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Résumé

On considére le probléme du contrdle ponctuel (c’est-a dire au moyen d’une
masse de Dirac située en un point fixé) des vibrations d’une plaque Q. Sous
des conditions aux limites générales, incluant les plaques posées ou encastrées,
mais excluant (et pour cause) le cas ou existent des vibrations propres
multiples, nous montrons la contrdlabilité des combinaisons linéaires finies
des fonctions propres en tout point de Q qui n’est zéro d’aucune fonction pro-
pre et en tout temps strictement supérieur a la moitié de la surface de la pla-
que. Ce résultat est optimal car aucune combinaison linéaire finie non nulle
de fonctions propres n’est ponctuellement contrélable en un temps strictement
inférieur a la moitié de la surface de la plaque. Sous la méme condition sur
le temps, mais pour un domaine Q quelconque de R?, on résout le probléme
du contrdle spectral interne, c’est-a-dire que pour tout disque ouvert w C Q,
une combinaison linéaire finie quelconque des fonctions propres peut étre
ramenée a 1’équilibre au moyen d’un contrdle #e D0, T) X Q) tel que
supp(#) C (0, T) X w.

Abstract

We consider the problem of controlling pointwise (by means of a time depend-
ent Dirac measure supported by a given point) the motion of a vibrating plate
Q. Under general boundary conditions, including the special cases of simply
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supported or clamped plates, but of course excluding the cases where some
multiple eigenvalues exist for the biharmonic operator, we show the control-
lability of finite linear combinations of the eigenfunctions at any point of Q
where no eigenfunction vanishes at any time greater than half of the plate’s
area. This result is optimal since no finite linear combination of the eigen-
functions other than 0 is pointwise controllable at a time smaller than half of
the plate’s area. Under the same condition on the time, but for an arbitrary
domain Q in R?, we solve the problem of internal spectral control, which
means that for any open disk w C Q, any finite linear combination of the
eigenfunctions can be set to equilibrium by means of a control function
he D0, T) x Q) supported in (0, T) X w.

1. Introduction and Functional Setting

In order to make the theory more transparent, we shall consider the general
case of a second order conservative evolution equation and apply only at the
end our abstract results to the specific case of a 2-dimensional vibrating plate.
Let Q be a bounded domain of R" (or a compact N-dimensional manifold
without boundary) and A4 a positive self-adjoint operator in H = L*(Q). We
assume that A4 satisfies the following properties

(1.1) A is coercive on H.
(1.2) D(AY? c C(@) with continuous imbedding.

Given T> 0, £€Q and [°, y']1 € D(A?) x L%Q), we are interested in the
existence of a control function h e L*(]0, T[) such that supp (4) C [0, T] and
for which the unique generalized solution y of

y'+Ay=h)d(x - § in ]0,T],
(1.3) 70, %) = y°(»),
Y'0,%) = y'() in Q,

satisfies y(T, x) = y'(T, x) = 0in Q. If such a control & exists, we shall say that
the state [y°, y'] is «pointwise exactly L2-controllable in £ at time T'».

The possibility of solving this «pointwise exact controllability problem» is
related to the amount of information revealed by the restriction to [0, 7'] of
t - ¢(t, £) where ¢ is an arbitrary solution of the homogeneous equation

(1.4 "+ A¢ =0 in ]0,T], ¢eCO, T; V)NCY0, T; H)

with V = D(AY?), H = L*(Q). (Note that as a consequence of (1.2) we have
é(t, £) € C([0, T] for any such solution ¢). In fact if any [y°, y!] from a dense
subset of ¥ x H is exactly L2-controllable in ¢ at time T, then any solution
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¢ of the homogeneous equation (1.4) such that ¢(¢, £) vanishes identically on
10, TT is the trivial solution ¢ = 0. Conversely, if any solution ¢ of the
homogeneous equation (1.4) such that ¢(z, £) vanishes identically on ]0, T is
the trivial solution ¢ =0, then for each (¢°, ¢') e V x H, we consider the
(clearly well-defined) norm

(1.5) P&, 8" = {[ 62, par)"”,

where ¢ is the solution of equation (1.4) with initial data (¢°, ¢'). The follow-
ing result then follows from the general HUM method of J. L. Lions ([17, 18,
19)).

Proposition 1.1. A given state [¥°, y']1 € V X H is exactly L*>-controllable at
¢ in time T if and only if there exists a constant C > 0 such that for every
4% ¢ eV xH,

(1.6) |Jo @' = 8% dx| < Cp°, 9.

As was clearly established in [6], the set of pointwise exactly L2-controllable
states (always a dense subset of V' X H when p is a norm) is usually com-
plicated and more precisely depends on the observation point £ in a very com-
plicated and unstable way, even in the simplest case of the standard vibrating
string with fixed end! The only reasonable thing to be expected in general is
that (1.6) might hold true when both y° and y! are finite linear combinations
of the eigenfunctions of A, assuming that no eigenfunction vanishes at £, This
implies in particular that all eigenvalues of A are simple, a condition that we
shall assume in most of this text (Sections 2, 3 and 5). The controllability of
all states for which y° and y! are finite linear combinations of the eigenfunc-
tions of A is what we shall call «pointwise spectral controllability». Taking
account of the form of the general solutions to the homogeneous equation,
it is natural to apply the methods of harmonic analysis to solve this problem.
Indeed, any solution of (1.4) can be written as a series

86, ) = 3] [ da®) cos VN + Y, () sin VN7 )

where the functions ¢,, ¥, are eigenfunctions of A associated to the eigen-
values \,, or in complex form

o(t, %) = 21 p;(x)e’™s!

where the p; stand for the (positive or negative) square roots of the eigenvalues
\,.. Thus for fixed x, it is a linear combination of some complex exponentials,
the properties of which will be the key point of this work. Our main result
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will, maybe surprinsingly, turn out to be a consequence of one among the
deepest classical results on harmonic analysis from the «sixties», namely the
Beurling Malliavin criterion for computing the completeness radius of a family
of complex exponentials. The application of this powerful machinery to our
problem is the object of Sections 2 and 3 of this paper. The case of a vibrating
plate with constant Lamé coefficients is a special case of our abstract result
obtained for N = 2 and A = A? with relevant boundary conditions. In Section 4,
we shall combine the result of Section 2 with, essentially, a biorthogonality
technique in the spirit of [2, 16, 22] to solve the easier problem of «internal
spectral controllability» under slightly relaxed conditions on the domain.
However we feel that much more should be done in this last direction, as
already strongly suggested by the special cases considered in [6, 11, 15]. Finally
in Section 5, we consider some additional examples and we discuss the relation-
ship between spectral controllability and some uniqueness questions.

2. Some Properties of the Completeness Radius of a Family
of Complex Exponentials

The main tool from harmonic analysis that we shall use in this paper is the
notion of completeness radius and its characterization by some estimates.

2.1. Definition and some properties of the Completeness Radius

Definition 2.1.1. Let A = {\,},., be a sequence of distinct real numbers.
Consider all the functions of the form

2.1 f@) = 35 fie™,
keJ

J being any finite subset of Z. The completeness radius of A is defined as
R(A) = sup {A > 0: the functions f of the form (2.1) are dense in C([ — A4, A])}.

In particular, if the functions f of the form (2.1) are dense in C([—A, A]) for
all A >0, we set R(A) = co. On the other hand, if the density fails for all
A >0, we set R(A) = 0.

Remark 2.1.2. A classical result from the theory of nonharmonic Fourier
series (¢f. e.g. [24, Theorem 8 p. 129]) asserts that either the functions of the
form (2.1) are dense in C([a, b]), or no complex exponential of the form e™
with » different from all \,, can be obtained as a limit of functions of the form
(2.1) in C([a, b]). This interesting alternative is the main idea for the proof of
Proposition 2.2.1 below.
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Remark 2.1.3. For all pe|l, +o) we also have

R(A) = sup {A > 0: the functions f of the form (2.1)
are dense in LP([—A, A]},

with the same conventions in the limiting cases R(A) = 0, « (sée [24]). In the
sequel we shall be especially concerned by the case p = 2.

2.2. A «Density-Controllability» Alternative

The main result of this section is the following

Proposition 2.2.1. Let A= ()} be a sequence of real numbers. Then

we have the following properties

neZ

(1) For each T > 2R(A) and for each n € Z there exists a constant C,, such
that

@2) Ll <G [ IfoPan™”,

for each function f of the form (2.1) with ne J.
(2) On the other hand for each T < 2R(A) and for each finite sequence
{a,),r Of complex numbers having a non zero term, there exists no con-

stant C > 0 such that
T 172
< CU |f(t)|2dt}
0

for each f of the form (2.1) with FC J.

2.2 2 anfy

neF

As a first step we will establish the following lemma.

Lemma 2.2.2. Let I=(0,T) and let A= {\,},., be a sequence of real
numbers. Assume that the set of functions of the form (2.1) is not dense in
L*(I). Then, for each n € Z there exist a constant C, such that (2.2) holds for
each function f of the form (2.1) with ne J.

Proor. If (2.2) is not satisfied for some n, we can find a sequence of func-
tions {f7} of the form (2.1) such that |f?| =1 and [;|f"(x)|*dx—0 as
p— +o. It follows that the constant 1 is the limit in L*(/) of some functions
g of the form

(2.3) g) = k% gre™
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where J is a finite subset of Z — {n}, and: p; = A, — \,,. By repeated integra-
tion in #, we deduce that all polynomials of ¢ with complex coefficients are also
limits in L*() of some functions g of the form (2.3). Indeed, let pe N, e > 0
and g of the form (2.3) be such that

P — 3 et
keJ

e
2

where | |, stands for the norm in L*(I). By integrating in ¢, we deduce easily
the estimate

eiukt g
+(p+1) D
123 keJ Kk

<(p+ DeT'?

L]

P - (p+ 1) D g
keJ

where | | stands for the norm in L*(I). Hence, in particular

ipgt

< (p + DeT.
2

e &
P (p+ 1) D& +(p+1) 32k
keJ 127 keJ Wi

Then by approximating the constant (p + 1) 2., (8/m) in L*(I) by
functions of the form (2.3), we find a sequence of coefficients {g;}, ., for
which

<2(p+ 1eT.
2

tp+1 _ Z g;ceiukt
keJ

This proves the claim by induction on p since it has been proved already for
p = 0. Finally by the Stone-Weierstrass density theorem, the functions g of the
form (2.3) are dense in L*(I), and the same property follows at once for func-
tions f of the form (2.1).

Proor or ProposrTioN 2.2.1. It follows clearly from the definition of R(A) that
for each T > 2R(A) the functions f of the form (2.1) are not dense in L%(0, T),
and therefore assertion 1) is an immediate consequence of Lemma 2.2.2. On the
other hand for each finite set F C Z, if we denote by A’ the set {\,},.7_p»
then classically R(A’) = R(A). As a consequence for each 7' < 2R(A), the set of
functions f of the form (2.1) with JNF = ¥ is dense in L*(0, T'), and therefore
for each non trivial sequence {a,},.r of complex numbers, the function
at) = 3 o™
keF

can be approached in L*0,T) by functions f of the form (2.1) with
JNF = . By taking the difference we find a sequence of functions of the
form (2.1) tending to 0 in L%(0, T') and for which the left-hand side in (2.2)’
is constant and positive. This clearly establishes assertion 2).
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2.3. Computation of a Beurling-Malliavin Density

The main result of this section is the following

Theorem 2.3.1. Let A= {\,},., be a sequence of real numbers. Assume
that we have for some d*,d” 20and 0 <a <1

2.4 #{NeAd:0K NSt} =dYt+ 01
and

#{NeA: -t SN0} =d t+ O@F°).
Then we have

2.5) R(A) = =d, d=max {d*,d }.

Theorem 2.3.1. will be a consequence of the famous Beurling-Malliavin
Theorem. In the important special case where d* = d~, it will be sufficient
to verify the following lemma.

Lemma 2.3.2. Let A = {\,},. be a sequence of real numbers. Assume that
we have for somed>20and 0 < a<1

2.6) #(NeA:0OSANKt) =dt+ O(@t*)and # [(NeA: —t <A <0} =dt + O1).

Let us represent the generic compact interval of R by w = [w,, w,] and define
for each € > 0 the set

2.7 Q = {w|]|o| " #(ANw) —d| > €}.

Then if we represent each interval » by a point in the upper half-plane through
the formulas

2.8) T =(x,y) with x=(w;+w)/2 and y=|o|=w,— w,

we have

dxdy
. v . ———— < 00,
2.9 e>0 jjT(ﬂE) [5x4 )

for every € > 0.

Proor. As a consequence of hypothesis (2.6) we have immediately

#(ANw) — dlo| = Offw|* + |w,|*}.



8 ALAIN HARAUX AND STEPHANE JAFFARD

therefore we only need to check that for each K > 0, the set

AK) = {(,»)eRE0< y < K(Jx + p|* + |x — ¥}

J’ dxdy
T T <®
AKK) 1+x“+ y

AKK)C B = {(x,y) e R:0 <y < M(1 + x»)*%}

satisfies

But obviously

for some constant M related to K. Finally we have

dxdy - +eodx M@ +x3*/? dy
pl+x*+y" 7 ) 0 1+x2+y?

+ 0
<Mj 1+ x)*?"ldx < 0.

The result follows immediately.

In order to complete the proof of Theorem 2.3.1, it will be useful to recall
the main concepts required to formulate the general Beurling-Malliavin
Theorem.

Definition 2.3.3. A sequence of distinct real numbers A = {\,},_, is said to
be regular with Beurling-Malliavin density equal to d 2= 0 if for each ¢ > 0, the
set Q, given by (2.7) satisfies (2.9) with T given by (2.8).

We now recall the main result of [1].

Theorem 2.3.4. (Beurling-Malliavin.) Let A = {\,}
distinct real numbers. Then

ncz be a sequence of

(a) If A is regular with Beurling-Malliavin density equal to d > 0, we have
R(A) = nd.

(b) If A is not regular, then
R(A) = wd,

where d is the infimum of all Beurling-Malliavin densities of regular sequences
of distinct real numbers containing A.
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Proor oF THEOREM 2.3.1. (@) If d* =d~, the result of Lemma 2.3.2.
precisely means that A is regular with Beurling-Malliavin density equal to d,
and (a) from the statement of Theorem 2.3.4. gives exactly (2.5).

(b) Otherwise, one easily finds that any regular sequence of distinct real
numbers containing A has a density at least equal to d. On the other hand by
«completing» A it is rather straightforward to build a sequence of distinct real
‘numbers containing A and satisfying (2.6). As a consequence of Lemma 2.3.2.,
such a sequence must be regular with Beurling-Malliavin density equal to d.
Then (2.5) follows at once from (b) in the statement of Theorem 2.3.4.

By combining the results of Proposition 2.2.1 and Theorem 2.3.1, we
obtain

Corollary 2.3.5. Let A = {\,},., be a sequence of real numbers. Assume
that we have for somed” >20,d” 20and 0 <a <1

2.9 #{heA:0
#{NeA: —t

At} =dt+ 0@ and
NS0} =d7t+ O@%).

non

Then letting d = max {d*,d ™}, we have the following properties

(1) Foreach T > 2wd and for each n € Z there exists a constant C, such that

Al < Gl 170 a} ™,

for each function f of the form (2.1) with ne J.
(2) On the other hand for each T < 2wd and for each finite sequence
{an )}, Of complex numbers having a non zero term, there exists no

constant C > 0 such that
T 172
< C{ j |f(t)* dt}
0

for each f of the form (2.1) with F C J.

2 oty

neF

The special case where d* = d~ is especially important for the sequel (Sec-
tions 3 and 4) and therefore we state it separately for the reader’s convenience

Corollary 2.3.6. Let A = {\,},., be a sequence of real numbers. Assume
that we have for some d 20 and 0 < a <1

A #(NeAOKNKt) =dt+ O@t*)and # {(NeA: —t < N0} =dtf + O(").

Then we have the following properties
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(1) Foreach T > 2nd and for each n € Z there exists a constant C, such that

T 172
FARS CnUO |f(t)|2dt} ,

for each function f of the form (2.1) with ne J.
(2) On the other hand for each T < 2wd and for each finite sequence
{a,) e Of complex numbers having a non zero term, there exists no

constant C > 0 such that
T 1/2
< CU If(t)lzdt}
0

for each f of the form (2.1) with F C J.

Z anfn

neF

3. Application to Spectral Pointwise Control of some Plate
Models

3.1. An Abstract Controllability Result

The main result of the section is the following.

Theorem 3.1.1. Let Q be a bounded domain of RN (or a compact N-
dimensional manifold without boundary) and A a positive self-adjoint
operator in H = L*(Q) satisfying conditions (1.1) and (1.2) with A~ compact.
We denote by A* = {)\j}l sjstw the increasing sequence of eigenvalues of
A2, We assume that all the eigenvalues \; are simple and that we have for
somed>20and 0<a<l1

3.1 #{NEATIN ) =dt+ O().

Let £ € be any point at which no eigenfunction of A vanishes, and let us
denote by D the vector space of all (finite) linear combinations of the eigen-
functions of A. Then

(1) or every T> 2xd, and (y",y') € D X D, there exists h = h(t) € L*(0, T)
with supp (h) C [0, T] and such that the unique solution y of (1.3)
satisfies (T, x) = y'(T,x) =0 in Q.

(2) This result is optimal: as soon as T < 2wd, there is no (¥°,y")e D x D
except the trivial state (0,0) for which such a control h exists.

Proor. This is a straightforward consequence of Proposition 1.1 and Cor-
ollary 2.3.6 applied with A = A* U(—A™). Indeed any solution of (1.4) with
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initial data in D X D has the form

u(t,x) = Y, {u;cos\;t + v;sin 2} ¢;(%),
JjeJ
where the functions ®; denote an orthonormal sequence of eigenfunctions of
A and the coefficients #; and v; and given by the formulas

1
u; = L u(0,X)¢p;(X) dx,  v;= Tj L u'(0, x)¢; (x) dx.

It is then clear that a direct application of Corollary 2.3.6 to the function
f(@®) = u(z, £) with u as above provides exactly the result by taking into account
Proposition 1.1.

3.2. Application to Simply Supported Plates

Let @ be a bounded domain in R®. We denote by A* = N}i<j< 1+ the
increasing sequence of eigenvalues of (—A) in H é(ﬂ): it is known that under
very general assumptions on Q, for instance if dQ is smooth, the counting
function n(t) = # {\e A*:\ <t} where each A\ e A™ is repeated according to
its multiplicity satisfies the so called Weyl formula:

3.2 n(t) = dt + O(t?) with d = (1/4x)vol (Q).

As a special consequence of Theorem 3.1.1 we find

Theorem 3.2.1. Let Q be a bounded domain in R?* satisfying the « Weyl for-
mula», assume that all eigenvalues of (—4A) in H (1)((2) are simple and let us
denote by D the vector space of all ( finite) linear combinations of the eigen-
JSunctions of (—A) in H (I)(Q). Let finally £ = (&4, &) €Q be any point at which
no eigenfunction of (—A4) in H (‘,(Q) vanishes. Then

For every T > (1/2)vol(Q), and (¥°, ¥')e D X D, there exists h = h(t) €
L*0, T') with supp (h) C [0, T] such that the unique solution ¥ of

¥, + A = h()d,(x,y) in 10, T[ X Q,

V=A¥ =0 on [0, T] x 09,
¥(0; x, ) = ¥, y) in Q,
¥,0;x,) = ¥'(x) in Q,

satisfies ¥(T, *) = ¥ (T, +) = 0.

This result is optimal: more precisely if T < (1/2) vol (2), no non-zero finite
linear combination of the eigenfunctions of (—A) in H (’,(Q) is pointwise L*-
controllable.
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When Q is a rectangle of the form (0, 7) x (0, L), with (L/7)* ¢ Q, let D
denote the vector space of finite linear combinations of the basic eigenfunc-
tions sin mxsin (nwy/L), me N, n e N. We have the following result:

Proposition 3.2.2. Let £ = (&, &) € Q be fixed with &,/ ¢Q, &,/L ¢ Q. For
each T> (1/2)xL and each (¥°, ¥') e D x D, there exists h = h(t) € L*(0, T)
with supp (h) C [0, T'] and such that the unique solution ¥ of

¥, + A% = h()d,(x,y) in 10, T[XQ,
V=A¥=0 on [0,T]x 09,

¥(0; x,y) = ¥O(x, y) in Q,

¥,(0;x,y) = ¥1(x) in Q,

satisfies ¥(T, ) = ¥ (T, +) = 0.

3.3. Application to the Case of Clamped Plates and Other Boundary
Conditions

Let Q be a rectangle or a bounded domain in R? with a smooth boundary. We
denote by A* = { the increasing sequence of the square roots of
the eigenvalues of A% with relevant homogeneous boundary conditions: under
very general assumptions on these boundary conditions, the counting function

)‘j}lsjs +

n'(t) = #{heAt:\<1)

where each Ae A™ is repeated according to its multiplicity still satisfies the
Weyl formula (3.1) with the same value of d. As a consequence of Theorem 3.1.1
we find for instance

Theorem 3.3.1. Let Q be a bounded smooth domain or a rectangle in R
for which all the eigenvalues of A* in H 3 (Q) are simple, and let us denote by
D the vector space of all ( finite) linear combinations of the eigenfunctions of
A?in H2(Q). Let finally £ = (£, £,) € Q be any point at which no eigenfunction
of A% in HZ(Q) vanishes. Then

For every T> (1/2)vol(Q), and (¥°, ¥')e D x D, there exists h = h(t) €
L*0, T) with supp (k) C [0, T'] such that the unique solution ¥ of

¥, + A% = h()8,(x,y) in 10, T[xQ,
¥=|V¥ =0 on [0, T] X dQ,
Y(0;x,9) =¥x,») in Q,
¥,(0;x,y) = ¥'(x) in Q,

satisfies W(T, +) = ¥ (T, +) = 0.
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This result is optimal: more precisely if T < (1/2)vol (), no non zero finite
linear combination of the eigenfunctions of A* in HX(Q) is pointwise L*-
controllable.

ProOOF. Let Q be a bounded smooth domain or a rectangle in R? for which
all the eigenvalues of A% in H (2)(9) are simple. Then Ivrii [10] asserts that under
general positivity conditions, the fact that A with the given boundary conditions
is elliptic in the sense of Shapiro-Lopatinskii implies that the counting function
n'(t) satisfies (3.1). It is rather easy to check (cf. e.g. Wloka [23]) that the opera-
tor A% in H (2,(9) satisfies the Shapiro-Lopatinskii condition, therefore Theorem
3.1.1. is applicable. (For a related weaker property cf. also Plejel [21].)

Remark 3.3.2. Of course the difficulty in general will be to determine the
«strategic points» &= (£, &) at which no eigenfunction of A% in H (2,(9)
vanishes. Even when ( is a rectangle of the form (0, =) X (0, L), the eigenfunc-
tions of A? in H2(Q) become more complicated than in the case of simply sup-
ported plates, and it is probably not so easy to find the strategic points. We
know, however, that in the absence of multiple eigenvalues, almost every
point is strategic.

Remark 3.3.3. In Section 5, the case of variable Lamé coefficients will be
treated.

4. Some Applications to Spectral Internal Control

Let Q be a bounded domain of R (or a compact N-dimensional manifold
without boundary) and A4 a positive self-adjoint operator with compact resol-
vant in H = L*(Q). Let {)\j} 15j% 4+ be the increasing (without taking care of
multiplicity) sequence of eigenvalues of A and for each j, let

F;= (ueLXQ): Au = Nu}.
Then we have the following

Theorem 4.1. Assume that A has the following properties
(1) For every j, the conditions u eF; and u = 0 on some non-empty open
set imply u = 0.
(2) There is a finite Ty, > 0 for which the functions
Dy [uje"‘/g’ + vje"'*/g’}, J finite subset of N — {0)
JjeJ

where the u; and v; are complex coefficients that are not dense in
L0, Ty; C).
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Then for each T> T, there are functions {f;}, ;. ,. of class C* with
compact support in (0, T) such that we have the following properties
(@) For every ¥ € LX), the unique solution u of
@.1) u"+ Au =fj(t)‘I'(x) in RxQ, u(0,x) =u'(0,x)=0in Q
Sulfills u(T, *) €F; and u'(T, ) =0.
(b) For every w non-empty open subset of Q, and every ¢ eF;, there exists
¥ — D(Q) with compact support in w such that the unique solution

u of (3.1) satisfies u(T) = ¢ and u'(T) = 0. Moreover the solution v
of

4.2) v'+ Av =f}(t)\Il(x) in RxQ, u(0,x) =u'(0,x) =0in Q

SJulfills v(T) = 0 and v'(T) = —)\jqo.

Proor. Let u; = \}’? for all j. We shall prove the result in five steps.

(1) First of all it follows from (2) that for each j fixed, the function sin (,?)
is not a limit in L*(0, T,; C) of finite linear combinations of the func-
tions exp (+ipu,?) for k # j. Indeed in such a case, the function exp (iujt)
would be a limit in L2%(0, Ty; C) of finite linear combinations of the
functions exp (xip,t) for k£ # j and of the function exp(—ipjt), which
by an argument similar to the proof of Lemma 2.2.2 would contradict
property (2).

(2) In particular, there exists hjeLz(O, Ty; C) for which
[on@e*mtdr=0 for k=j  [°h(0)sin(u1)dt 0.

Replacing hj by either its real or its imaginary part, we may assume
h;e L*(©0, Ty; R).

(3) Let now T> Ty, 0< 9 < (T — Tp)/2 and

hj(tsn)=0 on (—o,1n),
hj(t’ 7’) = hj(t - 17) on (7’: TO + 7’)’
hy(tyn) = 0 on (Ty+ 1, +).

For every k # j, we clearly have

[Tyt et =o.
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On the other hand, if y is small enough we have
T .
jo h,(t, m) sin (u;) dt 0.

For such a fixed 1, let h;(¢, n) = h;(¢). Define also p. € D(0, €) with p. >0
and [p.(x)dx =1, and let us introduce h;% p.=h; . Then for each
e €(0,7n) we have hj,é € D(0, T'). In addition,

T
jhje(t)e*"“k'dt=0 for k#]j,
o

T T
limj h;, (O)sin(\1) dt = j hy(t)sin (A1) dt # 0.

e~0 JO 0

By selecting € > 0 small enough and replacing hj,e by some proportional
function, we obtain g;€D(0, T) such that

3)  [g0e*mrdt=0 fork=j and [ g()sin(ur)dl=1.
We can, in fact, also assume
T
(4.4) jo g;(t)cos ptdt = 0.
As a matter of fact, if
T

jogj(t) cosptdt =10,

let g](t) = g;(t + @) + cg;(¢), « # 0 being taken small enough. Then

j:g;‘(t) cos,tdt = cl + L)ng(t) cos p,(t — ) dt

= (¢ + cos (au))] + sin (ap)),
vanishes for
c= —cos (auj) — sin (auj)/I.
Taking ¢ as above we have
T . T .
jo gj’.“(t) sinp;tdt = c + L) g;i(t)sinp,(t — @) dt

=c+ cos(op) — Isin (ozp.j)
= -+ 1/I)sin(apcj) #0

for o small.
We can then replace g; by )\g;‘ with \ # 0 properly chosen.
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(4) Let f;(t) = g;(T — 1) for t€ [0, T1]. The solution of (4.1) is given by

u(t, x) = Lf,-(t = 9){ 2510 () ¥ (9] s
with
¥, = Proij(‘If) =P,¥, for me{l,2,..}.

In particular we have

T

MRﬂ=I

0

8/(5){ 35in (k) ¥ ()} dis

T
=2 {J‘O g,(s)sin (V’ms)} ¥, (%)

= ¥;(x).
On the other hand for ¢ close to T we have
rt
w(t,0) = | £t = 9){ Dsin () ¥ (0] d.
JO m

Therefore

rT

ST = ] Ssin () ¥ (9 dis

u'(T, x)

Y,

T
2 U £5(5) sin () dsz ¥,,(x) =0,
0

m

since integration by parts gives

T T

I g;(s)sin (pps)ds = =N\, I g;(s) cos (p,s) ds = 0.

0 0

for everym e N — {0}. This establishes (a) with u(T, «) = ¥;. Moreover
we notice that 4’ = v is the solution of (4.2) with initial data (0, 0) and
satisfies v(T, ¢) = 0; v'(T, ¢) = u'(T, ) = —Au(T, +) = -NY.

(5) To establish (b), we now use hypothesis (1). Indeed, for a fixed integer j,
we consider an orthonormal basis {¢;, . .., ¢,} of F;. To finish the proof
we just need to show that we can find ¥ € D(Q) with support in w such that
P;¥ = ¢, (say). In the opposite case, the linear form defined by

¥ e D(w) ~ j ¥ (X)), (x) dx
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would vanish on the intersection of the kernels of the linear forms
defined by

¥ eD(w) - j Y(X) o (x) dx, k>2.

By a standard result of linear algebra we would deduce the existence of
real coefficients {ay]}, ., for which

j Y(x)p, (x)dx = kZ]z ap | Yo, (%) dx,

for all ¥ € D(w). This immediately implies that for every x € w,

01(0) = 2 aor(x).
k=2

This is in contradiction with hypothesis (1) and the linear independence
Of { (773 } k=1"*

Let us now denote by D the vector space of all (finite) linear combinations
of the eigenfunctions of 4 and assume that all hypotheses of Theorem 4.1 are
satisfied. Then by an immediate calculation we obtain the following result.

Corollary 4.2. For each (¥°, y') € D x D, there exists h € D((0, T') X Q) with
supp (h) C (0, T) X w and such that the unique solution y of
y'+Ay=htx) in 0,T7T)xQ,
4.5) 0, =y in Q,
yO,0)=y'x) in Q

satisfies y(T, ) = y'(T, ) = 0.
In particular, in the case of vibrating plates we obtain

Corollary 4.3. Let Q be a bounded smooth domain or a rectangle in R? and
let us denote by D the vector space of all (finite) linear combinations of the
eigenfunctions of (—A) in H (1)(9). Then for any T > (1/2) vol(Q) and each
(¥°, ¥) e D x D, there exists he D((0, T) x Q) with supp () C (0, T) X w
and such that the unique solution ¥ of
¥, + A% = h(t,x,y) in (0,T)XQ,
¥=A¥ =0 on [0,T] x a9,
¥(0;x,) =¥,y in Q,
v,0;x,)=¥'(x) in Q

4.6)

-~

-~
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satisfies ¥(T, ) = ¥ ,(T, *) = 0. In addition the same result is valid for the
equation

Y, +A¥ =ht,x,y) in 0,T)XQ,

¥ =|V¥| =0 on [0,T] x99,

¥(0;x,y) = ¥°(x,y) in Q,

¥,(0;x,y) = ¥'(x) in Q.

4.6)

Proor. Property (1) is clearly satisfied in both cases. It is therefore sufficient
to check (2) for all T, > (1/2) vol (Q). In the case of (4.6), when all the eigen-
values of (—A) in H (1,(9) are simple, this follows at once from the Weyl for-
mula and Corollary 2.3.6. In fact, by considering for instance some artificial
additional frequencies or by using a generalization of the Beurling-Malliavin
theory for exponential-polynomial series, it is possible to extend Corollary
2.3.6 in the more general situation of a counting function allowing arbitrary
finite repetitions of the frequencies. Then the Weyl formula implies (2)
without requiring the eigenvalues of (—A) in H (1,((2) to be simple. The rest is
clear. The same proof works for (4.6).

Remark 4.4. 1In the case of (4.6) in a rectangle, by using some results of J. P.
Kahane [13], S. Jaffard [11] established the (in a sense stronger) result of exact
internal controllability of any state with a finite energy, for any T > 0.
However this result does not seem to imply immediately the existence of a C*
control for states (¥°, ¥!)eD x D. The result of [11] has been recently
generalized in arbitrarily many dimensions (for a product of intervals) by V.
Komornik [15]. On the other hand, no such internal controllability result
seems to be known for the clamped plate equation.

This theory is also applicable to cases where the open set  is replaced by
a compact manifold without boundary. We obtain for instance the following
result, valid in any dimension N > 1.

Corollary 4.5. Let T be the unit sphere of R", and let us denote by (—4y) the
Laplace-Beltrami operator on £ and by D the vector space of all ( finite) linear
combinations of the eigenfunctions of (—Ay). For all T > 0, and all w non-empty
open subset of T, and for each (¥°, ¥') € D x D, there exists h € D((0, T) X X)
with supp (h) C (0, T) X w and such that the unique solution ¥ of

¥, + ALY =hto) in (0,T)XE,
4.7 ¥(0;0) =¥%0) on X
¥,(0;0)=¥o) on T

satisfies ¥(T, ) = ¥ (T, ») = 0.
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Proor. Property (1) is clearly satisfied. Property (2) is a rather immediate
consequence of the fact that the inverses of the positive eigenvalues of (—Ay)
are summable. (Cf. e.g. [24], Theorem 15 p. 139.)

Remark 4.6. The control functions constructed here are of a special type. Their
construction ultimately relies on the existence of a sequence of functions «bior-
thogonal» to some complex exponentials, a technique already widely used (cf.
e.g., H. O. Fattorini [2], J. Lagnese [16], D. L. Russel [22]) in control theory.

Remark 4.7. It seems rather reasonable to conjecture that the internal spectral
controllability for the above plate equation is valid for general 2-dimensional
domains and for every T > 0. The study of this conjecture and some related
problems will be the object of further research.

5. Possible Extensions and Additional Remarks

5.1. One-Dimensional Vibrating Systems

We consider first the equation of vibrating strings
u,— (@xu), =0 on Rx(0,L)
ut,0)=u(t,L)y=0 on R,

where a is smooth and bounded from below by a positive constant. Let 4 be
the (strongly elliptic) unbounded operator on L*(0, L) defined by

D) =H*NH}0,L); Av= —(ax)v), for veD(A).
The solutions are of the form

ut, )= D, ue™w,(x)
nezZ - {0}

where A = {\,},.; is given by AT U(=A%) and A" = (N}, ;. is the
increasing sequence of eigenvalues of A% in H{(0, L). Here Weyl’s formula
implies (¢f. e.g. Hormander [8], p. 273)

n@) = ct + O(t'?)

for some ¢ > 0. Hence, by Theorem 3.1.1 we obtain that, appart from the
nodal points (zeroes of the eigenfunctions of A) pointwise spectral con-
trollability holds true for all times 7> 2xc. This result extends to pointwise
control some previous result of J. Lagnese [16] concerning internal exact con-
trollability of strings.



20 ALAIN HARAUX AND STEPHANE JAFFARD

Similarly we can consider vibrating beams given by
Uy + (@Xyy)y =0 on R X (0,L)
with either of the following boundary conditions
u(t,0)=u(t,L)=u,(t,0)=u,(t,L)=0 on R,
or
ut,0) = u(t,L) = u,(t,0) = u, (¢t,L)=0 on R.

Here of course a(x) is assumed smooth and bounded from below by some
positive constant. Here Theorem 3.1.1 provides pointwise spectral con-
trollability for all times 7' > 0 since the completeness radius of the correspond-
ing complex exponentials is obviously 0. Actually in such cases the result can
also be deduced by means of a variant of Ingham’s Lemma (cf. [9.5]).

5.2. The Case of Plates with Nonconstant Lamé Coefficients

We deal with a similar case as in Section 3.3 except that the bilaplacian is now
replaced by

. 4p N
. i,j;,za"Jm"] . Mij 3 ( it AN+2p B )

The functions \ and p are the Lamé coefficients which we suppose to be non-
constant in the plate, but C*. In order to obtain a «Weyl’s formula» for this
operator, we have to check that the assumptions given in [10] are fulfilled.
The operator is symmetric since

Au,oy =3\ 228, ud v+t :
(Au,v) § 3 %40Vt 30N+ 2p) IAuAv

The principal symbol of A4 is (4u/3)(1 + N/(\ + 2u))|£|* which is positive
definite. Thus we only have to check the Shapiro-Lopatinskii condition on the
boundary. It is a condition on the principal part of the operator which must
hold at each point x, of the boundary. Here, the principal part of A is a bipla-
cian multiplied by the smooth function @ = (4x/3)(1 + A\/(\ + 2p)). Thus, up
to the multiplicative factor a(x,), the condition to check is exactly the same
as if we had A = A? with the corresponding boundary conditions, and the con-
clusion will be the same as for the bilaplacian; namely, for simply supported
or clamped plates, formula (3.1) will hold with d = (1/4r) vol (Q), and thus,
also the conclusion of the analog of Theorem 3.2.1.
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5.3 Uniqueness and the Schrondinger Equation

In Section 3, we have given precisely the minimal time for pointwise spectral
controllability. Is is clear that a time T of pointwise spectral controllability
is also a uniqueness time in the sense that the trace of a solution at the ob-
servation point on (0, T') determines the solution. In the case of second order
problems (1.3)-(1.4), it is conjectured (cf. Kahane [14]) that the minimal uni-
queness time is equal to the minimal time for pointwise spectral controllabi-
lity.

Now let Q be a bounded domain of R? and A a positive self-adjoint operator
in H = L*(Q). We assume that A satisfies the properties (1.1) and (1.2). Given
T>0, te€Q and y° a finite linear combination of the eigenfunctions of A,
we are interested in the existence of a control function # € L*(]0, T'[) such that
supp (#) C [0, T]1 and for which the unique generalized solution y of the
Schrodinger type equation

y—iAy=ht)dx—§ in 10,T[, »0,%x)=y%) in Q,
satisfies
¥ T,x)=y'(T,x)=0 in Q.
The solutions of the homogeneous equation ¢’ — i4A¢ = 0 are here given by

o, %) = 2, d.e™'w, (),
nz1

where the numbers \, are the eigenvalues of A and the functions w, are the
associated eigenfunctions. For a given £ = (£, £,) € Q, let

J@) =o(t, 9 = 2231 a,e™,

Assume that the Weyl formula (3.1) holds for A with d > 0: then by Cor-
ollary 2.3.5 the minimal time for spectral controllability is easily seen to be
also positive (more precisely equal to 2wd).

On the other hand, let us show that any positive time T is in fact a «unique-
ness time». From the Weyl formula (3.1), the properties of the initial data and
the standard estimates on |w,|. we deduce that the coefficients «, have at
most polynomial growth. Suppose that f vanishes identically on [0, T'] and let
¢ be a C” nonnegative function supported inside [—7/2, 0] with integral 1.
Then the convolution product ¢ * f vanishes identically on [0, 7/2] and we
have

(e * )O) = D) a,d\)e™ = 3] ce™,
nzl1 nzl
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where the sequence (c,) is quickly decreasing, hence ¢ * f is C*. Let

() = (¢ * D)

where w(¢) is in the Schwartz class with a compactly supported Fourier
transform. Then v is in the Schwartz class with

WO =1 N *al® =] 3 edy, | * 50.

Since the numbers \,, are all positive, and w has a compactly supported Fourier
transform, the Fourier transform of y vanishes on (— o, 8] for some 3. Hence
g(t) = e®Y(¢) is a C* function which vanishes identically on [0, 7/2] and
whose Fourier transform is supported by [0, + ). A well known theorem of
Helson and Szegd (cf. [7]) asserts that if g e L%(R) has its Fourier transform
supported in [0, + o), then either g = 0 or Log |g(¢)|/(1 + %) € L'(R): in par-
ticular if g vanishes on an interval we must conclude that g = 0. In our case
we conclude that = 0 for any choice of functions ¢, w as above. It then
follows immediately that f = 0, hence uniqueness is established for any 7' > 0.

As a conclusion, in the case of the above Schrédinger equation, for all times
between 0 and the minimal spectral controllability time 7, = 2xd, there exists
a dense family of pointwise controllable states, but none of them is a finite
linear combination of the eigenfunctions of A. It would be, of course, of
interest to decide what happens for our plate models for small positive times,
and in particular to settle Kahane’s conjecture.

5.4. The Plate Equation in Higher Dimensions

In dimensions higher than or equal to 3, the calculations are very similar to
those in dimension 2 and we shall not repeat them. The results, on the other
hand, are quite different: for instance, for a 3-dimensional «plate» the Weyl
formula now gives

N = N2 + 0N,

hence the Beurling-Malliavin density of the \, is infinity and for no finite
T > 0 we have pointwise spectral controllability. The uniqueness problem is
also open in this case. However, if we consider the associated Schrodinger
equation, then the eigenvalues are positive and the proof of Section 5.2 is still
applicable. Thus here, any positive time is a uniqueness time, while there is
no finite time for pointwise spectral controllability!

Acknowledgement. The authors are grateful to Alejandro Uribe who taught
them the recent extensions of the «Weyl’s formula» and to Yves Meyer for
stimulating discussions on the subject matter of this paper.
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On Pseudospheres

John L. Lewis and Andrew Vogel
Dedicated to the memory of Allen Shields

1. Introduction

Denote points in Euclidean space, R”, by x = (x,, . . ., X,) and let E, 3E, denote
the closure and boundary of E C IR", respectively. Put B(x,r) = {y: |y — x| < r}
when r > 0. Define k& dimensional Hausdorff measure, 1 <k < n, in R” as
follows: for fixed 6 > 0 and E C R”, let L(6) = {B(x;,r;)} be such that E C
UB(x;,r)and 0<r;<é6,i=1,2,... Set

¢5(E) = inf 2] a(k)rs,
L)

where (k) denotes the volume of the unit ball in R¥. Then

k 1 k
HYE) = lm gf(E), 1<k<n.

Let D be a bounded domain in R™ with 0e D and H" " 1(dD) < +. We
shall say D is a pseudo sphere if

(a) dD is homeomorphic to the unit sphere, S, in R”
b) g(0) = aja p&dH"~ 1 whenever g is harmonic in D and continuous on D.

In (b), a denotes a constant. The construction of pseudo spheres in R?,
which are not circles, was first done by Keldysh and Lavrentiev to show the
existence of domains not of Smirnov type (see [11, Ch. 3]). Also a completely
different proof of existence has been given by Duren, Shapiro, and Shields in
[3] (see also [2, Ch. 10]). Both proofs are heavily reliant on conformal mapp-
ing and R? facts, such as: the logarithm of the gradient of a harmonic function
is subharmonic.

25
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In [12, p. 347], Shapiro asked whether there exists a pseudo sphere in R”
which is not a sphere. In this paper we answer Shapiro’s question in the
affirmative and even prove a little more:

Theorem 1. There exists a pseudo sphere D in R", n > 3, which is not a
sphere. In fact D can be chosen so that there is a homeomorphism f from R"
to R™ with f(S) = dD and

c(B) " x — ¥ < | f0) = FD)] < e(B))x - ¥|?,
whenever 3€(0,1) and |x — y| < 1/2.

In Theorem 1, as in the sequel, ¢(3) denotes a positive constant depending
only on 3 and n. Also, ¢ will denote a positive constant depending only on n,
not necessarily the same at each occurrence. Our method of proof is inspired
by the proof of Keldysh and Lavrentiev in [9]. Here though conformal mapping
techniques are not available. We outline our proof with @ = 1 in (). Let Q be
a bounded domain with 0 € Q@ and let G be Green’s function for Q with pole
at 0. That is,

1
n(n — 2)a(n)

is harmonic in @ and G has boundary value 0 in the sense of Perron- Wlener-
Brelot. It is known that if 2 is sufficiently smooth, then

—1|x]*~", xeR",

Gx) —

G G )

\Y = — e —
G <ax1 ax,

extends continuously to @ — {0}. Under this assumption suppose that VG| > 1
on d9. In Section 2, given ¢, 0 < e < ¢y, we add smooth bumps to dQ by «pushing
out» 90 along certain small surface elements in {x €9Q: |[VG(x)| > 1 + €} of
approximate side length r, 0 < r < r,. Let @, G’ be the smooth domain, and
Green’s function with pole at 0, obtained from this process. Then @ C @' and
we shall choose the bumps so that for e <7< 1,

(1.1) H" 109 > H"'09Q) + 9()H" ' {x: [VG(x)| > 1 + ¢},

where 7 is a positive function on (0, «). It turns out that » can be chosen
independent of Q, Q’. We note from the Hopf boundary maximum principle
(see [6, Lemma 3.4]) and |VG| > 1 on 949, that |[VG’| > 1 on 32N 3Q'. Also
from Schauder type estimates, it will follow that |[VG’| > 1 on the bumps.
Hence,

(1.2) [VG'(x)| = 1, xeoQ'.
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Next we modify the identity mapping slightly in a neighborhood of each bump,
to get A, a homeomorphism from R” into R”, with A(dQ) = dQ’. In Section 3
using a lemma of Wolff ([14, Lemma 2.7]) we will show the bumps can be
chosen so that

(1.3) jm, |VG’| log |VG’| dH" ! € Ln |VG|log [VG|dH" 1.

The proof of (1.3) is somewhat involved, but luckily much of the hardwork
has been done for us by Wolff.

In Section 4 we use (1.1)-(1.3) and induction to construct D. More specifically
put Dy = B(0, p) and let

GO(x) ('x'z—n - p2—n), XEB(O’ P),

1
- n(n — 2)a(n)

be Green’s function for B(0, p), where p is chosen so that if x € dB(0, p), then

— 1 1-n _

(1.4) IVG(x)| = n—a(—ﬁ)—p = 2.

We put @ = D, and modify 2 as above to obtain &' = D;, G’ = G, with ¢
replaced by ¢; and & by h;. Suppose D, has been constructed for 0 < k < m.
Again we put @ =D,, and modify @ as above to obtain Q' =D, ,,,
G' =G, , with e replaced by ¢, ., = 2~ ™* D¢y, and & by h,,, ;. By induc-
tion we get (Dy)g, (7)T, (Gi)o » satisfying (1.1), (1.2), with Q’, Q, replaced by
Dy .1, Dy, respectively. Let hy(x) = px, and let fy =h, 0o h,_;0---0hy,
where © denotes composition. Then it will follow from our construction for
k=1,2,..., that

(1.5) c(8) ™ x = Y2 < £ = £ )| < cB)|x - ¥/,

when x,y € R" and |x — y| < 1/4. Moreover, each f; is a homeomorphism
from R” to R™ with f;(§) = dDy. Set D = Uy Dy, and note from (1.5) that
there exists a subsequence ( f"k) of (f;) which converges to a homeomorphism
fof R”, satisfying the conclusions of Theorem 1. Thus (@) in the definition
of a pseudo sphere is valid. To prove (b) we first note from Green’s Theorem
and (1.2) that

(1.6) 1= j |VG,| dH" "' > H"~1(3Dy),
aD,
for k=0,1,... Second, observe for each é > 0 that

lim H" '{x€dDy: |VG(x)| > 1+ 8} =0,
(1.7) k— o
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since otherwise we could use (1.1) and iteration to get a contradiction to (1.6)
for large k. Next from (1.2), (1.3), and iteration we deduce that for o > 1,
k=0,1,...

(1.8) logaj VG| dH" ' < jw |VGy|log VG| dH" "' < ¢ < +oo.
k

{IVGi| > o}
Also in Section 4 we show that as k — oo,
1.9 H""|aD -—>H"“|aD,

weakly as measures on R”. Let g > 0 be a harmonic function in D which is
continuous on D. Then from (1.2), (1.9), and Green’s Theorem we get

_ n-1 n—1 n-1
(1100 g(0) = jwnkgwc,,k] dH" "' > JaD,.k gdH" "'~ [ gdH"",
as k — . To obtain the reverse inequality for fixed 6 < 10~ and « > 10, put

E, = (x€dD, :1< VG, ()| <1 + 8}
Fp={xedD,:1+6< VG, ()| <«
Ly = {x€dD, :|VG, (x)| > a},

for k=0,1,2,... Then

g0 =, glVGy|aH" "= ot | | =L+ D+,
k k

D, "

Clearly,
n-1
1L < (1 +9) JaD"kgdH .
Also from (1.7) we find that
IL| < a|gloH" '{x€dD, :1+6<|VG,|} >0,

as k— . Here, |g|. denotes the maximum of g in D. Using (1.8) we get

|131<1|gnwj VG, |dH""' <~ |g]..
{IvG,, |>a}

k

lo

Letting k — o we obtain from the above estimates and (1.9) that

n-1
20 <+ | gar e el

Finally letting 6§ > 0, o — oo, we have

gO < [ gdH"".
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In view of (1.10) we conclude that

(1.11) 2(0) = jangH"-l

when g > 0 is continuous on D and harmonic in D. From (1.11) with g =1
we note that, H"~!(dD) = 1. If g, is continuous on D, harmonic in D, and
g, — m>0in D, then from (1.11) and the above note we deduce

g0 =@ -m©O+m=[ (g-mdH" ' +m=| gdH""".

Thus, D is a pseudo sphere. The initial bumps on D; will be chosen to have
low peaks relative to those added to form Dy, k > 2, in order to guarantee
that D is not a ball.

We remark that D will be regular for the Dirichlet problem, so each con-
tinuous function on dD will have a harmonic extension to D which is con-
tinuous on D. From (1.11) it follows that harmonic measure and H" ™!
measure on dD are equal (see [7, Ch. 8] for the Dirichlet problem). Moreover,
since H"1(dD) = 1, it follows (see [4, Section 5.8]) that D is of finite
perimeter. Thus several other measures are equal to H” ™! measure on 8D (see
[5, Thm. 4.5.19, (16)] and [5, Thm. 3.2.26]). Also D will be a nontangentially
accessible (NTA) domain in the sense of Kenig and Jerison [8]. Using the
corkscrew condition for NTA domains ((i) in Section 3) it is easily deduced
that every point in D lies in the measure theoretic boundary of D (see [4,
Section 5.8]). Hence D satisfies the hypotheses of Theorem 1 in [10], from
which we conclude

sup {|VG*(x)|: xe D — B(0, p/2)} = +o,

where G* is Green’s function for D with pole at 0. Next we remark that this
paper leaves open the very interesting question as to whether fin Theorem 1
can also be chosen for some K > 1 to be a K quasiconformal mapping from
R™ to R”, n>3. In R? it follows from a criteria of Ahlfors (see [1, Ch. 4])
and the Keldysh-Lavrentiev construction that the answer to the above ques-
tion is yes, and in fact K can be chosen arbitrary near 1.

Finally the authors would like to thank J. Heinonen, J. Vaisala, and D.
Sullivan for some helpful conversations.
2. Preliminary reductions

If xe R", we let x’ = (xq,...,X,_) and shall write, x = (x', x,,). We assume
throughout this section that © is a bounded domain of class C* with 0 € Q.
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More specifically, for each y € 9Q there exists s > 0 such that B(y, s)NaQ is
a part of the graph of a four-times continuously differentiable function,
defined on a hyperplane in R”, and B(y,s)NQ lies above the graph. From
compactness and a standard convering argument it follows for each r > 0 that
there exists, y!,y2,...,yN €dQ, such that

N
00 c U B(y',100 and B(,10r)NBG7,10r) = @&,  i#j.
i=1

Moreover, if 0 < r < ry, ry sufficiently small, and y = (', y,) € {»'}Y, then
from the implicit function theorem we see there exists § = 6(+, ), four-times
continuously differentiable on R"~!(8 e C*(R" 1)), with 6(0) = 0, V’6(0) = 0,
such that after a possible rotation of axes:

QN B(y,1000r?) < {(x' + ¥, 0(x") + y,): x' e R" "1},
QN B(y, 1000r?) € ((x' + ¥, %): %, — ¥, > 0(x), x' € R* 1}

Here V' denotes the R”~! gradient. Put

M= max [ max 500,06,
ye{y'}l‘q x€dQNB(y,1000r1/2)
where the sum is taken over all multi-indexes a = (a;,...,a,_;) with
la| = ;.';11 ;, and 0 < |a| < 4. Also, d;, denotes the corresponding partial

derivative with respect to (x)*, x' € R" " !. Given e, 0 < e < 0, < 10~ 3, choose
ro > 0 so small that for 0 <r < r,

Q2.1 M, r'2 < 1073174 < 10 %4,

Again this choice is possible by compactness of 9. In this section and the next
section we allow r, to vary. At the end of this section we will fix g, at a
number, satisfying several conditions, which depends only on 7. r, will depend
on ¢, M, n, and M,, defined below.

As in Section 1 let G be Green’s function for Q with pole at 0 and assume
[VG| =1 on 49Q. Let

M, = max { max ZlaaG(x)l}’

ey (reQ@NB(y, 1000r1/2)

where now a = (o, oy, . . ., a,), 0 < |a| < 4, and 8, denotes the correspond-
ing partial derivative with respect to x*, x € Q. From Schauder’s Theorem (see
[6, Ch. 6]), it is clear that M, < +c. We choose r, still smaller, if necessary,
so that in addition to the above conditions, we have

2.2 M,r2 < 1073174 < 107 %*.
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Let / be the largest nonnegative integer such that 2 /g, > € and put o} = 2~ *g,,
for k=0,1,... Set

E,={xed:1+ 0, <|VGX)| <1+ 04y}, 1<k<<i+ 1,
Ey= {x€dQ: |[VGx)| > 1 + g,}.

Let ¥, 0< ¢ < 1, be a fixed C™ function on R"~! with max,_,y =1 and
support in the unit ball of R" !, to be specified in Section 3. We form a
domain Q' of class C* by adding smooth bumps to dQ. More specifically, let
L be the set of all y e {y'}Y for which

i+1

B(y,100nN U E, # &.
k=0

For fixed y = (3, y,) €L, let j be the smallest nonnegative integer with
2.3) B(y,100NNE; # .
Put

Ex) = 0(x") — ajz.r)\j' 11,[/()\J.x’/r) + Y, X' eR"T

where (N\); is an increasing sequence of positive numbers with \; > 1/0;,
Jj=0,1,..., which will be defined explicitly in Section 3. Also ()\j);’ will
depend only on ¢,. Define Q' by

(G @ - U Bz, 10r) = Q' - U B(z, 10r),
zel zel
(i) 8Q'NB(y, 10r) = {(x' + ¥, &(x")): x" € R*~ 1} N B(y, 10r),
(iii) Q' NB, 107) = {(x' + ¥, x,): x, > £(x')} N B(y, 10r).

Thus for each y € L and smallest j, 0 <j </ + 1, satisfying (2.3), we add a
bump to @ under y, as defined above, to get Q'. Clearly Q' is of class C*.
Moreover, if r, is small enough, we claim as in (1.2) that

(2.4) IVG'(0)| =1, xed®.

Indeed, if x € 9Q’' N9Q, then it follows from the Hopf boundary maximum
principle that (2.4) is true. To prove (2.4) for x €99’ — 8Q, we let, B(t) =
{x'e R""!:|x'| < t}. We shall need the following lemma of Schauder type.
In Lemma 1, ¢, v, are C* functions on B(2), k > 3. Moreover, ¢ < 1/4, and
| * | « denotes the C* norm on B(2). Also, ¢’ = ¢'(s, k), is an increasing func-
tion on (0, «) which depends only on k.
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Lemma 1. Let
H={(x',x,): |x'| <1 and ¢(x") < x, < 1}.

Let u be harmonic in H, with |u| < M; < +, and suppose that u = v con-
tinuously on {(x', ¢(x"))} NOH. Then for k > 3

2 Nogum) <c'(lelavle + Ms),  xeB(O,1/2)NH.

O0<|al|sk

Lemma 1 is given in [6, Corollary 6.7] for C** domains with a constant
depending on H. However, the proof is essentially unchanged if C*¢ is
replaced by C¥, and c’(+) can be used for the resulting constant (see the
remark following Lemma 6.5 in [6]). To prove (2.4) on a bump, we first let

Z(y, 1) = (", xp): %y — yu| <, |x" = y'| < 8}
and note that since ¢ has support in B(1),
2.5) 02" — 3 N B(y, 10r) € Z(y, r\; Y,

whenever y € L and j is the smallest integer satisfying (2.3). Second, observe
from the Hopf boundary maximum principle and (2.5) that to prove (2.4) on
a bump it suffices to show

(2.6) IVG*(0)| =1,  xeZ(y,r\ HNad*,

where Q* is obtained from {2 by adding just one bump at y as above, and G* is the
Green’s function for @* with pole at 0. To prove (2.6) let

F=2Z(y,r\; HhnQ*
and
M, = max |VG*(x)|.
xeF
Then from the mean value theorem of calculus and the fact that G = 0 on 0%,
we deduce
2.7 0<G*-G< cM,,af)\j" Iy

on dQ. Since G* — G is harmonic in @, we see from the maximum principle
for harmonic functions that (2.7) also holds in Q. From (2.1), (2.2), (2.7), and
the fact that

aG(») >

v = RN
G(») (0 3.

we get for x in QN B(y,20r\ Y,
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(2.8) [G*() — [VG()|(x, — ya)l
< CM40,2-)\,-_ 'r+|G() — |[YVG()| (x5 — ¥,
*n G aG
< Mo\ ! T t) -2,
Maoyhy T L,,+0(x'-y') at, ' 1) at, ') | dt

+ VG| 160(x" — ¥
S eMyaiN ' + eMy(\ ' + cMy M (N )
< cMyo;+ N 'r.
Put, B = 10r/)\j,

o(x") = B~ HEPBX") = yu)s x' € B(2),
ux) = B 'G*(Bx + y) — |VG()|x,, xeH,

where H is defined relative to ¢ as in Lemma 1. Using (2.1) it is easily checked
that | |4 < co?| Y|4 + ce®. Since u = —|VG(y)|¢ on 3H N B(1), we find from
this inequality, (2.8), and Lemma 1 with k = 4 that

[Vu@)| < ¢'(|¢])M,07 + coF|VGD)| + ce®|VG()| + ce?)
x € B(0, 1/2) N H, where
c(lold <c'(¥la +1) =c.
From this inequality and the fact that e < 20'j, IVG(y)| = 1, we deduce
2.9) IVG*@)| ~ [VGO)|| < coM, 07 + €,07IVG()],
for xe Z(y,\] )N Q*. Let g, 0 < 5, < 107, be so small that
(2.10) Co+ ;< 10730571,
Choosing x so that
|VG*(x)| = M,,

we conclude from the triangle inequality and (2.9) that

My(1 = cya}) < (1 + ¢, VG()|-
Hence,

2.11) M, < (1 + 2¢003)(1 + ¢,6)|VG()|.
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Now from (2.2), (2.3), we see that |[VG(»)| > 1 + 0;/2. Using this fact, (2.10),
and (2.11), in (2.9), we deduce

IVG*()| = (1 — 2(co + c)od)|VG()| = 1 + %aj.

Hence (2.6) is valid. From our earlier remarks it now follows that (2.4) is
valid.

If
&= [, IV ax,

and

2.12) 0o < € < aln — 1)(;31"295 |v'¢|>2 < o5 11076,

then from (2.1), it follows that

@.13) H*"YZ(y,r\ ) NaQ") = V1 + |V dx’

~[ﬁ(r)\j— 1

4/ -1,n2 ' 8 n-1)
2 jﬁ(rxj- l)\/1 + 0 |VYON T X)) dx' = ealn — 1)(r/N)

= (Jao VI SV )P~ = = e/~
> <1 + i—a;cz - es>a(n — /AP

1

> 5 ojealn = DONHP + HYHZ(r, 17 )N 0).

Given t>e¢, let k be the least nonnegative integer such that ¢ > o,
0 < k<I+1.LetJ = J(k), be the set of all i such that (2.3) holds with y = y*
and j < k. From (2.1) it is clear that

(2.14) H" '{x€dQ: |[VGm)| = 1+1¢} < H""1<UB(yi, 100r)na9>
ieJ

<2 aln — 1)(1007)" 1.

ieJ
Using (2.13), (2.14), and (2.5) we deduce

C3 a‘l‘c

(.15 H"'(6Q') > H"~'(39) + )\n_lH"*l{xe{*)Q: IVG(x)| > 1 + ¢},
k
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where c¢; > 0 depends only on n. Let

)\n_‘;’ Uogt
(7]
n(t) =
C30'4
n—_’i’ Uk<t<0k—1’ k=132,"'
)\k

Clearly 5 does not depend on Q or Q’. Rewriting (2.15) in terms of  we obtain
(1.1).

Next we define the homeomorphism 4 mentioned in Section 1. If ye L and
J is the smallest positive integer for which (2.3) holds, define 4 on Z(y, r) by
h(x) = (x’, h*(x)), where

T+ Y= = YN, =1 =)

+r+y, xe€Z(y,nnNQ
r—=0(x'-y")

h*(x', x,) =
G =)+ r=y)x, +1r—y,)
r+o0(x'-y)

~-r+y,, xe€Z(y,nNR"-Q)

Define A(x) = x in the complement of the union of all Z(y, r) for which (2.3)
holds. We note that & restricted to Z(y, r) = Z is simply a projection by lines
parallel to the x, axis of ZN(R" — Q), ZNQ, respectively onto ZN(R" — Q'),
ZN ', which keeps dZ(y, r) fixed. Thus, 4 is a homeomorphism from R” to
R™ with A(Q) = Q'. Moreover, using (2.1) it is easily checked that

(2.16) (1 — cyop)|x — 2| < |h(x) — h@)| < (A + ¢403)|x — 2],

when x, ze R" and

2.17) |x — z| = ¢402r < |A(x) — h(2)| < |x — 2| + ¢402r,

when |x — z| > r. Also for use in proving (1.9) we shall show for x, z € 0Q, that
(2.18) |hx) — h@)| = (1 — csr'/?)|x - z].

Indeed, suppose x,z€dQ, 5r< |x —z| < 100r*2, xe B(w,100r), and ze
B(y, 100r), where w, y € { y“]’lV . Let 0 be defined relative to y as previously and
recall that B(y, 100072/%) N 89 can be expressed in terms of 8. Let »(p) denote
the outer unit normal to p in 92 and let « denote inner product. Then

_ 1
[p) + v = (L + [V = y)) ™12 > 1 = - Mi|w' = ]2,

Thus if 6 denotes the angle between »(y) and »(w), then
6 <4M;|w' - y'| < 164M,|x — z|.
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Next suppose h(x) = (v', v,) and v’ # x'. Then we can draw the right triangle
with vertices x, h(x), and P = (v',x,). Let /,,/,, and /5 be the sides of this
triangle connecting x to A(x), h(x) to P, and P to x, respectively. Then from
the definition of 4 we see that »(w) is parallel to /;, and so /,, /, form an angle
é at h(x). Also, |x — h(x)| < r, so from trigonometry and the above inequality,

|v) —x'| < rsiné < 164M,r|x — z|.
From this inequality and (2.1) we deduce

|h(z) — h(x)| > [v" = 2|
2 |xl _ zll _ |v/ __xt!
> (1 - cM?ir)|x -z

> (1 —csr'?

)x — z|.

Hence (2.18) is valid when 5r < |x — z| < 10072, If |x — z| < 5r, then (2.18)

remains true as follows easily from the fact that the bumps are greater than

6r apart. If 1007/ < |x — z| then it follows from (2.17) that (2.18) is true.
Finally in this section we fix g, to be the largest number for which (2.10),

(2.12), hold and

1
(2.19) C05 < 3

Note from (2.12) that 0 < g, < 1073,

3. Wolff’s lemma

To prove (1.3) in Section 1 we shall need some definitions. Let Q, be a bounded
domain. If diam Q; = 1, then Q, is an NTA domain with constant A4 if it has
the following properties:

(i) (Corkscrew condition.) For each x€dQ;, 0 <r <A™, there are points
P,(x) ey, O,(x) e R" — Q,, with |P,(x) — x| < Ar, |Q,(x) — x| < Ar, and
dist (P,(x), 3Q,) = A~ r, dist (Q,(x), 0Q,) > A~ r,

(ii) (Harnack chain condition.) For each x, y € Q, there is a path v from x to
y with length (v) < A|x — y| and dist (v(£), 3Q;) = A~ ' min {|v(?) — x],
Iv@® - 13-

In general ©, is an NTA domain with constant A, if a scaling of it with diameter

1 has constant 4. Q, is said to be Lipschitz on scale ¢ with constant A, provid-
ed for each z € 9, , there is a coordinate system such that dQ, N B(z, ) is the
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graph of a Lipschitz function defined on R" ! with Lipschitz norm less than
or equal to A. Moreover, Q; N B(x, t) lies above the graph of this function.

Now suppose for some w € dQ; and ¢ > 0 that after a possible rotation of
coordinates,

3.1) I NBw,t) = {x:x,=w,} NB(w, 1)
QNBw, 1) = {x:x,>w,} NB(w,1)

Let p < 0 be a C™ function with support in B(1), suppose \ > 2max ,_, | p|
+ 1, and define @, D Q, as follows:

(a) Q1 - B(W’ t) = QZ - B(W’ t),
(B) 02, NBw, 1) = [(x' + W, w, + tX"'pt~ \x)): x' e R"“ 1y N Bw, 1),
© QNBW, 1) = {(x'+ W,x): X, > w, + N 'p(t~"\x")} NB(w, 1).
Let 5 be the continuous harmonic extension of p to (R * = {(x’, x,): x,, > 0}
and put

a

_ ap 3 ,12 ap
A(p) = jkn—1<<5§;> 3|v'p| ox

n

>(x’, 0)dx’

where V'p, as in Section 2, is the R” ™! gradient. Next if d = diam Q, , we assume
3.2) B(0,d/A) € Q, < B(0, Ad).

Denote Green’s functions for £y, Q,, with pole at 0, by G;, G,, respectively,
and let w; be harmonic measure on @, with respect to 0. If 9Q, is sufficiently
smooth we observe that

w (E) = an |VG,|dH" !, E Borel.
1

Then Wolff proved [14, Lemma 2.7].

Lemma 2. Let Q, be NTA and Lipschitz on scale t with constant A. Suppose
Q, satisfies (3.1), (3.2), and Q, is obtained by adding a bump to Q, as in (a)-(c).
If A(p) <0, then there exists \* = \*(A,p), ¢ = cs(A, p), such that for
A= N%,

LQ VG| log |VG,| dH" ' < Ln VG| og [VGy| dH" " = <561 BOw, 1),
2 1

Actually Wolff proves this Lemma only in R?, but the proof for R", n > 3,
is essentially unchanged. To show the existence of p < 0 for which A(p) <0,
Wolff first shows that A(g) < 0 for n = 3 when g(x') = —|x' + e5] "}, x' e R?,
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ey =(0,0,1). In view of this function, the natural function to consider for
nz3is

qx) = —|x'+e)*"", e,=(,...,0,1), x'eR"'l
for which g(x) = —|x + ¢,|>~", xe (R"*. Then
AMg) =@ - Dn-2Pamn-1) j (r* + )72 - 3r®r"~2dr
0

_(n=1)(n- 2)*a(n — DI'(n — 1/2)I'(n/2 — 1/2) <o
4T'(3n/2) ’

where I" denotes the Euler gamma function and the integral was evaluated
using the substitution r = tan 6, as well as, the beta function. Let $,0 < ® < 1,
be a C* function on R"~! with support in B(2), |V'®| < 1000, and & = 1 on
B(1). Now if

dn(x) = ®(m~ 'x)qx"), x'eR"",

then it follows easily from properties of conjugate harmonic functions (see
[13, Ch. 6]) that

A(Gm) 2> Alg) as m— oo,

Taking a suitable dilation of g, for large m, we get p < 0 in C°(R"~ ') with
suppp S B(1), and A(p) < 0.

We now define ¢ and (\;)g introduced in Section 2. Let ¥, 0 < ¢ < 1, be a
fixed C*(R" ') function with support in B(1), max,_, ¥ = 1, and A(¥) > 0.
Recall that o4, = 2"‘00, k=0,1,..., and define \; as follows: let A = 200 in
Lemma 2 and p = —o}y. Let N}, = max {0, ', b, ', \!}, k=0,1,..., where
by = ¢6(200, —a2¥), \f = N\*(200, —o2y). Put\,, = max,_, ., M, m=0,1,...
and note that (\;); depends only on 7 since o, and ¢ are fixed.

Let 2,Q,¢,r,L, and (Ek)f)+ 1 be as in Section 2 and suppose also that Q is
NTA with constant 100. Moreover, we assume B(0, p) € 2 < B(0, 2), where p
is as in (1.4). From our choice of r we see that Q is Lipschitz on scale r/? with
constant 2. In order to apply Lemma 2, we need to add flat bumps under each
yelL. For fixed y € L let j be the smallest nonnegative integer for which (2.3)
holds, i.e.

B(y, lOOr)ﬂEj .

Suppose that L = {z;,25,...,Z,} andput L, = {2y,...,2¢}, 1 <k < m.For
fixed y e L we assume that B(y, 1000r?)NQ, B(y, 1000r?)NaQ, can be
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expressed as in Section 2 relative to 6. Let

’

fx) = —100M1r2<I><-)—cr—,> + <l - <I><£r—>>0(x’) +Y, X' eRMTY
() = Ex) — or T O /), x'eR"1,

where & was defined earlier in Section 3 and M, is as in (2.1). Define €,
1 < k< m, as follows:

@ 0, - U Bz, 10 =0 - | B(z, 10r),

zeLk zZ€L,
1 30U NB(y,10r) = {(x' + ¥, Ex"): x’ € R* 1} NB(y, 10r),
i QN By, 10r) = (' + ¥, %,): X, > E(x)} N B(y, 107),

for each ye L. 8, 2%,,, 1 <k < m, is defined similarly by

@ Q- U Bz, 10 =9, - U B(z,10r),

zeL,c Z€L,
419) a0, NB(y,10r) = {(x' + ¥', E(x")): x’ e R"~ '} N B(y, 10r),
(0] & NB(y,10r) = ((x" + ¥, %,): X, > E(x)} N B(y, 107),

for each y € L. From (2.1) and the definition of Q' we see that 2,29,8,2
', Using the fact that Q is NTA with constant 100 and local smoothness of
Q, O, it is easily checked that ., 0., 1 <k < m, are NTA and Lipschitz
on scale r with constant 200. Let O, = @, O, = Q,,. We first apply Lemma 2
witht =r, @, = Oy, Q, = Q,, after a possible rotation. We next apply Lemma 2
withQ, =0, and Q, = Q,, ..., etc. Let Gy, Gy, &, &, be the Green’s functions
and harmonic measures relative to 0 for €, , ;. Applying the above argument
m times we obtain an inequality for G,, = G, and G,,. Using the definition
of (\pg , we conclude

(3.3) j |VG,,| log |VG,,| dH™ 1
a0,

m-—1
< Lﬁ VG| 10g [V dH" ™" = O, )™ 7P 3 &4(Bli 11, 21).

m

Next we define a function 7 on [0, 1] by 7(s) = min {\;: 0, <5}, 0<s< 1.
Choosing ry still smaller, if necessary, we assume, as we may, that for 0 < r < r,

(-4 r/1 < (7@,

Note that 7(e) = N,
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To prove (1.3) we must show that G,,, G,,, in (3.3) can be replaced by G,
G’, with an error term at most,

m-1
cr(e)™ "D 3 @r(B(zy, 2r)).
k=0

To do so we introduce Q}, 0 < k < m, defined by, Qg = @', and for 1 < k < m,

a Q- U Bz, 10n=Q" - |J B(z, 10r),

zeLk Z€L,
ar) 00, NB(y, 10r) = {(x' + ¥, E(x"): x' e R*~ 1} N B(y, 107),
(I1r) Q. NB(»,10r) = (X’ + ¥, x,): %, > E(x")} N B(y, 107),

for each y € L, . Denote the corresponding Green’s functions and harmonic
measures relative to 0, by G, wk, 0 < kK < m. We shall also need the follow-
ing facts about the NTA domain @, with constant A satisfying (3.2). If
z€0dQ,, then

(3.5 c(A) 'w;(B(z,)) "2 max G,
B(z,H)NQ,

< (A" 2G,(P)
< c(A)w,(B(z, 1)),

for 0 <t <A™, where P, = P,(z). Moreover,
(3.6) w(B(z, 2¢)) < c(A)w,(B(z, 1)).

