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0. The scope of the paper.

This is the second instalment of my previous paper with the same title,
[1]. This paper consist of two different parts. The first part is devoted
to improvements of the results developed in [1]. These improvements
are explained in Section 0.1 below and developed in sections 1 to 5,
and 9 to 10; they are in fact technically distinct from [1] and rely on a
systematic use of “microlocalisation” in the context of Hérmander-Weyl
calculus. These paragraphs can therefore be read quite independently
from [1].

The second part studies a different problem and is, in its aim, fairly
disjoint from [1]. This problem is explained in Section 0.2 below and
developed in sections 6 to 8. The techniques used however in sections
6 to 8 (and also in Section 10 which in its scope is attached to the first
part) are very close to the techniques of [1]. I feel that the reader would
find it very difficult to follow these sections without being familiar with

[1]-
0.1. Pseudodifferential operators and the geometric problem.

The main technical estimate in [1] was the estimate (0.2) that asserted
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that
(01) “[ o [Aua Sl]a 52], T ]a Sk] f”m <C ”Aa_k/2f”m+n1+"-+nk )

when f € Cg°.

Here [z,y] = zy — yz are as usual the commutators of two oper-
ators, || - || indicate the usual Sobolev norms in H, = {f : A“f €
LYR™)} (A = (1 = 5.8%/022)'/?), 0 € C, and A = a“(z, D) + Ao for
some large Ap > 0 and 0 < a(z,€) € S7, and finally S; = s%(z, D)
with s; € 5171,:6- It will turn out that a systematic use of Weyl calcu-
lus [10] (rather than ordinary ST pseudodifferential calculus) will be
convenient in several places and will therefore be used interchangeably
with pseudodifferential calculus.

The estimate (0.1) was proved in [1] for sums of square (-Horman-
der) operators: A = 3 X' X; where X; are C fields. This estimate
was not even proved for a general second order self adjoined differential
operator of positive characteristic (¢f. [1], (0.1)). Indeed, as far as I can
tell the problem is as hard in this case as for a general pseudodifferential.
As a result the main geometric theorem in [1] (and all the rest for that
matter) was established only for Hérmander operators.

In this paper I shall give a complete proof of (0.1) for A = a*“(z, D)
+ Ao in full generality but only for £ = 1. This will be done in
sections 1 to 4 in the context of Hérmander’s-S(m,g) calculus with
A € S(1/h?,g). I shall also show that (0.1) holds (and this is easy be-
cause of previous work of R. Beals, ¢f. also the appendix at the end of
this paper) for arbitrary k£ but with an A that is polyhomogeneous and
subelliptic with a loss of one derivative (¢f. Section 9 for the appropriate
definitions).

Using the above results we shall show in Section 10 that in the main
geometric theorem of [1] we can relax the sum of squares condition for

the “top operator” L; (the set-up was | L5 f|| < C (|IL<F|| + |If])),
which can therefore be an arbitrary self adjoint differential operator

Li = aijjm———+ -

The above estimate (0.1) for £ = 1 has a number of other more
“esoteric” consequences, e.g. the boundedness of the operators

. o ALl?
A e'? : Hy — Hyg; a,0 €R

’
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i.e. the imaginary powers of A and the corresponding wave operators.
These facts will be proved in sections 5 and 6.

0.2. The Beals characterisation and the ;’fa .

In Section 8, I will give the following characterisation of pseudodiffer-
ential operators (which is but a variant of the characterisations given

by R. Beals [3]).

Criterion. Let T be an arbitrary linear operator T : C°(R?) — &'(R?)
and let 1/2 < p <1 and m € R be such that

(02) |-~ [T B, Bl -+ Et] la—atkp-m < €, k20,0 €R

where E; € S are arbritary. Then 9T € OPS}, for allv € [1—p, p]
and all p € C§°.

Here we use of course the standard Hérmander notations for ST
(¢f. [2]) and || - ||a—p indicates the operator norm between the corre-
sponding Sobolev spaces Hy(R?). The C in (0.2) depends, of course,
on o and k as well as on the E;’s.

The Beals theorem that we refer to appeared for the first time in
(3] (¢f. also [2]). Essentially the same proof was given later in [5]. In [5]
the authors work in the context of classical pseudodifferential operators
and their assumption is

(03) ” [T7 Xy, ,Xk] ”(l—p)k+m—>0 <C

with p = 1, or 1/2 and where X; are C* fields on R?. The proofs in
[3], [4] and [5] easily generalise and give (under the hypothesis (0.3))
the same conclusion

Te (] OPS}, =By.

p
1-p<v<p

Incidentally, standard pseudodifferential calculus can be used and it
follows that conversely every T' € B]" satisfies the commutator estimates
(0.2) and (0.3). This implies in particular that B;" can be defined in a
coordinate free way (i.e. on a manifold). The reference [5] is perhaps
the easiest for the reader who is not familiar with (¢, ®) calculus.
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Using the above criterion we shall prove in Section 8 the following
Theorem. Let A = a¥(z,D) € OPS} ; with symbol a(z,€) > 0, let
0 € C, Re 0 <0, and let us assume that A 13 subelliptic:

Ifll3_s < C(Af, f)+ Ca|If)?

with 0 < 6§ < 1/2. Then for all p € Cg° and A > 0 large enough the
operator A% = (A + X)7 ¢, (this 1s just a banal modification to reduce
the problem to compact supports) satisfies

= 2Re (0(1—6))
A% € B .

The proof of this theorem will be given in sections 7 and 8. It is
interesting to compare the above result with the final theorem in Beals
[3]. Beals theorem (if the proof is pushed to its limit) will give a better
conclusion since it will show that the correspondig parametrix belongs
to 52Re(a(1 %)) Beals theorem is also better in so far that it can deal
w1th operators of higher order ST, m > 2 and does not require that
the symbol is positive (but only that the principal symbol takes values
in an appropriate sector).

Our theorem above has however some advantages, the most signif-
icant of which is that it can deal with general symbols (and not only
polyhomogeneus ones as seems to be the case in Beals). The other ad-
vantage is an advantage of the method of the proof (which is different
from Beals’ method) rather than of the result. Indeed, in our consider-
ations, we can replace the Sobolev norms H,(R?) by the corresponding
LP-Sobolev norms

HY ={f: A®felLP}, l1<p<oo,
and the estimates are relatively insensitive to that change, provided,
that the original operator is a differential operator with positive char-
acteristic. In view of the fact that the Hormander classes 5’0 do not in
general stabilise LP, results of this kind are perharps of some interest.

Finally other functlons than the complex powers (with non positive
real part) of A can be treated with our methods. It easily follows, for
instance, that under the same conditions, and with the same notations
as in our Theorem, we have

(0.4) pe Ao B s, |d <L, [Argz| < 5 —eo
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uniformly in z and any fixed €¢ > 0. And also that

(0.5) A e B Reo>0.

1. The Hormander metrics.

This section is purely technical and contains nothing new. I simply
collect a number of comments and elaborations on the S(m, g) calculus
as presented in L. Hérmander book [6]. All the notations will be (unless
otherwise stated) identical to those of [6]. The facts that I shall need
will be enumerated below. The proofs are just cross references in [6]
and will be briefly explained after each fact.

(A) In [6], Lemma 18.4.4 can be improved to (with the same no-
tations): given v then the number of balls B, that intersects B, is

bounded by N..

This slightly stronger local finiteness property will simplify several
of our arguments. When we examine the proof of the above lemma in
[6], which is to be found in [6], Lemma 1.4.9, we see that this stronger
property is in fact implicit in that proof.

(B) The choice of the balls U,, U, defined in [6] just after relation
(18.4.13) can be refined in the following way: we can choose (for k =
1,2,... given in advance)

U, =UD cu®Wc..up, U9 ={z:g,(z—1,)<c;}

for j = 0,1,...,k%, in such a way that the balls USP have the local
finiteness property of (A). Furthermore the ¢ in Lemma 18.4.4 and
¢o > 0 the radius of U, can be chosen small enough, so as to guarantee
that

U, NUY # 0 implies U, c UV | VYo,u, j=1,2,...,k—1.

Observe that in the elaborations and proofs of [6], sections 18.4 and
18.5 the two balls U ¢ U,(,j+1), for any y = 0,1,...,k — 1, could be
used in the place of the paire U, C U, of [6]. The point to watch,
and which is vital for us, is what lies between relations (18.4.19) and
(18.4.21) in [6].
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All this is fairly automatic from [6] and the proof will be left to the
reader. Let me simply say that the reader whether he likes it or not
will have to really understand [6] sections 18.4 and 18.5 if he wishes to
follow what is happening. This applies especially here and in the next
few pages.

(C) Let a; € S(mi,g), ( =1,2), be such that supp a; Nsupp a; =
0, let b € S(myma2,g) be such that ¥ = a{ay, then we actually have
be S(mlmghN,g), N > 0.

This is contained in [6], Theorem 18.5.4.

(D) Let U,,U,, be as in [6] just after (18.4.13) and let a € S(m, g).
We shall say that a is strongly concentrated “at v in S(m,g)” if it
satisfies the condition

(1.1) lald(w) < Ck s mw) (1 +d,(w)™F, Yk sw.

We shall say that a is concentrated (without the adjective strongly)
“at v in S(m, g)” if the same estimate (1.1) holds but only for w ¢ U,
(Definition in [6] just after relation (18.4.13)).

The “subtlety” of the above notion lies in the fact that the balls
U, are defined by the metric ¢ while the distance d, is defined by the
metric g# (or g% in our case). In [4] Beals introduced an analogous
notion which he then exploited in the special case when g = ¢°.

Observe that the above definition depends on the particular choice
of U,, U,. The conclusions that this property of concentration will
allow us to draw will, on the other hand, be independent of that choice
(¢f. especially property (E) and Section 2 below). So, therefore, at the
end, it will be irrelevant with respect which particular U,, U, we are
making the definition. The above notion will prove itself to be useful
in the following properties.

(E) Let a, € S(m,g) (v € N) be a family of operators so that
a, is concentrated at v in S(m,g) for each v, and that furthermore
these conditions are verified uniformly in v. Then the family )" a, is
“absolutely summable” in the sense that we have

(1.2) Y lafjw) < Comw),  Vw.
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If we demand that (a,) should be strongly concentrated and con-
sider the case m = 1, then the above statement is an immediate con-
sequence of [6], Lemma 18.4.8. The modifications needed for the proof
when m is arbitrary are obvious. If we only impose the weaker prop-
erty of concentration (rather than strong concentration), then we have
to split the sum in (1.2) as follows

IIEDY

wel, w¢U]

(This is essentially the argument of [6] between the relations (18.4.19)-
(18.4.21)). The first of the two sums is bounded by C'm(w)sup, ||a,||
because of the local finiteness of our partition. To controle the second
sum we apply the same argument (c¢f. [6], Lemma 18.4.8) as before.

(F) Let a'? € S(m;,g), i = 1,2, and let a € S(myms,g) be such
that a¥ = a(M*“a®“_ Let us suppose further that for some fixed v and
either 1 = 1, or © = 2 (or both) we have supp af,” C U,. Then a is
strongly concentrated at v in S(mima,g).

(F') We impose the same conditions on a!), a? a asin (F) (with
say supp a(!) C U,). In additions we demand that U, N supp a? =9.
Then a is concentrated at v in S(m;myh", g) for all N > 0. (Here
U, C U} are as in [6] just after relation (18.4.13)).

In other words we are in an “arbitrary small class” (with respect
to h) provided that we are prepared to sacrifice the property of strong
concentration. This property should be thought as an elaboration of
both (F) and (C).

For the proof of (F) the relevant passage in Hérmander is what lies
a dozen lines after relation (18.6.6) and goes on until Theorem 18.6.6.
In fact in that passage one essentially finds the proof of our statement
for m; = my = 1. Indeed let m; = my = 1 and supp ') C U, and
let us proceed as in Hérmander and decompose a® = 3~ a, so that (in
Hoérmander’s notations):

w Nw w
a=E Ayy au”—a()a#.
u

(We ignore the complex conjugation of Hérmander here). The estimate

(13)  Jawu(w)] < e [1+ M(w)|™ = e [1+ dy () + dy(w)| ™
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(when m; = my =1 and where M is as in [6] bottom of p. 167, vol.
III, 1985), then holds and if we use the uniform polynomial growth of
M, (notations of proof of [6], Lemma 18.4.8) established in [6], Lemma
18.4.8, we obtain that

> lavu(@)] < Ce [1+du()| 7.

n

~ This is the required estimate (1.1) for s = 0. The modification for
arbitrary mj, ms is clear, we just have to insert the factor

|y, ()] < ek my(w) may(w) |1 + M(w)|7*

in the estimate (1.3). This can clearly be done by the definition of a,,
(¢f. the same passage of Hormander: bottom of p. 167, vol. III, 1985
edition, and also the estimate [6], (18.4.12)). To pass to the estimate for
the more general seminorms |a,,|?, (s > 1), we have to improve (1.3)
exactly the way Hérmander does in (18.6.7) and (18.6.8). We obtain

|avu(@)] < Ck (14 dy) ™" 1+ M(w)|7Y

which is essentially [6], (18.6.9) except that we retain all the information
given by [6], (18.6.7) and [6], (18.6.8). We then reason exactly as in [6]
(the passage that follows relation [6], (18.6.8)) and we are done in the
case m; = my = 1. The general m;, m, are treated similarly.

To obtain the refinement that is presented in (F') we have to
combine the above argument with the passage in [6] between relations
(18.4.19) and (18.4.21) (z.e. p. 148-149, vol. III, 1985 edition) what
is shown there is that we can improve by an arbitrary power of A%
provided that we are away from the “support”. More specifically in the
relation that defines a,,(z,{) (bottom of [6], p. 167) if we know that
(z,€) ¢ U, we can obtain the following improvement to the estimate

(1.3)
(1.4) |ayu(@)] S CkhV(w) (1+ M), wél,.

This is explained in [6] in the passage between relations (18.4.19)-
(18.4.21). In that passage weset V=W @ W, the metricis G =¢gd g
(i.e. g1 = g2 =g)and A = 20(,€,7,7) as in (6], p- 152. Observe that
since g1 = ¢, the metric G is now temperate everywhere on W @ W
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and not only on the diagonal. This makes the reasonning easier for it
implies that with w = (z,£), w' = (y,n), we have

1P PPy D 260 (w)a, ()] < Cr HY (14 dy(w) + du(w))™*

V(w,w') ¢ U, x U,. From this (1.4) follows immediately by setting
w = w' (since then H(w,w') ~ h(w) ~ h(w')). This outlines the proof
when m; = my = 1 and s = 0. The proof of the estimates in the
general case follows by the same modifications as before. Once the
estimate (1.4) has been proved (F') follows since (C) guarantees that
a € S(mymah™N g), VN > 0.

