U= a(X = Xo, 1)+ — B(X = Xop vy~ + 0(|X — Xo))
= G(O, Xo, V)(X_ XQ, V> * + 0'(]X—‘ Xol)

we get

C—<G0,X,,»)<C,

g
o
or

d< Cp

and Case (a) is complete.
Case (b) (we only prove it for # ™). We proceed as in Case (¢) and we obtain
at X, the estimate

UX) = alX — Xo, v) " + B(X — X, v) ™ + (| X = X))
with

a
°|a
N
R

and
o= G(B’ XO’ V)'
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We now bring into play the monotonicity formula by pointing out that
g(0") = Ca?p.

(Indeed, in any non-tangential domain, |[{(X — X,, »)| > 6, Vu converges to
av (resp. Bv)). Therefore,

0?6% < Clul}es,
and
a = G(B, Xy, v).

Since G is monotone in 3, and

G(laX(), V) 2 ko > 0
BG(69 XO: V) > ILOB'
Therefore,
B<Cluliep,<C
and hence

a<C.
It follows that o/p < Ca < C and Case (b) is also proven.

To complete the proof of the theorem, we only need to prove

Lemma 20. Let o, be the one parameter family of functions constructed in
the proof of Lemma 14. There exists a 6 > 0, depending only on \ and the
various constants C such that if

|log (@, X, ») — log (o, Y, »)| < 00| X — Y|

for any o < |Vu|,. for any veS,, then v, is still a subsolution of our
generalized free boundary problem.

Proor. We estimate once more the coefficients in the asymptotic inequality
(c) of Lemma 11, satisfied by v, at X, in F(v). For that, we go back to Lemma
10, and with the notation there employed, we now have that v satisfies there
the assymptotic inequality

VX)) 2 alX — X )T — BUX — X, )~ + o(| X — Xp|)
with

[ a )
——— 2G| Y,
1 — Ce| Ve, <l + Ce| V| 0> Yo
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where
(@ Y, e an,(Xo)

Yo — Xo

———- and
| Yo = Xo

(b) Vo =

(c) v is parallel to » + eVep,,.
It follows that

|Y0 - Xol < Ce
and
v = vol < €|Ver|.

Therefore

o
1 —log 1 + Ce|V >logGl ——— Y,,
0g6 og EI qaat‘ og <l + CElVQOt‘ 0 V>

* | » X0, V> — foe — Ce|Vop,,|

=1 T AT
o8 G< 1 + Ce|Ve,

= log G(a, Xy, v) — Ce|Ve,,| — Chae.
But log 8 > log 8 + Coe (8 and B being bounded). The proof of the lemma is

complete.

PROOF OF THEOREM 2. To prove Theorem 2, we now want to apply the
equivalent of Lemma 17 inductively. We want, therefore, to make sure that
the hypothesis of the Harnack type Lemma 14 (now Lemma 20) holds. This
follows from the fact that after a first Lipschitz expansion,

#X) = —)1\—u()\X),

the Lipschitz norm of log G in X becomes as small as we wish, (= 0) and that
after a k™ expansion, |log| Ay S 62~ " and o, can be chosen > 2"

Remark. Only a Holder condition in X and » is necessary, but this requires
a more careful argument.
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REVISTA MATEMATICA IBEROAMERICANA
Vor. 3, N.° 2, 1987

Biorthogonalité et
Théorie des Opérateurs

Philippe Tchamitchian

On dispose maintenant de bases hilbertiennes explicites de L2(R") infiniment
plus performantes que la base de Haar. Les fonctions du systéme de Haar, qui
s’écrivent, en dimension 1,

h; () = 2?12 - k),
ou
() = Xig,1/51%) = X1 2,1(®) et J,k€Z,

si elles sont bien localisées en x sont en revanche discontinues, c’est-a-dire trés
mal localisées en fréquence, empéchant par la une analyse stable des fonc-
tions. Pierre-Gilles Lemarié et Yves Meyer ont montré qu’on pouvait rempla-
cer la fonction # par une fonction y € Sy(RR) (I’espace des fonctions de la classe
S de Schwartz dont tous les moments sont nuls) et obtenir encore une base hil-
bertienne de L%(RR), et ils ont indiqué comment généraliser 4 R” la construction
([9D). Leurs bases sont alors bien localisées a la fois en variable d’espace et en
variable de fréquence, et permettent d’analyser avec précision n’importe quel
signal: ce sont en fait des bases hilbertiennes de tous les Sobolev, et des bases
inconditionnelles de la plupart des espaces fonctionnels classiques.

Il peut dés lors paraitre surprenant de s’intéresser aux bases inconditionnel-
les de L%(R"). Cela oblige a étudier des couples de bases inconditionnelles
biorthogonales, c’est-a-dire deux systémes notés pour le moment (o,) et (7,),

163
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tels que

(1) vfe L(R") Ln 1P~ Dol ~ Sl
@ VELRY)  f= X007 = D¢ fi7a)0a

3) (0qs Tg) = 04,5+

Mais justement, le fait essentiel que nous présentons dans cet article, et qui
ne peut se produire avec une base hilbertienne, est que les deux systémes (o,)
et (7,) peuvent étre trés différents de nature. Par exemple, il peut arriver que
les (7,) soient des fonctions bien réguliéres et a supports compacts, tandis que
les (o,) présentent des singularités en certains points. C’est ce qui permet de
prouver qu’il ne peut exister de calcul symbolique sur les opérateurs de
Calderon-Zygmund (paragraphe VIII).

En nous placant au point de vue de I’analyse fonctionnelle, appelons /; la
fonctionnelle qui, 4 chaque fe L?, associe sa composante suivant le vecteur
de base o,. Alors, les fonctions o, peuvent étre singuliéres et se comporter
plus ou moins comme si elles étaient réguliéres: les propriétés de régularité
sont en fait portées par les fonctionnelles Iaa. Nous appliquons cela en cons-
truisant de nouvelles bases inconditionnelles de H'(R"), constituées de fonc-
tions en escalier (paragraphe VII).

Mais pour commencer, nous décrivons un algorithme construisant des cou-
ples de bases inconditionnelles biorthogonales de L?(R"). Les idées de départ,
comme dans [9], sont celles de la transformation en ondelettes (voir [6] et [14])
que nous rappelons maintenant.

Cetains des résultats publiés ici ont déja paru, sans démonstration, dans la
note aux C.R.A.S., citée en référence [15].

1. Généralités

Pour le moment, nous restons en dimension 1, le cas de la dimension n faisant
I’objet du paragraphe 5. '

Sig=ax+ b,a>0et beR, est un élément du groupe affine G, son action
sur une fonction o € L? donne la fonction U(g)s définie par

U(g)o(x) = a'*a(ax + b).