(3.6) is called the doubling inequality for harmonic measure. If z €99, and
u, v are two positive harmonic functions in Q, which vanish continuously on
0Q, — B(z,t), and P, = P,(z), then for xe Q, — B(z, 2t)

3.7 c(A) ™ u(PY/v(P) < u(¥)/v(x) < c(Du(Py)/v(P,).

Moreover, (3.7) is valid when u and v vanish on d2; N B(z, 2¢), and x € B(z, f)
NQ,. (3.7) is called the rate inequality. Finally there exists p = p(A4) > 0 so
that for z and P, as above, and xe B(z,t)NQ,,

(3.8) G,(®) < c(|x — z|/t)"G,(P)).

For the proof of (3.5)-(3.8) see [8, Sections 4 and 5].
From (3.5), (3.6), (3.8) with t = A~!, and the fact that w,(B(z, A~ 1) >
c(A)~ !, when z€9Q,, we see there exists »(A4), 0 < » < 1, with

(3.9) c(A) " < 0 (B(z, 1) S c(A)* "%, 0<t<A™L
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We claim that

m—1 m—1

(3-10) 2, 0B +1,60) < C]Z:O wg (B +1,60),

whenever * and + are elements of {*, ~,’}. Indeed from our construction
and the maximum principle for harmonic functions we have,

Go(B(x 415 6r) — B2 41, 2r)) < (B2 4 15 6r) — Bz 4 1, 2r))

<
< @y (B(Zg 41, 6r) — B(Zg 4 1, 27)),

when0<j<m, 0<k<m—1,and * € {", ~,’}. Summing and using the
doubling inequality it follows that

m—1 m-1 m-—1
C—l kZO ‘:’O(B(zk+ 1 6’)) S kZO w:(B(der 1 6r)) < ckZO ‘:’m(B(zk+ 1 6r))

On the other hand, from the maximum principle we deduce

m—1 m-—1
kZ(‘ J)m(B(zk+ 1 67')) S kZO (:)O(B(zk+ 1» 6’))

Hence our claim is true. We shall show for 0 < k < m — 1 that

(3.11)[ |VG|log |[VG| dH" 1
any
<[, 19Ck 089Gk | dH 4 e 20 By 6,
k+1

(3.12) LQ |VGy . 1| log |VGy | dH™ !

k4t

< j VG| log |VG, | dH" ™ + cr'/?6,(B(zg 4 1, 67)).
a9,

Summing (3.11) and using (3.10), it then follows that

(3.13)J |VG'|log |VG'| dH™ !
aq’

m-1
< J VG| log VG| dH" "1 + er'? 3] & (B 41, 67)),
an k=0

where we have used the fact that Q) = Q,, @, = 0,,.
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Summing (3.12) and using (3.10), we find

(3.149) jﬁ |VG,,| log |VG,,| dH™ !
a m

m-—1
< j |VG|log |VG|dH" " + cr'’? 3 @ (B(zi+ 1, 67),
a0
k=0

since @, = Q. Putting (3.13), (3.14), into (3.3) and using (3.6) we get (1.3)
provided r, is small enough, thanks to (3.4). Thus (1.3) is true once we prove
(3.11)-(3.12).

We prove only (3.11), (3.12), for k = 0, since the proof of all the other in-
equalities is the same. To prove (3.12) for k = 0 we first observe from (3.5)
that

(3.15) max G, < cr?”"%,(B(zy, 67)).
B(z1,6r)ﬁf21

Using (3.15), (2.1), and applying Lemma 1 with k£ = 4 after scaling B(x;, 6r)
N§,, we find for x, y in the closure of B(z;,3r)NQ;,

(3.16) IVG1(0) = VG| < c|x = y|r™ ", (B(zy, 6r)),
while from (3.15), a barrier argument, (3.5)-(3.6) and (ii), we have
(3.17) ¢~ "6, (B(zy, 6r) < VG, (%)| < cr' ™ "%, (B(zy, 61)).
Clearly (3.17) and (3.9) imply

(3.18) |log |VG,(¥)|| < —clogr,

when x is in the closure of B(z;, 3r) N, . Using (3.16)-(3.18), (3.6), (2.1), and
parametrizing Q and 0, in terms of § and £, for y = z;, we obtain with
21 =D £= (" + Y, 6, x = (X" + ), 0(x") + y,),

(3.19

J |VG,|log |VG,|dH" ! —J |VG,|log |VG,| dH™~*
dQNB(z,, 30 8Q,NB(z,,3n

< [, IV 108 VGl VT + [FOGAT T+ [VEGIT | ax
Gn

+ L(3)Ilvéll(x)— |VG,|(®)||log |VC, ()| V1 + [VE)|? dx’
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+ L@ | |VG1|(®llog |61 ()| ~ log |VG, (]| V1 + [VEG)I* a

cM3r*logr — cMrlogr + log (1 + M;r))d, (B(z,, 6r))

(_
cr'24,(B(z,, 67)).

<
<

Next from (3.17), (2.1) and the fact that each point of B(z;, 6r)NaQ, lies
within 200 M, r* of a point of B(z;, 6r)NdQ, we get

(3.20) (G, — G)(x) < cM,r* ™", (B(zy, 6r))

for x € 0Q. From the maximum principle for harmonic functions and the fact
that Q@ < Q,, we conclude this inequality holds in Q. Let ¢(x’) = 0(6rx’)/6r,
and define H relative to ¢ as in Lemma 1. Put

u(x) = %(G}(er +z)—-G6rx +7z))), xeH,
610) = - E67) - 7,
H; = {x:1|x'| <8,¢,(x") < x,<2},
u,(x) = glr—él(6rx +z1), xeH,.

We note from (2.1) that
(3.21) max { [ |4, [¢1]4} < cMr.

Using (3.20), (3.21), we first apply Lemma 1 with u, H, replaced by u,, H,.
As in (3.16) we get

(3.22) > |8au;(0)| S cr'""@,(B(z,6r)),  xeH.

0<|a|=<4

Wenote that u; = 0on dH; N {(x',¢,(x")} and u = u; = yondH N {(x’, p(x))}.
Using these notes and (3.21)-(3.22) we deduce

3 3
(3.23) 2 0 v( e = 20 [0 (x', () — uy (x', &1 ()]

lal=0 lal=0
< cM,r*~"%,(B(z,, 67)).

Applying Lemma 1 to # and H, with k£ = 3 we find from (3.20)-(3.23)

3
>0 10,u()| < cMyr? "6, (B(zy, 6r)),
la| =0
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for x € B(0, 1/2) N H. Hence if x € B(z;,3r)N{Q, then
(3.24) |VG, — VG|(x) < M, r*~ "%, (B(z,, 61)) < ¢|VG,(X)| M,

where the last inequality is just (3.17). From (3.24) and (2.1) we obtain

(3.25) j |VG|log|VG|dH"‘1—J IVG,| log |VG,| dH™
dQNB(z, 37 dQNB(z,,3r)
sj 19G] - |V64]| llog [vG| dEr*~* +j 96|
9QNB(z,,3n 90NB(,, 37
G| >‘ »
X log<———=—— dH"
VG|

< —cM;rlogr & (B(zy, 61)) + &1(B(z;, 6r))log (1 + cM,r)
< er'?4,(B(zy, 67)).

Let P = P,,(z;) and let G(-, Y) denote Green’s function with pole at Y e Q.
Following Wolff (see [14, (2.7)]) we first note fom (3.20) and the rate inequality
(3.7) with u = G, — G, v = G(+, P), t = 2r, that

G(x, P)" (G, - G)(x) < cM,r&,(B(z,, 67)), xeQ - B(z,, 3r).

Second, given w in 0Q — B(z,, 3r), we apply the rate inequality with u = G(+, P),
v=G(s, P,(W), t =2|w—z{| in @ — B(zy, 1), provided 0 € Q — B(z,, 2t). We
get for x =0,

t""2G(P,(w), P) < ¢G(0, P)/G(0, P,(w)).

If 0 € B(z;, 2¢), then it follows easily from Harnack’s inequality and ¢ > p/2
(since B(0, p) < Q) that

G(P,(w), P) < ct*~"G(0, P).

From the above inequalities, (3.8) and Harnack’s inequality, we find for
P, = P(w),

G(P, P) < ct>~"(r/1)".

Third, we use the rate inequality in B(w, 107 3/)NQ with u = G(+, P), v =
G, (¢, 0); the above inequalities, (3.5) and (3.6), to obtain

r~ 1@, (B(zy, 6r) " 'M[ (G, - G)®)G,(x,0) "' < cG(x, P)G,(x,0)*
< c(r/ty @Bz, 1))~ 1,
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for x € B(w, 10~ 3) N Q. Letting x — w and using (2.1) we conclude from this
inequality that

(3.26) ([VG,| VG, - VG|)(W) < cr¥**#4,(B(z;, 6N)(@1(B(z1, 1)) ™Yz — w| -
Now

(3.27) ' [ VG| log |VG, | dH™ !

n-1_
an_B(zp3r)|VG|log|VG|dH j

3%, - B(z;,3n

< [0 ste, 591761 = VGl llog |¥G | aF" !

+ jan_ml,s’) VG| |log (IVG|/|VG, )| dH™ 1

=Il+]2'

If F, = B(zy,3%*'r) — B(zy,3%r), k= 1,2, ... then from (3.26) we have

L< 2, IVG| - |VG,| |log |VG||aH" !
K=1JF,nag

< -cr3/4+“logr6)1(B(z1,6r))< >, k3"“‘>r""
K1

< or'%6,(B(zy, 67)).
A similar estimate holds for 7,. Using these estimates in (3.27) we get

(3.28) } [ VG| log |VG,|dH™ !

n—-1_
aﬂ_B(zpy)IVGlloglVGldH |

3%, - B(z;,3n)
< cr'?6,(B(zy, 61)).

Next, since
@1 (B(zy, 6r)) < @(B(zy, 61)),

we can replace &, by @, in (3.28), (3.25), and (3.19). Doing this and combining
(3.28), (3.25), (3.19), we conclude that (3.12) is true for £ = 0.

To prove (3.11) for k = 0, let j be the smallest positive integer such that
EjﬂB(zl, 10r) = . Putr' = 10r/)\j and let z € B(zy, 6r) N 027 . Then it is easily
checked that (3.16)-(3.18) hold with G, &,,r,z;, replaced by G}, w}, 7,2,
respectively, when x, y € B(z, 3r'). Now from (3.4) we have

r r r r
3.29 A N
(3.29) TR Wl VT
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where
1 33
<

L R s
Y= Y 6= S22

Let z* be the point in 9Q’ obtained by projecting z in the rotated x,, direction
onto dQ'. Then from the new version of (3.16)-(3.18), and the fact that

|z — z*| < 200M,r* < 1,
thanks to (2.1), (3.29) we find

[(IVG1|log |VGi|)(z) — (VG| log |[VGi|)(z*)|
< [IVGi|(@) = [VGil(z*)| logr' + |VG1(2)| log (IVG1|()/|VG|(z*))]
< —cM,r*log (r)(|VG@)|/r).

Using this inequality, (3.29), and parametrizing dQ’, dQ}, we get as in (3.19)
(3.30)

’ ' n—-1 _ ’ ’ n-1
|VGY| log VG| dH jmm(zps’) |VGY|log VG, | dH

’ J&ﬂ’ﬁB(zl,Sr)
< cr'?w! (B(z,, 67)).

Next suppose z € 02’ and observe as in (3.20) that

(3.31) (G} — G")(2) < M r*(r')' ~"w!(B(zy, 6r') < cMyr*(r')' ~"w) (B(zy, 67)).

It follows from the maximum principle for harmonic functions that (3.31)
holds in Q'. If z = (Z + ', £&Z)) € 3Q’, put

1
6r'

¢'(x") = — (§(6r'x’ + 2) — &(2)),

H' = {x:|x'|<1,¢'(x)< x,< 1},
u'(x) = %(G’l(&’x + z) — G(6r'x + 2)), xeH',
1 -
P1(x") = F(E(&le +2) — &),
H| = {x:|x'| <8,¢1(x) <x,<2},

1 _
u’1=€r—,G’l(6r'x+z), xeHj.
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We note that

lo'la + |P1la<c,
l¢" — d1la < cMyr.

Using these inequalities in place of (3.21) and Lemma 1 we get

2 10,u1 ()| < c(r)! T (B(z, 6r') < o(r')! w0} (B(2y, 6r))

0<|c|<4
in H'. Also, as in (3.23), we see for ¥’ = v’ on dH'N {(x’, '(x"))}, that

3

7 0LY|(x) < M r(r')' ~"wy (B(zy, 67)).
|l =0

From this inequality, (3.31) and Lemma 1 it follows as in (3.24) that

(3.32) |VG} — VG'|(¥) < cM,r¥(r') " "' (B(zy, 61))

<
< M, (r*/r)wi (B(zy, 6M)(w1(B(z1, 6r)) ™ VG ()],

x € B(z,3r'YNQ’. We cover 8Q' N B(z,, 3r) by at most c(r/r')" ~ ! balls, B(z, 3r"),
z€dQ' N B(z,, 3r). Using (3.32) in each ball and arguing as in (3.25) we have

(3.33)

|VG’| log |VG'| dH" ! —j VG| log |VG,| dH™ !

I J.aﬂ’ﬂB(z’ljr) aQ'NB(z, 3r)

< —cMir(r/r')*log r v} (B(z,, 6r))
< ar'?w)(B(zy, 6r)),

thanks to (3.29) and (2.1).

At this point we can use (3.31) in place of (3.20) and repeat the argument
following (3.25) in the proof of (3.12) (for k = 0), since only NTA estimates
were used. From (3.28) with G, G,, &,, replaced by G’, G}, wj and (3.30),
(3.33), with w) replaced by wg, we conclude that (3.11) holds when k£ = 0.
From our earlier remarks we now deduce that (1.3) is true.

4. Proof of Theorem 1

Recall that ¢, 0< ¢ <1, is a fixed C® function with support in B(1),
max,_, ¢ = 1, and A(Y) > 0. Also g, 0 < g5 < 1073, was chosen to be the
largest number for which (2.10), (2.12), and (2.19) are true. Finally, given e,
0 < e < gy, we note that ry = ry(e, My, M,), was chosen so small that the in-
equalities in Sections 2 and 3 are true for 0 < r < r,.
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We elaborate on the induction argument for the construction of D which
was outlined in Section 1. Let D, = B(0, p), where p satisfies (1.4). Put ¢, = g,

and ¢ =2"%,, k=0,1,2,... Choose a covering, L, = {B(Zp:lo)},
1 < i< kg of dD, such that ty; < 1/2,i=1,2,...,k,, and
ko 1
a(n—1) 3, 15" <H""'(@0Dy) - -
i=1

By compactness of D, we may assume k, < . Let 2r; > 0 denote the dist-
ance from D, to R" — U*B(zy;, t,). We set @ = Dy, € = ¢;, and apply the
results in Section 2 with r = r;, where r; is the smaller of 10'9p,r’1, and
7o = ro(e;, My, M,). Here M,, M, , are defined relative to D,, G,. Let D, = Q'
be the domain cobtained by adding smooth bumps to D, and h; = & the
homeomorphism from R” to R", which satisfies (2.16)-(2.18) with r = r;.
Moreover, h;(dD,) = dD;. By induction, suppose for some m > 1 we have
defined sequences: (Dy)y', (L), )Y )]s ()T - Let Ly, 1 = { Bz tmi)}'fM,
be a covering of dD,, such that ¢,,; <2~ ™*Y 1<i<k,, and

km
4.1 an— 1) t% VS H" " @D,) — 2~ ™*h
1 .

Let 2r}, . ; > 0 be the distance from 8D, to R” — U*7 B(z,,;, t,5,). Let @ = D,,,
€=¢€p, and r=r,,,,, where r,,,, is the smaller of 10~ *"r,,p, r) ., and
ro(€n + 1, My, M,). Here M,, M,, are defined relative to D,, G,,. Adding
smooth bumps to Q as in Section 2 we obtain D,,, , =Q'2 D,, and h,,,; a
homeomorhism from R” to R" which satisfies (2.16)-(2.18) with r=r,,, ;.
Moreover, A, ,(D,,) = dD,,, ;. By induction we get, (Dy)y, (Hy)y, ()7
(r)7> and (h,)7. From our work in Section 2 we see that (1.1), (1.2), are true
with , @', G, G', replaced by Dy, Dy . 1, Gy, Gy, , respectively, k = 0,1, ...

We claim that D;, k=1,2,... is NTA with constant 100. Indeed, since
0<y<1andr,<10™%*p, k=1,2,..., it follows from the definition of
Dy, by way of the triangle inequality, that

4.2) B(0,p) € D, = B(0,2p), k=1,2,...

To prove D, satisfies the corkscrew condition (i) in the definition of an NTA
domain, we proceed by induction. If 0 <s<p, and z€dD,, note that
B(z,s)N Dy, B(z,s) N(R" — D,), each contain a ball of radius s/4. From this
note and the fact that dD,; lies within r; distance of dD,, we deduce for
4ri’*> < s < p, and z € D, that B(z, s)ND,, B(z,s) N (R" — D,), each contain
a ball of radius,

1

S
a-r) T > Zs(l -2ri" =s,.
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If 0 < s < 4r1’?, then from our choice of r, = r, we have z € B(y, 100r,), for
some y € { y'}Y. Moreover, B(y, 1000r;"*) N D, , B(y, 1000r;"*) N3D, , can be
expressed as in Section 2 relative to £. From (2.12) and (2.1) we observe that
|[V&| < 1073, Using these facts and a little geometry it is easily seen that the
above inequality remains valid when 0 < s < 4712, By induction, suppose we
have shown for some m > 1, that if zedD,, and 0 < s < p, then B(z,s)ND,,,
B(z,s)N(R" — D,,), each contain a ball of radius

4.3) -}Ts(l -2 r}/2> =5,

k=1

If 4r}/2 < s<p, and z€dD,,, , then since 3D,, , , lies within r,,, ; of 3D,,,

we deduce from (4.3) that B(z,s)ND,,,, B(z,s)N(R" — D, . ), each con-
tain a ball of radius

1 < 1/2 1 mEl 172
Z'(S_rm+1) I - erk “rm+l2z_s l_zkglrk =Sm+1-

If 0<s<4rl? , it follows from local smoothness of D,, ., that B(z,s)N
D, .., B(z,s)N(R" - D,,, ), each contain a ball of radius s,,, ;. Thus by
induction we have shown for zedD,, k=0,1,..., that B(z,s)ND,

B(z,s)N(R™ — D,), both contain a ball of radius

1 ° L\ 1
Sk>zs<1 —ZmEIr:n >2—8~S,

when 0 < s < p. Scalling D, to have diameter 1, we see that (i) in Section 3
holds with A = 16.

To prove (ii), we proceed similarly. Suppose by induction, we have shown
for some nonnegative integer m that whenever x, z € D,,, we can join x to z
by a curve v with parameter interval, [0, 1], in such a way that v(0) = x,
Y(1) =z, and

(4.4) (o) dist(v(?),3D,) > -116<1 - 25] r}/“) min {|v(#) — x|, [v(?) — 2|},
=1

4.5) (b length v < 3(1 + 2, r}/4>|x -z
k=1

In case m = 0, replace the sums in (4.4), (4.5) by 0. From inspection we see
that (4.4), (4.5) hold when m = 0, since D, = B(0, p). Next suppose x,z€D,, , ;
and 4r/2 < |x - z|. Since D,, € D,,, , we note that (4.4) and (4.5) hold

m+1

trivially unless either x ¢ D,,orz ¢ D,,. If x ¢ D,,,thenxe B(y,r,,, 1) ND,, .1
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for some y e { yj}’lv, yeaD,,, and x = (x’, x,) in the corresponding rotated
coordinate system. Put x* = (x’, x,, + r,, . ;) and observe that x*eD,,. If
x € D,,, we also let x* = x. Applying the same argument to z we get x*,z* e D,,.
Let v* be the curve joining x* to z* which satisfies (4.4), (4.5). If x # x*, we
modify v* as follows. Let #,, 0 < #, < 1, be the largest ¢ with v*(¢) e B(y,r/% ).
If v*(t)) = w= (W', w,), we join x, w, to X=(x",y, +r’t), w=Ww"»,
+ r3/4 ), respectively by line segments, /;,/,. We then join ¥ to w by a line
segment /. Let /; + /, + I; denote the resulting curve from x to w with parameter
interval [0, #,). If z ¢ D,,, we see there exists € { ' }le and largest #;, 0 < 7, <
t; <1, such that ze B(J,r,,. ), and
(Y*@:0<t< ;) NBG, ) = D.

m+1

As above, we get line segments [}, [, [, with [} + I, + [; joining v*(¢,) to z.
Moreover, [; + I, + I has parameter interval [¢;, 1]. Let ¥ = ¥* on [#y, ;] and
if x ¢D,,, then y=1+ L, + /5 on [0, #,]. Otherwise, ¥y =v* on [0, f,]. If
z ¢D,,,theny =1, + L, + L on[t,, 1], while if ze D,,, then 4 = v* on [t,, 1].
From (4.5) we deduce

4.6) length 4 < length v* + 10734,

m
< 3<1 + > r}/4>|x* —z*| + 10r¥4
k=1
m
<3<1 + > r}/“>|x—z| +12r4,
k=1

m+1
< 3<1 + > r,‘/“)lx— z|.
k=1

Moreover, from local smoothness of dD,, , ; it is easily checked for ¢ € [0, 7]
U[#, 1], that

m+1
dist (10, 0D 1) > - (1 2 r}/‘*) min (15 — ¥, 15 — 21).

If ¢t € [t,, t,], then by construction

min {|9() = x|, [9() = 2|} 2 /%1 = Tmas

/4
>

NI'——‘

Using this inequality, (4.4), and the fact that v* = 4 on [¢,, ¢;] we get for
telt, 4],
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(4.7) dist (5(2), 0Dy, ,. 1) 2 16< ; 1’4>mm{|7(1)— x*[,13() — z*[}

1 m
>]g< ; W)mmuﬂn—ﬂlﬂn—d} ?gl

1

m+1
> L (1—2 5 "‘*)mm (156) - 1, 15 — 21}.

If |x — z| < 4rk? , then from local smoothness of 3D, , ; , we see there exists

4 for which (4.6) and (4.7) hold. Thus by induction, we obtain (4.4), (4.5),
form=0,1,2,... Since X7 r;* < 1/10, we conclude that D,,, m =0, 1, ...,
is NTA with constant 100. From this fact, (4.2), and our work in Section 3
we now find that (1.3) holds with @ =D, @' =D, .., k=0,1,...

Next let hy(x) = px, and f =h 0o hy_,©---0h,. Then f; is a homeo-
morphism from R” to R” with f,(S) = dD,. From (2.16), (2.19), and itera-
tion, we find
4.8) 27%plx — 2] < p(1 — c400)*|x — 2

< |fe®) - £ @)

<ol + ¢409) x — 2|

< p2%x — 2|,
for x,ze IR" If ri< |x — z| for some j > 1, then from (4.8) and the fact that
re 1 <107 rkp, we deduce for 7 > j,

re1 <27 'plx — 2| < | fi¥) - £i@)].

From this inequality, (2.17), (2.19) and iteration we find for k > j,

k k
S@-5@I =5 % m<IA® L@ <@L +5 3w

2m 2m1+1

Using the above inequality, (4.8) with j = k, and the fact that
m§}+lrm < plO_jrj < pl077)x — 2,

we get

4.9) 279" Vplx — 2| < | fie®) = fie@)| < 027" |x — 2]

Given B €(0, 1), we have

2 <e(B)lx - 2P,
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whenr, < |x—z| <r;_;,j=2,3,... for some c(f), independent of ;. Here
we have used, r,, < clO””’z, m=1,2,..., which follows easily from our
choice of (r,,)7. Using the above inequality in (4.9), we obtain

c(B)x — 2]V < | £ ) = fi(D)] < c(B)|x — 2]°,

for |x — z| < 1/4. Hence (1.5) is true. As in Section 1 we put D = UgD; and
choose a subsequence ( f,,k) of (f;) such that ( f,,k) converges uniformly to fon
compact subsets of R”. We claim that D is not a sphere. Indeed, since max,_, ¥
= 1, and (2.1), (3.4) hold for r,, €,, D, , we see that if p; = p + (2\;) " '02r;, then
D, N(R" — B(0, p,)) # &. Also, by construction, there exists x, € 3D, with
|%o| = p. Using the definition of (r,,)7 and the triangle inequality we see that
f(xy) €3D and | f(xp)| < p, . Therefore, D is not a sphere.

It remains only to prove (1.9) in order to obtain Theorem 1 from the
remarks in Section 1. To this end let

pj(x) =fof_‘,'_ l(x) = ,}i;{?ohnk ©-..-0 hj+1(X),

when x e aDj and j = 1,2,... Iterating (2.18) we deduce that if

e= I (- esr/?),
m=j+1
then
elx =y <|p;) - p;O,  x,y€dD;.
If q; denotes the inverse of p; it follows that

(4.10) lg;,(0 — g (M| < e M|x -y,

when x, y € dD. Next we use Kirsbraun’s Theorem ([5, 2.10.43]) to extend q;
to R” (also denoted g; in such a way that (4.10) holds whenever x, y € R".
From (4.10) it is easily seen by comparing coverings of each set that

4.11) H" Yq.(F))<el""H""Y(F), FcR"
J J

j=1,2,... Let g0 be a continuous function on R”, and put »(E) =
H"~!(g; '(E)N3D). Then from (4.11) with F = g; '(E)NaD, we have

H""YEN3D) < e;~"v(E).

Also from the usual change of variables formula [5, Thm. 2.4.18] and the
above inequality we get
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n—1 n—-1 _r n—1
(4.12) e’ angdH gngdu_JaDgoqjdH .

Letting j— o, je(ny)], we obtain from the definition of ()] that e~ 1,
while

jaDg ° qden_ - LngH”‘l,

since qn, (%) ~ X, uniformly on compact subsets of R". Hence from (4.12) we
have

(4.13) limsupj gdH"‘lsj gdH" !,
oD, aD

k— o

On the other hand from our choice of (r,)T we see that L,,, m =1,2,...,is

n—1

a covering for D. Thus if ¢5 " is as in Section 1, then
$3-m(@D) < H"~'(8D,) — 27"
Letting m — o, we find

(4.14) H"~ (D) < liminf H"~'(3D,),).

m—x

From (4.13), (4.14), it follows that if 0 < g <1 on D, then

H"~'(3D) < liminf H"~'(3D,, )

k-

sliminfj gdH"'l-i-limsupj‘ (1-gdH"!
oD, oD,

k—w ko )

glimsup‘[ gdH"“+§ (1-gdH"!
aD,, D

k—e

gJ gdH"-u-f (1 -g)dH" !
aD aD

= H"~(8D).

Thus equality holds everywhere and so

k— o

(4.15) limj gdH”‘l=J gdH" !
aD,, aD

when 0 < g < 1. In general we can write, g = ag, + b, where 0 < g, < lon D,
for properly chosen a, b € R. Applying (4.15) to g;, 1 we find that (4.15) holds
when g is continuous on R”. Hence, (1.9) is true.

The proof of Theorem 1 is now complete.
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Hardy Spaces and
Oscillatory Singular
Integrals

Yibiao Pan

1. Introduction

Consider the oscillatory singular integral operator 7T':
) Tf() = p.v. [, e K(x - y) f(7) dy,

where (Bx, y) is a real bilinear form, and K is a Calder6n-Zygmund kernel,
i.e. Kis C' away from the origin, has mean-value zero on each sphere centered
at the origin and satisfies

K| < Clx|™" and |VK(9)| < Clx] ™"

It is proved by D. H. Phong and E. M. Stein in [PS], that 7" is a bounded
operator on L” spaces, with bound independent of B. They also introduced
some variants of the H' and BMO spaces (denoted by H}E and BMO,, to
avoid the confusion with the standard H' and BMO). Analogous to the fact
that the classical singular integral operators are bounded from H' to L!,
Phong and Stein showed that T extends as a bounded operator from H}E to
L'. This fact was then used to prove the L” boundedness by interpolating
between L? and L, (see [PS]).

The object of our study is a more general class of oscillatory singular
integral operators. An operator in this class is obtained when the bilinear form
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in (1) is replaced by some real-valued polynomial in x and y. These operators
have arisen in the study of Hilbert transform along curves, singular integrals
supported on lower-dimensional varieties and singular Radon transforms, etc.
F. Ricci and E. M. Stein have proved in [RS] that an operator of this kind is
bounded on Z” spaces, with bound depending only on the total degree, not
on the coefficients of the polynomial. The fact that these operators are of
weak-type (1,1) was subsequently proved by S. Chanillo and M. Christ ([CC]).

It is our goal in this paper to establish a Hardy space theory for the class
of oscillatory singular integral operators with polynomial phase functions.
Given such an operator

@ Tf(x) = p.v. [, e""VK(x = ) () dy,

where P(x, y) is a real-valued polynomial, we will define the space H115 as some
variant of the standard H' space, and this space H}, is closely associated with
the given polynomial P(x, y). First let us give the definition of the ‘‘atoms’’:

Definition. Lef Q be a cube with center Xq, anatomisa function a(x) which
is supported in Q, so that

1

10l

la(x)] <

and
J 0 e'PéeVa(y)dy = 0.

The space H}, consists of the subspace of L' of functions f which can be
written as f = 2 \;a;, where a; are atoms, and \; € C, with 2 [\;| < . Conse-
quently, we define BMO,, as the dual space of H}s. Our main result is

Theorem 1. Suppose H}E and T are defined as above. Then T is a bounded
operator from HIE to L'. The bound of this operator can be taken to depend
only on the total degree of P, (not on the coefficients of P).

We notice that in the paper of Phong and Stein, the fact that the phase
function is a real bilinear form makes it possible to apply the Plancherel’s
theorem to the Fourier transform (or partial Fourier transform) associated
with B. When (Bx, y) is replaced by the polynomial P(x, y), we no longer have
this advantage. So we have to take a different approach, using some L?
estimates of certain oscillatory integrals. This will become clear in our proof.

For p <1, the Calderén-Zygmund singular integral operators are still
bounded from H? to L?. However, this is no longer the case for the oscillatory
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singular integral operators. At the end of this article, we will present a simple
example which shows that this fails even in the bilinear phase function case.

The main result presented in this paper was included in the author’s thesis.
The autor would like to thank his advisor, Professor E. M. Stein, for his
encouragement and many helpful suggestions. The author would like to thank
the referee for his comments.

2. Proof of Theorem 1

ProoF. Let us assume that ¢ is a function supported in the cube Q,, which
is centered at the origin, and has sidelength 1, and a satisfies

d <1, [ aG)ay=o.
0

First we shall prove that if P(x, ) is a polynomial in x, y, and P(0,y) =0,
then

3 [p-v. [ 7K~ a0 dy

<G

where C depends only on the total degree of P, and is otherwise independent
of the coefficients of P.

To prove (3), we shall use induction on the degree / of y in P(x, y).

If / = 0, then eP*? is only a function of x, therefore can be taken out of
the integral sign, and (3) follows from the classical result of the standard H'!
theory. (See, for example [CW].)

Next we assume / > 0, and (3) is true for / — 1. By the Ricci-Stein theorem
on the L” boundedness of T, we have

Ji e T@OIdr< O(],_, IT@CF" dx)*
< C(J'W |a|2dx>1/2 <cC.
Write

P(x,y) = a,5x°Y* + O, ),
lal = 1,]8] =1
where Q(x, ) is a polynomial with degree in y less than or equal to / — 1, and
still satisfies Q(0, y) = 0. For any r > 0, we have
iP(x,y) __ ,iQ(x,) —
[y ye, [ T@@Ndx < [, e MK (x — y)a(y) dy| dx

+
2<x|=r

LR" e'CENK(x — y)a(y)dy | dx.

(If r < 2, all the above integrals are 0.)
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By our inductive hypothesis, the second term is bounded. Also |x — y| >
|x|/2, if |x| > 2, |y| < 1. So we have

‘[ |T(@)(x)|dx < C + CJ dxj
2<x|=r Ix|=r R"

|ot| =

8l

exp< 2 aaﬁxay"") - 1’
1
| l

Now, there exists (o, Bo) such that |a,| > 1, |B| =/, and

g /1% = max [a,g] /.
|lal =1
[Bl=1
= = /|l
Put r=a, g | ol we have

j |T(a)x)| dx < C,
2<|x|=r

where C depends only on the total degree of P(x,y). Now we turn to the
estimate of the remaining part

j | T(a)(x)| dx.
x| >2,|x]>r

We shall need the following lemmas:

Lemma 1. Suppose
o) = > ax’
v <k
is a real-valued polynomial in R" of degree k, and € Cy. Then for any v,
|v| = k, a, # 0, we have

@

j e*®y(x) dx
]‘Rn

< Cla| ™V 0¥l = + V9] 10)

To see this, simply let £ be an unit vector, such that

!(S : Vx)k¢(x)l 2 c|a,,|.
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This is possible because

vla,.

909 _
ax”

(See [ST], page 317.) Without loss of generality, we may assume

£=(1,0,...,0).
Hence
3 o(»)
k = l vl‘
ay;

Now apply the one-dimensional Van der Corput’s lemma to obtain (4). See
also [ST].

Lemma 2. Let

Px)= D, a,x*
lal<d

denote a polynomial in R" of degree d. Suppose e < 1/d, then

J |P()| " dx <A 3 |aﬂ|>-5_
lx =<1 la]=d
The bound A, depends on e (and the dimension n), but not on the coefficients

{a.}.

This is a result of Ricci and Stein. See [RS], page 182.
Now we continue our proof of Theorem 1. Let

R, = {xeR":2/ < |x] <2/},
for j = 0, and let ¢ € C5(R") satisfy
p(x)=1 for |x|<1, e(x)=0 for |x|>=2.

Define T; by

(T,/)x) = Xg, () j e o) f(y) dy,

rR’l

and consider the operator TJ.T;.":

LTI = L~ L, 2@ dz,
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where
L;(x,2) = Xg (0%Xe @) Ln ' FED=FED p(y)|* dy.
Write
P(x,y) — P(z,y) = P Zlaaﬂyﬁ(x - 2% + (Q(x, ») — Oz, »)),
|8l =1

where the degree of y in Q(x, ¥) — Q(z, ) is less than or equal to / — 1.
Applying Lemma 1, with » = 8,, we obtain

-1/1
Z aaﬁo(x a)

|l 21

|L;(x,2)| < Xg, (X)X (2)-

On the other hand, it is obvious that |L (x,2)| < C, solet N> 0 be a large
number (to be chosen later), we have

Z aaB (X )

la| =1

~1/NI

IL_,'(X: Z)' XRj(Z).

By rescaling we would obtain the same norm if we were to replace L; x,2)
by Lj(x,z) = 2. (2’x, 277), so we have

2 (@4 21 Nx% = 3] a,5 27112

|| =1 || =1

IL(x, 2)| < C2V _VNIXR )Xg, (2)-

Choosing N sufficiently large and applying Lemma 2, we get

2l Gup 2j|“|z°‘

|| =1

su L'(x,2)|dx < C2"su ( Ayp 2712
szR"|’( )| dx < P ;l 81271 +

> —1/NI

i —1/Nlsy —jlegl /NI
< C2V]ag,q,| VN2 I,
Similar estimate hold: for sup j |L'(x, z)| dz, therefore we obtain
x R™

IT,T31 < C2%lag,q,| N2 0N,
SO

| T, “LL’L2 Cznj/ZIa | ~1/2Nly —j|ag|/2N1

Now we have

f IT(a)(x)ldxsj de |K(x — y) = K()| |a(y)| dy
x| >2,|x|>r x| >2,|x|>r R™

+ J |K(x)| dx ‘ j P Vq(y) dyl =1 +1,.
x| >2,|x|>r rR”
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The estimate for I; is easy

a
Ilsf dxj DN 4,
W>2,x>r  JRr o |X]

dx
C —<C.
j}x1>2 |x|™+ !

As for I, using our estimate on 7} and assuming 2 < r < 2%**, for some
Jo, we have

1
L <C —
2= Lx»z, el >r X"

<cy j LT @) dx

2is|xl<2i+1 |x|"

dx

j e'"*Va(y) dy
rR"

1 1/2
<c —,,dx> @
Z< ju ) 150l

<Cc3> 2—nj/22nj/2|aa060‘ = 172Nty ~jleol/2N1 C,
FETA

because 2% > (1 /2)|aqp,] ~Vleol and (3) is proved.
To prove the theorem, we only need to prove that |7T(a)|,, < C, for all
atoms @, and C is a constant which depends only on the total degree of P(x, y).
Let a be an atom associated to the cube Q, and the center and sidelength

of Q are Xo and 6 respectively. We observe that

$™(T(@)(éx + xp) ='p.v. j PO X0 ¥ XK (x — y)5"a(8y + xp) dy.

[R'l
Write
P(6x + Xg» oy + xQ) = R(x,y) + P(x,, 6y + xQ),

where R(x, y) is a polynomial which satisfies R(0, y) = 0, and the total degree
of R is not greater than that of P. Let

b(y) = e ¥ **Js"a(sy + ay),
by the definition of the atom, we have

supp (b)) C Q, and [b(¥)| <1,
also

j b(y)dy = J e’F¢eMq(y)dy = 0.
Q Q
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Now invoking (3), we have

<C

| T@)] . = ” p.v. Ln e REIK(x — y)b(y) dy

L1

This completes the proof of Theorem 5.

3. An Extension
In [RS], Ricci and Stein pointed out that the L” boundedness still holds, if the
Calderén-Zygmund kernel in the operator is replaced by some more general

distribution. For H fE, the same thing is true, i.e.

Theorem 2. If K(x,y) is a distribution and C' away from the diagonal
{x =y}, and satisfies:

() |KC, )| <Clx—y|™" and |VK(x,y)| < Clx—y| "L
(ii) The operator

f= j K(x,») f(»)dy

extends as a bounded operator on L*(R").
Then the operator

®) Tf(0) = p.v. Ln ePEIK (x, ) f(3) dy

is bounded from H), to L'.

The proof of Theorem 2 is essentially the same as Theorem 1.

4. The Dual Space BMO,

We define the sharp function f} to be

1
([0 = SUD Tor L | fG) — fo()] dx,

where

; 1
7w = ereen( L

0 R dy)
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and as the dual space of H;:, BMOy, is given by

BMO, = {feL, :ff eL}

loc

and
”f"BMOE = "fzé "Lw'

The dual statement of Theorem 2 is

Theorem 3. The operator T* (T given by (5)) extends as a bounded operator
Jrom L” to BMOyg.

5. A Counterexample

In this section, we shall give a simple example to show that the H* theory on
the oscillatory singular integral operators cannot be extended to the H” case,
if p<1.

Let T be defined as

1
(Ta)(x) = p.v. Ll e Yy a(y)dy.

Take 6 > 0, 6 is very small, and a is a function supported on Iy = [-§, 6],
given by

28)~7 if yel[8/2,4],
ay)=<{ -8~ if ye[-§, —8/2],
0 otherwise.

It is easy to see that a satisfies

la| < |I,| V7, L a(y)dy = 0.
&

Therefore, we have

5 1 8 1
- _ l/p . ] .
Im (Ta)(x) = (26) (sz sin (xy) = 5 dy + L/Z sin (xy) 3 dY>

Let xe(n/46, w/35), then x—y >0, x+y>0 for ye[§/2,6]. Also
w/8 < xy < m/3.
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Hence

8 1 8 1
Im (7 > cy(26 -VPG dy + J —d )
(Ta)(x) > c4(20) s X —y v+, g ly

B L ox
= co(28) ™7 log <1 T 2o 52/2)>

> cpd! " VPx1,

for some constant cy > 0. Then, we have

/36

i (51 - l/p)px—p dx - C52(P" 1)_
E

[P, |Ta(x)[1’dx>cg’j

This is unbounded as 6 > 0 and p < 1.
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Stationary Solutions of
some Nonlinear
Singular Schrodinger
Equations

Bouchaib Guerch and Laurent Veron

Abstract

We study the local behaviour of solutions of the following type of equation
—Au — V(x)u + g(u) = 0 when V is singular at some points and g is a non-
decreasing function. Emphasis is put ofi'the case when V(x) = c|x| % and g
has a power-like growth.

Introduction

In this article we study the local behaviour of a solution u of the following
time-independent, N-dimensional, nonlinear Schrédinger equation

0.1) —Au—Vx)u+gu)=0

near an isolated singularity of the potential V, g being some asymptotically
nondecreasing real valued function. In many physical examples ¥ is a Coulomb-
ian potential:

65
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k
0.2) Vo) = Bzl —al ™t

in the case of a nucleus in the Thomas-Fermi-Dirac-von Weizsdcker theory
[31, [4]. However it is mathematically more exciting when ¥ can be compared
with |x — a| =% near the isolated singularity a. In that case the interference be-
tween the Laplacian, the potential and the nonlinearity is very strong. The
model equation is the following

0.3) —Au—|—;7u+u|u|q’1 =0

where g > 1 and c is some real number. If we look for a specific solution of
(0.3) under the form

0.4) u,(r) = ar®,
then
2
B= -1
and

a? l=c+ 2 2—q—N-
g—1\g-1

Henceforth the solution u; exists if and only if

©.5) cr 2 <2—q— >>o.
g—1\g-1

It is worth noticing that if (0.5) does not hold then

_9\2
0.6) c< <N—2—2> )

and this condition plays a fundamental role in the description of the fun-
damental solutions of the equation

©.7) Ap+ 56 =0.

| x]
If (0.6) is satisfied let 8 be V(N — 2)2 — 4c and p; the two fundamental solu-
tions of (0.7), that is



LocAL PROPERTIES OF STATIONARY SOLUTIONS OF SOME SCHRODINGER EQUATIONS 67

f'x|—ov-z+/s)/z if c<<N2—2>2’

08) ) =+ X
x| " N=221n1/|x|) if c=<N—2_2-> ;

[y ov-2-072 if c<<N2_2>2,

0.9 P (x) = N 2\2
lel“’v‘z”z if c= <—2—> :

It is important to notice that p, is the regular solution of (0.7) in the sense that
c|+| ~2u,(+) is locally integrable in RN and

c
0.10) App + —7pp =0
|x|
holds in D’(R") (if ¢ < 0, u is continuous), as the same holds for y, if and only
if ¢ > 0; in any case p, = 0(u,) near 0. Our first removability result deals with
the meaning of the equation in the sense of distributions.

Theorem 1.1. Let Q@ be an open subset of RN containing 0, Q* = Q\ {0}, g
a continuous real valued function satisfying

liminf g(r)/r? >0

©.11) e
limsupg(r)/(-r9) <0

and Ve C°(Q*) is such that

0.12) - < |[x]?V(x) < c

near 0 for some constants q > 1 and c. If we assume either ¢ > N/(N — 2),
or1<g<N/(N-2)and

0.13) cr—2 (-2 _nN)<o,
g-1\g-1

any u € C1(Q*) satisfying
(0.14) —Au—Vu+gu)=0

in D'(Q*) can be extended as a solution of the same equation in D'(Q).
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We must remark that if (0.5) is satisfied with g > N/(N — 2) there exist
singular solutions of the model problem (0.3) with a rather weak singularity;
this must be compared with

(0.15) Au+u?=0

for which the same holds when g > N/(IN — 2). Our second removability
result is to compare a solution of (0.14) in Q* with the regular solution of
(0.10).

Theorem 1.2. Let Q and V be as in Theorem 1.1 and let g be a continuous
real valued function satisfying (0.11) for some q > 1. Assume also that

(0.16) 0=g(0)=g"'0)
and
2 2q

hold. Then if u is any C'(Q*) function satisfying (0.14) in D'(Q*), u/p, remains
locally bounded in Q.

It is important to notice that, as (0.17) holds, (0.6) also holds which allows
us to have a comparison principle.

Our second section is devoted to the extension of Vdzquez-Veron’s isotropy
theorems [23], [24] to the potential case. Let us introduce some notations: let
SN-1 be the unit sphere in RY, (r, 0) € R{ x SV~ the spherical coordinates
in RM\ {0} and p(r) the spherical average of a function p(r, ¢), that is

1
(0.18) p(r) = stzv_lp(’, o0)do.

Theorem 2.1. Assume Q is an open subset of R" containing 0, Q* = Q\ {0},
g is a continuous nondecreasing real valued function and u € C(Q*) is a solu-
tion of (0.14) in D'(Q*) where V e C°(Q*) is a radial function such that

N-2
2

2
0.19) —o < |XPV(x) <c < ( > s for every xeQ*.
If u satisfies
(0.20) lim inf 7~ 2+ YN"-de)2)

r—0

u(rs ') - ﬁ(r) "LZ(SN-I) = 01

then u(x)/p,(x) admits a limit in RU { —, ©} as x tends to 0.
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A similar isotropy result holds for a solution u of (0.14) in an exterior
domain of RY. An interesting class of solutions of (0.14) in Q* are those which
present a singular linear behaviour near 0. As the equation in the sense of
distributions in Q is not very singnificative except when ¢ = 0 where the Dirac
mass plays a fundamental role [6], [10], the good criterion for the behaviour
of linear singularities will be the existence of a finite, not always 0, limit of
u(x)/p;(x) as x tends to 0, as in [29].

Theorem 3.1. Assume g is a continuous nondecreasing real valued function
and

N — 2
0.21) c< ( 2—) .
2
Then the equation
0.22) —Au— I_xcl_zu +gw) =0

admits solutions u in
B0\ {0} = {xeR":0< |x] < 1}
such that

0.23) lirré u(x)/p(x) =7,

where v is any arbitrary real number if and only if
©-24) [T + 1g(=nD20 /1 dt < oo,
where

o= —(N-2+J(N=27-4c)/2.

When ¢ = 0, condition (0.24) is the one introduced by Brézis and Bénilan
[6] for solving equations of type :

(0.25) —Au+gu)=m

where m is a bounded measure. When

(5

the situation is quite more complicated (see Vazquez [22] for the case N = 2).
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We define

bi=inf {b>0: (g~ N=2/N+DLn(1/t)/b)dt < w},
(0.26)

by=inf (b > 0: (gt~ =D Lny/bydr > ~w},

and we prove

Theorem 3.2. Assume g is a continuous nondecreasing real valued function.
Then the equation

N-2)?
(0.27) —Au — (2—lx|——> u+ g(u) =0

admits solutions u in B,(0)\ {0} such that

(0.28) lim |x|N~2"2u(x)/Ln (1/|x]) = 7,
x—0

where 7 is a real number, if and only if
(0.29) ~(N +2)/(2b;) < ¥ < (N + 2)/(2b})).

The Dirichlet problems corresponding to Theorems 3.1, 3.2 are also solved.

In the last section we study the limit properties of the solutions u of (0.3)
(as |x| tends to O or « as well). If we perform the classical transformation

(0.30) u(r, o) = r-¥9-Yy(t, o), t=Lnr
and denote by Agy_, the Laplace-Beltrami operator on SN-1 then

+1
(0'31) vlt + <N— 2%)”{ + ASN—IU + )\U - vlviq_l = 0

holds in (—, 0) or (0, o) with

(0.32) N=ct 2 (ﬁ——N>,
gq—-1\g—-1

moreover ¥ is bounded. When g # (N + 2)/(N — 2) the study of this equation
is an extension of previous results of Veron [26] [27], Chen-Matano-Veron
[13] and Bidaut-Veron-Veron [7]. A typical result is the following

Theorem 4.1. Assume g€ (1, ©)\ {((N + 2)/(N — 2)} and u is a solution of
(0.3) in B;(0)\ {0}. Then r¥ @~ Du(r, +) converges in the C* (SN ~')-topology
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to some compact connected subset &' of the set £ of the C*(S™ ™~ Y)-functions
w satisfying

(0.33) —Agn 10+ wlw]? T =l
on SN~ Moreover there exists precisely one w € ¢ such that

(0.34) lim 729~ Dy(r, o) = w(e),

r=0

at least in the following cases:

(i) u is nonnegative,
() A\SN-1,
(iii) g is an odd integer,
(iv) & is an hyperbolic limit manifold in the sense of Simon [21],
(V) N=2and c< 1.

When g = (N + 2)/(N — 2) the study is more complicated, in particular
because of the conformal invariance of (0.3) and the existence of solitary
waves satisfying (0.3) (see [7]). Convergence results hold at least for non-
negative solutions [17]. When A < 0 there always holds

(0.35) lim [x|*@~Dy(x) = 0
x—0
for any solution u of (0.3) in B,(0)\ {0} and the exact behaviour is given by

u, from Theorem 1.2 except in the particular case A =0, g > (N + 2)/(N — 2)
and we prove

Theorem 4.2. Assume0 < ¢ < (N —2)/2)>, A\ =0and g > (N + 2)/(N — 2).
If u is any solution of (0.3) in B,(0)\ {0}, then the following limit exists

(0.36) lim u(x)/(uo () Ln (1/|x])2?) = 1
x—0
with
0=02-N+VWN-27%-4c)/2=-2/(g-1)
and

0.37) le {0, £(N(g — 1) — 2(q + 1))/(g — D)@~ P}.

When A\ > 0 it may happen that (0.35) holds. In that case the behaviour of
u near 0 is most often described by the solutions of
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c
(0.38) —Af — T)}TT £=0,
satisfying (0.35) except when —2/(q — 1) is a solution of the algebraic equa-
tion

0.39) X’ +(N-2)X+c—k(k+N-2)=0

for some integer k. Only when N=2 and ¢ <0 this spectral case is
understood. In some cases, when the rate of blow-up of u near 0 is of order
x|~ & ~2/2 4 may behave as a finite superposition of travelling waves near

0 (up to the damping factor |x|V~272),

We also study the asymptotics of the solution of (0.3) in an exterior domain
and end this section with some orbit connecting questions where the structure
of the set of the stationnary solutions of (0.33) plays a fundamental role.

Our paper is organized as follows

(1) Removable singularities.

(2) The isotropy theorems.

(3) Solutions with linear singularities.
(4) The power case.

1. Removable Singularities

In this section we assume that Q D B, (0), Q* = Q\ {0} and we first prove the
following a priori estimate of Osserman’s type [19], [10], [31].

(Q*) satisfies AueL? (Q*) and

Lemma 1.1. Assume uelL Toc

loc
c
(1.1) —Au—Wu+auq<b

a.e. on {xeQ:u(x) >0}, for some constants a >0, b and c > 0 and q > 1.
Then

(1.2) ux) < Alx|~>@-Y+ B (forall xeB,,(0)\{0}),
where

17@-1) 1/
(1.3) A = o(N, Q)< : : c> ’ 5 B = o(N, Q)<§> q,

with a(N, q) > 0.
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Proor. Let x, be such that 0 < |xo| < 1/2. Set
.1
G= {xeﬂ: |x — x| < 3 |x0|}
and G* = {xe G:u(x) > 0}. The function u is essentially bounded in G and

a 4c a
1.4 —Au + —u? < = max b+———r——r‘7}
( ) 2 B r>0 { |x0|2 2

a.e. in G*. If we compute 8 we find

4(q—l)c< 8¢ >1/<‘1-“

Pfo|2 aQ|xo|2

(1.5) B=b+
As in [10], [31] we consider a function v under the following form
1 -2/@@-1)
(1.6) v(x) = p<Z Ix%ol> = |x — x0|2> + 7.
If
B 2N 4g+1) _[2p\V@™ D _[28\V?

n—max{q_l,(q__l)z}, p—<a ’ T= a )

v satisfies
a

a.7n —Av+—2~vq>B

in G. Using Kato’s inequality as in [10], [11], we deduce v > u in G, which
implies v(xy) = u(x,) and gives (1.3).

Lemma 1.2. Assume 1 < q < N/(N — 2),
2 2
(1.8) c+——<——‘L— )go

and ue L (Q*) satisfies Aue L? (2*) and (1.1) a.e. on {x € Q:u(x) =0} for

loc loc

some constants a >0 and b > 0. Then p,u* € L1 _(Q).

loc

Proor. From Kato’s inequality we have

(1.9) —Aut -—ﬁu* +aut) <b
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in D'(2*), and from (1.2) and (1.8) we deduce that ¢ <0 and
(1.10) u” < Kopy

near 0, for some K, > 0. Let ¢ be an element of Cg(Q), ¢ >0, 7, be a C*-
function in Q such that 0 <7, <1 and

0 if 0<|x|<1/n

(1.11) Tnx) = {1 if |x| =2/n

with |Vn,| < Kn, |Ay,| < Kn?.
Then we claim that

I(u*)qu2¢dx< .

As a test function we take ¢n,u, and get

c

(1.12) J u* < —A(@n,12) — —|7(¢nnuz)> +a j u ™) pn,p, < K(9).

|x
But

A(Pnnp2) = 0y App + py A(Dn,) + 2 Vi, V(dy,)

and (1.12) becomes
(1.13) I U™ (—pa A(dn,) — 2Vp V(gm,) + a j ") Pnup, < K(9).

LetI', = {xeQ:1/n < |x| <2/n} and let x. be the characteristic function of
I',. There exist K;, K, such that K; > 0 and

(1-14) |A(¢7’n)| S Kl + KZnZXr”s |V(¢77n)| S Kl + KZnXF"'

Plugging into (1.12) implies

(1.15) a j‘ ™) dn,m < K(9) + Ko j#mz(lﬁ + KZnZXFn)
+ 2K, j w1 | Vi (K7 + Kznxr")-

As pipy = x|~V and p|Vpy| = K'|x|' ", the right-hand side of (1.15) is
bounded independently of n. Letting # tend to infinity implies the claim.

Lemma 1.3. Under the hypotheses of Theorem 1.1, g(u) and Vu are locally
integrable in Q.
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ProoF. We shall treat separately the cases 1 < g < N/(N-—2) and g >
N/(N - 2) but from (0.11) and Lemma 1.1 in any case |x|>'@~ Yu(x) is locally
bounded in Q.

Case 1. 1< q<N/(N - 2). From Kato’s inequality we have

(1.16) —Aut — Vu* +signt(w)eg(u) <0

in D'(2%). Let ¢e be p, /(€ + uy) (e > 0). As a test function we take ¢, ¢ where
¢ and 7, are as in Lemma 1.2 with ¢ =1 in B, ,,(0). We get

(1.17) j T(—A@N,8) — Von$o) + jsign+(u)g(u)¢nns“e<0

As
A@N,$e) = o0, Al + S A(Dn,) + 2V V(dn,)
and
€
Vie=——— Y,
J (e + FE)Z #2
€ 2e
Afe=— Apy — ———— |V |2
E€+ml "2 (e+mw) V|
As
c
Ap, = ‘Wﬂz,
we get

CE[I,Z 2
IXI%(e + m)*  (e+p,

—A(dn, ) — Von, e = —<— B [Vis | >¢nn

¢~nne+#

- g-e A(¢77n)

- ﬁ Vi, V(dn,).

Henceforth (1.17) implies

(1.18) j . o0, (—Vu™ + sign™ (u)g(u))
23

< - j lxl%wnn Ju ¢ An,) +2ej e Ve @
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We also have

(1.19) |A@1,)| < KiXp, + nZszpn,

(1.20) [V($na)| < KiXp, + nKoXy

and

(1.21) Hu*;‘EA(an,,) sKlj ut +n2sz ut¢.
I‘l2 Fn

As

. . 1/q 1 @-1)q
u < ut)? —_— ’
J‘I‘" {E X J‘I‘n ( ) He ‘L“n (E + [Lz)q/(q -1)

@-1/
(j P2 > q< c(N) n-(@+N@-1/q
-_ =
r, (e +p)” @D €

and

where

_2-N+J(N-2)-4c
h 2

Q;

is such that p,(x) = |x|*2; as (1.8) holds o; < —2/(¢ — 1) and aso; + =2 — N
we deduce that

(1.22) —(oy + N)(@—1)/g+2<0.

From Lemma 1.2 p,(u*)? is locally integrable in Q; henceforth

(1.23) lim n? J ut¢.=0.
Fn

n—o

In the same way

u* |Vl eu’
el —— Vu, V(o <26Kj ut —= +2Kn — |V
J (e + ﬂz)z 2 V(dn,) < 1 r, P r (c + #2)2 | #zl

and

+
€U Eaz
V| < u+§‘7<naJ‘ u*te,
jr,, (6+uz)2| Ml\jr,, Ixe+p) T 2, CF
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which yields

u+
(1.24) lim n J’ —— 5 Vu, =0.
n—ow (E + [Lz)z Ha

For the last right-hand side term of (1.18) we have

2 +
(1.25) j‘mdﬂ],‘\ —Cn j;nu §'E.

Using (1.23), (1.24) and the facts that Vis negative and sign * (#)g(1) is bounded
below by some constant imply

(1.26) jdz(— Vu* + sign* (u)g(u)) <K
for some K > 0. In the same say

(1.27) j o(—Vu~ + sign~ (u)g(u)) < K.

Henceforth Vu and g(u) are locally integrable in Q.

Case2. g > N/(N — 2). From Lemma 1.1 and (0.12) #V is locally integrable
in Q. Taking 7,¢ as a test function in (1.16) implies

(1.28) j u® (—A(gn,) — Vény,) + j sign™ (u)g(u)én, < 0.

Using (1.19) yields

ju* Aldn,) | < K, j ut + anzj ut <K, j ut + K,K'n?*~N*t¥@-b g,
FZ 1-‘n T, 2
Letting n tend to infinity implies
j sign* (u)g(u)¢p < .
In the same way
fsign‘ (wg(u)p <
which ends the proof

PRroOOF OF THEOREM 1.1. Case 1. 1< q < N/(N-2).
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As a test function we take 7, {¢ where 3, and . are as in Lemma 1.3 and
¢ € C3(R). We have

(1.29) ju(_A(nn‘bg-e)) - ! Vun,¢e + fg(u)ﬂnﬂ'e =0

and
A(’?nd’g‘e) = 10,0 Afe + an-eAd’ + ¢§’5A77,, + 2‘)’]"V¢V§'€ + 2¢V77nV§e + 2§EV¢V"7n-

As in Lemma 1.3, Case 1 it is easy to let n tend to infinity and obtain, for
e > 0 fixed,

(1'30) J'u(_qufe - S'EA¢> + 2V¢V§e) + J‘(g(u) - Vu)d’g-e =0.

But
Ve Vi < |V |ul |x|f:‘i";2)z < 2T;l V| |ul,
8 851 < el 6] 12 22y + 203l o] (32
<M B o

If ¢ = 0 the two terms |u V¢ V¢| and |u¢ A¢| vanish; if ¢ < 0 we know from
Lemma 1.3 that u/|x|? is locally integrable in Q. Henceforth, from Lebesgue’s
theorem, we get

(131) limju(_qufe—?5A¢+2V¢V§.e)= J‘(_uAd’)
e—0

and

(1.32) j(—u Ad) — j Vugp + jg(u)qs =0.

Case 2. q> N/(N - 2).
As a test function we just take ¢n, and we have from Lemma 1.3 and
Holder’s inequality

(1.33)  lim J —uA(on,) — Vuon, + gu)dn, = J ~ulA¢ — Vuo + g(u)o,

n—o

which ends the proof.



LocAL PROPERTIES OF STATIONARY SOLUTIONS OF SOME SCHRODINGER EQUATIONS 79

Lemma 1.4. Assume Q is as above and V is continuous in Q* and satisfies

2
(1.34) —oo<|x[2V(x)<c<<N2_2>

near 0. If we C%(Q*) is a nonnegative function satisfying
(1.35) Aw+ Vw>0

in D'(Q*) and w = o(u,) near 0, then u/p, remains locally bounded in Q.

ProoF. Let M be the supremum of w on {x: |x| = 1} and, for e >0, ®. =
My, + ep;. We write (1.35) in spherical coordinates and get

N-1 c 1
(1.36) W,r+TW,+r—2W+-r—2—AsN_1W>O

where A, _, is the Laplace-Beltrami operator on SN=1(we have used (1.35)).
We shall distinguish two cases:

2
Casel. c< < ) - We write

(1.37) vs, 0) = w(r,o)/m(r), s=rf, B=VWN-2Y-4c
and get
2 1
(1.38) s vss+FAsN_lv>O.
We write @c(s, 0) = ®(r, 0)/u,(r), t=Ln(1/s) and Y(t, 0) = (v — ¢.)(s, 0).
The following relation holds in D'(R# x S¥~1)
1

B8

By convolution on ¢ we may assume that ¢ € C*(R{, C°(S™ 1)) and if we
approximate ¢ by the solution X, (n > 0) of

(1.39) Vi + Ve + oz Agvoa¥ 20,

(1.40) N Agn_1X, + X, = ¥,

which converges to ¥ in L2(S™ ™) as 7 tends to 0, we deduce that

d? d
(1-41) Et-z— "\l’+(t, ')”LZ(sN— 1) + E ||¢+(t, ’)HLz =0,
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which implies that the function 5= [(v — ¢¢)* (s, )| 2sn-1) is convex on
(0, 1). As it vanishes at 0 and 1, it is always 0. Letting e tend to 0 implies the
claim.

N-2)\?
Case2. c= <~—2—> - We just write

(1.42) v(t,0) = w(r,o)/r- N2 t=Ln(1/r)
and v satisfies
(1.43) Uy + Agn_ 1020

in D'(Ry x S¥~1). By the same approximation we see that the convexity and
the fact that v = o(¢) at infinity imply the estimate w < Kp, .

ProoOF OF THEOREM 1.2. Case 1. We assume that

2 2q
(144) C+q_1<-6—_—1~— ><0

In that case 2/(g — 1) < (N — 2 + B)/2 and u = o(u,) near 0. As we have
(1.45) Au* + ﬁ—z—u"' > sign* (Wg@w) > 0
in D'(Q*), we deduce u* < kp,. We do the same with u~.

Case 2. We assume that ¢ < 0.
In that case u™ satisfies

(1.46) Au* >sign* (wegw) > aw*)? - b.

From Brézis-Veron’s result [11] #* is locally bounded in ; henceforth
u* < kpy. The same with u ™.

Case 3. We assume

_ 2
(1.47) 0<cg <£2—3> ,

2 2q B
(1.48) c+m<ﬁ—- >—0.
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For n e N* let ¢, be the solution of

Ad, + Tchz"’" ~apl=0  in By(0)\By,(0)
¢, =max {u*(x): |x| =1} on 4B;(0)

¢, = max {u* (x):|x| = 1/n} on 08B;,,(0)

(1.49)

(¢, exists by minimization techniques and it is positive and unique) where a is
defined as in (1.46) or Lemma 1.1. Let o be b/(c + 2N). Then ¢, = ¢, + a|x|*
satisfies

(1.50) A, + I—xclftp,, —ay?<b.

We then deduce, as in Lemma 1.4, that u* <, in B;(0)\B,,,(0). As ¢,
remains locally bounded in B, (0)\ B,,,(0), independently of n (Lemma 1.1),
we deduce that (up to a subsequence) it converges in the CIIOC(B1 0\ {0})-
topology to a function ¢ which is radial and satisfies

Ap+-—36—ap?=0 in B O)\(0},
(1.51) |x|

¢ =max {u*(x):|x| =1} on 4B,(0),
and
(1.52) u() < $(x) + olx|*

in B,(0)\ {0}. Moreover, in the range (1.48), we have
(1.53) o (x) < cpy(x) = c|x]® = ¢|x| ~¥@-D,

If we set ¢(x) = ¢(r) and

(1.54) () = r¥9=Y¢(r), t=Ln(1/r)
then we get
+1
(1.55) N — <N— 24 )m —an?=0
qg-—1
in (0, + o).

(i) If g = (N + 2)/(N — 2) the first order coefficient is 0 and

1 a
. Wi , — 2 _ qg+1
(1.56) (n,m) = 2 n; g+1 n
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is constant. As 7 is nonnegative and bounded, the only admissible cons-
tant is 0 and 7(¢) tends to O as # tends to infinity.
(i) If g # (N + 2)/(N — 2) then

d _ g+1)\,
(1.57) i W, n,) = (N 2 e 1>17,-
From La Salle invariance principle lim 5(¢) = 0.
=
Henceforth
(1.58) lim 2" ()/p; (x) = 0.
x—0

As the same holds for u~ we deduce the claim from Lemma 1.4.

Remark 1.1. Using Theorems 2.1 and 3.1 it is possible to extend Theorem 1.2
to the case where g satisfies

gsw)Lnr

lim inf 7 >0
r o r
(1.59)
L
lim supM <0
ro —w |r|?

and (0.17) (see [24] for the zero potential case and [16]).

2. The isotropy Theorems

In this section Q is an open subset of RY containing B, (0), 2* = Q\ {0}, g is
a continuous nondecreasing real valued function and Ve C(Q*) is a radial
potential such that

N-2

2
Q.1 —o < XV <c<|{—=) forall xeQ*.
! 2

We are interested in solutions u € C1(Q*) of

2.2) —Au — Vu + g(u) =0.

Lemma 2.1. Assume u € C}(Q*) satisfies (2.2) in D'(Q*) and

2.3) lim inf F®&—2+ N ~4e

r—=0

)/z" u(r, *) — i(r) ||L2(SN_X) =0.
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Then there exists a constant K > 0 such that
.49 [u(r, +) = 5| pogsn— 1y < Kr@ N+ INT 2022

foro<rgi,

N-2

2
Proor. Casel. c< ( > - In radial coordinates we have

N-1 1
2.5) u, + fu, + V(r)u + 72—ASN_1u = g(u).
We write u as in (1.37), that is
(2.6) o(r,0) = u(r,0)/; (), s=rf, B=VIN-2P-4c,

and get

B

with a; = 2 — N - B)/2.
Let p(s) be the spherical average of a function p(s, 0); then

1 1 1
(2.7) Szvss + —TAsN—lv + F(SZ/BI/'(S;W;ﬁ‘) - C)l) = FS(Z—cx1)/Bg(sml/4sv)

_ 1 _ 1 . _
S0 + 57 (V6V) = 0 = 5@ (™R,

As
I (—Av(v — D))do = (N — 1)j (v — D)*do,
SN-1 SN-1
LN_, (™) — (™ PW))(v -~ ) do > 0,

and (2.1) we get

(2.8) szf (vss — D)V — D) do — N-1 j (v —0)*ds > 0.
SN-1 SN-1

'32
Setting

172
X)) = (LN-1 (v — D)X(s) da> )
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we obtain

N-1
(2.9) SZXSS - ?XZ 0

VNI Zae .
N7 -4¢)/2By for some sequence {s,} converging

in D'(0, 1). As X(s,) = o(s®~
to 0 we deduce that
(2.10) X(s) < Ks®~ VNT -4y

which is (2.4).

N-2)?
Case2. c= (——2——> - We write u as in (1.42):
(2.11) w(t, o) = r"~P%yr,¢), t=Ln(1/r);
then
2.12) Wy + Agn oW + (V(t) — )w = e@~M2g(pN=2)1/2,)
where

V(t) - e(Z -N)IV(e(N-— 2)t/2)'

If we set
172
X() = < j (w— W)z(t)da> ,
SN-1
then
2.13) X,~-(N-1)X=20

in D'(R}), and X(z,) = o(e¥~~1%) for some sequence {7,} tending to . The
maximum principle implies that

(2.14) X(f) < Ke VN1t

which is (2.4).

In order to have a L™ estimate we need the following result the proof of
which is essentially contained in [24].

Lemma 2.2. Assume 7, a and b are positive numbers such that a < b and
&, Y e L3(SN~Y). Then there exists a unique function ® € C([a, b]; L* (SN~ 1))
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NC>((a, b) x SN~ 1) such that

1
.15 s2®, + 7ASN_1¢I> =0 in (a,b) x SN71,

®(a, ) =¢(s);  B(b,)=y(+) in SV

Moreover there exists a constant C; > 0 such that

1 N-1)/2
(2.16) ” ‘1’(5, ‘)"Lw(szv_l) < C1{<1 + W) ||q>"L2(SN-l)

1 (N-1)/2
* <‘ " 'Lm) wan(sN_l)}.

This result is, up to change of variable and unknown, essentially an estimate
concerning harmonic functions in an annulus.

Lemma 2.3. Assume the hypotheses of Lemma 2.1 hold with ¢ < (N — 2)*/4.
Then the function v introduced in (2.6) satisfies

(2.17) [v(s, +) = D) | pogs-1) < asB+ YN —4c)/28

Jfor some ¢ > 0 and any s (0, 1/2].