2. The localisation of the commutator estimate.

Let U, c UV ¢ ... c U™ be as in (B) (k = 5 will in fact suffice).
Assume that A = a“(z, D), BY = bf,j)w(:zz,D) with a, b € S(m,g),
(7 =1,2,...,s). Let us also make the hypothesis that supp bf,j) C U,Ep)
for some 1 < p < k and let us denote

4,=3 {(am)“ . UnN UG £ 0}
(2.1) A

A, =3 {(apr)* s UanUEHY = 0}
A

where Y px = 1 is a Hérmander partition of unity subordinated to the
covering {U,} as in [6], Lemma 18.4.4.

Then by (F'), A,BSV is concentrated at v in S(m?hN; g) with
an N > 1 that can be given in advance; but then, by a succesive
application of (F), A,,B.(,I)B,(,z) (respectively, A,,B,(,l) . ,(,])) is strongly
concentrated at v in S(m3h"; g) (respectively, S(m/*1h¥; g)) with the
same N.

On the other hand the following two sums are absolutely summable
in the sense of (E):

A'=3"A,BIV...B{",
A=) A,B.. .B{.

This is because supp bf,s) C U,Sp ) and thus each term of the above sum-
mation is concentrated (even strongly) at v in S(m**1;g), and so (E)
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applies. But, by what we have said just above, A = ZA,,B,(,I) ...B®
is in fact absolutely summable in S(m*+1h"; g) for any N > 1 arbitrary
large. It follows in particular that

(22)  AY BM...BYY =A" mod-S(m*t'hN;g), N >0.

We shall apply these facts to localise a specific expression involving
commutators. Let A = a“ with a € S(m;g) and let us follow our -
notational convention of [1] and denote by E = e“ where e € S(1,g¢) is
arbitrary. The various e’s and E’s that appear below are not necessarily
all the same. Let ¢, be a partition of unity as in (2.1) and let E €
OPS(1;9) and A, = (ap,)”. Let E, be defined from E the way A,
was defined from A in (2.1) with p = 0. We obtain therefore from (2.2)
that

EA=) EA, =) E,A, mod-S(h"m;g), N >0.

But then it follows that

EAE=) EAE=() E,A)E

(2.3)
=Y E,A,E mod-S(h"m;g)

because multiplication is distributive over absolute summation. A sim-
ple application of (C) allows to conclude on the other hand that

A,E, € S(mh";g) (N > 1, uniformly in v).
This together with (F) (we do not need to use (F') anymore !) implies
that E, A, E, is (strongly) concentrated at v in S(mh”™;g) and we can

therefore sum these terms in S(mh”;g) by Section 1. The conclusion
is that

> EJAE=) E,AE,+) E/ALE,
=Y E,AE,, mod-S(mh";g), (N2>1).
Combining this with (2.3) we conclude that

EAE =) E,A,E, mod-S(h"m;g), (N >0).
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We shall use this idea again to the two products of

> [E,AE,E|=) (E,A E,E—EE, AE,)

and we obtain
[EAE,E] =) [E, A,E,, E|
= Z[E,’, A, E! E!] mod-S(mh";g) (N >0)

where E) is constructed from E (the same way A! was constructed
from A) as in (2.1) with p = 3.
We shall carry this process one step further and finally deduce that

[EAE,E| = 1,[E, A, E, ,E}]I, mod-S(mh";g)

where I, =1¥: 1, = {Z‘P/\ : U,y ﬂUis) # (Z)}.
Let us now examine more closely the operators I, and A,. The
first observation is that

(2.4) YL <CIfIP,  VfeCy.

This is best seen by considering vector valued symbols (cf. [6] relation
18.6.24). Alternatively (and equivalently) the estimate (2.4) can be
obtained by taking the expectation on || }_ %1, f|| (as is done in Section
8). Consider next the operator

Z I,A,I,

where again, by that we have said, the summation is absolute. To
examine this operator we shall impose for the first time on a(z, ), the
symbol of A, our basic conditions. We shall assume that

(2.5) a(z,§) 20, a(z,€) € S(1/h%g).

Let = 3" 42. Under the conditions (2.5), we then have

(2.6) a—(ab)” =af + a3
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where a;(z, ) takes pure imaginary values and a;(z,£) € S(1,¢). Sim-
ilarly if we denote by ©4; = (6*1/2)“, then we have

(2.7) 0,40, — (ab)” = af + a3y
with similar conditions on a;, a;. Furthermore we have
(2.8) ©,-0_;; 0_;-0; =I+1ib“(z,D) mod-S(h%yg),

where b € S(h,g) is real. The last two relations (2.7) and (2.8) are
obtained by S(m,g) calculus (in (2.8) we in fact have b = 0 ! One
can compare this with the argument in [6], p. 171 just before Theorem
16.6.8). The relation (2.6) is also obtained by symbolic calculus but the
presence of the infinite sum that is involved in the definition of @ makes
life slightly more complicated. There are many ways to deal with that
infinite sum, the most elegant is, in my opinion, the one presented in
[6] just after relation (18.6.24) where the author uses operator valued
symbols.

I shall now show how the above considerations can be used to
localise commutators. Qur problem [¢f. Section 0.1] is to show that for
operators A = a*(z, D) with symbols that satisfy (2.5) we have

I[AEIfI*? < CAfLH+CillfI?, feC
or better still that
(2.9) I[EAE,EIf|* < C(Af,H)+CillfI*?,  feCg.

(+,-) indicates of course the scalar product in L? and || - || the corre-
sponding norm. The reason why we did all the work in this section was
because we wanted to show that the estimate (2.9) is “localisable”. Let
me be more specific and let us assume that we can find some Hérmander
covering (U,) of the (z,£) space as above for which the estimate (2.9)
holds “for each v separately”, i.e. such that

(2.10) IE, Ay Ey, EfII* < C(Af, f)+ Ci I fI?
provided that A, = (ae,)*, E, = e¥ with e, € S(1,¢) uniformly in v

and supp e, C U,. Then we shall deduce that the estimate (2.9) itself
also holds.
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The first thing to observe is that we have

(2.11) I[EAE,Ef| < | > LI[E, A, E, , EJILf|| + C| f].

We shall need the following

Lemma. Let J, = j¢(z,D) with real valued 5, € S(1;9g) (uniformly in
v) and supp j, C U, then there exzists a constant C such that

IS LAIE<CY AP, foeCs.
The proof of the lemma will be given presently. Let us draw the

conclusions: From (2.11), the lemma, and the local hypothesis (2.10),
we deduce inmmediately that ||[EAE, E]f||? can be estimated by

> IIE, Ay B, , ENLFI* + |I£1I?
v

(2.11)
<D (LALEH+CIAP+C Y ILSI

(The local hypothesis (2.10) is applied to each I, f separately). And
this by (2.4), (2.6) and (2.7) can be estimated by

(461 £,0:f) + C|If]1*.
The upshot is that we have
(2.12)  |[[BAE,E]f|* < C1 (461 f,0:f) + C2|IfII*, fe€C5°,
for some C;,C2 > 0. If we apply (2.12) to f = ©_;¢ we obtain
(213)  [BAE,EJ0_ ol < Ci (Ag,0) + C ol

since ©_; € OPS(1; g). But now we almost have our required estimate.
Indeed set ¢ = [EAE, E]p, we have

(2.14) 11l < 1©10_1%|| + | RIEAE, E]e||
with R € S(h,g) by (2.8). On the other hand

(2.15) 1014 < C(I[EAE, E]O-19] + [I#ll)
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since [O_1,[EAE, E]] € OPS(1;9).
So putting (2.13), (2.14) and (2.15) together we obtain the required
estimate

I[EAE, ElplP < C ([0~ + ll¢]l)? < C1 (Ap, ) + Callwol?.

It remains to give the proof of the lemma which is standard. Indeed

I T full® = > (Kuwfor £u) S UEN Y £l

v,

where K, , = J,J, and || K| is the operator norm of the “Hilbert space
matrix” (K, ,)y,, acting on L? ® £2. The boundedness of that norm is
a consequence of the estimate

(2.16) 1Kyl < C(1+dy,)~ N,

The proof of (2.16) can be found in [6], p. 168, just before relation
(18.6.10) and in the few lines that follow. Observe that any of the
standard proof that (2.16) implies the boundedness of the scalar valued
matrix operator (k,,) also works in the present vector valued case.

3. The Fefferman-Phong reduction of variables.

In this section, I shall give a proof of
(3.1) I[E(ea)“E, EIf||* < C1 (a*f, f) + C2 If|I*,  f€C5°,

where C;,Cy > 0, E, e are as in Section 2 and a(z,€) € S(1/h?%;g)
with @ > 0. The main step of the proof is an inductive procedure (due
to Fefferman-Phong) on the “essential” number of variables z4,...,z,,
&1,...,&n that appear in a(+,-). To make this precise I shall say that
a(-) depends only on k variables 0 < k < 2n if there exists 2n — k linear
independent vectors Iy, 15, . .., I3 in the (z, ) space T(R?™) such that
da(l;) =0,7 =1,2,...,2n — k (1.e. ais constant along these vectors).

When a depends on 0 variables our estimate holds (the constants
C1,C; depend on a since (3.1) is not homogeneous in a !). Observe
incidentally that the e inside (ea)“ is imposed by technical reasons due
to the above inductive procedure. In reality e can be absorbed in the
E’s outside since E(ea)*E = FEa“FE mod-S(1/h;g) and the S(1/h;g)

disappears after the commutator is taken.
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Observe also that one situation in which our estimate (3.1) holds
trivially is when a = ¢ with ¢ € S(1/h;g) (real valued). Indeed, banal
symbolic calculus shows in that case that

[E(ea)*E,E]=Ec*+ E.

It follows therefore that the left hand side of (3.1) can be estimated by
llc“ f|I? + || f||*>- On the other hand we have:

() = () = af +a

with a; purely imaginary (in fact here we have a; = 0!) and a; €
S(1;9) (again by symbolic calculus). We can therefore estimate ||c* f||2
= ((¢“)2f, f) by ((¢)“f, f) + O(]| f||*) which gives our assertion.

The next observation is that in proving (3.1) we can reduce
everything to the case when g = g is a constant metric, i.e. a positive
definite quadratic form on the 2n variables (z,¢) for which ¢g/g7 < A2
where 0 < A(= h) < 1. This of course is the whole point of the
localisation explained in [6, Lemma 18.4.4]. Indeed by what we did in
the last section we see that our estimate (3.1) is “localisable” to each
U, where the metric can be considered as constant.

More can in fact be demanded form the constant metric g = go.
We can even ensure that g = Ae where e is the euclidian metric 3" (dz?+
dé?), and 0 < XA < 1 as before. To see this we argue as in [6] in the
first few lines of the proof of Lemma 18.6.10. Indeed we can, by a
linear symplectic transformation 7', reduce g(z,£) = Y A, (z% + £2)
with A = sup A} and since our hypothesis on a, e is that |a|] < cxA™2,
le]f < ¢k, we can replace all the A;’s by A in the hypothesis. The
estimate we wish to prove is

e (ea) e, e“If||* < C1 (a*f, f) + C2 |IfII*,  feCEe.

The linear symplectic transformation has the following effect on the
symbols and the corresponding operators

(eoT) =U"'e“U , (aoT)*=U"'a"U
(cf. [6], Theorem 15.5.9) where U : L?(R") — L?(R™) is a unitary

transformation. It is then clear that the above conjugation operation
commutes with all the “elements” of our estimate and we are done.

From everything that we have done up to now we see that the
proof of (3.1) is reduced to the proof of the following inductive step for
k=1,2,...,2n.
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(Ix): All the metrics are of the form Xe for some 0 < A < 1.
We shall assume that the estimate (3.1) holds if a depends on k — 1
variables and we shall conclude that it holds for any a that depends on
k variables.

The proof is but a variant of the Fefferman-Phong argument. I
shall follow closely the presentation given in [6] in the proof of Lemma
18.6.10.

Our original metric is ¢ = Ae and our conditions on a and e are
(with apologies for the confusing notation!)

leli < Ce A2, Jalg < G A9/

(observe that all our estimates below have to be uniform in A).
The metric g will be replaced by

G:e=mg = H(z,{)e

where )

g = meLal) lls()}
Since clearly by our hypothesis H > A\ we have m > 1 and clearly
also G/G° < H? < 1. It follows therefore that to show that G is o-
temperate it suffices to show that it is slowly varying and invoque [6],
Proposition 18.5.6 (or one can even give a direct proof, ¢f. [6]). The
fact that G is slowly varying is proved in Hérmander (although I feel
that the corresponding passage of the proof of Lemma 18.6.10 in [6]
is unclear. Indeed I had to work somewhat to convince myself that it
works | Maybe the reader can do better). Be it as it may, we now have
a o-temperate metric G, and since G > g we have S(1;9) C S(1;G),
but we also have a € S(1/H?; G). To see this, since m > 1, it is enough
to check that

lalf <CHGH/2 £ =0,1,2,3

(compare with [6, relations (18.6.13)-(18.6.13)"]). For k£ = 0,2 this
follows by the definition of H and for £ = 1,3 by the standard log-con-
vexity of the || - ||o norm of the derivatives (||F'||2, < C ||F|loo||F" ||loo)-
What really has been done up to now is simply to transform all the
data to a new metric G = He.

(3.2) ec€ S(1,G), a€S(1/H* G)
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and the A has disappeared.

Our next step consists in a new localisation that will allow us
to suppose that H is constant and so be able to use the inductive
hypothesis. We consider a convering of the phase space by balls U, C U,
as in (A) for the metric G. These balls are in fact euclidean balls
centered around the points w, of radius ¢ H, /2 Where H, = Hw,)
(for appropriate constants c).

Our strategy now is simple. We shall prove the estimate (3.1)
when the e’s (e € S(1; G)) are such that supp e € U}, for some fized v
and when a only depends on % variables. This will be done under the
inductive hypothesis that Iy_; holds. It is of course impossible (since
incompatible with its constancy along certain directions) to assume that
a also has supp a € U, (hence the factor e in the (ea)® of our estimate).

There is one case that can be delt with immediately, this case is
when H, = 1. Indeed we then have (ea) € $(1; H,e) and our estimate
follows. It suffices therefore to analyse the case

(3.3) 1 < max{HZa(w,), H,|a|5(w,)} < C.
The upper bound follows from (3.2). We consider then the function
f(z) = Ha(w, +z/H}/?)

that satisfies max{|f(0)],|f|5(0)} ~ 1 (in the sense of (3.3)). We shall
apply to that function a slight variant (in the sense that the constants in
(18.6.14) and (18.6.15) are different) of [6], Lemma 18.6.9. This allows

us to decompose
(3.4) f(z) = fi(e) + ¢*(2), 2| <C

with the appropriate bounds on the derivatives of f; and g, and f;
depending only on k — 1 variables. To see that we actually gain one
extra direction of constancy, we have to apply, in fact, the proof of the
lemma and not just the lemma itself.