Suivant Grossmann, Morlet et Paul ([6]), nous appelons ondelette admissible
toute fonction o telle que

“ C2 = [_IKU@9, 05 |* du(g) < +oo,
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ou du(g) = dadb/a est la mesure de Haar invariante 4 droite du groupe G.
Cette condition est équivalente a la suivante:

VE#O j |&(a£)lzﬁ<+oo.
0 a

Choisissons une autre ondelette admissible 7, et posons

1 -
= L (o, U)oy {7, U(g)T) du(g).

7T o, 1)

Dés que 0 < |C, ,| < +o, on a la décomposition suivante de 1’identité:

1
) vfel?, f= o B (S, U()ad U(g)r du(g).

o, T

C’est la transformation continue en ondelettes sur Z2.

Pour obtenir des bases de L?, nous commengcons par discrétiser la formule
précédente, en imposant @ = 2/, jeZ, et beZ. Si I est l'intervalle dyadique
[k277,(k + 1)277], ol j,keZ, nous posons o,(x) =2"2(2x — k), et de
méme pour 7. La notation rappelle que, en un sens & préciser, les fonctions
o, et 7, sont localisées autour de I’intervalle I en variable d’espace, et autour
de la bande 1/(2|7]) < |£| < 2/|I| en variable de fréquence. Les relations (1)
a (3) se réécrivent alors

) [P =S KsopP~ P
R 1 I

) f= ZI] (fropyr, = ZI] STy,

€) (op 7)) =01,

ou il est entendu une fois pour toutes que 7 et J parcourent I’ensemble des
intervalles dyadiques.

La relation (2) est la discrétisation de (5). Il faut remarquer que, parce que
lesg; , = 2/x — k ne forment pas un sous-groupe du groupe affine, il n’est pas
du tout nécessaire que le systéme biorthogonal aux ¢, soit constitué de I’orbite
d’une seule fonction 7 sous I’action des g; ;- C’est une hypothése que nous
imposons pour nous permettre de calculer.

Une deuxiéme remarque, beaucoup plus importante, est a faire. C’est la
relation (1) qui fixe le cadre fonctionnel dans lequel on opére, ici L? et />. La
relation (2) peut avoir un sens dans d’autres espaces fonctionnels que L2,
d’autant plus que la convergence des séries écrites peut étre forte ou faible.
Nous reviendrons sur ce point quand nous sortirons du cadre 2. Quant a (3),
elle est pratiquement vide de tout contenu fonctionnel, et a un sens dés que
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le crochet (o, 7) existe. Tout ceci a des répercussions cruciales sur I’invariance
des relations (1) a (3).

Si L est un opérateur borné inversible sur L2, en écrivant f = L ~!Lf = LL™f,
on voit que les relations (1) a (3) restent vraies pour les familles (L*(s,)) et
LY (7), ou (L(sp) et L*~X(ry).

En revanche, cela ne peut étre le cas si L est non borné, a cause de (1). Sup-
posons cependant que L ait un domaine dense, soit inversible sur son image,
et surtout qu’il soit invariant par translation et jouisse d’une certaine pro-
priété d’homogénéité:

vt >0, L(p(tx)) = t*Le(tx)

pour un certain « (par exemple L = D, L =~/ —A, L = D%). Dans ce cas, les
relations (2) et (3) sont formellement vraies pour les familles (L*0), et (L~ ) ;
dés que L*o et L™ '7 existent. Pour qu’elles aient un sens dans L2, il reste
. s’assurer que

j‘R |/~ ; <A, L*a)p|* ~ Z[) KAL)

En particulier, si les fonctions ¢ et 7 engendrent deux bases biorthogonales
de L?, pour certaines valeurs de «, on aura de nouvelles bases & partir des
fonctions D% et D™ *7: c’est pourquoi deux bases biorthogonales peuvent
étre de régularités trés différentes.

Enfin, soulignons que les relations (1), (2) et (3) ne sont pas indépendantes.
Pour le voir, il est nécessaire de faire un rappel sur la notion de «frame».

On appelle «frame» une famille de fonctions (y,) telle que, pour toute
feL?, on ait

j|f|2~ S vl

Dans [4], Ingrid Daubechies montre qu’un frame est nécessairement une
partie génératrice, au sens qu’il existe un autre frame (J,) tel que, si fe L?,

F= 2o ¥ad¥e = 2 fi V¥

Cela vient de ce que opérateur A qui, & feL?, associe les coefficients
{f, Yo, est inversible sur son image. On en déduit que A*A est inversible sur
L?, et on pose alors §, = (4*4) Y,

Ce résultat implique immédiatement que les relations (1) a (3) sont équiva-
lentes aux deux relations

[P~ Bisopl o <o =a,,.
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Cette réduction des équations n’est cependant pas trés utile dans la pratique,
car pour prouver I’inégalité

j FP<CS K apls
R I

on est souvent obligé de passer par (1), et de prouver ensuite que

S, r,>|2<cj |fI.
I R

Au paragraphe suivant, nous expliquons pourquoi il est plus facile de démontrer
une inégalité dans ce sens.

2. Un Algorithme de Construction de Bases Inconditionnelles
de L*(R)

Nous rentrons maintenant dans le vif du sujet, en prouvant le:

Théoréme 1. Soit g une fonction continue 4w— périodique telle que g(§) > 0
si £€]0, 4x[, et g(§) = 0(£%P) au voisinage de 0. On a normalisé g en imposant
g@2m) = 1.

Soient

g(§ + 2)
g(®) + g(& + 2m)

p) =

et

1 + .
¢® + 2+ 2m) AL ECTY:

On suppose qu’il existe q € [1, p] tel que (1 + £2)2G(§) e L.
Définissons les fonctions o et T par

G® =

©) 6(8) = e~ “l”;? ot #(®) = e LG

Alors, les familles (o)) et (1;) forment un couple de bases inconditionnelles
biorthogonales de L*(R).

On peut remplacer dans cet énoncé |£|? par sgn(£)|£|?: cela revient a utiliser
Pinvariance du probléme par la transformation de Hilbert. Nous étudierons
au paragraphe 6 la question plus délicate de savoir pour quelles valeurs de o
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les familles (Do), et (D~ *7), sont encore des couples de bases de L*(R). Nous
donnerons également, apres la démonstration du théoréme, des exemples qui
montrent que les hypothéses peuvent étre satisfaites pour des valeurs de p et
q arbitrairement grandes (paragraphe 3). Pour le moment, nous faisons sim-
plement remarquer que ce théoréme redonne le systéme de Haar, a partir de
g()) =sin’¢/4, et p=q =2.

Démontrons le théoréme, c’est-a-dire les relations (1), (2) et (3) pour o et
7 définies par (6).