Proor. Let y be the solution of

1
5%y = —5 5@ Bg(s*1’Byy in (a, b),
(2.18) * B

y@=p, yb)=rm,

with0 <a< b < 1, p and 7 real numbers. Let wbe v — y, ¢ be (v(a, *) — p)*,
¥ be (v(b, *) — 7)* and ® be the solution of (2.15). Then & > 0. If we define
h as

1 - o a
h= Ez—s‘2 VB(g(s*1"P) - g(s*"%y))/w,
then 2 > 0 and

1
2.19) 2wy, + EZ—AS,,,_IW = hw.

Henceforth & is a super-solution for (2.19) and ® > w. Using (2.16) with
o = v(a), 7= v(b) we get
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1

WN-1)/2 _
T /a)> I(v(@, ) — D@)* | gsn—1,

(2-20) v(s,0) — ¥(s) < 01{<1

1 W=-172
+ <1 o ® /s)> | (@, +) — 5(b)* "LZ(SN'I)}

for any 0 SV~ ! and any a < s < b.

s b
If we take Vi 2 and use estimate (2.4) in the s variable, we get

s
@.21) v(s, 0) — (s) < CpsB+ VN7 =40)/28,
In the same way we have

.22) Y(5) — v(s, 0) < CpsB+ VN*—4e)/28,

which implies the claim.
Lemma 2.4. Assume the hypotheses of Lemma 2.1. hold and ¢ = (N — 2)*/4.
Then the function w introduced in (2.12) satisfies

(2.23) [ Wz, *) = WO | posn-1y < G~ V1

for some ¢ > 0 and any t > 0.

Proor. It is essentially the same at the one of Lemma 2.3 except that Lemma
2.2 is replaced by the following estimate: for @ > 0 and ¢ € LSV~ !) the uni-
que bounded solution & of

® +An,$=0 in (@, +0)x SN,
(2.24) o TSN (N_l )
®(a, *) = () on SN,
satisfies
N-1)/2
(2‘25) " Q(t! .)"Lm(sN— 1) S 6<1 + t_ a> "¢"L2(SN— 1) -

This is essentially Poisson’s formula.

N-2\?
2

ProoF oF THEOREM 2.1. Casel. c< (

The proof follows the ideas of [24] and we have to distinguish according v is
bounded or not near 0
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Case 1.1. ¥ is bounded near 0. There exist a sequence {s,} tending to 0 and
some z such that ¥(s,) converges to z as n— . Assuming z > 0, we write
2(r) = g(r) — g(0) and call ¥ the solution of

1 1
§2 0+ —5 (7PV(sVP) — )b = —5 5@V B5(s*Bh) on (s, 5,),
(2.26) B? 32 0

0(sy) = 0(Sn,) = 2/2,

where n, is such that v(s,, 0) > z/2 for all n > n,, and 0 € SV~ 1. It is clear that
> 0. If A is the solution of

1 1
S2Ag + — (SPV(VP) = A + —5 5@ 0F|g(0)| = 0 on (s, 5, ),
(2.27) 8* B> O o

AGs,) = Als,,) =0,

then A >0 and A(s) < Ks for some constant independent of n. If we set
7 — A, then v* is a sub-solution for (2.7) which implies

v* =
(2.28) v(s,0) =2 v*(s) = — Ks (for every (s,0)€ [s,,,s,,o] x SN,
and v, (s, o) = v(s, o) + Ks is nonnegative in (0, s,,o] x S¥=1_ As the spherical
average Uy of v, satisfies

(2.29) s*(Uy)s, + ~Bl—2(s2’5 V(s"?) — o),

> 75OV Sg(=K) + 23 VPV~ o,
there exist two constants M and N > 0 such that the function E(s) = Dg(s) +

Ms@~ 0’8 | N(sLns — s) is convex. As E(s,) tends to z we deduce lim E(s)
= z, which yields =0

(2.30) lim 3(s) = z = lim v(s, ),

s—0 s=0

uniformly on SV-1,
If z < 0 we proceed similarly. If z = 0, then it is clear by using the technique
above that

(2.31) lim 5(s) = 0 = im [0(5; *)] mgs—1y-
d 5=

Case 1.2. v is unbounded near 0. Then there exists a sequence {s,} tending
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to 0 such that lim (s,) = «© (— in the same way). We conclude by the same

5s=0

convexity argument as in Case 1.1 that

(2.32) lim v(s, 0) =

s—=0

uniformly on SV~1.

N-2)\?
Case2. c= (———2—> - We essentially follow the ideas of Case 1 but use

the ¢ variable (¢ > 0) and Lemma 2.4. If w is bounded in R* then

(2.33) lim u(x)/u,(x) = 0.

|x|~0
If w is not bounded we deduce from convexity arguments that

(2.34) either lim w(t, ) = +o0, or lim w(t, ¢) = —,

t—co {—
uniformly on S¥~!. Assuming the first case we also have from convexity the
fact that #(¢)/t admits a limit in R* U { + 0 }. This limit is the same as the one
of u(x)/u,(x) as x tends to zero and this ends the proof.

Remark 2.1. It is interesting to notice that (2.3) is automatically satisfied as
soon as g has a fast enough growth, that is

liminf g(r)/r? = o,

r—o

(2.395)
limsup g(r)/(—r)? = —oo,
for some g > 1 such that
g+1/g+1 _
(2.36) C+q—l<q—1 N)-O.

In that case we have

2  N-2++JN*-4c

qg—1 2
and
u(x) = o(jx| ~¥@"D)

from (2.35) and Lemma 1.1. In the zero potential case the limit exponent g
is (N+ 1)/(N - 1).
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As we have proved Theorem 2.1 we can prove a similar result for the solu-
tion of (2.2) in an exterior domain G

Theorem 2.2. Assume G D {xeR": |x| > 1} and u € C'(G) satisfies (2.2) in
G where V is a radial potential defined in G and satisfying
; N-2)\?
2.37) —oo < |x|*V(x) < c < — )’ for every xeG.
If g(0) = 0 and u satisfies
(.38)  liminfrV-2-VN-d

r-o

)2 u u(r9 ') - ﬁ(r) "LZ(SN— 1) = Oa

then u(x)/p,(x) admits a limit in RU {co, —0} as |x| tends to infinity.
Moreover, if lim u(x)/u,(x) = 0, there exists Y € R such that
x| = o0

(2.39) lim u(x)/p,(x) = 7.

x| =0

The zero potential case of this result can be found in [31]. We can apply
this type of methods to symmetry problems as in [28].

Corollary 2.1. Assume V is a radial potential defined in RN\ {0} and satisfy-
ing

NZ
(2.40) —00<|x|2V(x)<c<—4—, for every xeRM\ {0},

and g is a nondecreasing real valued function. If ue C'(RM\ {0}) satisfies

@.41) lim inf r& =2+ V=432 4 ) — @) pagsn-ry = O,
r—0
(2.42) lim inf r®=2= YN =42y oy — @) pagen 1y = 03

then u is a radial function.

It is important to notice that the hypothesis on ¥V is weaker as the proof
essentially deals with the study of the following differential inequality

N-1

-1
(2.42) X, + -

N
X, + <V— > >X20.

Other symmetry results for Schrédinger operator with singular radial
potentials can be found in [28], [5].
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3. Solution with Linear Singularities

We assume that 2 and Q* are as in Section 1 and g is a continuous nondecreas-
ing real valued function.

PrOOF OF THEOREM 3.1. We recall that we assume ¢ < (N — 2)?/4.
Step 1. Suppose (0.24) is satisfied, that is
(3.1 j (&(®) + |g(—)hr* ~ /™1 gt < oo,

1

then we claim that for any ¥ € R there exists u € C'(Q*) satisfying

3.2 —Au — —I;clz—u +2g(u)=0
in Q* and
(3.3) Pfé u(x)/p () = 7.

We take ¥ > 0 and for € > 0 let y. be the solution of

3.4) S (Pss = 7317(5 + )@ (s + "%y in (0,1),
ye(o) =7, ye(l) = 0.

In order to avoid technical difficulties we suppose g(0) = 0. Henceforth y. is
positive, convex, nondecreasing and

(3.5) Ye(s) <7+ s(1—v), forall 0<s<]l1.
From (3.4) we get

1
(3.6 (as(s) = (¥)s(1) — Elz_ j (r+ 7P 2g((r + 9Py dr

for 0 < s < 1, and (y¢); (1) is bounded from (3.4)-(3.5). From (3.6) we deduce

s, 1
B.7) |yelsy) - yels| < als, — 1) + 7;7 j j (r+ 9%~ %G + 9" Py dr

for some constant @ >0 and 0 < s; <5, < 1. But
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s 1
(3.8) j J (r+ @ B=2g((7 + e)By) drds
Sl s

s, +e P2
< j J‘ t@= /B =2g(y /By dt ds

Sl s

(we assume e < 1). Set

X s

2 p2
d)(X) - J' J t(2 —-ay)/B- Zg(,ytal/ﬁ) dt dS,
then

2 p2
(3.9) lim ¢(x)=j j @ e/B=25(yt*/B) gt ds
0

x—=0 s

=1/ j 2 d e eg(f) dt < oo
y2e0/8

from hypothesis (/ = I(«;, 8) > 0). Henceforth ¢ is extendable to [0, 2] as a
uniformly continuous function ¢ and (3.7) reads as

1

52 (J’(Sz +€) — 5(51 + €)

(3-10) [ye(s) = ye(s)| < als, — 1] +

which implies the equicontinuity of {ye}o<.<; in C([0, 1]) and the existence
of a y e C([0, 1]) satisfying

1
5% = —5 @70 Pg(s*’By) in (0, 1],
@3.11) B*

y©0) =v, y1)=0.

The function u,(x) = |x|*1y(]x|®) is a solution of (3.2) satisfying (3.3).

Step 2. We assume that there exists v > 0 such that (3.3) holds for some
u e CY(Q*) and that

(3.11) j A -a/gf) dt = oo,
1
As lim @#(r)/p, = v and
r—=0
_ N-1_ ¢ _ — .
(3.12) i, + i, + — i =gu) in (0,1]

~
~



92 BoucHAIB GUERCH AND LAURENT VERON

we deduce, from the monotonicity of g, that

N-1_ c _ o
r ur+7u>g(7r 1/2)

(3.13)

N
3

Defining ¥(s) by @#(r)/r** with s = r?, then

G.19) $Pgs > %S‘z““’/ Pe(vs*178/2).

Integrating (3.14) twice yields

1 1
(B.15)  Ys) = Y1) + Y, (I)s - 1) - EITJ j 0@~ B=2g(yo*'Py dg dt.

As
1 pl
lim J J 0@ 0/B=2o(y6*"P) do dt =
si0 Js Jt
we derive
(3.16) lim ¢¥(s) = lim @#(r)/r*: = o,

s—=0 r-0

a contradiction.

Remark 3.1. With the above techniques it is easy to show that if Q is bounded
with a regular boundary 99, for any ¢ € C(dQ) and any ¥ € R there exists a uni-
que u, € C(@\ {0}) N C'(Q*) satisfying

—Au, - —|;|—qu +gu)=0 in Q%
(3.17)

uy=¢ on 99, lim u, (x)/p (%) = 7.
x—0

PRrOOF OF THEOREM 3.2. Here we assume that ¢ = (N — 2)?/4. We recall the
definition of b b,:

1
b,'= inf {b > 0: J gt~ N N+D1n(1/t)/b)dt < oo} ,
0

g

1
b, = inf {b > 0: j gt~ N-YW+D1nt/bydt > —oo} .
0
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Step 1. Existence result. 1t is clear that if [—(N + 2)/2b;, (N + 2)/2b; ] =
{0} there exists u satisfying the equation (0.27) with a zero limit in (0.28); so
we shall assume b,'< o, and consider any v € (0, (N + 2)/2b,].

Case 1. v < (N + 2)/2b,. For € >0 let y. be the solution of

= -3 — N+ 2 ys N— 2
(3.19) 0=+ exP( 2(s+¢€) >g<s + e>exp<2(s + e)> on [0, 1,
ye(0)=7v,  y(1)=0.

We assume again that g(0) = 0; y. is decreasing, positive and convex; therefore

(3.20) |ye(s;) — ye(sy)|

s,+€e (2

S j {3~ W+ 2)/2tg(.ye- N- 2)/2tt- 1) dtds,

s

<a|s1—s2|+j

S1+E

for 0 <s; <s,<1 (e <1). Let ¢ be defined by

2
(3.21) $(x) = J j t3e” WD 2g(ye W=D2 Yy dt ds,
X s
then
e—(N+ 2)/4
(3.22) limo¢(x) = IJ\ g(Y/(N + 2))t - N-2/N+D1 n(1/t))dt < .
x—=0 0

As in the proof of Theorem 3.1, {y.} is equicontinuous in [0, 1] and there
exists y € C([0, 1]) such that

3.23) {yss =57 3exp(—(N + 2)/2s)g(ye" V=225~ on (0,1),
) y0)=7v, y1)=0.

If we set
uy(¥) = |x| "N "22Ln(1/|x])y(~1/Ln |x]),
then
N-2\? .
—Auy, — <—2|E_> uy+g(u,) =0 in B,-.(0)\ {0},
(-24) u, () =0 on 8B,-.(0),

lim Uy )/ (%) = 7.
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Case 2. v = (N + 2)/2b,". Let y, be the solution of

(Vw)ss = 572 exp (= (N + 2)/29)g(y,e" N ~2/2s71) on (0,1),

(3.25) 1
70 =W+2)/@b)~—>  yD)=0.

The function y, is again decreasing, positive and convex and the sequence
{y.]} is increasing and bounded. From Dini’s Theorem it is uniformly con-
vergent on (0, 1] and its limit y is continuous on [0, 1] and satisfies (3.23) with
Y= (N+2)/2b;.

Step 2. Assume there exists v and a solution # of (0.27) such that

lim uk) _
oo @) T

and we assume for example that
(3.26) Y > (N + 2)/2b,".

(we proceed similarly if v < —(N + 2)/2b; ). We define
1
(3.27) u(r, o) = 4 €XP (N = 2)/2t)v(t, o), t=—1/Lnr,

and v satisfies

Vgs + Agn_10 =52 exp (—(N + 2)/2s)g(ve™ N5~ 1) in 0%,

lim v(s, ¢) = uniformly on SV~1!.
s=0

(3.28)

We consider ¢, € (0, Y — (N + 2)/2b," ) and set \ = v — ¢, > (N + 2)/2b,". For
s small enough we have v(s, ) > \ (for every o € S¥ ~!) and it is the same with
the spherical average v(s). Therefore

(3.29) U, =5 2exp (—(N + 2)/25)g(As ™ Lexp (N — 2)/25)).
Integrating (3.29) twice as in step 1 and using the definition of b, implies

lim B(s) = +o,
s—0

a contradiction.

Remark 3.2. The Dirichlet problem is also solvable in the case ¢ = (N — 2)*/4.
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Remark 3.3. If g(r) behaves like 7 (g > 1) at infinity (and —|r|? at — ),
(3.1) means that

or 1< <M
g-1 I~N_2+8

2 2
c+ —q— <0.
g—-1\qg-1

N-2)\? N
In the critical case ¢ = { ——— | » the role of the Sobolev exponent *
. 2 N -
enlightened:

(3.30) 0< —a; <

and

2 is
2
(3.31)

pr g [ @ 1 AN D/N-2),
& g‘{o if 1<g<N+2)/(N-2).

Remark 3.4. Let u, be the solution on (3.17), for any v if c < (N — 2)?/4 or
if ¢ = (W —2)?/4 or if ¢ = (N — 2)*/4 and b;'= 0. Then the mapping v - u,
is increasing. If we assume that

® ds
3.32
32 L Vsg(s) =

for some A > 0, u, is bounded above in 2\ {0} by a continuous function in
Q\ {0}. Then u,, = lim__, _ u, exists. In the case g(r) = |r|? " 'r we shall prove
in Section 4 that

Y-

2 2 1/@-1
(3.34) lim |x]* @~ Dy (x) = <c + <—q - >>
x>0 q-1 -1

Moreover u,, is the unique solution of (3.17) with v = o (see [31] for example).

4. The Power Case

In this Section we study the solutions of (0.3), that is
¢ -1
4.1) —Au—Wu+ |ul?"'u=0

in B,(0)\ {0} or in ( B,(0) or in RY\ {0}. As some of the results are direct
extensions of [13] and [7], we shall abreviate their proof.
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Proor oF THEOREM 4.1. It is clear from the classical energy method that in the
case ¢ # (N + 2)/(N — 2), r¥@=Dy(r, +) converges in the C3(SV ™~ !)-topology
to a compact connected subset of the set £ of solutions of the following equa-
tion on SV 1:

B et

(see [2], [7], [13], [26], [27]). Set

then

G ifu>=0, eNCH SV 1) is reduced to 0 and N9~ (A > 0),
() if O< NS N -1, £is reduced to 0, \'@~D and —\V@~D,
(iii) if g is an odd integer r~ r? is a real analytic function and we can
apply Bidaut-Veron-Veron and Simon’s theorem [7], [8], [21].
(v) if ¢ is an hyperbolic limit manifold, that is for any w € ¢’ and any ¢
€ C*(SV 1) satisfying

- 2 2q
4. - 1y — — - =0
4.3) AY + glo|'" Y <C+q—l<q—1 >>¢
there exists a one-parameter family {w;}o<s<; Of elements of &' such that
4.4) lims™ (o5 — w) = ¢
s=0

in C%(SV~!). We can use Simon’s result [21, Theorem 6.6]. Henceforth we are
left with (v): N=2, c< 1.

Lemma 4.1, Assume A is an open subset strictly included into
B (0\{0} = {(r,0)eR:0<r<1,0<6<r}
and assume ¢ < 1. Then

A (A4) = inf {%j <]v¢|2 - Lﬁ) dx: ¢ € W},’z(A)K > 0.
A

|x|*

Proor. Let A = {(t,0):(e’,0) e A} and (¢, 0) = ¢(r, 0) with r = '. Then

J <¢f+ —12- ¢3 — %¢2>rdrd0 = J W2+ ¥3 — cy®) dt db.
A r r A
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As AC (Lna,Lnb) x (0, 7) for some 0 <a< b< 1 and as the first eigen-

value of —A in W% (Lna, Lnb) x (0, 7)) is 1r2<L > we deduce

1
+ -
72 (Lnb/a)’
by the monotonicity property that

2

™
> —_— -
MNA) =1 -c+ T/ 0,

which is the claim.
We define v by (0.30); as N = 2, it satisfies

4.5) Uy — 4 UV, + vgg+ | c+ 2 2v—}vl"“v—O
. = vt Ve g1 =

in (—, 0) x S'. As in [13] we are left with the situation where the o-limit set
of the negative trajectory of v(¢, ») defined by

(4.6) r~ =N U )¢

t<0 7=t

is included into one of the non trivial-S!-action connected component of the
set of solutions of

2
4.7 wgp + <C+ (q_z_ 1) >w— w?"'w=0 on S,
that is
(4.8) I' C{w(s+a):aeS},

where w is a solution of (4.7) with anti-period w/k (k € N*). The following
result is then an extension of [13 Lemma 1.6].

Lemma 4.2. Let w be an element of I' ™. If wy(6,) > O (resp. < 0) at some
0, €S, then there exists t* < 0 such that

4.9 ve(2,00) 20  (resp. <0)

Sfor any t < t*.

Proor. For proving it we may assume 6, = 0 and define

(4.10) u(r, 0) = u(r, 0) — u(r, —0);
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then # satisfies

@.11) —Adi— ﬁﬁ+d(x)ﬁ= 0

in B} (0)\ {0} where d(x) > 0. Let us set

(4.12) 0" = {xeB}'\(0}:4(x) > 0}; 6~ = {xeB \{0}:i(x) <0}.
If C is a connected component of §* or 8, we claim that

(4.13) 0edC or CNaB,(0) = .

Assume the contrary; if C is such a component, there exists a, b such that
0<a<b<l1and

4.14) Cc{(r0:a<r<b, 0<O0<7}=T,,.

Extending # by 0 in T';f ,\ C then the new function #° belongs to Wg' (T, ,)
and

@15 [l (waep - 3@+ aooar) =o.
Tt | x|

Then # = 0 in C from Lemma 4.1, contradiction. The remaining of the proof
of Lemma 4.2 goes as in [10 Lemma 1.6 (i)].

Remark 4.1. Using Lemma 4.2 and comparison principles implies that if
wq(0) > 0 for 0 € [6,, 6,1 C S, then there exists #* < 0 such that

0

(4.16) vy(2,6) >0, j " 0p(t,0)d8 > 0
6

[}

for any ¢ < t*, 6 €[6,, 0,]. However it is interesting to notice that the other
assertions of [13, Lemma 1.6] do not hold for 0 < x <1 as they involve
Neuman boundary data.

The remaining of the proof of Theorem 4.1 goes exactly as in [13, Theorem
1.1].

Remark 4.2. The potential c|x| ~* of Theorem 4.1 can be replaced by a more
general potential ¥ such that Ve C** <(B,(0)\ {0}) and r*¥(r, +) converges to
c as r tends to 0 in the C!*¢(S™~1)-topology. In the case (iv) we have also to
assume: either ¢ < 1 or |x|*V(x) < 1 in some punctured neighborhood of 0.
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2 2q
et ()
is nonpositive, the set £ of the solutions of (4.2) is reduced to {0} and from

Theorem 1.2 u is described by u,. However, if g > (N + 2)/(N — 2) and if
A =0 we have

It is clear that if

4.17) oy <ay,=-2/(q-1).

The superposition of the linear and the nonlinear effect gives rise to the
phenomena described in Theorem 4.2.

PRrROOF OF THEOREM 4.2. Step 1. A priori estimate. We claim that for any
€ € (0, 1) there exists K. > 0 such that

@.18)  |u()| SLWV, (x> Ln(1/|x) "4 + KL (1/|x)) ™

where

3 1 g+1\\"4 P
wm (G-

We use the function v(t, o) defined in (0.30) and v satisfies

qg+1
qg-1

(4.20) v, + <N—2 >v,+AsN_lv— ]2 =0

in (-,0)x S¥ ! and lim v(t, 0) = 0 uniformly on S¥~1,

t—> —c

Let Y(t) = LIV, @)(—1) "4~V + M(—t)~°, M, p > 0, then

@20 po+ (N-225 1)y, - ye

_ q _n-2-1/(g-1)
= LN, @) gz (<0727

+pp + DM(~1)"*~2 + LYN, g)(—t) " #@~D
+ Mp(N— 215'—1)(—:)-9-1
qg-—1
— LT YN, g)(—1)" @D — gMLI~ (N, g)t=°~*

+o@™ "),
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If we choose 7-1 <p< qzl then -2 — 7—1 < —p-—1and
(4.22) M,,(N _2 Z * i > < QML (N, ).

Henceforth, there exists 7' < 0 such that
1
(4.23) Yo + <N— 2%)% -¥7<0

in (-0, T) x ¥~ 1. Choosing M large enough we conclude that v < y. Argu-
ing similarly for the negative part of v yields (4.18), (4.19).

Step 2. End of the proof. Let us define
4.24) ¢, 0) = (=49 Dy, o).
¢ is bounded in (—o0, —1] x SV¥~! where it satisfies

q

T Pa-1n°t

1
(4-25) g—tt+ <N—23—t1>§-t+AsN—1§‘- t g‘t

2
g-1
1
+ 7(Is°|""s“ — LN, g)¢) = 0.

From Agmon-Douglis-Niremberg [15] and Schauder theory all the derivatives
(0%/3t*) Vg¢ up to the order 3 are uniformly bounded in (-0, —1] X sN-1,
Henceforth the o-limit set I' ™ of the trajectory of {(¢, ), £ < —1, is a non-
empty compact subset of C*(SV~!). Multiplying (4.25) by ¢, and integrating
over (—oo, —1] X SV~ yields

-1
(4.26) j j $ldodt < o,
—o JSN-1
after some easy integrations by parts. This immediately implies

-1
j J‘ ftztdadt< 0o,
—w JSN-1

The uniform continuity of ¢, and {,, yields

(427) ‘ hm " g-t(t’ ')" L2(SN-1) = ‘ hm “ g-tt(t’ ')"LZ(sN— 1) = 0'
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If we multiply (4.25) by ¢ € C*(S¥ ') and take some element /e '~ we get
(4.28) j [A¢ do = 0.
SN-1

Henforth I' ™ is reduced to a constant / which satisfies
4.29) le[-L(N, q), L(N, 9],

from (4.18). If we integrate (4.25) on (¢, —1) x SV~ ! we get
-1

(4.30) j j ~l~(L"_1(N, g) — 9" Y dodt = 2(t)
t SN-1 T

where ®(¢) admits a limit as ¢ tends to —co. Henceforth it is the same with
the left-hand side of (4.30) and / must satisfy

(4.31) LI YN, g) - 19" HI=0
which ends the proof.

Remark 4.3. A similar argument can be found in [2] for the study of the
isolated singularities of the solutions of

(4.32) —Au=u"N"D (>0
or in [27] for the study of the long range behaviour of the solutions of
(4.33) ~Au+ |ufN "Dy =0

in an exterior domain.
When

lim |x|*@~Dyx) =0

x—0
we are usually in the situation where the behaviour of u near 0 is essentially
of linear type. If we look for solutions of

(4.34) A§+ﬁ§'=0

in B;(0)\ {0} under the form

(4.35) $(r,0) = y(r)¢(o),
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we find out that ¢ must be an eigenfunction of —Ag,_, with corresponding
eigenvalue A\, = k(k + N — 2) and y must satisfy

(4.36) Y, +r(N=1y,+(c-MNJy=0
(k € N); the corresponding characteristic equation is
4.37) X2+ (N=2)X+c—N\=0,

with discriminant &, = (N — 2 + 2k)*> — 4c. If &, > 0 (4.36) admits two fun-
damental solutions with constant sign

. le—(N—2+5k)/2 if 6,>0,
(4.38) py(x) = I ~N-22Ln1/|x]) if 8 =0,
) le-(N‘Z"Bk)/z if 6,>0,
(4.39) po (%) = {lxl - (N-2)/2 if 8, =0,

with 8, = V6, . If §; < 0 the space of solutions of (4.36) is generated by

(6.40) v () = [x|@~ M2 cos (V=8 Ln/r ),
' {v’z‘(x) = |x|®~™"25in (v =8, Ln~/r ).

Surprisingly the case g > (N + 2)/(IN — 2) is simpler than the case 1 < g <
(N+2)/(N-2).

Theorem 4.3. Assume q > (N + 2)/(N — 2) and that —2/(q — 1) is not a
solution of (4.37) for some k € N. If u is a solution of (4.1) in B;(0)\ {0} such
that

(4.41) lim |2/~ Du(x) = 0;
x-0

then we have the following alternative.

(i) either there exists | € N satisfying 6, > 0 and y e Ker (Agn_, + N1), ¥ # 0,
such that

(4.42) lim r&N =282y (r, o) = (o)

r—0
in the CSN~Y)-topology,

@ii) or u=0.

ProoF. As —2/(q — 1) is not a root of (4.37) we can apply [13, Lemma 2.1].
Henceforth there exists € < 0 such that
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(4.43) [u(x)| < M|x|~¥@-D+e

near 0. Let k, be the smallest integer such that 6k0 > 0; then, as in [13], we
derive the estimate

(4.44) )| < Mx| ~V-2-86)72

near 0 and this estimate yields easily that there exists y; € Ker (Agy_, + )\kol )
such that

(4.45) lim r® =278 2y(r, 0) = 4.

x=0
If ¢y, = 0, then, as in [13], we obtain
(4.46) |u(o)] < Mlx| =727 Prr 2,
etc., and we carry on as above. If we assume that

(4.47) lim x|V 2780 2y(x) = 0

x—=0
for any k € N, we conclude that # = 0 from Aronszajn’s unique continuation
theorem [1].

If 1<g<(N+2)/(N-2) we have (N — 2)/2<2/(g — 1) and the prop-
erties of u will depend on the sign of (N — 2)® — 4c.

Theorem 4.4. Assume 1 <q< (N + 2)/(N — 2), that —2/(q — 1) is not a
root of (4.37) for some k € N and (N — 2)* > 4c. If u is a solution of (4.1) in
B(0)\ {0} satisfying (4.41); then let k, be the largest integer such that

(4.48) (N=2+B)/2<2/(g-1);
(i) either there exist an integer k € [0, k,] and a nonzero e Ker (Agn_; + NI)
such that
(4.49) lin(l) u(r, *)/pi@) = ¥(s)

in the C*(SN~Y)-topology,

(ii) or there exist an integer k > 0 and a nonzero € Ker (Agy_, + N 1) such
that (4.49) holds with ¥ instead of p,

(iii) or u= 0.

The proof is the same as the one of Theorem 4.3.
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Theorem 4.5. Assume 1 <q< (N + 2)/(N - 2), that —2/(q — 1) is not a
root of (4.37) for some k € N and (N — 2)* < 4c. If u is a solution of (4.1) in
B;(0)\ {0} satisfying (4.41), let ky =1 be the smallest integer such that
&, =0.

o

Casel. 2/(qg—-1)>2(N-2+ Bko)/z. Let k; > k, be the largest integer such
that

(4.50) (N-2+ 6,(1)/2 <2/(g-1).

Then

(i) either there exist an integer k € [k, k1] and a nonzero y e Ker (Agn_, + N 1)
such that (4.49) holds.

(ii) or there exists k, couples of functions (¢, ;) both belonging to
Ker (Agn_; + NeI) for ke NN [0, ky — 1], one of the above functions at
least being nonzero, such that

4.51) lim {r&=22y(r, +)
r—-0

- I:Zj: (cos (\/ —& Ln~r )¢k + sin(\/ —& Ln~r )wk)} =0

in the C*(SN~1)-topology,

(iii) or there exist an integer k > k, and a nonzero y € Ker (Agn_, + N I) such
that (4.49) holds with p% instead of ¥,

@iv) or u=0.

Case II. (N-2-— Bko)/2 >2/(q — 1). Only the parts (ii), (iii) and (iv) of
Case I hold.

Proor. As in the proof of Theorem 4.2 the (i) of Case I is clear as —2/(g — 1)
is not a root of (4.37). Henceforth we may assume that

4.52) lu(x)| < M|x|¢~-™N72
and define
(4.53) w(t, o) = rY¥ " 22y(r,5), t=Lnr.

Therefore w satisfies

w2

1 >W + e(q_l)(N_z)t/ZWIW}q_l =0

4.54) w,+Agn_ W+ (c
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in (—o0, 0] x S~ ! where it stays bounded. Let w* be the projection of w onto
Ker (Agn_, + NI) for 0 < k < ko — 1. Then w satisfies

Sy AY)
4.55) wft + (c — ﬁzéliz,{))wk + e~ 1)(N—2)z/2fk -0

where f; is bounded, and it is easy to check that

(4.56) lim (W (t) — cos (N =8¢ 1/2)¢y — sin (v =8, /2)ux) = 0

for some ¢, Y in Ker (Agy_; + N J). As the o-limit set of the trajectory of
(w(t, *)); <o is included into the direct sum of the Ker(Ag,_, + N\ ) for
k=0,...,ky,— 1, we get (ii). The remaining of the proof is as in Theorem 4.2.

Remark 4.4. If N=2 and ¢ <0, Theorem 4.4 holds for any g > 1.

Similar types of results (with some times many cases to examine) hold for
the exterior problem. We just give the basic ones corresponding to Theorem
4.1-4.2.

Theorem 4.6. Assume g e (1, ©)\ {(N+ 2)/(N — 2)} and u is a solution of
4.1) in GD (x:|x| > 1). Then r*@=Yu(r, ) converges in the C3(SV~1)-
topology to some compact connected subset of the set £ of the C3 (S~ 1)-
JSunctions satisfying (4.2). Moreover there exists precisely one w € ¢ such that
(4.57) Hm r¥@=Du'r, ) = w(s),

r—0

at least if one of the conditions (i)-(v) of Theorem 4.1 is fulfilled.

Theorem 4.7. Assume 1<qg<(N+2)/(N-2), 0<c<(N-2)/2)? and
N\ = 0. If uis any solution of (4.1) in G D {x: |x| = 1}, then the following limit
exists

(4.58) im u(x)/(p()(Ln |x])*") =T

|x] 2o
with

_2-N++J(N-2°-4c 2

2 g-1

231

and

(4.59) Te (0, £(2(g + 1) = N(g - 1))/(g - D)™ P).
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From Theorems 4.1 and 4.6 we know that a global solution of (4.1) in
RN\ {0} satisfies

(4.60) lim 79 " Dy, s)et-,  Lmr¥9 Dur, ) ek,

r—0 r—ow

where £_ and £, are two compact connected subsets of £. If we define

1 A
4.61 E(q) = —|vg|* + g+1_ = 2
(4.61) () LN_1<2 n|” + q+1 Il S )do,
then EIIL =FE_, E|£+ =FE, and
(4.62) <N 2-‘“—1)[ j v’dosr=E, —E_,
SN—-1

where we have used the notations of (0.30). This relation tells us what are the
set of elements of ¢ for which a connecting orbit may exist. The way to con-
structing connecting orbits is to go through a semiflow as in [13] and to con-
structing such a semiflow we need an existence and uniqueness result for some
initial boundary value problem.

Theorem 4.8. Assume 1 < q. Then for any ¢ € C(0B,(0)) there exists a uni-
que ue C(( B,(0))NC*(( B,(0)) satisfying

(4.63) —Au - <]~3§]~2—u +ulul?t=0
in ((B,(0)) and u = ¢ on 3B,(0) if one of the two following conditions is
Sulfilled

(M) N> 0, u and ¢ are nonnegative, and either 1 < q < (N + 2)/(N - 2), or
g > (N+2)/(N~-2)and c> (N - 2)*/4,
(I1) either c<0,0r 0<c<(N—2)*/4and 1 <qg<(N+2)/(N-2).

Proor. Case I-Step 1. Uniqueness. If A >0 and u > 0, we know, from
Theorem 4.1 if ¢ # (N + 2)/(N — 2) or from [17] when g = (N + 2)/(N — 2),
that

(4.64) lim 729~ Yy(r, ) = L € {0,\/@~ D},

r—oo

If ¢ #0, u > 0in B,(0) from the strong maximum principle. If L = 0 we get

(4.65) <N 297 i >v + O\ = () =
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where €(?) is a positive function tending to 0 at infinity. Let § be the discrimi-
nant of the equation with constant coefficients associated to (4.65)

2
Zti) _ M= (N - 2) — 4c.

(4.66) §= <N -2

If1<g<(N+2)/(N-2),0is a source and 7 cannot tend to 0 except if it
is identically 0; if ¢ > (N + 2)/(N — 2), then § < 0 and any solution of (4.65)
tending to 0 at infinity must oscillate around 0, a contradiction. Henceforth
L = \"@=D_If we linearize (0.31) at \’@~ D we obtain the following equation

q+1
qg-—1

(4.67) &, + <.N -2 >¢t + Agn_16 — (@ — DA = 0.

As this equation satisfies the maximum principle we deduce that for any ¢ > 0
there exists Ce > 0 such that

(4.68) [, ) = N7V ogn-ry < Cee™ T,

where

1 g+1 g+1)?
(4.69) 1_5{<N—2q_1>+\/<N—2q_1> +4)\(q—1)z,

which implies

(4.70) lu(r, ) = NV/@=Dp=2@=D _ cy yy S Cr™¥@7D77e,

Assume now u and # are two solutions of (4.63) with same initial data ¢ > 0,
u and 7 > 0. Then for any R > 1 we have

@.71) —j <A—ﬁ - vAf?>(u2 -2+ j (u|? = |2]7~ Y@? - v*) =0,
BL(©0) u BL(©0)

u

and

Au A4 ) uw, i
B, (0) u u dBR0) \ U 1
2
Br(0)

+
Uy ty 2 _ p2 N-2-4/(g-1)—
(472) —_——— (u - )=O(R( @-1 T+E))
9BR(0) i

u_ . 2
Vu - —Vi >'
u

.U
Vi — —Vu
u

But from (4.70) we have

u
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and

4 1 qg+1 g+1\*
N-2—-—" _—7=_IN-2 - - -
=1 2{ o \/<N 2 1> + 4\(q 1)}

which is negative. For e small enough we deduce

2
4.73) J‘ < >
Bg(©0)

" j (ul7=1 = 317 Yw? - v*) = 0,
BR(0)

2

]
+ | Vi — —Vu
u

u..
Vu - —-Vi
u

which implies the uniqueness.

Step 2. Existence. We consider the following iterative scheme

c ) _
—Au,,+u3=]-);l7—u,,_1 in (B,(0) (n>=1),

4.74)
U,=¢ on 4B;(0)

uo = 0.
{u,} is increasing. For A > \"/@~" the function ¥, (r) = Ar~ %@~V satisfies

4.75) —AY, +YL ﬁ‘p,\ .

If we choose A > | ¢| L=(@8, ) W€ deduce ¢, > u; and finally 0 < u; < u, <
-+ <u, <y, . Clearly u, converges to a solution u of (4.63) with initial value ¢.

Case II. Step 1. Uniqueness. Let u and # be two solutions, w = u — i,
v(s, o) = w(r, 0)/pu,(r), s= r® (we assume ¢ < (N —2)?/4, the case c=
(N — 2)?/4 is treated by the same technique, see Lemma 1.4); then

(4.76) S2IWGS, ) agsn-1)s = 0

in D'(0, +). As |W(s, *)| 2sn-1, = 0(5) at infinity, w=0.

Step 2. Existence. We approximate u by the solution of the following
problem in B,(0)\ B, (0)

—Aun—~xc—|2un+|un|q“un=o in B,0)\B,0), n>2,

I
u,=¢ on 4B,(0),
u,=0 on 4B,(0).

4.77)
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u,, is unique (see Step 1), uniformly bounded, therefore it is convergent to the
desired u.

Remark 4.5. Using a phase plane analysis for the radial solutions of (0.31)
we can see that Theorem 4.8 is optimal. It is also of some interest to notice
that if A\ < 0 there exists no positive solution of (4.63) in (| B, (0): if u were such
a solution, then lim, _, _r*’@~Pu(r, +) = 0 from Theorem 4.1 if g < (N + 2)/
(N - 2) and [17] if g = (N + 2)/(N — 2) and then

L, a+1) 7 2 = _ 1 20, -
(4.78) <N 2 Py 1>J\0 jSN_lvtdodt— E(¢) + 2 LN‘IU'(O’ )do

where we use the notations of (0.30) and (4.61), and u(x) = ¢ on 3B;(0). If
g=(N+2)/(N—-2) we deduce E(¢p)=0= ¢ =0. But we can replace
¢ = v(0, ¢) by v(7T, +) for any T > 0.

Remark 4.6. Thanks to Theorem 4.8 we can define a semiflow ® on X =
C*(SM¥~ 1 in Case I or on C(S¥~1) in Case II by the formula

4.79) 2,(e)() =ut,*) (20)

if u satisfies (4.63) in (B,(0) and u = ¢ on 8B, (0). Clearly & satisfies

@ ®0=1,
(i) ®,,, =%, 0,
(iii) (¢, ¢) — ®,(¢) is continuous in (¢, @).
The proof of those assertions is the same as the one of [13, Proposition 3.2].
Moreover & is strongly order preserving in the sense that being given ¢; and

¢, on X, ¢; = ¢,, &; # ¢,, then for any ¢ > 0 there exists 6 > 0 such that for
any n;, 1, € X, satisfying

"¢1 M "CO(SN— 1y < 5:
” ®y — 1M ”CO(SN—I) <90
we have
P =>® ,
(4.80) t(nl) 1(772)

®,(n,) # 2,(n,).

Finally, if B is a bounded subset of X and ¢ > 0, ®,(B) is relatively compact
in X. Those results are what we need to apply Matano’s Theorem concerning
heteroclinic orbits of ¢ connecting two equilibria w, and w, such that [w,, w,]
contains no other equilibria than w, and w, [18].
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Remark 4.7. In order to apply Matano’s method we need to know what is
the structure of the set £ of the solutions of

(4.81) ~Agn-10 + ]! =

on SV~!, The complete structure is far out of reach, but using the geometric
technique we have introduced in [30] one can describe some of the solutions
of (4.81) associted to a tesselation of S~ !. We first recall that if G is a
subgroup of O(V) generated by reflections through hyperplanes containing 0
and if G is finite, then G contains a finite number of reflections through
hyperplanes (H), ., containing 0 and those hyperplanes divide RY into a
finite number of angular polyhedra (P),_,, each of them being limited by at
most N faces [12], [9]. Moreover those polyedra are all equal and G acts tran-
sitively on them. The intersections of those angular polyedra with S~¥~! are
spherical simplexes (S;),.; on which G also acts transitively. Henceforth we
can consider only model simplex S as a fundamental domain for G. The com-
plete description of those finite groups generated by reflections can be found
in.[9] but on R? there exists only five types of subgroups: type I is generated
by :eflections through two hyperplanes with angle n/n; type II is generated
by tihe reflections through two hyperplanes with angle w/n and a reflection
through an hyperplane orthogonal to them; type III, IV and V are associated
to Plato’s polyedra [14] and have respectively 24, 48 and 120 elements. In
order to construct a solution of (4.81) with a high degree of complexity we
consider a finite subgroup of reflections G with fundamental simplicial domain
S on S¥~! and we call \(S) the first eigenvalue of —Agn-; in W(l)’Z(S). It is
clear that \(S) is an eigenvalue of Agy_, on SN=1 If N > N(S) we call wg the
unique positive solution of the following equation on S

(4.82) —Agn-10g + 0 = g,

wg vanishing on S (wg is a minimizer). We then extend wg by reflection to
whole SV~ ! according the formula

(4.83) wgs. = det (glwg 0 g

if S; = g;(S) for some g; € G. As the vertices have codimension 2 in $¥~! and
w is bounded, wg belongs to £ [20]. For A > 0 let £* be the subset of £ of solu-
tions of (4.81) containing the three constants and the solutions which are of
type w; for some finite subgroup of reflections G (as wg is constructed,
wg © 7, for any 7€ O(N), is of the same type). If w; and w,. are two non-
constant elements of £* associated to G and G’ with fundamental simplicial
domains S and S’ and if S is a disjoint union of a finite number k of g}(S’),
1<j<k, g;eG' we shall say that the frequency of wg. is a multiple of the
Jrequency of wg. As Wg|s is energy minimizing we clearly have
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1 1 A
. - V 2+—__ q+1__ 2
(4.84) L<2 |Vl 7+ lwgl 3 wG>

1 1 A
—|v ’2 ’q+1___ 2’
< [,(31mat + oy logtr™ - 3o )

which clearly implies
(4.85) E(wg) < E(wg) < 0.

Using also the techniques of Theorem 4.8, for example the increasing iterative
scheme

(4.86) {—Aszv-lwn+wﬁ=>\wn-1 in S

w, =0 on 48§
with wy = wg,,s, (S’ C S), we deduce
(4 87) wg > wg in 8.

{
The following result the proof of which is an extension of Theorem 4.8 will
be useful in the sequel for constructing a semiflow.

Theorem 4.9. Assume Q is an open subset of S¥ ™', K, is the piece of cone
defined by

(4.88) K,={10:7>1,0€Q]},

NQ) is the first eigenvalue of —Agy_, in Wy*(Q) and 3K, is the lateral
boundary of K ; let q be bigger than 1. Then for any ¢ € Cy(Q) there exists
a unique u € C(K,) N C*(K,) satisfying

(4.89) —Au—l—xcl—2u+u|u|‘1‘1 =0
inK,, u=0on 5Kﬂ , U= ¢ on Q if one of the following two conditions is
Sulfilled

(D) N>\, (@), u and ¢ are nonnegative, and either 1 < q < (N + 2)/(N — 2)
or g>(N+2)/(N-2)and c >\ (Q) + (N — 2)*/4,
(I1) either c < M), or M @) < c < M@+ N =2)*/4and 1 < g< (N +2)/
(N - 2).

With this result we can define a semiflow € on X = CJ (Q) in Case I or
on C,(Q) in Case II and, if 8Q is Lipschitz, ®C is a strongly order preserving
semiflow on X mapping bounded subsets of X into relatively compact subsets
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of X for t > 0. We are now able to study the solutions u of (4.63) in RV\ {0}
such that

Lmr¥ @ Dur, o) = w;,  lim 9" Vu@r, ) = w, or
(4.90) e -

lm @ Vu(r, o) = @y, lim r 9 Du(r, 0) = o,

r—o0 ree

and by extension of the notations of Remark 4.7 we shall say that the two con-
stants £\"“~ D are of type wg; with G = {I,} and S=SV"1, \(S) = 0.

Theorem 4.10. Assume g > 1, w; and w, € £*. Then there exists a solution
u of (4.63) in RN\ {0} satisfying (4.90) if

(A) w; =0, w, = wg for some G and one of the following two conditions
is fulfilled

() 1<g<WN+2)/(N-2),
(i) ¢ >N+ 2)/(N—2) and ¢ >NS) + (N - 2)°/4;

(B) wy =N@"D ) =, for some non trivial G and either ¢ <0, or
0<c<(N-2%/4and 1 <qg<(N+2)/(N-2);

(C) vy = wg, W, = wg, the frequency of wg. is a multiple of the frequency
of wg and either ¢ <N(S) or M(S) < ¢ <N(S) + (V — 2 /4and1< g <
(N + 2)/(N - 2).

The proof of the Theorem is essentially a consequence of the construction
of Remark 4.7 and of Theorem 4.8 for B and C and Theorem 4.9 applied in
K for A; in that last case the positive solution constructed in the cone with
basis 0 and vertex 0 is extended by reflection to be a solution of (4.63) in
R\ {0}. It must also be noticed that the case 4, B and C imply A > \(S),
A > N(S) and N > N(S’) > N(S) respectively.

Remark 4.8. The complete set of the critical values of £ is not known, in
particular is it true that all the connected components of ¢ have different
energy value (the energy is constant on each connected component from
Sard’s theorem)? Such an exclusion principle is valid on £*.
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Ondelettes sur
I’intervalle

Yves Meyer

1. Introduction

En 1873 Dubois-Reymond construisit une fonction continue de la variable réelle
X et 2w-périodique dont la série de Fourier diverge en un point donné. Ce contre-
exemple amena A. Haar a se poser, puis a résoudre le probléme de I’existence
d’une base orthonormée #,(x), A, (%), . . ., A (x), . .. de L?[0, 1] ayant la pro-
priété que, pour toute fonction continue f(x), la série 2.5 € f, A, b, (x) converge
uniformément vers f(x). A Haar choisit #y(x) = 1, A, (x) = h(x) ou h(x) = 1 sur
[0,1/2[, h(x) = —1 sur [1/2, 1] et h(x) = O ailleurs. Enfin, pour m = 2/ + k,
0< k<2, j>0,il pose h,(x) = 272hQ2x — k).

Les sommes partielles ¢ f, hgYho(X) + -+ - + { f, b, b, (X) = S, (f)(x) sont
des approximations de f(x) par des fonctions en escalier. Mais si, pour un cer-
tain exposant s €10, 1[, f(x) vérifiait en outre,

1.1 fx+ h) = f(x) = o(h)

uniformément en x € R, les sommes partielles S,,(f) ne pourraient converger
vers f(x) pour la norme de I’espace de Banach Cy défini par (1.1).

Peut-on modifier la construction du systéme de Haar et obtenir une base
orthonomée de L%[0, 1] convenant 4 I’analyse et a la synthése des espaces de
Holder C° définis par (1.1)?

Ce probléme a été étudié depuis le travail de pionnier de Haar. G. Faber puis
J. Schauder ont commencé par remplacer les fonctions 4,,(x) du systéme de Haar
par leurs primitives A,,(x). En changeant la normalisation, il vient A,,(x) =
AR —Kk)oum =2+ k,0<k <2/, etou A(x) =2xsi0 < x < 1/2,2 — 2xsi
1/2 < x <1 et 0 hors de ’intervalle [0, 1].

115
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L’approximation d’une fonction continue sur [0, 1] par les sommes partie-
lles de la série @ + bx + 2.7 o, A, (%) revient a approcher le graphe de f(x) par
des lignes polygonales inscrites et constitue donc une amélioration de ’appro-
ximation a l’aide des fonctions en escalier. Si f(x) appartient a Cg[0, 1],
on a a,, = o(m~°) et réciproquement, si cette condition est vérifiée, la série
a + bx + 2.7 o, A, (x) converge vers f(x) en norme C°[0, 1]. En ce sens, le sys-
téme de Schauder A,,(x), m > 1 (complété par 1 et x) est une base incondition-
nelle de I’espace C;[0, 1].

En revanche, le systéme de Schauder ne peut plus servir a I’analyse de I’es-
pace L2[0, 1]. Une facon de le voir est d’observer que les coefficients o, se cal-
culent par

(1.2) Ofm=f<<k;r 1>2_">—%[f(kZ"')+f((k+ D279

et que cette formule n’a plus aucun sens si f(x) appartient a L*[0, 1].

Pour corriger ce défaut de la base de Schauder, Ph. Franklin a eu I’idée
d’orthogonormaliser la suite 1, x, A; (%), ..., 4,,(X),... en utilisant le procédé
de Gram-Schmidt. On obtient alors une suite f,,,(x), m = —1, ou f_;(x) =1,
fo(x) =2V3(x — 1/2), etc... Le systeme de Franklin est un peu tombé dans
I’oubli parce que les fonctions £,, (x) ne sont pas fournies par un algorithme aussi
simple que celui des fonctions #4,,(x) du systéme de Haar. Cependant en 1963,
Ciesielski démontra que tout se passe comme si I’on avait f,,(x) = 2/2y(2/x — k)
lorsque m = 27 + k. 1l prouve en effet que | f,,(x)| < C2/?exp (—7|2/ — k|)
pour un certain exposant ¥ > 0. Cette estimation, jointe a

[\ fntdx = [ xfudx =0,

fournit la caractérisation attendue des espaces C°[0, 1] par o, = O(m ~/*~%).

La différence avec la base de Schauder vient de ce que les normalisations sont
différentes.

Nous nous proposons de corriger le défaut du systéme de Franklin. Plus
précisément, pour tout entier N > 1, nous allons construire une base ortho-
normée f ,(,’:') de L?[0, 1] ayant une structure algorithmique aussi simple que
celle du systéme de Haar. En outre, pour une constante absolue v > 0 qui est
estimée dans [1], les espaces C*[0, 1] seront caractérisés par o, = O(m ~/?~%)
lorsque 0 < s < Y(N — 1).

Pour I’essentiel notre nouvelle base a exactement la structure du systéme de
Haar puisqu’elle contient toutes les fonctions 2/2y(2’x — k), j >0, k >0,
dont le support est inclus dans [0, 1]. Ici ¢¥(x) désigne «I’ondelette de Daube-
chies» dont le support est I’intervalle [0,2N — 1].

Malheureusement les fonctions précédentes engendrent un sous-espace de
L2[0, 1] de codimension infinie. Ceci est dfi aux effets de bord produits par 0 et



ONDELETTES SUR L’INTERVALLE 117

1. Pour tenir compte de ces effets de bord, il nous faudra adjoindre aux fonctions
précédentes (les 2//>y(2/x — k)) les fonctions 272y #(2/x), ..., 2%y % _ (2/x),
«affectées a O» et les fonctions 27/2y2(2/(1 — x)), ..., 27%¢%,_,(2/(1 - X)) «af-
fectées a 1». Nous apprendrons a construire les 2N — 2 fonctions 1,//,# et ¢f’,
1 £ /< N - 1.1l manquera alors un ensemble fini explicite pour constituer la
base orthonormée cherchée de L2[0, 1].

2. Rappels sur les ondelettes d’Ingrid Daubechies et sur les
filtres associés

On part d’un entier N > 1 et de 2N coefficients kg, hy, . . . , A, _, tels que le
polynéme trigonométrique

mo(8) = ho + hye + - -+ + h,,, '@V~ DE

vérifie les trois conditions suivantes

@.1 |mo()]* + |mg (£ + m)|> = 1
(2.2) my(0) = 1
23) my@® =0 si -2 <E<

Ces trois conditions assurent I’existence d’une suite orthonormée ¢(x — k),
k €7, de fonctions de L%(R) telle que I’on ait

1
(24) 5000 = hop(@X) + -+ + hepQx = k) + -+ + hyy_ 10 2x — @N = 1))

et
7 _eax=1.
On construit ¢(x) 4 'aide de
@.5) |7 e e dx = mo(&/2mq(E/4)...

et le support de ¢ est inclus dans [0,2N — 1].
Nous ferons dans tout ce qui suit le choix particulier suivant. On part de
la fonction c(sin#)*¥ ! oit ¢ = c¢(N) > 0 est la constante définie par

Tos AN-1 g,
cjo (sin?) dt = 1.
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On désigne par g(¢) la primitive de c(sin #)*™ ~! qui est nulle en 7. On a alors
g(—t) = g(t), g(t) =2 O pour tout t et g(¢) + g(¢t + ) = 1. Le lemme de F. Riesz
permet alors de choisir

my(t) = hy + hleit 4o+ th_1ei(2N_ e
de sorte que
|mo(@)|* = g(@).
Notons que
MO = hohyy_ e~ @Dt 4 oy b, i@V

et que hgh,,_; #0.

Ces choix de mgy(¢) conduisent a des ondelettes de régularité C*™ =1 on
v > 0 est une constante universelle et ou ’on suppose N >2. Le cas N=1
correspond au systéme de Haar.

On définit ensuite I’ondelette Y(x) en introduisant

my(§) = &N~ Vimy(E + m)

3 i2N -1
=g, +get+ -+ gZN_le'( )%

et en posant
1
26) S V() = gp2X) + £19@x — D+ + gyy_0(2x — 2N + 1),

Les identités (2.4) et (2.6) conduisent a
() 0(2x) = hop(x) + hyo(x + 1) + -+ + hypy_,0o(x + N— 1)
+&Y(X) + HYx+ )+ -+ g,y LY x+ N-1)
et a
(28)  o@x—1)=he() +he(x+ 1)+ -+ hyy_0ox+N-1)
+ &YX+ &Y+ D)+ -+ 8 Y+ N—1).

Voici I’interprétation géométrique de ces identités. Les fonctions ¢(x — k),
k € Z, sont une base orthonormée d’un espace que ’on note V. On définit
Vi, JeZ, par

.9 vieL’(R), flneV, < f@xeV,

et les fonctions Y(x — k), k € Z, forment une base orthonormée du complé-
ment orthogonal W, de V,, dans V;. En particulier ¢(2x) appartient a V; et
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(2.7) fournit sa décomposition u + v ot u € V, et ve W,. Il en est de méme
pour ¢(2x — 1) qui est décomposé grace a (2.8). Finalement toutes les fonc-
tions o(x — k), k€ Z, se décomposent, si k est pair, grace a (2.7) et si k est
impair, grace a (2.8). Cela signifie que (2.7) et (2.8) sont les formules de chan-
gement de base permettant de passer de la base orthonormée V2 o (2x — k),
keZ, de V, ala nouvelle base orthonormée que ’on obtient en réunissant les
bases o(x — k), ke Z, de V, et y(x — k), keZ, de W,.

3. L’analyse multirésolution V1! de L?[0, 1]

On part de la suite emboitée Vi, —0<j< o, de sous-espaces fermés de
L*(R), définis par

(3.1) o(x — k), ke Z, est une base orthonormée de V,,
(.2) f® eV, < f2x)eV,;, pour toute feL*(R).

et 'on désigne, pour tout j € N, par ¥ Pespace des restrictions 4 [0, 1] des
fonctions de V. Puisque ¢(x) est une fonction a support compact, il est évi-
dent que V" est de dimension finie. En fait, on a un résultat beaucoup plus
précis.

Désignons par S(j) P'intervalle d’entiers k définis par —2N + 2 < k <2/ - 1
ou, ce qui est équivalent, par la condition que le support de la fonction
@ (X) = 2/2p(2/x — k) rencontre 'intervalle 10, 1[. Alors on a

Théoréme 1. Pour tout entier j > 0, les fonctions @ k> k € S(j) constituent
une base de I’espace V') des restrictions & [0, 1] des fonctions de V.

Cet énoncé peut se formuler de fagon équivalente et cette seconde formula-
tion nous sera utile, par la suite.

Corollaire. Soit
f&) = 2 crox — k)

une fonction arbitraire de V;. Supposons j =0 et fG)=0si 0<x< 1.
Alors f(x) est formellement nulle sur [0, 1], c’est-a-dire que ¢, = 0 pour tout
ke S(j).

Nous établirons le théoréme par une récurrence descendante sur j. Nous
commencerons par traiter le cas facile ol 2/ > 4N — 4 en utilisant le lemme
suivant
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Lemme 1. Si
S0 = 3 cxplx— k)

est nulle sur 1— o0, 0], alors f(x) est formellement nulle sur ] —, 0], c’est-a-
dire f(x) = coo(X) + cio(x — 1) + - - -

Pour le montrer, on commence par observer que
= j°_° et —k)dx=0 si k< -2N+1.

On désigne alors par / le plus petit des entiers k tels que ¢, # 0. Si/ >0, iln’y
arien a démontrer et si/ < 0, il suffit d’observer que f(x), restreinte a [/, / + 1]
est nulle, par hypothése, mais est aussi égale a c,¢(x — /). Puisque le support
de ¢ est exactement [0,2N — 1], on aboutit & une contradiction.

Pour démontrer le Théoréme 1, nous définissons j, comme le plus petit
entier j tel que 2/ > 4N — 4. Nous commencons par établir le Théoréme 1
quand j = j,. Dans ce cas I’ensemble S(j) des entiers k tels que le support de
;. rencontre 10, 1] se divise en trois ensembles disjoints S; (), S,(J) et S;(j)
selon que I’intérieur du support de @ik contient 0, que le support de ®j, i st
inclus dans [0, 1] ou que P’intérieur du support de @ik contient 1. Lorsque
J 2 Jo et que k € S;(j), le support de @y est inclus dans ] — 0, 1/2] et lorsque
J=Jo et ke S;(j), ce support est inclus dans [1/2, eo[. Si j > j, et si

Jx) = ke;(j) ck‘Pj,k(x)

est nulle sur [0, 1], alors
= [f®e; Ddx=0 si keS,().
Ensuite

fix) = i Z . quaj’k(x)

€8,(J

est nulle sur [1/2, =],

L= 3 oy, 9
keS,()
Pest sur 1 —0, 1/2] et f,(x) + £2(%) + f3(x) = f(x) Pest sur [0, 1]. Il en résulte
que f;(x) est nulle sur [0, co[. Le Lemme 1 s’applique et ¢; = 0 si k€ S;(J).
On en déduit, de méme, que ¢, = 0 si k € S5(J).
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Nous désignerons par P, la propriété: les fonctions ®; 0, keS(j), for-
ment une base de VJ[."' 1. Nous nous proposons maintenant de démontrer que
Pj implique Pj- .- Pour cela, on utilise le lemme suivant

Lemme 2. Siles h,...,h,,_, sont les coefficients utilisés pour construire
mq(£), alors toute suite u,...,u,, , vérifiant, pour 0 <k <N -2, les
relations

hot + Myt 1+ -+ + Byt n_ =0
et
hog + bty + o+ hyy Uy =0

est nécessairement la suite nulle.

On pose, en effet,

UR)=ho+ hyz+ -+ hyy 2" 1 et
V@) =hy+ bz + -+ by 2V

et 'on a

mo(8) = U(e*®) + e*V(e*™).
Puisque

Imo®* + |mo(t + m* = 1,
il vient

U] + V) = 5

Puisque les coefficients 4, sont réels, il en découle que
1
URUGE Y+ VRViE Y = 5

pour tout z # 0. Donc U(z) et V(z) n’ont aucun zéro commun z # 0 et, puis-
que hy # 0, U(z) et V(z) n’ont aucun zéro commun.

Désignons par z;,...,Z,_, les zéros, supposés simples, de U(z) et par
$15 4+ §y_; ceux de ¥(z), que I’on supposera également simples dans un pre-
mier temps. On a alors

ug=cz5+ - +cy_ 2, pour 0<Sk<2N-3
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et, de méme,

U =118+ + vy 8% pour 0<k<2N-3.
Il en découle que

Qzi+ o H oy Zn o M - = Yy S =0

pour 0 < k < 2N — 3. Or ces relations de liaison entrafnent la nullité du déter-
minant de Van der Monde

1 1

Z; N
2N-3 2N-3
Zl .o N-1

ce qui est absurde, puisque
{zla""zN_l}n {g.la- '°7§-N_1} = @-
Ce raisonnement s’adapte immédiatement au cas de racines multiples de U(z)

ou de V(z).

Revenons & la preuve du Théoréme 1 et montrons que P, implique P;,
pour tout j = 0.
Supposons donc que

2 xk¢(2jx -k)=0
keS()

sur [0, 1]. On écrit
1 ) . )
Ego(Z’x —k) = o7t = 2k) + bR T X -2k — 1) + - -+

+ hyy_ 027 X = 2k — 2N + 1).
On a donc, si 0 <x <1,

0= 3 xepx— k)
keS(Jj)

2N-1

> 2xhe2t x = 2k - I).
o F

Il

La propriété P, , , nous apprend que toute somme > Vet x — k) qui
est identiquement nulle sur [0, 1] est, en fait, formellement nulle sur [0, 1]:
chaque terme qui la compose est nul sur [0, 1]. On a donc les 2/+! + 2N — 2
relations
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Vons2 =X Nathot X_yha+ o+ X_ 5,00y =0
Vo anes =X Nt H X A+t X g 0k =0
Voonra=X_nioho+ X_yo ot H X oy 3l =0
Voones=X_noa+X_yo kst X 0 3k =0
Vaivrog=Xpi_tho+ o+, yhyy =0

Vpiero1 =% i+ Xy jhyy =0,

On utilise alors le Lemme 2 et il vient x_,,,, =+ =X,;_, = 0, comme
annoncé.

Nous pouvons compléter le Théoréme 1 par I’énoncé quantitatif correspon-
dant. A savoir ’existence de deux constantes C, > C; > 0, indépendantes de
J =0, telles que ’on ait pour toute suite & s k € S(j), de coefficients

2\1/2
Cl( 2 |°‘j,kl> <K 2 “',k‘Pj,k(X)u
keS(j) keS(j) L2(0,1)

<G 3 loyul?)

keS()

Si 0<j<Jp, il n’y a rien & démontrer et (3.3) paraphrase le Théoréme 1.
Si j = Jj,, on pose

X) = 2: o ’qu' k X
f( ) keS(Jj) > 5 ( )

fl(X)=kEZ () L= 2 () et fs)= D (),

S.() keS,(J) keSy()
L’inégalité de Bessel fournit, tout d’abord,
1 ,
> oy < j £GOI d.
keS,(j) 7 0

Il en découle que

”fl +f3 “LZ[O,I] < 2"f"L2[0,1]'

Mais les supports de f; et de f; sont disjoints puisque j = j,. Il en résulte que
I fila+ [ £sl2 <2V2 | f],. Les normes de f;(x) et de f;(x) s’évaluent enfin
par simple changement d’échelle et les estimations ne dépendent pas de j.

L’inégalité de droite de (3.3) est encore plus facile, en utilisant la décompo-

sition f=f1+ L, + /5.
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Avant de passer a la construction des ondelettes, nous allons déduire du
Théoréme 1 la construction d’une base orthonormée de V!, Nous nous
limiterons au cas ou j > j,. Alors les fonctions @i ks ke Si(j), ke S,(j) ou
k € S;(j) forment une base (non orthogonale) de V}°’ 11 1] importe de remar-
quer que, pour le produit scalaire de L2[0, 1], les fonctions @ k> ke S;(j)sont
orthogonales aux fonctions @i k> k € S,(j). Cette orthogonalité tient a ce que
I’on a

Iimgo(x)@(x—k)dx:O si kez, k0.

Ensuite les fonctions Pk k € S,(j) sont orthogonales aux fonctions @ k>
k € S;(j) parce que leurs supports sont disjoints.

Pour transformer en une base orthonormée la base des P k> k € S(j), il suf-
fit donc de rendre orthogonales entre elles les fonctions du paquet
@ 1 k € 8;(j) et, de méme, de rendre orthogonales entre elles les fonctions du
paquet ¢, ., k € S;(j). Dans chaque cas, il s’agit de N — 1 fonctions et les cal-
culs a faire sont invariants par dilatation. On obtient donc, a la place des
N — 1 fonctions @, «X), ke€8;1(j), N — 1 nouvelles fonctions

220 F @), ..., 2770 % (27%)

et de méme, a la place des N — 1 fonctions ¢; ,, k€S3(J), N -1 nouvelles
fonctions

2020221 - ), ..., 27208 _,(2(1 - x).

Nous pouvons conclure en énongant le résultat suivant

Proposition 1. Pour j > j,, la collection des fonctions
220#(29%), ..., 2720k (27%),27%p(2x — k), 0<k<2-2N+1
et, finalement
27205201 — X)), . .., 27205, 2/(1 — X))

est une base orthonormée de V%11,
Une derniére remarque nous sera utile dans ce qui suit

Lemme 3. L ’espace vectoriel V! (de dimension 2N — 1) contient I’espace
vectoriel (de dimension N) des restrictions a [0, 1] des polynémes de degré
<N-1.
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Pour le voir, on commence par observer que
> x—kK"o(x—k)=c, pour 0Sm<N-1,
—

on le montre en appliquant la formule sommatoire de Poisson et en observant que

d m
<—b,—x—> e(x) =0 si x=2km, k#0, et 0SKmN-1.

Il en découle que
2 k"p(x — k) = Ppy(x)

ou P,,(x) est un polynébme de degré m.
En restreignant cette identité a [0, 1], on obtient le Lemme 3.

La construction des ondelettes sur ’intervalle [0, 1] débute par I’ortho-
normalisation de la base de V'[! constituée des fonctions ¢(x + 2N — 2),
ox+ 2N —3),..., ¢(x). Compte tenu du Lemme 3, nous commencerons par
substituer a cette base celle composée des mondmes 1,x, ...,x~ ! puis de
N — 1 fonctions g,(x), ..., gy_,(x) de V> L’orthonormalisation de cette
nouvelle base fournit donc N polynémes orthogonaux suivis de N — 1 fonc-
tions de V'[! dont les moments d’ordre < N — 1 sont tous nuls. Ces fonc-
tions seront donc des ondelettes et il en sera de méme de celles que nous allons
maintenant construire.

4. La construction des ondelettes sur ’intervalle

Cette construction repose sur 1’énoncé suivant qui permet de compléter la base

¢;. o k€S(j), en une base de V% .

Théoréme 2. Pour tout j > 0, une base de V% |1 est constituée de la réunion
de la base ¢;  de VJ[.O' 1 et des fonctions Y; g telles que —N + 1<k <2/ - N.

Pour établir ce résultat, on commence par démontrer le résultat suivant

Lemme 4. Les fonctions y(2x — k), —2N + 2 < k < — N, une fois restrein-
tes a [0, 11, appartiennent a V'™ 1.

Nous poserons 2’/x = ¢ et définirons V[ “! comme I’espace des restrictions
a [0, oo[ des fonctions de V, = V,,(R). Le Lemme 4 résultera du résultat plus
précis suivant
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Lemme 5. Les fonctions y(x — k), —2N + 2 < k < —N, une fois restreintes
a [0, o[, appartiennent a V=L,

Cela signifie que si plus la moitié du support de y(x — k) tombe i I’exterieur
de [0, o[, la restriction a [0, o[ de y/(x — k) appartient & ¥, mais, en revanche,
que les N — 1 fonctions y(x + N—1),...,¥(x + 1), une fois restreintes a
[0, o[, sont linéairement indépendantes modulo V.

Revenons au Lemme 5. Pour I’établir, on retourne a (2.7) ou I’on remplace
successivement x par x + 2N — 2, puis par x + 2N — 3, ... et, enfin, x par
X + N. Puisque ¢(2x + 2N —1)=0 si x >0, il vient successivement, pour
x2z0,

GoV(Xx + 2N —2) + hyp(x + 2N -2) =0
puis

Zo¥(x + 2N — 3) + Z,¥(x + 2N — 2) + hgy(x + 2N — 3)
+ ho(x +2N—-2)=0

et enfin

V(X + N) + -+ + &y ¥(x + 2N = 2) + hyo(x + N)
+ ot By p(x +2N—-2) = 0.

A P’aide de ces relations, on démontre successivement que J(x + 2N — 2), res-
treint & [0, oo, appartient & V1! puis qu’il en est de méme pour y(x + 2N — 3)
et, de proche en proche, pour tous les y(x + k), 2N—-2 >k > N.

Le Lemme 4 résulte du Lemme 5 par simple changement d’échelle.

Pour démontrer le Théoréme 2, on observe d’abord que le nombre de fonc-
tions proposées est exactement la dimension (27! + 2N — 2) de v 1. Pour
établir le théoréme, il suffit d’établir que ces fonctions constituent un systéme
générateur.

On part donc d’une fonction arbitraire f de Viiet I’on veut montrer que
la restriction de f & [0, 1] s’écrit g + 2 ot ge V1" et
2/-N
@.1) W)= 3 o, DY, ().
-N+1
En fait, f=u+vouue Vietve W,. A ce titre, v(x) = 2. BU, k) ¥ 1 ().
Dans cette série, on peut distinguer sept ensembles de valeurs de k. Si k <
—2N + 1, la restriction de ¢j, « 2 [0, 1] est nulle et on n’a pas a considérer les
termes correspondants. Si —2N + 2 < k < —N, la restriction de 1//j, al0,1]
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appartient & V1! (Lemme 4) et contribue  la fonction g(x). Les termes tels
que —N+1 < k <2/ — N sont ceux qui nous intéressent.

Si 22 -N+1<k<2/—1, la restriction de ¥;.« 4 [0,1] appartient a
V%1, On le démontre par un raisonnement 1dent1que a celui qui a conduit
au Lemme 4. Enfin si k > 2/, la restriction de x// & 2 [0,1] est nulle.

Le Théoréme 2 est donc démontré.

La construction de la base orthonormée d’ondelettes sur I’intervalle [0, 1]
suit désormais le schéma classique des analyses multirésolutions.