Finally we shall go back to the original symbol a and cut it off
by a function pr € S(1; H,e) constant along the same directions as a.
This allows us to define @ = ap € S(1/HZ; H,e) globaly. The localised
estimate that we wish to show refers to (ea)“ and not to a“ itself, so
by properly choosing ¢, we can replace a by a@ on the left hand side
of (3.1) without changing anything. Therefore, since

(3.5) e€ S(1;H,e), acS(H % Hye),
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we have succeeded in reducing everything a constant conformal metric
again.

The decomposition of f in (3.4) induces then, by scalling back, a
decomposition (c¢f. [6], p. 175)

(3.6) a=>5+c?

such that b € S(H; %, Hye), c € S(H;'; Hye) with b only depending on
k — 1 variables, we obtain therefore by the inductive hypothesis that

(3.7) [le”(ea)”e”, e*]f[|* = ||[e“(ea)e”, e*] f||?
<C@f,H)+CIfP, feCs.

To see (3.7), together with the induction hypothesis, we have to use the

case a = c¢Z, that has already been delt with, and the Fefferman-Phong

theorem (cf. [6], Theorem 18.6.8) that guarantees that

(S sC@fLH+CIAP
(The other estimate: (b“f, f) < C(a“f, f) + C||f||? is clear).

The estimate (3.7) is unfortunately not quite the wanted localised
estimate. Indeed, we had to cut off the symbol a, and so we end up with
@ and not a on the right hand side. (That cutting off was necessary
to make (3.5), (3.6) work). It may well be that with a cleverer way
of building up the induction I could have avoided that “misfiring”. I
propose to save the day differently. Indeed observe that the localised
estimate is only used in Section 2 (¢f. (2.11) and (2.11)") for the special
functions f = I, f. To obtain our original symbol a on the right hand
side of our estimate (3.1) it suffices therefore to be able to prove

(3.8) 1> @a-a)isf, HI<CIfI*, feCy

where @, is the function pra = @ for the index v that was fixed just
above. To see (3.8) we choose for each v the corresponding “cutting oft”
function ¢ to be equal to 1 on some neighbourhood of supp ¢,. This
choice makes the estimate (3.8) evident. Indeed by (C), (F), 2y (a—a, )y
is then concentrated at v in S(1/h?hA%;g) for all v and N > 1 (¢f. also
the considerations at the beginning of Section 2), and if we apply (E)
we obtain (3.8). Observe incidentally that we do not have to prove
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>, (% (a—a,)*is f, )| = O(|| f]|*) and that we can put the modulus
sign outside the summation. This is just as well because this stronger
estimate would need a different proof.

4. The conjugation operators.

In this section, I shall only consider 0 < a(z,§) € Sf,o a nonnegative
“classical symbol” and A = a“(z, D). I shall show that

(4.1) IAC[AT, Alf|? < CL(AS, )+ C2|IfII*,  feC

for appropriate Cy,Cy > 0 and A = (1 + A)!/2. We shall see that this
follows easily from the results of sections 2 and 3.

The first step consists in a localisation of A at £ ~ 2% k=1,2,...
This is done as usual by a partition of unity of the form

L=g5(6) + ) ¢°(277¢), EeR”

i1

where 9,19 € C§° and

1
(4.2) supp ¥ C {E: 10 < €] < 10}
If we denote by o = %9, pir(-) = ¢(2_k~), A = (Apr)” we have
(4.3) A= 6 Avyt = af +a

where a; € 511’0 takes pure imaginary values and a; € S?,o (cf. [6],
bottom of p. 174). Inserting (4.3) in our commutators we obtain

IACAT, AFI* < D IACTA™®, oR AeRI I + C NI £
k

= IR A AT Akl FIP + CullfIIP . feCEe.
k

It follows therefore that it suffices to prove (4.1) for the localised sym-
bols Ai. Indeed if that localised estimate is known to hold we obtain
that

IAXA= AJFI2 < C S (Arei £08 )+ C ek I3 + ClIFIIS
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when f € C§°, which because of (4.3) gives the global result.
We shall suppose from now onwards that a is localised as above at
£ ~ 2k = ¢, for some fixed kg = 1,2,... Let us decompose then

A" =R+ Ra, A= (n(OQ+1ER)2)”

where ¥;(€) = ¥(27%0¢) and where 3 satisfies (4.2) and is such that
%1 is equal to 1 on some neighbourhood of supp a (this last statement
should be clear but it is abusive since a depends on ¢ and on z).

We shall insert this decomposition in A*[A™% A]. This will give
rise to four different terms that have to be delt separately. For the first
term we observe that (in terms of S(m, ¢g) notations) we have

AT* € OPS(6F% 90), a € S(€2;90)
(uniformly in ko) where go = dz? + £52de?, so it follows that
A[AT Al = (& *AY)[(EFA™), A]

where £Z*AF> € §(1, go). This reduces the estimate to the correspond-
ing result on [E, A] examined in Section 3.
The other terms are very easy to estimate. Indeed

supp a N supp (symb A,) =0,

it follows therefore that the operators A, A, AA, € Sios (n 2 0) for
arbitrary n (by (C) among other things). Our estimate (4.1) is thus
established.

5. The imaginary powers and the holomorphicity.

The operator A that we shall consider in this section is A =
a“(z,D)+ Ao with 0 < a(z,§) € S'f,o and Ao some appropriately large
constant for A to be a positive Hilbert space operator. It follows from
Section 4 that

(5.1) I(4 = A= AA) fl| L2 < C | A2 f]l

provided that ), is large enough to ensure that || f||z2 < C||AY2f]|:.
In fact in what follows I shall maintain the convention that was adopted
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in [1] and drop the A¢ > 0 altogether from all the formulas. (The con-
vention is that this Ag is tacitly always there, and that it is large enough
without necessarily appearing explicitely). An immediate consequence
of the above estimate is that

(5.2) le 4 — A=%e A |22 = O(/2)  (ast — 0).

This was shown in [1] Section 3 and I shall not repeat the argument
here since anyway these type of estimates will be examined in details
in sections 6 and 7 below. I also wish to stress that from here onwards
all the O(t*) notations that will appear refer to t — 0 and that the
“t — 0” will usually be dropped. From (5.2) the boundedness of A%
on H, (s,a € R) follows as in [1, Section 3]. When A is a differential
operator we can deduce from this the boundedness of

(5.3) A . H? — HP ; seR, 1<p<oo,

H? = {f: A®f € L?}. This is proved by interpolating the information
between (a = 0, p = pg) and (o = ag, p = 2). Once we have (5.1) all
these facts extend to general A and the proofs of [1], Section 3 work
in this general setting. In [1], Section 3 I also gave two distinct proofs
of the holomorphicity of the action of e7*4 on the spaces H,. The
first works under very general conditions and does not use our basic
estimate (5.1). The second used the action (5.3) of A** on H,. It turns
out that if we make essential use of (5.1) we can give a direct proof of
the fact that the operator (1 + i£)A, (£ € R) is semibounded on each
Hilbert space H,, or equivalently that

(5:4) Re (1+i€)(A™"4Af, f) > =C|f||Zz -
Indeed the left hand side of (5.4) can be rewritten
(Af,f) +Re (1 +£)((AT*AA® — A)f, f)
and because of (5.1) we can bound the second term by
Ci (L+IEN 1A £
It is therefore only a matter of choosing the C' on the right hand side

of (5.4) large enough. In fact the first proof of the holomorphicity of
e~ 4 (the one that does not use at all our main estimate (5.1)) will also
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give the above semiboundedness. Indeed if we do that proof with care
it will show that

(5.5) le™* Al sramrr, < M1, JArg 2| < 6

with any 0 < § < 7/2 and A > 0 (depending on « and 6) and this is
equivalent to (5.4), (¢f. [7]). The fact that we have (5.5) rather that
the coarser estimate Me*I?l is of course not of great consequence. For
differential operators the corresponding estimate (i.e. M = 1) for the
H? — HP norm also holds. This is seen by standard interpolation since
it is well known that the semigroup e~*4 is symmetric submarkovian
and therefore ||e™*4||Lr—r < 1, (1 < p < 0).

6. The square root A!/2,

In this section I shall draw the first consequences of the two esti-
mates that have been established in sections 1 to 4:

(6.1) [I[4,Elflx <CIAV?flx , ll(ex —c)Afllx < CIIAY?f|lx

when f € C§°. Here A € 57, is as in Section 5, cx(T) = A*TA™ is
the conjugation operator applied to any operator T' and X = L%. We
shall also denote || - || = || - || x . This section relies very heavily on the
methods, ideas and even notations of [1] and it would be unrealistic for
the reader to try to read it without being familiar with [1].

The first consequence of (6.1) that I shall draw is

(62) A% Elflx <Clfllx , ll(ex—c)AY?fllx < Clifllx

when f € C§°. For the proof I shall use the scale X, = {f : A%/%f €
X}, (e € R). The norms || - || and || - ||a—pg Will refer to that scale. To
prove (6.2) I shall start by proving

(63) ™ Ellla—s, ll(ex = c)e™ 4lams = O (/2+@=912)

where a €]—1,1], 8 € [0,2]. Once we have established (6.3) the estimate
(6.2) will follow automatically by the machinery of [1]. Indeed it would
then follow from (6.3), by the real interpolation method of [1] Section
1, that

(6.4) 1A% Ellla—s < C,
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a—p

for o €] — 1,1, B €]0,2[, —Re o + % +

estimate for (cx — ¢, )A% would also follow), so in particular we obtain

= 0 (the analogous

1
(6.4)" ||I[A7, E]lla—as ll(cx = cu)A%||ama < C, Reo = 5@ €]0,1].

By duality it follows that (6.4)" also holds for a €] — 1,0[ and thus, by
interpolation, (6.4)" also holds for a €] — 1,1[. Our required estimate
(6.2) is the case a = 0 of (6.4). What follows from the above is, in
fact, the stronger estimate where in (6.2) we replace A1/2 by Al/2+is
(s €R).

The proof of the basic estimates (6.3) can in fact be found in sec-
tions 4 and 5 of [1]. One simply has to run through the proof and
observe that in the range o €] — 1,1], 8 € [0,2] the proof given there
works under the assumption (6.1). For the convenience of the reader I
shall recall the main points of the proof and I shall start with the eas-
iest of the two estimates (which already contains the main idea). For
a, B,7 € R we have

e Ellla—s

(6.5) t . .
SAH@“)WwHNWAMwwNGAMw%-

To be able to exploit the above factorization we must have
yE€la,a+2[, pely-1,v+1].

For the middle term we will use the following estimate

(66) B, Allimy-1 SC, (1= cx)Allyye1 SC, 7€ [0,1].

Indeed the case v = 1 of (6.6) is our hypothesis, the case v = 0 is the
dual statement and the values in between are obtained by interpolation.
In fact in (6.5) we can just set v = 1 (which is our hypothesis) and a €
| — 1,1}, 8 € [0,2[ the integral in (6.4) gives then the required estimate
as in Section 4 of [1]. The proof for ¢y — ¢, is more involved and is
essentially contained in [1], Section 5. First for all by taking differences
it is enough to consider the case y = 0. Let us then use the notations
of [1], Section 5 and set

pt)=(1—cr)e ™ =e A —R,.
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I shall ignore the refinements of Section 5 in [1] and simply show that
(6.7) le(®)lla—a = OF'7?), a€[0,1].
This will suffice to give us the estimate
(6.8) IRellama = llea(e ™) llama = O(1), a€[0,1].
Once we have (6.8), we shall use the formula
t

(6.9) o(t) = [ eI - cr)A)R, ds

0
and the factorisation

t
le(®lla—p < A le™ "9 am1—ll(1 = ex)Alla—a—1|Rslla—a ds

which together with (6.8) and (6.6) establishes (6.3) for @ € [0,1],
B € [0,1]. From this by the same method as before we finish the proof

of (6.2). To establish (6.7) we use the same integral inequality as in
Section 5 of [1]. We rewrite (6.9)

t
plt) = [ O = ) Apls)ds + 1),
0
t
I(t) = / e (=41 — ¢\)Ae™*Ads
0
and start by estimating

H()lama = O(?), a€0,1].

This is done ezactly as for [E,e~'4] (with a = 3). The next step is to
fix some f € C§° in the unit ball of X, and set 1(t) = ||p(t)f||a- The
function (t) > 0 is such that %(t) — 0 (as t — 0) and satisfies the
integral inequality

t
Y(t) S Ct'/? + C/ le™ " Jlam1—all(1 = ex)Alla—a-1%(s) ds
0

so that we have

i
Y(t) < Ct/? +C/ w(t—s)s'/?ds, ael0,1].
0
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This clearly implies the required estimate (6.7) just as in Section 5 of
(1].

At this stage the scale X, will be abandoned for good and the only
information that will ve retained is at the level @ = 0, i.e. on the
Hilbert space X = L? itself. This is exactly what was done in Section 6
of [1]. The scale we shall use from now onwards is the classical Sobolev
scale

Ho={f: A*feL?}

and from here onwards right through the next section the norms | - ||«
and || - ||a—pg will refer to that scale. Let us use the same notation as
in Section 6 of [1] and set B = A® = (1 + A)*/2, (s € R). Then the
estimate (6.1) of [1]

(6.10)  ClA7flix <|BA°B7 flx <C|A°flx, feC5,

holds for ¢ = 1 and Re ¢ = 1/2. The proof of this fact that we gave
in Section 6 of [1] works because of (6.1) and (6.2). From (6.10) we
deduce just as in Section 6 of [1] that

I[A, E]flla < C A2 £l

6.11
(®11 I(ex — cu)Aflla < C A2 £l

when f € C§°. We have thus generalised the estimate (6.1) to all the
classical Sobolev norms. More generally just as in Section 6 of [1] we
can deduce from (6.2), (6.10) and (6.11) that

5™ AZS™ fllm < CAfllp

(612) n o gn n o—
15™ (47, 572]S™ fllm < C | A77Y2 ],

with 0 = 1 or Re ¢ = 1/2 and p = m + }_n; and with §™ € OPS?,
arbitrary pseudodifferential operators.

To illustrate (6.12) let us denote by Q; = eita’? (t € R which is
a group). We have then

Qi —ex(Q) = c / Qus(1 — cx)A2e5(Q,)dt

using then the same argument as in the beginning of this section and
the fact ||(1 — cA)A/?||q—a < C (which is but a special case of (6.12))
we obtain that

1Q: — ex(Q¢)l|L2—r2 = O([H]) -
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This in particular proves our last assertion in Section 0.1.

7. Commutators with F.

I strongly urge the reader (to help him get the idea) to read first
the part of this paragraph that starts soon after relation (7.2) where
two special cases are considered.