Supposons pour commencer avoir montré (2) pour toute fe S,(R) (espace
des fonctions de la classe de Schwartz dont tous les moments sont nuls) et (3).
Nous obtenons (2) pour toute fe L*(R) et (1) grace au lemme suivant, d’un
usage constant dans la théorie:

Lemme 1. Soit 0 une ondelette et v un réel tels que
() 2" Ko 00| < +o0

I
on a alors les deux inégalités

8) vO\) €2, J ‘Zx,a,
R I

PO
I
© wer®,  Sihopl<c| irr

En effert par changement de variable, la condition (7) implique I’existence
d’une constante C > 0 telle que, pour tout intervalle J,

I

I v

On en déduit (8) en écrivant:

172

LYY <’|LI|'>vt<o,, a,>l>

lII v 172
S () e
7 7 \ /]

2 I
I

; ; Moy, o) <

I

a —/—/—~ —/

<

Quant & I’inégalité (9), c’est la version adjointe de la précédente.
Un critére trés utile dans la pratique pour vérifier (7) est le suivant
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Lemme 2. Soit ¢ une fonction telle que, pour un certain 6 > 0,

(10) lo(x)] < CA + x%)~1+¥D = Cuy(x),
11) l0(x¥) = 0(x")| < Clx — x'|°[w5(X) + w5(x)],
(12) j Lo()dx =0.

Alors, pour tout v tel que |v — > < 6, o verifie (7).

La preuve est laissée au lecteur. Le lemme est d’ailleurs classique en théorie
des intégrales singuliéres: voir Lemarié [8] ou Meyer [12], par exemple.

Les lemmes 2 et 1 s’appliquent immédiatement aux ondelettes o et 7 définies
par (6). On en déduit (1) et (2) pour toute feL?, si on I’a prouvé pour

S € So(R).
Soit donc fe S,(R), et posons

5=, I_Z_ (foopTp,
C’est-a-dire
) = 22!’(] f@)o'u — k) du>r(2jt - k).
k

Traduisons cela en variable de Fourier:

= 22 = jf(n)e"‘2 "6 ) dne= " E52 ),

La formule de Poisson s’applique, et donne

(13) 5i® = 2 F& + 2mk2)52 7k + 2mk)7@ ).
ke

En sommant sur j et en regroupant les termes, on obtient

A =F® 3 62772y
JEZ JjEZ

+ 2 2 S+ 2mke2’) D) 6Q"M27IE + 2mko])F(2" )
JEZ kye2Z +1 nz0
@il faut remarquer que tout nombre dyadique k2’ se décompose de maniére
unique en ky2’°, ou k, est impair et j, = j + n pour un certain zn > 0).
Cette égalité est valable pour toute f€ S,. On est donc ramené & prouver

(14) VE£O, 26277927 =1,

JjezZ
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et
(15) V£ et Vk, impair, si & # —2wk,
3, GQ'E + 27k DF(2") = 0.

nz0
On remplace maintenant ¢ et 7 par leurs définitions. Grice au choix des
phases et a la 4x-périodicité de la fonction g, le systéme infini précédent se
réduit au couple d’équations suivantes:

(16) VEEO, %g(Z“jE)G(Z'jE) =1
je
an vE =0, %}1 g(2"9)G2"¢) = g(¢ + 2m)G(%).

En fait, il suffit de vérifier (17), car, en P’appliquant a4 2~ ™, on obtient

2 e(’HGRH =g~ Ne +2mG2 Y.
J=z-N+1
La limite de cette égalité quand N tend vers +o donne exactement (16).
Quant a (17), elle se déduit de I’équation fonctionnelle satisfaite par g et G:

(18) G(O)g(€ + 2m) = G(2H)[g(28) + g(2£ + 2m)].

En itérant cette relation, et en tenant compte de ce que lim,, ,  G(§) = 0 on
prouve (17), et par conséquent (2) pour toute f€ S,.

Il reste enfin 4 prouver (3). La encore, on utilise la formule de Poisson pour
montrer que (3) est équivalent au systéme d’équations suivant, ou j > 1:

(4, ZZ 6(¢ + 27k)#(2’[£ + 27k]) =0 pour tout £,
ke
(B) >, 6(27[£ + 2wk])7(¢ + 27k) = 0 pour tout £,
kezZ
(©) }]Z 8(¢ + 2wk)?(¢ + 27k) = 1 pour tout §.
ke

En fonction de g et G, ces équations deviennent:

A4) 2 (=Dfe + 2nk)GQIE + 27k]) = 0,
kez
B) 2 (-l + 20KDG(E + 27) = 0,
kez
) Z g+ 271k)G(E + 27k) = 1.
keZ

La clé est le lemme suivant:
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Lemme 3.

1
—i — .
H(%) k;z G(¢ + 4k) BT EET I pour tout £

Supposons-le acquis. On prouve (C) de la maniére suivante:

2 8t +2mlGE+2mk) = 3 + 3

k pair k impair

= g(OH(8) + g(& + 2m)H(£ + 27)
=1.

Les équations (Bj) deviennent

21 (=1)fe27[¢ + 27kDG (& + 2k) = g(278) kZZ(— D*G(& + 2mk)

keZ

= g(2’HIH(E) — H(E + 2m)]
=0.

La preuve des (4 j) est 4 peine moins simple. On commence par (4,):

7 (=D¥e(t + 27k)G(QE + 47k)
keZ

=g(® kZ, GQE + 4mk) — g(& + 27k) >, GQ& + 4mk),

pair k impair
et on utilise la relation (18), qu’on écrit par commodité sous la forme
G(28) = HQ29g( + 2m)G(§).
Cela donne

>, (=D¥e(t + 27k)G(QE + 4wk)
kezZ

= HQ2%)g(9g(t + 2m)H(§) — H(2H)g(E + 2m)g())H (¢ + 27) = 0.
Ensuite, si j > 2, on écrit
GQ[t + 2nk]) = H2/HgRt + 2GR’ ™ '[£ + 27k]),

ce qui montre que (A - ) =“A).
Pour achever la démonstration du théoréme 1, prouvons le lemme 3. Il est
équivalent a I’identité suivante:

S(® = 2, R(¢ + 4rk) = 1,
keZ
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ou ’on a posé

g(& + 2m) > _
g® + g(E + 2m)

On a R(2%) = p(§)R(E), et p(§) + p(¢ +2m) =1, p(§) >0 si £€]—2m, 2x[.
On en déduit

S(2¢) = kZ,Zp(E + 2wk)R(§ + 27k)

R = T2 (et ) =
js

=p(® kZ_ R(¢ +27k) + p(§+2m) > R(E + 2mh),

pair k impair

ce qui donne I’équation fonctionnelle
S(28) = p(&)S(%) + p(£ + 2m)S(£ + 27).

S étant 4r-périodique, nous nous restreignons a [ -2, 2«]. Si S atteint son
maximum en & € [ -2, 2], alors S doit ’atteindre aussi en &,/2, et donc, par
itération, en £,/2" pour tout #n, et en 0 & la limite: on a prouvé S < 1.

Le méme raisonnement vaut pour les minima de S, ce qui conclut la
démonstration du lemme 3 et du théoréme 1.