On dispose d’une suite emboitée de sous-espaces V1" 11 de 12[0, 1], j > 0.
La réunion des V!> est dense dans L*[0, 1] pulsque la réunion des V; est
dense dans L*(R). On désigne alors par W'l le complément orthogonal de

V%1 dans V%11, On observera que W[° 5 n’est pas ’espace des restrictions
a [0 1] des fonctlons de W;. En effet le Lemme 4 nous apprend que la restric-
tion a [0, 1] de Y(2/x — k) appartient a V[0 Ugi —2N+2<k< —N ou si
2/ - N+1<k<2/-1. Lorsque —N+1 k< -1ou2/-2N+2<k<
2/ — N, les restrictions des fonctions y(2/x — k) n’appartiennent certes pas
V%11 mais ne sont pas pour autant orthogonales & V1!,

En tout état de cause, on a

LZ[O, 11 = V([)O’ 1] ® W([)O’ 1] ® WEO, 1] @ @ WJ[_O, 1] @®--

Nous disposons déja d’une base orthonormée de VI'l. Nous nous pro-
posons de construire une base orthonormée de W 1 pour chaque j > 0.
A cet effet, on utilise le Théoréme 2, en dlstmguant les cas 0<j<j, et
J=Jo @0 = 4N - 4).

Dans le premier cas, il suffit de projeter orthogonalement sur WJ les fonctions
Y, i tellesque —N+ 1<k < 2/ — N. Puisque nous disposons déja d’une base
orthonormée de Vis I’opérateur de projection orthogonale sur V;est explicite.
Une fois projetés sur Wi, les Vik deviennent des fonctions A i k qu’il convient
ensuite d’orthonormaliser entre elles pour —N + 1 <k <2/ -

Lorsquej > j,, tout se clarifie. En effet les Yk tellesque 0 < k <2/ — 2N + 1
appartiennent de «plein droit» a W[0 1l Pour obtenir la base orthonormée de
W il suffit d’adjoindre & ces 2’ 2N + 2 fonctions les 2N — 2 ondelettes
manquantes (la dimension de W est 27). Ces 2N — 2 ondelettes manquan-
tes se composent de N — 1 ondelettes «affectées a O» et de N — 1 ondelettes
«affectées a 1».

Pour construire les premiéres, on part des N — 1 fonctions Yk telles que
—N + 1 < k < —1. Elles sont orthogonales aux goj  lorsque k > 0 tout comme
elles le sont aux ‘p xpour k > 0. Ce qui manque a ces fonctions zp - est Portho-
gonalité aux N — "I fonctions 272 e*Q2x),...,2"%0%_ (27%). Ces N — 1 fonc-
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tions formant une suite orthogonale, les corrections rendant les \p ((—N+1<

k < —1) orthogonales 4 V1! sont évidentes. On obtient alors N'= 1 fonctions
272h,2%%), ..., 2"%hy_,(2/x) oU by, . .., h,,_, ne dépendent pas de j. Il suffit
enfin d’orthonormaliser ces N — 1 fonctions pour obtenir les N — 1 ondelettes
«affectées & O», & savoir 272y #(2/x), ..., 272y % _ (2%%).

La construction des N — 1 ondelettes «affectées a 1», & savoir 2%/ zzpf 21 - %)),

L2728 (27(1 — X)) est semblable.

I est plus commode d’indexer les fonctions que nous venons de construire
par ’ensemble JUE ou g est la collection de tous les intervalles dyadiques
inclus dans [0, 1] et E est un ensemble de cardinalité 2N — 1. On commencera
par examiner les intervalles 7 = [k277, (k + 1)2 /[ o0 j > j,, 0 <k <2/. On
distingue trois cas. Désignons systématiquement par 2N — 1)I = [ I’intervalle
ayant le méme centre que / et pour longueur 2N — 1 fois celle (notée |7|) de
1. Le premier cas est celui ot ni 0 ni 1 n’appartiennent & I’intérieur de /. Alors
T est inclus dans [0, 1] et I’on pose

(4.5) ¥, () = 2729(2x —k + N - 1).

On observera que le support est exactement 7. Si 0 appartient a I’intérieur de
I,ona0<k<N-2et!’on pose

(4.6) ¥, =272y F,  (2%%).

Si enfin 1 appartient a Pintérieur de /, ona 2/ - W - 1) <k <2/ - 1et’on
pose [ =2/ — ket :

4.7 00 = 272972701 - x)).

- Finalement il reste a indexer les 2’0 + 2N — 2 fonctions manquantes. Nous
disposons pour cela de 1 +2 + - -+ + 20! intervalles dyadiques I C [0, 1]
qui n’ont pas encore servi. Désignons par j, le plus petit entier j tel que
2/ > 2N — 1; si j, <Jj <Jj, — 1, on incorpore dans la base orthonormée de w,
les fonctions 2//2y(2/x — k), 0 < k <2/ — 2N + 1, dont le support est 1nclus
dans [0, 1]. On compléte ces fonctions (que I’on notera bien évidemment v,
en revenant a (4.5)) en une base orthonormée de W que ’on indexe arbitraire-
ment a Iaide des intervalles I de longueur 2~/ non encore utilisés.

Nous venons, pour chaque j > 0, de former une base orthonormée de W,
qui se compose des ondelettes ¢, I intervalle dyadique de longueur 2~ J 1nclus
dans [0, 1]; ’ensemble de ces intervalles dyadiques sera noté E Enfin ¢, est
donné par (4.5) chaque fois que (2N — 1)I = T est inclus dans [0, 11.

Pour obtenir une base orthonormée de L2[0, 1], il nous reste a former une
base orthonormée ¢,(X), . . . , ¢, _,(x) de V,,. Remarquons tout d’abord que
1,x,...,xN"!appartiennent a Vet ¢, . . ., @, _ , DE sont autres que ces mo-
ndémes orthogonalisés par le procédé de Gram-Schmidt. On compléte ces poly-
ndémes orthogonaux en une base orthonormée de V.
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Nous venons d’établir le résultat suivant

Théoréme 3. L’ensemble des fonctions Y (x), I € 9, et des 2N — 1 fonctions
@0(X), . .., ¢, _,(x) constitue une base orthonormée de L*[0, 1].

5. Analyse des espaces de Holder C°[0, 1]), s > 0, dans la
base précédente

Rappelons que C°[0, 1], s > 0, désigne ’espace des restrictions a I’intervalle
[0, 1] des fonctions de C*(R). Nous désignerons par Cg(R) la fermeture, pour
la norme de I’espace de Banach C°, des fonctions de la classe D(R) de
Schwartz. Si s = 1, convenons que C' ne désignera pas I’espace usuel mais la
classe de Zygmund A, définie par la condition

(5.1 | fx + h) + f(x — B) — 2£()| < Clh|.

Sil<s<2,onécriras=1+retfeC*R) signifie que f'(x), la dérivée de
f, appartient a C” etc...
Alors il vient, pour toute fonction f(x) € L*[0, 1],

Proposition 2. Si 0 <s < N et si f(x) appartient a C°[0, 1], alors on a

52) [ FCv 0 dx = O(T1V2+9),

Réciproquement si 0 < s < y(N — 1), cette condition caractérise l’espace
celo, 11.

Rappelons que v(N — 1) mesure la régularité de ’ondelette y(x) et de la
fonction ¢(x) qui lui est associée. La preuve de ce résultat est semblable a celle
que le lecteur pourra trouver dans [2].

On a des résultats analogues en ce qui concerne I’espace H[0, 1], s > 0, des
restrictions a [0, 1] des fonctions f(x) € H*(R).

Un cas remarquable est celui de I’espace BMO de John et Nirenberg dont
nous rappelons la définition.

Définition 1. Une fonction f(x), appartenant a L*[0, 1], appartient en outre,

a BMO [0, 1] s’il existe une constante C > 0 telle que pour tout intervalle
IC [0, 1], on puisse trouver une constante Y(I) de sorte que I’on ait

1 1/2
(5.3) <—J‘ |f() — ‘Y(1)|2dx> <C.
17| Jr
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La borne inférieure de ces constantes C est la norme BMO de f. Mais on
peut souhaiter éviter (ce que nous ferons) que les constantes aient pour norme

0. Alors on ajoute ‘ ﬁ Jf) dx| a la norme précédente.

L’espace BMO [0, 1] se compose des restrictions a [0, 1] des fonctions de
BMO (R). Pour le montrer, il suffit de construire I’opérateur de prolongement
d’une fonction f€ BMO [0, 1] en une fonction g e BMO (R). Ce prolongement
s’effectue en imposant a g(x) d’étre paire et périodique de période 2.

L’espace BMO [0, 1] est le dual E* d’un espace de Banach E; E est le sous-
espace de I’espace de Hardy H'(RR) composé de toutes les fonctions de H!(R)
dont le support est inclus dans [0, 1].

On suppose N > 2 et ’on a alors (avec les notations du Théoréme 3)

Proposition 3. Une fonction f(x) de carré sommable sur [0, 11 appartient a
BMO [0, 1] si et seulement si I’on a, pour une certaine constante C,

(5.4) SIKAYpPP <O
JcI

ou I est un intervalle dyadique arbitraire inclus dans [0, 1] et ou la somme porte
sur tous les sous-intervalles dyadiques J C I.

Pour conclure cette section, observons que ’analyse en ondelettes des espa-
ces C*[0, 1] ou BMO [0, 1] fournit automatiquement des opérateurs de prolon-
gement a4 R tout entier. Explicitons ce point dans le cas de BMO [0, 1]. Les
ondelettes permettant de reconstituer f sont soit de la forme 2//2y(2/x — k) et
leur support est alors inclus dans [0, 1], soit de la forme 2/ 21#1# 2, ...,
272y % (2%x), soit de la forme 272y5Q2/(1 — x)), ..., 2725 _ /(1 - %)),
soit enfin I’'une des fonctions ¢, . . . , ¢, _, . Si bien que f€ BMO [0, 1] s’écrit
canoniquement f = f; + f, + f; + f;, ol f; est une fonction de BMO (R) dont
le support est inclus dans [0, 1],

N-1
A= 3% at,myae) et sup a(j, m)| < w
JjZzjy iz,
N-1 .
0= 2 >1] BU, mym(2’(1 = X)) et sup|B(j,m)| < oo
e FESA

et finalement
Ja) = Yopo(X) + -+ - + Vyn_ 1PN 2 (X)-

Le prolongement des fonctions ¥, (x) et ¥ (x) & R tout entier est fourni par
construction. Naturellement ces fonctions, une fois prolongées, perdent leur
caractére oscillant. On a
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j x Y Ex) dx = 0

si0 <Kk N-1,1<m< N - 1mais ’intégrale correspondante sur ] —co, oo
n’est pas nulle. Néanmoins f,(x) et f;(x) appartiennent a BMO (R) car seule
la régularité et le support compact des fonctions ¥ et 2 importent.

6. Opérateurs de Calder6n-Zygmund sur Pintervalle

Commencgons par étendre au carré unité [0, 1] X [0, 1] = Q, la base orthonor-
mée de L*[0, 1] que nous venons de construire. On proceéde comme dans [2]
et I’on observe que la réunion des sous-espaces V1> ®@ V1! de LX(Qy) est
dense dans L*(Q,). On a donc

(6.1) LHQ0) = (Ve® Vo) @ (Wo®@ Vo) @ (Ve @ W) @ (W@ W) ® - - -

Une base orthonormée de V, ® V, se compose des fonctions ¢;(X)¢,,(»),
0</L2N -2, 0<m<2N -2, déja utilisées. Nous utiliserons de méme
une base orthonormée ¢, de V,= V[° 1 construite de la facon suivante. La
base ¢, est indexée par l’ensemble F, des mtervalles dyadlques de longueur 2~/
inclus dans [-QN —-2)277/, 1 + (2N 2)277. Si = (2N — I est inclus
dans [0, 11, alors ¢,(x) = 2/?p(2x — k + N — 1) et si 0 ou 1 appartiennent &
intérieur de 7, la construction de ¢ ; est calquée sur celle que nous avons don-
née pour y,.

Une base orthonormée de W ® V est donc composée des fonctions
¥,()e,(y) ouleE; (ensemble des mtervalles dyadiques 7 inclus dans [0, 1] et
de longueur 2~7) et JeF;. De méme une base orthonormée de Vi ® W est
composée de fonctions gol(x)t,b]( »,1eF;,, JeE,. Enfin une base orthonormee
de W, Q W, est composée des fonctions ¢I(x)¢ s, I€E;, J eEj.

Tout ce que nous dit dans le cas de I’intervalle [0, 1] convient au cas de
[0, 1] x [0, 1]. C’est-a-dire que la décomposition dans cette base fournit un
prolongement canonique des objets que ’on analyse.

Nous allons vérifier cette assertion en analysant, dans la base que nous
venons de construire, les noyaux distributions S(x, y) des opérateurs de Cal-
derén-Zygmund opérant sur L[0, 1].

Commengons par une forme bilinéaire J: C'[0, 1] x C'[0, 1] = C définie
par la distribution correspondante S € D'(R?) dont le support est inclus dans
[0, 11%.

Nous supposerons que la restriction a y # x de S(x, ) est une fonction
K(x, y) vérifiant les conditions

6.2) K, »)| < Colx—y|7Y,  0<x<1, 0<y<l, y#x,
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(6.3) il existe un exposant 7y €]0, 1] tel que ’on ait
|K(x',») — K(x, )] < Colx' = x|"|x — y| 7177

chaque fois que

N
(=]
N
k\
N
(=)
N
<
N
<
W
X

1
|x" — x| Sglx—yl, 0<x

on a de méme,

(6.4) [K(x,y) — K(x,»)| < Coly' = y|"|x — y| 717"

chaque fois que
! 1 !
V' =d<5lx=-yl,  0<x<1, 0<y'<1, 0<y<l, x#y.

Définissons maintenant la continuité faible. A cet effet, pour tout intervalle
fermé I C [0, 1] et toute fonction f€ C*[0, 1] & support dans I, nous posons

N,(f) = |I|"*sup, | f(0)| + |T]*?sup, | f'(x)|;

si I =[0,d], a <1, nous ne demandons pas que f ou f' s’annulent en 0 et de
méme si I = [b, 1].

Nous dirons que J a la propriété de continuité faible s’il existe une constante
C telle que, pour tout intervalle fermé 7 C [0, 1] et tout couple de deux fonc-
tions f et g de C'[0, 1] & supports dans I, on ait

6.5) IJ(f, )] < CN,(NIN,(2).

Désignons enfin par T I’opérateur défini par la forme J et par

(T(f), &> =J(/, 8.

Le probléme que nous posons est de savoir si un opérateur 7 vérifiant (6.2),
(6.3), (6.4) et (6.5) se prolonge en un opérateur continu sur L2[0, 1]. A cet
effet, analysons S(x, y) dans la base d’ondelettes du carré. On obtient, grace
a la continuité faible et aux propriétés (6.2), (6.3) et (6.4)

(6.6) |y ¥l S G+ |k —1)7 177
6.7) TWp o)l < Ci(1+ k=1~
(6.8) |JWp¥)l < G+ [k =1~

lorsque 7 = [k277, (k + 1)2 /[ et J = [I27/, (I + 1)2/[. Inversement ces pro-
priétés caractérisent les distributions S vérifiant (6.2), (6.3), (6.4) et la proprié-
té de continuité faible.
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Désignons par G, ’ensemble des intervalles dyadiques 7 de longueur 2 = tels
que 2N - 1)I=1C[0,1]. On part de la décomposition de la distribution
S(x,y) dans la base d’ondelettes de L*(Q,). On regroupe tous les termes
a(l, e 0¥,(0) + BU, I, x)e,(0) + YL, )Y, )¥,(y) tels que TeG; et
J € G, et leur somme est notée S(x, y). Alors § appartient automatiquement a
D(R?) et la restriction K(x, y) de § a y # x vérifie (6.2), (6.3) et (6.4) dans R?
tout entier. En outre K(x, y) = 0 hors de Q,.

La différence R(x, y) = S(x,y) — S(x, y) vérifie

G G

6.9 R(x, <
(6.9) RO S k= + =1

et ’opérateur associé est automatiquement borné sur L2[0, 1]. En outre le pro-
longement canonique de R(x,y) hors de Q, est un noyau & support dans
(2N — 1)Q, qui vérifie (6.2), (6.3) et (6.4) dans tout R?.

11 est alors immédiat de conclure. Si T se prolonge en un opérateur linéaire
continu sur L*[0, 1], alors ’opérateur T est continu de L*(R) dans lui-méme.
Le noyau-distribution S(x,y) de T, une fois restreint a y # x, vérifie (6.2),
(6.3) et (6.4). Le théoréeme de David et Journé s’applique donc et la continuité
en question équivaut 4 7(1) e BMO et 'T(1) e BMO. Finalement il faut compa-
rer T(1) & T(1) d’une part, ‘T(1) a ‘T(1) d’autre part. En revenant aux
décompositions des noyaux S(x, ¥) et S(x, ¥), on voit que T(1) et T(1) ne diffe-
rent que par deux fonctions de BMO que nous avons appelées f,(x) et f3(x)
dans la Section 5.

Ainsi la continuité de I’opérateur T équivaut a 7(1) e BMO[0, 1] et ‘T(1) €
BMO [0, 1].
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1. Introduction

Spherical mean value operators on a compact Riemannian manifold M have
been extensively studied by Sunada in a series of papers [14], [15] and [16].
He has studied the eigenvalue problem L, f = of associated with the spherical
mean value operator L,. The question about the eigenvalues o =1 and
o« = —1 arerelated to the ergodicity and mixing properties of the geodesic ran-
dom walk of step size r on the manifold M. In a recent article [7] Pati-Shah-
shahani-Sitaram have investigated the eigenvalue problem in the case when M
is a compact symmetric space. In this case they are able to identify the eigen-
values completely in terms of the elementary spherical functions associated to
M. They provide alternate proofs of some results of Sunada regarding the
eigenvalues 1 and —1. Let us briefly recall their result.

Let M = G/K be a compact symmetric space. Then the spherical mean value
operator L, can be identified with a convolution operator L, f = f * », where »,
is a certain probability measure which can be viewed as a K-biinvariant measure
on G. Let G, denote the collection of all pairwise inequivalent, irreducible,

135



136 S. THANGAVELU

unitary representations of class 1 of G. For each 7 € G, there is an elementary
spherical function ¢, associated with it. The main result of [7] can now be
stated as follows.

Theorem 0. All the eigenvalues of the operator L, are of the form

VelD) = [ 60 d,

where 1€ G, .

The aim of this paper is to study spherical mean value operators on the
reduced Heisenberg group H"/I'. Here H" is the Heisenberg group and T is
the subgroup {(0, 27k): k € Z} of H". The Heisenberg group H" is a nilpotent
Lie group whose underlying manifold is C" x R. The coordinates on H"” are
(z, t) where z = x + iy with x, ye R" and ¢t € R. The group law is defined by

(z, )(w,s) = <z + Wt +s+ %Isz)-

The Haar measure in H” is the Lebesgue measure dzdt. The group H"/T is
a nilpotent Lie group with compact centre. A function on H" is said to be
radial or rotation invariant if it is invariant under rotations in the variable z.

By a spherical mean value operator we mean an operator of the form
T,f = f* p where p is a rotation invariant compactly supported probability
measure on H"/T". We are able to identify all the eigenvalues of the operator
T,. For each k =0,1,2,... and \ # 0 there are certain radial functions e},
on the Heisenberg group A" which can be thought of as the elementary
spherical functions for the Heisenberg group. As in the case of the compact
symmetric space, the eigenvalues are then given by the averages of e’,; with
respect to p.

Theorem 1. Assume that p has no mass at the centre of H"/T'. Then all the
eigenvalues of the operator T, are given by

() = [, eiz e,
where j is an integer. Further, any function of the form f * e, J satisfies
T, (f* %) = o (IS * e.).

“We can make more precise statements regarding the eigenvalues if we take
u = u,  where p, , is the normalized Lebesgue (surface) measure on the sphere
S, :=1{(z1):|z] =r} in H"/T'. Let M, , stand for T, when p =y, ,. The
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elementary spherical functions e{c(z, s) are radial functions of z and slightly
abusing the notation we write e’ (r, s) in place of e’ (z,s) when |z| =r.

Theorem 2.
(i) All the eigenvalues of the operator M, , are given by o;(j) = e{‘(r, 1).
(i) @ = 1 and a = —1 are not eigenvalues of the operator M, , for any r > 0.

By writing down the Fourier series of f* pu, , we can see that it involves
operators of the form g X u, where g X p, is the twisted convolution of g with
the surface measure on the sphere |z| = r in C". The spectral properties of the
operator T,g = (27)"g X u, are worth studying and we have the following
theorem.

Theorem 3.

(1) All the eigenvalues of the operator T, are given by

k!'(n—1)!

oy = md’k(r)

where ¢, are the Laguerre functions of type (n — 1).

(ii) For each k the eigenspace corresponding to the eigenvalue o, is infinite
dimensional; hence the operator T, is not compact.

(ili) o = 1 and a = —1 are not eigenvalues of T, and a = 0 is an eigenvalue
if and only if ¢,(r) = 0 for some k.

The operators 7T, also arise naturally in connection with certain restriction
operators R, for the symplectic Fourier transform on R?". In Section 5 we will
show that we can write

f@) = (4m)~*w,, R f@r*" ' dr

where R, are the restriction operators. These restriction operators R, are
related to 7, by R,f= 27) " "T(F,f) where F,f is the symplectic Fourier
transform of f. Using the above relation and the spectral properties of 7, we
are able to prove the following theorem regarding the mapping properties of
the restriction operators R,.

Theorem 4. Assume that n > 3. Then the following are true.
0 RSy <GS, for 1<p<2,

2n
n+1

@) Rl <Clflp Sfor <p<2,
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2n n—1

Qi) |Rflg <GSl Jor 1Sp<———=0  q=_—5P"

To prove this theorem we need to use some mapping properties of the pro-
jection operators associated with special Hermite expansions. We will also
show that the operators R, are regularising in the sense that they take L%(C")
into W*(C") where “W*(C") are the twisted Sobolev spaces to be defined in the
sequel. The plan of the paper is as follows. In the next section we will define
the functidns ez and show that they have all the properties satisfied by the
elementary spherical functions. In Section 3 we will prove Theorem 1. The
spectral properties of 7, will be taken up in Section 4 and finally the restriction
operators will be studied in Section 5.

Finally, the author wishes to thank the hospitality of Indian Statistical
Institute, Bangalore where the ideas of this paper took shape. He also wishes
to thank A. Sitaram from whom he learnt the theory of elementary spherical
functions and G. B. Folland for some useful discussions. The comments and
suggestions of the referee are also gratefully acknowledged.

2. Elementary Spherical Functions on the Heisenberg Group

Let us briefly recall the definition and properties of elementary spherical func-
tions. Let G be a semisimple, noncompact, connected Lie group with finite
centre and K a maximal compact subgroup. Let C.(K\G/K) denote the
space of continuous functions with compact support on G which satisfy
Sf(kigk,) = f(g) for all k;, k, in K. Such functions are called spherical or
K-biinvariant. Then C,(K\G/K) forms a commutative Banach algebra under
convolution. An elementary spherical function ¢ is then defined to be a
K-biinvariant continuous function with ¢(e) = 1 such that f— f * ¢(e) defines
an algebra homomorphism of C,.(K\G/K).

The elementary spherical functions are characterised by the following prop-
erties (see [3]).

(1) They are eigenfunctions of the convolution operator:
f*6=6(/)9,
where
$(f) = [ Sl D) dx.

(ii) They are eigenfunctions for a large class of left invariant differential
operators on G.
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(iii) They satisfy
[, $0cky) dk = (B0

Let us now consider the case of the Heisenberg group H”. The role of the
K-biinvariant functions will be played by the radial functions on H". If
L:ad (H™) stand for the subspace of L!(H™) containing all the radial functions
then it is well known that L] ; is a commutative Banach algebra under con-
volution (see Hulanicki-Ricci [5]). This will play the role of C.(K\G/K). On
the Heisenberg group we have the following (2n + 1) left invariant vector

fields Xj, Y}, T:

B P A SV N S
iTex, T 2%ar T ey, T2 a1

The sublaplacian on the Heisenberg group is defined by
L=-2&+7).
i=1

Let ¢, be the Laguerre functions of type (n — 1) defined by the generating
function identity

oo

@2.1) Z r"d>k(z) =(1 - r)—ne—(1/4)(1+r)/(1—r)|z|2.

|1/2

For any nonzero real number N we set d>2(z) = ¢ (J\|'"*z) and define ez by

k! (n — 1)!
k +n—1)!

2.2) erz, 1) = e™M¢) ().

It follows from the properties of the Laguerre functions (see Szego [17]) that
ez(O, 0) = 1. We claim that these functions satisfy the following properties.

Theorem 2.1.

(i) For any polynomial p with constant coefficients one has

(2.3) p(L) ek = PNk + n))e}.
(ii) For any radial function f on H" one has
(2.4) f* e}y =Q2m)"Re(—\,f)e;
where R, (\, f) is defined by the formula
_. Kl(n-1)
(2.5) R.(\S)=(2m G+n=Dl L"f(z, N} (2) dz,
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f(z,\) being the inverse Fourier transform

o0

fz N = j e™f(z, t) dt.

-

(iii) For any (w,s) in H" with |w| = r one has the identity

L 1 er(z, 1) - (—rw', —s))do (W) = e} (z, 1) e; MW, 5)
w|=1

where do is the normalized surface measure on |w'| = 1.

Thus we see that the functions ei have all the properties satisfied by the
elementary spherical functions on a semisimple Lie group. So, they can be
rightly called the elementary spherical functions for the Heisenberg group.
The above properties of the function ez are fairly wellknown in the literature
though not stated in the above form (see e.g. Stempak [12] and Strichartz
[13]). Nevertheless, we will give a proof of the above theorem here.

To prove the theorem we need to recall several facts about the twisted con-
volution and the Weyl transform (see Folland [2], Mauceri [6] and Peetre [8]).
The twisted convolution of two functions fand g defined on C” is defined to be

2.7 fxg@= Lnf(z — w)g(w) e/ gw.

The Weyl transform of a function fis the bounded operator W( f) acting on
L*(R™ given by

2-8) W(f)$(8) = J‘O’f @W(2)¢(§) dz

where ¢ € L>(R") and W(z) is the operator valued function
2.9 W(2)p(8) = e+ Dg(& + y).

The relation between the Weyl transform and the twisted convolution is given
by W(f X g) = W(fIW(g).

The Hermite functions &, (x) play an important role in the harmonic analysis
on the Heisenberg group (see Folland [2]). These are eigenfunctions of the Her-
mite operator H = (—A + |x|%), H®, = (2|a| + n)®,. Let P, be the orthogonal
projection of L?(R") onto the k™ eigenspace spanned by {®,: |a| = k}. We
also need certain properties of the special Hermite functions. Let us define

2.10) B5(0) = 2m) "2 Lﬂ ei"f‘ba(f + %><1>6<£ - %> dt.
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Then it is well known that they form a complete orthonormal system for
L*(C™) (see Strichartz [13]). Let n(c, B) denote the operator defined by

W(a’ B)d’ = (¢a éa)q’ﬁ .

Then one has the following proposition (see Folland [2] and Peetre [8]).

Proposition 2.1.

(1) W(@.p) = Q@) *n(c, B) and consequently ®,5x ®,5=0 if 8 v and
Bop X Dgs = (271)?® 5.

(ii) W(¢y) = @x)"P, and consequently ¢ X ¢, = (2 )" Dk Where 6, s the
Kronecker 6.

By abusing the notation slightly let us write ¢,(r) in place of ¢,(z) when
|z| = r. Then the functions
21 nk'

172
—1)'> (1)

() = ((k+

form a complete orthonormal system in L*(R  , 72"~ ! dr). If fis a radial func-
tion on C" then we can expand f interms of ¥, () obtaining

@2.11) f@) = Z Ry ()b
where
_. kl(n-—
Ry(f)=Q2m~" “+ ;‘1——15,— j SR (2) dz.

This proves that when f is a radial function one has f X ¢, = Q@)"R,(f)dy .

Now we are ready to prove Theorem 2.1. The assertion (i) is already proved
in Strichartz [13] and so we will not prove it here. For (ii) an easy calculation
reveals that

kl(n—

A = —
fxeyz,t) = hrne 1)'

J Ffz—w, =Nt (wye” iV Imzw g,

It is therefore enough to show that the above integral is equal to 2m)"Ri(—\, f)
¢>2(z). By rescaling we can assume that A\ = —1. But then we need to show that

L"f(z - w, Do, (W) e”>™ dw = 21)"Ri (1, )¢, (2)

which follows from the above remark as f is radial.
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The proof of the assertion (iii) is similar. We have

L l e}(z—w,t—s——;—lmzﬁ’)do(w’)
w|=1

k!(n—1)! N - 5) A —i(V/2) Imzw
7 e w do (W').
(k +n— 1)! |w’| =1¢k(z )e ’ a( )
Again we can assume that A = —1. The function

Fk(z, W) — L ¢k(z _ W) ei/ZIszda,(wl)

w|=1

is a radial function of w and hence in view of (2.11)

Fk(z, w) = _Z;ORJ'(Fk)d’j(w)-
j=

But
R/(Fy) = (21)‘"%:%% Lan(z, w)g; (w) dw
_ (zw)-"v’:if”n—:%)!?¢k X 6,(2).
This proves that
Feles W) = e i 8@, ).

We have proved that
1
J‘ e, <z - w,t—5— EIm zw> do (w') = ex(z, 1) e; "(w, s).
lw'l=1
Hence the theorem.

We would like to end this section with the following remark. Recently
Benson-Jenkins-Ratcliff [1] has studied «spherical functions» on the
Heisenberg group. Let K be a compact group of automorphisms of H” such
that the convolution algebra L} of K-invariant functions is commutative. A
bounded, continuous K-invariant function ¢ such that f— j fo is an algebra
homomorphism on L} is called a K-spherical function. In [1] the authors have
studied the K-spherical functions for various different K. When K = U(n), the
K-spherical functions include our ei. (We are indebted to G. B. Folland and
the referee for bringing the above work to our attention.)
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3. Spherical Mean Value Operator on the Heisenberg Group

Let H" be the n dimensional Heisenberg group defined in the previous section.
Let I" be the discrete subgroup {(0,0,2wk): k€Z}. Then the quotient group
H™"/T is called the reduced Heisenberg group. For g € SO(2n, R) we define a
rotation

gH"/T>H"T by gt)=(gz1).

By a radial measure we mean a measure p such that for every g e SO(2n, R)
and every Borel set S C H"/T" one has u(S) = u(g~'S). Let x be such a rota-
tion invariant probability measure with compact support. Then the operator
T,f=(f*p) is called a spherical mean value operator. In the following
theorem we identify all eigenvalues of 7, as averages of the elementary
spherical functions e as claimed in the introduction.

Theorem 3.1. Assume that p. has no mass at the centre of H"/T'. Then all
the eigenvalues of the operator T, are given by oy (j) where

es.(z, ) dp.

(/) = le"/I‘

Any function of the form f * e, J is an eigenfunction corresponding to o, (j).

To prove this theorem we need to recall several results about the Fourier
transform on the Heisenberg group (a good reference is Geller [4]). For each
real \ # 0 we have an irreducible representation ,(z, ¢) acting on L*(R"). It
is defined by

(3.1 T\(z, DP(F) = e™ M EHI2ENG (£ 4 y),

The Fourier transform of a function f on H™" is the operator vaiued function
FO\) defined by

Jo = [ @ 0m@ 0 dzdt.
When f is a radial function f(\) is given by the formula
(3.2) foy =@y kZO R\ S)P(N).
Here R, (A, f) are as defined in (2.5) and P, ()\) are the projections of LX(R"™

onto the space spanned by {|\|"*®,(|\|"?x): |a| = k}. In the case of H"/T,
), is a representation only if A is an integer say \ = j.
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Let X, be the function defined by

3.3) %@ =020 3 e e il @) j|"

j=-=
Then it is easy to see that x, € LA(H") and &, (j) = e=7*/2p, (j). We can now
calculate the convolution p * X, .

Lemma 3.1. Let u be a rotation invariant probability measure and let X, be
as above. Then (p * X)) (J) = o (/)X (J)-

Proor.  Since u * X, is a radial function we can calculate the Fourier transform
using formula (3.2). A calculation shows that

fe"j’u * X, (z, ) dt = 2m) "] j|"e "> o ®k(z — W) e DI gl

where pu/(w) is the j-th Fourier coefficient of y in the ¢ variable. It follows that

Rt x) = @y =D - L o) di’w)

k+n-1)!
and R;(J, n * Xi) = 0 for i # k. This shows that
. -_— '2 j -
w* XD =e ([ ella0d) P
This completes the proof of Lemma 3.1.

We can now prove the first part of Theorem 3.1. We claim that there exists
k and j # 0 such that (f * x,)"(j) # 0. Assuming the claim for a moment we
will prove the theorem. Let f * p = of for a non zero fin L?(H"/T"). Then in
view of the lemma o, (/)(f * X,)"(J) = (f * p * X)"(J) = a(f * X,)"(J). This
proves that o = o, (j) as (f * x)"(J) # 0.

We will now prove the claim. If (f * Xk)A(j) = 0 for all k¥ and j # 0 then
calculating the Fourier coefficients of f* X, one can see that all the Fourier
coefficients of f except the zero-th one are zero and consequently

1 27
fz,t)=Af(2) = 27 o fz, t)dt.

Asf#0, Af # O'andf* p = of becomes Af * py = aAf where now the con-
volution is on R*” and , is the compactly supported measure

duo(@) = [ du (2, 1).

But then Af has to be zero which is a contradiction.
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To prove the second part of the theorem we need to recall Choquet’s
theorem. Let K” stand for the set of all rotation invariant probability
measures on H"/T'. Let ext (K") stand for the set of all extreme points of
K". Then one has ext(K") = EUA, where E = {y,,} and A, = {§,: 1€ R}.
Here p,,, r>0 is the normalized Lebesgue measure on the sphere
S, .= {(z,1):|z| =r} in H"/T and §, are the Dirac measures. Given p€K",
according to Choquet’s theorem there is a measure M such that

3.4 w(B) = JEUA o(B) dM(o).

If u has no mass at the centre of H"/T" then M(4,) = 0 (see Stempak [11]) and
we have

3.5) w(B) = JEU(B)dM(a).

Let us consider f * e;/ * u. In view of (3.5) we have
(3.6) frefixp= jE(f* e;’ * 0) dM(0).
When o = p, , we can easily calculate e, /% ¢. In fact,

k! (n—1)!

~J % =
€ Hr,1(Z S) k+n—1)!

RIS j ei(j/Z)Iszd){c(z — w)dp,.

Recall that p, are the normalized surface measures on the sphere |z| = r. Since
the functions |j|"2y,(]j|*/?r) where ¥, (r) are defined in the previous section
form an orthonormal basis for LR ., 7>"~'dr), we can expand the radial
function

G = [, eV P™%) (2 — W) dp,

in terms of them. In view of the relations ¢; X & = (27r)”6jk¢k one calculates
that e,/ % p = e} (w, 1) e, ’(z,s) where |w| = r. This means that

fre * Py = el W, )(f* e ’) = u,,,(ej,;)f* e’
where
P CAES je{c(z, s)dp, = et (w,0),  |w|=r.
Putting this back in (3.6) we get
Fregtxp= ([, o) dM@)(f * eh) = wel) S+ .

This completes the proof of Theorem 3.1.
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When p = p,_, it is immediate that oy (j) = e’,;(r, t). This proves part (i) of
Theorem 2. To prove that « = +1 are not eigenvalues of the operator
T, = M, , we will prove in the next section (see Proposition 4.2) that for all
r > 0 one has

k!'(n-1)!

(k+ n— 1)! |¢k(r)| <L

This will then complete the proof of Theorem 2.

4. Spetral Properties of the Operator 7,f = 27)"f X pu,

As we have seen in the introduction the study of the spherical mean value
operator on the quotient group H"/T' involves operators of the form
S f X n,. These operators are interesting in their own right and we will show
in the next section that they are connected to the restriction operators for the
symplectic Fourier transform. We study the spectral properties of the
operators T, f = (27)"f X pu, where g, is the normalized surface measure on the
sphere |z| = r. For the operators 7, we have the following alternate descrip-
tion.

Theorem 4.1.

S k!(n-1!

4.1) T.f@) = 2,

K=0 m¢k(r)fx % (2).

This Theorem is an immediate consequence of the following Proposition in
view of the relation W(f X g) = W(f)W(g).
Proposition 4.1.

k! (n— 1)!

4.2) W(w,) = k;ﬂ m%(’ﬂ’k-

Proor. Let p,(z) be the Poisson Kernel defined by

» (7;) _ 1_‘<2n + 1>7r_(2"+1)/26(62 4 |g[2)-@n+ 22
€ 2 .

If F is a continuous function vanishing at infinity then we kno v that

J F(z) dy, = lim j Pe * p(2F(2) dz.
Cn e—0 JCn
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Given functions ¢ and y in L*(R") let us define F(2) by F(z) = (W ()¢, V).
Since

(W@, ¥) = €27 [ ™ + »¥(®) ds

it is clear that F(z) is a continuous function vanishing at infinity. Hence we
have

(W(p)¢, ¥) = L" (W(2), ¥) dp,

= lim L P * p (F(2)dz

e—>0
= li_{I(l)(W(pe * I‘r)¢’ ‘//)'

Replacing ¢ by P,¢ we get

(W(r)Pr o, ¥) = 1in(1) (W(pe * p)Pr o, ).
Since p, * p, is a radial function, its Weyl transform is given by
W(p. * u,) = )" kZO R (P * p)Py

and consequently
(W(p)Prd, ¥) = liH; )" Ry (pc * p)(Pr 9, ¥).
Let us now calculate R, (p, * n,). We have

[P * m@bL@ dz = [_ P * 61) i, 2).

As p, * ¢4 (2) = ¢(z) uniformly as e = 0 one gets that

. —a Kl(n=1)!
11_{1(1) Ri(p. * p) = 27) m L’. ¢k (2) dp,(2).
This proves that
k!'(n—-1)!
(W(u)Pro, ¥) = m¢k(r)(Pk¢v Y).

Hence the proposition.
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In view of Theorem 4.1 it is easy to see that 7, is a bounded self adjoint
operator. In fact, the functions ¢, satisfy the estimate

k!(n—1)!

| ()| <m

(see Proposition 4.2) and f X ¢, are orthogonal projections associated to the
special Hermite expansions (see [18]) and hence 7, is a bounded self adjoint
operator on L*(C"). It is also clear that all the eigenvalues of T, are given by

k!'(n—1)!
ay = Grn=D! éx(r)
and any function of the form f X ¢, is an eigenfunction corresponding to the
eigenvalue oy .

In view of the relations W(®,s) = (27)"*x(c, B) and W(¢,) = (27)"Py one
checks that @5 X ¢, = (2m)"®, provided |a| = k. This means that the func-
tions CTJaB are eigenfunctions of 7, with eigenvalue o). As &5 are lineary
independent this shows that the eigenspace corresponding to each ¢ is infinite
dimensional. Thus parts (i) and (ii) of Theorem 3 are proved. Pau (iii) follows
from the next proposition. The result of the proposition is not new but the
novelty lies in the proof.

Proposition 4.2. For any k and r > 0,

k+n-1)!

4.3) 190 <1 =

= ¢x(0).

Proor. The proof is based on the following fact. If the Fourier transform
of a function fis positive then | f(x)| < f(0) for x # 0. We will show that the
Fourier transform of the function L}~ (1/2 |x|) e~ "* ** on R" is positive.
This means that

Lz—1<% |xl2> e—1/4|x|2

To do this we calculate the kernel K(x, ) of the projection P, in different ways.
From the very definition one has the formula

K(x,y) = | lzzlkfbu()c)%(y)-

oy < &A=
= [¢x(n)] < K= D)

On the other hand, as W(¢;) = 27)"P,, K(x, ) is also given by

K(x,y) = prnd’k(s’y — x)eM2Ex ) g
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where we have written
1.2 2
Be(m) = dul 5 (£ + In?) )-
Therefore, setting x = y we get

@n) 2, @0 = Ln e™iLy” ‘(% |£|2> o 1/4IER g

This proves that the Fourier transform of the Laguerre function is non-
negative.

We will conclude this section with a result analogous to a theorem of
Ragozin on the convolution of rotation invariant measures on R”. In [9]
Ragozin proved that it x is the surface measure on the unit sphere in R”, n > 2
then p * u is absolutely continuous with respect to the Lebesgue measure.
Here we will prove a similar result for the twisted convolution. Moreover, we
will identify the density explicitly.

Proposition 4.3. Assume that n 2 2. Then p, X p, is absolutely continuous
with respect to the Lebesgue measure. The density is given by

_ con o [ kY(n—=1)!
4.4) J(z) = (2m) 2 <_—_——(k+ 7=

k=0

2
) (@ (M) (2)

where the series converges uniformly on every compact subset of the form
0<a<|z] b

Proor. In view of Theorem 4.1 one has

o kl(n—1)!

X (z) = (ZT)ﬁnkgom‘ﬁk(’)fx b (2).
This in turn gives us
> [ kl(n—1) \?
Pxux @ =00 5 (Y oprx

This shows that . X p, is given by J(z) dz. If a < |z| < b then one has the
asymptotic estimate (see Szego [17]),

@.5) Li're /2

k+n-1)!

- g-@-Dr2
K k!

Jn- 1(2r\/f) + Ok V2= 34
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where K = k + n/2 and the bound holds uniformly in a <r<b. Asn>2,
this shows that the series defining J(z) converges uniformly on compact sets
of the form 0 < a < |z| < b.

S. A Restriction Theorem for the Symplectic Fourier
Transform on R?"

The operator T,f = (2«)"f * yu, is related to a restriction operator R, for the
symplectic Fourier transform as we are going to see now. Before that let us
briefly recall the usual restriction operators for the Fourier transform on [R”.
If we define

(5.1) Q.f®=@m) " e frw)do(w),
then the Fourier inversion formula can be written as

(52 f® = [0, fer""dr.

The operators f going to Q,f are called the restriction operators for the
Fourier transform. It is well known that

2(n + D

(5.3) 19:S 1o <Clflps  1SP<—

2n

It is also known that such an estimate is not possible when p > P As a

consequence of (5.3) one can prove the Stein-Tomas [19] restriction theorem

2(n+1)

172
2 2
so ([ _1rora) <cis,. 1<p<r

which justifies the name restriction operators.
Let us now consider the symplectic Fourier transform on R*”. Identifying
R?" with C" the symplectic Fourier transform is defined as

F.f@) = [, Swe I dw
and the inversion formula is given by
f@@) = (@dm) " jcn F. f(w) e~ /2mz® gy
We can rewrite the inversion formula as

f(z) = (47r)—2n L:" gsf(z _ W) ei/ZImzv‘v dW.
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Let w,, be the surface area of |z| = 1. We can now write
f@) = (4m) "2y, [P Ndr [ Fof@— w)eH T dy,
where g, is the normalized surface measure on |w| = r. If we define R, f by
(5.5 Rf@=[ _ Ff@=we ™ dy =5 fxp,
then we have obtained the inversion in the form
(5.6) f@ = @4m) ", ["Rf@r*" " dr.

This is the analogue of (5.2) and that is the reason why we call them restriction
operators. Unlike the operators Q, f, these R, f are no longer eigenfunctions
of the Laplacian.

The relation between 7, and R, is now clear: R, f= 2m) " "T,(F,f). In view
of this we have the alternate formula

g ! — !
Rf=@n" Y, D

k=0m¢k(r)(gsfx b (5.7)

Using the bounds for the functions ¢, one immediately gets
IR fl2< C|Fsfl.< C| S
If we interpolate with the trivial estimate

”eruco = "EstX ﬂr“w < C"gsf"w < C”f"l

we obtain the following boundedness result.

Proposition 5.1. For 1 < p <2, one has
(5-8) IRl < CLSfl,-

Using the asymptotic properties of the Laguerre functions ¢,(r) we can
prove the following regularity theorem. To state the result we introduce the
twisted Sobolev spaces W*(C"). On C" consider the 2n vector fields

1 _ a1
. Sz, Z=2 -z
i= 9z, T4 iz, 49

and the operator
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The Hermite operator H and L are related by W(Lf) = W(f)H. Using this
formula we can define L® by W(L’f) = W(f)H®. We then define the twisted
Sobolev spaces by

(5.9 WHC") = { fe LA(C"): L’fe LX(C")}.
With this definition we can now prove the following theorem.

Theorem 5.1. If s<(2n — 1)/4 then R, maps L*(C") continuously into
WH(C").

Proor. Since L*(¢,) = 2k + n)°p, we have

2 kl(n-1)

L'R.f)=LGfxp) = (ZW)’"kgo GrnDl

br(N)2k + n)* (T f X dr)
(where we have used the relation L°(f X g) = (f X L°g)). In view of the

k!'(n-1)

k+n-1!
as s < (2n — 1)/4 uniformly in k. This proves that L°(R, f) belongs to “W*(C")
and |R,f |«ys < C|f].

We will now proceed to prove parts (ii) and (iii) of Theorem 4 of the
introduction. We have already shown that |R,f|, < C|f|, for 1 <p<2.
The assertion (i) that |R,f|, < C|f|, for 2n/(n + 1) < p < 2 will follow
once we show that the following is true.

estimate (4.5) it is clear that 2k + n)* - ¢ (r) is bounded as long

Proposition 5.2. Assume that n > 3. Then

"fx I'Lr“2n/(n+1) S Cuf"Zn/(n—l)‘ (5'10)

To see that the assertion (ii) follows from (5.10) we observe that

1R S | 2msns 1y = 1FsS X el 2pns 1y
< C" 3'S-f"2n/(n—l) S C||f"2n/(n+l)'

An interpolation with |R,f|, < C| f|, proves the assertion.

To prove Proposition 5.2 we need the following estimate for the projections

S X &
Proposition 5.3.

(511) “fxd’k“zn/(n—l)sCl\f“Zﬂ/(n+l)'
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As the projections f going to f X ¢, are self adjoint we also have

| fx ¢k”2,,/(,,+ y S CUfHZn/(n— n*
Using this one immediately gets

o kl(n—1)!

P ] [0 1S X bkl ymsms 1y

"fX I‘Lr"2n/(n+ 1) <

< C( Z (2k + n)-(n/2)+(l/4)> ”f”2n/(n— B

As n 2 3 the series converges and this proves Proposition 5.2. So it remains
to prove Proposition 5.3.

We have proved this proposition in [18]. We will briefly indicate the proof
for the sake of completeness. The definition of the Laguerre polynomials Ly
can be extended even for complex values of o, Reax > —1/2. We then con-
sider the functions

Yr() =

P+ Da+1) 1 5\ 142
Thk+oa+l) Lk(zm ¢

and define a family of operators Gy f = f X ¥;*. One verifies that this is an
admissible analytic family of operators. By Stein’s interpolation theorem [10]
the estimate (5.11) will follow from the two estimates

|G fle < CU + [TDV2| f],-
|GL*7fl, < €A + |7k~ "| f1,-

These estimates can be proved using certain bounds for the Laguerre function
V. We refer to [18] for details.

We will now complete the proof of Theorem 4 by proving the assertion (iii)
namely,

2n n-1
IR fly<Clfl, for 1<p<-——— where g=———p".

n+1 n+1
When p = 2n/(n + 1), ¢ = p and we already have the inequality R, f .,/ 4 1
S Clfl3n/m+1y- Interpolating with the estimate |R,f | < C[f|, we com-
plete the proof.

We conclude the paper with the following remarks. The estimate
IR.f|,<C|f|, was established in the interval 1< p<2n/(n+1). By
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increasing g we can extend the interval of validity. For example, by inter-
polating with the estimate |R,f|,,/2n+ 1 < Cl.f|4n/@n+ 1) WE can prove

2n—1
R < , = 4
IR fla <Clfl, q=5 —7P
intherange1 <p < 4n Similarly by decreasing the interval 1 < p < 2n
g \p\2n+1 y oy g \P\n+1

. . cy n-—1
we can obtain estimates valid with g = vp’ where v < P Another remark

we would like to make is regarding the assumption n > 3. It would be in-
teresting to see if the Theorem 4 remains true for » = 1 and » = 2 also.
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Fonctions a support
compact dans les
analyses
multi-résolutions

Pierre Gilles Lemarié

Résumé

Nous nous intéressons aux fonctions a support compact dans une analyse
multi-résolution, en particulier a celles de support minimum. Nous montrons
que ces classes de fonctions sont stables par dérivation et primitivation et indi-
quons une méthode pour de nombreux calculs numériques.

Abstract

The main topic of this paper is the study of compactly supported functions
in a multi-resolution analysis and especially of the minimally supported ones.
We will show that this class of functions is stable under differentiation and
integration and how to compute basic quantities with them.

1. Propriétés de base des analyses multi-résolutions

Nous rappelons dans cette section les propriétés des analyses multi-résolutions
dont nous aurons besoin par la suite. La notion d’analyse multi-résolution a

été introduite en 1986 par S. Mallat [10] et la plupart des propriétés que nous

157
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utiliserons sont démontrées dans le livre d’Y. Meyer [11] et la thése d’A. Co-
hen [4].

Une analyse multi-résolution est une suite de sous-espaces fermés (V);cz
de L*(R) qui vérifie les propriétés suivantes:
1Y) V;CVir1 Njez V= {0} et Ujez Vj est dense dans L*(R),
(1.2) f(x) e VJ si et seulement si f(2x) € Viets

(1.3) V, a une base de Riesz de la forme g(x — k), k € Z, avec g a valeurs rée-
lles. Le plus souvent on impose & g d’étre a décroissance rapide a I’in-
fini,

(1.4) Pour tout ke N, x*ge L2

A quelles conditions une fonction g vérifiant (1.4) engendre-t-elle une
analyse multi-résolution? La réponse est fournie par le théoréme suivant,
essentiellement dii & A. Cohen [4].

Proposition 1.  Soit g € LX(R) a valeurs réelles. Alors les propriétés suivantes
sont équivalentes:

(i) g vérifie (1.3) et (1.4) pour une analyse multi-résolution V)jezs
(ii) la transformée de Fourier de g

8 = jg(x) e” "dx,
s’écrit
o . £
£(8) = 80) [T mo| =5
j=1 2
ou $(0) # 0, mgy est C*, 2w-périodique et vérifie

@2.1) my(0) = 1,

N 3

(2.3) il existe un compact K réunion finie d’intervalles disjoints tel que

(2.2) sup

neN

< +oo,

-]

G) 2 xc(E+2km) =1  pp.

keZ

(Gj) pour tout £ €K et je N*, mo(é) £ 0.

DEMONSTRATION. La démonstration repose sur le lemme suivant:
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Lemme 1. Si o et 8 € LX(R) vérifient (1.4) alors le série

S &t + 2kT) X B(E + 2kT)

keZ

converge en tout point vers une fonction C*.

Le lemme est immédiat, puisque d’apreés la formule sommatoire de Poisson
ona

> alx — k) e'® =Dt = 37 a(& + 2k7) e¥k™

kezZ kezZ

et donc

— 1
2, 8(¢ + 2km)B( + 2kem) = j {3 atc—ke"|{ 3 B - ke ™} ax.
0 kez

kezZ keZ

(1.4) implique la convergence pour tout N de

1
f { 2 [k|Mex ~ k)l}zdx,
0 Lkez
d’ou la convergence et la régularité de la série étudiée.

Si g vérifie (1.3) et (1.4), alors I’hypothése que les g(x — k) forment une base
de Riesz implique I’existence d’une constante A > 1 telle que

1
pour tout £eR TS > 8 + 2km)|* < A.

X

> = D) a,g(x — k) avec ()
2 kezZ

X
De plus, puisque g<~2—> eV_,CVy,ona g<
€ %(Z). D’ou £(2§) = mo(HE(§) avec

1 —i
my(§) = ZEZ age”

27 périodique et localement de carré intégrable. En particulier, on a

mo(§) 3, 8¢+ 2km)|* = 3] 82 + 4km)E(£ + 2kT)
keZ keZ
et donc, puisque », |&(¢ + 2k7)|* ne s’annule pas, m, est C*. De plus
kezZ

> |8@4km)|> = |my(0)|* 3, |8k m)|?
keZ keZ
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et donc |my(0)| < 1; d’ou

)| ()

()
21
et donc nécessairement (0) # 0 et my(0) = 1.

Comme 3},_; |&(¢£ + 2k7)|* ne s’annule jamais, il existe autour de tout
point ¢ de [—, 7] un intervalle ouvert I, et un nombre entier k(£) tels que &
ne s’annule pas sur I, + 2k(§)w. Par compacité de [—m, 7], on peut extraire
de ces I, un recouvrement fini de [—m, w]. La construction de K est alors
immédiate. De plus, sur K, Eln1£ |2(8)| est positif, d’ou

€

pin £ > 52"
H (2’ 4¢3

est borné indépendamment de N sur K d’ou sur R tout entier.
Réciproquement supposons que g € L* et

2 2 2

’

N

18()|* = II

Jj=1

=g (0>|2

o) — a0 o (£
8® =20 I mo<7>

ou my vérifie (2.1) a (2.3). Alors g est C* et toutes ses dérivées appartiennent
a L*: on a en effet

A(N+1) gt 1 () E a 1 s(N+1—-a) ‘E
g &= 2 Z H Mo\ ok | 572 Mo | 57 |Cn+ 157+ T=5 & J
a=1j= 2 2 2 2

d’ou
1 N+1 o
Faahmed PR (Z W)( Z ] >

On en conclut que g vérifie (1.4); en particulier 33, _, |8(¢ + 2k7r)|2 est borné.
De plus, 3} |8(¢ + 2km)|? ne s’annule pas, car sur K|g(£)| est minoré par un
nombre positif. Les g(x — k) sont alors une base de Riesz d’un sous-espace
fermé V¥, de L*(R). On définit V; par

fxe Vv si et seulement si f( 21) ev,.

Puisque £(2£) = my(£)g(£), on a facilement que fle Vi1 De plus la série

Yikez |8E+ 2km)|* converge uniformément sur tout compact (série de fonc-
tions positives continues et de somme continue) et donc il existe A > 0 tel que

pour tout feV,, L! |f(£)|2d£< Ilfllz
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SifeN;ez V; alors
‘ X 1
pour tour jeZ, j 1f®Pde< 1113
l¢] > 427 2

d’ou f = 0 (en faisant tendre j vers —oo). Par ailleurs si fe L? est a support
compact, alors

F= tim (37 + 22km) ) = @)
2

Jj— +o \keZ

dans L? et donc U, V; est dense dans L*: en effet f(£)§(£/2”)£(0) ™" tend vers
f(®) et, pour j assez grand,
§<§ + 2k1r>

< j |f(s)|2d5> (kgo lé(ka)lz) :

Or on a nécessairement pour k # 0

2 2
“( > FE+ 2f2kw))g<§> - j FG dt,
k#0 2 k#0

ce qui tend vers

EQkm) = §@N2kn) = lim g(2M2kw) = 0.
N

- + oo

La proposition est donc démontrée.

Corollaire 1. Si g vérifie (1.3) et (1.4) pour une analyse multi-résolution,
alors

(3.1) 8(0) # 0 et g(2kw) = 0 pour ke Z*,
(3.2) my(0) =1 et my(w) =0,
(3.3) 2ig(x — k) = £(0).

Il reste a verifier que my(w) = 0. Or, d’aprés (3.1), on a

0= 3, |8Q@7 + 4km)|* = |mo(m)|* 3] |8(x + 2km)|*;
kez kezZ

comme 3}, ., |8(¢ + 2k)|? ne s’annule jamais, my() = 0. Quant a (3.3) cela
vient de la formule sommatoire de Poisson

2, 8lx— k)= X-8(2km) ¥ ™,
kez

keZ
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Remarques.

(i) Il est clair que dans (2.3) on peut supposer que 0e€IntK, puisque
my(0) = 1 et que donc m, ne s’annule pas sur un voisinage de 0. De plus,
si m, vérifie (2.1) a (2.3) avec 0 intérieur a K, le produit infini

. - 3
= m, —_—
&0 =11 o< 5
est dans L? si et seulement si on a

fim(r )l 3)

cela est immédiat puisque

A ’"°< 25, )"K(i”> - X (i”> gé%)

De plus on a alors

N
_H < £ )XK<2iN> — ¢ dans L%

(ii) Si m, vérifie (2.1), (2.3) et

< co;
2

sup

Imo(®)? + |mo(¢ + m)|* = 1,
alors si
)= ﬁ m <i>
=10\ 27

g est automatiquement dans L? et les g(x — k) sont orthonormées. (Il suf-
fit de vérifier que les f,(x — k) sont orthonormées, ou

s fim(5 (£,

2. Produits infinis de polynémes trigonométriques

Si m,, est un polynéme trigonométrique tel que

me(0) =1 etsi (&)= Hmo<—2£7>
Jj=1
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alors g est une distribution a support compact. Si de plus m, vérifie (2.3), et
geL?, alors (2.2) est immédiat, puisque £ est bornée (g est intégrable) et que
[8| est minorée sur K.

Dans le cas d’un polynéme trigonométrique, la condition (2.3) s’exprime
plus algébriquement de la maniére suivante:

Proposition 2. Si m, est un polynéme trigonométrique tel que my(0) =1
alors la condition (2.3) est équivalente a:

() pour tout (eR,  |my(®)|* + |my(& + 1)|* >0,
(ii) il n’existe pas de &,€10,2x( tel que:

pour tout NeN,  my(Ng + 7) = 0.
DEMONSTRATION. Le sens direct est immédiat. (2.3) signifie que si on note
&%) = ﬁ mo<—£*>
=1 \2/
alors pour £e R, il existe k€ Z, (¢ + 2kx) # 0. Si on avait

my(&r) = mo(§; + 1) =0

pour un & € R alors on aurait £(2¢; + 2kx) = 0 quel que soit k. De méme sup-
posons que (ii) ne soit pas vérifié; comme m, n’a qu’un nombre fini de zéros
modulo 27, on doit avoir pour deux entiers N et M: 2Vg, — 2M¢, € 27Z; on
ne peut avoir 2, € 27 Z (sinon pour un M’ > 0 on aurait 2™'¢,e 7 + 27Z et
my(2M'¢, + 1) = 1; quitte 4 changer &, en 2™, mod (27), on peut supposer
M = 0. On va montrer que g(£, + 2kw) = 0 pour tout k. Il revient au méme
de considérer §(2N¢, + 2k7). Or

. . 2kr\ N 2Ng, + 2k
g2Ng, + 2km) = g<fo + —2W‘> 11 mo<"—02—j—>;

j=1

si k n’est pas divisible par 2V on obtient 0; si k = 2Vk’, alors on a &, = 2V¢,
— 2kymou 1 < ky < 2V — 2, et on est ramené & étudier 8N, + 2(k' — ko)m);
si k' =0, k' — k, n’est pas divisible par 2V et §2V¢, + 2(k' — ko)m) = 0; si
k' #0, alors |k’ — ko| < |k'| + 2V — 2 < 2V|k’| = |k| et ce cas ne peut donc
indéfiniment se reproduire. (2.3) entraine donc bien (i) et (ii).

Réciproquement supposons que (2.3) ne soit pas vérifié et que (i) soit vrai;
on va montrer que (ii) est faux. On peut supposer que

P ¢
8= jI=II mo(‘z‘f)
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. e \M .
est dans L2, quitte & remplacer m, par < 5 > my, avec M suffisamment
grand <en effet ] m0<%> est borné sur [—=, 7] par continuité sur un
ji=1
compact et on en déduit facilement que |g(¥)| < C(1 + |£|)* avec

_ log |l
log2 °’

il suffit de prendre M > o + 1 car on a

© 1+eiz/2f M £ e — 1\M_ .
A5 m(3)=(“Z ) #0):

cette substitution n’affecte ni (i) ni (ii). Si (2.3) n’est pas vérifié, alors

Q) = 2, 8¢ + 2km)|?
kezZ

a au moins un zéro &;; de plus

o) = Q(%)mf,(%) ¥ Q<% ¥ 7r>mo<% n 7r>;

quitte a changer & en £, + 27 on peut supposer mo<%> # 0 et donc Q<%>

= 0. On trouve de méme Q<%> = 0 quitte a changer &, en &, + 4, et ainsi

de suite. Or g est a support compact et donc

o®) = 2; (J g()g(x — k) dx> e~ ikt

kezZ

est un polyndme trigonométrique et donc n’a qu’un nombre fini de racines
modulo 2. De sorte qu’on a

Q¢ = Q(%) = .- =Q<—2%> =0 et %—216212.

Par ailleurs Q<ﬁ + 7r> ) Q<2£—J{, + w) sont tous non nuls; en effet sup-

2
Q<—§—lj+7r>=0

posons que
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—1i /2‘-+1r .
Z =e 1(51 )

le méme raisonnement que ci-dessus nous fournit Z M_gz pour un M>1

. N s s\ rp2M+N N ZM+N M
tandis que (-Z)* = —-Zd’ou Z =7Z° =-ZetZ =(-2) =2Z,
ce qui est absurde. On peut donc écrire Q(¢) = |A(8)|*R (%) avec

N .
A@® = I ™% - e™'57)
j=1

(ou N est choisi comme le plus petit entier > 1 tel que &,/2Y — &, €277) et
R(¥) est un polyndme trigonométrique tel que R({,/2/ + 7) #0 pour
1 <£j < N. On pose alors

£()
A()

et nous allons voir que v € L? et est & support compact. Notons P(£) le polynd-
me trigonométrique

¥ =

PE) = 2] L j 7<~x—>17(x — k)dxe ™ = 3 3¢t + 4km)V(£ + 2kn).
kez 2 2 Kez

On a alors

AQRHP(E) = kgz 8QE + 4km)¥ (£ + 2km)

= mo()A())R($).
Or AQ2¢) = A(H)A(£ + ) et les zéros de A(¢ + ) ne sont pas des zéros de

R(§). D’ou
m0<£2£‘+7r> = s =m0<—2£—1_+7r)=0,

pour tout keMN, my(2¥¢, + ) =0,

et on obtient

tandis que £, ¢2wZ puisque Q(0) > |#(0)|* = 1. La Proposition 2 est donc
démontrée, pourvu que 7 soit bien dans L2 et 4 support compact. C’est ’objet
du lemme suivant.

Lemme 2. Si geL? est a support compact et si

21 |8 + 2km)> =0
kezZ
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alors v définie par

¥(&) = e—-‘z%ifie?

est dans L?* et & support compact.

Le lemme est classique. D’abord ¥ € L? puisque, en notant 3 nouveau
Q) = 2] &t + 2km)|?,
keZ

on a

. 2 o) i
k;z [Y(& + 2km)|* = m,

comme Q est > 0, &, est zéro au moins double et Q(£)/|e”* — e~ *0|? est un
polyndme trigonométrique.

Ensuite la formule sommatoire de Poisson nous donne:

) 8lx — k)e'® D = 3 (& + 2km) **™ = 0,
kez kezZ

d’ou la fonction
-1 ©
a@) = 2 gx—k)e“ D= — 3 g(x - k)e'* Do
k= —o k=0
est & support compact et dans L%, or a(x) = g(x + 1) + a(x + 1)e~ % d’ou

&(8) = 8() e + a(f) e ~*o et donc o = v. Le lemme est donc démontré.

Corollaire 2. Si m, est un polynéme trigonométrique a coefficients réels
tel que

m@=1 et &0 =T m%;)
Jj=1

soit dans L?, alors il existe une et une seule analyse multi-résolution (V) de
L*(R) telle que g V.

En effet, supposons que my(£) et my(¢ + 7) ait une racine commune £p;
alors —&, est racine puisque m, est a coefficients réeles et on a my(¢) =
(cos2& — cos 2&,)M(§) avec M polyndme trigonométrique. De plus, si

Q®) = 2, |8(¢ + 2km)|?,
keZ
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alors il est clair que Q(2¢,) = Q(—2%,) = 0 et donc, d’apres le lemme précé-
dent, si

2 a 1 — cos 2§,
(€)= 8(8) oS E = cos 26

alors v est dans L? et & support compact. De plus

78 = (cos & — cos 2£)my(H)V($)

cos 2& — cos 2§,

= M(£)(cos £ — cos 2£,)7(%);

d’ou
¥ = Hl m1<—2$ ,-> avec m,;(£) = M(£)(cos £ — cos 2&).
J=

Si on appelle degré d’un polynéme trigonométrique ZkN; ~, % e *t avec
ay, #0, ay, # 0 le nombre N, — Ny, alors il est clair que deg m; = degm, — 2.
Au bout d’un nombre fini d’opérations, on peut supposer que m, et my(¢ + )
n’ont pas de racines communes.
Si maintenent (ii) n’est pas vérifié, on a vu que m,(¢) admettait un facteur
N-1 .
(e—iE + e-—iEOZJ)
j=0

avec 2Nt — &, €277 et &, ¢27nZ. 11 admet également le facteur
N-1

I (e™ ¥ + ei*o?)
j=0

qui est soit confondu soit premier avec le premier facteur. De plus, on a vu
que si Q(8) = 3,z |8( + 2km)|* alors Q(&) = 0 et il en va de méme pour
27¢,, 1 £j< N - 1. On pose alors

oo _ AQ)
V() = A% 8(%)
ou
N-1 . o)
A® = I (e - e7?)
j=0
ou

N-1 . . jN—l ) o
H (e—ls_ e—xsoz ) H (e—lE_ exEOZ)
j=0 Jj=0
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suivant que les deux facteurs sont égaux ou distincts; d’aprés le lemme, ¥ est
dans L? et 4 support compact; de plus on a

A(E)my(8) (8 = my(£)

A2%) A+

Y28 = ¥(®

ol m; est le polynéme trigonométrique a coefficients réels my(£)/A( + 7). A
nouveau degm; < degmy.
Au bout d’un nombre fini d’opérations, on obtient alors que

. s 3
£ =P® I M=
=1 \2
ou P et M sont deux polyndmes trigonométriques a coefficients réels,
f{ M £ el?,
=1 \2’
M(0) = 1 et M vérifie les points (i) et (ii) de la Proposition 2. La fonction g

est donc dans ’espace ¥, de I’analyse multi-résolution engendrée par la fonc-
tion v définie par

- £\
7(9—1,1:111”(?)

L’existence de I’analyse multi-résolution a été démontrée. Pour ’unicité, il
suffit de remarquer que si g € ¥V, pour une analyse multi-résolution alors la
fonction vy obtenue a la fin est encore dans ¥, et que les v(x — k) forment alors
une base de Riesz de V.

Lemme 3. Sige V, (ou V, correspond a une analyse multi-résolution) est a
support compact et si

>0 |8 + 2km)|> =0
keZ

alors la fonction v définie par

’?(9 = F{gg(_s—)e;g

est encore dans V.

En effet, on a vu que

-1
=2, glx—ke“

k= —o
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et il est clair que si o € L? est a support compact
-1

(Ylay = D) ' *Dio(g(x — k)|a).

De plus
1

2—\/27r

On en conclut que la série converge vers v faiblement dans L? et donc que 7y
appartient a I’adhérence faible de ¥V, et donc a V.

F{63) NG -
- e—i(EoTE) (1 —e iN(%g E))

-1
l 2 glx— kel ve
k=-N

<2[7l2-
2

Lemme 4. Si g € V,, est a support compact et si 3, _, |8(¢ + 2km)|? ne s’an-
nule pas alors les g(x — k) forment une base de Riesz de V.

Si les A(x — k) forment une base de Riesz de V,, alors g(§) = M(¥)A(%) avec
MeL? 2x-périodique; d’ou

loc
IM®* 2 |h + 2km)|* = 3] |8 + 2km)?
keZ keZ

et donc M et 1/M sont essentiellement bornées. Le lemme est alors immédiat.

3. Fonctions de V, a support compact

Théoréme 1. Soit (Vj)jEZ une analyse multi-résolution de L*(R). Si V, con-
tient des fonctions a support compact non nulles, alors il existe une fonction
¥ € V,, a support compact et a valeurs réelles telle que

(4.1) Les fonctions v(x — k), k € Z, forment une base de Riesz de V,
(4.2) Toute fonction de V, a support compact s’écrit comme combinaison li-
néaire finie des v(x — k).

DEMONSTRATION. Si 4 est dans L? et & support compact, on sait que

> A + 2km))* = D) jh(x)l_t(x — k)dxe™ *t
keZ keZ

est un polynéme trigonométrique. Nous I’appellerons le polynéme d’auto-
corrélation de h et le noterons P, . Si & est a valeurs réelles, P, est un polynéme
en cos £ a coefficients réels. On choisit v € ¥, & valeurs réelles et a support
compact de sorte que P, soit de degré minimal.
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Alors P, (%) ne s’annule pas. Si on avait P, (&) = 0, on poserait

. ¥
%)= e E_o &

siéyenZ et
o{63)]

cos £ — cos &

89 =

sinon. D’apres les Lemmes 2 et 3, g serait dans V), a valeurs réelles et de sup-
port compact et deg P, serait strictement inférieur 4 P, . On en conclut que P,
ne s’annule pas et donc que les v(x — k) forment une base de Riesz de V
(d’aprés le Lemme 4).

Considérons maintenant 4 € V,, a support compact. On peut supposer 4 a
valeurs réelles, quitte & raisonner sur Re 4 et Im 4. On sait que 4 s’exprime en
fonction des y(x — A) par: A(¢) = U(§)Y(§) avec U 2r-périodique et dans leoc.
En fait U(£) est une fraction rationnelle en e~ * puisque

S h(E + 2km)T(E + 2km) = UGP,(®),

d’ou
C(®)
U® = oo
)= 5,0
ou C est un polynéme trigonométrique a coefficients réels. De plus on a:
- 1
h(¢ + 2kn)|)* = |CE)|> —
2 I = 1cOP 5

d’ou
ICOI = P,(® X |h + 2km)|.
Le théoreme de Riesz nous permet de trouver deux polyndmes A, B € R[X]

avec A(0) # 0, B(0) # 0, C(¥) = e P*A(e *)B(e” “) pour un pe Z et P.(¥) =
|A(e™%)|%. On a alors

~

it Be™H)
= xpE— T .
h=e @B

Ondivise Ben B= AQ + R. Alors si k = h — e~ P*Q(e ™ "), k € V,, est & sup-
port compact et 4 valeurs réelles; de plus on a:

P(® = P() + 0™ I°P,(®) — 2Re 33 h(t + 2Umyi(¢ + 2me”*Qle™™)

|Ble™ )| + |0(e~HAe™™)|> — 2Re Ble HA(e"H Qe ™)
|R(e™ %)%
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Comme P, est de degré minimal, nécessairement k = 0 et donc 4 s’écrit comme
une combinaison linéaire finie des v(x — k).