All the norms || ||o and || -||o—p refer to the classical Sobolev scale
Ho = {f: A®f € L?}. The operator A is as in Section 6 and will be
assumed subelliptic so that there exists é € [0, 1] such that

I flli-s < C||AM2f||, feCse.

The letter 6 will be reserved throughout to indicate that parameter.
We shall indicate multiple commutators throughout with the usual
notation

[X,Ey,....Ex] =[..[X,E\, Ea,...], E]

with E, Fy,... € OPS{’,0 and, as before, the same letter E will be
reserved to indicate arbitrary OPSY , which are not necessarily identical
in different places. I shall also need the specific notation

p(0)=0, (=3, ¢)=p@)==1.

The following assertions (Pj) will be proved in this section inductively
onk=0,1,2,....

Assertions (Py):

(PI{:) ||[e~ZA,E1,E2, o ,Ek]Ha—>ﬂ -0 (lzlk/2+(a—ﬂ)/2(l—6))
™ k (&4 —ﬂ
/ - — 4+ —" < (k).
where Mrgz|<4, a,p €R, 2+2(1—6)_(P()
(F') |AY?|q—a-1 £ C, a€R.

(P NAY% E1, Ea, ... E]lla—atk-11-6) < C, k>1,a€R.
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Two more conditions will be considered in the induction (z always lies
in the sector |Arg z| < 7/4)

I[AY2e™*4, By, Es, ..., Ex]||ap

(PIII
k -0 (lzlk/2+(a—ﬁ)/2(1—6)—1/2)
k a—pf 1 k a—pf
- —F - o —" < i
where 2+2(1—6)<2’ 2+2(1—6)_('9(k)

(PIEiV)) I|A1/2[6_ZA,E],. - ,Ek]”a-—»ﬂ -0 (|z|k/2+(a—ﬂ)/2(1—6)—1/2)

k a—f3 1k a—f
A A PRI e .
where 2+2(1—6)<2’ 2+2(1—6)_('9(k)

A few more obvious remarks are in order. (Pj), (P,') are contained
in [1] and (8]. (P[') is just our estimate (6.2). Also for k = 0 the
two statements (Py") and (_Pé'v)) are identical and are automatic con-
sequences of the holomorphicity of the action of e7*4 on the Sobolev
spaces H,. Furthermore observe that for any £ > 1 the statements

(Pj') in conjunction with the statements (P;"), j < k, implies (P,Eiv)).
Graphically

(PY@® (P"), 0<j<k implies (P").

This is only a matter of developping out the commutator in (P"’).
The next observation is less obvious and says that for £k = 2,3,...

(P) implies (P}).

In fact something more general holds: for k¥ > 2 under the assumption
that (P;) holds (only needed for z =t > 0) we have

(71) “[Aa, E],Ez, cee aEk]||a—>a+k(l—6)—2Re o(1-6) < C

for all @ € R and Re ¢ < 1. This follows from our interpolation theorem
of Section 1 in [1] applied to the scale H, and

®(t)=[e ", E1,Ea,...,E) =[e""* —~I,E1,Es,... Ey].
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So that for Re 0 < 1, Re o # 0, we have
[A°,Ey,...,Ex] = c/ t=771®(t)dt.
0

Indeed for B = a + k(1 — 6) — 2Re (1 — §) we have k/2 + (a —
B)/2(1—6) = Reo < 1, and that last strict inequality gives us the
“room” that we need to play, for the interpolation of Section 1 in [1].
The case Re 0 = 0 of (7.1) has to be delt separately but it can be de-
duced from Re o # 0 by complex interpolation (applied to an analytic
family of operators).

I shall finally show that for £ =1,2,...

(Py) implies (P}").
The proof relies on the fact that the function
F(z)= [e—zA,El,Ez,...,Ek], |Arg z| < %

is an operator valued holomorphic fuction. It follows therefore from

Cauchy’s Theorem and (Py) that

-0 (|Z|k/2+(a—ﬂ)/2(l—6)—l)

a—f

d _,
“[Zz_e A,E],...,Ek]

when k/2 + (a — 3)/2(1 — 6§) < ¢(k). On the other hand we have

[Al/ze_ZA, El,. .. ,Ek] = / 5—1/2d_[6—(s+z)A’ El, ey Ek]dS
0

ds
and therefore
J[A2e=A By .. Ei][lap
< C/oo sTU/2|s 4 z|F/2H(e=B)/201=6)-1 4
-0 (Tzlk/2+(a—ﬂ)/2(1—a)-l/z)
Provided that we have k/2+(a—f)/2(1 — é) < 1/2 (the strict inequal-

ity (less than 1/2) is needed to give uniform bounds at infinity. I do
not know if this inequality has to be strict or whether it can be relaxed
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to less than or equal to 1/2. But on the other hand this will be of no
consequence at this point).

The upshot of all the above considerations is that in the proof of
the inductive step of Py it suffices simply to prove the step

(7.2) (Pp_;) implies (Py)

and in the proof of that step (7.2) I am allowed to use all the information
contained in (P;)o<j<k—1-

To simplify notations from here onwards I shall drop the complex
variable z (|Arg z| < m/2—¢¢) and consider only z = ¢t > 0. The proofs
are identical for complex z. I also urge the reader at this point to study
Section 4 of [1] since otherwise he will find it difficult to understand the
considerations that follow. Let us first consider simple commutators.
We have

e, Ellla—g

t
S/O le™ @442 0 gl| A7 2[E, Allla—alle™*[la—ads

t
+/ e =4 s gl|[E, A]A™/2|| g p]| A 2e=CH) 4| _sds .
0

The two middle “factors” inside the integrals are adjoined of each other
and are bounded (c¢f. (6.11)). The other terms can be estimated by
the results of [8] and the holomorphicity of the semigroup e~*4 on H,.
Putting everything together we obtain

[, Bllasp = O (#/24(=P10=0) , f 2 a.

At this stage I could embark in the proof of the general inductive
step (7.2). What is involved there however hides the main idea of the
proof. To help the reader understand what is going on, I propose to
prove “ad hoc” (P;) (¢.e. k = 2), and then perform the general inductive
step. In fact if the reader is a “believer” he could skip in a fist reading
the proof of that general inductive step. Let us examine commutators
of order 2 where we shall expand [e~2!4 E, E] into six integrals as in
Section 4 of [1]

/: 6"A[A,E,E,]€”A , /[e"A,E][A,E]e"A ,

(7.3)
/e"A[A,E][e"A,E] .
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The “.” on e at the two ends of the integrals indicate the two
combinations —(2t —s) and —s or —(t—s) and —(s+t) and they will be
needed to perform the jump a — (3 at one end or the other. The above
integrals give corresponding “factorisations” of the ||[e™'4, E, E]||a—g
norm and will be delt one at a time. For the first we proceed as follows

t
/ e~ 4 aspll - lamalle ™**lama
0
t
—({— — A
/0 e D4 apll - ls—slle™ D4 amp

and since [A,E,E,] € OPS},, its || - ||y~ norm is bounded and the

contribution of both of these two integrals is O (¢!H(2=A)/2(1=8)) for
B > a (the results of [8] have to be used again).
The second integral in (7.3) gives rise to the factorisation

/||[€"A,E]Hwﬂll[A,E]A‘mI|v—w||A1/2e“A|la~v

where the v is either a or # depending on the combination that we have
adopted, {—(2t — s)A; —sA} or {—(t — s)A; —(t + s)A} of {..;..}. The
norm ||[4, E]A~1/2||,_., is bounded by (6.11), and using our previous
result on the simple commutator [¢~!4, E], we obtain again the contri-
bution O (#1+(@=#)/2(1=8)) (observe that there is a “loss” of 1/2 at one

end, A/%e+4 but a “gain” of 1/2 at the other end, [e4, E].
The final integral in (7.3) is of course dual to the one we just
considered. We put everything together and we conclude therefore that

”[C_tA, E,E]”a—-vﬁ -0 (t1+(a—3)/2(1—5))

for # > a. This is our statement (Py').
To work out the proof of the general inductive step (7.2) we shall
introduce the following

Ky(t)=[e " Ey,...,Ey], k=0,1,..., t>0

and use the analogue of our previous formulas to decompose Ki(t) into
a number of integrals of the form

t
(7.4) IM,,:/ K,(.)A Ey,. .., E)K.(..)ds
0
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where ¢ > 1, p+ ¢ + r = k and where the combination “..,..” at the
two ends of the integral is as before either 2t — s,s or t — s5,t + 5. We
shall assume that (P;);<x—1 holds and we shall distinguishes two cases
in (7.4).

Case (i): ¢ > 2. Let

(7.5) | a=-’25+§%__—[2)5¢(k)=1

since we may suppose that k¥ > 2. I shall introduce o', 3’ € R such that

r, a-d p, B-B
. 4 272 < _P, PP
(7.6) = 2+2(1_5)_¢(r), y 2+2(1_6)_<P(p),
g, o-p
== < =
(7.7) B' <a'4+q—2 or equivalently Z:gggz

The compatibility of the above conditions will be examined shortly. It
is then possible to estimate

t
7p.q,rlle—p 5/0 B (Ollgr—sll - Nlor—p 1 ()l e ds

where the middle term is bounded (because of (7.7)) and for the other
two terms we can use the inductive hypothesis. It is necessary in the
above to make sure that the integral converges at the two ends. Only
one of the two ends will be a problem, and which one of the two ends
will give trouble depends on the choice of combination “..;..”. To ensure
the convergence of the integral we must impose therefore the additional
condition

(7.8) z > —1 (respectively, y > —1)
(the “respectively” refers of course to the choice of “..;..”).

Assuming that the conditions (7.6), (7.7) and (7.8) are verified, we
obtain then that (¢f. (7.5))

1. rlla—g = O (+FY) = O (£*7¥42) = O (¢%)
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provided that z < 1, which proves the statement (P;). To prove the
compatibility of our conditions observe that it suffices to find z,y € R
such that

2—¢gé
< z<
595 =251

z<o(r), y<ep)),
—1 <z, (respectively, —1<y).

1'+y+2:a$17

For indeed o', #' can then be determined to satisfy the three equations
(7.6) (sincep+q+r =k).

The above conditions on (z,y, z) are clearly compatible. It suffices
to set

z=1 and (z,y)=(0,a—1) (respectively (a —1,0)).

Case (ii): ¢ = 1. We shall also assume without loss of generality
that p > 2. Indeed one of the two p or r is larger than or equal to 2,
since k > 3, and we can pass from one to the other by considering the
adjoint operator. We proceed then as follows

t
11p,q,rlla—s S/O 1K () la—plIlA, EJAT 2]l A2 K () amnds

with the same meaning to the notation “..;..”. We shall choose the
~v € R so that

1
3:=£+ T <ep(r), <z,
2 2( ) 2
(7.9) _p, B=n
fy -7 < V=1
and
(7.10) —1 <z (respectively, —1 < y),

with the same meaning as before for the “respectively” (it depends on
the choice of “..;..” which is necessary to make the integral converge).
When (7.9) and (7.10) are verified we can integrate and we obtain the
required inductive step

pgrllamp =0 (t’”“"y‘l/?“) -0 (tk/2+(a—ﬁ)/2(l—6)) _
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To check the compatibility set

N =

k et
m+y=§+————

1
2(1-4) 2 =P~

It is enough to choose z,y € R so that
1
x<§, z<(r), y=a—z<1

and also
—1 <z (respectively, —1 < y)

for then v € R can be determined to satisfy (7.9).
The compatibility of the above z,y conditions is clear, indeed it
suffices to set © = 0 (respectively r = 0if a € [0,1/2] or z = a if a < 0).
In the following proposition we collect together some important
information obtained up to now.

Proposition. Let 0 € C with Re 0 <0, a € R, k =0,1,... Then for
commutators of length k we have

A%, EE, ... ,Elllamatk(1—6)—2Re o(1—6) < C.

The proof was given in (7.1) for k > 2 and Re ¢ < 1. It is very easy
to see that the same proof works for k¥ =1, Re 0 < 1/2 and Re 0 < 0,
k = 0. For Re 0 = 0, k = 0 the Proposition holds by (5.3). Observe
finally that the above estimate also holds for Re o0 = 1/2, k = 1 (¢f.
(6.12), and the remark a couple of lines after (6.4)) but we shall have
no use of the cases Re o > 0 in what follows.

8. General commutators and the classes S;’?a .

In this section A will denote a general linear operator 4 : C§° — D'
(to avoid necessary complications I shall also suppose, when necessary,
that A is “compactly supported” in the sense that there exists some
compact set I\ such that A(p) = 0if supp ¢ N K =0 and A(p) =0
outside I\, Vi € C§°). I shall denote as usual by E € S?,o and also by

ax =a=[AE,E,. .. El=|.[AE],E],...]
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where k is the length of the commutators. The E’s are as usual E €
OPS) ; not necessarily all the same.
Our standing hypothesis in this section will be that

(8.1) llakl|la—atsk—m < C, a€R, k=0,1,...

for some fixed 0 < § < 1, m € R. |- || and || - ||o—p refer to the
standard Sobolev norms.

To present the arguments in this section it is necessary to establish
a good set of notations. The basis of our reasoning is the classical
decomposition of unity

(82) 1= w;(€), wo€Cq, v;(§)=vN(277¢), £eR™
=1

for some ¢ € C§° with supp ¥ C {£: 1/10 < || < 10} and where the
power N will be important because it will allow us to decompose the
corresponding components into arbitrarily many factors. The N > 1
.will be chosen at the beginning and appropriately large. The partition
(8.2) will be used to decompose

(8.3) A* =% "2%E; + E .
i>1

In (8.3) and in what follows, I shall reserve throughout the notation
E; e S?,o for operators indexed by 5 > 1 that will satisfy several prop-
erties which will be enumerated below. It is important to understand
that although all the E;’s have these properties they are not in general
identical when they appear in different places. This notational conven-
tion gives us great flexibility in the arguments. Observe finally that E,
that comes from 1)y is special, and will often enough be ignored since
it never causes any trouble. All the properties below will be satisfied
uniformly in the indices when the case arises.

(i) Ej=¢;(D), suppe; C{¢: 27/K < [¢| < K27}
(the K > 1 can vary from place to place but does not depend on j).
(i) 2%E;¢€ ST s
I shall also adopte the notation A; = 27,5 >0.
(iii) > 0jATE; € S for arbitrary (o;)j>0 € I*°.
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This is an automatic consequence of (i) and (ii) and it implies that

(8.4) 1> 025 Eillptasp <C, a,fER

(iv) Each e; and therefore each E; can be factored into as many
e;’s (respectively E;’s) as we need E; = E;E; ... E;.