3. Deux Familles D’exemples

PREMIER EXEMPLE: BASES D’ONDELETTES A SUPPORTS COMPACTS. Si, dans la
construction du théoréme 1, on veut que les fonctions o et 7 soient & supports
compacts, alors il faut imposer a la fonction g une condition supplémentaire.
Il faut que g soit un polyndme trigonométrique, et que g(¥) + g(¢ + 2w) = 1.
A ce moment-13, le produit infini G s’écrit G(£) = I1g(2 ~’£ + 2x): c’est une
fonction entiére de type exponentiel, égal a celui de g.

Une classe générale d’exemples est décrite ci-dessous.

Lemme 4. Soit ’ensemble
A={PeR[X]; P0)=0, Pw>0si0<u<l, Pu)+P1-u=1}.

Si Pe A, soient p la valuation de P et

P
B = sup (u)'

uelo,1] u?

On pose

g(H) = PGin’£/4) et G(§) = HI g7t + 2m).
Jj=
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Alors, si

B log B
log4 ’

q=p (1 + )G eL”.
Soit £ > 2, et j, tel que 2770~ g < 1 <27 Yo, Alors,

Jo .
G < 11 8@ 7% +2m)
Jj=

= ﬁ P(cos?277¢/4)
j=1
< Blo ﬁ (cos*>277¢/4)P.
j=1

Comme

sinu

3

oo
II cos277u =
j=1

on a

[ sing&/4 >2”< . sinu)‘z”
< B/ .
c®< < ga )

Or, j, < log£/log2, donc

.2 4p
a9<0§%%%%a-

Construisons maintenant une suite de polynémes P, € A telle que les cons-
tantes associées

_ log B,
4n =DPn— m
tendent vers Pinfini.

L’ensemble A jouit de la propriété suivante: si P, Q€ A, alors Po Qe A.

D’autre part, P,(u) = 3u*> — 2u® e A.

Posons alors P, = P, o - - - o P;. La valuation de P, est p, = 2", et un cal-
cul donne B, = 32"~!. On a donc
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Si, a n fixé, on prend g = [g,], les fonctions ¢ et 7 définies par (6), avec
g, G, et g, sont & supports compacts et (¢ — 2) fois dérivables. La fonction
o est en fait une fonction spline, et 0@~ est lipschitzienne. La fonction 7 est
plus compliquée: on peut seulement affirmer que

#4B 4 By + 19— ) 260-2() <

Au paragraphe 7, nous revenons plus en détail sur les fonctions obtenues
avec le polynéme P; .

DEUXIEME EXEMPLE: LES BASES HILBERTIENNES D’ONDELETTES DE LEMARIE ET
BatTiE. Chacun de leur coté et indépendamment de nous, P. G. Lemarié,
puis G. Battle ont construit des bases orthonormales d’ondelettes, a localisa-
tion exponentielle et de régularité finie, mais arbitrairement grande.

C’est leur construction qui nous a suggéré de rechercher une version du
théoréme publié dans [15] un peu plus forte, qui puisse expliquer les similitu-
des troublantes qui apparaissent. C’est ainsi que nous avons abouti au théore-
me 1.

Pour obtenir les bases de Lemarié et Battle, il suffit de résoudre I’équation

G(®) = ‘2(25.)’

ou m > 1 est fixé, et G est défini comme d’habitude a partir de g. En utilisant
le lemme 3, le lecteur pourra se convaincre que les seules solutions sont don-
nées par

_ A, (& + 27)
$0=4 B+ A, Er2m
ou
1
An®) =Y

(& + dmk)Pm

La encore, les ondelettes obtenues (avec ¢ = m) sont (m — 2) fois dériva-
bles, et 0™~ 2 = 7™=2 est une fonction lipschitzienne, o est en fait une
fonction-spline sur tout R: sur chaque intervalle [k/2, (k + 1)/2], k€ Z, o est
un polyndéme de degré m — 1.

Nous ne savons pas s’il existe des bases orthonormales d’ondelettes & supports
compacts et de régularité arbitrairement grande. En tout cas, ’algorithme du
théoréme 1 n’en permet pas la construction.

Nous allons maintenant passer au cas de la dimension #. Comme dans [9],
ce passage dépend du calcul des sommes partielles en dimension 1.
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4. Cacul des Sommes Partielles en Dimension 1
Soient, si fe L*(R),
Sof = ,I.Zz”’ oy, et Syf= 2 (fiopT,.
=

[I|=2-N+1

Si 6, est 'opérateur de dilatation par 2": §,.f(x) = f(2"x) alors Sy, = 65.So0 _ -
Pour calculer les Sy, il suffit donc de calculer S,.
Repartons de (13): en sommant sur les indices j < —1, on obtient

(So.N)(®) = _ 2 . ;f(é + 27k27)6Q2 It + 21k)7 2 UE).
Jj= -
On écrit alors les entiers k sous la forme 2"k,, ol n > 0 et k, impair

SoN)®) = .Zlf (H52 278
Jjs

+ 20 D0 2 fE+ 2727 k)62 7T + 202"k0)7(277E)
j<1 n=0 . ko,
impair

= Zl F®B8R 79278
Jj=

n=0
nzj+1

+ > ; f‘(g+27rsz0)< >, 6(2”[2‘j£+27rk0])7‘-(2”“j£)>.
jezZ

impair

D’aprés (15), le terme entre parenthéses est nul si j + 1 < 0. Il ne reste donc
que les indices j € N dans la derniére somme. Ecrivant 2’k, = k, on en déduit:

19) ($of)'® = 3 7+ 270)| 336071k + 27rk1)f(2f5)] .
€ j=
Grace a (17), on calcule la somme entre crochets:
—_—— . q . .
j;l o2& + 27k])7(27¢) = _IE—-J—EZI_IEW_I"‘ jgl g2’[¢ + 27k])G(27%)
g j J
= i 20k 21 g2’H)G (2’
j=
B - (¢ +2mG(H)
~ e+ 2nk? ‘

On vérifie que ce calcul est vrai méme si £ + 27k =0 ou £ = 0.
Soient les fonctions ¢ et v définies par

q

Sin £/2 g(¢ + 2MG().

£/2

£/2

o) = SnE/2

q
et (9= }
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Alors, pour tous £ et k,

B(5 + 27)3(8) = 'avm+mma

|& + 27wk
Une nouvelle application de (13) montre que

1) &f=£;<ﬁ%wr

Une derniére propriété, importante pour la suite, est que {¢;,v;> = 6, ; si
|I| = |J|. En effet,.on a

; o(& + 2mk)y(& + 27k) = ;g(é + 27k + 2m)G(§ + 27k)

= g(§ + 2mH(§) + g(HH(§ + 2m)
=1.

Les définitions de ¢ et v peuvent &tre modifiées, en particulier pour mieux
s’adapter aux ondelettes des exemples du paragraphe précédent (et sans rien
changer aux propriétés qu’on vient de démontrer).