Corollaire 3.

(i) On a ¥(2¢) = my(£)¥(£) pour my un polynéme trigonométrique & coeffi-
cients réels tel que my(0) = 1.
(ii) v est de support minimal.
(iii) Si h eV, est de support compact, les bornes inférieure et supérieure de
son support sont entieres.
(iv) Sion impose que ¥(0) = 1 et que la borne inférieure du support de v soit
0, alors v est unique.

DEMONSTRATION. Comme Y(x/2)e V_; C V, et que v(x/2) est a support
compact, v(x/2) s’exprime comme une combinaison linéaire finie des
Y(x — k). Le point (i) est donc démontré. Si on a

x N2
'Y<-2—> = Z bv(x — k)
k=N,

alors nécessairement la borne inférieure du support de v est N; et la borne su-
périeure est N,. De méme si

M
hx)= 2 hy(x—k)
k=M,
alors la borne inférieure de son support est M; + N, et la borne supérieure
M, + N,; en particulier la longueur de ’enveloppe convexe de ce support est
N, — N, + M, — M, et donc supérieure a celle du support de v (avec égalité
pour les seules fonctions multiples d’un y(x — k)). Les points (ii), (iii), (iv)
sont alors démontrés.

Corollaire 4. 1l existe une fonction 6 € W, (ou W, est le complémentaire
orthogonal de V, dans V) a support compact et a valeurs réelles telle que

(5.1) Les fonctions 0(x — k), k € Z forment une base de Riesz de W;

(5.2) Toute fonction de W, a support compact s’écrit comme une combinai-
son linéaire finie des 6(x — k).
6 est alors de support minimum dans W,.

DEMONSTRATION. Si 4 € W, est a support compact, alors /4 peut s’écrire comme
h(%) = e~ PER (e~ ¥%)¥(£/2) pour un polyndme R(z) et un entier p € Z, puisque
W, C V,. Notons Q le polyndme de degré minimum tel que Q(e ™ ¥*)7(£/2)
soit la transformée de Fourier d’un élément (normal) de W,,. On peut suppo-



172 P1ERRE GILLES LEMARIE

ser Q a coefficients réels (car si w = Qe *¥?)9(£/2) alors Re w et Im w sont
dans w,). De méme, on supposera 4 a valeurs réelles (et donc R € R[X]).

On remarque d’abord que Q(z) et Q(—z) sont premiers entre eux, car si
0(R) A Q(—2) = A(z>) alors [Q(e ™ %)/ A(e ™ ¥)][(£/2)] est encore la transfor-
mée de Fourier d’un élément de W,, ce qui contredit la minimalité de Q. On
a alors, en posant § = Q(e ™ ¥%)7(¢/2).

2106 + 2km)|* = |0(e™*)|P,(¢/2) + |Q(—e‘if/2)|P7<§ + 1r> >0

ce qui entraine que les 6(x — k) forment une base de Riesz de W, (car on sait
que W, a une base de Riesz de la forme w(x — k), k € Z).

Maintenant si z = e~ PfR(e”*?)J(£/2) est la transformée de Fourier de
heV,, alors h e W, si et seulement si on a

R(e™Omy(OP,(&) + R(e™ "¢ Pymy(& + m)P, (¢ + ) = 0.

d’ou si my(§)P,(§) = e"**A(e™¥), R()A(2) + R(-2)A(-z) = 0. En par-
ticulier deg R + deg A est impair. On en conclut que degR et deg Q ont la
méme parité. De proche en proche, on obtient que R(z) = B(z»)Q(z) + C(z)
avec deg C < deg Q, d’ott R(2) = B(z*)Q(z). On a alors & = e~ 7 B(e™ #)8(%).

Remarque. La fonction 6 décrite par le Corollaire 4 a été d’abord étudiée par
C.K. Chui et J. Z. Wang [3]. Cependant les propriétés décrites dans ce coro-
llaire sont nouvelles, ces deux auteurs n’ayant pas démontré (4.2) et donc pas
(5.2) ni la minimalité du support de 6. Par contre, ils donnent le calcul de Q:
si A(2) NA(-2) = B(z?) et si A(z) = BE)C(z) (ou A(e™ ™) = e*“my(H)P,(§)
alors Q(z) = zC(—2).

4. La fonction de V, de support minimal

Théoréme 2. Soit G € V,, non nulle, a support compact et a valeurs réelles.
Alors les propriétés suivantes sont équivalentes:

(6.1) G est de support minimal.

(6.2) Le polynéme d’auto-corrélation de G est de degré minimum.

(6.3) Tout élément de V,, a support compact s’écrit comme une combinaison
linéaire finie des G(x — k).

(6.4) Il existe H € L* de support compact telle que (H | G(x — k)) = 6.

(6.5) G se décompose en

6 = 60 T1 mo( ;)
Jj=1
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ol my, est un polynéme trigonométrique my(£) = e~ 7*P(e " *) avecpeZ
et Pe R(X) ou P veérifie:
@G P@1)=1.
(ii) P(z) et P(—2z) sont premiers entre eux.
(iii) P(z) n’a pas de facteurs de la forme

N1 2k N
II @+2z5) avec z§ =2z, et zo#1.
k=1

(6.6) Les restrictions a [0, 1] des fonctions
G(x + k), inf Supp G < k < sup Supp G,

sont linéairement indépendantes.

DEMONSTRATION. Le Théoréme 1 donne I’équivalence de (6.1), (6.2) et (6.3).

(6.1) = (6.5). On sait d’apres le Corollaire 3 que G(2£) = my(£)G (%) avec m,
un polyndme trigonométrique. De plus G(0) # 0 d’aprés (3.1) et donc m4(0) = 1.
On peut donc écrire my(&) = e~ PiP(e %) avec P(1) = 1 et P(0) # 0. D’apres
la Proposition 2, P(z) et P(—z) n’ont pas de racines communes sur le cercle
unité et P(z) n’a pas de facteurs

N-1 ‘ N

JINCE Z5) avec z#1l,  zg =2z.

11 ne reste donc a prouver que P(z) AP(—z) = 1. Si PR) AP(—2) = R(z%), on
pose
e[6)

h(¢) = Re 5’

alors
P %

R(e_zfgS'R(e_iE)ﬁ(E)

hQg) = e™ ¥

et on a sup Supp s — inf Supp s = deg P — deg R < sup Supp G — inf Supp G
avec égalité si et seulement si P(Z) AP(—z2) = 1. Puisque G est de support
minimal, on a bien P(Z)AP(—2) = 1.

(6.5) = (6.1). Quitte a translater G et 7y (ou v est décrite par le Théoréme 1), on
peut supponer inf Supp G = inf Supp vy = 0. On a alors G(2§) = P(e” %G (%),
28 = Py(e ™ 7() et enfin, par (4.2), G(£) = O(e ™ ¥)7(£). Remarquons que
Q(0) # 0 (puisque inf Supp G = inf Supp ) et que Q n’a pas de racines sur le
cercle unité (puisque P;(§) = |Q(e™®)|*P,(¥) et que P, ne s’annule pas,
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d’apres la Proposition 2). De plus, on a: P(2)Q(z) = Q(z*)P,(z) et donc deg P
= deg P, + deg Q; comme P(z) A P(—z) = 1, il est nécessaire que P, divise P,
d’ou il existe A4 tel que: Q(z%) = Q(2)A(z). Si z est une racine de Q, il en va
de méme pour z2, et donc z*, z%, ... Comme ni 0 ni les complexes de module
1 ne sont racines de Q et que Q doit avoir un nombre fini de zéros, alors on
trouve que Q est une constante et donc G = C*.

(6.1) = (6.6). 1l suffit de reproduire la démonstration du théoreme d’Yves
Meyer [12] sur la restriction a [0, 1] des bases d’I. Daubechies. On va donc
montrer que, pour j > 0, la dimension de 1’espace des restrictions a [0, 1] des
fonctions de V; est exactement 27 + sup Supp G — inf Supp G — 1.

Quitte a translater G on peut supposer infSuppG =0; on pose
sup Supp G = N. Commengons par remarquer que si

N-1

Z akG(x + k)
=-M
est nulle sur [0, M + 1] et si M + 1 > 2 (sup Supp § — inf Supp 6) (ol 6 est la
fonction décrite par le Corollaire 4) alors les o sont nuls; en effet

) = 2o Glx + k)

est portée par [-N + 1,0]N[M + 1, M + N]; dire que fe V, revient a dire
que f est orthogonale a toutes les fonctions 6(2/x — k), j >0, keZ (car
Vo = D20 W) mais cela est alors vrai de f\(-N+1,o) et de fI(M+1'M+N)
puisque 8(2’x — k) est portée par un intervalle de longueur 2~/ (sup Supp 6 —
inf Supp 6). Puisque G est de support minimal dans V,, on obtient f = 0. Par
dilatation, cela donne que la dimension des restrictions a [0, 1] des fonctions
de V,; est exactement 2/ + N -1 pour j assez grand (27 > 2(sup Supp 8 —
inf Supp 6)). Pour passer de j 4 j — 1, on suit la démonstration de Y. Meyer,
basée sur le seule propriété que P()AP(—-2) = 1.

(6.6) = (6.4). On peut supposer inf Supp G = 0. Comme G|[0,11 est indé-
pendante des G(x + k)|[0,1] (k # 0), il existe H e L*([0, 1]) avec (H | G) = 1l et
(H|G(x+ k)) =0 pour k #0.

(6.4) = (6.1). Comme H et G sont a support compact, on en déduit immé-
diatement que les G(x — k) sont une base de Riesz de V,, et que tout élément
de V, se représente comme

h= 3.(h|H(x — k))G(x - k).
keZ

(6.3) (et donc (6.1)) est alors immédiat.
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5. Calculs fondamentaux dans une analyse multi-résolution

Nous considérons une analyse multi-résolution (V)),_., ou ¥, admet une base
de Riesz v(x — k) avec v a valeurs réelles et de support compact. La fonction
7 est choisie de maniére a ce que son support soit minimal, que inf Suppy = 0
et que ¥(0) = 1. On appellera v la base normalisée de V.

On a

7® = T Pole™ )

=

avec Pye R[X1, Py(1) = 1 et Py(0) #0. Si ¥(§) e L, alors
11 Po(e_ly2 )XK<—1v)
j=1 2

tend vers ¥ en norme L' (ou K est décrit dans la Proposition 1). On a alors
le procédé d’approximation suivant [5]:

Proposition 3. On pose
N
hO(x) = X[_ 1/2,1/2](x) et hk+ l(x) = I—ZO alhk(zx =1)

(ou

1 N

%w=—2mﬁ-

2 /=0

Si ¥eL', alors h, — v en norme L*, pour k = +oo.

En effet A, est constante par morceaux sur des intervalles de longueur 1/2%.
De plus sur les points de 1/2%Z, h, coincide avec 6, ou

~ k . £
R
=1

(par récurrence sur k). Enfin v est uniformément continue puisque continue
et & support compact. Comme |6 — ¥x|~— 0, on a bien |A; — V4| 0.
Néanmoins la convergence n’est pas rapide. Prenons ’exemple d’un spline

cubique:
. 1 —e #\*
(%) = <T> .
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On pose

Y&

G®) = P.®

de sorte que (G(x) | Y(x — k)) = ;. Alors il est facile de voir que

w(%)= ()

En particulier, on a

G(x — p)> :

he(p) = <v<—2§ + p) 1 G(x)> =v(p) + —2—1,;7’(17) JxG(x) dx + O(%)-

Or
1

J xGWdx=2 e v()=

d’ou
1
|he(1) — v(1)| ~ o

L’erreur n’est divisée que par 2 a chaque itération. Si ’on veut calculer ¥ aux
points entiers, on utilisera plutdt la remarque suivante.

Proposition 4. On note M la transformation linéaire définie sur R¥ ! par

X1 Y1 N
M : = . ou Yi= IZO alle-_l
XnN-1 IN-1
(en prolongeant x; par 0 en dehors de {1,...,N—1}) ou
1 X !
Py(2) = 5 2 oz
=0
Si ¥(§) e L', alors Ker (M — 1d) est de dimension 1 et

v(1)

YN -1)
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est déterminé uniquement par

(1) v(1)
M=
YN -1) YN - 1)

et

N-1

2 70) =1

Jji=1
DEMONSTRATION.  Soit

X1
Xn-1

une solution de MX = X. On pose

N-1
ho(x) = 21 X;00(x — j)
7=
ol G5 (8) = X () et
N
By 1(x) = I=Zoa1hk(2x =D.
Alors
@ = P i £
et donc, en posant
N— 1 as
0B = 3 x;e”
Jj=1
on a
/\ k .t .
o = TPl 3 o5 )
Jj=1

ce qui tend en norme L! vers ¥(£)Q(Q). En particulier A,(p) tend vers
Q(0)Y(p); or hx(p) = x, (par récurrence sur k) et donc
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(1)

YN - 1)
Proposition 6. Les intégrales
[x*v@ax,  ken,
se calculent récursivement par les formules:
o [x 100 dx = 990
e 7(0) = 1.
k
© @ - DIETO) = 3 CEFOOmET ).
a=0
Il s’agit juste d’appliquer la formule de Leibnitz & Y(2§8) = my(£)7(§) avec
my(§) = Po(e™ ).
Proposition 7.

(@) Si yeH"' (c’est-a-dire si ¥' € L* alors il existe une analyse multi-
résolution V;. de L*(R) de base normalisée M, telle que

V') = M;(x) - My(x - 1).
(ii) 1l existe de méme une analyse multi-résolution 4 de L*(R) de base nor-

malisée M, telle que v(x) — Y(x — 1) = M5(x).

La Proposition 7 permet donc de dériver les fonctions de ¥V, et d’intégrer
les fonctions de V,, d’intégrales nulles. Le fait que la dérivation dans ¥V revient
a appliquer un opérateur de différence finie dans un autre espace V' m’a été
signalé par G. Malgouyres [9].

DEMONSTRATION.

(i) Comme v’ est & support compact et que

27~k =0

keZ

<puisque 2ivx—k) = '?(0)) »ona
keZ

-1
Y'(X) = My (x) — Mi(x — 1) ou Ml(x)=k_Z_) Y'(x — k)
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est dans L? et a support compact. De plus, on a

i

A\ n . PN 2 2N
M, () = 1= % Y(§) dou M,(2§) = T;?TEPO(e"E)Ml(E).

Comme

Py(=1)=0, Pi(g)= Py(z)

1+z

est un polyndme avec P;(1) =1 d’ou
N\ © i
MI(E) = Hlpl(etf/zj).
Jj=

Il est clair que P, vérifie les conditions de la Proposition 2 et donc que
les M,(x — k), k € Z, forment une base de Riesz d’un espace V' pour une
analyse multi-résolution (V})jez- De plus, il est clair également que P,
vérifie (6.5) et donc M, est la base normalisée de V5.
II suffit de poser

~ 1—e ¥

M) = ———7(%);

i§

alors il est clair que M, € L? et que

M) =v(x) —v(x— 1)
et donc M, est a support compact. De plus on a

1+e # N

1/‘4\'2(25) = ) —--Po(e—iS)Mz(s) d’ou ]/‘4\2(2) =jgpz(e_if/2.i)

ou

1+z2
P,(2) =

PO(Z)’

et la conclusion (voir & nouveau la Proposition 2 et (6.5)) est immédiate.

Corollaire 5. Si v e H* (c’est-a-dire si pour je {0, ...k}, v’ € L?) alors
YDQ2Ir) = 0 pour 1 # 0 et 0 < j < k. En particulier, tout polynéme de degré
< k se représente comme

k) = IGZZR(I)T(x -1

ol R est également un polynéme de degré < k.
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En effet, si ve H* alors v'(x) = M,(x) — M,(x — 1) ou M;e H*~!. De
plus si

¥ = ﬁ Pye=®?) alors M;(®) = ﬁ P (e~
=1 j=1

ou

Pi(2) = Py(z).

1+z

D’ou si v € H* alors (2/(1 + 2))¥P,(2) est un polyndme qui vérifie de plus que
sa valeur en —1 est nulle (d’aprés (3.2)). On a donc

1+z
2

k+1
Py(z) = < > Qo(2);

comime

§@km + ) = Pyle” if/"'”")'?(hr + ;)

on montre que ¥“’(2/7) = 0 par récurrence sur M tel que //22 €27 + 1.
De plus, si on note M; la base normalisée de I’analyse multi-résolution ou
se trouve v, alors on a:

(Zavte—n) = Za@e~1) - M- 1-1)
=>(a—a_ )M (x - 1)
d’ou
(2 ay(x — 1))("> = S A M, (x— 1) ot A@)=(a - a_,).
Si @, = R(P) avec degR < k alors A"a, est constante et
(Saree - D)® = 35,00

On obtient que R — >, R(/)v(x — /) envoie C;[X] dans C.[X]; de plus cette
transformation est injective donc surjective.

Proposition 8. Si V; et V} sont deux analyses multi-résolutions de bases nor-
malisées a et 8, alors a * (3(—x)) est dans un espace V' d’une analyse multi-
résolution, et on peut donc caIculerj a(x)B(x — k) dx a I’aide de la Proposition 4.

En effet, si

70 = [ (B - x) dy,
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alors on a
$(® = a®BE) dou §28 = Pye ®)P (e D)

(001 &(28) = Pyle™ #)a(?) et ) = Py(e”¥)B(£)). Le Corollaire 2 permet alors
de conclure. (Il se peut que les v(x — k) ne forment toutefois pas une base de
Riesz de V§.

En combinant les Propositions (7) et (8), on voit qu’on peut calculer pour

o

un opérateur différentiel Za"‘(ﬁ) a coefficients constant les quantités
d [+3
<Zaa<g;> Vick w,‘{'i> oue,ne (0,1}, @ = pet y® =y, pet y étant les

pére et mére des ondelettes orthonormées d’I. Daubechies. Or ces calculs

. . d\* .
interviennent dans ’analyse de ’opérateur Zaa<a> par ’algorithme de

Beylkin-Coifman-Rokhlin [2]. Ce genre de calculs est actuellement développé
par M. Lahzami [7] pour la programmation numérique.

6. Exemples

(1) Les fonctions splines. L’analyse multi-résolution des splines de degré k
est engendrée par I’espace V, des splines de degré k£ a noeuds dans Z et
de carré intégrable (c’est-a-dire que f € ¥, si et seulement si fe L2NC*~!
et pour tout /€Z, f|;, ;. est polynomiale de degré < k). La base nor-
malisée de ¥ est la fonction v = X * - -+ * X ;= x5

L’echelle des fonctions splines est évidemment stable par dérivation et
primitivation et la Proposition 7 ne nous apprend rien.

Remarquons que la Proposition 7(ii) est un cas particulier de la Propo-
sition 8, puis-qu’en fait M, = X017 * V-

L’existence d’ondelettes splines a support compact (¢f. Corollaire 2) a
été signalée par Lemarié en 1987 [8] et systématiquement étudiée dans la
thése de P. Auscher [1].

(i) Les bases d’I. Daubechies. 1. Daubechies a construit des fonctions , ¢
telles que: Supp, ¢ C [0,2N — 1], les ,o(x — k) sont orthonormées
quand k décrit Z et ¢ est de classe C™ pour un A > 0 [5]. Il est clair
que , ¢ est la base normalisée de I’espace V,, associé (puisque (6.3) est im-
médiat). Par contre ’échelle de ces fonctions , ¢ n’est stable ni par primi-
tivation ni par dérivation et les calculs comme ceux développés a la suite
de la Proposition 8 font intervenir d’autres analyses multi-résolution.

(iii) Les analyses multi-résolution non orthogonales de J. C. Fauveau. Pour
construire des analyses multi-échelle a analyse et synthése rapides et a fil-
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tre & phase linéaire, J. C. Fauveau a été amené a introduire la notion
d’analyse multi-résolution non orthogonale [6]. Sa construction repose
sur deux fonctions v, et v, a support compact telles que:

1® = ILPe™™), 5 = IT Pl ),
j= =

P, (2)P,(z) + P,(—2)P,(—2) =1

et les v;(x — k) sont la base de Riesz d’un espace V, ; lié & une analyse
multi-résolution. II est alors clair que v; est la base normalisée de Vj ;
(d’apres (6.5)).
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Multiplicative
structure of
de Branges’s spaces

B. A. Lotto and D. Sarason

1. Introduction

L. de Branges has originated a viewpoint one of whose repercussions has been
the detailed analysis of certain Hilbert spaces of holomorphic functions con-
tained within the Hardy space H 2 of the unit disk. The initial study of the
spaces was made by de Branges and J. Rovnyak [4] about 25 years ago.
Although neglected for a while, the spaces are now attracting considerable
attention because of their beautiful internal structure and their relevance to
function theory [21]. Our aim in this paper is to investigate their multipliers.

The starting point is a nonconstant function & in B(H~), the unit ball in
the space H* of all bounded holomorphic functions in the open unit disk,
D, of the complex plane. The de Branges space H(b) consists by definition of
the range of the operator (1 — TbT,—))”2 (where, for ¢ in L= of the unit circle,
T denotes the Toeplitz operator on H? with symbol ¢). The space H(b) is
given the Hilbert space structure that makes the operator (1 — TbT,-))” Za
coisometry of H? onto H(b). By a multiplier of H(b) we mean a holomorphic
function m in D such that mh is in H(b) whenever # is. Since the evaluation
functionals on H(b) at the points of D are bounded, one sees from the closed
graph theorem that the multiplication operator on H(b) induced by such an
m is bounded, from which it follows that m must be in H~ [23].

There are two extreme cases. If lbll < 1, then H(b) is just a renormed
version of H? and every function in H® is a multiplier of it. At the other
extreme, if b is an inner function, then H(b) is an ordinary subspace of H?,
namely, the orthogonal complement of the Beurling invariant subspace bH?.
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It is thus the typical invariant subspace of S*, the adjoint of the unilateral
shift operator, S, on H? (S/)(z) = zf(z)). In this case, H(b) has no noncons-
tant multipliers. (Proof: If b is an inner function and m is a multiplier of
H(b) then, because S*b is in H(b) [21], we have, for all fin H?, the equality
0 = <mS*b, bf>. One easily sees that the right side equals <S*m, (1 — b(0)
b)f>. Setting f = S*m/(1 — b(0)b), we find that S*m = 0).

The spaces H(b) break naturally into two classes according to whether b is
or is not an extreme point of B(H%), or, what is equivalent, according to
whether the function 1 — |b|? is not or is log-integrable on aD [14]. A few
results in the latter case can be found in [18]. It is shown there, for example,
that if b is not an extreme point of B(H*) then any function holomorphic
in a neighborhood of D is a multiplier of H(b), and those b for which every
function in H* is a multiplier of H(b) are characterized. Further progress has
recently been made by B. M. Davis and J. E. McCarthy [1] who, among other
things, have characterized the functions that are multipliers of every space
H(b) with b nonextreme. For the case where b is an extreme point, on the
other hand, next to nothing has been known up to now beyond the negative
result for inner functions cited above. In particular, it has been an open ques-
tion whether there is any extreme point b such that H(b) has nonconstant
multipliers.

In this paper we shall concentrate mainly on the case where b is an extreme
point but not an inner function. The main thrust of our results is that H(b)
has an abundance of multipliers in that case.

A space closely related to H(b), called H(b), arises naturally in the search
for multipliers. By definition, H(b) is the range of the operator (1 — TETb)]/Z,
with the Hilbert space structure that makes this operator a coisometry of H 2
onto H(b). The space H(d) is trivial if b is an inner function, but otherwise
it is infinite dimensional. It turns out that every multiplier of H(b) differs by
at most a constant from a function in H(b). The culmination of our efforts
will be a proof, for the case where b is an extreme point of B(H”), that the
multipliers of H(b) that lie in H(b) are dense in H(b).

In Section 2 the place of the spaces H(b) and H(b) in the general scheme
of de Branges is described. A lemma concerning that scheme is established
and used to obtain information about H(b) and H(b). (Some of the results
here can be found in the literature, but the present proofs seem particularly
apt.).

Section 3 explains the relation between H(b) and H(b) and certain spaces
of Cauchy integrals. The multipliers of H(b) coincide with the multipliers of
its related space of Cauchy integrals. Cauchy integrals in the unit disk have
been studied extensively beginning with V. P. Havin [12], but from a view-
point rather different from ours. In Section 4 we show how our methods pro-
vide a simple proof of a theorem of S. A. Vinogradov.
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The remainder of our paper addresses mainly the case where b is an extreme
point of B(H%). Section 5 contains two negative results for that case that
say, very roughly speaking, that nonconstant multipliers cannot behave too
nicely. Section 6 pertains to decompositions of the space H(b) and Section 7
to the case where b is invertible. In the latter case b is shown to be a multi-
plier of H(b), and the converse is shown to hold when b is an extreme point.
In Section 8 the multiplication operator on H(b) induced by a multiplier is
discussed, for the extreme point case.

In Section 9, again for the extreme point case, we introduce two conjuga-
tions, one on H(b) and another on the one-dimension extension of H(b) by
the constant functions. It is shown that to each multiplier m of H(b) there
corresponds a conjugate multiplier, m,. The multipliers of H(b) thus form a
*-algebra, although not a C*-algebra. A certain algebra of Cauchy integrals
is introduced which contains all the multipliers of H(b).

Section 10 contains two needed lemmas on Cauchy integrals. They are-used
in Section 11 to obtain more information on the space H(b) and in Section 12
to establish a criterion that, among other things, enables us to construct a set
of multipliers of H(b) that is dense in H(b) (again, for the extreme point case).

If u is an inner function, then, as is explained in Section 6, every multiplier
of H(ub) is a multiplier of H(b). In Section 13, in the extreme point case, a
criterion is obtained for a multiplier of H(d) to be a multiplier of H(ub). The
functions that are multipliers of H(ub) for every inner function u are charac-
terized. A sufficient condition on u is found for H(b) and H(ub) to have the
same multipliers.

In Section 14 we give a complete description of the multipliers of H(b) for
a certain class of extreme points b. This result is related to a well-known the-
orem of H. Helson and G. Szeg6. We also give an example to show that, even
when b is an extreme point, an inner function # can exist such that not every
multiplier of H(b) is one of H(ub). (Such an example with b not an extreme
point can be extracted from [18].)

The concluding Section 15 contains a short list of open questions.

Besides the notations already introduced, the following additional ones are
needed. .

L? denotes the L? space of normalized Lebesgue measure on dD and P,
denotes the orthogonal projection in L? with range H?. The norm and inner
product in L? are denoted by Il-ll, and <-,->.

The norm and inner product in H(b) are denoted by |- ll, and <-,->,, and
those in H(b) by Il-ll; and <-,->;.

The kernel function in H? for the point w of D is denoted by

k, k() =1—wz L
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The kernel functions in H(b) and H(b) for w are denoted by kfv, as a simple
argument shows. For kg one has the expression kﬁ =1 — bTrv)b)kw [4], [19].
The term «operator» will always mean «bounded operator».
The following two simple properties of H(b), the first of which was men-
tioned earlier, can be found in [19].

1. S*b belongs to H(b).
2. b belongs to H(b) if and only if b is not an extreme point of B(H%).

Alternative proofs of some of the results below have recently been found
by A. V. Lipin (private communication).

2. Relations between H(b) and H(D)

It is helpful to fit the spaces H(b) and H(b) into the general scheme promul-
gated by de Branges (for example, in [2]). If H and H, are Hilbert spaces
and A is an operator in L(H,, H), then de Branges’s space M(A) consists of
the range of A, with the Hilbert space structure that makes A into a coiso-
metry of H, onto M(A). Thus, for example, if y is in H, and is orthogonal
to the kernel of A, then HAyHM(A) = HyllHl. If IAll = 1, then the space
M((1 — AA*)'/?) is called by de Branges the complementary space.of M(A4)
and denoted by H(A). Our spaces H(b) and H(D), therefore, coincide with
H(T,) and H(T3), respectively. We shall denote M(7,) by M(b).

A factorization criterion of R. G. Douglas [5] is often useful in establishing
containment relations between de Branges’s spaces, and in showing a given
operator maps one of these spaces into another one.

Douglas’s criterion. Let H, H, and H, be Hilbert spaces and A and B oper-
ators in L(H,, H) and L(H,, H), respectively. Then the operator inequality
BB* = AA* is necessary and sufficient for the existence of a factorization
B = AR with R in L(H,, H)) and |IRI| < 1.

This tells us, for example, that the two spaces M(A) and M(B) coincide as
Hilbert spaces if and only if AA* = BB*. In virtue of the operator inequality
1 — TET,, =1-—-T1,T; it tells us also that H(l—7) is contained in H(b), with
the inclusion map a contraction.

If A is a contraction in L(H,, H), then M(A) is an ordinary subspace of
H if and only if A is a partial isometry, in which case H(A) is the ordinary
orthogonal complement of M(A). In the contrary case the intersection
M(A)NH(A), which we call an overlapping space, is nontrivial (de Branges
and Rovnyak [3] use the term «overlapping space» in a slightly different way).
A simple lemma establishes the relation between H(A), H(A*), and their over-
lapping spaces.
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Lemma 2.1. Let H and H| be Hilbert spaces and A a contraction in L (H |, H).
The vector x in H belongs to H(A) if and only if A*x belongs to H(A%), in
which case.

2 — 2 *4-12
xliZ,, = IxliZ, + 1A% ..

The overlapping space M(A*)NH(A*) coincides with A*H(A).
The inclusion A*H(A)C H(A*) follows from the operation identity
A% (1 — AA*)2 = (1 — A*A)2A*,
which goes back at least to a paper of P. R. Halmos [10]. Suppose x is a vec-
tor in H such that A*x is in H(A*), say A*x = (1 — A*A)"?y with y in H,

and orthogonal to the kernel of (1 — A*A)!/2. Then AA*x = (1 — AA*)!?
Ay (by the same identity used above), from which one concludes that

x = (1 — AA%)'?[(1 — AA%)x + Ay,

showing that x is in H(A). As Ay is easily seen to be orthogonal to the kernel
of (1 — AA*)!/2, we have

Ixllyq) = 11 — AAN 2 + Ayll,.
The square of the right side equals
(1 — AA*) x>, + IlAYIZ + 2Re<(1 — A*A)2 A% x, oy
lIxlI2, — IIA*xIIi,l + lAylIZ, + <1 — A*Ay,y>

2, — IA*xZ, + Iy, + (1 — A*A) 212,

2 2
Ixli2, + lyl2,

]2 2
lxllg, + NA*xI 4.,
which gives the desired expression for lixll,, ), This completes the proof of

the lemma.

For the situation of interest in this paper, we obtain the following immedi-
ate consequences of Lemma 2.1.

Lemma 2.2. The H? function h belongs to H(b) if and only if T3h is in H(b).
If h is in H(b), then

IAIZ = A2 + TR,

Lemma 2.3. The overlapping space M(b) N\ H(b) equals TbH(E). The operator
T, acts as a contraction from H(b) to H(b).
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Two corollaries of the last lemma are worth recording.
Corollary 2.4. Every multiplier of H(b) is a multiplier of H(b).

Corollary 2.5. The overlapping space M(b) NH(b) is dense in H(b) if and only

if b is an outer function.
Corollary 2.4 is immediate. To establish Corollary 2.5 it suffices to note

that T,H(b) is the range of the operator (1 — T,75)!/2T,, which is dense in
H(b) if and only if the range of T, is dense in H?, in other words, if and only
if b is an outer function.

Lemma 2.6. If ¢ is a function in H*® then the spaces H(b) and H(b) are in-
variant under the Toeplitz operator T-, whose norm as an operator in each
of them does not exceed lloll .

For the proof, we can assume with no loss of generality that li¢ll , = 1.
To settle the case of H(b) it will be enough, by Douglas’s criterion, to verify
the operator inequality

T;(1 — GT)YT, < 1 — T;T,.
One easily sees that the difference between the right and left sides equals
U —Tipp — Tigp + Tigpps

which is the Toeplitz operator with symbol (1 — |¢[)(1 — |b[?), hence positive
semidefinite, as desired. The case of H(b) follows immediately from the case
of H(b) in conjunction with Lemma 2.2.

3. Cauchy integrals

For u a finite complex Borel measure on dD, we let Ku denote its Cauchy inte-
gral, that is, the holomorphic function in C\dD defined by

1 A
(Kp)(2) =j — du().

__ p—10
aD1 e "z

If u is absolutely continuous and ¢ is its Radon-Nikodym derivative with re-
spect to normalized Lebesgue measure, we write K¢ in place of Ku. (What
we are calling Cauchy integrals are often referred to as integrals of Cauchy-
Stieltjes type.)

If the measure p is positive, we define the transformation Ku on L? (p) by
Kgq = K(gp). The function K#q vanishes identically in D if and only if g is
orthogonal to H?*(y), the closure of the polynomials in LZ2(x). We denote by
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K?(p) the space of all functions Kuq with g in L2(u) and give it the Hilbert
space structure that makes Ku an isometry of H%(x) onto it. As before, if b
is absolutely continuous with Radon-Nikodym derivative o, we write K, and
K?(0) in place of K, and K 2(p).

We let p, denote the measure on dD whose Poisson integral is the real part
of the function (1 + b)/(1 — b). For ¢ in Lz(ub), we define the function
V,q in D by

V@) = (1 — b2))K,, 9)()-

A proof of the following representation for H(b) can be found in [20].

Lemma 3.1. The transformation V, is an isometry of I-LZ () onto H(b). It
maps the function k,, (\w| < 1) to the function (1 — b(w))~'k%.

Thus, the problem of finding the multipliers of H(b) is the same as the prob-
lem of finding the multipliers of K 2(#,,)“3- We note for future reference that
the equality HZ(;Lb) = LZ(;Lb) holds if and only if the Radon-Nikodym deri-
vative with respect to Lebesgue measure of the absolutely continuous com-
ponent of g, fails to be log-integrable [14, p. 50]. That Radon-Nikodym de-
rivative equals (1 — |b|?)/|1 — bJ? and so is not log-integrable if and only if
b is an extreme point of B(H®).

The operator on H 2(;Lb) of multiplication by €% will be denoted by Z,.

Lemma 3.2. The transformation VbIHZ(y.b) intertwines the operators
Z} [1 — (1 — b0)(1 & 1)] and S*.

In the proof, we shall denote the inner product in L2 () by <-y- >ub' Let
g be any function in Lz(yb), and let g = Kubq, so that V,q = (1 — b)g. Sin-
ce (K, Z} q)(z) = <Z} q, kz>“b = {q, Zbkz>#b, we have, for z # 0,

e “q(e”) .
K, Zs)@) = j ———— du,(€")
1 — ze—
aD
_ ! : 1 | g(é®)dp,(e?)
_zLD(l—ze—“’—)q "
_ 8(z) — g(0)
=
Therefore,
g(z) — g(0)

VyZpa)(2) = (1 — b(z)) 2
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(1 — b(z))g(z) — (1 — b(0))g(0) b(z) — b(0)
- ; G

V,a)(z) — (V,@)(0) (V,2)(0)
+
Z 1 — b(0)

S*V,9)(2) + <V,gq, Vb]>#b(S*b)(z).

In the last line we have used the equality V,1 = (1 — b_(_G))“‘kg from Lemma
3.1. The same equality shows that, when ¢ is the constant function 1, the func-
tion g equals (1 — b(0)b)/(1 — b(0))(1 — b). Inserting these expressions into
the equality. above (the one that gives.KuhZ;';q in terms of g) one obtains,
after a few lines of calculation, the formula

1 ( b(z) — b(0) )
(1 — bO))(1 — b(z)) ’

(K, ZtD() =
' 4

implying that

V,Z31 = (1 — b(0))~!S*b.
The expression for V,Z}q can thus be rewritten as

ViZrg = S*V,g + (1 — b0)<V,q, V,1>, V,Z}1,
or as _
S*V,g = V,Zf g — (1 — b(0))Xg, 1>,1],
which is the desired conclusion.
For H(b), the situation is simpler than for H(b). We let @ denote the func-

tion 1 — |b}? on aD. ‘

Lemma 3.3. Z'he transformation KQ is an isometry of H2(p) onto H(b). It
maps k, fo k2. Hence H(b) = K*(o)ID.

We denote the inner product in L%(g) by <- . For any points z and w
of D we have

<k, kp, =<1 — blHk . k>
= (1 — T3Tk,, k>
= KB, kp
= k(2)

I

b b
kb, KB>,.
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But (K k,)@) = <k, k>, so it follows that K, k,, = 5, and that <K, k,,
KQ kpg = <k, kz>g. Thus Kg maps the linear manifold in L? (p) spanned by
the functions k, isometrically onto a dense linear manifold in H(b) (the one
spanned by the functions k{’v). One can now complete the proof by a standard
limit argument.

The operator on H?(g) of multiplication by ¢’ will be denoted by ZQ.

Lemma 3.4. The transformation KQ|H2(Q) intertwines the operators Z;‘ and
S*.

This is a standard property of Cauchy integrals. It is established, except for
a difference in notation, as the first step in the proof of Lemma 3.2.

Corollary 3.5. If ¢ is a function in H®, then the transformation Kng ()
intertwines the operators ¢(ZQ)* and Tj.

In fact, the case where ¢ is a polynomial follows immediately from Lemma
3.4. To handle the general case one takes a sequence of polynomials that is
uniformly bounded on dD and converges almost everywhere on dD to ¢. The
obvious limit argument yields the conclusion.

Our first theorem implies, in virtue of Corollary 2.4, that any multiplier
of H(b) differs by a constant from a function in H(b). (If b is not an extreme
point of B(H*) then H(b) contains the constants, so one gets the stronger
conclusion that the multipliers of H(b) lie in H(b). The theorem itself is trivial
in that case.)

Theorem 3.6. If b is not an inner function, then every multiplier of H(b)
differs by a constant from a function in H(b).

As noted above, the theorem is trivial if b is not an extreme point of
B(H™), so we assume it is an extreme point. Let m be a multiplier of H(b)
and let 4 be any function in H(b) such that 4(0) # 0. By Lemma 2.6, the func-
tions mS*h and S*(mh) belong to H(b). Since S*(mh) = mS*h + h(0)S*m,
it follows that S*m is in H(b). Because b is an extreme point, the function 0
is not log-integrable, which implies that H?(¢) = L%(g) [14, p. 50]. There-
fore, by Lemma 3.4, the operator S*|H(b) is unitary, so in particular S*H(b)
= H(b). The function in H(b) sent to S*m by S* differs from m by a constant.

4. Vinogradov’s theorem

If u is a finite complex Borel measure on 4D then its Cauchy integral, Ku,
as a function in D, belongs to H” for 0 < p < 1 and so has an inner-outer
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factorization [7, p. 39]. The theorem of Vinogradov [24] states that if the
inner function u divides the inner factor of Ku, then the quotient Ku/u is a
Cauchy integral; in fact, it is the Cauchy integral of a measure whose norm
does not exceed that of u. A simple and natural proof of this can be based
on Lemmas 2.6 and 3.1.

For simplicity we assume llull = 1, and we choose b so that |u| = p,. By
Lemma 3.1 the function (1 — b)Ku is in H(b) and has norm at most 1. Thus,
by Lemma 2.6, if « is an inner function, then

TA( — b)Ky] = (1 — b)K(qu,),

where q is in Hz(y,b) and has norm at most 1. But if # divides the inner fac-
tor of Ky then it divides the inner factor of (I — b)Ku, so that

T[(1 — b)Kul = (1 — b)Kp/u.

In that case Ku/u = K(gu,), which proves Vinogradov’s theorem since the
measure gu, has norm at most 1.

5. Nonmultipliers

Our concern from now on will be with the case where b is an extreme point
of B(H™). In this section we obtain two negative results about multipliers.

It was mentioned in Section 1 that, if b is not an extreme point of B(H®™),
then every function holomorphic in a neighborhood of D is a multiplier of
H(b). If b is an extreme point, exactly the opposite is true: no nonconstant
multiplier can be continued analytically across all of dD. This is a conse-
quence of the next theorem together with Theorem 3.6 and Corollary 2.4.

Theorem 5.1. If b is an extreme point of B(H™), then no nonzero function
in H(b) can be continued analytically across all of dD.

- In fact, suppose the function 4 in H(b) can be continued analytically across

all of dD. By Lemma 3.3 we can write # = K(qp) with g in L2 (g). The func-
tion gp is in L?, being the product of the L2 function go!/? and the bounded
function o'/ This enables us to write # = P, (go). (Recall that P, is the
orthogonal projection in L? with range H2.) Because b is an extreme point
of B(H>), the function g is not log-integrable, and therefore neither is gp,
because

1
loglge| < log*lge'? + 3 log o.

But the forward Fourier coefficients of geo coincide with the Taylor coeffi-
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cients of A, which tend to zero exponentially since A is holomorphic across
aD. It is known [16, p. 12] that a function on dD whose forward Fourier
coefficients tend to 0 exponentially is log-integrable unless it vanishes identi-
cally. Hence go = 0, which means # = 0, as desired.

Corollary 5.2. If b is an extreme point of B(H™) and an outer function, then
no nongzero function in H(b) can be continued analytically across all of dD.

In fact, suppose the function 4 in H(b) can be continued analytically across
all of dD. Its Taylor coefficients then tend to 0 exponentially, and a simple
estimate shows that then the forward Fourier coefficients of bk exhibit the
same behavior. Hence T3k can be continued analytically across all of aD. By
Lemma 2.2, T3A is in H(), so it is 0 by Theorem 5.1. Since b is outer it
follows that A = 0, as desired.

The noncyclic vectors of the backward shift operator, S*, have been cha-
racterized by R. G. Douglas, H. S. Shapiro, and A. L. Shields [6] as the func-
tions in H? that possess pseudocontinuations to the complement of D. Our
next theorem implies that, if b is an extreme point of B(H*) then, just as
is the case with an ordinary continuation, the possession of a pseudoconti-
nuation disqualifies a nonconstant function from being a multiplier of H(b).
(Davis and McCarthy [1] have obtained this independently.) In particular, if
b is an extreme point, then no nonconstant inner function is a multiplier of
H(b), a result from [15].

Theorem 5.3. If b is an extreme point of B(H®), then the nonzero functions
in H(b) are cyclic vectors of S*.

This theorem is nearly disjoint from Theorem 5.1: the only functions in
H? that possess both ordinary continuations across 3D and pseudocontinua-
tions to the complement of D are the rational functions [6].

To prove the theorem, let 4 be a nonzero function in H(b). As in the proof
of Theorem 5.1, we have & = P_(ge) where g is a function in L? (p). Also
as in the proof of Theorem 5.1, the function g is not log-integrable.

Let M be the invariant subspace of S* generated by 4 and let N = M +
(H?»™*. Then N is an invariant subspace of the adjoint of the bilateral shift
operator on L2. By the known structure of these subspaces [14, p. 111], either
N = x L? with E a measurable subset of 3D or N = vH? with v a unimodu-
lar function in L. The latter possibility is precluded because N contains the
function gg, which fails to be log-integrable (and is not the zero function).
Thus N is of the form x, L2, and since it contains the function A, which is



194 B. A. LOTTO AND D. SARASON

nonzero almost everywhere, it must actually be all of L2. That means M =
H?, so h is a cyclic vector of S*, as desired.

Corollary 5.4. [f b is an extreme point of B(H®) and an outer function, then
the nonzero functions in H(b) are cyclic vectors of S*.

In fact, suppose 4 is a nonzero function in H(b). Then T3/ is in H(b) by
Lemma 2.2 and is nonzero because b is outer. By Theorem 5.3, then, T3
is a cyclic vector of S*. But T3h lies in the S*-invariant subspace generated
by A, so h also is a cyclic vector of S*.

6. Decompositions of H(b)

Let u, be the inner part and b, the outer part of the function 6. Then, as de
Branges and Rovnyak [4, p. 32] first pointed out, the space H(b) is the ortho-
gonal direct sum of the two subspaces H(u,) and u,H(b,). Moreover, the
inclusion map of H(y,) into H(b) is an isometry, and 7, acts as an isometry
of H(b,) into H(b). To verify these statements, it suffices to rewrite the equ-
ality

1 —T,T5=1—T,T, + T, — T, T5)Ty,

as 1 — T,T; = AA*, where A = (A, A,), an operator from H> & H* to H?,
with

A =0—T,T)"? and A, =T,(0—T,T; )2,

uy” iy by

The equality tells us that H(b) = M(A,) + M(A,), and this is an orthogonal
direct sum, with the inclusion map of each summand into H(b) isometric,
because ker A = ker A, & {0}. Since M(A4,) = H(y,) and M(A,) = u,H(b,),
the decomposition of H(b) follows. One immediate consequence of the decom-
position is that every multiplier of H(b) is a multiplier of H(b,). More gen-
erally, the same reasoning shows that if « is any inner function, then H(ub)
is the orthogonal direct sum of H(#) and uH(b). Thus, every multiplier of
H(ub) is a multiplier of H(b).

When b is an extreme point of B(H®), there is a companion orthogonal
decomposition of H(b).

Theorem 6.1. Let b be an extreme point of B(H*). Then H(b) is the ortho-
gonal direct sum of H(b,) and byH(u,). The inclusion map of H(b,) into H(b)
is an isometry, and the operator T,, acts as an isometry Jrom H(u,) into
H(b). ‘

The situation when b is not an extreme point is completely different. In
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that case, H(b,) is dense in H(b) [18, p. 87].

Theorem 6.1 can be established by a slight modification of the argument
in the discussion preceding it. We suppose that 4 is not inner, since other-
wise the theorem reduces to a triviality. This time we use the factorization
1 — T, T; = AA*, where A = (4, A,), but with

A =(0—T,T;)"* and A,=T,0—T,T;)"

Uy~ uo

We assert that ker A = {0} @ ker A4,. Clearly, once this has been verified,
the previous reasoning applies. To establish the assertion, let f, @ f, belong
to ker A, and writeg = (1 — T, T-)”Zf] and h = (1 — T, T;) f, Then g
is in H(b,), while A is in H(x), and g = —b,h, implying by Lemma 2.3 that
his in H(b ) (which is the same as H(b)). Smce b is an extreme point, Theo-
rem 5.3 implies that # = 0, and hence also that g = 0. It follows that f, is
in ker A, and f; = 0, the latter because ker (I — TbOT,;O) is trivial, b, being
a nonconstant outer function. This concludes the proof of the theorem.

The next theorem clarifies the relation of H(b) and H(b) in the extreme
point case.

Theorem 6.2. Let b be an extreme point of B(H™). The_n the othogonal com-
plement of H(b) in H(b) is byH(uy). The closure of H(b) in H(b) is H(by).

Again, the situation is completely different when b is not an extreme point.
In that case H(b) is always dense in H(b) [18, p. 87].

The second assertion in Theorem 6.2 follows immediately from the first
assertion together with Theorem 6.1. It will thus be enough to establish the
first assertion. Some new notations are needed.

As in Section 3, we let o denote the function 1 — |b]> on D and <-,->_the
inner product in L? (g). Let J, denote the natural injection of H 2 into L(p).
One easily verifies that K is the adjoint of J and that K J = 1—T;T,.
If & is a function in H(b) then T, h belongs to H(b) by Lemma 2.2 and so is
the image under KQ of a funcnon in L*g), by Lemma 3.3. The latter function
is unique (also by Lemma 3.3, since H?*(g) = L*(g)); we denote it by W h.

That byH(u,) is contained in the orthogonal complement of H(b) in H(b)
is an immediate consequence of Theorem 6.1. To establish the opposite con-
tainment, let 4 be any function in H(b) that is orthogonal to H(b). Let g be
any function in H(b) and, using Lemma 3.3, write g = K 4 with g in L%(p).
Corollary 3.5 tells us that 732 = K (bq), showing that W g = bg. Thus,
by Lemma 2.2,

(=]
|

= <h, 2
<h, g> + <Tyzh, T;8>

Il
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=<h, g + (Wgh, ng>g
= <h, KQq> + <Wgh, bq)g

1l

<JQh + bWQ h, g,

This equality holds for all g in L(p), so JQ h + bWQ h is the zero function
in L*(g), in other words, W,h = —h/b on the set where 1 — |b]? is nonzero.
Multiplying the last equality by 1 — |b|?, we conclude that

hoo
(I — bYW, h = —— + Bh ;
b

in particular, the function A/b belongs to L2. Projecting both sides of the
preceding equality onto H?, we obtain '

K,W_h = P (—h/b) + Th.

But T;h = KQ WQ h by the definition of Wg , so the function A/b is ortho-
gonal to H?. However, the function /b, is in H? since it is in L? and b, is
~ an outer function. Since A/b = yh/b,, we conclude that A/b is in H(u,),
which means that 4 is in boH(uo), as desired.

7. Consequences of invertibility

Theorem 7.1. If b is an extreme point of B(H*), then the following condi-
tions are equivalent

(i) b is invertible in H*,
(ii) H(b) = H(b),
(iii) b is a multiplier of H(b),
(iv) S*|H(b) is similar to a unitary operator.

An analogous result for the case where b is not an extreme point of B(H®)
can be found in [18]. In condition (ii), by the equality H(b) = H(d) we mean
to say that the two spaces are equal as vector spaces but not that their Hilbert
space structures coincide. If they are equal as vector spaces then their norms
are equivalent, by the closed graph theorem.

The equivalence of conditions (ii) and (iii) in the theorem is an immediate
consequence of the equality M(b) N H(b) = bH(b) from Lemma 2.3. To see
that (i) implies (ii), assume b is invertible and write H(b) = T;—T;H(b). By
Lemma 2.2, T3H(b) C H(b), and, by Lemma 2.6, T3-H(b) C H(b), so it
follows that H(b) = H(b), as desired. This much does not involve the hypo-
thesis that b is an extreme point.
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We complete the proof by showing that (ii) implies (iv) and (iv) implies (i).
Actually, the first of these implications follows immediately from Lemma
3.4, which says that the operator S*|H(b) is unitarily equivalent to the oper-
ator Z3; the last operator is unitary when b is an extreme point (since then
H?(0) = L%*)). It only remains to prove that (iv) implies (i).

Assume that b is not invertible in H*. We shall show that then S*|H(b) is
not similar to a unitary operator. The noninvertibility of b implies the non-
invertibility of 7;. Hence, given ¢ > 0, there is an f in H? with llfll; = 1
and IT; fll, < e. Let h = (1 — T,T;)"?f. Then h is in H(b) with llAll, < 1,
and

A2 = A3 = <1 — T,T) £
If12 — 11T, f112

> 1— ¢

One consequence of the assumption that b is an extreme point is (in the ter-
minology of de Branges and Rovnyak) the identity for difference quotients:

IS*gll2 = liglZ — |g(0) (g € H(b))
[19, p. 16Z]. From this it follows that

lim IS*hl2 = A2 — lIAl2 < 1 — (1 — &) = €.

n—o
As e is arbitrary, the desired conclusion, that S*|H(b) is not similar to a unit-
ary operator, follows, and the proof of Theorem 7.1 is complete.

Later, in Section 11, we shall see that the condition that 4 be a multiplier
of H(b) is equivalent to the conditions of Theorem 7.1.

Corollary 7.2. If b is an extreme point of B(H®) and is invertible in H* then
b~ is a multiplier of H(b).

In fact, if b is invertible, then Lemma 2.3 and Theorem 7.1 combine to
give bH(b) = H(b). (The same result holds, and the same reasoning applies,
when b is not an extreme point. The corollary uses only the implication (i)
implies (ii) from Theorem 7.1, which, as noted in the proof, holds for non-
extreme points as well.)

Corollary 7.3. If b is not an inner function then H(b) has nonconstant mul-
tipliers.

We need only to treat the case where b is an extreme point. Under the
assumption that b is not an inner function, there is a factorization b = b,b,,
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where b, and b, are in B(H™) and b, is nonconstant and invertible in H*.
(For example, one can take bx to be the outer function whose modulus on
dD is the maximum of |b| and 1/2). Using the reasoning at the beginning of
Section 6 we obtain the decompositions

H(b) = H(b,) + bH(b) = H(b,) + bH(b)).
Thus b,H(b,) C H(b) and b,H(b,) C H(b), and
bH(b) = bH(b,) + bbH(b,).

By Theorem 7.1 bH(b;) C H(b,), and hence b, is a multiplier of H(b).
As in the last section, we let u, denote the inner part and b, the outer part
of b. )

Theorem 7.4. If b is an extreme point of B(H*) and b, is invertible in H*,
then b, and 1/b, are multipliers of H(b) and one has the decompositions
H(®) = H(u,) + H(by) = byH(uy) + uyH(b,).
The proof depends on the decompositions
H(b) = H(u,) + uyH(by) = H(b,) + by H(u,)

from Section 6. If b is invertible then, as seen above, we have b H(b,) =
H(b,), so that

byH(b) = byH(u,) + uybyH(b,)
by H(uy) + uyH(by)
C H(b),

and
by 'H(b) = by 'H(b,) + H(uy)
= H(b,) + H(u,)
C H(b),

Thus b, and 1/b, are multipliers of H(b), so the preceding inclusions must
actually be equalities, and the desired decompositions of H(b) follow.

8. Multiplication operators

For m a multiplier of H(b), we let M, denote the corresponding multiplication

operator on H(b). For w in D, the kernel function ka is an eigenvector of M}



MULTIPLICATIVE STRUCTURE OF DE BRANGES’S SPACES 199

with eigenvalue m(w) (since it is orthogonal to the range of M, — m(w)).
Conversely, if M is an operator on H(b) such that each kernel function klfv is
an eigenvector of M?*, then M is a multiplication operator. This well-known
property of reproducing kernel Hilbert spaces can be found in [23].

It will be convenient to denote the operator S*|H(b) by X it is a contrac-
tion by Lemma 2.6. The adjoint X* is given by

X*h = Sh — <h,S*b>,b

[4], [19]. If b is an extreme point of B(H®), then b is not in H(b), and one
can draw the following conclusion.

Lemma 8.1. If b is an extreme point of B(H™) and h is in H(b), then Sh is
in H(b) if and only if <h,S*b>, = 0.

When b is an extreme point and m is a multiplier of H(b), the operator M*
has unexpected eigenvectors.

Theorem 8.2. Let b be an extreme point of B(H®) and m a multiplier of
H(b). Then S*b is an eigenvector of M. If @ is the corresponding eigen-
value, then (m — o)b belongs to H(b) and m — o belongs to H(b), and the
commutation relation

MX — XM} = S*»® (m — o)b
holds.

In fact, Lemma 8.1 implies that the orthogonal complement of S*b in H(b)
is in variant under M, , so that S*b is an eigenvector of M. To obtain the
commutation relation, consider a point w in D and the corresponding kernel
function k2. From the expresion k5 = (1 — b(w)b)k,, one easily obtains the
equality Xk? = wkb — b(w)S*b. Thus

(M*X — XM%kb = w m(w)kb, — ab(w)S*b — m(w)(wk’ — b(w)S*b)
= (m(w) — )b(W)S*b.

As the functions k{’v span H(b) it follows that M} X — XM} is an operator
of rank 1 with range spanned by S*b:

M*X — XM} = S*b & ¢,
where ¢ is some function in H(b). But by the preceding equality,
d(w) = <kb,0>, = (m(w) — c)b(w),

in other words, ¢ = (m — a)b. In particular, (m — a)b is in H(b). It now
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follows from Lemma 2.3 than m — « is in H(b), and the proof of the the-
orem is complete.

For w in D we define the operator Q, on H? by

f@) — flw)

i—w

QN =

A simple argument produces the alternative expression Q, = a— wS*)_lS *,
In particular, Q b = (1 — wX)~!S*b, showing that Q b is in H(b).

Corollary 8.3. If b is an extreme point of B(H*) and m is a multiplier of
H(b), then each function Qb is an eigenvector of M}.

The case w = 0 is given by Theorem 8.2 so, for the proof, assume w# 0.
The communication relation gives

(I —wX)M} — M*(1 — wX) = wS*h ® (m — a)b.
Applying both sides to Q b, we obtain
(I —wX)M*Q b — aS*b = «w<Q b, (m — a)b>, S*b.
It follows that
MXQ.b = [a@ + w<Q b, (m — a)b>,]1Q,b,
the desired conclusion.

The properties of M, given by Theorem 8.2 characterize multiplication
operators in the extreme point case.

Theorem 8.4. If b is an extreme point of B(H™) and if M is an operator on
H(b) such that M*S*b = &@S*b and '

M*X — XM* = S*bh & ¢,
then M = M, for a multiplier m of H(b).
To prove this it will suffice to show that the hypotheses imply k2 is an

eigenvector of M* whenever b(w) # 0. Assuming the last condition and
applying the commutation relation to k’;, we obtain

d(W)S*b = M*(wkb, — b(w)S*b) — XM*k?,
= (W — X)M*kb — ab(w)S*b,

so that
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(% — X)M*k®, = @(w) + abW)S*b.

But also (W — X)k2 = b(w)S*b, and the operator w — X is injective because
of the assumption that b(w) # 0 (which implies that &, is not in H(b) [19]).
We can conclude that
poiy = P00+ GO,
i b(w)
and the proof is complete.

9. Conjugations

We assume throughout this section that b is an extreme point of B(H®). As
we mentioned earlier, in Section 3, one consequence of this assumption is the
equality HZ(,u.b) = L%(y,), which enables us to define a conjugation on H(b)
by transferring via the map V), a conjugation on Lz(ub). This conjugation
and another on a space related to H(b) that we shall introduce a little later
are intimately connected with the structure of the multipliers of H(b).

The conjugation on H(b) that turns out to be useful is the one that corre-
sponds to the conjugation ¢ = e~ on L*(,). We denote it by C:

Ch = VZ}V;h)  (h € H(b)).

That C is a conjugation (an anti-unitary involution) is obvious.

Lemma 9.1. For w in D, Ck%, = Q_b.

This is a straightforward calculation. By the way u, is defined, the func-
tion (1 + b)/(1 — b) differs by an imaginary constant from the Herglotz
integral of u,. Using the equality k2 = (1 — b(w)) V,k, from Lemma 3.1, we
obtain

e——iﬂ

r .
b = — —_ d ele
(Ck2)@) = (1 — bWl — b)) @ — e fw)(1 — e~ 2) ke
_ — ( 1 1 :
_ 1 — b(w)(1 — b(z)) [ — - ] dp,(€?)
T—w Joo |1 —ez 1—ew
6 '0
e Ot O B Gt Bl
2z—w) Jap e’ —z el —w
(A —bo(A —b@) [+ bE@) 1+ bW
- 20z — w) .1 — b(2) 1— b(w)]
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B b(z) — b(w)

—Ww

H

as desired.

The conjugation C intertwines the operator X (= S*H(b)) and its adjoint.

Lemma 9.2. CXC = X*

It will suffice to show that CXk’;. = X*Ckﬁ, for all w. We transform both
sides with the aid of Lemma 9.1. First,

CXk® = C(wkb — b(w)S*b)
= wQ, b — b(w)k}.
Next, by the formula for X* mentioned in Section 8,
X*Ckb = X*Q.b
S$Q,b —<Q, b,S*b> b
SO.b — <kl,kb>.b
SQ,b — (1 — b(O)b(w))b.

Now

1l

(S — W)S*1 — wS*~! + wQ,
—(1 — SSH(1 — wSH~! + 1 + wQ,,.

SQ,,

The operator (1 — SS*)(1 — wS*)~! is easily seen to equal 1 ® k; in fact,
its adjoint applied to the H? function f gives

(1 — wS)~!(1 — SS¥)f = 01 — wS)~'1 = f0)k,,.

Thus SQ b = —b(w) + b + wQ, b. Inserting this into the expression above
for X*Ck?®, we get

X*Ckb = —b(w) + b + wQ b — (1 — b(0)b(W)b
= wQ, b — b(w)(1 — bh(0)b),

as desired.

We now introduce our second conjugation. It will act on the space K2+(Q),
by which we mean the space of functions that are sums of functions in K2(p)
and constant functions. The functions in X*(p), and here those in K 2+ (o), are
defined in the complement of dD, and we define them at o in the obvious
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way (namely, those in K%(p) are assigned the value 0 at infinity). For f in
K? (o) we define its conjugate, f,, by

Sf(2) = f(1/2).

Straightforward calculations show that, if f = qu + ¢ with g in L*(p) and
¢ a constant, then fx = —SKQ(Z:é) + ¢, and also fx = ——Kgc7 + (KQ[])(O)
+ C. The latter expression shows that fx is in K2 (o).

We let K*(p) denote the space of bounded functions in Ki(g). (Here, by
bounded we mean bounded in the entire complement of dD, not merely in
D.) It is obvious that the conjugation on K2 (¢) maps K=(g) into itself.

The next lemma gives a relation between our two conjugations.

Lemma 9.3. If f is in H(b), then C[(1 — b)f] = (b — 1)S*fx.

To prove this, let g be the function in L*(p) such that f = Kgq. Because
(1 — |b]»)/|1 — b|? is the Radon-Nikodym derivative with respect to nor-
malized Lebesgue measure of the absolutely continuous component of u,, we
can also write f = K#b(|l — bl%g), provided we regard |1 — b|%g as vanishing
on the singular component of p,, if there is one. Thus

(1 — b)f = V(11 — blg),
and we obtain

Cl(@ — byf]

V,Zi(1 — blg)
(1 — K, ZX1 — bl

wy b

= (1 — b)K,(Z9).

As mentioned above, fx = —SK(Z7q), so that K (Z*§) = —S*f,, and the
desired equality follows.

We are now able to determine the effect of conjugation on multiplication
operators.

Theorem 9.4. If m is a multiplier of H(b), then CM,,C is a multiplication oper-
ator, namely, it equals M, .

Corollary 9.5. The multipliers of H(b) are in K*(p).

The corollary follows immediately from the theorem. To prove the theorem
we note first that, because C is a conjugation, (CM, C)* = CMC. This in
conjunction with Lemma 9.1 and Corollary 8.3 implies that if # is a multi-

plier of H(b) then each of the functions kﬁ is an eigenvector of (CM,,C)* and
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hence that CM,,C is a multiplication operator. It remains to determine the
corresponding multiplier. Let it be denoted by m’.
From the proof of Corollary 8.3 we have

M¥Q.b = [@ + w<Q b, (m — )b>,]Q,0b,
where a is the eigenvalue of S*b as an eigenvector of M*. Consequently
CMXCkb = [a + Wl(m — a)b,Q,b>,]k5,

from which we conclude that

Rl

m'z) = a + z$Q.b,(m — a)b>,

Il
Rl

+ z(C[(m — a)b], k>,
+ zCl(m — a)b](z).

Il
Ql

Hence m'(0) = &, and

S*m! = C[(m — a)b].

By Lemma 9.3,
Clim — a)(b — 1)] = (1 — b)S*m.
(The lemma applies because m — « belongs to H(b), by Theorem 8.2) In
view of the last two equalities, we seek an expression for C(m — «) in terms
of m'.
Let 3 be the eigenvalue of S*b as an eigenvector of M},. Because m and

m' play symmetric roles, we have 8 = m(0) and C[(m' — B)b] = S*m. We
can rewrite the last equality as

X(m — a) = C[(m' — B)b].
Since CX = X*C, it follows that
X*C(m — a) = (m' — B)b.

Using the formula for X* mentioned in Section 8, we can rewrite the left side
here as

SC(m — &) — <C(m — &), S*b>, b = SC(m — o) — <kl m — o>, b
SC(m — a) — (m(0) — &)b
SC(m — o) — (@ — B)b.

Applying S* we find that
Cim — a) + (@ — B)S*b = S*(m' — B)b]
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bS*m' + (m'(0) — B)S*b
bS*m' + (& — B)S*b.

Hence C(m — «) = bS*m!.

Combining the last equality with the previously obtained expressions for
Cl(m — a)b] and C[(m — a)(b — 1)], we find that S*m' = S*my, so m' and
my differ by at most a constant. But from the way m, is defined one easily
sees that m, — B (= msx — m(0)) belongs to H(b). Since m' — (3 also belongs
to H(b), but the constant functions do not, we must have m' = my, and the
proof of the theorem is complete.

10. Lemmas on Cauchy integrals

We need two simple facts about Cauchy integrals. For u a finite complex
Borel measure on dD, we let P« denote the Poisson integral of x and Qxu
the conjugate Poisson integral of .

Lemma 10.1. [f p is a finite complex Borel measure on dD and f = Ku, then,
in D,

f@) — f(1/2) = (P x w)(2)

1
M) = > [P+ W) + H(Q * p)(2) + (P p)0)]

Lemma 10.2. If p is a finite complex Borel measure on oD, and if f and g
are holomorphic functions in D such that f — g = P « p, then, in D,

fz2) = (Ku)(z) + £(0)
g(2) = (Ku)(1/2) + g(0).

Lemma 10.1 is a straightforward consequence of the relation between the
Cauchy kernel and the Poisson and conjugate Poisson kernels, and Lemma
10.2 follows easily from Lemma 10.1.

To illustrate the use of these lemmas we show here that, when b is an
extreme point of B(H®), the space K*(p) is closed under multiplication. Let
f and g be functions in K*(g). The function fg — f.&« is then bounded and
harmonic in D, so it is the Poisson integral of its boundary function. (The
function is defined in C\dD, but by its boundary function we mean the interior
boundary function, that is, the boundary function from D.) By Lemma 10.2,
to prove fg is in K®(g) it will suffice to prove that the interior boundary
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function of fg — fx &« has the form gg with g in L?(p). Let q, and g, be the
functions in L%(p) such that f = fl) + K (‘71) and g = g(o) + K (qz)
Then, by Lemma 10.1, the interior boundary function of f — fy is q,e and
the interior boundary function of g — g« is g, o. Writing

fo — fuBx = (F — g + felg — 89,

we see that the interior boundary function of fg — fy&s« is (g + q, f*)g. (In
the last expression, of course, g and fx denote interior boundary functions.)
Since g and fy are bounded, the function ¢,g + g, fx is in L*(p), the desired
conclusion.

Thus, K*(g) is an algebra, and by reasoning like that above one easily
sees that the spectrum of a function f in this algebra equals the closure of
S(C\AD). In fact, that the spectrum of f contains the closure of f(C\dD) is
obvious, so one only needs to show that f is invertible in K*(g) if it is
bounded away from 0 in C\dD. If the latter happens, and if g, is the function
in L?(g) such that f = f(OO) + K _g,, then by Lemma 10.1 the interior
boundary function of f f* is —q, o/. ff+, which is of the form go Wwith
q in L*(g). Lemma 10.2 thus guarantees that flis in K*=(g).

11. More on H(b)

We return in this section to the assumption that b is an extreme point of
B(H™). The functions in H(b) are restrictions to D of functions in K?(p), so
they have natural extensions to the exterior of dD. The next lemma states the
process of extension preserves multiplication, to the extent that it can. (This
fails when b is not an extreme point, except in the trivial case where o is
constant.) For fin H(b), we let f, denote the restriction to D of the conjugate
of the extension of f. (It differs by a constant from a function in H(b).)

Lemma 11.1. If the function f, g, and fg belong to H(b), then (fg)x = f+&x

For the case where f and g are in K*(g) this is established at the end of
the preceding section. The argument for the general case is similar but slightly
more elaborate.

Let q,, q,, and g be the functions in L*(p) such that f = K o910 8 =K o9
and fg = K 4 By Lemma 10.1, the boundary functions off f+and g —
g« are g, @ and &, o respectively. The function fg — S4B+ is the sum of an
H? function and the conjugate of an H' function, so it is the Poisson inte-

gral of its boundary function. Writing

fo — filix = (F — f)g + falg — 8x),



MULTIPLICATIVE STRUCTURE OF DE BRANGES’S SPACES 207

we see that its boundary function is (ggq, + f*qz)g. (In the usual way, we
are identifying functions in D with their boundary functions.) Therefore, by
Lemma 10.2,

fg = Kl(gq, + f+qyel.
Hence
Kl(gq, + f+a, — @)e] = 0.

As the functions q,0'?, g, "%, and go'/? are in L?, the function (ggq, +
f+@, — @)@"? is in L!, which implies that the function (gg, + f+q@, — @)e
fails to be log-integrable (the reasoning can be found in Section 5). Since the
Cauchy integral of the latter function vanishes so do its forward Fourier
coefficients, and hence it is the zero function. Thus fg — fy &« is actually the
Poisson integral of gg, and we can conclude by Lemma 10.2 that (fg). =
S«8x, as desired.

Lemma 11.1 enables us to obtain the analogue of Theorem 9.4 and its
corollary for multipliers of H(b).

Theorem 11.2. If m is a multiplier of H(b) then m is in K*(o) and my is a
multiplier of H(b).

To prove this we use the conjugation on H(b) that corresponds, under the
transformation KQ, to the conjugation g — —Z;“c} on L?%(g). We shall not
introduce a special notation for it because we shall not have occasion to use
it again. A straightforward calculation shows that it is given by f — S*f,.
The important property for us is that the preceding map sends H(b) onto
itself, which also follows from the unitarity of S*/H(b) (used before in the
proof of Theorem 3.6).

Let m be a multiplier of H(b), and let f be any function in H(b). By The-
orem 3.6, m is in K2+(Q)ID, so Lemma 11.1 can be applied to give (mf)s =
my fy. Also fu(0) = 0, so S*(mf)x = m«S*f«. In view of the remark at the
end of the last paragraph we can conclude that my is a multiplier of H(b).
In particular, m, is bounded in D, and thus m is in K*(p).

The next result enables us to supplement Theorem 7.1.

Theorem 11.3. The function b belongs to K2+(Q)|D if and only if 1/b is in
H?. In that case by, = 1/b.