This simply come from the large exponent N in (8.2).
(v) For arbitrary (o) € I°° and a, € R we have

(8.5) 1D oiXEifilg SCY Nillars, fi€Co.

Indeed let F' = Y 0, \YE;f;, p; = A*tB f; we have APF =3 0,E;p;
(the new E; is of course different!) It suffices therefore to prove our
assertion for « = 3 = 0. But then || F|? = > ik (EjEkpk, ;) and by
(i) we can estimate this by 3 ||Eje;||?. This gives our assertion.

(vi) Using the fact that E; = E? (for a different E;!) we can
deduce from (8.5) (simply set f; = E; f) that

(8.6) 1Y oA Eifllf <C D NE i Fllass-
We also have
(8.7) Z MNE;FlIE < Clflla+s-

To see this, we set Fy = ) 0;AYE;f so that [|[Fy|lg < C| flla+s, uni-
formly in o, by (8.4). If we take expectations over o; = +1, (8.7)
follows.

At this point let me recall that for +1 centered independent random
variables (;,&;,n;,... and h; j k... € X (=some Hilbert space) we have

yeon

(8.8) E| Y (GEimr ik i ~ D ik, -

This is standard. (What is slightly less standard is that we have the
one sided inequalities for X = LP(2), 1 < p < 2. We have to make
essential use of this refinement if we want to develop the LP-theory of
these operators).
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The following terminology will now be used. We shall say that
T :Cg§° — D' is of smoothing order < n € R (or simply “is of order n”
if no confusion arises) if

(89) ITfllo < Cllfllatn, a€R.

In this terminology our operators ay = [A,E,E,... E], k > 0 are of
order ord(ax) = m — ké. Clearly when T is of order n so is its adjoined
T*. We have then

(vii) Let a =[A,E,E,...,E] be as above. Then for every fixed
g € R the following two operators (adjoined of each other)

(8.10) > ME[E;,...,Eja], Y M[E;,....E;dE;
J J

are of order m + ¢ — (p + n)é. Here n is the number of E;’s inside the

brackets of (8.10).

Indeed from the above observations it follows that it suffices to
consider the first operator and from (8.6) it follows that it suffices to
prove that for all n and « we have

(8.11) > B Ejy- -, Ej ap) flla < ClFI2gme(ntp)s
J

when f € C5° ,a € R, p =0,1,.... Here n indicates, as before, the
number of E;’s inside the bracket. To prove this estimate we consider

EC:ZCiEi’ E5=Z§iEi,---€S?,O

where (;,€;,... are independent +1 random variables as above. Taking
expectations and using (8.8) we obtain

> WEj,Esy- -, Esny ) fla < C(Slelp I1E¢, Ee, .- -, a5)flla

J1yeeadn v
S CNANZ = (pnysim

where for the second inequality we use our hypothesis (8.1). The above
estimate contains (8.11).
We now come to the main estimate of this section:
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Let a=a, =[A,E,E,...,E], (p > 0) as before and let ay,...,ax
€ R (k > 0). We shall prove that the operator

(8.12) [A® A% ... A® a]=B

isof order ay + -+ ax —(p+ k)6 +m.
To prove this fact, I shall partition each A* as in (8.3) (and also
I =3 E;) and I shall write

B = Z ASU NS EE,,. .., Ej,q].

1,71,k

I shall decompose the above summation into two parts. The first comes
from terms for which ¢ ~ j; ~ ... ~ ji, t.e. equal up to a fixed constant.
The contribution we obtain then is

B = Z/\Z “Ei[E;,... E;qd

3

and using (vii) we see that B' has the correct order. In the second
summation, since the j,’s are interchangeable (all the Ei’s commute !)
we may suppose that |j; —i| > C > 1. This gives the following contri-
bution (In the argument below I make essential use of the fact that the
FE}4’s commute. On the other hand even if the F}’s did not commute we
could make this argument work by considering higher commutators)

B"= > A HEj,.. o Ep, Y E[ Y ATE;d
(8.13) J2yeadk d [7—i|>C

= [S2,53,..-, Sk, M]

where S, € S74, r=2,...,k and

(8.14) M= %" X'EiEj,q.
li-i>C

Using the fact that each E; can be written as EJN and also the fact
that E;E; = 0 for |7 —:| > C we deduce that the general term in the
summation (8.14) can be replaced by

ANEi[E;, Ej, . .., Ej, a|E;



38 N. TH. VAROPOULOS

with as many E;’s as we need inside the brackét. We conclude therefore
that .
M= Y APEiEj,...,Ej,dE;.
li—j|>C

Summing first over : and observing that 3, .- Ei = E — E; we
deduce that -

(818) M = E(> A'[E;,...,EjaE) + > A'Ej[E;,...,Ej,dlE;
J J

but in the second summation we can absorb the E; on the right by
introducing an eztra commutator.

Putting together (8.13), (8.14) and (8.15) we finally see that it is
a consequence of (vii) that M and thus B" have as low an order as we
like (i.e. they are infinitely regularising. Indeed it is only a matter of
taking the length of the brackets in (8.15) high enough). This proves
our assertion.

Let us now consider arbitrary S; € OPS; ‘- The final claim that
I will be made in this section concerns (always under the hypothesis
(8.1)) the smoothing order of the following commutator

(8.16) Cp,=1[4,51,...,5]=[..[4,5],5]...5)],
(8.17) Smoothing order C, < Y n; +m — 6k.

Here of course the smoothing order is defined as in (8.9). This statement
will be proved by induction on the length p. It clearly holds for p = 0.
I shall assume it to hold up to p—1, and proceed to prove the inductive
step.

Towards that I start by factorising each S; = EA™ = A™ E and
expand the commutators (8.16). What is obtained by that expansion
is a linear combination of terms

(8.18) PIA,T, T, ..., THQ + . ..

where T1,T3,...,T; = E, Ishall then say that ord T; =¢; =0 (1 <: <
7), and T, = A’ and say ord T, = t,, (j + 1 < r < k). Furthermore
P e OPSY,, Q€ OPS] .

The iﬁlportant point is that p + ¢ + > t; < Y n;. This is obvious
because in the various monomials that appear in the decomposition of
C, there is no way at all that we can increase the total order of the
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pseudodifferentials. The first term in (8.18) has therefore the required
smoothing order by the corresponding statement on (8.12) (the reader
has to make here the distinction between the smoothing order and the
order of a pseudodifferential).

It remains to examine the remainder terms “...” in (8.18). These
are the terms for which the “principal commutator” has length p' < p,
and they look like

P[A,S},...,5,1Q

with p' < p. It should be clear what is ment by “principal commuta-
tor”: it is the commutator that contain A. All the other commutators
contract to P and () which are ordinary pseudodifferential operators.
We have again ) ord S} + ord P + ord @ < ) n;. But more can in
fact be asserted, we have

(8.19) Yord S; +ord P +ord @ +(p—p') < Xons.

After a moment reflexion the reason for this should be clear. Indeed if
we have decreased the length of the “principal commutators”, say, be
one unit, this is because somewhere in the product we have bracketed
two S’s, [S;, Sk]. But this bracket makes us gain one unit in the total
order (I mean here the order in the sense of pseudodifferential calculus)
and so on. .

From (8.19) it follows that the inductive step applies. Indeed in
the conclusion (8.17) we gain p — p' and lose —6(p —p') and since § <1
the inductive hypothesis gives us, if anything, a stroger estimate. This
completes the proof. '

If we put together everything that was done in this section we see
that we can reduce our criterion at the beginning of Section 0.2 to the
Beals criterion [3]. Since A is assumed to be “compactly supported”
we can, in fact, use the form of the Beals criterion given in [5], Chapter
I11.

The assertion (0.4) follows by the same criterion and the estimates
(Pr) of Section 7; the proof is therefore, if anything, easier. The as-
sertion (0.5) also follows from the criterion of Section 0.2. To see this
let us call C*, (m,p € R) the class of operators T as in (0.2) that
satisfy the condition (0.2). It is then a formal verification to see that

T, € C”,Tl.“, (¢ = 1,2) implies that T1'T, € CrTi‘Ij{'Z:zm}. If we combine

therefore our result A* € C?_;, (s € R) of Section 6, together with the
fact A" € S3% CCI" (n=1,2...), we deduce that A% €C)_ s for

Reoc=0,1,2,.... Complex interpolation gives then that A% € C2R¢ 7

(Re ¢ >0, 0 <6 <1). Our criterion does the rest.
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9. An application of a theorem of R. Beals.

We shall place ourselves here in the context of Theorem 5.4 of [3]
(¢f. also [4], [9] for the general setup). We set P = p“(z,D) with p €
S;‘:h g 2 polyhomogeneous symbol (¢f. Definition 18.1.5 in Hérmander,
vol. IIT). More general symbols in S}, m = 2,3. .. can also be treated
but we shall restrict ourselves to m = 2 for simplicity.

Following Beals we must impose on the principal symbol p; the
same conditions as in [3] (e.g. pm(z,§) belongs to the sector |Arg z| <
/2 — €g or the even less restrictive condition [3]) and also that P is
subelliptic with a loss of 1 derivative, i.e. that

(9-1) [ully < C([1Pull +lull), ueCg®

for the usual Sobolev norms || - ||o and || - || = || - |[o. We shall suppose
also that the complex powers P?, (¢ € C) can be defined by say, a
ray of minimal growth (¢f. [9], p. 153). For simplicity we shall in fact
assume here that the symbol of P is p(z,{) + Ao with some large Ao
and p(z,€) > 0 and then all the above conditions are verified.

I shall show in this section how the results of R. Beals in [3], [4]
and [9] imply our basic estimate (0.1) very easily and in full generality,
for A = P as above.

To do this we introduce the (¢, ®) functions of p. 56 in [3] (with
m = 1) and consider the corresponding metric

s Wl _ 2, _Inl* \ _
gl,f(yan) - (,92(-’1,‘,€) + @2(:1:’6) =m (Iyl + 1+ |£|2> - mgO(y,n)

(¢f. [10], Example 3, p. 378) with m = (£)2®~2(z,£) > 1 and the
uncertainty parameter h = (p®)™' = (£)(|p2| + (£))™' < 1. What
counts of course is that the symbol of P lies in the class S(®2;g) (This
is proved in [3] and here I swich freely from Beals to Hormander’s
notations).

The additional observation that we need is the fact that ()™ €
O(®, v) (with the notations of [3] and [9]) since R = &/ = (£), in other
words (£)™ is an admissible weight function (in Hormander’s terminol-
ogy [6], sections 18.4 and 18.5 for the classes S(m; g)) for the metric g.
This will allow us to exploit the “mixed symbolic” calculus

S(miig1) x S(ma;92) —  S(mima2;91 + g2)
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of Theorem [6], 18.5.5 and make a gain on the “order” of the commu-
tators. Le us be more explicit. We shall apply this Theorem 18.5.5
with
g1+ 92
G1=90, 92=9, —5 g

my; = ({)™, (m € R) and m; any weight function of g. As we just
saw both m;, m; are then continuous o — (g1 + ¢2)/2 temperate weight
functions. As for the condition [6], (18.5.13) on g1, g, it is guarantied
here by [6], Proposition 18.5.7, which also gives us that

H = (hihe)'? = (|p2| + (€))%,

The application of Beals theory ([3], [4], ¢f. Appendix at the end of the
paper) gives then that for all o € C we have

P? = g%(z,D), 4o € S((Ip2] + (€)% 7;9).
From this and [6], Theorem 18.5.5 we deduce that
[P?,5] = a“(2,D), a€ S(()"(Ipz| + (€))7 77125 9)
for any S € OPST,. The application of [6], Theorem 18.5.5 can clearly
be iterated and we obtain
(9.2) Sol---[P?,51]...]Sk|Sk+1 = b“(z, D),
be S(E)Z™ (Ipa] + ()" 7~/%; )

for arbitrary pseudodifferentials S; € OPSy%, (0 < j < k+1).
To obtain our basic estimate (0.1) from (9.2) we must find a way
to prove that

(9:3) WAl = [IFllz2 + A" P™ fllLe,  f € Co°

is an “admissible norm” (in the sense of [4]) for the space H((£)"(|p2|+
(€)™ 9), (n,m € R), (with Beals notations in [4]). That this is the case
for n = 0 is proved in Beals [3], [4] and the key to that is Theorem 3.7 of
[4] (one easily sees that the same argument givesn € R, m =1,2,...).

No doubt one can generalise Beals theory to obtain the above more
general result for arbitrary n,m € R. This will not be necessary here
however. Indeed from (9.2) and the above results of Beals we certainly
have the special case (since then n = ) n; = 0)

(9.4) IL1L2 ... Le(P7)f|lx < C||PRe7=*2f) %,
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k=0,1,..., f € C5°, where I denote by L, ( =1,...,k)
L;(T)=[E,T], or(cx—cu)(T)

with E € 5 ; as usual, and cx(T) = A"*TA*, X = L? (T indicates an
arbitrary operator). At this stage we have to go back to Section 6 of
[1] where it was shown that (9.4) implies our estimate (0.1). (This was
done in Section 6 of [1] only for k£ = 2 but the proof is clearly general.
Observe also that this is essentially the same argument that is used at
the end of Section 8 to deal with the general commutator (8.16). The
reader should have no difficulty to adapt the argument here). Our proof
is complete.

10. The generalisation of the geometric theorem.

This section relies very heavily on the methods, ideas and notations
of sections 7,8 and 9 of [1]. What I shall do is to use the results of
the previous section to give the generalisation of the main geometric
Theorem of [1], Section 0 as was promised in Section 0.1.

Let M = a“(z,D)+ Ao with 0 < a(z,€) € Sﬁhg and large Ao >0
satisfying the conditions of Section 9, and let L = 3 X7X; a subel-
liptic Hérmander operator or more generally an operator of the form
L=73%X:X;+ A% (0 <o <2) where 37 X7X; is again assumed to
be subelliptic. These operators were denoted by L = 2 Y'Y in [1],
Section 9, and the Y’s that we shall consider below are the Y’s defined
there. We shall further assume that the two operators L, M satisfy the
subellipticity estimates of [1], Section 7,

(10.1) [|flli-s S CII+ L) fllx s [Iflh-a < CI(T+M)2f||x .

Our conditions on M imply that d < 1/2. We shall also assume that
d+ 6 <1 and we shall extend our Proposition in Section 7 of [1] in the
present setting. More specifically we shall prove [1], equality (7.2)

(I + L)/2e ™I + L)"i/?||q_p = O (t(rx—ﬂ)/2(1—d)>  B>a,

for the above operators L and M. The norms || - ||« , || - ||a—pg refer
throughout to the classical Sobolev norms H,. The proof of [1], (7.2),
that I shall give below is very close in spirit to the proof given in [1],
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Section 7. Indeed it is in some sense dual to the proof there. Once
the [1], (7.2) has been generalised for our present operators we can
obtain the generalisation of the geometric theorem that was announced
in Section 0.1 exactly as in [1].