Si on veut que ¢ et 7y soient a supports compacts, g étant alors un entier,
on pose

o gt/ sin£/2>q
pE)=e" <—£ 72
et
~ __—igt/2 5/2 ?
¥y =e" <m g +2mG(%)
Si ’on veut, dans le cas ou G(£) = g(£)/£*™, avoir ¢ = 7, il faut prendre
b = 5(p = EEOLET 2D
Em

Cela montre d’ailleurs que les fonctions ¢ et v définissant les opérateurs de
sommes partielles suivant (21) ne sont pas uniques.

Enfin, remarquons que la fonction ¢, définie dans (20), est indépendante
de g et de G. Dans le cas ou q est entier, c’est un B-spline (B pour basic), égal
4 la convolution de la fonction caractéristique de [—1/2, 1/2] g fois avec elle-
méme.
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5. Bases d’Ondelettes en Dimension »
Nous imitons dans ce paragraphe la construction donnée dans [9].

La collection des intervalles dyadiques est maintenant remplacée par celle
des cubes dyadiques. Q est un cube dyadiquesiona Q =1, X I, X --- X I,
ou les I; sont des intervalles dyadiques de méme longueur: Q est donc défini
par un indice j € Z et un multi-indice k = (k, &, . .., k,). Si ¥ € L*(R"), on
pose Y,(x) = 22y (2'x — k).

Soit (en dimension 1) D; la projection sur les 7, pour || =2 ~JetE /; la pro-
jection sur les v, pour les mémes intervalles. Cela signifie que

D.f= 3 (fiodr, et Ejf=IIZ_j<f,<p,>'y,.

\I=2-J =y
Le calcul des sommes partielles se résume par 1’égalité

22) D.=E,

J /+1_

Passons en dimension 2. On a alors

3) D,®D,+D,QE,+E,®D,=E,, ,QE,,  —EQE,

Notons 6° = 0, 6! = ¢, 7° = ret 7! = 7. Soient les six ondelettes de R? défi-
nies par 6“1 = ¢1 @ 02 et 702 = 71 ® 72, ol (¢, &) = (0, 0), (0, 1) et
(1, 0). La relation (23) implique

Ve’ (R) f= %}Z (fiopdTy,

Q parcourant I’ensemble des cubes dyadiques, et € = (¢, €;).
On vérifie ensuite que les families ("Zz) et (T‘Q) sont biorthogonales.
Pour cela, il faut remarquer que Syy = 7, ce qui s’écrit

2 o= ZI] v, o7,

[Il=2

Par conséquent, (v, 0,) = 0 si |I| < 1. On prouve de la méme fagon les rela-
tions suivantes:

(Ypopy =0 si ||| et (g,7)=0 si |J|<|I].
Jointes aux égalités déja connues:
Cop 1y =8, et Lepy =8, si [I|=]J],

z . € €’ _
on en déduit (og, 7. =8, 5.0, -
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Enfin, les lemmes 1 et 2 se généralisant sans probléme, on prouve comme
en dimension 1 que, si fe L?,

f P~ DA ol ~ S il
R2 Q e Q €

Les choses se passent bien siir de la méme fagon en dimension » > 3. On
a donc le théoréme suivant:

Théoréme 2. Avec les notations du théoréme 1 et du paragraphe 4, soit
0® =0, 06! = ¢, 7° = 7, 7! = 7. Soit E I’ensemble des indices € = (e;, . . . , €,),
oit ¢; = 0 ou 1 et I’un au moins des ¢; est nul. Définissons 2"*' — 2 ondelettes
de R" par les formules 6° =0 ® --- o, 7°=71Q - - ® 7.

Alors, les (022) et les (T‘Q), ou Q parcourt I’ensemble des cubes dyadiques,
forment un couple de bases inconditionnelles biorthogonales de L*(R™).

Nous disposons maintenant d’une classe de bases de L*(R"), de régularités
finies et arbitrairement grandes. Etudions ce qui se passe quand on fait varier
la régularité, c’est-a-dire quand le couple (o, 7) est remplacé par le couple
(D%, D™ %7).

6. Nouvelles Bases de > Obtenues en Intégrant par Parties

Nous nous cantonnons en dimension 1, laissant au lecteur le passage a la
dimension 7.

Ensuite, nous fixons I’exposant g qui intervient dans le théoréme 1 et la
définition des ondelettes o et 7 en imposant les conditions (1 + £2)?*G(¢) e L®
et (1 +£)7%°G(¥) ¢ L™ pour tout € > 0.

Notre probléme est la détermination des valeurs de « pour lesquelles les
familles (D“0), et (D~ °7), sont encore des bases de L*(R). Ce qui revient a
demander: pour quelles valeurs de o a-t-on

(24) VfeLX(R) If1>~ D KAD )PP~ D KAD D P?
R I I

If faut naturellement que D% et D~ %7 soient dans L*(R), ce qui impose
|| < g — 1/2. Il se trouve que cette condition est suffisante si I’on rajoute cer-
taine hypothése sur la fonction g.

Théoréme 3. Avec les notations du théoréme 1, on suppose que

(25) Zznzlé(n/Z)l < +co.
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Alors les familles (Do), et (D~ °1), forment un couple de bases biorthogona-

les de L*(R) dés que D%c € L*(R) et D~ %*r e L*(R).

Les relations (2) et (3) étant formellement stables par intégration par par-
ties, le théoréme se raméne & montrer que, si |a| < g — 1/2, alors

g} [Kf, D*o)p|* < CL |/

et de méme
ZIJ RO PIEES CL Vi

Dans le cas ol |a| < g — 1, les fonctions D*g et D~ *r vérifient toutes les
deux les hypothéses du lemme 2, et il n’y a rien de plus a démontrer.
Plagons-nous d’abord danslecas ¢ — 1 < o < g — 1/2, c’est-a-dire celui ou

g%

D)) =e” “/ZW—;

pour un certain e € ]0, 1/2[. Nous allons prouver que D %o vérifie I’inégalité (7)
avec » = 0 (alors que D% ne satisfait pour aucun 6 > 0 les hypothéses du
lemme 2):

(26) 31 (D%, (D%),)| < +oo.

[Il=1

Cela suffira, car D~ %7 est bien réguliére et décroissante a ’infini: on lui ap-
plique le lemme 2.
On a

g(®) = 2 a,e™?,

et

n?a,| < +.
n
La somme écrite dans (26) devient

% 3272

jiz0 k

L e YD) (27E)(D%0)"(§) d ( =

- B ¥k

j g+ -2/ " & (He(2’d)
j=0% R

W”’fl

—J ; _n2i-ne_ &)
< a o —Je j itk + 1/ + @~ 127" i dt| -
\;| n[jgo ;‘ R |£|1+25
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Tout se raméne donc & montrer

> j eikf%ds‘ <C  (pourj=0)
©lJr |4
et
; jRei(k+(l/2))ET§%dg’ <C (pourj=1).
Or,

[ e 2O ae=cSatesnar,
R | n

On utilise alors la qualité du zéro de g en 0: on a au moins g(£) = 0(£2), donc
>.a, = >, na, = 0. Avec I’hypothése (25) cela implique
n n

2l a,lk + n/2]% = 0(|k|**~?)

a l’infini, et 2¢ — 2 < —1 permet de conclure.