For the proof, suppose first that 1/b is in H?. Then 1/b is also in L*(g),
and we have
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2
K(1/b) = P, ( l) = 1/b(0) — b,

showing that 1/5(0) — b is in K*()|D and hence that b is in K2 (p)|D. More-
over, because of the way the transformation KQ interacts with the conjuga-
tion on K2 (g) (as was pointed out in Section 9), we have

(1/b(0) — b)x = —SK (Z} (1/b))
= —SS*K ,(1/b)

1 — |b]?
= —S§*P, 5 )

which gives b, = 1/b.

Suppose, conversely, that b is in K2 ()|D, in other words, that b — c’is
in H(b), where c is a constant. Then c # 0, since b is not in H(b). Also,
because 1 — b(0)b (= kg) is in H(b), we must have b(0) # O and ¢ = 1/5(—(».
Let g be the function in L2(g) that maps to b — 1/b(0) under KQ. Then

K (bg) = TiK,q = Ty(b — 1/b(0))
=T;h—1=—P (1—|bP)
= K, (—1).
Since K, has a trivial kernel, it follows that g = —1/b (modulo the measure

odb). Therefore (1 — |b[?)/|bJ? is in L', implying that 1/b is in L2. In addition,

_ 2
1/60) — b = K,(1/b) = P, ( 13| | ) = P_(1/b) — b,

SO PA_,(I/E) = 1/b(0). Therefore 1/b is in HZ2, in other words, 1/b is in H?,
and the proof is complete.

Corollary 11.4. If b is a multiplier of H(b) then b is invertible in H*.

The corollary is an immediate consequence of Theorems 11.2. and 11.3.
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12. Construction of multipliers

We retain the assumption that b is an extreme point of B(H®). Our next
main result, Theorem 12.2, is a criterion for a function in X®(p) to be a
multiplier of H(b). The criterion enables us to show that H(b) has an abun-
dance of multipliers; in particular, the multipliers of H(b) that lie in H(b) are
dense in H(b).

Lemma 12.1. Let m be a function in K*(g) and let q be the function in L*(g)
such that m = m() + K (q). Let g be a function in H? such that g(0) = 0.
Then Tgm = K(gqo)|D. The function Tg,m is in H(b) if and only if gq is in
L¥(o).

In fact, by Lemma 10.1, the interior boundary function of m — i, is qo,
SO

Tyn = P _(87x) + P, (&qo).

The first term on the right is 0 because g(0) = 0, and the second term is
K(g‘qg)IP. This proves the first assertion in the lemma. It is obvious that 7;m
is in H(b) if gg is in L*(g), which is one direction in the second assertion. For
the other direction, suppose Tg-m is in H(b), say Tgm = Kg(ql)lD with g, in
L*(p). Then K((gg — q)e)ID = 0. But (gg — g,)e is not log-integrable since
it is the product of the L' function gge'/? — ¢,¢'/? and the function ¢'’?,
which is not log-integrable. It follows that g, = &g, and the proof is com-

plete.

Theorem 12.2. Let m be a function in K=(g) and let q be the function in
L%(g) such that m = m(x) + K, q.
(i) The function-m is @ multiplier of H(b) if and only if fq is in L*p) for
every f in H(b).
(ii) The function m is a multiplier of H(b) if and only if hq is in L*(g) for
every h in H(b).
To prove (i), let f be any function in H(b), and let g, be the function in
L*(p) such that f = K ,g,ID. By Lemma 11.1, if mf is in H(b) then (mf)« =
myf«. This in conjunction with Lemmas 10.1 and 10.2 implies that mf is in

H(b) if and only if the boundary function of mf — mfx has the form g, o
with g, in L*(g). On D we have

mf — Mwfe = (m — mf + Walf — fi)

= fgo + W*ql Q.
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Since my is bounded the function 7.q, is in L%(g). Hence mf — ifyfs has
the required form if and only if fg is in L%(p), which proves (i).

Because of (i), in proving (ii) we can assume, without loss of generality,
that m is a multiplier of H(b). Let A be any function in H(b). By Lemma 2.2,
mh is in H(b) if and only if T,(mh) is in H(b). We have

Ty(mh) = mTz;h + P, ((bh — P, bhym)
= mTzh + Tym,

where g = (1 — P+)(Eh). The first term on the right is in H(b) since we
have assumed that m is a multiplier of H(b). Hence mh is in H(b) if and only
if the second term on the right, 7 m, is in H(b). By Lemma 12.1, that
happens if and only if gq is in L%(g). The function qP+(5h) (= qTjh) is in
L*(p) by (i) (since Tyh is in H(b) and m is a multiplier of H(d)). Hence mh
is in H(b) if and only if bhq is in L%(p), in other words, if and only if |b|
|hPlge is in L1. But (1 — |bP)|Allgle (= |hPlg?e?) is in L' since go (= m —
#74) is bounded. Hence mh is in H(b) if and only if |4[?|g|*¢ is in L!, in other
words, if and only if Aq is in L%(g). This proves (ii).

Corollary 12.3. If m is a multiplier of H(b) then the spectrum of M, is the
closure of m(C\aD).

As shown in Section 10, the closure of m(C\@dD) equals the spectrum of m
in the algebra K*(g), and this set is obviously contained in the spectrum of
M,,. To establish the opposite containment it will suffice to show that the
invertibility of m in K*(g) implies that 1/m is a multiplier of H(b). Assume m
is invertible in K*(g), and let g and g, be the function in L*(g) such that
m = m(e) + KQq and 1/m = 1/m(wx) + Kgql. Since

1 1 My — m
m o My B mmi
we conclude by Lemmas 10.1 and 11.1 that g, = —gq/mmy. If h is in H(b)

then Theorem 12.2(ii) tells us that Aq is in L%(p), and therefore so is hq,,
since 1/m and 1/m, are bounded. Theorem 12.2.(ii) now implies that 1/m
is a multiplier of H(b), as desired.

Corollary 12.4. Let m be a function in K*(g) and let q be the function in
L*(@) such that m = m(x) + Kq. If qo'’? is bounded, then m is a multi-
plier of H(b).

This corollary is an immediate consequence of Theorem 12.2.

Corollary 12.5. [f m is an invertible function in H* such that (1 — |m|%)?/o
is bounded on dD, then m is a multiplier of H(b), and my, = 1/m.
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We remark that if b is not an inner function, in other words, if o does not
vanish identically, then nonconstant functions satisfying the hypotheses of
" Corollary 12.5 can be constructed by standard means. (One example is the outer
function with modulus max{|b|, 1/2} on aD.)

To establish Corollary 12.5 it suffices to note that the bounded harmonic
function m — 1/ is the Poisson integral of its boundary function, which
equals (|/m|> — 1)/m. From Lemma 10.2. it follows that m is in K*(p) with
m — 1/m(0) = KQ((mI2 — 1)/ om) in D, and m, = 1/m. That m is a mul-
tiplier of H(b) is now immediate from Corollary 12.4.

Corollary 12.6. If m is a function in H* such that |Re m|/g'/? is bounded on
aD, then m is a multiplier of H(b) and my, = —m.

It is not completely obvious that there are nonzero functions satisfying the
hypotheses of the corollary in all cases where b is not an inner function. That
there are will be pointed out below in connection with the proof of Corollary
12.8.

To establish Corollary 12.6, it suffices to use Lemma 10.2 in the same way
as in the preceding proof and earlier ones to obtain

- 2Re m
m+m(0)=KQ( . )

in D and myx = —m. Corollary 12.4 now applies to show that m is a multi-
plier of H(b).

Corollary 12.7. If the outer factor, by, of b is invertible in H*, then all of
the functions k% and Q b, are multipliers of H(b), and (Q,b,)« = Skl/b,
and (kb)) = —by(w)SQ,(1/b,).

To simplify the notation slightly in the proof, we shall assume that b itself
is invertible. This is not a genuine loss of generality, because the criterion in
Corollary 12.4, upon which the proof of Corollary 12.7 is based, is insen-
sitive to the inner factor of b.

Assuming then that b is invertible, we note that

K (Z%,/b) = S*K (k,/b)
(1 — [Pk,
= S*P+ D 4
b
= —S*P (bk,)
= —S5*1 — wS*'b

= —Q,b.



212 B. A. LOTTO AND D. SARASON

Therefore, by the relation between the transformation K and the conjuga-
tion on K2 (g) (noted in Section 9),

(Q,0)« = SK (k,/b)

SP, (k,/b — bk,)
S(k,/b — Tik,)
S(1 — bO)b)k, /b
= Skb/b.

Thus Qb is in K*(g), and Corollary 12.4 implies that it is a multiplier of
H(b). We see also that Skﬁ/b is a multiplier of H(b). Since the space of multi-
pliers is invariant under S* (by Lemma 2.6), and since b is a multiplier of
H(b) (Theorem 7.1), it follows that k” is a multiplier of H(b). To determine
(kb )« one verifies that k” b(w)K (k /b), which gives the formula

(k2 = —b(W)SS*K (K, /b).

The right side is easily reduced to the desired expression. The details are simi-
lar to those above and we omit them.

Corollary 12.8. The multipliers of H(b) that lie in H(b) are dense in H(b).

To prove this, let g be a real function in L*(g) and let f = K - As such
functions f clearly span H(d), it will suffice to show that f can be approx1mat-
ed in the norm of H(b) by multipliers of H(b). From Lemma 10.1 one sees
that the real part of fis bounded in modulus by ligell_ in C\dD. For e a posi-
tive number smaller than 1/llgell_, the functions f/(1 + ¢f) and fi/(1 + €fs)
are then in H*, and we have

S S ~ f—r«
Lref 1+efe A+ N+ efe)

The interior boundary function of f — fi is by Lemma 10.1 equal to gg,
so the interior boundary function of the preceding function is g, ¢, where
q, = q/(1 + ¢f)(1 + efy). By Lemma 10.2 we conclude that the function
m_= f/(1 + ¢f) equalsK (g) in D and that (m )« = fi«/(1 + €fx). Thus m,
is in K%(g) and in K*(p). It now follows immediately from Corollary 12. 4
that m_is a multiplier of H(b). Finally, since g, — g in L¥(p) as e = 0, we
have If — m |l = 0 as e = 0, completing the proof.

A comment on the preceding proof: Suppose for simplicity that llgeil =
and let g = f— f(0)/2 (which makes g« = —g). The functions
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Y g
me—_—‘— +
2\1 + eg 1 — eg

are then in H* for 0 < € < 1, and a simple estimate shows that IRemgl <
lglo/(1 — €)? on dD. The functions m! thus satisfy the hypothesis of Corollary
12.6, and the functions m: — m: (o) could have been used in the proof of
Corollary 12.8 in place of the functions m_. One can also deduce Corollary
12.8 by combining Corollary 12.6 with the following nice lemma of A. M.
Gleason and H. Whitney [9, Lemma 3.1] (slightly rephrased): If £ is a non-
negative function in L, then there is a sequence in H® whose real parts lie
between 0 and k& on dD and converge almost everywhere to k.

13. The effect of the inner factor

We continue to asume that b is an extreme point of B(H™). As we observed
earlier, the multiplication criterion in Corollary 12.4 is insensitive to the inner
factor of b: if a function m passes that test then it is a multiplier not only
of H(b) but of H(ub) for every inner function u. We shall show that the con-
dition of Corollary 12.4 characterizes multipliers of the preceding kind.

Lemma 13.1. Let m be a multiplier of H(b) and let q be the function in L*(g)
such that m = m(o) + Keq. Let u be an inner function. Then m is a multi-

plier of H(ub) if and only if gq is in L¥(g) for every g in H(u).

This lemma follows immediately from Theorem 12.2 and the decomposi-
tion H(ub) = H(u) + uH(b) (explained in Section 6).

Corollary 13.2. If u is a finite Blaschke product, then every multiplier of H(b)
is a multiplier of H(ub). ’

Indeed, if u is a finite Blaschke product, then the functions in H(u) are
bounded (in fact, they are rational functions), so the condition in Lemma
13.1 is satisfied.

Theorem 13.3. Let m be a function in K*(g) and let q be the function in
L*(o) such that m = m() + Kgq. Then m is a multiplier of H(ub) for every
inner function u if and only if go'’? is bounded. '

The «if» part is Corollary 12.4. The «only if» part is an immediate conse-
quence of the preceding lemma and the following one.

Lemma 13.4. Let o0 be a nonnegative essentially unbounded measurable func-
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tion on dD. Then there is a function g in H* that is noncyclic for S* such
that go is not in L2,

The function g that we shall produce lies in H() for an interpolating Blaschke
product u. We shall let |E| stand for the unnormalized Lebesgue measure of
the measurable subset E of aD.

Since o is unbounded there is a sequence {7} of positive numbers such
that z, ., > 2¢, for all n and such that each set E, = (¢, < ¢ < 2f,} has
positive measure. For each 7 let A\, be a point of density of E,. The points X,
are distinct so, passing to a subsequence, we can assume they converge to a
point distinct from all of them. That being the case, we can find disjoint arcs
I, I,,... such that I, has center \, for each n. Shrinking these arcs successi-
vely, if need be, we can assume |/, , || < |[,|/2 and |[I, N E, | > |I,|/2 for
each n.

Let w, be the point in D such that w,/|w | = A\ and 1 — |w,| = [[ |/2, and
let g, = (1 — |w,[»"*k,, , the normalized kernel function for the point w,.
Since 1 —|w, , | < (1 —|w,])/2, the sequence {w,}{°is an interpolating
sequence. Therefore, by a theorem of H. S. Shapiro and A. L. Shields [22],
the functions g, form a Riesz basis for their span in H?, that span being H(x),
where u is the Blaschke product with zero sequence {w,}

We need to estimate the size of g, on . For that, fixan nand let r = |w,|.

We have

(1 _ r2)l/2

g,(\, €°) = P

1 —re
(1 —r®)"2(1 — rcos § + irsin )

B (1 — r)? + 4r sin? (6/2)

Thus Reg, > 0 on dD, and for \ e® in I, that is, for [§] < 1 —r,
(1 —r)V%1 —r)
(A — r? + 4rsin¥ (1 — 1)/2)
(1 + ,.)1/2(1 . ,.)3/2
>

2(1 —r)?

Reg,(\ ) =

1
>

- ZII"II/Z :

Since £, — oo we can find a sequence {c,}{ of positive numbers such that
"Ec? < oo but Zc2t? = 2. Let g = Zc, g,. By the theorem of Shapiro and
Shields mentioned above, g is in H? and is not a cyclic vector of S*. On I,
we have
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Cn

lgl = Reg = Reg, = .
too2)?

Hence

v

E f lgal? db
I, CE,

E or |
—— i, N E
4|[nl n-n n

1
DELRR

J lgol? db
aD

v

v

which proves the lemma.

Up to now we have not given an example of a multiplier that fails to satisfy
the criterion in Corollary 12.4. That will come in the next section. In the other
direction, one sees from Theorem 13.3 that if g is bounded away from 0 on
the set where it is nonzero, then H(b) and H(ub) have the same multipliers
for all inner functions u.

The next result, which identifies a class of inner functions u# for which
H(ub) and H(b) have the same multipliers, does not require the assumption
that b is an extreme point.

Theorem 13.5. If u is an inner function such that dist(b, uH>) < 1, then
every multiplier of H(b) is a multiplier of H(ub).

We first show that the distance inequality is equivalent to the equality
H@u) = (1 — T,T)H(b), or, what amounts to the same thing, to the inclusion
H(u) C (1 — T,T,H(b). By the criterion of Douglas we used earlier (in Sec-
tion 2), the inclusion is equivalent to the operator inequality

1 —T, T, <c(1—T,T)(1 —T,TH(1 — T,T))
for some ¢ = 1. The operator inequality means that
A% < ¢ (IlAll3 — I T3A113)

for all A in H(u), in other words, that
c—1
I Tzhllg = 0 A3

for all 4 in H(u), in other words, that | T3|H(#)Il < 1. Since it is known [17]
that I T3|H(w)ll = dist(b, uH™), the equivalence is established.
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Thus, assuming u satisfies the condition in the theorem, we have H(u) =
(I — T, T)H(b). Suppose m is a multiplier of H(b). Then, because H(ub) =
H(u) + uH(b), to show m is a multiplier of H(ub) we need only show mH(u)
CH(ub). Let g be any function in H(u). Then, because H(u) = (1 — T,T})
H(b), there is a function 4 in H(b) whose projection onto H(u) is g. The
difference h — g is then in H(ub) and in uH?, so it is in uH(b). Hence m
(h — g) is in uH(b) and thus in H(ub). Since also mh is obviously in H(ub),
it follows that mg is in H(ub), and the theorem is established.

14. Helson-Szeg6 weights

For certain extreme points b of B(H®), those for which the conjugation
operator behaves in a decent manner relative to u,, we are able to describe
the multipliers of H(b) completely. By a Helson-Szegd weight we shall mean
a nonnegative function ¢ on dD that has the form ¢ = exp(¢ + ¥), where
¢ and i are real functions in L® with Iyl < #/2, and Y denotes the conju-
gate function of y. The following properties hold.

1. If o is a Helson-Szegd weight then so is 1/a.
2. A Helson-Szego weight is in L! * ¢ for sufficiently small positive num-
bers e.

3. If o is a Helson-Szeg6 weight then the conjugation operator is bounded
on L?(¢). This property characterizes Helson-Szegd weights.

Property 1 is trivial and property 2 is a well-known result of V. I. Smirnov
[7, p. 34]. Property 3 is the basic theorem of H. Helson and G. Szegé [13].
A thorough discussion of these and related matters can be found in the book
[8].

If p, is absolutely continuous and its Radon-Nikodym derivative is a
Helson-Szegoé weight then, as Davis and McCarthy show [1] (on the basis.of
the Helson-Szegd theorem), every function in H* is a multiplier of H(b).
(They prove the converse also.) Such a b of course is not an extreme point
of B(H®). The next theorem says that an analogous result holds for extreme
points whose corresponding measures are made in a simple way from Helson-
Szegd weights.

Theorem 14.1. If , is absolutely continuous with Radon-Nikodym derivative
Xg 0, where o is a Helson-Szego weight and E is a subset of dD of positive
measure whose complement has positive measure, then the following spaces
coincide:

1. The space of multipliers of H(b),
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2. K*(e),
3. K™(xp)-

A lemma is needed.

Lemma 14.2. Let o be a Helson-Szegd weight and let q be a function in
L%(0). Then, in D, the Cauchy integral K q belongs to H 1 and its interior
boundary function has the form q,o with q, in L%(0). '

To see that K g is in H', choose a positive number e such that ¢ is in L'+
Then go is the product of the L? function go'/2? and the L2 * % function ¢'/2,
so it is in LZ * 20/ + o by Holder’s inequality. By M. Riesz’s theorem, the
conjugate function of go lies in the same space. Hence (by Lemma 10.1), the
Cauchy integral K g is in H@ * 20/ + & and a fortiori in H'.

To see that the interior boundary function of K g has the required form
we note that, because go is in L%(1/0), the Helson-Szegd theorem implies that
the interior boundary function of K g, its Cauchy integral, is in L*(1/0).
Thus, if g, is that boundary function, then the function ¢, = g,/cisin L¥0),
which is the desired conclusion.

As for the theorem, we already know that every multiplier of H(b) is in
K>(e), and one easily sees that K*(g) is contained in K*(x). It only remains
to show that every function in K*(x;) is a multiplier of H(b), or, equivalently,
of K 2()(Eo).

The argument is similar to several we have already given. Let f be a func-
tion in Kz(an), say f = K(gxgo), where g is in Lz(xEo). Let m be a function
in K*(xg). By Lemma 14.2 the functions fand f%, in D, belong to H'. Hence
mf and myfs are in H', implying that the harmonic function mf — 4fx is
the Poisson integral of its boundary function. By Lemma 10.2, to prove
mf is in KZ(XE o) it will suffice to prove that the boundary function of
mf — myfs is of the form q,xg 0 with g, in LZ(XE o). For this we write, as
usual,

mf — ’ﬁ*ﬁ = (m—my)f + m*(f_f_*)

In the first summand on the right, the boundary function of the first factor,
m — iy, is bounded and vanishes off E (Lemma 10.1), while the boundary
function of the second factor is in L%(s), by Lemma 14.2. The boundary
function of the first summand is thus of the required form. In the second
summand, the boundary function of the first factor, 74, is bounded, and
the boundary function of the second factor, f — fs, is gxg 0. The boundary
function of the second summand thus also has the required form, and the
proof is complete.
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We are now able to given an example of an extreme point b, a multiplier
m of H(b), and an inner function u, such that m is not a multiplier of H(ub).
Fix & in (0,1), and let the function ¢ on 8D be defined by a(e?) = [6/°,
(—m < 0 < ). This is a Helson-Szegd weight by a result of G. H. Hardy
and J. E. Littlewood [11]. One can prove that nowadays by verifying that ¢
satisfies B. Muckenhoupt’s condition (4,), which characterizes Helson-Szegd
weights. (Details are in [8].) Let E be the right half of dD, and let b be the
function such that (1 + b)/(1 — b) is the Herglotz integral of x,0. Theorem
14.1 applies, telling us that K*(xj) is the space of multipliers of H(b).

Let g, be a C! function on D that vanishes off £ and is nonzero at the
point 1. Since g, is of class C! its conjugate function is continuous, and this
implies by Lemma 10.1. that the Cauchy integral m = Kgq, is bounded in
C\0D and hence belongs to K®(xg). Thus m is a multiplier of H(b).

We also have m = K g where ¢ = q,/¢. The function qe'? (= g,073
is unbounded because g,0~"? is and @ = |l — b|*>xzo < 4xz0. Hence
Theorem 13.3 guarantees the existence of an inner function u such that m is
not a multiplier of H(ub). The proof of Lemma 13.4 provides an explicit
example of such a u, a certain interpolating Blaschke product. By using esti-
mates similar to those in the proof of Lemma 13.4 it is not hard to show that
the Blaschke product with zero sequence {1 — 27"} also has the required
property.

15. Questions

Many questions puzzle us.

1. If b is an extreme point of B(H*), must every function in K*(p) be a
multiplier of H(b)? An answer most likely will involve subtleties of the
conjugation operator (although we may be overlooking something sim-
ple).

2. If b is an outer function, must H(b) and H(b) have the same multipliers?
Results in [18] show that the answer can be negative when b is not an
extreme point. What about the extreme point case?

3. To understand better the multipliers of H(b), one needs examples, in
addition to those given by Theorem 14.1, where they can be described
completely. As a very special query: Suppose in the example in Sec-
tion 14 one lets 6 = 1, thus passing beyond the realm of Helson-Szegd
weights. What are the multipliers of H(b) for the corresponding b?

4. Davis and McCarthy [1] prove that if u is a finite positive Borel measure
on dD and u, 1s its absolutely continuous component, then every mul-
tiplier of K2 () is a multiplier of K%(x,). In case the singular component
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of u is a finite sum of point masses and the Radon-Nikodym derivative
of p, is log-integrable, they are able to specify precisely which multipliers
of K*(u,) are also multipliers of K%(x). Can one describe in more gen-
eral cases, or perhaps even in general, how the singular component of
p influences the space of multipliers of K?(u)? Progress on this will
undoubtedly lead to a better understanding of the structure of the corre-
sponding space H(b).

5. In case b is an extreme point, the algebra K*(g) appears to be an inter-
esting object of study. It becomes a Banach algebra when equipped
with the norm IIflIl = Ifll, + ligll ., where g is the function in L*(p)
such that f = f(eo) + Keq, and IIfIl_ stands for the supremum of |f]
over C\aD. As shown in Section 10, the spectrum of a function f in
K=(p) is the closure of f(C\dD). What can one say about the maximal
ideal space of K*(g)? Is C\oD dense in it?
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Covering Lemmas and BMO
Estimates for Eigenfunctions
on Riemannian Surfaces

Guozhen Lu

Abstract

The principal aim of this note is to prove a covering Lemma in R%. As an
application of this covering lemma, we can prove the BMO estimates for eigen-
functions on two-dimensional Riemannian manifolds (M2, g). We will get the
upper bound estimate for lllog |#llgao, where u is the solution to Au + \u = 0,
for A > 1and A is the Laplacian on (M?, g). A covering lemma in homogeneous
spaces is also obtained in this note.

1. Introduction

Let M be a smooth, compact and connected Riemannian manifold without
boundary. Let A denote the Laplacian on M. Assume that u is the solution to
Au + \u = 0, A > 1, i.e.,, u is an eigenfunction with eigenvalue \.

Many authors have studied the estimates of the BMO norm and the Nodal
sets of eigenfunctions, see [DF1], [DF2], [C], [B], and [CM]. In [C], Cheng
proved that u vanishes at most to order cX in the two-dimensional case. In [B],
Briining showed the lower bound for the volume of the nodal set for C* metrics
on Riemannian surfaces. Donnelly and Fefferman, see [DF1] and [DF2],
obtained the growth property, estimates of the BMO norm and bounds for the
volume of the Nodal set of eigenfunctions for all n = 2. Recently, Chanillo
and Muckenhoupt, see [CM], improved the results of [DF2] for n = 3.

221
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The purpose of this note is to get a better BMO estimate of eigenfunctions
in the two-dimensional case. The main result is the following

Theorem 1. (BMO estimate for log | u | ) For u, \ as above, and for ¢ > 0
llog lulllsmo =< oN'*/**¢

where ¢ = c(a, M) is independent of \.

The proof of Theorem 1 is based on the following covering lemma which
is of independent interest.

Lemma 1. (Covering Lemma) Let 6 > 0 be small enough, then given any finite

collection of balls {B,},.;, one can select a subcollection By, ..., By such that
N
() UB.c Y 1+ B
o i=1
and
Y 1
(i) Y x8, (%) = 677 log 5
i=1

where c is an constant independent of 6 and the given collection of balls.

The motivation of this note is from [CM]. In [CM], a covering lemma plays
an important role. Lemma 1 is an improvement of the covering lemma for the
two-dimensional case in [CM] so that we can get a better estimate of the BMO
norm for eigenfunctions by using Lemma 1 and adapting the proof given in
[CM] for n = 3. We would like to point out that it is quite possible to prove
a covering lemma in case n = 3 which is better than that in [CM] by modifying
the proof of Lemma 1.

This note is organized as follows: Section 2 explains why we should use
a new selection of balls in order to get a better covering lemma than that in[CM];
Section 3 is devoted to the proof of a covering lemma in homogeneous spaces
which is of independent interest; Section 4 and 5 deal with the proof of Lem-
ma 1; Section 6 is devoted to the proof of Theorem 1.

One world about notations: Throughout this note, C and ¢ will always
denote generic positive constants independent of the given balls {B,},; and
6 > 0; o (B) will denote the radius of the ball B; B(x, r) will denote the ball
centered at x and of radius r.

Acknowledgement. This note represents a part of my Ph. D. Thesis at
Rutgers University under the guidance of Prof. S. Chanillo. I am very grateful
to my advisor for his constant encouragement and for sharing his ideas and
time with me.
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2. A Covering Lemma due to Chanillo-Muckenhoupt

In this section, we first recall a covering lemma in [CM].

Lemma 2.1 (Chanillo-Muckenhoupt) Fix 0 < 6 < 1/2. Given any finite col-

lection of balls {B,}.c1 in R", one can select a subcollection B, ..., By such
that
N
® UB.c Ua + 95
o i=1
N
(if) Y xs(x) < 47577,
i=1

for all x € R".

In the proof of Lemma 2.1, one first selects a ball B; with the largest radius
in {B,)q¢;- Having selected B, ..., B,_;, one selects Bx so that

k—1

(2.2) Be ¢ JU + 9B

i=1

and By has the largest possible radius in the collection (B, (Bi}fZ7.

Here we want to point out that (ii) of Lemma 2.1 is the best possible result
which can be obtained by the above selection of balls. We show this by giving
the following:

ExXAMPLE: Consider a family of unit balls centered inside a cube
O=1[x»0=<x=<1/2, 0<y=<1/2) C R?
and the centers of these balls have coordinates
{(2ks, 416)}, 0 < k < [1/4671],0 < [ < [1/867 1],

where [ - ] denotes the largest integer part. We also denote the unit ball with
center (2ké, 4/6) by B, ;. We now select the balls in the following order:

BO,O’ Bl,o’ e B|1/46"j,0’ BO,l’ Bl,l’ srey B|1/4a“],1, oo BO.[]/S:S"i! Bl,|1/sa"§a sy

B|1/4a' ,[1/85~ 1
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Then an easy calculation shows (2.2) holds. This selection exactly follows the
method used in the proof of Lemma 2.1. But

N
Y xa(x,y) =67% for 0=sx=1/2, 0=y =<1/2
i=1

Therefore the above example tells us that we need to use a new selection of
balls in order to get a better result than that in Lemma 2.1.

3. A Covering Lemma in Homogeneous Spaces

In this section, we are going to prove a covering lemma in homogeneous metric
spaces with a doubling Borel measure. This section is independent of the others.
We will apply the technique of partitioning the radii of balls to reduce the
proof of the main lemma to a certain basic case. The proof as given below
is an adaptation to homogeneous spaces of the proof on R” due to S. Chanillo.

We say a pair (X, @) is a homogeneous metric space in the sense of Coif-
man and Weiss, if the following hold:

() e:X X X — R" satisfies the following conditions:
e(x,y) =0 if and only if x =y
e, ») = e0, x)
el y) = Kfelx, 2) + ez, )
where K is a constant independent of x, y, z and
(ii) there is a Borel measure p such that
3.1) 0 < pu(B(x, ) < Ap(B(x, 1/2)) < + oo,

where A is a constant independent of the ball B(x, r) centered at x and with
radius r.

An easy consequence of (3.1) is
(3.2) w(B(x, ) = A= u(B(x, ')

foranyx € Xand 0 < r’ < r.
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According to [CoW], both Vitali type and Whitney type covering lemmas
are true. It is well-known that Besicovitch covering lemma may not be true
in homogeneous spaces as pointed out in [SW]. Sometimes a Vitali covering
lemma is not good enough for applications as in [CM], but the following cover-
ing lemma could be a replacement of both Vitali and Besicovitch covering
lemmas.

Lemma 3.3. Let 6 > 0 be small enough and {B_}.c; be a finite collection of
balls in X. If there exists a doubling Borel measure p. on X satisfying (3.1),
then one can select a subcollection B;, ..., By such that

N
(3.4) UB.c U &+ 9B
[ i=1
al 1
3.5 Y xa () = C67 % log =
i=1

where C depends only on K and A, and d = log, A.

PROOF. Select a ball B with the largest radius in {B,}. Having selected
balls Bi, ..., B,_;, select B¢ such that

k—1

(3.6) B« ¢ |J K + 0B

i=1

and By has the largest radius out of the collection

The subcollection By, ..., Bur chosen by the above selection obviously satisfies

M
UB.c UK + 9B

i=1

Now we prove (3.5) in the lemma. We first fix any point xo € X. With no loss
of generality, we may assume xo € | L\ Bi. We also assume B; = Bi(z;, r;).
By the selection of (B} ,, we know r, < r,_;, < ... < r;. We note that

there exists 0 = o(xo) such that
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/ o
(3.7 Yoxs) =Y, Y xpx)
i=1

k=12kn<ri<2"*'n

We now have the following claims.
Claim (1): 62° < 2K*

If not, then ér, = 62°r1 > 2K°r,.
We note that for y € B, = B(zi, 1),

A

Ko, x0) + o (xo, 21)]

< KKle(, z1) + oz, x0)] + ¢ (x0, 21)}
< K[2Kr + ri] = 2K*r, + Kr,

< éry + Kny

= (K + 6)n

Q(y’ Z])

Thus B; C (K + 6)B: which is a contradiction to (3.6). Thus claim (1) holds,
1
i.e., 0 < Clog 5 where C only depends on K.

Claim (2): For the subcollection {B,-JI;‘Z; of (Bi)l_, with 2*r, < eB) <2'n,
we have

PN . .
o(z» z,) > N for j#h,1=<j,h=< Ni

For simplicity, we drop the subscripts and denote B, and B;, by B: and By
respectively. We also assume j > A. If the claim were not true, we would have

for y € B; = B(zj, rj)

e, zn) = Kle(y, z) + ¢, zn)]
<K [r' + Eié—]

= Krj + 2kr16 = Krj + 6I‘j
= (K + 5)I‘j
< (K + &)ra.

This implies (K + 8)Br D B; which is again a contradiction to (3.6).

2%r6 \ )™ L
Claim (3): The balls {B (zj, —2]?12—)} are mutually disjoint.
j=1
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We set R, = 2¥r6/2K?. If the claim were not true, there would exist
Y € B(zj, R1) () (zn, R:) for some j # h. Thus

2¥r6 2"r,5] 2K

> = K s + y &Sh = —5 T =
e (zj, zn)] ez ») + e, zn) [ K2 2K %

which is a contradiction to the claim (2).
Claim (4): The balls {Bj]ﬁ" , are all contained in B(xo, Rz), where R, = K 2K*%r,.
For y € B(z;, rj), we have

e, %) = K[, ) + 0(z), x0)| -

IA

2Kr; < 2K - 2Ky
— K2k+2rl-
Thus the claim holds.

Claim (5): B(xo, R2) C B(zj, R3) for each 1 = j < Ni, where R; =
KQK + 1)2'n.

In fact, for y € B(xo, R2), we have
e, z) = Klo(r, x0) + o(x0, Z))]
< K[R: + rj] = K|2"**nk + 2¢*'n]
= KQK + 1)2"'n = R; .
This proves claim (5).

Now by claims (3) and (4), we have
Nk
(3.8) Y. (B, R) = u(B(xo, R2)),
j=1
and by claim (5) and (3.2), we have
(.9  u(B(xo, R2) =< p(B(z, R3)) = AB®R" (B, Ry)).

Therefore, from (3.8) and (3.9), it is easy to see

a3 .
Nk < Alog;(Rg/R2)+1 - A]ogzl4K(2K+1)/o|.
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By using 4 = 2¢ and an easy calculation, we get

Ne < [8K*Q2K + 1))~ ¢

Now,
! s
Y xs (x0) = Y xgx0)
i=1 k=0 2"nsrj52"“n
< Y Ne< ) [8K*(2K + 1)]9677
k=0 k=1
<

1
Cllog —)6° ¢

where C only depends on K and A. This shows (3.5) and thus completes the
proof of lemma (3.3).

4. A Basic Covering Lemma

The purpose of this section is to prove a covering lemma for balls which centered
in any given cube in R? with sidelenght V5. Moreover, these balls have radii
whose values are close to one another.

Lemma 4.1. Let 6 > 0 be given small enough. Given any cube Q in R* with
sidelength V& and given any finite collection of balls (B}, Withr < g(B,) <
< r + 6, forsomel < r < 2 and centered in this cube Q, one can select a

subcollection of balls B, ..., By such that
N
@) UB.c Uda + B,
a i=1
(ii) N < c6™ "4,

where c is an absolute constant independent of 6 and the given balls.
In order to prove Lemma 4.1, we need the following propositions.

Proposition 4.1. The sum of all exterior angles of any convex polygon is 2.

This a well-known formula in plane geometry. One may also deduce this
fact from the Gauss-Bonnet formula in differential geometry.
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Proposition 4.2. The perimeter of any convex plane polygon contained
inside a cube Q with sidelength \§ is less than 2w ~/26.

The proof of the above Proposition 4.2 uses the Cauchy-Crofton formula
in R?. It states that for a given regular plance curve C with length /, the measure
of the set of straight lines (counted with multiplicities) which meet C is equal
to 2/. A proof of this assertion may be found on page 41 in [Do]. A higher
dimentional version of Cauchy-Crofton formula is proved in |F].

PROOF OF PROPOSITION 4.2. Let dP be the boundary of the convex polygon
P inside Q, and let S be the set of straight lines which meet P. Then if we denote
by @ the distance from the origin to the lines and by 6 the angle between the
positive x-axis and the line, and assume without loss of generality,

Q=1{xy:0=<x=V50=<y=<,
we have

27 V28
drdf < S S 2dodf = 4m~26.

2 length (0P) = S
0 0

S
Thus, length (3P) < 27+/26.

Remark: After this note was prepared, Prof. B. Muckenhoupt pointed out
that the proof of Proposition 4.2 can be simplified by projecting 4P to Q.

Proposition 4.3. Given any 6 > 0 small enough and oriented rectangle R in
R? with sidelength V5 and 6. Let (B,).¢; be a finite collection of balls centered
in R and with radiir < g(B,) < r + 6 for some 1 < r < 2. Then we only
need to select at most two balls B, and B, such that

2
UB.cUU + co)B:
-1 i=1

PROOF. If there are no more than two balls in the given collection, then there
is nothing to prove. If there are more than two centers in R, then we select
two balls B; and B, with centers O; = (x,,, ¥,,) and O, = (x,,, ¥,,) respec-
tively such that one of the centers is on the extreme left, the other is on the
extreme right (as shown in Figure 1). We claim

2
UB. = Uu + 9B
a i=1
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We will assume with no loss of generality that both B; and B, have the smallest
possible radius in our collection, that is ». We may also assume with no loss
of generality that y,, = »,,, then the ball B{ with radius r and center (x,,, y,,)
is contained in (1 + 26)B; and thus if we prove our claim with B; replaced
by B, our proposition will be proved.

Ya p
(0,8)
o, o |
0 (\/g,o) 7 T

Figure 1

Let P denote the intersection point of (1 + ¢6)B; and (1 + ¢8)B>. We now
show that dist (P, dR) > r + 26. This will prove our claim. Using the fact
that y, = Y,,, we see that

dist(P, dR) = dist(P, 00;) — ¢

v

[ + cd)*r* — (V6/2)*])* — 6.
By choosing ¢ = 4, we get

A+ cd)’rF —8/4]"* — 6 >r + 26

[ )

since r = 1. This proves our claim and the proposition.

We are also going to need the following:

Proposition 4.4. Let 010,03 be a triangle with sidelength less than cV§. Sup-
pose (Bi},_, are three balls centered at (O:},_, and withr < o(Bi) < r + &
Jor some 1 < r < 2. Then any ball B withr < g(B) < r + 6 and centered
at some O inside the triangle 010,05 can be covered by U,l (1 + cd)Bi for
some absolute constant c.
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PROOF.

P2

Figure 2

As shown in Fig. 2, we extend segments O;0,, 0,03, O30 to lines. Then
these three lines subdivide R? into seven pieces {P;};_,. Obviously, B [ Py,
B () P, and B () P; can be covered by (1 + ¢§)Bi, (1 + ¢8)B, and
(1 + ¢6)Bs respectively. Now let O;, denote the point O; O, nearest to O and
let B’ be the ball centered at O;, of radius r + 6. Then B’ (| Ps D B ) Ps
by the above choice of Oj;. But by Proposition 4.3, (1 + ¢8)B; U
(1 + ¢6)B, O B’. Thus

3
B () Psc U + cd)B.
i=1
A similar argument shows that
3
B PcC ﬂ (1 + c6)B; for j = 4,6.
i=1
This completes the proof of the proposition.
Proposition 4.5. Let {B .1 be a finite collection of balls with r < o(B,)

< r + b for some 1 < r < 2. If there exists a subcollection (Bi}i_, of (B,}
and another further subcollection (B} _, of (Bi} such that

UB.c U + cd)B:
a i=1
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B:c |+ B,

k=1

for each i. Then
UB.c U+ c9B,
o k=1

for some ¢’ > c independent of 6 and the given balls.

PRrROOF. It suffices to prove

(1 +c)Bic |JU +cdB,

k=1

foreach 1 = i < m. Now fix i, let B/ = (1 + ¢b)B;, O; be the center of B;,
dB; be the boundary of B;. Then it is enough to show

B/NBic JU + c'd)B,.

i=1

Let P C dB;, we denote by Q the intersection point between B/ and the half
line starting with the point O; and passing through P. Then the length of the
segment PQ is

(1 + ¢b) o (Bi) — o(Bi) = cdp(Bi) = 3cé.

Assume P € (1 4+ ¢6)B,,. In fact, dist (P, O,,) < (1 + ¢d) ¢ (B;,), and then for
any z € PQ, we have

dist (z, 0,) < dist(z, P) + dist(P, O,)

IA

3¢6 + (1 + cd)o(By)

A

(I + c’d)e(By)-

The last inequality follows from g (B,,) = 1. Thus the claim follows. We move
P along dB; and note that the union of all such segments PQ cover B/ \ B;,
this shows that

B/NBic |+ c'9B,.

k=1
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For the remainder of this section, all balls that we will consider have radii
osuchthat rp < o < ro + 6 forafixedro, 1 < rp = 2.

We now begin the proof of Lemma 4.1.

Let S be the collection of centers of the balls {B,},¢- Let V be the convex
hull of S. Then the boundary of V must be a convex plane polygon and the
vertices of V consist of centers, say, Oy, O, ..., Oy, enumerated in a clockwise
order.

Let us consider any three vertices of V, say, O;, 0j, Ok, (1 = i < j < k
< M). We introduce the following:

Definition. [f O;0x < 6°’*, we say the triple 0;0;O is of type 1. Otherwise,
the triple O;0;Ox is of type 11. We further split the type II triples into two
cases: If OjAijx = 6, we say the triple O;O;Ox is of type 11, otherwise, of type
II, (see Figure 3 below).

0;
:
\
or '
]
0 0; -4
Asjn b : Or Aijx
Figure 3

Now we select the vertices {O, }. The balls {B,}] with centers at {O,] will be the
subcollection that shall be used to prove our lemma.

We first make the following observation:

Proposition 4.6. If for some k = 3, every triple O10;0 is of type 11, for
2 < i < k — 1, then all balls centered inside the polygon with vertices
[Oi}f-;, can be covered by (1 + c8)B; U (1 + cb)B,, forsomel < iy < i < k.

PROOF. The polygon W whose vertices are [O,-}f-;, is contained inside a rec-
tangle R with sidelengths V26 and 6 and O, 0O is a part of one side with
length v/26 of the rectangle R. Then by applying Proposition 4.3, we see
that U,'k_._lBi C Uf,,= 1(1 + ¢d)B;,. Now any ball B centered in WV has its center
in a triangle formed by some three vertices of W. By Proposition 4.4,
B C US (1 + c8)B;, thus by Proposition 4.6, we have B C U%_,(1 + ¢’8)B, .
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We now give the selection procedure. We start with the triple O;0,0s.

Case 1: If the triple 010,05 is of type I or II;, then we select vertices O,
O; and O; and pass to the next triple, O4O0s0Os.

Case 2: If the triple O;0,0; is of type II,, then either
(i) Every triple O:0,0pis of type IL for2 = i = M — 1.

Then by Proposition 4.6, We can select B; and B;, as our subcollection and
the proof of Lemma 4.1 is complete in this case. Or

(ii) There exists some k, 3 < kK < M — 1 such that every triple O; O; O is
of type Il for 2 < i < k — 1, but there is some triple 0,0, O, (2 < io < k)
which is not of type II2, i.e., of type I or II;.

Then by Proposition 4.6 again, there are two vertices O, and O,, for
1 = i1, i = k such that all balls centered inside the polygon with vertices
{O:)%_, can be covered by (1 + c6)B; U (1 + ¢b)B,,. Thus, we select Oy, O;, O,,
O and Oy, in this case (We note that some overlap may occur among the
above five vertices since O, , O;, may be Oy, Ox). We then pass to the next
triple Oy, 0. ,0; . ;. We continue this selection as before with O, ; play-
ing the role of O;. Because there are only finite vertices, this process stops
when O, appears again in a new triple. We thus arrive a subcollection of ver-
tices O;,, Oy, O, and a new polygon Z whose vertices are formed by O, ,

0,, ..., O

We now claim that

iL‘

(i) Zis a convex polygon.

(i) Any ball B, in the original collection (B}, is contained in
Us_, (1 + c8)B,.

By noticing that Z is the intersection of the convex polygon V and the half
spaces formed by the lines O; O,,.,, 1 < kK = L — 1, and the intersection of
convex regions is convex, this show that Z is convex.

To prove (ii), we note that each center O, of the balls B, is in V since
V is the convex hull of S. Furthermore, recalling that {O;} denotes the
vertices of V, we see that the center O, must be in one of the triangles
0:0,,0,,,,;,(2 = m <= M — 1). Thus by Propositions 4.4, B, is contained
in Uf‘il(l + c¢6)B;. But as abserved above by the selection procedure,
Bi C Ug_,B,. Thus B, C Uf_,(1 + c®)B,, for all « € I, by Proposi-
tion 4.5.

In order to complete the proof of Lemma 4.1, we need the following
proposition.

Proposition 4.7. Suppose (O, O, .1, 0,-”2)]’,\’,,=1 be the family of type 1
triples selected from Oy, O,, ..., Oy above, then N < c6~ /4.
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PROOF. Since O, O, ., = 6* by definition of type I triple. It follows by

m

considering the perimeter of the triangle O, O;, .,0,,.,, that

0.

Im

3/4
Oi,s1 + 0,110,542 = 0,0, ., = 6.

Summing over m, we get

N
N&¥* < 33 (0,0,,., + 0,0,
m=1

< perimeter of the polygon Z.

Since Z is convex and contained in the cube Q, the perimeter of Z is no more
than ¢V by Proposition 4.2. Thus N6** < ¢V6 and consequently N < ¢6~ /4.

Proposition 4.8. Suppose ((O;,, O, .1, O,,"”)},’:,' _1 be the family of type 11,
triples selected from Oy, O,, ..., Oy above, then N < ¢5~ .

PROFF. Given a type II; triple (O, , O;, ., O,,.,), one has 0,0, ,, < 8"*
and O, ,,Am = 6 by the definition of type II; triple (see Figure 4).

With no loss of generality, we consider those triples such that 6, < /4

2
since the number of m such that 6,, > w/4 is no more than % = 8 by
™
Proposition 4.1. We will show that the exterior angle 6,, is always bounded

below by 6'4/2 for those 0, < /4.

Figure 4
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In fact, we note that for 6,, < w/4, we have tan 6,, < 26,,, thus for
Om < w/4, we get

1 1 Oi,,,+lAm
Om = o = —- tan am = — ———
O, Am
a:‘lm 0
212 —— -2 1/2 55
Oi,,,Oi,,,+2 o
— wl_ 61/4.

Applying Proposition 4.1 again, }:x _1 0m < 27, where the sum is being taken
over the exterior angles which arise in type II; triples. But 6, = 1/28#, thus
N < c6~ V4,
Q.E.D.
Finally, we note that the selected vertices O, , -.., O,, are from type I, type
II; or type 11, triples. In the convex polygon Z, we consider all maximal chains,
where a maximal chain is a union of successive sides of the polygon Z which
come from type I or type II; triples. Then by the selection procedure, between
any two maximal chains, there are no more than five vertices which are prob-
ably from type II (see case 2 (ii) at the beginning of the selection procedure
in this section). Thus the number of these type II, vertices are less than ¢8~/*
also. Therefore, the number of all vertices O, ..., O, is less than ¢6~ '/, and
this shows (ii) of Lemma 4.1.

We end this section with the following example which shows (ii) in Lemma
4.1 is the best possible result in each cube with sidelength V6.

EXAMPLE. Assume that the centers of the unit balls {B,} are on the circle
centered at the origin O and of radius V6. Furthermore, let the arclength bet-
ween any two centers be c¢6>’4. We claim that we exactly need N = ¢6~ '/* unit
balls B, ..., By such that

N
UB.c Uu + 9B
o i=1

We consider two balls B; and B, centered at O; and O, respectively (as shown
on Figure 5).

Let OA 1L 0,0,, OF L AO,, AE = h, AO, = AO;, = [, and let
< AOF = 0, thus 2 EO,A = 0. Moreover,
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. . AE
sin 0 = sin(z EO,A) = —— = h/I,
AO,
also
. . AF 12
sin # = sin(2 AOF) = —— = ——..
AO Vo

72 .
Thus —— = A/l i.e.,
Ve

> = 2Véh.

Figure 5

But by Proposition 4.3, (1 + 8)B1 U (1 + 6)B: can cover all unit balls {B,}
centered between O; and O, if and only if 4 < ¢8, i.e., | < ¢6**. We also
note that the arclength of 0,0, < ¢8** if and only if / < ¢6*“. Hence,
we exactly need N = ¢ V6/6** = ¢6~ /% balls.

5. Proof of the Main Covering Lemma

We now prove the main covering lemma (Lemma 1) stated in the introduction.
We will need the following lemmas and propositions.
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Lemma 5.1. Let 6 be small enough. Given any cube Q in R* with sidelength
2¥V6 and let (B} ,; be any finite collection of balls with r < o(B,) < r +

2k for some 2¥ < r < 2%+ and centered in Q, where k is an integer. Then
one can select a subcollection of balls B, ..., By such that

N
UB.c U + coB;,
a i=1

N < c6~ 4.

The proof of Lemma 5.1 is straightforward if we use Lemma 4.1 and the scal-
ing property.

Lemma 5.2. Let 6 be small enough. Given any cube Q in R? with sidelength

2¥V8 and let (B,} <1 be any finite collection of balls with 2¥ < o(B,) < 2K+
Then one can select a subcollection B, ..., By such that

N
UB.c U + co)Bi,
a i=1

N = 6~ ¥4,
PROOF. With no loss of generaliy, we may assume the largest ball B in our
collection is of radius 2¥ *1. Any other ball B, with g(B,) < 2¢*! — 2¢/25

is contained in B. Thus the balls B, with g(B,) < 2¥*! — 2¥+/25 may be
ignored. Now we partition the radii into the following intervals:

2K+1 _2k\26 + 2K61 < o(B) = 2Kt — 2KN26 + 2%8(1 + 1)

for0 <1/ < o.

Thus ¢ = v/2/8. Applying Lemma 5.1 to these balls {B!] whose radii are in
the interval corresponding to /, 0 < [/ < o, we can select {B,-’}fvz’l such that

N
UBic Ua + co)Bl,
o i=1

N < c6~ V4,
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Thus

UB.cUB.UBclJa +c)B/ B
o a,l il
and the number of balls {Bf}; , is less than

4
ENI < a_ca-—l/‘l < 06_1/26_1/4 — C8_3/4.
I=1

Therefore the subcollection {B{] will be the one in our lemma.

Now we can show the following:

Lemma 5.3. Let 6 be small enough and (B}, be a finite collection of balls
with 2¥ < o(B,) < 2**', where k are integers. Then one can select balls
By, ..., Bn such that

N
UB.c Ud + co)B;
o i=1

and

N
Y xp () < 677

i=1

for all x € R%.
PROOF. We subdivide R? into a dyadic grid of cubes {Qj, whose side-
lengths are all 2*V3. Let {B;] be the subcollection of {B,} with centers inside

Q,. For each {B)} and Q;, we apply Lemma 5.2 to select {B{-}f’_.’, such that

M
Us. c Ua + coB,
a i=1

Nj < ¢6=%4,

where ¢ is independent of 6, k, j.
Then

Nj . .
Us.cUBcUUa+ B/ =J0 + cd)B,
o a,j Joi=1

ij
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which shows (5.4). Now let xo € R” be a fixed point and let B(xo, 2“*1)
denote the ball centered at xo and of radius 2 * . Since o (B)) = 2*", x4 (x0)
vanishes for those balls {B/} centered outside B (xo, 2%+ 1), Now the cardinality
of (] such that Q; () B(xo, 2¥*') # (¥ is no more than c6~'. Thus

N;
Y x5 () = X Y X (x0)
ij Jj oi=1

< 206—3/4 < C6—16~3/4 — c6—7/4’

J
this shows (5.5). Since xp is arbitrary, the proof is complete.

We now prove the main covering lemma.

We first select a ball B, with the largest radius. Having selected B, ...,
B,_, select By such that

k—1

(5.6) Be¢t A+ 9B

i=1

and Bx has the largest possible radius out of the balls in the collection
B aer \ (B)¥Z!. Thus clearly, we have

N
Us.c Ua + 9B.
a i=1

Now let B/ = (1 + 8)B: and (B/,] be the subcollection of (B}, such that
2¥ < o(B/,) = 2**. Then by using Lemma 5.3, we can select a subcollec-
tion (B} of (B/,} such that

Ny

UBic U + cd)Bj,,

i Jj=1

Nk

Y x5 (0 = 8774,

j=1

for all x € R, where c is independent of 6, k and k¥ = 0, + 1 % 2, ... Thus,
we have
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N
UB.clJa + 95

i=1

Il
=

B/ = U UBi’,k
ko

1]

N
U@ +cdBi,
Jj=1

N
~C

= Ja + e + 9B,
k.j

c lJa + 2¢9)B,,

J.k

for ¢ > 2 and é small enough. Thus, the subcollection (B, ,} satisfies (i) of
Lemma 1.
Fix xo € R%. There exists ko = k(x0) and 6o = o(xo) such that

ko+ oo Nk
Yoxs,00) = 3} Y xs, (%)
Jk k=ko j=1
ko + 0o Nk
= E E XBi;'k(Xn))
k=ko j=1
ko+ do
= ¥ 67 = cand .
k=ko

We claim 2 < 86~ . For otherwise there would exist a ball B, 4, + 4, fOr some
J with xo € B; ., such that

0By ko) = 1/20(B]41,) = 17220077 = 2571201,
The first inequality above is due to the fact that
Bl hosa) = (1 + 8) @B kosa) = 20(Bigosq) for 6 < 1.
Let xo € B, ;, for some A be the ball with
e(Bix) =< o(Bi,) < 2.

Then (1 + 08)Bj 4+4 2 Bk Which is a contradiction to (5.6). Thus
2° < 867!, and the claim follows. That is, 0o < ¢ log 6~ !. Therefore,

EXB,.',((XO) b 0006_7/4 <c 10g(6"1)5'7/4‘
J.k

Since xp is arbitrary, we are done.
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6. Proof of Theorem 1

This section is devoted to the proof of the main theorem in this note (Theorem
1). We begin with recalling the following theorem in [DF2].

Theorem 6.1 (Donnelly-Fefferman). Let M, u, \ be as in the introduction. Let
B(x, 6) denote the ball centered at x of radius 6. Then

6.2) ]u\zscg lul|?

g B(x,5(1+2""%) B(x,5)

172 172
N
(6.3) H qulz] <c— |u|?
B(x,6) 6 B(x,6)

Now we start the proof of Theorem 1 by showing the following lemmas.

Lemma 6.4. Letfu, \asabove, 1 < q < o, then u satisfies the Reverse-Holder
inequality

1 ql/q<c ; . 2[/2
69 Jggr || = e g [ o]

where ¢ depends on q.

PrROOF. By the Poincaré inequality, for any ball B, we have
1 1/g 1 1/p
(6.6) [——-g Iu—uglq] <c|B|'? [—S |Vu|"] ,
|B| Jg |B| Jp

1
where ug = —I—I—S uandl1 < p<2,1/g =1/p—1/2,and c = c(p, g).
B

Applying Hélder inequality and (6.3) to the right side of (6.6), we obtain

1 1/q 1 172
[_B—S ]u_uqu] SM[—S IuIZJ '
|B| Jg 1Bl ),

By Minkowski’s inequality, Lemma 6.4 follows for 2 < g < oo, for the case
1 < g = 2, we can apply Hoélder inequality again.
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Our theorem will follow from the following

Lemma 6.7. Suppose w> 0, g > 2, ¢>0 and 1+ ¢ =q’ where
1/q’ = 1 — 1/q, also assume that

S W =< ¢ S w
B(x,5(1+1"'%) B(x,8)

and

1 Va 1
(6.8) (—— § w"> < N — S w,
|B| J, B| },

then

lllog wllemo =<

where ¢ = c(co, C1).

Theorem 1 will follow if we choose w = |u |2

In order to prove Lemma 6.7, we need the following

Lemma 6.9. Let w, q, 0 < e < 1 satisfy the hypothesis of Lemma 6.7, let
B be a fixed ball, E C B, then there exist c2, c3 such that if

|E| = (1 —ex— 8¢ og 1) S w
B

then
S w = (A~ B(log N) )" s W
E

E

where ¢; = c(c1), c3= c(co).

PROOF. We proceed as the proof given in |CM]. The method is to use induc-
tion on k. We first verify the lemma for k¥ = 1. To do so, we claim that if
€e>0, |[E| = (1 —2ox"*9|B| for some appropriate ¢ = ¢(c;), then

SWZI/ZSW.
E B

To show this, we first note that |BNE| =< e\ "*9|B| . If we choose
+
© = 1, thus by (6.8),

1
q > 2 such that

’

q
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IA

1/g
(S W) |BNE|V
B

1+e

—-+1
e -
cie/in 9 w
B

S w
B

If we choose ¢ such that ¢;¢'/? < 1/2, then S w=<1/2 g w, this implies
B\E B

X w
BNE

IA

IA

S w> — S w. Here we want to point out the choice of ¢ is dependent on
E B '

e since ¢; = ci1(q) and q is dependent on e.
Thusif c; < ¢, and |E| = (1 — 2N <(log \)"!) | B| , then

S w=1/2 S w=cs(\"Blog M) S w,
E B

B

and we are done for the case £k = 1. Now we assume the statement is true for
k — 1. Obviously we can assume |E| < (1 — e\ "*9)|B|, otherwise,
there is nothing to prove. Thus for each density point x of E, we can select
a ball B, C B such that x € By, and

Applying Lemma 1 to the balls B, with the choice 6 = A~ !/, and with no loss
of generality, assume {B,} are finite, and define

N
E| = [U(l + )C“Z)B,-] N B.

i=1
Then E; C B, and as the proof given in [CM], we can show
[E| = (1 — N log N | E|

S w = csh"¥(log \) ! s w
E

E;

for some ¢; = c(c1), ¢z = ¢(co).
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Now we prove Lemma 6.7. The proof will be almost the same as that given
in [CM]. In order to get the precise estimate, we like to show the details. It will

1
be enough to assume ——- S w = 1. It is also sufficient to show
B

| B

B
|xeB:w'(x) > 1| =< ﬂ.__—‘%__’_.j_,
tc)\ P log \) T

It is equivalent to show
|xeB:wx < 1| = e |B|.
Let us denote by E = {x € B : w(x) < t]. Select ko such that
|E| = [1 — N (log )" '[*| BJ.
Thus

| B|
ko ~ cO\®%< log \) log <——
| E|

1
Then by Lemma 6.9, and the normalization ——- S w = 1, we have
B

| B

|B| = S w < (c35 '\8 log Nk S w
B E

A

(ci 'N® log Mt | E|.

Thus

<t ekn log(c; "\7"% log \)

I B | (A" Jog M) Tog(c7 '\ M log )
< (._ )
| E |

I B l L,,)\ISJ‘R—( (log )\)z
<t|—-—=
|E
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Hence

~15. 8—¢

|E| < £ (log \)~? i B| ,

where ¢’ is dependent on the constant ¢ in (6.4). Since ¢ is arbitrary, we can
even have

|E| =™ |B].

Remark. Since for any 0 < € < 1, we can choose gsothat1 + ¢ = ¢’, and
note that for such ¢, Lemma 6.7 holds. Unfortunately, the constant ¢ on the
right side of (6.5) depends on g (and then depends on €), and is unbounded
when g — . Thus we have proved the Theorem 1 for any ¢ > 0. However
we can not obtain the theorem 1 for replacing \'***“by \'*’® since when ¢ — 0,
¢, is not bounded.
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Mean value and Harnack
inequalities for a certain class of
degenerate parabolic equations

José C. Fernandes'

Introduction

In this paper we study the behavior of solutions of degenerate parabolic equa-
tions of the form

(11) V(X)Ll/(x, [) = E Dx,(aij(x’ I)Dx,u(x’ [)),

ij=1

where the coefficients are measurable functions, and the coefficient matrix
A = (ai) is symmetric and satisfies

n

(1.2)  wi L N@E < Y ailx, DEE < w0 LN WE

j=1 ij=1 j=1

for £ = (&1, ..., &) € R" and (x, 1) € Q X (a, b), Q a bounded open set in R".

We are going to assume some conditions on the weights (non-negative func-
tions that are locally integrable) v, w;, w> and on the functions \;, j = 1, ..., n,
in order to be able to derive mean value and Harnack inequalities for solu-
tions of (1.1). The assumptions on \;, which we list below, are the ones stated
in |FL2].

! This work was supported by FAPESP —Fundacdo de Amparo a Pesquisa do Estado de
Sao Paulo— Brauil.
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(1.3) M= 1, M) = N(xry ey X9), J = 2, ..., n, x € R

(1.4) LetII = {x € R": IIxxy = 0}. Then \; ¢ C(R") () C'(R"\TI) and
0 <N =AxeR'NILj=1, .., n

(1.5) N(xty «oes Xiy enny Xjy) = N(X1y ooy —Xiy ooy X;_y), fOr j = 2, .., 1
andi =1, ...,j — 1.

(1.6) There is a family of n(n — 1)/2 non-negative numbers g;; such that
0 = xiDN)(x) = g;N(x), for2 = j=n, 1 =i=<,j—1and
all x € R"\II.

Denote I' = Q X (a, b) and define H = H(I") to be the closure of Lip(I")
under the norm

1.7 lul®* = S g uP(x, 1) (v(x) + wa2(x))dxdr
r

+ S S | Vau(x, £) | 2w2(x)dxdt + S g u?(x, t)yv(x)dxdr,
r r

where V,u = (MD,u, ..., \aD, u). Thus, H(T') is the collection of all (n + 2)-
triples (#, B, B) such that there exists ux € Lip(I') with ux = u, V,ux = 6,
(ux): — B, the convergence being in the appropriate L? space. We need to verify
that 3 is uniquely determined and for this it is enough to show that for every
Fe Gy D),

S uv,F = —S BF.
r r

In order to prove this, note that since u € H, there exists {ux] C Lip(I") such
that ux — u in H. Then, by (1.3),

oF d ouk
UrNi = — — (uk)\,-)F = — \i F.
r 6x,- r axi r 0x;

Therefore,

S uV,F = — S (V,ux)F.
r r

By Schwarz’s inequality and assuming that wy ' € L!

loc?
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172

lSukaF—SquFl sgluk—u‘wZ
r r r
172

lux — M”[” <S , V,\F| Zws l)
\Jp

clluy — ”“Li.:-

IV)\FI WZ-I/Z

A

IA

Hence,
S ug Vo F — S uV,F
r r

and similarly we can show

S (Vau)F — 5 BF.
r 2

In the same way we prove B is uniquely determined, if v~ ! € Llloc. We also
define Hy(I") to be the closure of Lipo(I'), Lipschitz functions with compact
support in I', under the norm defined in (1.7). It is easy to see that the bilinear
form b on Lip(T") () H(T) defined by

b(u, ¢) = S S {urpv + (AVu, V¢)ldxdt
r

can be continued to all of H(I") (here and in the rest of the paper the vector V u

1 1
is understood to be the vector (;\— Bis -ees N /3,,) where V,u = (B1, ..., Ba))-
1 n

We say u € H(I') is a solution of (1.1) if b(u, ¢) = 0 for any ¢ € Hoy;
u € H(I") is a subsolution if b(u, ¢) < 0 for any ¢ € Ho(I'), ¢ positive in the
H-sense, i.e., ¢ can be approximated in H(I") by positive functions with com-
pact support in I'; u € H(I") is a supersolution if b(u, ¢) < 0 for any ¢ € Hy,
¢ positive in the F-sense.

We also define H = H(Q) to be the closure of Lip(Q) under the norm

Maell® = S W (X)X + wa(x)dx + S | Vau(x) | 2wz (x)dx,
r

r

and Ho(Q) to be the closure of Lipo(Q) under the norm defined above.

Next we will define a natural distance (associated with the functions \;,
J =1, ..., n) and state some of its properties. This metric was first introduced
by [FL1].

A vector v € R" s called a A-subunit vector at a point xif (v, £)* < T\ (0) £,
for every £ € R”. An absolutely continuous curve y: [0, 7] = R" is called a
\-subunit curve if v(f) is a A-subunit vector at v(®) for a.e. t € [0, T.

For any x, y € R” we define d: R x R” = R* by
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d(x, y) = inf{T € R*: there exists a A-subunit curve y: |0, T| - R"
with y(0) = x, v(T) = »}.

One can check that this is a well-defined metric. There is a quasi-metric &
(a function 6: R" x R” — R™ is called a quasi-metric if there exists M = 1
such that 6(x, y) < M{é(x, z) + 6(z, )] for all x, y, z € R") equivalent to d,
and sometimes easier to work with than d (see [FL2]). If x € R" and 7 € R put
Ho(x, t) = xand H,, (x, t) = Hi(x, ) + N, (Hik(x, D)e,,, fork =0, ...,
n — 1, where {ex] is the standard basis in R". Define ¢;(x*, .) = (Fj(x*, .))" ",
the inverse function of Fj(x*, .), where Fj(x, s) = s\i(H;_,(x, s)), for j = 1,
wonand x* = (x|, ..o, | xn])-

We define 6: R" X R” - R™ as

8(x, y) = Max;_,__,eix* |xi— yi|).

Note that
(1.8) 6(x, y) < sisequivalent to |x; — y;| < Fj(x*,s),1 < j < n.

In (1.9), (1.10), (1.11) below we state some basic facts concerning é and
d (see also [FL2|.

(1.9) There exists @ = 1 such that for any x, y € R",

L 4% Y)
T8, )
Consequently, 6 is a quasi-metric with 8(x, y) < azlé(x, Y) + 6(z, y)| and
8(x, y) < a*5(y, x).

(1.10) For any x € R", s > 0 and 6 € |0, 1]

vk
601 < _}ijgf_‘i.es) - <
Fj(x*, s)

where G, = land Gj = 1 + E{:ll Ggj, forj =2, ..., n.

(1.11) We denote S(x, r) = [y € R":d(x, ) < rjand Q(x, r) = {y € R":
6(x, ¥) < r}and we will call S(x, r) a d-ball and Q(x, r) a 6-ball. Note
that there is a constant A > 1 such that | S(x, 2r)| < A | S(x, r) |
and | Q(x, 2r)| = A|Q(x, r)|, where | - | denotes Lebesgue
measure. Also, by (1.8), | Q(x, )| = II}_ Fi(x*, r). If Q = Q(x, n),
we write r = r(Q).
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In general we say that a non-negative and locally integrable function w(x)
is a doubling weight (w € D) if there exists a constant A > 1 such that w(2Q)
< Aw(Q) for any é-ball Q, where 2Q = Q(x, 2r), if Q = Q(x, r) and

w(Q) = g w(x)dx.
Q

(1.12) If w € D then there exists « > 0 such that, for all r > 0, 6 € |0, 1],
and x € R", w(Q(x, 0r)) = 6°“w(Q(x, r)).

Given 1 < p < oo, we say w € A, if there is a constant ¢ > 0 such that
for all 6-balls Q in R".

(1.13) <——»l—- S w(x)a’x) <—1 - g w(x)"””"a’x)p—1 <c
' el ), ol J, o

Note that if we have the A, condition with respect to 6, we have the same con-
dition holding for the metric d, i.e. (1.13) holds with Q replaced by S (using
doubling and the equivalence between d and 6). If v is a weight, w € A, (V)
means an analogous inequality holds with dxand | Q| replaced by v(x)dx and
v(Q), respectively. We use the notation A«(v) = U,. Ap(v). The theory of
weights in homogeneous spaces was studied by A. P. Calderon in |C] and fre-
quently we refer to this paper.

If x, y € R", we shall denote by H(t, x, ¥) = (Hi(t, x, y), ..., Ha(t, X, y))
the solution at time ¢ of the Cauchy problem H;(., x, y) = yiN(H(., X, »)),
HI(O, X, y) = xja.j = 1, ceey N

Given a = (ai, ..., an), € = (€1, ..., €n) With0 < ¢ < aj,j = 1, ..., n,
wedenote AT = yeR": ¢ = yi< o, j=1,..,n.1foce{—1, 1}, we put
Tay = (0’1)’1, ceey Unyn), QU(X’ I') = {y € Q(xa r): Uj(yj - Xj) = O’J = Ia
..., n} and A¥(o) = T,(A?).

Now we can state two results proved in |FS|.

Let v € ]0, 1| and ¢ € {— 1, 1}" be fixed. Then there exists ¢, « € R" as
above such that, for all » > 0 and x € R",
(1.14) | H(r, x, A3(0) () Q°, )| =2 (1 —y[Q°x, N,

where H(r, x, A;(0)) = (H(x, r, y):y € A{(0)}.

Also, there are positive constants ¢;, ¢; depending only on ¢, « and g;; such
that
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r

15y  alSxn| =T] S NH(, x, y)dt < 2| S(x, 1) |

0

for each x € R", r > 0 and y € AY(0).
If g = 2, we say that Sobolev inequality holds for wy, ». - for any
u € Hy(Q), Q a é-ball in R”,

1 1/q 1 ) 1/2
—_ q
(1.16) (Wz(Q) SQ|u| dex) < cr(Q) <W1(Q) SQ'VW‘ wldx> .

Given g = 2, we say the Poincaré inequality holds for w;, w> and p if there
are constant ¢ > 0 and a > 0 (see (1.9)) such that for any é ball Q and every
u € H(a*Q) we have

1 1/q
(1.17) (Wz(Q) SQ | u — av, ou | qudX) =

172
< cr(Q) ( | V,u| 2w1dx> ,

wi(Q) LQ

where av, ou udp and a*’Q = Q(x, a*r) if Q = Q(x, 1).

_ 15
M J,

The reason that we have a*>Q on the right side of (1.17) is that we do not
have a Kohn type argument (see also [J]) for the quasi-metric é. In the d-metric,
we can state (1.17) with equal balls on both sides. For the metric 8, however,
we have convenient cut-off functions (see [FL1]) that are important in order
to get Caccioppoli estimates for solutions of (1.1) (see C.1), (C.2) and (C.3)).
This explains the reason that we work with 6 instead of d.

We can now state our main results.

Theorem A (Harnack’s inequality).

Suppose that:

() v, wi, wa € Ay,
(ii) the Poincaré inequality holds for wi, w> and wy, v with p = 1 and some
q > 2,
(i) war™! € Aw(v).

If u is a non-negative solution of (1.1) in the cylinder R = Q(xy, @) X (fto — 8,
to + B), then
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ess supg-u < ¢1 explez[a 2 BA(Q (X0, @) + o’ B (M(Q(x0, ) ~'[Jess infp- 1,

where R~ = Q(xo, a/2) X (to — 38/4, to — 3/4), R* = Q(x0, a/2) X (to + (3/4,
to + B), A(Q) = w2(0Q)/v(Q), N(Q) = wi(QW(Q), for a 6-ball Q. Here the

constants ¢, ¢z depend only on the constants which arise in (i), (ii), (iii).