Before we start the proof of the estimate, we shall need to note an
easy algebraic identity

[, y1y2 - yi]
10.2
(10.2) = Poilm Y1) > Yo()Woia1) -+ Yoiky » k=1
ij
for arbitrary indeterminates m; yi,...,yx and p, ; € Z, where o runs

through the permutations of 1,2,...,k. This is easily proved by induc-
tion on k.

We shall also need to introduce the following notation: for Y7,Y53,
... € 81, determined by the operator L (or rather L as in Section 9 of
[1]) and k = 0,1,... I shall denote by

Ri(t)=Y3,Y;, ... Y e M(I 4+ L)™F/2,

There are of course several Ry’s for a fixed k and they depend on the
choice of 7;,. .., 1.

Our first step is to prove by induction on k that for all # > «a and
k=0,1,..., we have

(10.3) | Re(t)]|a—p = O (t(a—m/z(l—d)) .

This statement for £ = 0 is contained in [8] (¢f. also Section 3 of [1]).

Our aim is therefore to assume that (10.3) holds for 0,1,...,k and
prove it for k + 1. Towards that we fix (21,...,2k4+1) which to simplify
notations we shall rename 1,2,...,k+ 1. We then develop in our usual
way

[e™™MY .. . Yipul=L+1,

t
= / 6_(2t—3)M[M, Yl ... Yk+1]8_8MdS
0

t
+/ e UMM Yy .. Yigqle (F9IM s,
0
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This together with our identity (10.2) gives us a decomposition

[e™M,Ya . Yina (I + L)~ = 37 p,(1V + 117
J

t
he :/ e~ CUIMN Y, Y| Regry(s) ds (I + L)™/?
0

and the analogous expression with the usual switch (2t —s) — t — s,

s — t+ s for 1;2). The Y;’s in the above formula have, of course,
undergone one more renaming (they really are Y, (;)’s for an appropriate
permutation o).

We shall factor [|1{”]la—g, (8 > ) and estimate it by

t
O A el 1 S A TR A

N Resa—5(s)llds [|(T+ L) 7772

which is an in Section 7 of [1] an appropriate cascade of || - ||,—s norms,
that unfolds as follows

I+ L) |amatsa-8) < C,
[Rk+1-5(8)latj1-8)—atic1-8) = O(1),
1M~ Y atia-8)—ajs < C
for the first estimate (c¢f. [1], [8]). The second follows from our inductive
hypothesis and to see the third we use the result of Section 9 together

with the fact that each Y; € OPS] ;. To estimate the first term in the
integral (10.4) we recall that for A > 0 we have for § > «

1M e M [lap < M /2M 5 plle™/2M |0p

(10.5) -0 (t—A+(a—ﬂ)/2(1—d))
and
w06, e M amp < lle™Mlar2aa—a—sIM Mlaat2r-a)

-0 (tz\+(a—ﬁ)/2(l—d)>

provided that 8 > a + 2A (1 — d) (since the factor ||M~?|| is bounded
(¢f. [1], [8]))- We apply this to the first factor inside the integral of
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(10.4) and distinguish two cases j = 1,2 and j > 2. In the first case
(10.5) gives us

o ||€_(2t—S)MM1_j/2||a—j6—»ﬂ
(10.7) Iy ((2t _ S)—1+j/2+(a—j6—ﬂ)/2(1—d)) .

We multiply out and integrate and obtain
(10.8) ”L_(jl)”0—>ﬁ -0 (t(j(l—d—é))/l’(l—d)+(a—ﬂ)/2(1—d)) )

If j > 2 we use the estimate (10.6) to obtain (10.7) again and we obtain
also exactly the same estimate (10.8) for I](l) as long as the ezponent of
t in O(t °*P°"*™) of (10.7) is < 0. This however is always te case since
f>aand 0<d< 1.

The integrals IJ(-2) are estimated by the analogue of the integral
(10.4) where we replace (2t — s) by (¢t —s) and s by (t + s) on the
exponentials and Ri41—j(-). The cascade of || - ||,—, norms runs now
as follows

(I + L)—j/2|la—>a+j(l—6) <C,
[Bet1-5(t + $)llatia—6)—+ii-8) = O(1),

by the induction hypothesis provided that v = a + ¢ > a. We also
have, just as before,

1M~ MY Y =) —mis < C

To estimate the first term we have to distinguish again the two cases
j=1,2 and j > 2. In the first case we have

e =DM =2 s g

(10.9) -0 ((t _ S)—1+j/2+(7—ﬂ~j6)/2(1—d))

as long as > v —jé. Then since f > a we can choose v = 3 and after
integration we obtain

(10.10) ”I]('2)||CY—‘L7 -0 <t(j(1—d—&))/2(1—d)+(a—-ﬂ)/2(l—d)) _
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In the second case j > 2 we obtain the same estimates (10.9) and
(10.10) provided that (the left inequality below is to make the integral
converge)

J y—B—j
o B R Yo )
(10-11) j(1—d—-6) a—p €

+ <0.

=S aTe Traca T2ao9)

At first sight it looks as if here we are in trouble. Indeed for 1—-d—6 > 0
and j > 0, (10.11) is incompatible for € > 0. But of course we can get
round that difficulty simply by assuming that 1 —d — 6 = 0. This is
no loss of generality since we can allways increase the d and ¢ in the
definition of subellipticity of L and M without altering the validity of
the conditions (10.1). In that case d + 6 = 1 the inequalities are then
always compatible for some € > 0 since by our hypothesis 8 > a.

All in all we have therefore established that, under the inductive
hypothesis, we have

(10.12) [I[e™™, Y] ... Yiga)(I + L)=%+D/2)| s = 0 (t(a-f”/?(l-d))

(provided that d + 6 < 1).

At this stage we shall invoque the estimate (9.1) of [1], (where the
subellipticity of )  X7X; is apparently needed). This together with
(10.12) and the (standard by now, I hope) fact that

||€_tM||a—»ﬂ -0 (t(a—ﬂ)/Z(l—-d))

establishes the inductive step and complete the proof of (10.3) in all
generality.

We shall now finish the proof of [1], (7.2). Assume that j = 2k is
an even integer, then

(I + L)%= Z/\ LY, MEL
p<k

and our estimate [1], (7.2) for & = 3 follows from (10.3). Equivalently
what we have proved is

e Xy — X5, j=1,2,...
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with our old notation X, = {f : (1 + L)*/2f € L?}. Duality and
interpolation completes the proof of [1], (7.2) for a = §.

This is good enough for our purposes and proves the analogue of
the proposition in Section 7 of [1]. We can however also prove [1],
(7.2) in full generality 8 > a by a slightly more sophisticated variant
of complex interpolation. This was explained in Section 7 of [1].

REMARK. One of the facts that was used in [1], Section 8, is that e~*£
acts on the spaces X, (a € R). This fact when a =2n (n =1,2,...)
is a consequence of the semiboundedness of A on X5, , and this was
proved in [1], Section 10. The general fact follows then by duality and
interpolation.

Contrary to what was asserted in [1], Section 10, on the other
hand, this actual semiboundedness of A on each X, (for some appro-
priate scalar product) does not seem to follow by interpolation. This
semiboundedness is however never used anywhere else so we do not
need to prove it.

Appendix on the Beals theory.

In this appendix, using the Beals theory [3], [4] and [9], I shall
outline a proof of the fact that the norm || f|| in (9.3) with n = 0 and
m = N/2, N =1,2,...) a half integer is an admissible norm for the
space H((|p2] + (£))™;¢). This fact is explicitely proved in the papers
of Beals. The point is however, that the direct proof that I give here,
only uses the basic definitions of the Beals theory and none of the more
sophisticated machinery developed by Beals. On the other hand this
special case (n = 0, m = N/2) is all that is needed for the proof of our
basic estimate (0.1). In other words we only need (9.4) for 0 = N/2 (a
half integer) and then if we inject that information in Section 6 of [1]
we can make everything work.

The first thing to observe towards that goal is that our basic hy-
pothesis (9.1) implies that

(A1) CIP+Dfll 2 (P +ah)*fll, feC5°

for all a, @ > 0. Indeed it suffices to prove (A.1) for a = 1,2,... we
can develop then (P +aA)® and we reduce the problem to proving that

(A2) [L1Le ... Lifl| < C (P + 1)*f]]
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where L; is either A= P+JTorL; € S?,jo and where if s is a the number
of A’s then Y n;+s < a. For s =0 (A.2) is a consequence of (9.1) (¢f.
[8]). We can thus use induction on s. The inductive hypothesis and the
fact that [A,ST] C S{’,'gl allow us then to commute and bring all the
A’s at the beginning of the product. (A.2) is thus reduced to

ITA*fll < CllA%Fll,  feCo

with T' € S75°, 0 < s < a. This is clearly a consequence of [8] (set
@ = A*f).

Having proved (A.1) let us denote Py = (P+aA)" (for some large
a>0,N =1,2,...). Our problem is to show that || f]|x = (Pnf, f)'/?
is a norm for the space H(m™/?;g) where we denote by

m =p+ C(£) = p2 + C(¢).

For simplicity we shall suppose here that the symbol of P is nonnegative,

p(z,£) 2 0.
The proof of this fact is an easy consequence of the existence of
the following two “parametrices”

Q+=¢4(z,D), gz € S(m*N/%y)
(A.3) Py = Q%.Q4 mod-OPS(mNh?;g),
Q_Q4+ =1 mod-OPS(h*%;g)

where s > 1 can be chosen in advance and arbitrarily large. To con-
struct these parametrices let us denote by Ry = (m™)“(z, D), (N € R)
and let us observe that by standard symbolic calculus we have

R_nj2PNR_nj2 =1 mod-OPS(h;g).
This allows us to use the binomial (1 + 2)/2 =14 2/2+ ... and write
R_njoPNR_njp =Y?  mod-OPS(h%yg), Y =Y* € OP5(1;9)
with arbitrary high s > 1. Similarly we have
R_nj2BRyj2 =1 mod-OPS(h;g)

and the Neumann series 1 — z 4+ 22 — ... allows us to construct a

parametrix Ry, € OPS(m™N/%; g)

R._N/QRN/Q =1 mod-OPS(h’;g)
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with arbitrarily high s > 1. Combining these two facts we obtain
Py = Ry, Y?Ryj,  mod-OPS(mMh?;g).

It follows thus that we can set Q4 = YRN/z =q%(z,D) in (A.3).
Observe now that ¥ =1 mod-OPS(h;g) and so R_pn/2Q4+ =

R_N/QYRN/z =1 mod-OPS(h;g). The same Neumann series 1 —z+

z2—. .. allows us therefore to construct in (A.3) the required parametrix

Q- of Q.
Once we have (A.3) we can write (with s > N/2)

(Pnf f) = 1Q+ I = (TF, 1),
T € OPS(m™/?h;g) C OPS((£)N/2; g).

It follows that
(TF, DI IRAVEFIIANAS|, - R = AZYATAZYY € OPS(159).
On the other hand (with obvious notations !) we have

[fllw < ClIQR-Q4fllm + Cllfllmne , f€CF°

(for any arbitrary weight function 7). If we set m = m™/2 and s > 1
large enough we obtain

(A.5) £ llmnre < C (1Q+£1 + I fllcgynrz) -

But clearly also
(A.6) I Fllgynre S ANANZANE fllgynyz < C AN

since A™N/2 € OPS((£)V/?%; g). Putting together (A.4), (A.5) and (A.6)
we deduce that

[ llmmrz < Clifllv,  feCo,

which is the desired estimate.
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Non-separable bidimensional

wavelet bases

Albert Cohen and Ingrid Daubechies

Abstract. We build orthonormal and biorthogonal wavelet bases of
L?(R?) with dilation matrices of determinant 2. As for the one dimen-
sional case, our construction uses a scaling function which solves a two-
scale difference equation associated to a FIR filter. Our wavelets are
generated from a single compactly supported mother function. How-
ever, the regularity of these functions cannot be derived by the same
approach as in the one dimensional case. We review existing techniques
to evaluate the regularity of wavelets, and we introduce new methods
which allow to estimate the smoothness of non-separable wavelets and
scaling functions in the most general situations. We illustrate these
with several examples.

I. Introduction.

In the most general sense, wavelet bases are discrete families of
functions obtained by dilations and translations of a finite number of
well chosen mother functions. The most well known are certainly dyadic
orthonormal bases of L?(R), of the type

(1.1) Yi(z) = 27922 x —k), jkeZ.

These constructions have found many interesting applications, both in
mathematics because they form Riesz bases for many functional spaces

51
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and in signal processing because wavelet expansions are more appropri-
ate than Fourier series to represent the abrupt changes in non-stationary
signals.

Several examples have been given by Meyer [Mel], Lemarié [Le]
and Daubechies [Daul], generalizing the classic Haar basis in which
the mother wavelet » = x[0,1/2) — X[1/2,1) suffers from a lack of
regularity since it is not even continuous. All are based on the concept
of multiscale analysis, i.e. a ladder of closed subspaces {V;}, ez which
approximates L?(R),

(1.2) {0} —»..icVcV,...— L*R),

(note that in some papers and in Meyer’s book, the converse convention
is used, t.e. V; C Vj41) and satisfies the following properties,

(1.3) f(z) €V; <= f(2z) € Vju1 <= f(2'z) € Vg,
(1.4) there exists a function ¢(z) in V; such that the

set {¢(z — k)}kez is an orthonormal basis for V; .

Since Vy C V_;, the scaling function ¢(z) has to be the solution of a
two scale difference equation,

(1.5) o(z) = 22 cn 9(22 —n) .

n€z

The associated wavelet is then derived from the scaling function by the
formula

(1.6) ¥(z) = 2D (1) Cin (22 — 1) .

n€z

In the standard interpretation of a multiresolution analysis, the
projections of a function f on the spaces V; are viewed as successive
approximations to f, with finer and finer resolution as j decreases. The
wavelets can then be used to express the additional details needed to
go from one resolution to the next finer level, since the {¢(z — k)}rez
constitute an orthonormal basis for W, the orthogonal complement of
Vo in V_;. The whole set {I/Ji(iv)}j,kez forms then an orthonormal basis
of L?(R).

We are here interested in similar constructions adapted to functions
or signals of more than one variable.
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The most commonly used method to build a multiresolution anal-
ysis and wavelet bases in L?(R") is the tensor product of a multires-
olution analyses of L?(R). In L?(R?) it leads to a ladder of spaces
V; = V; ® V; C V;_; generated by the families, '

(1L7)  Bl(z,y) = 279027z —k) o277y 1), kLEL.