Le cas o = g — 1 peut se traiter suivant les mémes idées, ou bien aussi par
interpolation. Comme nous développerons ce point dans le paragraphe sui-
vant, nous laissons ce cas au lecteur.

Il reste enfin le cas —g + 1/2 < o < —g + 1, qui se traite en utilisant la
dualité entre les espaces de Beppo-Levi. Rappelons que ’espace B* est défini
par la condition (i |f(£)|*|¢]> < +o, et que B* et B~* sont duaux I'un de
P’autre.

Soient les deux opérateurs

Sf= Zf" (fiopo, et Tf= ZI)<f, T,

Nous venons de prouver la continuité de S sur B®, pour tout « dans ’inter-
valle ] —qg + 1/2, —q + 1]. En effet, cette continuité est équivalente a celle de
I’opérateur D*SD~* sur L?, qui s’écrit

DeSD~%f = ZI] (f, (D™ %0))(D%0),.
La fonction D¢ vérifiant les conditions du lemme 2, on a
[ipsp-erp<csicoapr<c| i

d’aprés ce qui précede.
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De méme, nous avons prouvé que 7 est continu sur B~ %, Comme S et T
sont auto-adjoints, ils sont continus sur B~ % et B® respectivement. Ainsi,
D~ °SD* est continu sur L?, et comme les (D~ “0), forment une base de 1?,
cela veut dire que

; I f, Do) |* < CL | fI%.

De méme,

; KA D D> < CL | f12

et le théoréme est démontré.

Les valeurs limites de o« montrent bien les différences qui peuvent apparaitre
entre deux bases biorthogonales associées.

Prenons par exemple a =g — 1/2 — ¢, 0 < e < 1/2. Alors,

- 1/2+e>

au voisinage de (n + 1)/2, si g(n/2) # 0. D% n’est donc dans L% (R) que si
p<1/(1/2 — ¢). En revanche, D~ “7 est une fonction suffisamment douce et
réguliere pour vérifier [D~*7(x)| + [D™**17(x)| < C( + |x|) =32

Dans ’autre cas limite a = —g+ 1/2 — ¢, 0<e< 1/2, D™ %re€ H® seule-
ment pour s < ¢, tandis que D% € H® pour s < 4q — 2e.

Le cas a = g — 1 est également intéressant, il permet d’obtenir une base incon-

ditionnelle de H' (I’espace de Stein et Weiss) constituée de fonctions en escalier.

n+1
2

X —

D%)(x) = 0<

7. Bases Inconditionnelles sur les L?, H' et BMO

Dans ce paragraphe, nous voulons décrire, dans 1’échelle des espaces H*, L?
et BMO, ceux pour lesquels les familles de fonctions que nous venons de cons-
truire sont des bases. Pour ’espace BMO, qui n’est pas séparable, cela doit
étre entendu au sens faible de la dualité avec H'. Les autres espaces sont mu-
nis de leur topologie forte. La encore, nous restons en dimension 1.

La théorie des opérateurs de Calderén-Zygmund intervient ici de fagon cru-
ciale.

Rappelons qu’un noyau de Calderén-Zygmund est une fonction K(x,y)
définie sur R X R privé de sa diagonale, et telle que

Kt )| S =
@) Kol <=,
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lx—-x® 1
28 K(x,y) - K(x', y)| < -2 %1 X< x -y,
28  |K(x,y) - K&, p) Clx-yll” st |x = x| <5 x -y
18
, y- . 1
@) Ky - K| SO s Iy -yl < gl -,

pour un certain 6 €]0, 1] et une certaine constante C.

Un opérateur de Calderén-Zygmund (CZO en abrégé) est un opérateur con-
tinu sur L2 et dont le noyau est de Calderén-Zygmund.t Un CZO est automati-
quement continu sur les L?, 1 < p < + o, de H' dans L!, de BMO dans L, et
envoie L' dans L’ faible. Il est continu sur A’ si 7#(1) = 0 (T est le nom de I’opé-
rateur), et continu sur BMO si 7(1) = 0. Les CZO T'telsque T(1) = T*(1) = 0
forment une algébre, découverte et étudiée par Lemarié ([2], [7] et [8]).

Pour nous, le point important est le suivant:

Lemme 5. Soient deux ondelettes y et | vérifiant les hypothéses du lemme 2.
Alors I’opérateur A défini par

Af= Z Sy 1[’1> ‘ZI
est un CZO appartenant a ’algébre de Lemarié.

Les estimations sur le noyau de A4 viennent de (10) et (11), la continuité sur
L? de A vient du lemme 2, et ’appartenance a I’algébre de Lemarié vient de (12).

Revenons a nos familles (Do), et (D~ “0),, et supposons pour commencer
que |a| <g-—1.

Soit (¥,) une base d’Yves Meyer: y € Sy(R) et (y,) est une base des L,
1< p< +o,de H' et de BMO, entre autres ([9]). Alors, les deux opérateurs
suivants

Sof = ;‘ (fivp(D%0),

et

T.f= ZI] ([, (D™D,

sont des CZO inverses ’un de I’autre. Ils sont donc continus sur les L?,
1 <p< +oo, sur H' et sur BMO, et inversibles. Cela implique que les (D%0) 1
et les (D~ “7), sont des bases inconditionnelles biorthogonales de ces espaces.

Supposons maintenant que o =g — 1/2 — ¢, 0 < e < 1/2. Nous réservons
a = q — 1. Alors, T, reste un CZO, mais pas S,. On a vu en effet que D% €
L?  seulement si p < 1/(1/2 — ¢).

Sia=-g+1/2+¢ 0<e<1/2, c’est T, qui cesse d’&tre un CZO.
Dans ces deux cas, le résultat est le suivant:
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Théoréme 4. Avec les notations précédentes, les (Do), et les (D™ *7), sont
des bases inconditionnelles biorthogonales de LP si et seulement si
|1/p — 1/2| < ¢, c’est-a-dire si et seulement si D% et D~ “7 appartiennent a
IPNIP, p et p' étant conjugués.

Démontrons ce théoréme quand o = g — 1/2 — €. La nécessité de la condi-
tion est évidente. Pour la réciproque, nous prouvons que, si |1/p — 1/2| <,
S, est continu sur L?. Comme T, est un CZO, cela permet de conclure.