- We write

§ 3 flx, Hm(x, HHdxdt = g g Sf(x, Om(x, H)dxdt /j S m(x, t)dxdt.
R R

R

Theorem B (Mean value inequality). Assume that hypotheses (i), (i), (iii) of
Theorem A hold. Let0 < p < ©,a,8>0,a/2 <a’ <a,B/2<B <B
and let Q = Qfxo, @), Q' = Qx0, a’)and R = QX (to — B, to + B),
R = Q' X (to — B', to + B). If u is a solution of (1.1) in R, then u is
bounded in R, and

ess supg, |ul|”

< DB~ 'NO) ' + DV D~ 2B8A(Q) + 1D S j |u|?(a™?Bw, + v)dxdt,

R

where D < CY* D ifp = 2, and D < %P C° jf 0 < p < 2, and

a2+b6
C=c 3Th - .Hereh > 1,c > 0and b > 0 are con-
(@ —a'Y"°(B—B")

stants which are independent of u, p, a, a’, 8, 8°.

The organization of the paper is as follows. In Section 2 we prove the follow-
ing Sobolev interpolation inequality:

Theorem D: Let w;, w, be doubling weights, v € A> ana suppose (1.17) holds
with wi, wa, p = 1 and some q > 2. If wav ™' € A (v) then there exists h >
1 and constants ¢ > 0, b > 0 such that for every e satisfying 0 < e < 1,

1

w2(Q)

g | u | *wadx
0

1 h—1
< ce? (——— S uzva'x)
(@) Jiio0

2
x(—r(—Q)— S C | V| Pwidx +
wi(Q) (1+9Q

! S u? udx)
v (Q) (1+6Q

Sfor allu € H(1 + €Q).
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In section 3 we prove Theorem B. First we show, for p = 2, the following
mean value inequality for subsolutions of (1.1):

(*) ess supg, U5 =
h
@O U+ a8 N YT+ o BAQY S S u (™ *Bwa + v)dd,

R

where Cis as in Theorem B and © + = max {u, 0}. This inequality is less precise
than the one we will eventually obtain because of the presence of the factor
p* on the right. In order to prove the above inequality we apply Theorem D
to the function Ha(u(., r)) where

sP’% if s € |0, M|

Hu(s) = ¢ MP? +

12’ MP22(s — Myifs = M

0if s < 0,

and therefore Hus(u(., 7)) is an element of H(Q(xo, ) for a.e. 7 € (fo — B,
to + (). The first idea would be to apply Theorem D to the function u’i/z(.,
7) but at this point we do not know if u”, 2(., 7) belongs to H(Q(x0, o). Hence
we have to work with Hys(u), and in order to proceed with the proof of (*)
we show the following Caccioppolli inequality for Has(u).

(C.1) Let2 =< p < oo and u be a subsolution of (1.1) in R. Let w, € A, and
a, a’, B, B’ satisfy /2 < a’ < «, /2 < B’ < (. Then

€SS SUD,¢(10—6".104 ) S Hy(u(x, n)*v(x)dx
Qo

+ S S | Va(Hu(w) | >wi(x)dxdt
R

<c S u? Hir(u)? ("“WZ" 7t e ) dxdt
X (a—a’) B— B’

with ¢ independent of all parameters.

The next step is to apply (*) for p = 2 to deduce that u ; is locally bounded.
This fact allow us to apply Theorem D to the function u?/%(., 7) for a.e.
7€ (to — B’, to + B). The Caccioppoli inequality we can deduce from (C.1)



MEAN VALUE AND HARNACK INEQUALITIES 255
for the function #%’? is not precise enough since it will have a factor p*in
the right hand side (note that uHjs(1) < pu”’?/2) and this is the term we want
to eliminate from (*). But with a different test function from the one used in
the proof of (C.1), namely, ¢(x, #) = n’g)x(t, 71, 72) where

s?~1if se o, M|,
gs) = 4 MP % if s = M,
0 if s<0,

and 7 is a convenient C* function with compact support, we can deduce the
following Caccioppoli inequality for subsolutions of (1.1): :

(C.2) Let2 < p <  and u be a subsolution of (1.1) in R. Let w, € A, and
o, o, B, B’ satisfy /2 < a’ < a, 8/2 < 8’ < B. Then

us(x, NPr(x)dx + S § | v u?/? | 2w (x)dxdt

€S8 SUDP-¢(ty—p",10+8) §
R’

Q

w2

<c S uf (-'—""T + — _~V___> dxd,
< (a—a’) B— B’

with ¢ independent of all parameters.

Now following the steps of the proof of (*) using (C.2) instead of (C.1) we
can prove that for p = 2

(**) ess supg: uf =

h

C’T:l_(azﬁ— 1>\(Q)_1 + 1)]/(h_])(a—ZBA(Q) + l)h/(h—l) S S uﬁ(a‘ZBWz + V)dxd[a
R

and Theorem B will follow from (**) and an iteration argument like the one
given in Lemma 3.4 of [GW2]. Finally we conclude Section 3 by making some
comments about the proof of mean value inequalities for #”, when p < 0, where
u is a positive solution of (1.1). These inequalities will be necessary in the proof
of Theorem A and in order to show them we need the following generalization
of (C.2):
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(C3) Let—ow<p< +o0,p#0,1,usatisfy0 <m<u(x,f) <M< o
in R, w, € A2. Then if p > 1 and u is a subsolution in R, or if p < 0 and
u is a supersolution in R,

p—1
€SS SUD,¢(t0—p" .10+ ) S u(x, nPv(x)dx + ——p— S S Iqu”/z ] 249, (x)dxdt
R’

o
< cS uf < P w2() 5 + v ) dxdt.
R p—1 (¢ — ') g — B’

Moreover, if 0 < p < 1 and u is a supersolution in R, then

—1
€SS SUD,¢(to—g.10 4 6°) S u(x, 1)’ v(x)dx + ’ p_p_’ S S | V\u?"? | 2widxdt
RZ

o

scSSu”(’ b ' "2 5 + Y )dxdt.
R p—11 (a—a’) B — B’

In this paper we do not present the proofs of (C.2) and (C.3) since their
proofs are similar to the ones given in Section 2 of [GW2].

In Section 4, we prove

Theorem E: Lef v and w, be weights such that there exists s > 1 with

(1 18) r(I) 2 1 v sdx 1/s 1 Wy —sdx l/s<c
' r@ ) \ [1] ]}, \v® 1] ), \ wi(B) B

for all -balls I, B with I C 2a*B (a as in (1.9)), where c is a constant independ-
ent of the balls. Let Q = Q(&, r) and ¢ be a C' function such that ¢ = 1 in
O, kn,1/2 <k <1,0< ¢ < 1,supp ¢ C Q and

p(X)e(H(to, x, y)) = o(H(, x, y))
forall x, y, t, to with 0 < t < to. Then, if u € Lip(Q),
v(Q)

@) r(Q) SQ [V \ux) | 2e(x)wi(x)dx,

S [ u(x) — Ag | 2@ v(x)dx < ¢
o]

where Ag = u(x)o(x)dx.

R S
(@ ),



MEAN VALUE AND HARNACK INEQUALITIES 257

Finally, in Section 5, we prove Theorem A. This theorem follows as an
application of Bombieri’s lemma (J[GW2)). In order to verify the hypotheses
of Bombieri’s lemma we need Theorem B and Theorem F, which we state next.
We write

v®1@ = S S v(x)dxdt,

A
where v = v(x), x € R, and A C R"*! = {(x, ):x € R", t € R}.

Theorem F: Suppose v is a doubling weight, w, € A, (1.18) holds
and wav™' € Aw(v). Let Qr be a 6-ball of radius R, ty € (a, b) and
w2 = wo /w2 (Qr) and v = v/v(QRr). If u is a solution of (1.1) in Qsr/> X (a, b)
which is bounded below by a positive constant, then there are constants ci,
M,, »x and V such that if for s > 0 we define

E* = {(x, 1) € Or X (to, b):log u < —s5 — Ma(b — to) — V]}

E~ = {(x, 1) € Qr X (a, to):log u > s — Ma(a — to) — V},

then

~ - +) < 1 V(QR) R? )
@+ ) ® ) (EY) = <~S~~ o b= to) (b — 1)

and

5+ . 1 V@e) R Y
@+ ®DE) =« (»s— o T a) (to — @),

Here ¢, and x depend only on the constants in the conditions on v and w-,
_ mi(Qr)
R*v(Qr)

In order to prove this theorem, if we follow the steps of Lemma 4.9 of

[GW2], we just have to verify that a certain test function (see [FL1]) satisfies
the conditions of Theorem E. This will be done in Lemma 5.4.

, and V is a constant which depends on u.

2. Interpolation Inequality

In this section we prove Theorem D. We start with

Theorem 2.1. Let wy, wa, and p be doubling weights and suppose (1.17) holds
for wi, wy with any p, and for some q > 2. If Q = Q(&, r) and wav ™' € Ax(v)
then there exist h > 1 and a constant ¢ > 0, independent of Q and u, such that
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_— s | u| " wadx
[0}

h—1 2
<c (—1— S uzvdx> <—~ T S | Vu | ?widx + (av, o | u| )2)
(@ J, wi(D) ) o -

for all u € H(@*Q), and a as in (1.9). Also if (1.17) is replaced by (1.16), then

h—I1 2
! S | u|*"wrdx < c<-.1A S uzvdx> ( 4 g |VAu|2w1dx)
w2 Q) [, Q) ), wi(@) |,

Sor all u € H,(Q).

PROOF: The proof follows as in [GW1], Theorem 3; the only differences are
that we obtain Q(&, a*r) in the second integral on the right when we apply Poin-
caré’s inequality and in the end we use the results of Calderén for weights in
homogeneous spaces (see [C]).

Corollary 2.2. Let wi, w, be doubling weights and suppose (1.17) holds with
wi, w2, p = 1 and some q > 2. If wav™' € Aw(v), then there exists h > 1
and a constant ¢ > 0 such that

.-...._.1..,,.,._ | u | 2h wadx
w2(Q) 0

h—1 2
< c< 1 g ulva’x> <_ﬂ"w__ S | Vu | >widx + __1_,_ S leudx)
V(Q) 6] Wi (Q) a0 V(Q) 0

for all u € H@*Q), O = Q(, r).

PROOF: The conclusion of Theorem 2.1 holds for u = 1. But, by Schwarz’s
inequality,

avo | u| = ~—-~-——S | u| dx
Qo

1 Va1 1 , 172 1 172
= u v dx = u”vdx e dx
ol ), ol \J, o
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where in the last inequality we used the fact that v € A,.

In the next section we prove mean value inequalities. In order to be able
to iterate a certain inequality as was done in |GW2| we need a refinement of
the above corollary. This refinement is Theorem D and to prove it we need
the following lemmas.

Lemma 2.3. Given Q = Q(§, s) and 0 < r < s, there exists X1, ..., Xy
in Q, and k = 1 independent of &, r, s, such that

@ QW r/k) [\ QCn, 1/K) = D, h # j
(ii) 0t 9) C U0, n).

’

14
s

Moreover, m(r, s) < ¢ <—~ ) for some constant v’ depending only on the
’

dimension.

PROOF: If we apply Theorem 1.2, page 69, of [CoW| to the open covering
of Q given by (S(x, r/4a),y, there exist xi1, ..., X, in Q such that:
Sxn, r/4a) (| S(xj, r/4a) = @ if j # h and Q(, 5) C UL S(x;, r/a).
By (1.9), S(x;, r/4a) D Q(xj, r/4a*) and S (xj, r/a) C Q(x;j, r). Therefore,
if we choose k = 4a4”, (i) and (ii) follow. It remains to find an upper bound
for m(r, s). First, we note that Q(x;, r/k) C Q(&, a’(k + 1)s/k). But

r_2a(k+1)s r

k k 24 (k + 1)5

and so by (1.10), there exists »’ > 0, such that

v r - 24 (k + l)s
o) = o) oo

and since the Q (x;, r/k) are disjoint,

)
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of- ") | =2 lefe )|
o) 2 leb )

a*tk + s
(=)
and so

ofe#2) | (o] ofe 25 ) |

Therefore, m(r, s) < c(s/r)".

But,

4
o s, 2 1

~——
U
Q

Lemma 2.4. If3(y, 2) < s then Fj(z*, s) < 2a*)%F;(y*, s), G; as in (1.10).
PROOF: Since Q(z, 5) C Q(y, 2a%s), Fi(z*, s) < Fj(y*, 2a*s). By (1.10), it
follows that

Fi(z*, s) < F(0*%, 2a%s) = Qa*)PF;(y*, s).

Lemma 2.5. If0 < e < landn € Q = Q(, ), then Q(y, es/2a*)’) C
Q(, (1 + ¢€)s), where { = max;_, ,Gj.

PROOF: If y € Q(1, es/(2a*)°) then by (1.8), | yi — nj| < Fi(n*, es/(2a*)")
and by (1.10) and Lemma 2.4

€S €
F,<n (2‘12)() < Gary % 9) < EE 9.
Therefore
lyi— & < |yi—mil + |ni— & < eFi(g*, s) + Fi(%, s)
= (1 + eFj(¢*, s)
= Fi(¢*, (1 + #)s),

where in the last inequality we used (1.10).

Proof of Theorem D.

Let Q = Q(%, s). By Lemma 2.5, 6(Q, d(1 + €)Q) = es/(2a*). Apply
€S
(2a2)§'02 ‘
QW;, r/k) () QGew, r/k) = @ ' j # h, Q¢ 5) C U5 Q(x;, r) and

m(r, ) < c(s/r)’.

Lemma 2.3 to r = to find xi, ..., Xp 5 € Q such that:
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Note that, by (2.5), Q(x;,a*r) = Q <x, ) COG (1 +9s) = (1 +00.

@a*)

Then using Corollary 2.2, doubling for w,, doubling for » and w; and the fact
that Q(x;, 2a%s) D Q(%, s) and Q(&, 2a%s) D Q(x;, 3),

m(r,s)
§ |u|wadx = ), S | u | wadx
) / Q051

Jj=1

m(r,s) 1 ’ .
<c E Wz(Q(xJ’ 1) <v_(é_(x_,,_r)— §Q(x r)u de)

| V| *widx +

e o
w105, 1) ) g V(@05 M ) g

N h : 2 -
(T) wa(Q(, S”[( > v(Q( 5) Smoou de]

r

,a 2
[ W@, ) ( ZaZS) Sme)Ql Vau [ Fwidx

( ) ! S uzva’x} .
2% ) vQE N 4400

The theorem follows if we choose b = v + 2a, since s/r = ce”

1

3. Mean value inequalities.

In this section we prove Theorem B and some other mean value inequalities.
Since the proofs are similar to the ones given by [GW2], we just point out the
differences. Basically, we have to be a little more careful in the iteration argu-
ment since there is a factor ¢ in Theorem D.

We asume throughout this section that:

(@ wi, wa,veA

(b) Poincaré’s inequality, (1.17), holds for both of the pairs wy,
w, and wy, v with some ¢ > 2 and p = 1

() waw ™! € Au().

Denote R, ; = Q(x0,7) X (fo — s, to + s)andlet R = R, ;, R = R, , with
r/’2 < ¢ < rand s/2 < ¢ < s and define

3.1
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r2+bs

3.2) C=c o —o)

where b is given by Theorem D and c is a constant that may vary, but which
only depends on the weights and on 4, where 2 > 1 is the index for which
Theorem D holds for both w> and v on the left hand side.

We also write N\(Q) = w1(Q)/v(Q) and A(Q) = w2(Q)/v(Q). We start this
section with the proof of (C.1). This estimate will be important in deducing
a mean value inequality for subsolutions of (1.1).

PROOF OF (C.1): If u € H define

u(x, 1)

olx, 1) = 7°(x, ) H His(s)*ds + u(x, ) Hir(u(x, t))ZJ x(t, 11, 72),

0

where 7 € C5°(R) will be specified later, fp — s < 11 < 72 < fp + s and
x(t, 71, 72) denotes the characteristic function of (1, 72). The fact that the
function ¢ is in Hy follows as a consequence of the following result: if f is
a piecewise smooth function on the real line with f’ € L”(— o, o) and if
u € H, then f o u € H. Here we use the convention that f'(u) = 0ifu € L
where L denotes the set of corner points of f (the proof follows the steps
of Theorem 7.8 of |GT]| and it also shows that V,(f o u) = f’(u) V,u and
(f(w): = f'(u)us). The proof of the above fact also verifies that in our case
¢ = 0 in the Hy-sense since Huy(s) = 0 for s < 0.
Since u is a subsolution, we have

3.3) S S (AVu, Vo) + upv)dxdt < 0.
R

Note that by another limiting argument

U [nls HM(S)ZdSJ = [Hﬂz S HM(S)ZdS] —u(n’) S Hig(s)*ds —n” His(u) ueu,

0 0 t 0

and then by definition of ¢, for 71 < t < 12,

— (*)hu S Hi(s)*ds
0

U = [unz S Hg(,;(s)zds]

0 t

and
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Vo = 27Vy H His(s)*ds + uH;(,{(u)z] + 7[Hirw)?* Vu + fir(u) Vul,
0

where fy(s) = sHis(s)* (note that V (far(u)) = fir(u) Vu, since fir is piece-
wise smooth with fis € L™). If we substitute the two last equations in (3.3) we
get, with Q = Q(xo, 1),

g S [unlg HM(S)zds] vdxdt + S S n? His)* (A V u, Vu)dxdt
o Q

m 0 t 71

< j S [(nz)tus HM(s)stJ vdxdt
Q Ym o

—2 5 S n{AVu, Vy) “ His(s)’ds + uHM(u)Z} dxdt
Q

0

71

_ S S (A Vu, Vu)fir(u)dxdt.
Q

T1

We can drop the last term on the right since the integrand is non-negative. The
second term on the right is majorized in absolute value by

4S S [ (AVu, V)| nHir(u)*udxdt
o

T

45 S | (AH}1(u)n V u, uHir(u) V1) | dxdt
Qo

T

IA

2e S g (AV (Hyu(w), V (Hu(u))), n*dxdt
o

T1

2
+ - S S (A V0, Vn)u*Hi(u)*dxdt
€

Q

€
where we used the fact that | (Ax, y) | < (Ax, x)*(Ay, y)V/? < > (Ax, x) +

1 1
——(Ay, y). If we pick e = —- we get
2e 4
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(3.4) S § [unz g H;(;(s)zds] vdxdt
Q

0 t

T1

+ S S (A V (Hu(w)), V (Hu(u)))dxdt
Q

71

2

T2

SSS S (AVn, Vn)uZHM(u)dedt+S S
Q 0

71

[(nz),u S Hif(s)* ds] vdxdt.
7 0

Choosen 7 to be zero in a neighborhood of {dQ X (fo — s, to + )} U {Q X (¢ =
fo—s),n=1inR},0=<n=<1, |Vu| =c/(r—a) | 7] <c/(s—0)
(see page 537 of [FL1)). If we pick 7; so close to ¢, — s that 5(x, 71) = 0 for
all x € Q, drop the second term on the left of (3.4) (which is non-negative)
and use Lemma 5 of [AS] it follows that

u(x,72)
u(x, ) S Hi(s)*ds vdx

(3.5) ess SUpP,,co—oiro+s) S
0

0

<c P Hiw? | —2— + | dxdr.
R (r—eo)f s—o

If we fix 7, € (fo — o, to + ) and 7, as before and if we drop the first term
on the left of (3.4) (which we can see is non-negative after performing the
integration) we obtain

(3.6) S S (A Y (Hu(W)), V (Hu(w))dxdt
0

2171 (12 w2 4
<c u”Hir(u) 5 + dxdt.
. r—e? s—o

Letting 72 — to + s and using (1.2) we get

w2

+
(r—e) s—o

3.7 S S | V) (Hu (W) | *widxdt < ¢ S S
&

4 R

u? Hig(u)? [ ] dxdt.

Finally note that
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u u

(Hu(s)*)' ds = S 2Hy(s)His(s)ds
0

Hy(u)* = g

0

< 25 sHi(s)’ds < 2;:3~ Hi(s)*ds,
0 0

since Hy(s) < sHi(s). Combining this with (3.5) and (3.7), (C.1) follows with
a, 8, a’, B’ taken there to be r, s, @, 0.

Lemma 3.8. Let p = 2, R, R’ be as defined above and assume (3.1)
holds. If u is a subsolution of (1.1) in R, then u. is bounded in R, =
Q(xo, @) X (to — 0, to + s) and

ess supg, %

o 21 \"T s h=t s
< (p*c)"! <1 +t— I@) (1 t A(Q)) S s u”, (75 wy + 1/) dxdt,
R

with C as in (3.2).

PROOF: H(u) is a function in H since u € H and Hjs is a C* function with
bounded derivative. Then by Fubini’s theorem we have that Ha(u(., 7)) € H
for a.e. 7 € (to — o, to + ). If we apply Theorem D to the function F(x) =
Hu(u(x, 7)), @ = Q, and € > 0 such that (1 + €¢)¢ < r and combine this
with (C.1) we obtain

1
w2(Q,)

S Hy(u(x, 1) wa(x)dx
0

e

B W2 Hig(u)? 2 o Nt
h v(Q,) R r—(1+ 00} s—o

2
' {%QQ) SQ(I‘H)Q l ValHu(u(x, 1)) I Zwl(x)dx

1 2777 ¢ N2 w2 , v
N g Lu Hi(u) ((r-— 1+ 907 + p— a) dxdt}

for a.e. 7€ (to — 0, to + 5).
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Integrate with respect to 7 over ({p — o, f + s) and apply (C.1) to get

1
w2(Q,)

ce ( ¢ sto ( PHigp—22 4 Y )dxdt)h
)T \m©@) Twgy)\J ), T r—(+9eP  s—0

Since (r/2) < ¢ < rand (s/2) < ¢ < s, by the doubling property of the weights
and the definitions of X\ and A, it follows that

§ S Hy(u(x, H)* wa(x)dxdt
&

1
w2(Qr)

) (o 2o
=Sc— + s u”His(u) 5 + dxdt| .
v(Q)" \ MOP) R r—(1 +¢€)o) S—0o

~

S g Ha(u(x, D)* wa(x)dxdt
R

A similar inequality holds with w, replaced by v on the left, and if we add
the two inequalities, we obtain

3.9) H HM(u)Z"( LT )dxdt
o w(Q) | Q)

a7 (i ) (1] oo (G aar 525 )
Sc——g |l ts u”Hi(u) > + dxdt
(Or)" \NOr) R r—(1+¢o) s—a

for any e such that (1 + €)o < r.
Now note that

w2 A r? S
r—a+ 00f  s—o  r—0+96—0o [ ’
S { CI ]dxdt ~ s,
g (w200 v(Qr)
SS {sw +u}dxdt s{sw(Q)+v(Q)} S(Q)[SA(Q)+1}
— W2 = — W2\Ur r = Sv\r) {—~ r »
L7 r r
sr2wa(x) + v(x) - w2(x) v(x)

ST 2wa(Q0) + v(Q) T w2 Q) v(Q)



MEAN VALUE AND HARNACK INEQUALITIES 267

Thus, by raising both sides of (3.9) to the power 1/h, normalizing and using
the fact that ¢ “%* < ¢~?, we obtain

1/h
(3.10) (S S Hag(h)?" (rs—z wa + u) dxdt)
R

ce? r’s 1+ A@) AR
= 01 90P—o) P s MO

. § S u?Hig(u)? (—SZ wy + V> dxdt
R

r

for any e such that (1 + €)g < r. Since u?” Xjo<u<m, = Hu(u) and uHji (1)
< pu” 272, if we let M — o it follows by Fatou’s lemma that

1/h
G.11) (S S uPh (iz W + u> dxdt)
R r

< cpPe? rs 1+ A0) LGN T
R s G S TR s MO

S S ut, <~S—2 w2 + v) dxdt.
r
R

Now, we have to iterate (3.11). Fix r, s, o, 0 with r/2 < ¢ < r and
s/2 < 0 < s.Fork =1, 2, ... define sequences {sk}zen and {rxjien and {ex}ien

s—o
bysi =S, Sk — Sk+1 = ok fork=1,rn=rri—rcs1 = (r—e)/2*

r — re —r

for k = 1, and & = y: ¢ _ X krl for k = 1. Also, define
2 145 Ik

Ri = Qx X (to — sk, to + ) for k = 1, where Qx = Q(x, r¢). Note that

Ry = Rand (- 1Rx = R’ . Since

1 _
> sr? < serg? < 4sr7?,

if we apply (3.11) with p replaced by phk_], p=2andr=rg,0 = ry,; and
€ = €4 (I'lOte that (1 + €k+1)rk+1 < rk), we Obtain
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- s 1/h*
Ul | —= w2 + v dxdt
r
Ri+1

I’ZS'k R}
k—IN2 - b k >
= {c(”h o P T T <1 * rzA(Q’)>

r2 1 1/h N\ 1/(h* 1Y) /s /)
1+ — . u’ﬁ," — W2 + v dxdt .
s NMQ» R r

But note that

2
—b Tk Sk

€
k+1 2
" [rk—(l + 6k+l)rk+1] (Sk—sk+l)

b 2
_ 2(k+])b rk+1 I'kSk

(r—e)° r—o r—o *(s—a
2k - 2k+l 2k

2+b
r R
< 02(3 +b)k

(r—o)’(s—o)

< C 2(3 + b)k’

where C is given by (3.2). Thus,

1/h*
(3.12) (S S ull* (—SZ wa + v) dxdt)
r
Ri+1

s 2 1 1/h N\ 1/h% !
< {C(ph""l)22(3+b"‘ <1 + 7A(Q,)> <1 + ) }

s MO
e s V7
. u? e wy + v dxdt .
Ri

If we iterate (3.12), we obtain
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ess supg, u4

e

<11 {C(ph"—‘)zz"””k (1 + %A(Q»)

k=1
2 Vh~ /K
-1+—r— ! uﬁisz+v dxdt.
s NMQ» R r

2

1 h © k h .
Since E:Zl =l and ¥~ = (h— 1> , it follows that

ess Supg; uf,
1

e s = o1\t s
< (PO (1 + FA(Q,)) (1 v )) s X u® <72— W + v) dxdt,
T R

and this proves the lemma. Note that if we apply the above result for p = 2,
it follows that u ;. is bounded on R .

PROOF OF THEOREM B: By Lemma 3.8 we know that u#. is bounded in
Qu+ge X (fo — 0, to + s) for all e such that (1 + €)e < r. If we define
F(x) = u?/*(x, 7) then F € H(Q . ,,) for a.e. 7 € (fo — o, fo + s) and if we
follow the proof of Lemma 3.8 using (C.2) instead of (C.1), we get (see the
comments in the introduction)

ess Supg, u%

. rro & s e s
< C 1 + —}— —)\—(—Q—)— 1+ 72-A(Q) u’_i (—r—z' w2 + V) dxdt
R

for p = 2. For 0 < p < 2, define /, and I» as in Lemma 3.4 of [GW2]. The
only difference in our case is that

o
A—1

1
J IZ(ay B)Z

(a_a/)2+b(B_B/)

Le(a’, B')* < c[
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ifl/72<a’"<a<landl1/2 < B’ < B < 1. Thus, arguing as in Lemma 3.4
of [GW2] we prove that if u is a solution of (1.1) and p > 0 then

(3.13) ess supg, uh <

i

o1\ s = s
S p(2
D (l + . MQ)) <1 + e A(Q)> S gRu+<r2 wy + v) dxdt,

where D is as in Theorem B.
If we apply (3.13) to both u and — u, we obtain Theorem B of the introduc-
tion, with «, B, a’, B8’ taken there to be r, s, g, 0.

In order to prove Harnack’s inequality we need a mean value inequality
for u” when — © < p < o and u is a non-negative solution.

We begin by noting that if we use (C.3) instead of (C.1) we can prove the
following analogue of (3.11):

Lemma 3.14. Suppose (3.1) holds, 0 < m < u(x,) = M < oinR = R, ,
r’2< o<r,s/2<o<sande>0,(l + €)o < r. Then, if p > 1 and
u is a subsolution in R, or if p < 0 and u is a supersolution in R,

1/h
<S uPt (ﬂ o+ -) dxdt)
R, w2(Qr) v(Qr)

<ce b r's {1+-2 -2 A0 AL B
T =0t 6—a \ T p—1 2 p—1 s MO

H u” (—pl—%m + v) dxdt.
p— r
R

Morecver, if 0 < p < 1 and u is a supersolution in R, then

1/h
(SS u”"( "1 + —U——) dxdt)
R’ WZ(Q’) V(Q")
2 1 1/h
B S S PO Y ,)(1+ p_r )
ce <r—a+e>g>2<s—a>< i AN\ T e

'SS HP(T;{)*TI—%WZ"l'V)dth.
R —_
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Both inequalities are still true if we replace the integral averages on the right
by the larger integral average

|,# e+ )
w [—=— 4+ —— | dxdt.
. \m©@) T Q)

Theorem 3.15. Assume (3.1) holds, r, s > 0, r/2 < o < r1,5/2 < 0 < S.
If u is a non negative solution of (1.1) in R, then forp > 0

ess supg. u”

h 1

<C”(1 +piA(Q ))h_I <1 + rrf 1 ~>h—l H 74 ( w2 +~—V——> dxdt
= e 75 o) p \w(Q) w©@))

and forp < 0

h
o s
ess supg, u? < C'! (1 + |p]| »~5A(Qr)>
r

-(1 + |p| “52———1—— o u”( v b dxdt,
s MO . \wm(0) (0

where C is given by (3.2).

PROOF: In Lemma 3.17 of [GW2] we replace (3.20) by the result given here
in Lemma 3.14 and then argue as in Lemma 3.17 of |[GW2].

4. Proof of Theorem E
We start with the following lemma.

Lemma 4.1. Suppose Q = Q(&, r) and ¢ is a C* function such that ¢ = 1
inkQ = Q¢ kn,0< k< 1,0 < ¢ < 1, supp ¢ C Q and

4.2) e(X)e(H(lo, x, ¥)) < o(H(t, x, ¥))

forall x, y, t, to with 0 < t < ty. If u is a Lipschitz function,
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E={xeQ kr):ux) =0 and |E| = B| Q| for some0 < B < 1, then
ifx €Q,
o(x, 2)

(4.3) luG) | Vo) =< ¢ S | V,u(@) | \/@mdz,

Q

where c is independent of Q, u, x.

PROOF: (The general outline of this proof follows the steps of the proof of
Lemma 4.3 in [FS].) If x € Q@ = Q(%, r) then Q(%, r) C Q(x, 2a*r) and Q(x,
r) C Q(&, 2a*r). Therefore, by doubling, | Q(x,r)| = | Q| . Now, we note
that there exists 0 € {— 1, 1}” such that |E () Q°(x,2a*7)| = cf|Q°(x,24a*n)|.
In fact, E = U,(Q°(x, 2a ?r) () E) and so there exists ¢ such that

4.4 | Q°(x,2d¢*n) ) E| 2827"|Q| = ¢8| Q°x, 2a°D ] .

We also claim that there exist o, ¢ € R”, independent of x and 7, 0 < ¢ <
aj, j = 1, ..., n, such that

4.5) |E ) Q°(x,2a*n) () HQRar, x, A0)) | = % | Q°(x, 2a%P) | .

c
To prove this fact, apply (1.14)to y = TB and find o, e € R, 0 < ¢ < o,
J =1, ..., n, such that

| H2a’r, x, AX0) () Q°(x, 2a°D| = (1 — %) | Q°(x, 24%n) | .

Then,

| Q°(x, 2a%P)| = |(Q°(x, 2a*r) () E) U (Q°(x, 2a*r) () H(...))| =
|Q°(, 2D () E| + |Q°(x,24%) () H(.)| — | E ) Q°(x, 24> () H(..)]|
= | Q°(x, 2a%r) | (cB + 1__%@_) — |E N Q°(x, 2a°n) ) H(.)|

and therefore the claim follows.

We can assume x ¢ E and define L = [y € A%0): HQ2d’r, x, y) € EJ.
Let K be a smooth function supported in Af/“z(o), 0<K=<=1,K=1o0n
A” (o). Suppose u € Lip(Q). If y € X then

lu@) | Vo) = |u(x) — u(HQRa?r, x, y)) | K») Vo (x),

and if we integrate on X, we obtain
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wmlﬁﬁﬂzl=gIMﬂ—mmu%meKmvmmv
z

Now we note that o(H(2a’r, x, y)) = 1 if y € T and using (4.2) we get
o(X) < o(H(t, x, y)) for any 0 < t < 24°r. Therefore,

2a’r
lu@) | Vo) [Z] = S S — W(H, x, y))dt|No(H(, x, y)dy
suppK

, dt
2a°r . -
= S § (Vu(H(, x, y)), H(t, x, y)dt) Ne(H(t, x, y))dy
suppK| v0
2a*r o
< g S | VauH(, x, ) | |y | Ve H, x, y)dydt.
suppK

0

If we make change of variables z = H(¢, x, y) in Af}’z (0), then

‘det ——(t x, y)l g § N(H(s, x, y))ds.
0

For y € Ae/z(a), the last product is equivalent to | Q(x, ) | by (1.15). Hence

1 g
10(x, )l HO 4% (0)

Note that there exists ¢ > 0 such that H(z, x, A; ,2(0)) C Q(x, ct). In fact,
if we define y(s) = H(s/|y|, x, y) then

b= (o))
Bl

n

= Y NG(6NE

24°r
4.6) |u@ | Vel < T S | V,u(2) | Ve(z)dzdt.

for every £ € R". So, v is a A\-subunit curve starting from x and attaining
H(t, x, y) at the time s = ¢| y|. Therefore by (1.9),

8(x, H(t, x, ¥)) < ad(x, H(t, x, y)) < at|y| < ct

where ¢ = 2aa
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Thus, from (4.6), we obtain

2a’r
1

o 106 0]

lu@) | Vo) = ; S S | V,u(@) | Ve(z) dzdt
‘ | QO(x,ct)

and, interchanging the order of integration and using the fact that supp ¢ C Q
(the argument we are going to present next is due to Chanillo, Sawyer and
Wheeden), we get

- e dt
@7 Ju®| Yo = - SQ | V@ | Ve (S TW) &

,E , c6(x,2)
We claim that ) at =< ch To prove this we note that
¢ claim tha — =<c . prove this w s
4 1060 | o, ) |
by (1.8),
O, 1) n
_L ; _l = Hj=2]:’j(x*, 0,

and consequently by (1.10), there exists ¢ > 0 such that if £ > 7 then

ool (L) 1ol

t T T

Hence,

I A N AN
L1000l ) 106l T ) 10l \t) t T10e kI

Finally, we note that | £ | = ¢ > 0, with ¢ independent of x, since, by the
change of variables z = H(2d*r, x, ),

1

Ll = | &y = S
| | SS g SH(Zazr,x,E) | Q(X, 2a2r)| ‘
‘]H(Zazr, x X _ |E () HQdr, x, A(0)) |
oW, 2a°n)| | Ox, 24%7) |
| 0°(x, 2% |
= CB —‘m =>c>0.

The lemma follows by combining the last two last estimates with (4.7).
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PROOF OF THEOREM E.

— 6(x’ y) —
| Ox, 80, y) |

Fix S a d-ball. In order to show that for a pair of weights #, w we have

Define Tf(x) = S JO)K(x, y)dy, where K(x, y) =

1/2
TSl 255 < fll2sm (Where NIfll2s, = <S f217> ) for all f = O,
S

supp f C S, according to [SW], we need to verify that the following conditions
hold:

(a) there exists s > 1 such that

1
1 b,
o | 1] <—— Sﬁ%ix) <— - § W”‘dx> <c
1] ), 1],
for all d-balls I C 2S, where ¢(I) is defined to be
1
o) = sup {K(x, ix,yel dx y) = > r(l)} ;

(b) there is € > 0 such that

| 1] () <r(1’)>‘
<c _

1] = ) \ rh

for all pairs of d-balls I’ C I.

Note that it is convenient to work with d since the results of [SW| hold for
pseudo-metrics (a pseudo-metric d is a quasi-metric satisfying d(x, y) = d(y, x)
for all x, y € R").

Wi
——and w = ——-r(S)*>. Note that if x, y € I and
v(S) wi(S)

dix,y) = %r(l), then by (1.9)

Define v =

o(x, ») - 2ar(I) - r(l)

< <0
bl 6 b 1 b
| Ox, 8(x, »)) | ‘Q< - r({))l | Qx, r(D)) |

Kx, y) =
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and since x € I, | Q(x, r(I))| = |I|. Therefore,

r(I)

o) < CW-

So, the expression in (a) is bounded by

1

et (i |, (Tz%fd")z(t;l |, (o >‘s"">z

1 1

s (o 1, (i) ) (i | (i) =)
<c dx — — dx) ,
r@S) \ [1] J,\»(S) [Tl ), \wi(S)

which is equivalent to the expression in condition (1.18) (if we use doubling
and (1.9)). This proves (a).

1
To show (b) we note that if x, y € I and d(x, y) = ?r(l) then

Qo~'ry ()

Kx, y) = =c .
® 9 = Tow, 2army] = € T1|
rl) . () iy |1’ .
Thus ¢(I) = ———. Then, if I’ C I, — = - and we obtain
=11 o) " Ty 11|
(b) with e = 1.
By doubling and (1.9), it follows that
“ Tf”LZ(Q,g) = C||f||Lz(Q,W)
14
for all f = 0, supp f C Q, where 7 = and w = r(Q)>.
v(Q) I(Q)
Suppose u is a Lipschitz function in Q and |E| = |{x € Q(&, kr):u(x)

=0]|] =8|Q|, 172 < k < 1. If we combine Lemma 4.1 and the fact
that | Tfll 205 =< clfllzq, 4 We obtain

172
4.8) <(Q)S [u@) | <P(X)v(x)dx>

172
< cr(Q) ( S | V\u@) | 2so(z)m(z)a’z)

wi(Q)
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Given Q and a general Lipschitz function u, there is a number p = u(u, Q),
the media of u# in Q, such that if 0% = {x € Q:u(x) = pjand Q™ = [x € Q:
u(x) < pjthen |Q*| = |Q|/2and |Q| = |Q]|/2. Hence, u; =
max {u — ,u(u kQ), 0} and u, = max{u(u, kQ) — u, 0} satisfy the hypohesis
of Lemma (4.1) for some 3 depending on k and so if we apply (4.8) to u; and
u, and add both inequalities, we get

Q)

4.9) Llu(x)—ul e()v(x)dx < cr(Q)* —— (O

S | V\u(2)* ¢ (2) w1 (2)dz.

Finally, it is easy to see that in (4.9) u can be replaced by the average Ao
of u defined in Theorem E. In fact,

(4.10) S | u(x) — Ag |2 (x)v(x)dx
o
< 25 | u() — p| e v(x)dx
Q

+2 S | u — Ao | 2e(x)v(x)dx,
)

and

S | k—Ag [Pe@r(dx = (ev)(Q) |1 — Ag|?
Q

2

- (¢v)(Q)’u—~(Q~) 5 u(x)«a(x)d»1

1 2
=< (¢v)(Q) (;(—Q)S | u(x)—p | p(x)dx)
0

- Q)
= )%

g |u (x)—ulquz(x)v(x)de L dx,
0 v(x)

where in the last inequality we used Schwarz’s inequality. Since v € A, and
0 < ¢ = 1, it follows from (4.9) and (4.10) that

S | u() — Ao | >0 ()v(x)dx
Q

2
< cr(Q) [1 + < 12| )] V(@ X | V\u(2) | *e(2) w1 (2)dz.
0

¢(Q) w1(Q)
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This finishes the proof of Theorem E if we note that ¢(Q) = | Q| since
172 < k< 1.

The next corollary is also helpful.

Corollary 4.11. Theorem E is also true with Ag = upvdx.

1
(e)(Q) S 0
Just note that

S | — Ag|?evdx = (v)(Q) | — Ag|?
0

IA

i 2
S— — d.
(e)(Q) < o)) gg lp— u| v x)

A

S I/L—ulzgol/dx,
Q

where the last inequality follows by Schwarz’s inequality.

5. Harnack’s inequality

The proof of Theorem A follows as an application of Bombieri’s lemma which
we state next. For its proof see Section 5 of [GW2].

Lemma 5.1. Let R(g) be a one parameter family of rectangles in R"*,
R(0) C R(p), 1/2 < ¢ < ¢ < 1 and let v be a doubling measure in R"*".
Let A, p, M, m, 0 and x be positive constants such that M = 1/u and suppose
that f is a positive measurable function defined in a neighborhood of R(1)
satisfying '

A
(5.2) ess Supge) SX = ——
(e — o)

S g SPv(x)dxdt
R(e)

forallo, g, p,1/2 =0 =06 < < 1,0< p < M and

(5.3) v({(x, ) € R(1):log f > s)) < <i> v(R(1))

s
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for all s > 0. Then there is a constant v = v(A, m, x) > 0 such that

Y

| log(ess su U < —— p.
8( Prey 4) 1 — 6" r

Hence, in order to prove Theorem A, we need a mean value inequality (that
we proved in Section 3) and a logarithm estimate which is given by Theorem
F (some steps of its proof we will present in this section). The next lemma shows
that the test function described on page 537 of [FL1] satisfies the conditions
of Theorem E. Then, as we said before, the proof of Theorem F follows as
Lemma 4.9 of [GW2].

Lemma 5.4. Given Q = Q(§, r) and 0 < k < 1, there exists ¢ € C' such

that ¢ = 1in kQ, 0 < ¢ < I, suppp C Q, |Vyo| = ~(1-i—kjand
r —_
o(x) - e(H(to, x, y)) < o(H(, x, y)) for all x, y, t, to with0 < t < {.

PROOF: Consider the function ¢ given by [FL1], page 537:

' xXi—§& l

px) = ¥ ( ,

;[—‘,[ Fi(¢*, )

where y € C*(R), 0 < ¢ < 1, Y(f) = ¥(—1), ¥ = 1l on [—k, k], ¥ = O outside

J—1,1[, |¥'®| =201 —k) ™, for all z € R. Here, we show that ¢ satisfies

the last condition since all the others are proved in [FL1], page 537.
Fixt,0 < t < t,, x and y. Define z = H(¢, x, y). Then,

t

=X + ¥ S Ni(H(s, x, y))ds.
0

Suppose z; — & = 0. If y; = 0 then

to

IZj_ ‘Ell = Xj — gl + Yi S )‘j(H(S’ X, y))ds = Hi(tov X, )’) - El
0 .

On the other hand, if y; < 0,
lzi— & = [x%—&].

Thus, if z; — & = O then |z; — &| < | Hj(to, x, ) — &| or |z — &
< |xj— & | . The same holds if z; — & < 0. Since ¥/(?) can be chosen to be
non-increasing for positive ¢, then ¢(z) = ai...a,, where

o | % — &
“= ‘b( F@, n )
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or

a.=¢ !flf(to’xsy)_gil
! Fi(g*, 1) '

Since 0 = ¥ =< 1,

' | Hy(to, %, ) — &1 % — &
= ¢< Fi&, ) "UEeE )

for 1 < j < n. Therefore,
e(2) = () e(H(, x, ))).

The next three lemmas are needed in order to show that the hypothesis in
Theorem A imply those in Theorems D and E.

Lemma 5.5. Assume that Poincaré’s inequality holds for wy, w, withq = 2
and p = 1. Then

W)me_<cmm
r(B) w2 (B) - wi(B)

for any pair of 6-balls I, B, with I C 2B.

PROOF: Suppose I = Q(uo, r({)) and B = Q(x, r(B)) and define

| uj — (uo); |
Fy) = T Wit
(w) ,-2=:1 g, 1) r() ¢(u)

where ¢ is the function described in lemma (5.4) associated with I (as opposed
toB)and k = 1/2. If u € I, by (1.8)

oF r(D dp
3—uk(u) = ———Fk(u(’,“, r0) + 51:;(“)”’-([)’

for k € (1, ...n}, and using the fact that \e(1) = Me(u*) < M (H(u*, r(D))) if
u €l we get

Fr(u*, r(D)
Fi(ug, r(D)

oF dp
e (u) M(u)’ = + nr()e(u) a_uk(u)
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and by Lemma 2.4 and the fact that | V,¢| < c/r(I) we have |V, F(u)| < cxi-
We have Poincaré’s inequality for F, i.e.,

1 1/2
(5.6) ( 7o) Lw | Fu) — av, ., F| 2wz(u)du>

172
< cr(B) < S | V\F(u) | >w: (u)du) ,
na*4"t'p

wi(B)

where n = max;_; ,[{G;j. The right side of (5.6) is bounded by

wi(l)
wi(B)

1/2
cr(B) ( > by doubling and the fact that |V,F| =< cxs. Now, if

1
u € —4—Ithere exists k € {1, ..., n} such that
1
| ux — (uode | = Fi (uﬁ‘, ‘4—"(1)>

1 1
and then if u € 7] N —4—1 (note that () = 1)

1
Fy | ud, —4—r(1)> [\G |
—) r() = Fr(l)

5.7 Fu) = Feaat, 1) r() = (4

Also, if u € I, F(u) < nr(I) and therefore

1]

n4"*1p - | n411+lB|

nr(l).

av

But, by (1.10), F;(x}, n4"*'r(B)) = 2n4" F;(x}, 2r(B)), and by (1.11),

|n4"*'B| = (2n4")" |2B| = 2n4" |2B]|.
1 1
Hence, since I C 2B, avM,,HBF < r(I)/2-4" and then if u € ?I AN 71
(using also 5.7)),

| F(u) — av F| = cr()).

nd1+lp

Therefore, the left hand side of (5.6) is larger than a constant times
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(r(I))2 1 1 172 wa (D) 172
iy SNSRI
[Wz(B) w2 (2 I 2 I)] = cr(l) (wZ(B)> .

1 1
where in the last inequality we used the fact that w, (E— I\ vy I) = wy(),

which is shown in the next lemma.

Lemma 5.8. Ifwis a doubling weight then W(Q(u, 2s) \ Q(u, s)) is equivalent
to w(Q(u, ).

3s
PROOF: Choose n € Q(u, 2s) such that 6(u, 7) = - By Lemma 2.5,

3es 3s
Q(ﬂ,m) - Q(u, a+ 6)"2—)
forany 0 < e < 1.

3es
Choose j such that 5(u, 1) = @j(u*, | 7,—u;|). Then,if y € Q| n, —~6—2§ ,
2(2a%)

3s
F,-(u*,—) = |nj—w| = |nj—y;| + [yi—u]

2

3es
=< Fj(ﬂ"‘, mv) + | yi—uil,

By (1.10) and Lemma 2.4,
3s 3s
F_'/' u*,T SEF_'/ u*,'T + ij_uj|'

l'—'>l—F'*£>F'*l—£
yJ u!’—( e)_Iuiz = Ju!( 6)2 .

Thus,

If we choose ¢ = 1/3 we have proved that
s
y ——=) C , 28)\ , S).
o) (n G a2)§> O, 25)\ Q(u, 3)

The lemma follows by doubling.
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Lemma 5.9. If w, € A, v € Ax and Poincaré’s inequality holds for w,
v with ¢ = 2 and p = 1, then condition (1.21) holds.

PROOF: If v € A there exists s > 1 such that

<; (_> d) _ 1 v
11l ), \v(B) I B

So, since Poincaré’s inequality holds for wi, v with ¢ = 2, by Lemma 5.5

(r(I) )2 ( l \s\ ( i )S )l/s 1 Wl(l)
dx <c—— R
@) \11] },\»® [T] wi(B)

and the above condition is equivalent to condition (1.18) since w; € A,.

Now we are ready to prove Theorem A.

PROOF OF THEOREM A

Let u be a non-negative solution of (1.1) in the cylinder R, 3 = R, g(Xo, Zo)
= Q(xo, &) X (to — B, to + PB). If we define T(x, ¢) = (x, 8t + t) and
u(x, t) = u(T(x, t)) then u is a solution in R, ;(xo, 0) of the equation

v(X)u; = div(A(x, H) V i),

where the coefficients matrix A = (a;) are defined by a;i(x, £) = Bai(x, Bt + to)
and satisfies the degeneracy condition

A

W) YNWE

j=1 j=1

Y atx, DEE < W) LNME,

j=1

if we put w; = Bw;, fori = 1, 2.

Suppose |p| < [@”*A(Q(Xo, @) + o / N(Q(Xo, &))] ', where A(Q) =
W2(Q)/7(Q), MQ) = W1(Q)/v(Q). Write

Sy (@ + Do 1 e 1 e
R(Q)'Q<x°’ 3 >X<—2_2’ 2+2>

. B (0 + N L—_Q_
R(Q)—Q(xo,—3 >X<2 2,1>
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If we take 1/2 < g < r < 1 then the mean value inequalities in Theorem
3.15 applied to u give

_ l 11%) v
_ 74 ~ - =D
(5.10) ess supg @4 =c —o SLA(r)u ( (00 + o a)) dxdt,

for some m > 0, if p > 0, where Q, = Q(xo, @), and

— 1 _ WZ v
(5.11) ess supg+, ¥ = ¢ — uf | — + dxdt,
re =" | Jpp \P2(Q) T v(Q)

if p < 0. Moreover, by Theorem B, u is locally bounded and by adding
e > 0, we may assume by letting ¢ — 0 at the end of the proof that u is
bounded below in R, ;(xo, 0) by a positive constant.

Now, by Theorem F, we have

(.12) ( AL Y
' V(@) Wz(Qa)>
1 v@) L)
= {s WI(QQ)"‘}
1] x 2 1 "
C{S l:a A(Qa) + o X(Qa)]} ’

and the same inequality holds for E~, where E*, E~ are defin_ed in Theorem F
withu = 4, R = 2/3a,a = —1,b = 1, tp = 0, M, = A(Q,)/ >

By (5.10) and (5.12), we can_gpply Bombieri’s_ lemma to the family of
rectangles R~ (o) with p = a *A(Q, (%)) + o*/N(Q, (%)), M = 1/u and
f = e M*YOy obtaining

1A

ess Supg-(1,5f = C exp{ cla”>A(Q,) + o*/NQ,)},
and this implies that
(5.13) ess supg- (4 < Cexplcla ™ 2A(Q(xo, @) + o*/NMQ (X%, @))] — V(0)}.

Also, by (5.11) and (5.12), we can apply Bombieri’s lemma to the family of
rectangles R* (@), f = e YO~ ! with u, M, M, and V(0) as before, and
we obtain
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€ss SUPg- /2 f < C explcla™*A(Q,) + o*/NQL)]},
which implies that

(5.14) €0 < C AN+ AR g inf. .

Combining (5.13) and (5.14) it follows that

_ -2 N . —
ess SUg- 1/ < 1€l MO+ AQo N ggg inf . 1.

Since, T(R™(1/2)) = R~, T(R*(1/2)) = R* and a " 2A(Q,) + o*/N(Q,) =
a"2BA(Q,) + o*8~1/N\(Q,), Theorem A follows.

REMARK: Using the equivalence between d and 6 we can prove the following
analogues of Theorem A and B for the metric d.

Theorem A’: Assume (i), (ii), (iii) of Theorem A. If u is a non-negative solu-
tion of (1.1) in the cylinder R = S(xo, aa®*) X (to — B, to + B), then

ess supg- # < crexp{cz[a 2B A (S(xo, @) + o*87 '\(S(x0, ) "]} ess infz- u

where R~ = S(xo, a/2) X (to — 36/4, to — B/4), R* = S(x0, a/2) X (to + /4,
to + B), A(S) = wa(S)W(S) and N(S) = wi1(S)/v(S) for a d-ball S. Here the
constants c1, ¢z depend only on the constants which arise in (i), (ii), (iii).

Theorem B’: Assume hypothesis (i), (ii), (iii) of Theorem A hold. Let
O0<p<oaf>0a22<a <afB/2<B <pBandletS(x, a) =S,
S(x0,a’) = S" and R(a, B) = S X (lo— B, t0 + B), R4 (@, B) = S’ X (to— B/,
to + B). If u is a solution of (1.1) in R(a*«, B), then u is bounded in R’ (o, B)
and

€ss SUPgyp | # |7 =

D@E@?B~NS) ™ + DVED (o~ 2B8A(S) + 1 S S | u|P(c™2Bw, + v)dxdt
R(@*a,B)
aZ +b B
(a—a’*?’B—8")

constants which are independent of u, p, a, a’, B, 8’.

. Here h > 1,

where D is as in Theorem B, and C = ¢
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Analytic Dependence of
Orthogonal Polynomials

Enrico Laeng

Introduction

One way we can define and construct orthogonal polynomials is by apply-
ing the Gram-Schmidt orthogonalization process to the sequence of powers
1, x, x*, ... More precisely, we embed these power-functions in L?*(dy), where
dp is a probability measure living on some space (usually the closed interval
|— 1, 1], the real line R, or the unit circle T), and then we orthogonalize with
respect to the scalar product induced by the measure du. In the classical theory,
dp is usually absolutely continuous with respect to the Lebesgue Measure, and
given by some very explicit weight function, but recently, in [CM], R. R. Coif-
man and M. Murray have proposed a different analytic approach to the study
of general orthogonal polynomials, based on a «perturbation theory» of the
orthogonalization process.

The approach of R. R. Coifman and M. Murray allows one to study
orthogonal polynomials within the framework of non-linear Fourier Analysis.
As in similar studies of other non-linear problems (dependence of the Riemann
mapping on the domain, shape of water waves, Navier-Stokes equation) the
main result consists in showing that some relevant operator gmantities are
analytically dependent on a B.M.O. parameter. In this kind of analysis, the
theory of weighted norm inequalities, A, weights, and the relationships
between good weights and BMO, play a central role (an excellent source of
reference for this is [GCRF]).

This particular problem belongs also to the context of Toda flows (see
[DLT]) where a certain non-linear matrix differential equation admits closed
form solutions. These solutions are a «flow» of infinite tridiagonal matrices that
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can be interpreted as the three-term recursion relation attached to the orthogonal
polynomials.

In [CM] the program is carried out in detail starting from two situations:
polynomials on the circle T orthogonal with respect to Lebesgue measure, and
polynomials on |— 1, 1] orthogonal with respect to a Jacobi weight. In this
work we carry out the same program starting from a set of polynomials on
T first introduced by Szegd, in fact used by him as a tool for the proof of his
equiconvergence theorems.

We then show some new results. Using the closed subspace VMO, we give
a better characterization of the BMO region where the analyticity result holds.
This can be seen as the definition of a very general set of polynomials that
can be «analytically perturbed». The relationship with the theory of Toda flows
is exploited to derive new identities that can be used interchangeably with the
Kerzman-Stein formula, shedding a new light on the connections among the
different operators involved. The flow itself is expressed in terms of conjuga-
tion by a self-adjoint projection Q whose dependence from the parameter gives
rise to interesting formulae. In fact, starting from Chebychev polynomials, the
first Gateaux differential of Q can be expressed via Hilbert transforms and a
bilinear singular integral operator first considered by Calderdn (see Section 7).
The L*-boundedness of this operator is still an open problem.

We do not deal with numeérical applications, but let us note that this
theory can provide some useful computer tools. The Kerzman-Stein formula
can be used to efficiently compute orthogonal polynomials relative to standard
and non-standard weights. The analyticity results suggest the possibility of
building fast algorithms (complexity n log n) to convert an orthogonal expan-
sion relative to a fixed set of polynomials into the expansion relative to another
set of polynomials, provided they are within the «analyticity range» (see
Theorem 1 in Section 6, and se also [AR] for an example of numerical conver-
sion from Chebychev polynomials expansions into Legendre polynomials ex-
pansions).

2. Orthogonal Polynomials Dependent on a BMO Parameter

Consider a «perturbed» space L* (u*dp) where u(x) = e?® is a suitable func-

tion. Notice that if b(x) is close to zero (in some Banach Space norm which
will be chosen later), then the new measure

(1) U () dp(x) = e**Vdp(x)

is «close» to the original one dpu.
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Now, given f € L*(u*dy), we can develop it into a series of orthogonal
polynomials (the polynomials which are orthogonal with respect to udy) and
consider the partial sums S, f of this series. Notice that, for a fixed measure
u*dp living on a fixed space, the orthogonal polynomials are uniquely deter-
mined (up to a normalization), and so is S,. Notice also that the partial sums
operator S, can be thought of as an operator-valued function of b. In fact,
we want to study the mapping

) b — Su(b).
It is hard to study (2) directly because S,(b), in spite of being a well-defined

projection from L?(u*dpy) into polynomials of degree equal or less than #, acts
on different L? spaces as b varies. On the other hand, we can look at

3) b — Va(b)
where
(0)) Va(b) = uS.(b)u~' = e’S,(b)e".

With a little abuse of notation, in the above definition we use a function
to denote the operator of multiplication by that function. It is easy to check
that V,(b) always acts on L?(dp), that the L?(dpu)-boundedness of V,(b) is
equivalent to the L?(#*dp)-boundedness of S,(b), and that the two operator
norms are equal.

The mapping (3) can now be seen in the context of calculus on Banach
Spaces, see for example [B], where notions like continuity, differentiability,
and analyticity and well defined.

We claim that the «natural» Banach Space for b is BMO (Bounded Mean
Oscillation) and that in «many» situations, depending on the choice of the
measure space we start with, the dependence (3) is in fact analytic. We will
make this claim precise later, and we will prove it.

Let us notice at this point that a further simplification in the study of this
problem is brought about by a remarkable formula due to Kerzman and Stein
[KS]. The formula is

(5) V =PI+ (P— P*)™!

where V is a self-adjoint projection sending a Hilbert Space H into a proper
closed subspace K and P is an oblique projection (non self-adjoint) also send-
ing H into K.

The first step in the proof of (5) is to show that the operator I + (P — P¥)
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is invertible, but in fact, since (P — P*)* = P¥ — P = — (P — P*), we sce
that P — P* is skew adjoint, which means that its spectrum is purely imaginary.
In particular — 1 ¢ spec (P— P*), which shows the invertibility of 7 + (P— P*).
We can now rewrite (5) as

Vd + (P—P*) =P

and this is the same as

P=V+ VP—VP* =V + P— VP*
which simplifies into

VP* = V.

Finally, we prove this last operator equality using an elementary lemma from
Functional Analysis (see for example |R| p. 296) and the following chain of
scalar-product equalities, which hold for any element 4 € H:

(VP*h, h) = (P*h, Vh) = (h, PVh) = (h, Vh) = (Vh, h).

Having proven (5), we now apply it to our situation by choosing
V = Va(b) = €’Su(b)e"

and
6) P = P,(b) = e"S,(0)e°.

Notice that (with the same abuse of notation) we have used e” to indicate
the operator of multiplication by e®. Both V,(b) and P,(b) are projection
operators from L*(dy) into the same closed subspace; V,(b) is self-adjoint while
P,(b) is an oblique projection that satisfies

@) Pn(b)* = Po(— D).

The Kerzman-Stein formula (5) tells us that the analytic properties of P,(b)
as an operator-valued function of b are inherited by V,(b). This is a great
simplification because it is easier to deal explicitly with the integral kernel of
S.(0) than that of S,(b). So, once we have proven the uniform analycity of
P, (b), we have proven it also for V,(b). To be self-contained, let us state here
the following

Definition 1 of Uniform Analyticity for a sequence {P,(b)} of operator-
valued functions of b € B (some Banach Space).
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The sequence {P,(b)} is uniformly (real) analytic in a neighborhood of
0 € B if and only if there exists § > 0 such that for every f € L*(dy) and all
b with |lbllg < 6 we have

®) Pub)f = Y, Auk (b, ..., b, f) Jor every n
k=0

where An is a bounded (k + 1)-multilinear operator sending B* x L*(dy)
into L*(dp) and satisfying the estimate

©) I Ak By -.ey By Nl gy = X IDIEISN 204 -

The constant c in (9) does not depend on n. Notice that Ak (b, ..., b, °) is the
k™ Gateaux differential of P.(b) at 0 in the direction of b.

A similar definition can be given, when b belongs to a complex Banach
Space, for the uniform holomorphy of {P,(b)} in a neighborhood of 0. Actually,
as in the case of one complex variable, the existence of one derivative in an
open domain (e.g., a neighborhood of 0) implies holomorphy in the same do-
main (see [B]), so we have

Definition 2 [P, (b)] is uniformly holomorphic in a neighborhood U of
0 € B (complex Banach Space) if for every n, and all b € U we have

(10) (Pu(D)ll2;: <= ¢ and  Pa(b) is Gateaux-differentiable.

We also have a notion of the «biggest space» in which the variable b can
live and maintain the dependence & — P,(b) holomorphic. It is given by

Definition 3. B is the space of uniform holomorphy at 0 for |P,(b)} if
[Pn(b)} is uniformly holomorphic in a neighborhood of 0 and

(11) sup A, (b, 9)ll,2.,2 < o ifand only if b€ B

We will see later that, for the particular sequence of projection in our
problem, proving conditions like (10) or (11) amounts to the proof of some
suitable weighted norm inequalities.

3. Connections with Infinite-Dimensional Toda Flows

The set-up we have outlined in the previous paragraph is intimately
connected with the theory of Toda flows. This theory has been studied
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independently, at first without any reference to orthogonal polynomials (see
for example [DLT]).

Let us consider again the «perturbed» space L*(e*®du) where we have
added the real parameter ¢ € (— ¢, €) in the exponential and where we consider
the function b(x) fixed.

If we apply the Gram-Schmidt orthogonalization process to the sequence
1, x, x>, ... embedded in this L* space, we get a sequence {p;,(x)} of or-
thogonal polynomials which depends on the parameter ¢. These polynomials
satisfy a three-term recurrence

(1 xp; () = AjOp;1,,(x) + Bi(Op;,(x) + A;_,(Op;_, ;(x)

with j = 0, 1, ... and p_, ,(x) = 0. Since, for each 7, they are a complete
orthonormal system in L%(e*®dy), the map f(x) = xf(x) induces a bounded
linear map 7T(¢) on / i that can be represented with an infinite tri-diagonal
matrix

Bo(®) Ao(D) 0 0
Ao() Bi(®) Ai(® 0
) T@®) = 0 A1() By A0

0 0 Ax(t)  Bs(r) As()...

If our measure dp (and our polynomials) live on the closed interval
[— 1, 1], we have the following explicit formulae for the recursion coefficients
(see, e.g., Szegb [Sz))

1
(3) Aj@) = g xPj,z(x)Pj+1,j(x)921b(x)d#(x)~
—1

1
3") Bj(1) = S X P20 €229 dy (x).

—1

We claim that, in general, the operator 7(¢) is a solution of the (infinite
dimensional, non-linear) Toda equation, which can be written as

@) T = [T, b(T)]

where the square brackets stand for the commutator of two operators and 5(7)
is a sort of Hilbert Transform obtained in the following way: first we use
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operator calculus to define the function b evaluated at 7, getting some sym-
metric infinite matrix

N b,
5) b(D = d

b_ AN

which we have separated in (5) into lower triangular block (b - ), diagonal (d),
and upper triangular block (b ), then we define
\ —bT
(6) b(T) = 0
b_ N

i.e., we put zeros on the diagonal and replace the upper triangular block (. )
with the transpose of the lower triangular block (b-) multiplied by — 1.

PROOF of the claim

First we want to show that the solution of (4) is expressed by

Q) Tt = Q" TOQ®)

where the infinite orthogonal matrix Q(¢) comes from
®) TP = QR

The right hand side of (8) is the QR decomposition of the 1.h.s.; this decom-
position is uniquely determined by asking that Q be orthogonal and R upper
triangular (see [DLT]). After showing that (7) is indeed a solution of (9), we
will show that the 7'(¢) so obtained coincides with the 7'(¢) in (2).

In the computations that follow, we will assume implicitly that matrices
denoted by capital letters are functions of ¢, we will denote differentiation with
respect to ¢ with a dot, and use the notation 7o = 7(0). By differentiating both
members of (7) we get

© T=0"ThQ + Q'ToQ
= QTQTQ"Q + QTQTQTQ
= QTQT + TQTO.
The second equality is obtained by plugging in the expression for 7(0) that comes
from (7), the third equality holds just because 9’ Q = I.
We want to check that

T = [T, 5(T)) = TH(T) — b(T)T
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but, looking at the last term of (9), this amounts to showing that
(10) b(T) = Q"0

Notice that, by the definition of 5(T), both terms of this equality must be
skew-adjoint, therefore if the equality holds we must have

Q79 = 00 = — Q0.

and this is true, as we can see differentiating the identity Q7Q = I.
To prove (10) we differentiate (8) and use the fact that the exponential of
an operator commutes with that operator. We get

(11) b(To)QR = QR + QR

and multiplying both terms by Q7 on the left and by R ™' on the right we get
Q"b(To)Q = Q"Q + RR™'

which, after noticing that Q" b(T0)Q = b(Q" To Q) = b(T), can be rewritten as

(12) b(T) = Q"0 + RR™.

Let us now go back to the block notation for (7)) that we used in (5), and
show that, in that notation, our last equality (12) becomes

N b, N —b" \ b, +b"
(13) d = 0 + d
b_ N b_ N 0 N

In fact, we know that the first matrix on the right hand side of (12) is skew-
adjoint, and we know that the second one is upper triangular (because differen-
tiating, inverting, or multiplying triangular matrices we still get triangular
matrices). This knowledge induces a chain of deductions that allows us to «fill
in» with the proper blocks the two matrices on the right hand side of (13). The
diagonal of the first matrix on the right hand side of (13) must be 0 and this
forces the diagonal of the second matrix to be d. Since this second matrix is
upper triangular, we know that the lower triangular block is 0 and this forces
the lower triangular block of the first matrix to be b - . By skew-adjointness,
the upper triangular block of the first matrix is — b7 and this forces the same
block in the other matrix to be b, + b, completing the picture.



ANALYTIC DEPENDENCE OF ORTHOGONAI. POLYNOMIALS 295
The equality (12) written in the block notation (13) shows in particular that

\ — bt
Q'Q = 0 = b(T)
b_ AN

but this is the identity (10) we wanted to prove, so (7) is indeed a solution of (4).

Now we want to check that the solution 7'(¢) of the Toda equation defined
by (7) is the same 7(¢) defined in (2) as the representation in the orthogonal
polynomial basis {P; ,(x)] of the operator M,: f(x) = xf(x). To do that, notice
that we can write

(14) e?”Sy(bt)e " = e"R'RS,(bf)R™'Re” = 0S,(0)00~ .

Here, as in the first paragraph, S,(bt) is the partial sum projection operator
for the orthogonal polynomials P;,(x) € L*(e**'dp), while R~ " is the upper
triangular infinite matrix representing the coefficients of the «perturbed» basis
of {P;,(x)} in terms of the «unperturbed» one [P;,(x)], and finally Q(¢) is an
orthogonal transformation defined by

(15) o) = e”R™1(1).

Let us point out that the action of R is given by

(16) Y apo0 = ¥ ap. = Y ap,.

j=0 j=0 j=0

while the action of Q is given by

o0 Q (=] in =]
(17) Yo apio®) = Y 6p (€ = Y ¢p; ().

j=0 j=0 j=0
These last two diagrams show that S,(0) = RS,(bf)R ™', an identity that
we have implicitly used in (14). Also they show the orthogonality of Q.

We observe now that the matrix of 7°(0), defined as in (2), represents the

multiplication operator My in the orthonormal basis (P,,}. We also have

(18) b(T(0)) = Mbw

and
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(19) elb(T(O)) — e[Mb - Melb — elb

In the last step, we have simply used again the shorthand of indicating a
multiplication operator directly by the multiplicator function.

We observe that (15), because of (19), give us the QR decomposition of
T and therefore the Q appearing in (15) is the same one that appears in
the solution of the Toda equation (4). Because of the action of Q, we see that
the 7T'(¢) in (2) is the same as in (7).

4. The Role of Weighted Norm Inequalities

According to Definition 2 in Section 2, the sequence of operators {P,(b)} is
uniformly holomorphic in a neighborhood U of 0 € B if P,(b) is uniformly
bounded in operator norm and Gateaux-differentiable for b € U.

It turns out that, for the particular sequence of projections P(b) = €S, (0)e~°
which we are considering, the uniform boundedness in U implies also Gateaux-
differentiability. The idea that leads to this simplification is due to Coifman,
Rochberg, and Weiss [CR], and goes as follows:

We can write

M (P (b)f) (x) = s "Dy (x, y)f(»)dn(y)

where D, is the Dirichlet Kernel for the partial sums operator S,(0) relative
to the orthogonal polynomials on L*(dp). Let us fix b and multiply it by a com-
plex parameter z. We then have

d
@ {'E Pn(zb)f} ®) = S(b(X) — b)) "Dy (x, y) f()dp(y).

Notice then that

27
3) %ﬂemﬂmFMMrw
™

0

e "°do

1 o [P () — b()e?)
_ES
k=0

27 . k!

b(x) — b(y)
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Therefore we can write

d 1 2 . )
O] {EE Pn(zb)f] = ES S exp(z + €”) (b()— (b))} Dulx, y) f(¥)dp()e " db

0

which, using the notation P,, = P.((z + €”)b) can be written as
27

d 1 ‘
(5) {-—d Pn(zb)f} ) = — S (Puft )e™™ df.
Z 27

0
We are assuming by hypothesis
6) Ibll < 6 implies | Po(b)ll;2,2 < C

Therefore, choosing |z| < 1 and lIbll < §/2, we have

1 27
< -— § ”P,,g”LZ_,LZ df < c.
2 0

@ -2 Pucoy
dz 122 T
So the uniform boundedness expressed by (6) implies locally also uniform
analicity.
Notice that (6) can be seen as a weighted norm inequality for S, (0). In fact,
the assumption that for bl < & one has

”Pn(b)f“Lz(du) = CIIf”LZ(d“) fOI' all f € Lz(d[t)-
just by setting f = ePg, is seen to be equivalent to
(8) ”Sn(o)g”LZ(eZbd“) = CIlg”LZ(elbd") fOI' all g € LZ(eZbd‘L).