Three wavelets are then necessary to construct the orthogonal comple-
ment of Vg in V_;, namely,

(1.8) Vao(z,y) = @(2)Y(y)
(1.9) Uy(z,y) = p(z)e(y) , ;
(1.10) Ve(z,y) = P(a)P(y) -

Actually, the theory of multiresolution analysis, as it was intro-
duced by S. Mallat and Y. Meyer (see [Mal] and [Mel]) was first mo-
tivated by the possibility of building these separable wavelets for the
analysis of digital picture.

It is clear, however, that this choice is restrictive and that it gives a
particular importance to the z and y directions, since ¥, and ¥, match
respectively the horizontal and vertical details.

A more general way of extending multiresolution analysis to n di-
mensions consists in replacing the axioma (1.3) and (1.4) by

(111) f(z) € V; = (D)€ Viy
(1.12) There exists a function ¢ in Vg such that the set
{¢(z — k)}rez~ is an orthonormal basis for V} ,

where D is a n X n dilation matrix.
All the singular values Ay,..., A, of D must satisfy

(1.13) Am| > 1,

to ensure that the approximation gets finer in every direction as j goes
to —oo. Furthermore, we require D to have integer entries. This con-
dition means that the action of D on the translation grid Z™ leads to a
sublattice I' C Z".

The number of basic wavelets required to characterize the orthog-
onal complement of Vy in V_; is in that case trivially given by the
following heuristic argument. This complement should be generated
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by the action of Z™ on the basic wavelets, in the same way that Vj is
generated by the action of Z™ on ¢, whereas V_; is generated by the
action of D~'Z™. Consequently, each of the generating functions can be
associated with an elementary coset of D™1Z"/Z"™ ~ Z"/DZ" except
one which corresponds to the scaling function (see figure 1). There-
fore, d = |det D| — 1 different wavelets are needed. Note that it is
not strictly necessary that the entries of D be integer to build wavelet
bases using D as the elementary dilation.

D
A
Fanl

Figure 1

-1
Z? and DZ? in the case where D = 2

1 2
The scaling function and the four basic wavelets
are indexed by an element of Z2/DZ?.
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However, the condition seems to be necessary for the existence of a mul-
tiresolution analysis based on a single, real valued, compactly supported
scaling function.

In this work we shall indeed focus on real valued, compactly sup-
ported scaling functions and wavelets. They have the advantage that
the sequence {c,}nez introduced in the two scale difference equation
(1.5) is real and finite. These coefficients play an important part in
the numerical applications because they are used directly in the Fast
Wavelet Transform algorithm as decomposition and reconstruction fil-
ters. They constitute in that case an FIR (finite impulse response) filter
which can be implemented very easily. Furthermore, this finite set of
coefficients contains all the information about the multiresolution anal-
ysis since the functions ¢ and 1 can be constructed as solutions of (1.5)
and (1.6). Our starting point to build wavelet bases will thus be a finite
set of coefficients and the associate two-scale difference equation, rather
than the approximation spaces V; themselves.

The main difficulty in this approach is the design of the FIR filter
{¢n}n=0,... n in such a way that ¢ and 1 are smooth and have orthonor-
mal translates.

In the one dimensional case, it is shown in [Daul] that orthonor-
mal wavelets can be constructed by choosing a filter which corresponds
to a particular case of exact reconstruction subband coding schemes,
and which can be made arbitrarily regular by increasing the number
of taps in a proper way. Several contributions have followed, giving
supplementary information on the type of filter which has to be used
(see [Me2], [DL], [Col], [Dau2], [Co2], [Dau3]).

In the present bidimensional case, the design of filters associated
to “nice wavelet bases” turns out to be more difficult because some of
the one-dimensional techniques do not generalize trivially (or do not
generalize at all!) to higher dimensions and new methods have to be
introduced. This article concentrates on the situation where D is a 2x2
matrix with |det D| = 2.

We deliberately restrict ourselves to this set of matrices for two
reasons:

e These dilations have already been considered by electrical engi-
neers and seem to have interesting applications in signal analysis
and image processing. For example, since only one basic wavelet
is required, one may hope for a more isotropic analysis than with
the separable construction. Subband coding schemes with deci-
mation on the quincunx sublattice have been studied in the works
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of J. C. Feauveau [Fea] and M. Vetterli and J. Kovacevic [KV].
Our work is complementary to their signal processing approach
since we investigate here the mathematical properties, such as the
Holder regularity of the wavelet bases associated to these schemes.
This regularity is important when one asks that the reconstruc-
tion of the signal from the coarse scales has a smooth aspect (see
Section II.2).

e These dilations are simple and our study will be reduced to the
case of two basic matrices. However, the difficulties which appear
in the evaluation of the regularity of the corresponding wavelets
are common to all the non-separable constructions, and the tech-
niques that we develop to solve this problem can be used for other
types of dilations. We believe that the set of integer matrices with
|det D| = 2 constitutes an interesting “laboratory case” in the
general framework of multidimensional wavelets.

In the next section of this paper, we shall give an overview of
different techniques which can be used in the construction of one di-
mensional compactly supported wavelets. Some new tools will be intro-
duced specifically to be generalized and used in the multidimensional
situation.

The third section examines the possible subband coding schemes
with decimation on the quincunx sublattice and their general relations
with non-separable wavelet bases.

In the fourth section, orthonormal bases of wavelets are constructed
from such coding schemes. We show that for the same filters, different
bases with widely differing regularity can be obtained, depending on the
choice of the dilation matrix. Finally, we use a biorthogonal approach,
in Section V, to construct more symmetrical wavelet bases correspond-
ing to linear phase filters and allowing a more isotropic analysis. We
show that arbitrarily high regularity can be attained and we give some
asymptotical results.

II. The construction of compactly supported wavelets in one
dimension: A complete toolbox.

The purpose of this section is to review, in the one dimensional
case, many different techniques that can be used to build regular wave-
lets from subband coding schemes, theoretically and numerically. Some
of these techniques, like the Littlewood-Paley estimation of smoothness,
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are not frequently used in the one dimensional case, but they turn out
to be very useful for the non-separable bidimensional wavelets. For
more details, the reader can also consult [Daul], [Mel], [Mal], [Vel],
[Dau2], [Me2], [Co2].

Wavelet bases and subband coding schemes.
II.1.a. The orthonormal case.
Let {V;}jez be a multiresolution analysis of L%(R). We can use

the discrete Fourier transform of the finite sequence {e,}22 N,» i€ the
transfer function

N»
(2.1) mo(w) = Z cpe” M = Z cpe "
n€z n=N,;

to rewrite the two scale difference equation (1.5) that characterizes ().
We suppose that the ¢, are real. Taking the Fourier transform of (1.5)
and (1.6) we obtain

(22)  $(2w) = mo(w)p()

~

(2.3) P(2w) = e mo(w + 7) B(w) = m1(w)P(w) .

Two fundamental properties of mg(w) can be derived from the mul-
tiresolution analysis properties

e Since {¢(z — k)}kez is an orthonormal basis of Vj, the Fourier
transform (w) satisfies a Poisson identity

(2.4) > lpw+2nm)f =1,
n€Z
Combined with (2.2) this leads to
(25) mo(w)* + |mo(w +m)|* =1

which may also be written as

(2.6) 2 )" cacnyar = 6ko (=1if k=0, 0 otherwise) .
n€ez
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e The denseness of {V;};ez in L%(R) is equivalent to

50 = o)z = 1,

(see [Mel], [Mal] or [Col]).

Consequently, we have
(2.7) mo(0) = 1 and my(m) = 0,

which may also be written as

N2 N2

(2.8) Z cn = 1 and Z (-1)"cn = 0.

n=N1 n=N1

The subband coding scheme associated to our multiresolution analysis
appears clearly in the Fast Wavelet Transform Algorithm of S. Mallat
[Ma2]. Let us recall how it works. The initial data are considered as
the approximation of a continuous function at the scale 7 =0,

(2.9) SY = (fip(z—k), keZ.

This allows the computation of the approximations and the details at
coarser scales, i.e.

(210) S = 2792 (f 1) and Dl = 2792 (fpl), ji>0.

(The coeflicients are normalized in such way that if f = 1 locally, then
S; = 1 in that area). The sequence {S}}rez (respectively {D}}irez)
is then derived from {S "1rez by a convolution with the filter mg(w)

(respectively, m;(w)) followed by a decimation of one sample out of two
to keep the same total amount of information, z.e.

St=> enar SI7, D =3 (1" caq1n SIT.

n n

The algorithm then iterates on {Sj}kez Conversely, the sequence
{S] }kEZ can be recovered by applying the same filters mo(w) and
mi(w) on {57 Vrez and {Dk}kez after inserting a zero between every
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pair of consecutive samples, and summing the two components (multi-
plied by two for normalization purposes), t.e.

5;1;—1 = 22011—21: S){; + (_1)71—1 C2k+1—n -Di; .
k

All these operations, decomposition - decimation - interpolation - re-
construction, constitute a complete subband coding scheme as shown
on figure 2. The property of exact reconstruction can now be derived in
two ways. It is a natural consequence of the multiresolution approach,

since V; = Vj $ W41 but it can also be viewed as a consequence
of formula (2.5) for the filter mq. This type of filter pair (mg, m,) is
known as a pair of “conjugate quadrature filters” (CQF); they were
first discovered by Smith and Barnwell in 1983, ¢f. [SB1]. The design
of FIR pairs, with real coeflicients and perfect reconstruction, has been
generalized in [Daul]. It also appears in [ASH], [SB2], [Vel].

Tho _@71;})‘@— mo

original reconstructed
signal signal

my —( : )_HP_. my

Figure 2
Subband coding scheme corresponding to the FWT algorithm.
The sign 21 stands for “decimation of one sample out of two” and 2T for
the insertion of zeros at the intermediate values.

Since mg(w) is regular (it is a trigonometric polynomial) and since
mo(0) = 1, we can iterate (2.2) to obtain

+o0
(2.11) pw) =[] mo27%w).
k=1

Given a conjugate quadrature filter mg(w) (7.e. a trigonometric polyno-
mial satisfying (2.5) and (2.7)), it is thus possible to define the scaling
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function, either as a solution of the two scale difference equation (1.5),
or explicitly with the above infinite product. However, this does not
always lead to a multiresolution analysis: the function ¢(z) = % X[0,3]
generated by the CQF mg(w) = (1 + €%¥)/2, for example, does not
satisfy the orthonormality of the translates. Orthonormality of the
@(z = k) turns out to be equivalent to the L? convergence of the trun-
cated products ¢n(w) = [[re; mMo(27¥w)x[—2nr, 277 (w) to G(w) (be-
cause {¢n(z —k)}rez is an orthonormal set as soon as (2.5) is satisfied).

More precisely, the following result characterizes the subclass of
CQF filters leading to a multiresolution analysis and orthonormal basis
of wavelets.

Theorem 2.1. Let mo(w) be a Conjugate Quadrature Filter. Then,
the infinite product (2.11) leads to a multiresolution analysis if and only
if there exist a compact set K C R such that,

i) K contains a neighbourhood of the origin,
i) |K| = 27 and for all w wn [—m, 7], there exist n € Z such that
w+2nmT e K,
iil) for alln > 0, mo(27"w) does not vanish on K.

The set K is said to be “congruent to [—m, 7] modulo 27" (figure
3). The proof of this result can be found in [Col]. It exploits the
continuity of my, the compactness of K and mg(0) = 1 to show that
(iii) is equivalent to p(w) > ¢ > 0 on K. This is then sufficient to derive
the L? convergence of the ¢, by Lebesgue’s Theorem. We shall use a
multidimensional generalization of Theorem 2.1 in the fourth section.

[ | | | I
— r l 1 —
_d4r —r _ 0 2z T 3r
3 2 3 2

Figure 3
Example of compact set congruent to [—7, 7| modulo 2.
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I1.1.b. The biorthogonal case.

The conjugate quadrature filters are a very particular case of sub-
band coding scheme with perfect reconstruction, because identical fil-
ters (up to a complex conjugation) are used for both the decomposition
and the reconstruction stages. If we do not impose this restriction,
then the scheme uses four different filters: mo(w) and M;(w) for the
decomposition, mo(w) and m;(w) for the reconstruction. Perfect re-
construction for any discrete signal is then ensured if,

{ mo(w) mo(w) + my(w) my(w) = 1
mo(w +7) mo(w) + Mmi(w+m) my(w) = 0.

mo(w) and m(w) may thus be regarded as the solutions of a linear
system. However, to avoid the infinite impulse response solutions, we
shall force the determinant of this system to be ae’**, « # 0, k € Z. For
sake of convenience we take a = —1 and k = 1 (a change of these values
would only mean a shift and a scalar multiplication on the impulse
response of our filters). This leads to

(2.12)

(2.13) mo(w) mo(w) + mo(w +7) Mme(w+7) = 1,
and
(2.14) my(w) = e ¥ mg(w+7), W) = e mo(w + 7).

The formulas (2.13) and (2.14) are thus the most general setting for
finite impulse response subband coders with exact reconstruction (in
the two channel case). The functions mg(w) and 7y (w) are called “dual
filters”. It is clear that the special case mg(w) = ro(w) corresponds
to the conjugate quadrature filters of II.1.a. However, dual filters are
easier to design than CQF’s. For example, if m, is fixed, my can be
found as the solution of a Bezout problem which is equivalent to a linear
system. The coefficients of these filters can be very simple numerically
(in particular they can have finite binary expansion which is very useful
for practical implementation), furthermore they can be chosen symmet-
rical (“linear phase filter”), a property which is impossible to satisfy in
the CQF case.

We can mimic, in this more general framework, the construction of
orthonormal wavelets from CQF. Assuming that mg(0) = me(0) =1
and mo(m) = mg(m) =0, we define

+o0
(2.15) ¢w) =[] mo(27*w),
k=1
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(2.16) P(2w) = mi(w)pw),
+oo

(2.17) gw) = JJ me(27*w),
k=1 "'

(218) D2w) = M (w)dw) .

In [CDF], the following theorem was proved,

- Theorem 2.2.
o If @n(w) = [Ticy mo(2 ™ w0)X(—znm,2nm(w) and G,(w) = [Tk,
1o(27Fw) X[—2nr,2nx(w) converge in L2(R) respectively to @(w)
and é(w), then the following duality relations are satisfied

(2.19) (p(z — k), @(z — k') = bk
(2.20) (W) = 850 bk

and for all f in L*(R) one has the unique decomposition

J
(2.21) f=tm Y S (f4l) dl

J—
too TT ez

(in the L? sense).

o [ and ¢ satisfy [$(w)] + |3(w)| < C(1+ )"/~ for some
e > 0, then the families {3y} }jrez and {J’i}j,kez are frames of
L*(R). o

o When these two properties hold, then {37, &i}j,kez are biorthog-
onal (or dual) Riesz bases of L%(R).