La continuité de S, sur L” se montre par interpolation complexe. Ecrivons
a=(1—-Na; + N, ol a<a;<qg-—1/2 et ay <qg— 1. Alors, ’ensemble
des p pour lesquels il existe p; €]1, + o[ et X\ €]0, 2¢[ tels que

11—\ N
b 2 Dy

est exactement ’intervalle ! !
1/2+€¢ 1/2—¢

Soit

_ P —2 .
Di(a — ) + 2(a; — @)

SizeC et a, < Re(z) < a;, posons

Szf= eZZ_az ; (.fz, ‘p[)(az)l’

ou tout a fait classiquement, si f = |f|e’, £, = | f|°® " *1e", et ou
8.(8) = |£[°6(8) = e~ ¥ *|E[* " %g(®).
On vérifie alors successivement que

1) Si Re(z) = oy, S, est uniformément borné sur L,.

2) SiRe(z) = a,, S, est uniformément borné sur L,, et S, est un CZO, dont
les constantes de Calderon-Zygmund (appelées C et 6 dans (27), (28) et
(29)) sont elles aussi uniformément bornées, grace au terme ezz'“z. On
en déduit que S, est uniformément borné sur L.

3) Sif,g€S,, alors (S, f, g) est holomorphe dans un voisinage de la bande
a, S Re(z) < oy.

Cela implique que S, = S est borné sur L”.
On procéde de la méme fagon quand oo = —q + 1/2 + ¢, en échangeant les
roles de o et 7. Le théoréme est démontré.



184 PHILIPPE TCHAMITCHIAN

Le cas a =g — 1 est spécialement intéressant. Les (D%0);, qui sont des
fonctions en escalier, sont, par ce qui précéde, une base inconditionnelle de
tous les L”. En cela, elles ressemblent au systéme de Haar.

ExempLE. Soit g(¢) = P,(sin® £/4), ou P;(u) = 3u® — 2u>, et s définie par
3(8) = e~ ¥?(g(¥)/%). La fonction s est la fonction en escalier a4 support com-
pact dont le graphe est représenté ci-dessous.

Mais il y a pourtant une grande différence entre la famille des (o,), ol
s =D 1g, et le systtme de Haar, qui réside dans la régularité du systéme
biorthogonal associé. Cela a pour conséquence le

Théoréeme 5. Soit g vérifiant les hypotheses du théoréme 3, et s la fonction
en escalier définie par 5(§) = e~ "“'*(g(¥)/%). Alors, les (o,) forment une base
inconditionnelle de H'(R).

Par dualité, ce théoréme se rameéne a 1’énoncé suivant: fe€ BMO(R) si et
seulement si, pour tout intervalle 7, on a

(30 > K hsplP< |,
JCI

la plus petite des constantes étant équivalente & | f|3,,,- Car, si (¢,) est le
systéme biorthogonal associé aux (s;), cela veut dire que (#;) est une base
inconditionnelle (au sens faible) de BMO.

Supposons pour commencer f € BMO, et m,f = 0. Par changement de varia-
ble, il suffit de montrer (30) quand 7 = [0, 1]. Posons, si/ > 1, X, = X, x| <21+ 13
Ji =X, et fo = fX{x <2 Grace au théoréme 3, on a
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> [ospl < [ 1A <€l oo

Jcn,
Sil>1, on écrit

> ]|<fz, sPI? = (PR < | Px

Jclo,1

2,21 A1

ou P est ’opérateur défini par

Pf = E (fa S_]>SJ .
JC0,1]
Puisque f€ BMO, |fi|3< C(A + %2 f|3mo- D’autre part, le lemme de
Schur montre que
1PXil2,< sup D5 [{XS;, 8¢ |-
Kclo,1] JcJo,1]
La majoration du membre de droite est un peu longue, mais sans difficulté

spéciale. Nous nous contentons donc d’indiquer la marche & suivre. I1 suffit
d’écrire explicitement la fonction s.

Si
g® = 2 a,e™?,
n
et si
rp= 2 an,
nsp
ona

s(x) = ;rpx{(p- 1/2sxsp/2}?

et

2.0\, < 4.
p

On calcule s; et s, puis {X;sj, 5, ). On majore brutalement 21, , ;, [<X;S, Sie) |
en tenant compte des localisations imposées par la présence de X, et les condi-
tions J C [0, 1], K C [0, 1]. Il vient alors |X,Px,|,, < C2~%.

Par conséquent,
3 [uspP <€A+ 271 o-

I,
d’ou le résultat désiré

Zl] Khispl?< Cl f1zmo-

Jclo,
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Supposons maintenant que, pout tout intervalle I, on ait

2 |(f’SJ>’2 < ||
Jjcr

On montre que fe BMO en construisant un CZO, U, tel que f = U(1). Pour
cela, si I = [k277, (k + 1)277], et si ¢ est une fonction bosse (¢ € D(R), ¢ >0
et j ¢ = 1), on pose ¢,(x) = 2/p(2/x — k) (noter la différence de normalisa-
tion). L’opérateur U est le paraproduit (voir [13]) donné par le noyau

Ux,y) = ; (fospt(X)e, (),

ou (¢,) est, rappelons-le, la famille biorthogonale associée aux (s,). Il est connu
que la condition (30) implique la continuité de U sur L? ([13]). U est un CZO
gréce a la condition plus faible [< £, 5,| < C|I|/?, et surtout grace a la régulari-
té et & la décroissance des fonctions ¢,. Donc, U(1) e BMO. On vérifie facilement
que U(1) = f au sens des distributions, ce qui achéve de prouver le théoréme.

Nous terminons cette étude banachique par I’espace L!: il n’admet pas de
bases inconditionnelles, cela est bien connu. Mais on a:

Théoréme 6. Soient o et T comme au théoreme 1, et soient ¢ et v les fonc-
tions associées aux sommes partielles décrites au paragraphe 1.
Alors, les deux systemes (o) ;<15 (D1 =2 € (7)1 <15 (V)1 =, forment
un couple de bases conditionnelles biorthogonales de L*(R). De plus, si
f= 20 Mo+ 20 Ne,el! et e = %I,
[Il=2

[Il=s1
alors

fi= > €NO, + > €N e;
[Ils1 [Il<1

est dans ’espace L. ., et de méme si o et ¢ sont remplacées par T et v.
faible

Rappelons que L}aible est I’espace des fonctions telles que, pour tout A > 0,

|(x: [ f@)] >N} < C/A
Montrons que les (a,)| =1 €t (gal)m:z sont une base de L. Il faut voir
pourquoi, si feL!, :

=0,
1

lim “ f- X No- 2 Ne

N-w 2-N-1<|I|=<s1 [Il=2

ou N, =<(fir,)si|I|<1let\ =<(f,7,> si|I|=2. Mais cela s’écrit
' I /4 I

'f— 2 (f,'YI>‘PIHI=O'

71=2-~

31 lim

N- 4+
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Or, on vérifie que ¢(27k) = 6, 4, donc > ¢(x — k) = 1. Par conséquent
K

Z_N<f, T e X) = ;2N¢(2Nx - k)jn2 [fGo) - fFOIVQYt - k) at

J) -
i
d’ou

7= .3 g < [[ 170 - sl S0t - bl o@ - ol dra

N

T+ @M= 2P N>

<c|f s -sa
Il est maintenant classique de conclure par (31).
Il reste & voir pourquoi f, eLflaibIe: cela vient de la théorie des CZO. En
effet, f, = Y.(f), ou Y, est de noyau
2 o)+ 21 0, (007,().
[Il=1 I =2
Y. est continu sur L? d’aprés les paragraphes 2 et 4, et son noyau est de
Calder6n-Zygmund. Donc, Y, envoie L' dans L. .