We will see that in many cases the partial sums operator looks essentially
like a Hilbert Transform, while e*® is a good A, weight when b has a small
BMO norm. This allows us to prove weighted norm inequalities like (8) using
the results of Hunt, Muckenhaupt, and Wheeden (see [HMW] and also [CF]).

In order to identify BMO also as the space of uniform analyticity at 0, we
need to prove, according to Definition 3 in §2, that

) b € BMO if and only if sup | An1(b, ®)ll 22 < .
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Let us compute the Gateaux differential that appears in (9). We have

d Pp(2b)
dr =" =0

d
—(e"S,(0)e" ")
dt " 1=0

be®S,(0)e~ " + 28,(0) (— be'®)
[b, Sx(0)] =0

So condition (9) can be rewritten asking that there exist c¢;, ¢ > 0 such that

(10) cilibll, = sup I[b, Sa(0)]ll 2,2 < 2B,

where we indicate with a * subscript the BMO norm.

Actually, the inequality on the right is a consequence of uniform holomor-
phy (which implies the boundedness of all derivatives), so we only need to prove
the one on the left.

S. Perturbation Theory of a Family of Orthogonal Polynomials
Introduced by Szego

In Szegd’s classic book [Sz] on orthogonal polynomials, the starting point
for the proof of his equiconvergence results is the study of a particular family
of orthogonal polynomials in L*(T, dp). The measure dp on the unit circle is
given by

1 db
@) du(6) =

g®) 2m

with g trigonometric polynomial of degree m and g(6) > 0 for all 6 € [0, 2].
It turns out that for any fixed g, even though it is not easy to find a closed
formula for the first m orthogonal polynomials, there is in fact a simple ex-

pression for them when the degree is greater than or equal to m. This restric-
tion does not affect Szeg6’s proofs, and will not affect ours either.

We have the following:
Proposition 1 The sequence {¢;(z)] of complex polynomials (normalized

with a strictly positive coefficient for z/) satisfying

— 1
2 Z_F—S_?j(Z)d)k(Z) m di = ok

(z = € in the integral) is given, when j = m, m + 1, .., by
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3 $i(2) = Z7"h*(2)

where h(z) is a complex polynomial of degree m such that

i0

) g0 = |h(@|? when z = e

and h* is the reciprocal polynomial of h, i.e.,
_ (1
o) h*(z) = z"h <?>

PROOF. The existence of representation (4) for the positive polynomial
g is a special case of a more general one, from H” theory, that holds in fact
for all f such that log f € L!(T). Notice that we can choose #(0) > 0 and A(z)
# 0for |[z| < 1.

We can rewrite (3) as
() 6i(z) = Zh@E™Y).

He_re, as before in (5), we use the convention that if A (z) is a polynomial
in z, h is the polynomial obtained from A by conjugating the coefficients

(not 2).

Plugging (6) into (2) we can easily verify the case j = k just remembering

that on the unit circle we have 7 = z~ L.

To prove the case j # k we actually show that

1 N — 1 )
7 - . - = — 10.
Q) o’ S_:b,(z)g(z) @ di =0 when z = e

for any polynomial g of degree j — 1. In fact we get

—( -1 J—1 =, -1
1 - Q(E ) dz _ 1 7 e@@™)
2mi SFZJ C) Gore @ ) hwm ©
2mi |, h@)

The last equality holds because we are integrating along the unit circle I’
a meromorphic function with no poles inside.
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Given a closed expression of the polynomials, one can give an expression
of the Dirichlet kernel of the partial sums operator (we refer to [Sz], p. 292,
for the algebraic details). In our case we have

h(eie) h(el\b) _ ei(n+ 1)(0~\0)h(ei0)h(ei\b)
®) D0, ¢) = 1 — &9 .

This expression is valid whenever n = m, and shows explicitly the
dependence of the kernel on the weight. Following our general plan we look
at P,(b) which is now given by

o 7O

gW) v

©) P.(0)S}0) = % g e’®D,(6, Y)e~
T

—%

LT e S@) (RE) ey hE)
2T S € 1—e"9 | h(E™) ¢ ) W

—l

= {(Pa(b) — P(B))S1 (6)

where
(101) [(Py{(b)ﬂ (0) — 2—]"”_ S eb(ﬂ)h(eiﬂ) ‘ltfi‘,lg—_‘b) e—b(\P)h(eiW)—l d‘p
and

(10 ”) [(Pn”(b)f} (0) - % S ei(n+ l)9+b(0)M l_fgﬁz_@ e—i(n+ l)\[z-—-b(ﬁ)m— ld¢/.

—7%

The operators in (10’) and (10”) consist of a singular integral (essentially
a Hilbert transform) conjugated by a multiplication operator on the left and
the inverse of the same multiplication on the right. Let us look at a third operator

(10 m ) [(le (b)ﬂ (0) = % S eReb(o)g(e)l/Z l_f.:f(o)_‘n e—Reb(\ﬁ)g(‘p) -172 d‘p

—x

which, by the result in [HMW], is bounded for e***®g(6)'/? € A,. This last
condition is satisfied when the real part of b(f) has BMO-norm smaller
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than some suitable 6. (See [GCRF]|, chapter 4, and notice that g(f) is a
polynomial without zeroes for every 6).

The same condition on b(#) implies uniform boundedness also for (10’)
and (10”), just noticing that they are both obtained from (10” ) multiplying
on the left by a complex function of modulus 1 and on the right by the inverse
of that same function. By what we have seen in the previous paragraph, for
this particular kind of operators uniform boundedness implies uniform
holomorphy, so the family of projections {P,(b)} is uniformly holomorphic for
b in a neighborhood of 0 € BMO.

By Kerzman-Stein formula (2.5), or also using the Toda Flow identities of
Section 3, the same uniform result holds for the self adjoint projections V,(b).

The next step of the plan consists in showing that BMO is in fact the space
of uniform holomorphy of the {P,(b)}, and, as we have seen in general, that
amounts to proving the inequality

(09)) cillblle < sup ll[b, Sx(0)]1l 122 2.

To do that we define

(12) LH®) = xx(®) A — ) hEY)
where I is a closed subinterval of [0, 27].

We have

AN
13) (b, S OO = — 5 ®© — b)) {h(e"’)—e"‘"*”“"”w} dy.
27|' I h(elh
By Riemann-Lebesgue lemma we have
1 . 1 .

(14) lim {[b, Sx(0)] £} 0) = > S(b(ﬁ)—b(lﬁ))h(e’”) dy = %rl—h(e"’)(b(ﬂ)—mz(b))

n—o I

where my(b) is the average of the function b over I. By Fatou’s lemma we have

do

asy |1 S | 50) — mi(b) | df < ¢ lim sup S | (B, Sa©@))f} @) |
I 1 |h(e”)]

n—o

Therefore (11) will hold if we can bound the right hand side of this by
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c|I|?sup li[b, S.0)]Il

where ¢ does not depend on n and 1.
Let o be the midpoint of 7; a straightforward computation allows us to
rewrite (12) in the form

16 /W) = ¢ sin L fi) + 09 cos L% fo(9)
where fi1 and f> do not depend on 6, and are given by
. . o d)/2 a— vy
(16”) fi¥) = —2ixi(Y)h(e¥) e cos —
. N a2 . E— Y
(16") L) = —2ixi(¥) h(e) e sin —
Using (16) and Schwarz’s inequality, we get
db
17 b, S (0 | ————
_ 2 172 de 172
. 2
< (SI sin d0> <§I| (b, $:(0)]/1}6) | ThEe™ |2 2)
_ 2 172 , do 172
+ (S, cos d0> (S1| {[b’ S,,(O)]fz](o) ' I h(em) | 2) .

This last inequality holds for every n, so we can take the upper limit of the
left hand side. Also, we notice that the right factors in the two terms on the right
hand side are, for k = 1, 2, exactly the L*>(dy) norms of [b, S.(0)]fx, since
du®) = |hE")| ~*db.

We have

do
(18)  lim sup 5 | (B, Sx(0)].f3}(0) | ThE | < [ 1% Al fill 2,

n—o

+ C2 | Il 172 A ”fZHLz(du)’

where ¢, ¢; de not depend on # or 7 and
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(19) A= sup I [b, Sn (O)] ”Lz(du)—'Lz(dp.)’
To complete our proof we only need to check that
(20) Ifill gy < es[I]Y2 and N foll g, < ca| I]°72

and this is easily seen to be true by our choice of f1 and f>.

6. Generalizations and the Role of VMO

In the previous paragraph we have proven that the family of orthogonal
projections

Va(b) = €®Su(b)e™": L*(dp) — L*(dp)

is uniformly holomorphic (Definition 2.2) for b belonging to a neighborhood
of 0in BMO. Also we have shown that BMO is the space of uniform holomor-
phy at 0 (Definition 2.3). Notice that our du is a measure on T expressed
via a non-vanishing weight of the form (5.1).

In fact, as long as we satisfy the proper estimates, we could have started
from a measure du, given by a weight with zeroes. The intuitive idea is that
a BMO function can contain unbounded logarithmic spikes (and the exponen-
tial of a negative spike can be 0); here we want to make this idea more precise,
getting an analyticity result that holds for a «starting set» of orthogonal
polynomials more general than those of the form (5.2).

We need first to introduce an important closed Banach subspace of BMO
It is called VMO (Vanishing Mean Oscillation) and is defined by

(1) VMO = {f € BMO: lim M,(f) = 0}
a—0
where
1
2 M.(f) = sup -——S | f() — fi1] dx.
[I]=a |“ 1

As usual 7 denotes an interval and f; the average of f on I. Notice that, with
this notation, the usual BMO norm is given by

3) Ifle = lim M(f)

a— oo
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This space has been studied by Sarason, and in [Sa] one can find the state-
ment and proof of some basic properties; we are going to use, in particular,
the fact that VMO is the closure, in BMO-norm, of the subspace of continuous
functions.

Lemma 1' Given a real-valued function v € V.M.O. (T) one can find a se-
quence of strictly positive trigonometric polynomials g;(0) such that

lim

joeo

- ()l -0

PROOF. Continous functions are BMO-dense in VMO and since
i fIl« < 21l fllo we only need to show that for any real-valued 3(6) € C(T) one
can find a sequence of strictly positive trigonometric polynomials g;(6) such that

) 1 _
4 llirg Iﬁ'(@) — log (gj(ﬂ)) ”uo =0
we have
©) | 6(0)—10g( ) | = |log(gi(0)e*?)| = |log(1 + €"?(g;()—e"?))| .
g0

And the compactness of T implies the existence of two positive constants
¢1, ¢z such that

(6) C < eﬁ“” =C.

But this implies that the quantity in (5) can be made uniformly small just by
uniform approximation of the positive continuous function e *® with the
positive polynomials g;(6).

Lemma 2 The radius of analycity é for the mapping relative to the orthogonal
polynomials (5.2) does not depend on the particular g(6) contained in the
weight.
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PROOF. Going back to the previous paragraph, we notice that we have
analyticity for those functions b € BMO wich satisfy

™) "t \Jg(6) € A, .

It is a property of A, weights to be invariant under multiplication by func-
tions bounded away from 0 and infinity (see [GCRF], chapter 4). On the other
hand the first factor in (7) is an A, weight in general only if lIRe bl < 6.

Remark. If one makes additional assumptions on the nature of b, one
can find functions with large BMO norm whose exponential is still in 4, . This
surprising fact is well illustrated by a theorem of Garnett and Jones which says
the following

@®) A(b) = sup(\ > 0: e € A,) ~ (dist (6, L)),
BMO

where the symbol « = » means «same order of magnitude» and where

) dist (b, L™} = inf{llb — fll«: f € L™},
BMO

In particular, the exponential of any VMO function (regardless of the BMO
norm) is an A, weight.

We can now state our general results as follows

Theorem 1. The uniform analicity of the mapping b — V,(b) holds for
all orthogonal polynomials on L*(dp) where dy. is a measure on T of the form

(10) du(8) = X®+E0) s
27

with ~(0) any real-valued VMO function and 3(0) a complex-valued BMO
function such that

(11) IRe Bllsx < &

where 6 is the radius of analyticity for the Szegé polynomials (5.2).

The new radius of analyticity, if we start from the polynomials relative to
the measure (10), is given by

(12) 5 = 6 — IRe Blls
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PROOF. Let us fix some BMO function g satisfying (11). We know that
starting from a measure of the form (5.1) we can expand V,(b)f into a series
of multilinear operators (2.8) satisfying an estimate (2.9). Let us define a new
«starting space» for our perturbation

1 db
2 _ r2 2B(0)
(13) L) = L (e & 2 )

Then let us denote, according to the notations of Section 2, by S, and V, the
projections relative to the L? space in (13), while we denote the same projec-
tions relative to the 8 = 0 situation by S? and V,?. We have

Sx(0) = S3(B)
(14) Sa(b) = Sp(b + B)
Va(b) = e’S2(b + B)e™"

where the operators in the «new» space are expressed in terms of those in the
«old» space. Using these identities we can write

b 0 —(b+
(15) ” V”(b)”Lz(d;t)-*Lz(du) = He +BS,,(b + B)e ( +“”L2(g)—'L2(g)

1 df
where we denote by L?(g) the space relative to the measure — — — .
g 2w

By the results of Section 5, we have uniform holomorphy for V,(b) if
(16) IRe(d + B)llx < &

and this holds for any 4 whose real part has BMO norm less than the 6’
in (12).

Finally, lemma 1 and lemma 2 imply that we can substitute 1/g(6) in the
right hand side of (13) with €*'® where v € VMO. We remark that weights
of the form (10) can have any number of zeros (only with restrictions on the
rate of decay of the weight around each zero).

7. The ~ Operation on Infinite Matrices Expressed Via the
Hilbert Transform and a Remarkable Bilinear Operator

Starting from our knowledge of the operator-valued function

b — Va(b)
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and given the identities (3.14-3.15), i.e.,
Va(d) = €’Sn(b)e™" = Q(1)S.(0)Q(b) !

where
Q) = e"R™'(b)

is an orthogonal transformation depending on b € BMO, it is a natural problem
to study the mapping

0] b — Q(b).

The first step of this study is to compute and understand the Gateaux dif-
ferential of (1) at 0. We claim that

d _
(0] _cFQ(bt) |0 = Ms

where M, is the operator of multiplication by b and M, is defined as in
(3.5-3.6).
In fact, by the Kerzman-Stein formula (2.5) we have

Va(b) = Pu() I + Pn(b) — Pu(— b)) ™"

therefore

d d d
(3) _f Vn(bt) | t=0 — —Pn(tb) [ 1=0_Pn(0) P,,(l‘b)——P,.(—tb)} ' =0

d dt E{
[b, Sx(0)] — SA(0) {[b, Sx(0)] + [b, Sx(0)]}
(I — 25,(0)} [b, Sx(0)]

[Mb, Sn(O)J .

The last equality can be checked by writing the operators as infinite matrices,
remembering that S,(0) is the identity on the first (n + 1) X (n + 1) entries while

) b = My = (mx) implies M, = (sgn(n — k)mux)
Because of identity (3.14), we have

©) [0(0), S(0)] = [Ms, S.(0)]
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and since this commutator equality holds forn = 0, 1, 2, ..., and Q* = — Q,
we can conclude that

Q(0) = M,.

While studying the explicit form that the operator M} takes for some explicit
sets of orthogonal polynomials, we discovered a remarkable formula. It is an
operator identity expressing the operation ~ on infinite matrices via Hilbert
Transforms on the circle, and via the bilinear operator

(6) B, f)(x) = »L S b(x — 6) f(x — 26) cot i db .
27 2

Notice that it is still an open problem to establish whether operators
like (6), or their analogues on the real line, are L?-bounded for b € L*
(or b € BMO).

The context in which the formula arises is cosine polynomials (Chebychev
polynomials after a change of variable).

Consider the L? space of functions of the form

©) f) = Y fj cos jx (bj € C)

j=0

and the multiplication operator

@® Mpf](x) = b(x) f(x)

where

) b(x) = Y, bj cos jix (bj € C).
i=0

The operator M}, can be represented in the basis {cos jx] by an infinite matrix
(10) My = (mnx) nk=0,1,2, ..
and we can define
11 My = (—i sgn(n — k)max)

which is the usual definition, apart from the constant factor — i.
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Introducing a new variable 6, we can write an integral expression for M,
in fact

_ 1 [ 6
(12) My = — | UMyU_,cot — db
27 . 2
where
(13) U f = E e 7§ cos jx,
ji=0

U_of = Y, ”f; cos jx.

Jj=0

Now, we have

(14) U_,f= Y fi(cos jb cos jx + i sin jé cos jx)

j=0

cos j(x + 0) + cos j(x—0) N sin j(x + 0)—sinj(x—0)>

=.Ef’< 2 2
j=0

1
= TS + Tof + i(T_Hf — T,Hf)

where
(15) (Tof}(x) = fix — 0)

and Hf is the Hilbert Transform of f (on the circle).
A similar computation shows that

1

(16) Uy f = TET—af + Tf — i(T_oHf — T,Hf)].

Using (14) and (16), let us compute the operator U,MpU_,;. In what
follows, in order to make the notation less cumbersome, we will simply write
M for M. We have
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(17) 4U,MU_, =
U,IMT_, + MT, + i(MT_,H — MT,H))

T_,MT_, + T_yMT, + iT_yMT_,H — iT_,MT,H

+ T,MT_, + T,MT, + iT_,MT_,H — iT,MT,H
—iT_,HMT_,—iT_,HMT, + T_,HMT_,H—T_,HMT,H
+ iT,HMT_, + iTyHMT, — T,HMT_,H + T,HMT,H.

If we plug these sixteen terms back into (12), we notice that the eight terms

0
giving the real part cancel after integration against cot 7(10. In fact, we have

(18) (T_MT_y + T_MTy + TrMT 4 + T,MT)f}(x) =
=b(x+0)f(x+20) + b(x + 0)f(x)
+ b(x—0)f(x) + b(x—0) (x— 20),
and these four terms define an even function of #, which in the integral is

multiplied by the odd function cot 6/2.
Similarly, the other four real terms applied to f give (using the notation

Hf = f)

(19) HOb(x + 0)f(x + 20) —b(x + ) f(x) —b(x—0) f(x) + b(x—0)f(x—26))

0
and these cancel, too, if we assume that the integration against cot 5 df can

be done before the Hilbert Transform H in the x variable.
Let us now look at the other eight terms in (17); they are

0) i(T_,MT_,H — T_,MT,H + T,MT_,H — T,MT,H
— T_,HMT_, — T_,HMT, + T,HMT_, + T,HMT,)

and applying them to f(x), we get

(1) 4Im{(U;MU_p)f}(x)
= b(x + 0)f(x + 20) — b(x + 0)F(x) + b(x—0)Ff(x) — b(x— 6) f(x—26)
+ H{—b(x + 0)f(x +20)—b(x + 0) f(x)
+bh(x—0)f(x)+b(x—0)f(x—20)].

Plugging this expression into (12), and making the change of variable
0 — — 6 in the four integrals that contain x + 6 or x + 26, we get
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(22) Mf = -; {Zf(x) S b(x—60)dm(6)

—2 S b(x — 0)T(x — 20)dm(0)

+ <2f(x) S b(x—-0)dm(0))

+ (2 S b(x-—0)f(x—20)dm(0)) }

where we have used the notation

6 dob
23 dm(@) = cot — - —
(23) m(0) = co > 5m
and dm(f) lives on [0, 27].

The final formula is

2T

4 [Mfi(x) = L {f'(x)b"(x) _ b S b(x — 0)f(x — 26) cot i db
2 27 2

0

+ (f8)” (x)
(1 )
+ — b(x —0)f(x —26) cot — db .
2w 0 2
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Harnack Inequality and
Green Function for a Certain
Class of Degenerate Elliptic
Differential Operators

Oscar Salinas

Introduction

The main purpose of this work is to obtain a Harnack inequality and
estimates for the Green function for the general class of degenerate elliptic
operators described below. Let

0.1) Lu = — Y, Di(a;Dju),

ij=1

where A = [aj;] is symmetric, measurable and satisfies the following ellipticity
condition

n

0.2) v LN@E = Y a0 < wo) LN WE,

i=1 i,j=1 i=1

for every £ € R" and almost every x in an open bounded set @ of R". The func-
tions \; are defined on R” and satisfy

03) M =1 N&® = NG, ..., x,_) € CR") [ C'(R" —II) where

I = {xe R :J[x = o} for j=2,..,n

i=1

313
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(0.4) )\j(X], veey Xiy euny j_,) = )\j(Xl, veey = Xiy oeny xj_,), i = 1, ,J — 1

(0.5) 0 < Nj(x) = Aforeveryxe R" —1II,j = 1, ..., n. Moreover, there
exist non-negative numbers bj;; such that

0= x,-(D,-)\j) x) < bjin(x)
fori =1,..,j—1,j =2, .., nand for every x ¢ R" — II.

A vector (A1, ..., A\n) satisfying these properties generates a distance d and
a quasi-distance 6 on R” in such a way that (R", d) and (R", 8) become spaces
of homogeneous type with the Lebesgue measure (see [CGJ, [CW] and [C]) and,
moreover, there exists a constant @ > 1 such that 2~ '8 < d < aé (see |FL1|).
The conditions on the pair of weights (v, w) can now be stated in terms of this
geometry. Given «a € (0, 1] and ¢ > 1, we introduce the class S, , as the class
of pairs (v, w) such that satisfy

0.6) 0 < v(Q), w(Q) <  for every é-ball Q C Q, where

w(Q) = S w, v(Q) = S v,
o] Q
(0.7) there exists C > 0 such that
1/20
(M—QQ—) '@ N @) = Cl]'|0]"
w(Qo)

for every Qo and Q é-balls in Q such that radious (Q) < 8 & radious (Qo).
Examples of operators satisfying the preceeding conditions are the following

(0.8) Lu = — div(d(0, x)°Di1u, d(0, x) " ? | xi | "Dru)

for x = (x1, x2) € R, v > 0 and 8 > 0. Since our results will apply when
Jj—1
a€(l—(XG) 1), (G =1andGj =1+ Y biGi,j=2,..,n),
J

i=1
we get Harnack’s inequality and estimates for Green’s function for the operator
L in (0.8) when

2+y 4 2+ 8

I _1@d+pe—a

We point out that our results contain as special cases those in Moser ([M]),
Fabes, Kenig and Serapioni ([FKS|), Fabes, Jerison and Kenig (|FJK]),
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Chanillo and Wheeden ((ChW2|), Franchi and Lanconelli ([FL2|) and (|[FL3])
and Franchi and Serapioni ([FS]).

In Section 1, we present a brief survey of results of the particular geometry
introduced by Franchi and Lanconelli. Section 2 is devoted to the construction
of a family of é-balls which resembles the dyadic cubes. In Section 3, we prove
Sobolev and Poincaré inequalities. Section 4 contains an analysis of the rela-
tions among our conditions on (v, w) and those in the work of Chanillo and
Wheeden. Finally, Section 5 contains the statements of the results about Har-
nack’s inequality and estimates of Green’s function.

1.

In this section we give the definitions of the natural distance d and the quasi-
distance 6 and state its basic properties.

Let us start introducing the notions of A-subunit vector and N\-subunit curve:
a vector v = (y1, ..., y») € R" is a N-subunit vector at a point x if

n 2 n
(E'ﬁ&) = Y N@E ey g e R
j=1

Jj=1

we say that y: [0, T'| — R" is a \-subunit curve if it is an absolutely continuous
curve and (¢) is a A-subunit vector at y(¢) for a.e. ¢ € [0, T].

Definition 1.1. For any x, y € R" we define d: R*"xR" = Ry as
d(x,y) = inf{T € R": there exists a \-subunit curve ~:[0, T| —» R",
() = x, y(T) = y}.

Remark 1.2 (J[FL1], [FL3]): d is a well defined distance. In fact our hypotheses
on A = (\g, ..., \») guarantee the existence of a A-subunit curve joining x and
y, for any pair of points x and y.

Four our purposes it is useful to introduce a quasi-distance 8, more explicitely
defined and sometimes easier than d to work with.

If x€ R"and t € R put Ho(x, t) = x and H,, ,(x, t) = Hk(x, 1) +
Ny 1 (Hic(x, £))e . for k = 0, ..., n — 1. Here [ex}} _, is the usual canonical
basis in R". It is clear that the function s = Fj(x, s) = sNj(H,_,(x, $)), is
strictly increasing on (0, «) for any x = (xi, ..., X») such that x; = 0,
k=1,...,j—1,andforj = 1, ..., n. Hence it is possible to define the inverse
function of Fj(x, -), that is ¢;(x, -) = (Fi(x, -)) ' forj = 1, ..., n.

Definition 1.3. For any x, y € R" we define 6: R"x R" — R¢ as
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=1

60r,y) = mix ¢;(c*, | —yil)
where x* = (|x1], .oy |Xn])-

The following two Lemmas contain the basic properties of the functions
Fj, ¢j, d and 6.
Jj—1
Lemma 1.4. Put Gy = land G; = 1 + Y, Gibji forj = 2, ..., n. Then

i=1
(1.5) forevery xe R", s >0, 6 €(0,1) we have

(x*
g0 < L1050y

Fi(x*, 5)

’

< Bi(x*, 0s) < 66 .
®;(x*, 5)

(1.6) if x = (X1, <oy Xu) and y = (V1, ..., yn) Verifies | yi| + Fi(y*, 05s)
< |xi| + KFi(x*,s),i =1, ..., j, forsomes > 0,0 € (0, 1] and K = 1,
we have

FaG% 09 _ ppe -1
F;,(x*, )

PROOF: For (1.5) see Proposition 4.3 of [FL2]. Let us prove (1.6) from (0.5)
we get that \;, | is increasing in each variable on (x € R":xx = 0 k =1, ..., j],
then
Fi (%, 05) = OsNj ([ i | + Fi(y*, 0s), ..., |yi| + Fi(y*, 05))
< 0Ny (| x| + Fi(x*, Ks), ..., | x| + Fi(x*, Ks))
< 0K% T FL, (%, 9),

the last inequality follows from (1.5).

In the sequel we shall use the following notation for d-balls, é-balls and
their dilations
S, n ={yeR"dx y <1,
O, r) = [{yeR"5(x,y) <17
aS(x, r) = S, ar),aQx,r) = Qx, ar),a > 0.
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Lemma 1.7. There exist constants a, b, A € (1, «), depending only on n and
the constants in (0.5), such that

1 d(x,
1.8) — < ——(—l)— < a, forall x,y,
a 6(x, »)

1
1.9 - |x—y| =dx,p» <blx—y]|”

if |[x—y| =1, where 3 = min {1/G;};
J

(1.10) |2S| =A|S]|, |2Q]| = A| Q| forany d-ball S and any §-ball Q.

PROOF: For (1.8) see Theorems 2.6 and 2.7 in [FL1]. (1.9) and (1.10) follow
immediately from the above Lemma and (1.8).

2.

Here we shall construct families of é-balls that resembles the family of dyadic
cubes. Let 7 be the set of all n-tuples s = /;...[, with ; = —1, 0, 1;
i=1, ..,n ForkeZ2;l;=—1,0,1;j;€Zandi = 1, ..., n, define

TF: R" = R"; Tf(x) = x + 2%y,
TS, R = RN T, (0 = TF, 0 + LF(T (0% 2k)e,

and

x, = @1 — ) 2¥e,
Xi g = i + ot xfln-.l'j_, + (2-1’_ I)F"(x,:jll’ Zk)ei-

For k € Z and s = [;...l, € 7 given, the family of é-balls
D" = (Q(T} 0,5, 2) tjk €25 i =1, .., 1

is an a.e. covering of R".
The following Lemma states the main property of these families.

Lemma 2.2. For X = (X1, ..., Xn) € R" and r > 0, there exists s € 7
and Qo € D** with 2*=' < 2r < 2* such that
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(2.3) Q9,1 C Qo,
(24 |Qo| = C|Q, r) |, where C is independent of %, r, k and s.

PROOF. It is obvious that there exists a center ¢; of a é-ball belonging to
D**, with sy = 1...1, and a /; in {— 1, 0, 1} such that

x1(TF 1 (c1)) € [B1 — Fi(®*, 0, & + Fi(%*, 1)
S [ (THcr) — Fi(TFce)*, 25), xi(THe) + Fu(THen*, 2%)),

where x1 (T (c1)) denote the first component of T} (ci). Now, let us sup-
pose that we have determined b, ..., I, and ¢;, with Q(c:i, 2%) € D*%,
si=Mh.._;1...1,i =1, ..., min such a way that
2.5) xj(c) = X(Tf ()i =1, o, i—1,

X(TE _(c)) € [f — Fi@®*, n), % + Fi(%, 1)

C ba(TE y(e) — Fi(TE i e)*, 2°), x(TF i (c) + FiT y(ci)*, 2%).
Then

| %] + Fi@*, 0D < |[x(Tf @) + F(TE )%, 2),
fori = 1, ..., m. Now, by using Lemma 1.4, we get
Frp 1 &%, 1) < 2F, (TF 4, (cm)*, 25).

From this inequality it follows inmediately that there exists a center c,,,, of a
é-ball in D%, where s,,,, = li...lm1...1, and a value of 1,1 such that (2.5)
holds with i = m + 1. The inductive process continues to obtain (2.5) fori = n.

Then, taking ¢ = TF ;, (cx), Qo = Q(c, 2¥) and s = I;... 1., we get (2.3).
Finally (2.4) follows from the choice of k and the doubling property (1.10).

The main results of this section are the following.

Theorem 3.1. Let 8 > 0, fixed, let Q = Q(X, r) be a 6-ball such that
Q C Qand let (v, w) € S, , for a given a € (1 — (E G,) ! 1] Then, for
each u € C'(Q) such that verifies
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(B2 |xeQ:u@=0]| =8|0],

we get

1 1/2¢ 1 172
(3.3) (_”_S |u|2"wdx) < Cr(———»-g Iqulzvdx> ,
w@) ), (@) J,

where C depends only on n and the constants in (0.5) and (0.7), and
Vyu = (MDru, ..., \uDyu).

Theorem 3.4 (Sobolev inequality). Let Q and (v, w) be as in the above

1
theorem. Then, for any u € C§ <3 Q) we get

1 1/20 1 172
(3.5 (————— S | u| 2"walx) < Cr (—«—~ S [ V,ul vdx) ,
W@ i V(D) Jing

where C depends only on n and the constants in (0.5) and (0.7).

Theorem 3.6 (Poincaré inequality): Let Q and (v, w) be as in Theorem 3.1.
Then, for any u € C*(Q) we get

1 1/20 1 172
(3.7 (———-—— g ]u-—uQ|2"wdx> < Cr( X |qu[21/a’x) ,
w@) J, v(@ ),

' where ug = S uwdx and C depends only on n and the constants in (0.5)
and (0.7). o

The proof of Theorem 3.1 is based on an estimate of # in terms of certain
fractional integral operators applied to V,u and on a norm inequality with
two weights for these operators.

Let us start with the definition of these operators.
Definition 3.8. Let k € Z, s € 7 and u € (0, 1). We define

10

0 if xeR"— |J @
QEDl.s

1
—TITS |f») |dy, if xe€ Qe D"
(P ) = 0
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for fe LL.(R").
Now, with these operators, we can prove
Lemma 3.9. Let 3 > 0, fixed, and let Q = Q(X, r) be a 6-ball. If u € C'(Q)
verifies
|x€e Q:ux =0} =8]|0Q]

then, for each p € (1 — (EJ Gj)™ Y, 1] there exist a sequence {a;};7-;, C R*
depending only on p with Y, a; < «, a sequence of integers (ki} depending
only on r and a constant C such that

lu)| = Cr|Q|" 'L a L@ (xo| Viu| )@

i=1 SET

Sor all x € Q.

PROOF. By using similar techniques than those in Lemma 4.3 in [FS] and a
dyadic partition, we get

2a°r 1
(3.10) |u@| =< G S ——— § | Vu() | xo(»)dydt
0 | S(X, t) l S(x,Cot) '

a*r

2i-2 dt
CoI'E (s‘” | Sex, 1) | '_“)

2

IA

1

a*r
| S (x, _T__1>
2
for all x € Q. From Lemmas 1.7 and 2.2 follows that for each i there exists
ki€ Z, s € 7and Q; € D' such that

| Voau(») | xo(»)dy,

§S(x, Coa®r/2'°%)

3

2kl < ———w—c;.:r < 2%,
Coa’r

S X, _“F“ C Qi3

s

Coazr
ol =c|s (s $27)
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On the other hand, by (1.5) and (1.8), we get | S(x, tr)| = ct*® | S(x, ) [
for ¢ € (0, 1]. Then, taking ip € N such that ¢®/2°~' < 1 < a®/2"72, we
obtain from (3.10)

2

“o([7 dt 1
lux)| = Cr § <S_ (sG] ,_u> L L.Iqu(y) | xo(»)dy
2i-—| i

aZ

1 ([T ~Cop—w 1
b £ dt|—— | [V | xedy
[SCe, ]’ ”,~=§1 <S—"—, ) ‘Qi“ggil '

<Cr|Se, D" L a L@ (] Vau| vo)) ()

i=1 SET

. . (~D[e—1(ZG) +1] .
where @; = 1 fori =1, ..., ip and a; = 2 T Thus, since

|Q| = |S(x, r)| we get the thesis.

Remark 3.11. From the proof is easy to see that 2% = 8a’r then
Q C S(%, ar) C S(x, 2ar) C S(x, Coar/2'~?) and thus

! —

P (| Vu ] x0) () =

I I#VS IV)\uldy
Q

©

1

In the following Lemma we prove a two weight norm inequality for the
operators P: **. The proof is based on techniques of E. T. Sawyer (see [S]).

Lemma 3.12. Suppose ] < p < q < . Let E C R" be a bounded open
set and let (v, w) be a pair of non negative integrable functions defined on E.
Then

1/q 1/p
(3.13) <§ IPf”fl"wdx) sc(,(g |f|”vdx> ,
E E

Sor all f € LP(E, vdx) with supp f C E, if and only if
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I r

1/p—1 1=1/p
l_p_l(_g ﬂ Q)> =< Co

(3.14) wE N Q)Vq<

for all Q € D**. The constant Co in (3.13) and (3.14) is the same.

PROOF. For sake of simplicity P, and D denote P,f’s and D" respectively.
Now assume that (3.13) holds. Let us first show that v="% "Dy, €
LP(E, vdx) for Q € D. Suppose this is not the case, then since

S v Ve gy = S v PPV ydx = oo,
ENQ ENQ
we can find a g in L?(E, vdx) such that

S gv lvdx = oo,

ENQ

which is a contradiction with (3.13) taking f = g on E for every Q € D. We
get (3.14) by taking f = v~ ""?"Vxg, ¢ in (3.13). Conversely assume that
(3.14) holds. Then

S |P.f| wdx = ), S <|_Q1FS |f|dy>qwdx
E QeD JENQ e

—/=Ng qp—N/p a’p
Y wE N 0 (” I;I“m Q’) (S lfl”vdx) .
QeD o)

IA

Finally, from (3.14) and the fact that,

Y (ngpudx)q/p < (}: §Q|f|l’udx>q/p

QeD QeD

for ¢ = p, we obtain (3.13).
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PROOF OF THEOREM (3.1). From Lemma (3.9) we get

1 1/20
(——— § |u|? wdx)
w(@ |,

1/20
“|Qll—u2 E( _5 Pf"s(|qu|><Q)|2”de) .
0

SET

Now, the inequality (3.3) follows by applying (0.7), (0.8) and Lemma 3.12 for
the k; such that 2 < 84%r and the Remark 3.11, the Schwartz inequality and
(0.8) for the remainders.

PROOF OF THEOREM 3.4. We need only to apply the above theorem in the
ball Q, keeping in mind that, by the doubling property (1.10), it follow
inmediately that | Q — (1/2)Q| = | Q].

PROOF OF THEOREM 3.6. With Q and u given it is always possible to
find a number b = b(Q, u) sich that Q" = {x € Q:u(x) = b} and @0~ =
[x € Q:u(x) < b} verifies

1 1
@19 o] =10l and |Q| =0l

Assume this fact, then both functions (« — b)* and (u — b)~ satisfy the
hipotheses of Theorem (3.1) with 3 = 1/2. By that Theorem we get

1

—_— S |u — b|*wdx < (CH* (—1—— g |qu|2udx> ,
w@Q) - w(@Q) J,-

adding these two inequalities we have

1

— S |u — b|*wdx = 2(C* (—1— S IV)\uizudx> .
w(@ J, (@) J,
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Then, since

1/20
(g |u — ug| 2"wdx)
Qo

IA

1/20
(S | u — bl”wdx)
Q

+ (W(lé) SQ I u — bl de> W(Q)l/zo

1/2¢
2<§ |u—b|2"wdx) ,
0

we obtain the thesis. Let us prove (3.15). Observe that the two functions
é() =|lx € Q:ux) = | and Y(®) = |{x € Q:u(x) = 1}| are respect-
ively increasing, right-continuous and decreasing, left-continuous. Define
b = inf {:¢(f) = 1/2| Q|} then by the right-continuity ¢(b) = 1/2| Q| .
Suppose now, by contradiction, that ¥(b) < 1/2| Q| . Then by the left-
continuity there is ¢ < b such that y(z) < | Q| /2, so that ¢(t) > | Q| /2
and this contradicts the definition of . Finally (3.15) holds.

A

In [FS], B. Franchi and R. Serapioni prove inequalities of type (3.3), (3.5)
and (3.7) for the case v = Cw. The assumption on the weight is that w € A,
respect to the d-balls, i.e.: w(S)w™'(S) = | S| ? for all d-ball S. Inequalities
of the same type for the euclidean case, i.e.: \; = 1 for all i, have been proved
by S. Chanillo and R. Wheeden in [ChW1]. The hypotheses on the pair of
weights in that work are the euclidean case of

(4.1) w € D« respect to 6- balls, i.e.. w(Q) = w(2Q) for every 6-ball Q
(4.2) v € A, respect to 8-balls, i.e.; v(Q)v ™' (Q) = | Q| ? for every §-ball Q

(4.3) there exists ¢ > 1 and C > 0 such that

6y 4 1/20 172
(L@Q_l) ’ w(69) > <C (3509—)-) , for every 8-ball Q, and 8¢ (0, 1],
w(Q) v(Q)
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We say that (v, w) belongs to C, if (v, w) satisfy the conditions (4.1), (4.2)

“and (4.3). The main purpose of this section is to find relations among the con-

ditions of type A, and C, and the condition S, ,. We begin with the follow-
ing result.

Lemma 4.4. Let (v, w) € S, for some a € [I — (£;G;)~", 1] and Q = R".
The (v, w) verifies (4.2) and (4.3).

PROOF. By taking Qo = Q in (0.7), we get v(Qo)v ™ "(Qo) = C| Qo | 2 and
thus v satisfy (4.2). Now assume that « = 1 — (Z;G;) " then, from (0.7), we get

1—(ZG)!

( w(eQ)

1/20 (Zey-!
-1 1/2 < J
w0 ) v~ 'OQv)'* = C| Q]| |60 |

for any é-ball Q and any 6 € (0, 1]. From this and Hoélder inequality follows
(4.3), in fact

160] \59 [ weQ) | 160
= C -1 1/2
o] w(Q) ™' (0Q)»(Q))

<C ( v(60) )UZ.
v(Q)

Now, to complete the proof, it is sufficient to prove that if a;, a2 € (0, 1]
and a; > axthen S, , C S, ,,. Note that only is necessary to prove that (0.7)
with & = a holds. This is trivial if w(Qo () Q) or v *(Qo () Q) is zero.
Assume that both w(Qo (| Q) are positive. The inequality in (0.7) with @ = oy
is equivalent to

| Qo | )a' | Qo ( w(Qo) )ma
4.5 <=C .
@3 ( | Q]| @ Qo N Ov(Q)'* \w(@Qo [ Q)

On the other hand, since Qo (| Q # ¢ and radious (Q) < 8a* radious (Qo),
the doubling property (1.10) allow us to write
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(_l_QoI) SC( IQol)
0] Q|
with C independent of Qo and Q. From this and (4.5) follows that

w, w) €S, -

We shall next show that condition C, implies a condition S, . In the proof
of this fact we shall use the following result.

Lemma 4.6. Let (v, w) be a pair of non negative weights satisfying (4.1) and
(4.3). Then there exist n € (0, 1) and o’ € (1, o) such that the inequality
(4.3) holds with (£,;Gj)/n instead of £ G; and ¢’ instead of .

PROOF. Since w € D, we get

w(Q)

Il

T
/)
N
L

+

<
N
©Q

I

0| —
L

vV

+

>

&3
—/
N | —
S

for every é-ball Q. By iteration we have a 8 = 1 such that

w(bQ)
w(Q)

@.7 > C0® for every 6 € (0, 1], and every &-ball Q.

On the other hand, from (1.5) it follows that

02101

[6Q| = | Q| for every 6 € (0, 1], and every &-ball Q.

Then, this inequality (4.7) and (4.4) allow us to obtain the inequality

< |60 | >(?G’)_l“_‘ﬁ’ (w(fg) it - C( |60 )@G,-)“u—eme66 (w(BQ))%
\ ol w(Q) = 0] w0
-1 1
c( |60 | >(§G” <w(0Q))75
Q] w(Q)

»(0Q) 12
c )
( v(Q) >

IA

IA
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for all € (0, 1], e > 0, and all é-ball Q. Finally, by taking € in (0, min {1/8,
g

(1 — 1/0)/20}), we get the thesis withn = 1 —efand 6’ = ———.
1+ 2e0

Lemma 4.8. Let (v, w) € C,. Then (v, w) € S,. , for some o € (X;Gj)” L]
and some ¢’ € (1, o).

PROOF. We only need to prove (0.7). Let Qo = Q(xi1, r1) and Q = Q(xz, r2)
be two 8-balls such that r, < 8a’r;1. If Qo (| Q = ( there is nothing to prove.
Assume Qo (| Q # &, then there exists Ci = Ci(a) > 1 and G2 = C2(a)
such that Qo C Q = (Ciri1/r2) Q C C2Qo. Now, let ¢’ and 5 be as in the
above Lemma and § = r»/Cyr,. Then, from (4.1), (4.2), (1.10) and Lemma 4.6
it follows that

1/2¢"
(~~%9) @™ (Qo ) Q(Qo)?
< W(OQ) v -1 ~ A\ 1/2
< c(w@) ' 60)v(D))
) C< 2 )(?Gj)_lﬂw-l(oQ)va*»‘”
160 |
- (ZEG)™ ~ 1—=(ZG) ™
<cl|g]7” "eg| "
(£G) ' 1—(ZG))
=C|Qo| "’ Q| .

Thus, (v, W) € S, , With @ = 1 — (£;G)) ™ 'n.
Now, by using the above result, we get

Lemma 4.9. Let w € Az with respect to d or 8-balls. Then (w, w) € S,
for some ¢ > 1 and some o« € (1 — (£,Gj)™ ", 1].
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PROOF. From the previous Lemma, we only need to prove that (w, w) € C,
for some ¢ > 1. We know that

w(0Q) w(OQ)w™1(Q)
> C > C
wQ) - IR IR

Ko

for all # € (0, 1] and all é-ball Q. Then, by taking ¢ > 1 such that
/6 > 1 — (£;G;)" ", we get

(, |6Q| )‘?Gf)_l (K@)ZL ~ ( |60 | )(go,-)" (w(oQ))zl—,*%—%
o] wo | ~ o] v ©)
! -1, 1
- C(w(ﬂQ))E( |60 | >(§cj) .
BN Q]

o[22y
w(Q)

wQw™'(0Q) C( |60 | )2

Thus (w, w) € C,.

Let us describe some examples of pairs (v, w) that satisfy the hypotheses
(0.6) and (0.7) for any A;, ..., N\, in the conditions (0.3) to (0.5).

EXAMPLE 4.10. In [FS], Franchi and Serapioni prove that d(0, x)® for
B € (— n, n) is a weight in A, with respect to d-balls. In particular they prove
the following inequalities

IA

4.11) 5 d(0, x)Pdx < [d(0, y) + rB|B|1°| S, |
S(y,r)

if d(0, y) = 2r,

IA

S d, x)Pdx < cr’| Sy, n|,
S,r)

if d(0, y) < 2r.
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These facts allows us to prove that there exists values of 8 in (0, n) such that
v(x) = d(0, x)® and w(x) = v(x)~! belong to a class S, ., for some o > 1
and some « in (1 — (Z£;G;) ", 1]. Since both v and w belong to A, we only
need to show that there exists ¢ and « such that (0.7) holds with S instead of
Qo and 6S instead of Q for any 6 in (0.1], where S is any d-ball. Let us now
prove this fact. First, note that, by the A4, condition, we get

i i(l + l)
w(6S) ) w@S)w™'(8)> °

4.12) ¥ 0l 0S)rES)Y? < C©
w(S) - |S|12

foralle > 1. Let S = S(y, r). If d(0, y) = 2r, from (4.11) we get

1 1
WS-y Y - 3ﬁ|ls|'—%0+£)|os|%°+5)
|S|1/o - .

On the other hand, if d(0, y) < 260r, from the same inequalities and Lemmas
1.4 and 1.7 it follows that

(1+2) (1+3)

1 1
w@OS)w™1(S))? ©=F|s| eS| °
lsll/y SC lSll/a

ST TP\ B TR L YO
<oy DD o 02

The case 20r < d(0, y) < 2r follows in a similar way, so we get that (v, w)
belongs S, , for

Then, by taking ¢ = 1 + 8/n, we can choose (o € (0, n) such that
a€(1—(X;G)™ 1, 1] for all 8 € (0, Bo).

EXAMPLE 4.13. Let w(x) = d(0, x) ~* for 8 € (0, n). From (4.11) and Lemmas
1.4 and 1.7 we get

B
S 0S| \'"n
v:f(s)) =C (!) for every d-ball S and all 4 € (0, 1].

(4.14) 5]
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The for v = 1 we get that for any ¢ > 1 and ¢ € (0, 1), it holds

1 (—F)L !
W(os) 20 <C | OSI n’ 20 | osl 2
ws) )~ US| v=1(8S)

I——(§+(l—§)2_10) | os I %+(]_§)§!6

v~ (6S)v(S)"2

IA
Q

Thus, (v, w) € S, , fora = €/2 + (1 — 3/n)/20¢. By takinge = 1 — b/n
and ¢ = 1 + 8/n, we can choose 3o € (0, n) such that « € (1 — Z,G;) "', 1]
for every 8 € (0, Bo.

EXAMPLE 4.15. Let v(x) = d(0, x)?, 8 € (0, n), and w(x) = 1. Then, from
(4.14), we get

1

20 —11+I A l1+l 8
)2"(1;"1(05)1;(5))”25c|s|' S0+2)0-5) (1+)0-5)

o _;loslz 4 n

w(6S)
w(S)

for all ¢ > 1. Thus, by reasoning as in the preceding examples, we get that
there exists Bo € (0, n) such that (v, w) € S, ,, for some ¢ > 1 and some
a€ (1 —(ZGj)™ Y, 1], for all B € (0, Bol.

Let S be a d-ball such that 2a>S C Q. For ¢ and v in Lip (S) we define

(.1) ao(¢, ¥) = S (AVe, V)

S

(52) a(¢’ 11/) = 00(¢9 ‘L) + S ¢\l/W.

N
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It is easy to prove that (5.1) defilles a scalar product in Lipe(S) and that (5.2)
defines a scalar product in Lip(S).

Definition 5.3. We denote with Ho(S) and H(S) to the completion of
Lipo(S) and Lip(S) respect to the norms |l -lo = ao(-, -)* and
Il -l =a(-, -)?, respectively.

Remark 5.4. From Sobolev inequality (Theorem 3.4) we get Ho(S) C H(S).

Remark 5.5. It is possible to associate a function in L*(S, wdx) to each
element in H(S) and define its derivative as functions in L2(S, vdx).

Definition 5.6. Let f be such that f/w € L*’*~(S, wdx) and let ¢ € H(S).
We say that u € H(S) is a solution of

Lu=f in S
u=1y in 948

if
ao(u, ¢) = g uo forall ¢ € Hy(S),

s
and u — y € Hy(S).

Definition 5.7. Let F = (fi, ..., fx) be such that | F|/v € L*(S, vdx) and
let Y € H(S). We say that u € H(S) is solution of

Lu = —div, F in S
u=y in 9S

if
ao(u, ¢) = S (F, V,¢) forall ¢ € Hy(S),
s

and u — ¥ € Hy(S).

Remark 5.8. We can prove, by the representation theorem for continuous
linear functional on Hilbert spaces, the existence and uniqueness of solutions
for the above Dirichlet problems.
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Remark 5.9. The above definitions and remarks hold if we change d-balls
by é-balls.

By using the results of Sections 3 and 4, and the technique in [ChW2], we get

Theorem 5.10 (Harnack inequality). Let Qo = Q(X, 4R) be a é-ball in Q.
If u € H(Qo) is a non-negative solution of Lu = 0 and Q = (1/4)Qo then

{ ( w(2Q) ) (w(zg))”} .
sup u < exp{C inf u,
0 w((1/2)Q) v(2Q) 0

where v = (36> — 20 + 1)/(6 — 1) and C depends only on the constants in
(0.5) and (0.7).

Let S be a d-ball such that 2aS C Q. For y € S and ¢ > 0 fixed such that
0, = Q(, @) C S, we define the mapping

1
- , ¥ € Ho(S).
1% (0 SQE\//W ¥ € Ho(S)

From Sobolev inequality (3.4) follows that the above mapping is a continuous
linear functional on Ho(S). Then, there is a unique G, € Ho(S) such that

aO(G}I’Ia Ip) =

W@, SQ yw, forall ¢ € Ho(S).

In the next, Gy = G°( -, y) will be called the «g-approximate Green function
for S with pole y». For the sake of simplicity we often will use the notation G*.

Lemma 5.11. G° is non negative on S.
PROOF. Follows the line of the euclidean case. (See Section 3 of [ChW3].)

Lemma 5.12. There exists a constant C such that

w(2Q)

e forally €S, g > 0 withQ(y,0) C S

R? \°
e
w(G, >t})) =C (u(2Q)>

where R is the radious of S and Q is the 6-ball with the same centre that S
and radious aR.
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PROOF. The technique is the same that Chanillo and Wheeden have used for
the euclidean case (see Section 3 of [ChW3]) but with Sobolev inequality for

our particular geometry (Theorem 3.4).

Then, with the above result we have

Lemma 5.13. For each p € (0, o) there exists C such that

w(S(y, 4r/3)) ;(Ji—rs r? w(S(y, 84°r/3)) e
(S, N v(S(, 1) inf  w(S(z,r/(4a%))

r/’2<d(y,z)<r

sup Gi=<C
rl2<d(y,x)<r

for all g € (0, r/4a) and for all y and r such that S(y, 3a*r) C Q.

PROOF. Letx € {(x € S:r/2 < d(y, xX) < 3r/4} and g € (0, r/4a), then
S(x, r/4) C Sy, ) \ S(y, ag). Note that G°® satisfies Lu = 0, then for
each p € (0, o), we have

f
w(Q(x, r/4a)) \ Pe—D 1 p
5.14) sup G = C (225 D) R S R
( )Q(i‘,lr?sa) = ( v(Q(x, r/4a)) ) (w(Q(x, r/4a)) SQ(XJEM)) w)

where C depends only on the constants of (0.5) and (0.7) (see Lemmas 3.1 and
3.11 of [ChW2]). On the other hand, from Lemma 6.2 follows

(G®?w < Cw(S(, 24°r) (

2 p
g O(x,r/4a) v(S(y, 2r) )

for each p € (0, 0). From this and (6.4) we have

sup G°=C
Q(x,r/8a)

w(Q(x, /4a)) S [ W, 28\ P
v(Q(x, r/4a)) w(Q(x, r/4a)) v(S(y, 2r)
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for all p, ¢ and x. Then, for each p € (0, o) the inequality

(5.15) sup G*©
r/’2<d(y,x)<3r/4
02
<c WS, ) \Fen w(S(y, 24*r)
=\ v, ) vSG, 1) inf  w(S(x, r/4d%)

r/2<d(y,z)<3r/4

holds for all ¢ € (0, r/4a), and all y and r such that S(y, 3a*r) C Q.

The above inequality allows us to obtain a similar one but on S \ (1/2) S.
Indeed, if G§ denotes the g-approximate Green function for So = S(y, 4r/3)
with pole y then, by the weak maximum principle (the proof is similar that
the Lemma 2.6 of [ChW3]), se have G® < G§ on S, and from this and (5.15)

sup G*°
2r/3<d(y,x)<r
02
w(S(y, 4/3r)) \ 5= r w(S(y, 8a*r/3)) p
v(S(y, 4r/3)) v(S(y, 4r/3)) inf  w(SQ, r/3d%))

2r/a<d(y,z)<r

Then, the thesis follows from (5.15) and the last inequality.

Lemma 5.16. Let S(xo, R) be a d-ball such that S(xo, 13a*R) C Q. Then,
foreach p € (0, o), there exists a constant C, independent of xo and R such that

o

=T dt
(5.17) sup G;(x) < C (Fl (y’ t)o-—l FZ(y, t))l/p _;_ ,

R 2
r/2<d@x)<r S, v(S(, 1)

for all y € S(xo, R/2), r € (0, R/2) and ¢ € (0, r/4a), where

w(S(y, 124%1))

B0 = =66, )

and
w(S(y, 124°t))

t
inf  w{S{z, ——
d(y,7) < 12a°t ( ( 12805 ))

Fz(}’, t) =
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PROOF. First, let us consider the case y = xp. For s > 0. Let us denote with
Ss to S(», s) and with G? to the approximate Green function for S5 with pole
y. Now, for (¢1, ) € R* Xx R*, we define

02
w(saz,.>>»‘<a'—ﬁ rf( w(Sz,) )

gy, k) = ( (S, v(S,,) inf w(S@z, &)
dy,z) <t

Note that this function depend on p, is increasing on ¢; and decreasing on £,.
Let r < R/2 and m € N such that (3/2)" ' r < R < (3/2)"r. Then on
Sr I r/2s hOldS

m
(5.18) Gr < G, = G + ¥ (Gg,, —G¢ ) )

j=1

From the above lemma follows

5.19) sup G2 = cg (30 T forall g€ [0, —
. u e < —— 3 ], or a s |
S,—g/z £ 3 402 ) 4a

for each p € (0, o). By the other hand, by using a similar argument to the Lemma
2.7 of [ChW3] and the above lemma, we get

3s s
e - 2
Sl;p (G(3/2)s —_ ng) = Cg (4[1 S, ‘gz‘) s for all (o] € (O, E) 5
for each p € (0, o). Then, from this inequality, (5.19) and (5.18) follows

(5.20) sup G%

I CA N EA A
S —Si2 oy 2 \ 2 44>

m—1 (372Yr
t\ dt
ng g@“ﬁ%r

j=1 (3/2)7'r

R
t dt r
C 6a’t, — ) — -, for all 0, —

A

IA

IA
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for each p € (0, o). Finally, since any y € S(xo, R/2) verifies S(xo, R) C S(y, 2R),
we get G® < G3r on S(xo, R) and then, from (5.20), follows the thesis

2R
t dt
sup  G° =< CS g <6azt, ——2) —
6a

r/’2<d(y,x)<r

IA

R
t dt r
C 12d*t, — | —, forall pe€e (0, —].

Corollary 5.21. With the same hypothesis as in Lemma 5.16 for a.e.
y € S(xo, R/2) there is a constant C = C(y, xo, R, w, v) > 0 such that

R

t?2 ar (% 1 dt
(5.22) sup  Gf(x) < Cmin - =y — =
r2<din<r , 1So.nl 17 ), [So.n| ¢

for all r € (0, R/2) and all ¢ € (0, r/4a).

S, 12a%t SO, t
PROOF. We set C1(y) = sup WSO, 124°0) » C2(y) = sup S0 a
i<k (S, 1)) 1=k v(S(1, 1))
Sy, 1)
C = ————— . Now from (5.17) follows
s0) = S0 S0, 1) G-I
7 1 R 2
7 i1)s t dt
(5.23) sup  GP(x) = CC1(y)(’”l+ )” o) —m—,
r/2<d@y,x)<r r | S(}’, t) , t

for each y € S(xo0, R/2) and for all r € (0, R/2) and g € (0, r/4a). On the
other hand, from (1.5), (1.8) and (1.10), we get

( : )§G’< |50, 1|

a’R ~ |SU, R)|
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then from Lemma 4.4, it follows that

2 _or? (w(S(y, aR))>‘/" 1

——— =< , 0<r=R.
v(SO, 1) w(S(y, t/a)) v(S(y, R))

This inequality and (5.17) allows us to obtain

(2. 1) w(S(y, aR) \ "’
Ge < CC o—1 rC 1/o R2 °
w G = cao T P o (1)

| Taoar T
S, | ¢

r

Now, from (5.23) and the above inequality, by taking infinum on p, (5.22)
follows.

The next Lemma gives us an estimate of V,G* in terms of G°.

Lemma 5.24. Let S = S(xo, R) be a d-ball such that 2S C Q. Then there
exists a constant C such that

C

(AVGE, VGY) = — (G2)*w,

»‘S N Qo) SQ(y,r) \NQO,r/2)

Sorally € 1,2) S, r € (0, R/2a) and ¢ € (0, r/2).

PROOF. The proof is very similar to that of Lemma 4.2 of [ChW3] by
keeping in mind that exists n € C*(R") such that y = Oon Q (¥, r/2), 7 = 1
outside Q(y, r) and |V,n| =< C/r (see [FL2], p. 537).

Now, the above lemma and Corollary 5.21 allows us to obtain the follow-
ing result.

Lemma 5.25. Let S = S(xo, R) be a d-ball such that 13a*S C Q. Ifn > 2,
then, for a.e. y € (1/2) S there exists a constant C = C(y, xo, R, w,v) > 0
such that
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R
1 dt
S IV)\G)? | 2y <= C S — e
SN Q0. r/2a |S(y, 1) I t

for all r € (0, R/2a) and for ¢ € (0, R/2a).

r
PROOF. Let o € |0, ——], then

C

w%)g 19,65 10 = -
SN QU.)

2
w(Q(, r))( sup Gy@(x)>

r/2a<d(y,x)<ar

j<logaa® + 1

C 2
< 5 WU, ") < ) sup Gﬁ(X))

; ar ar
j=1 2»/-;.I<d(y,x)<~2vi

cwEo, M) (. (¥ r? ar (¥ 1 dr \’
S — R mln e . S S R
r? el SO ) ISt

IA

Sweon ([ 5o (1 sy )
r g el SO NECEIEEEA

On the other hand, from Lemmas 1.4 and 1.7 it follows that



R
S 7
r/2a | S(y’ t)| ! j=1
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t? dt

2 ©
. _Cr Y 2/en
SO 0| 5

Then, from this and (5.26), we get

(5.27) s | v\Gg|*v = C
SNQO,r)

__¢*
R T

wQW, M) SR 1 dr
e, Nl ), IS, 0] ¢

Now, if ¢ € [r/8a%, R/2a), by applying Sobolev inequality in @ = Q(xo, aR)

we have

Then

1
w(Q0, o) S oo

< -
w(Q(, e))

G2w

1/20 172
R <_ w(20) ) (_1_ S IVAGyg,zV)
w(Q(, @) w2Q) Jg

1
ao(Gy, Gy)'>.
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C

V,G¢|?*v < a(G?, G?) <= ——————
L' Gy = @G5 = ok, o

- IS(}’, r) | 1/6 p R 1 _di
— A\ w(Q, r/8a%)) e 18O DYt

Finally, from (5.27) and the above inequality, we get our thesis.

With Lemma 5.25 we can prove the following integrability property of
|vaGe|.

Lemma 5.28. Let S = S(xo, R) be a d-ball such that 13a*S C @ C R"
with n > 2. Then for each q € (0, 20/(c + 1)) and a.e. y € (1/2) S there exists
C = C(q, y, x0, R, w, v) > 0 such that

R
(5.29) S | VXG;’I" < C forall g€ (0, ——) .
s 2a

1 R
PROOF. Let y € > Sand g € (0, —2—) . From Lemma 5.25 we get
a

1
(1,68 > $h =L f 19,68 |2 + w0, 1)
SN\ Qu,n

@9

o 15O aT77 ¢ T80T R 100 ]

IA

C SR 1 dt v(Q(y, 1)
2

N

R
BN P
s ) SOOIVt
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for a.e. y € (1/2) Sand for all r € (0, R/2a) and s > 0, where C = C(y, S, w, v).
Then, by using the properties of d and 4, it follows that

21y

C(IQ( RS 5 R N
y,r JR— .—a ——
s ) 1SoL Yt

J —_
2a

v({| ViGE| > s))

A

IA

1 o .
C(|Q(y, L N B e —— ) 2—"1/0)

S|S0, |7 2

IA

1
C(lQ(y,rH + —)

s o, n e

20
Now, by choosing r such that | Q(y, r)| = s °*', holds

20
v((| V,GE| > s) < Cs °*T

for all s > |Q(y, R/2a)| "% for all ¢ € (0, R/2a) and for a.e.
y € (1/2) S. From this inequality (5.29) follows inmediately.

Let S be a d-ball such that 2¢S C @ C R"” with » = 3 and
», @) €11, 0) X [1,20/(c + 1)). Let X, , be the completion of Lipe(S) with

the norm
1/p 1/q
loll,, = (S |¢l”w> + (S [de)l”udx) .
s s

Now the above results about G; and V, Gy, allow to prove existence of
the Green functions Gy( - ) = G( -, y) for S with pole y.

Theorem 5.30. Let S = S(xo, R) be a d-ball such that 134*S C Q. For a.e.
Yy € (1/2) S exists a sequence {gr] C (0, R/2a) and a function G, such that
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(5.31) o« { 0and {Gka; converges weakly to G, on X, ,

for all (p, @) € 11, &) x [r e ) ;

(5.32) G, , = C

2
Sforevery (p, q) € |1, 0) X [1, £—1> , where C is independent of y;
g

Ao

. . e W\ qo—1 1 20
(5.33) if (v, w) satisfies | — - v € L' (S, dx) for some qo € |1, I
14 [

then
s

1
for all ¢ € Lipo(S), and a.e. y € 5 S;
(5.34) if u is solution of (5.6) with ¢ = 0, then

1

uy) = S Gy(0)f(x)dx a.e. yE€ 5 S
N

(5.35) if u is solution of (5.7) with y = 0, then

u(y) = S (V,Gy(x), F(x) > dx a.e. yE€ % S.
N

PROOF. Follows from the above results about G, and V,Gg with the
arguments in sections 5 and 6 of [ChW3|.

Now, we prove another estimate for Gy . Then we shall to use this and the above
to prove some estimates of size for the Green function.

Lemma 5.37. Let S(xo, R) be a d-ball such that 13a*S C Q. Then exists a

constant C depending only on the constants of (0.5) and (0.7) such that

R t? . dt
(.37 inf G = C| —— e CROMRONT T
r/2<dy,x)<r ’ W(S(y, 2at)) t
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for all y € S(x0, R/2), r € (0, R/8a*) and g € 0, r/4a*), where F,(», t) and

) 30> — 20 + 1
F>(y, t) are the functions of (5.17) and v = SR
o’ —

PROOF. First, let us consider the case y = xo. Let r € (0, R/4a*). For s > 0,
let us denote with Gy the approximate Green function for S(y, s) with pole
y. From Lemma 5.24, we get

9!

I

v G2

2ar> =

~

(5.38) S (AVGE

2ar’
S»,2an)\ Q1)

2
5> W@, r) (S sup G§a,>

,ar)—S(y,r/2a)

On the other hand, since LGS, = 0 on S(y, 2ar) \ S(y, r/4a), the
Harnack inequality (Theorem 5.10) allow us to obtain

H e
inf X G2,
Q(x,r/8a%)

w(S(y,2ar)) ) <W(S(y, 2ar))>"2}

inf w(SG, r716a%)] \v(S(y, 2ar)

sup G, < exp {C(
d(,z)<ar

Qlx,r/8d%)

for all ¢ € (0, r/4a*) and all x € S(y, ar) \ S(», r/2a). From this inequality
and (5.38) follows that

2
(5.39)( inf Gga,)

SO,ar)\ S(y,r/2a)
Ccr? w(S(y, 2ar)) " (w(S(y, 2ar)\ "
P exp __C — 3
w(Q(y, ) inf  w(S(z, r/16a%))) \v(S(y, 2ar))
d(y,z)<ar
S <A v GZQar’ v Ggar) *
S(,2ar)\ Q(y,r)

C
Now, by taking 1 € C¢’(S(y, 2ar)) such that y = 1on Q(y, r) and |V,n| < —
r

and applying the ellipticity condition, we get
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—
I

do (ngar’ ”)

IA

C 1/2
— w(y, 2ar))'"? (S (AVGS, Vv Gga,>> .
r S(y,2ar)\ Q(y,ar)

Then, from (5.39), holds

(5.40) inf G

2ar
S(y,ar)\ S(y,r/2a)

= o i —exp| —C w(S(y, 2ar) T (w(S(, 2ar)\"’
— w(S(y, 2ar)) P inf  w(S(z, r/16a%))) \ v(S(y, 2ar))

d(y,z)<ar

for all o € (0, r/4a*). Now, by applying the weak maximum principle, it
follows that

(5.41) G¢ — Gp

2ar

cr? [ ( w(S(y, 2ar) )’ <w(S(y, 2ar)))"2}
> ————exp| —C|— 5= | ———
w(S(y, 2ar)) inf  w(S(z, r/16a>)) v(S(y, 2ar))

d(y,z)<ar

a.e. in S(, r) and for all g € (0, r/4a”*). On the other hand, if m € N is such
that 2a)"r < R < (2a)™*'r, we get

m—1
(5.42) G% = G%p, = G, + Y, (G&-r, — Ggypp)s ace. in S(y, 2ar).
Jj=1

Then, with S; = S(y, t) and

g, )
2 L% 1/2
_  h expl—cf w(S,) . w(S,)) 4 eR”.
w(S,) inf  w(S(z, t1/16a’))] \ v(S,)

dy,z)<ar

from (5.40) and (5.41) the inequality
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m—1

C Y g(Qa)yr, 2ay*'n)

j=0

(5.43) G%

v

\%
o)}
C ey
's‘" X
o
—
=
a]~
N
~
~| 2

[ o el ) 7]
= gl 73> - gl—-—> -
| J4a*r 4(12 ! 2ar 402 t

v

9
T 1
N -]
)

o
—//
I

~

[\°]
\“/
~ %

+
0| =
e
~ [N

)

1,5}
S
)

[\e]
8
~——

2
| |

holds for a.e. in S(y, ar) \ S(, r/2a) and for all ¢ € (0, r/4a*). Finally,
the result for y # xo follows easily from the fact that G} = G}/, a.e. in
S (y, R/2) and (5.43).

In the following we prove a result of functional analysis which shall be
used to prove the size estimates.

Lemma 5.44. Let E C R" be a measurable set, h € Li,.(E, dx) be positive
a.e.inEandp € (1, ). If {fk] C LP(E, dx) converges weakly to a function
f and satisfies supx fx < Cy a.e. in a bounded set F C E, for some constant
Co, then f < Cp a.e. in F.

PROOF. From the hypothesis we get

S (Co — fk) ghdx = 0,
E
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for every k and for all g € LP(E, hdx) such that supp g C Fand g = 0 a.e.
in F. Then, by letting k — oo, the inequality

S (Co — f)ghdx = 0,
E

holds. Now, by taking g = XE( 7> copr W€ get the thesis.
Finally, we are in position to prove

Theorem 5.45. Let S = S(xo, R) be a d-ball such that 13a*S C Q. Then
for a.e. y € (1/2) 8. G, is non-negative a.e. in S and satisfies

R 2

. (S, 1)

(5.46) sup ®mscs «N%Wﬂmmwg—

r/2<d(y,x)<r

for each p € (0, o)

R 2 dt
(5.47) inf G =C| —— — — e ChROI ALY T
r/’2<d(y,x)<r r W(S(y, 2at)) t
2 2
36° — 20 + 1
for all r € (0, R/8a?), where Y= —q--—l-' , Y2 = —-‘z———?l—»— and F,
g — g —

and F; are define as in (5.17).
PROOF. It follow from Lemmas 5.11 and 5.36 and Theorem 5.30 by using
the above lemma.

Finally, we shall prove a result about the integrability without weights of

the Green function.

Theorem 5.48. Let S = S(xo, R) be a d-ball such that 17a*S C R"
with n = 3. Then G, € L?(S, dx) for a.e. y€ (1/2) S and for all

€ (1 max LG 1+ " ( 1)})
s _...__.____.._, N~ o~ a - .
P Y G —2 T G
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PROOF. From (5.46) by applying a similar argument to that Corollary 5.21
follows

649 s G =cmnf| o4 [T L
. < in - | —
r<dy<r . 1sG. | ¢ , | Sy, t) | ¢

for a.e. y € (1/2)S and all r € (0, R/8a*) where C = C(y, xo, R, w, v). By
denoting with G, .. the Green function for S(y, 164*R) with pole y, the weak
maximum principle, (5.49) and the properties of d allow us to get

(5.50) j (Gy)Pdx = S (Gigg)" dx
S(x0,R) S(xo0,R)
i=0 SS(y,zR/z")—S(y,zk/z"‘)

© 16a*R tz dt p
> (5 5007 7)

R
7

IA

G

16a

A

zR)p dx
R 2+l

R
S ’ 2i—1
2T 2 p
t dt
- S
2:-»|

© ,w 1—i mji+ 132 p
502(2 (R27'277) )

R
S y,Eﬁ—IZ

R :
S (ya F) I /=0
(R 2i—1)2p

R
2

p—1
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cef e R f‘.z’“ P
|SG2R) [P~ (S R [P

Note that the right hand side is finite if and only if p < (X;G;)/(X;G; — 2).
On the other hand, by applying (5.46) again and a similar argument, we get

c i il/a((p—1)E;G; + n(1—o0)
s (G)Pdx < — <1 + Yo e hEGEnd ”),
S(xo,R)

where the right member is finite iff p < 1 +

| SO, R [ #7071

i=1

(6 — 1). Finally, from

J Y

this and (5.50), we obtain the thesis.
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