Les preuves des résultats précédents sont, on I’a vu, fortement liées a la
théorie des CZO. En fait, il y a presque toujours deux versants au moins d’un
méme résultat: un versant banachique et un versant théorie des opérateurs. Il
est temps de passer de ce cOte-ci.

8. De PImpossibilité d’un Calcul Symbolique Classique sur les
CZ0

Nous allons reprendre, dans le cadre des opérateurs de Calder6n-Zygmund,
un programme introduit par R. Beals dans le cadre des opérateurs pseudo-
différentiels.

Soit @ C £(H, H) une algebre d’opérateurs continus sur un espace de Hil-
bert H. Dans les exemples qui nous intéressent, cette algébre n’est pas fermée
(pour la norme d’opérateur). La question du calcul symbolique consiste a
savoir si tout opérateur 7" e @ inversible dans £(H, H) est inversible dans Q.
R. Beals a montré que c’est effectivement le cas pour les algeébres d’opérateurs
pseudo-différentiels.

Nous allons voir que la réponse est non pour ’algéebre A de Lemarié ou A
est ’algébre des T'e CZO tels que T(1) = T*(1) = 0.

Théoréme 7. Pour tout e €10, 1/2[, il existe T € A inversible sur L* et non
inversible sur L? pour |1/p — 1/2| > e. En particulier, T™' ¢ A.
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1l existe également un opérateur T € A inversible sur tous les 17,1 < p < +o,
et tel que T~ ne soit pas un CZO.

Le théoréme résulte immédiatement des résultats du paragraphe précédent.
En gardant les mémes notations, et si e €]0, 1/2[ est fixé, soit T, I’opérateur
défini par

T.f= ZIJ ([, (D™D~ %7),,

ola=qg-—1/2—ce
Gréce au lemme 5, on voit que 7. € A4; T, est inversible sur L?, et

T, (D)) = (D%),.

D’aprés le théoréme 5, T, est inversible sur L exactement quand [1/p — 1/2| <e.
Le choix « = g — 1 donne de la méme maniére la deuxiéme partie de I’énoncé.

Remarques. 1) L’inversibilité d’un opérateur quelconque 7 sur L?, supposé
continu sur les L”, entraine automatiquement ’existence d’un e > 0 tel que 7
soit inversible sur L” pour |1/p — 1/2| < e (communication personnelle de G.
David et S. Semmes).

2) Nos contre-exemples ont des noyaux assez peu réguliers, qui vérifient (28)
et (29) avec 6 = 1/2. P. G. Lemarié a construit des contre-exemples 7. dont
les noyaux vérifient, pour tous p, q, [0705K(x — y)| < C, ,|x —y| 77797}, et
tels que T.(x™) = T*(x") = 0 pour tout .

9. Conclusion

Bien que la théorie des CZO joue un role central dans 1’étude des bases hilber-
tiennes ou inconditionnelles de Z? du type de celles d’Y. Meyer, de Battle et
Lemarié, ou des théorémes 1 et 2, la classe des opérateurs naturellement liés
a la transformation en ondelettes, telle qu’elle est décrite dans le lemme 1, est
strictement plus large que la classe des CZO de I’algébre de Lemarié.

Du point de vue banachique, cela exprime que les bases de L? qu’on peut
construire en discrétisant la transformation en ondelettes ne sont pas nécessai-
rement des bases de L?, H' ou BMO. La raison essentielle en est la différence
de nature pouvant exister entre deux bases biorthogonales de L2.

On aimerait comprendre d’ou provient cette différence. Plus précisément,
étant données des ¢, formant une base inconditionnelle de L?, localisées
autour de I’intervalle 7 en variable d’espace et autour des fréquences de modu-
le 1/|I|, que peut-on dire du systéme biorthogonal associé?
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En théorie des opérateurs, cette question peut par exemple devenir si 7 est
un CZO de P’algebre de Lemarié inversible sur A' et BMO, est-ce que 7!
est lui aussi un CZ0?

Je tiens a remercier trés vivement Yves Meyer.

Le théoréme 5, en particulier, existe grace aux discussions que nous avons
eues. Et c’est ’ensemble de cet article qui doit beaucoup a sa chaleureuse
attention.
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Hardy Spaces and the
Dirichlet Problem on
Lipschitz Domains

Carlos E. Kenig and Jill Pipher

Introduction

Our concern in this paper is to describe a class of Hardy spaces H?(D) for
1 £ p <2 on a Lipschitz domain D C R” when n > 3, and a certain smooth
counterpart of H?(D) on R"~!, by providing an atomic decomposition and
a description of their duals. For a Lipschitz domain D,

HP?(D, do) = {u: Au =0 in D and Nu(Q) € LP(dD, do)}

where Nu(Q) = SUPrg) |u(x)| is the nontangential maximal function. When
p =2 H? and L? are essentially the same. When the dimension n = 2, H?(D)
can be understood in terms of conformal mappings onto the upper half plane
(Kenig [20]).

In 1979, B. Dahlberg overcame one major obstacle in providing the atomic
decomposition of H'(D,do) in higher dimensions by showing that ap-
propriately defined atoms belong to H'. However, the pairing between BMO
and H! was not established since, as we show, the most natural class of
measures arising from the harmonic extensions of BMO functions do not
satisfy the right Carleson measure condition.

At this point we would like to mention the work of Jerison-Kenig [18] and
Dahlberg-Kenig [10] where the analogous theory on Lipschitz (and even NTA)
domains was carried out for H?(D, dw) for harmonic functions ([18]) and
systems of conjugate harmonic functions ([10]).

The paper is organized as follows. At the begining of section 1 we describe
the notation to be used throughout. We then explain why Dahlberg’s lemma
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(which was stated in [8], without proof) on the harmonic extension of BMO
functions fails. In addition, we give an example which shows that there is no
Carleson measure condition on the harmonic extension of a BMO function.

In section 2 we give (for completeness) the proof of Dahlberg’s lemma on
atoms ([8]). In order to exhibit the duality between H' and BMO, one requires
that some extension of a BMO function be a Carleson measure. At the end
of this section, we discuss <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>