Many examples of these systems can be found in [CDF| and a
sharper analysis of the frame conditions is developed in [CD]. We now
recall a practical way of constructing ¢ and 3 numerically from a given
subband coding scheme.

I1.2. The cascade algorithm.

In the last section we saw that the scaling function ¢(z) could be
approximated, at least in L?(R), by a sequence of band limited functions
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{¢n}n>0 defined by

(2.22) on(w) = H mo(277w) X[~2nm, 27 x] (W) -
j=1

These functions are characterized by their sampled values at the points

27"k (k € Z), ie.
(2.23) P = on(27k) .

This sequence can also be considered as the impulse response of the
transfer function

(2.24) Sa(w) = 2" ] mo(2'w).

j=1
Sn(w) can be obtained recursively by the formula
(2.25) Snt1(w) = 2mp(w) Sp(2w) .

In the time domain, (2.25) becomes an interpolation scheme; the se-
quence sy is dilated by insertion of zeros (Sp(w) — Sa(2w)) before
being filtered (multiplication by 2mg(w)). We have thus,

(2.26) sptt = 2) " cpak st
kez

This iterative process, which computes the {s} }rez sequences from an
initial Dirac sequence 0 ; is called the “cascade algorithm”. We illus-
trate it on figure 4 (our sequences are represented by piecewise constant
functions).

Note that it identifies exactly with the reconstruction stage in the
FWT algorithm described in II.l1.a. The scaling function is thus
approached by the reconstructed signal from a single approximation
coefficient at a coarse scale. Similarly, the wavelet will be obtained by
starting the reconstruction from a detail coefficient at a coarse scale
(and thus applying m;(w) at the first step of the cascade).

This explains why subband coding schemes associated with regu-
lar wavelets are particularly interesting: the smoothness of the wavelet
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determines the appearance of the coarse scale components of the recon-
structed signal. A smooth appearance is important for many applica-
tions such as compression where a big part of the finer scale information
is thrown away.

In the biorthogonal case, the analysis and the synthesis wavelets (3
and %) need not have the same regularity. As just discussed, smoothness

a) ho 1

b) hy

c)

w(-2) H |_| H w(2)
] L L [ 1]
o

e) hz

Figure 4
The cascade algorithm (from [Daul]).
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is important for the reconstructing function; the analyzing function
needs only to be sufficiently regular to ensure that the wavelet bases
are unconditional, so that the FWT algorithm is stable. Note that
an important property on the analyzing wavelet is cancellation, i.e.
vanishing moments, ensuring small high scale coefficients for smooth
regions in the function or signal to be analyzed.

Let us finally mention that this type of “refinement method” is
well known in approximation theory as “stationary subdivision” (e.g.
[CDM], [DyL]). Most of these papers are motivated by interpolation
problems, where smooth curves or surfaces need to be constructed, con-
necting (or close to) given sparse data points. Consequently, they are
mainly concerned with what we call the reconstruction stage and they
do not study the existence of an associated subband coding scheme.
This also means that they do not care about an easy way of encoding
or representing the extra “detail information” («— W;) that can be
added in going from one refinement level to the next one (V; — V;_).
On the other hand, the subband coding literature seldom mentions the
importance of the smoothness appearing in the cascade of the recon-
struction from the low scales. Orthonormal and biorthogonal wavelet
bases lead to an elegant combination of these two approaches.

. We now present several different methods to estimate the regular-
ity of the wavelets associated to a given subband coding scheme. We
shall concentrate on the regularity of the scaling function which deter-
mines the regularity of the wavelet itself because (z) is a finite linear
combination of translates of p(2z). Whatever the method used, if a
global regularity of order r is achieved, then the cascade algorithm also
converges uniformly up to this order (see [Daul], [DL], [Co2]).

I1.3. Regularity: the spectral approach.
I1.3.a. A Fourier estimation of the Holder exponent.

Let us denote by C the Holder space defined as follows. For
a = n+p,B€]0,1], f € Cif and only if it is n times continuously
differentiable and for all z # y,
/(=) — f*(y)]
|z -yl

< C(f).

Define also

227)  Fg = {f: A+ fw)el’} (a20,p21).
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It is well known (and easy to check) that Fotite ¢ F& C C@, for
€ > 0. For compactly supported functions f, we also have

(2.28) f € C* implies f e F3

so that the decay of the Fourier transform can be used to evaluate
the global regularity. To estimate this decay in the case of the scaling
function, it is possible to use the factorization of mg(w); due to its
cancellation at w = 7, we have indeed

N

(2.29) m) = (F55) b

The infinite product (2.11) is thus divided in two parts. The first part,

which comes from the factor ((1+ e)/ Z)N gives decay, since
+oo 27k +oo
1 + e _ —k _ 2 . w
(2.30) ,;E[l <——2————>' = kl;[2 cos(27w)| = IZ sm(§)| .

The second part, which involves the factor p(w), can be controlled by
a polynomial expression. Indeed, since p(0) = 1 and p is a regular
function, the infinite product generated by the second factor satisfies

+oco
I1 r27*w)
k=1

Defining, for 7 > 0,

(2.31) <C I1 lp(27*w)| -

1<k<log(1+|w|)/log 2

j—1
(2.32) B; = sup |[] p(2*w)
w€R k=0
and
log B;
. b, = ]
(2:33) ! j log2’
we obtain
+oo
(2.34) [T p2*w)| < C(B;)lesti+1D/1es2 < (1 + |w])"
k=1
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and
(2.35) (@) < C(1+ )t .

Consequently, ¢ is in 7 and C* if « < N — b; — 1 for some j > 0.
We see here that N must be large to allow high regularity since b; is
always positive. In fact, one can prove that if the wavelet is r times
continuously differentiable then it has at least 4+ 1 vanishing moments

(see [Mel], [Daul]), i.e.

(£) G0 = (1) i = 0,

forn = 0,...,7+1 and thus N > r + 1. These cancellations are
also known as the Fix-Strang conditions [FS]; they are equivalent to
the property that the polynomials of order N — 1 can be expressed as
linear combinations of the {¢(z — k)}rez. However, these conditions
are necessary but not sufficient to ensure the regularity of the scaling
function since the effect of N may be killed by a large value of b;.
Fortunately, this can be avoided by a careful choice of the filter mg(w)
(and, in the biorthogonal case, additionally mg(w)).

In the CQF-orthonormal case, a particular family of FIR filters
indexed by N has been constructed in [Daul]. This construction uses
the polynomial

NN 145
(2.36) Pal(y) = : )
N (Y ]};( ; ) y

(with the shorthand notation y = sin®(w/2)), which is the lowest
degree solution of the Bezout problem

(2.37) Pn(y) 1 —y)N + yVPy(l—y) = 1.

The corresponding filters are defined by

(238) i) = (”jw)N pr(©)

with

(2.39) pn@) = Pu(y) = Py (1‘—‘”) .
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The Fejer-Riesz lemma guarantees that there exists a FIR filter py(w)
which satisfies (2.39). It is clear that the CQF condition (2.5) is equiv-
alent to (2.36) and the conditions in Theorem 2.1 are trivially satisfied
with K = [—7, w]. For large values of N, the regularity a(N) of
the associated scaling function is approximately 0.2 N and the exact
asymptotic ratio between a(N) and N can be determined. Intuitively
speaking, this means that the contribution of py(w) removes “eighty

percent of the regularity” brought by the factor ((1+ ei“)/2)N. For
this estimation, we need to optimize the inequality (2.35), i.e. find the
best possible exponent for the decay of ¢(w).

I1.3.b. Optimal and asymptotical Fourier estimation: The role
of fixed points.

We start by defining “the critical exponent of mg(w)”:

j—1
[ r2*)
k=0

Then, it was proved in [Co2] that under the hypothesis |p(7)| > |p(0)| =
1 (satisfied in the present case (2.39)), ¢(w) cannot have a better decay
at infinity than |w|®~N. If the infimum b is attained for some finite j,
b = b, then this estimate is optimal.

How can we estimate the critical exponent? A first method consists
in evaluating b; for large values of j. Indeed, b is also the limit of the
sequence b; because the boundedness of p implies by < b; + O(j/J).
This may however require heavy computations.

In several cases, it is possible to use a more powerful method based
on the transformation 7 : w — 2w mod-27 and the fixed points of its
powers 7", n > 0. Indeed, let wy be a fixed point of 7™ for n > 0 and
define its orbit w; = 7wy, for j = 0,...,n — 1. Since p(w) has period
27, we have

(2.40) b = inf b; = inf max =

1
i>0 >0 weR jlog2 &

(2.41) p(2™*w;) = p(w;), forallk>0

and consequently

n—1
1
2.42 nk 22— j
(2.42) bu 2 s log ,IJ p(w;)
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Letting k go to 400, this leads to

1
nlog 2

(2.43) b>

n—1
log | [] p(w)] -
Jj=0

Fixed points of T lead therefore to lower bounds for b and upper bounds
for the regularity index. In fact they can do much better and provide
optimal estimates for certain types of filters. Let us consider the small-
est orbit of 7 different from {0}, namely the pair {—27/3, 27/3}. Note
that, because our filters have real coeflicients, |m¢(w)| and |p(w)| are
even functions so that [p(27/3)] = |p(—27/3)|. The following result
associates the value |p(27/3)| and the critical exponent b.

Theorem 2.3. Suppose that p(w) satisfies

(249 <l ()| wwi<
, or\|* . 2«
(244) e <o ()| ¥ 5 <hi<n.
Then
2.45 b= — 1 2m
249 - Tz b (5)]

PROOF. We already know from (2.43) that b > log |p(27/3)| /log 2.
We now use the bounds on p to find an upper bound for b;, 7 > 0. We
can regroup the factors in (2.32) by packets of one or two elements in
order to apply either (2.44) or (2.44") on each block. Since only the last
factor can miss one of these two inequalities, we obtain

. o\ " ?

(2.46) II p2*w)| < ip <?) sup [p| ,
k=0

and thus,

(2.47) by < — [J_—_l 1og‘p<2_”>| L sup floglpll]
J J
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which leads to

) <
(2.48) b< s

/(%))

The equality (2.45) means that the worst decay of $(w) occurs for
the sequence wy = 2"7/3, n > 0. This is interesting, because (2.44)
and (2.44") turn out to be satisfied in many cases and in particular for

the whole family of CQF defined by (2.38), (2.39). This is easy to check

directly for small values of N, since the inequalities can be rewritten as

log

and to (2.45).

(249) P <P (3) iusd,

2

(49)  Puln) Ptasi-0) < (Py(3)) #Fsust.

The discussion for general N is more difficult and we refer to [CC] for
a complete proof of (2.49), (2.49'). However, a similar result can be
obtained in a simple way. To characterize the asymptotical behavior of
the critical exponent when N goes to 400, one does not need the full
force of (2.44), (2.44"), however. It can also be derived from a weaker,
asymptotically valid inequality, as proved by H. Volkner in [V].

Theorem 2.4. Let b(N) be the critical ezponent associated to mp (w)
and a(N) the Holder exponent of the corresponding scaling function.
Then

. b(N) = log3
(2.50) Nl—l.r-ri-loo N  2log?
and
w1 a(N) . N —bN) log3
(2.507) nhrilm N = Nl_l)r_l;loo ¥ =1 STog 3 0.2075

PROOF. This result can be viewed as a consequence of Theorem 2.3,
but it can also be proved directly by using some properties of Pn(y).
Let us write (2.36) in the following form:

(251)  Pu(y) = Nf(N‘j”j) (%)j(zyv-

Jj=0
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From (2.36) we see that Py (1/2) = 2N~!; since Py is an increasing
function between 0 and 1, we have
(2.52) Py < (max{4y, 2H" ™" = |g(y)|" " .

It is now trivial to check that (2.49) and (2.49') are satisfied if we replace
Pn(y) by g(y). The same argument used in the proof of Theorem 2.3
leads then to

N-1 3 N-1
. < - =
(2.53) b(N) < 3 Tog2 loglg (4)‘ 3 Tog2 log 3

but from (2.43) we get

1 3
b(N) > log [Py (=
( )_2log2 °8 N(4>l
2.54 _
(254 . 2N -2\ (YT N2
= 2log2 B\ N-1)\2 = 2logz 87"

This proves the limit (2.50), and consequently (2.50") since the decay
index of the Fourier transform is equivalent to the Holder exponent
when both tend to +oo.

The use of fixed points for optimal estimations of the spectral decay
is thus very efficient when one is looking for arbitrarily high regularity
since a sharp asymptotical result is obtained. For small filters, this
method does not give a good result because the error on the exact
regularity may have the same order as the value of the Holder exponent
itself. For such filters, other methods, which take advantage of the
small number of taps in the filter, can be used to derive more precise
estimations. We now describe these methods; they are typically based
on matrix computations.

I1.4. Regularity: Matrix based sharper estimates.
II.4.a. The Littlewood-Paley approach.

We first recall some aspects of the Littlewood-Paley theory. Let
v(z) be a real-valued, symmetrical function of the Schwartz class S(R),
which satisfies
(2.55) { Y (w)=0 if w|<1/20r [w| >5/2,

¥ (w) >0 if1/2 < |w| < 5/2,
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so that the frequency axis is covered by the dyadic dilations of 4. In-
deed, we have

+oo
(2.56) 0<Ci< > APw)<Cp i w#0.

j=—oo

Define for any f in S'(R) the dyadic blocks A;(f) by
(2:57) Aj(f) = 242 )+ f = Ai(f) = 427)f .

The Littlewood-Paley theory tells us that several functional spaces can
be characterized by examining only the LP norm of these blocks. This
is the case in particular for the Sobolev spaces WP'* and the Hélder
spaces C%, a > 0. To do this, it is necessary to change slightly the
definition of C* when « is an integer; we shall say that a bounded
function f is in C™ if and only if f®~! belongs to the Zygmund class
A, i.e. there exists a constant C' such that, for all z and y, we have

(2:58) | @+ y) + N @ = y) =277 (@) S Clyl

With this convention, the Hélder space C® is characterized by the fol-
lowing conditions,

(2.59) 1A;(f)ll g <C27%  whenj >0,
(2.59%) f is a bounded continuous function.

Note that the choice (2.55) for « is arbitrary and that more general
functions could be chosen to divide the Fourier domain into dyadic
blocks. To derive these types of estimates on the scaling function ¢, we
introduce a tool which will be very useful in the bidimensional case.

Definition 2.1. Let L?[0, 2n] be the space of 2m-periodic, square inte-
grable functions on [0, 27], and C|0, 2] the space of 2w-periodic con-
tinuous functions. Then, for any m(w) in C[0, 27|, we define the tran-
sition operator Ty, associated to m(w) by

Tw : L%[0, 271] — L?|0, 27]

(2.60) foTafe) = m(3)£(3)
+m(§+7r)f(%)+7r) :
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Note that when m(w) is a trigonometric polynomial, the study of T,
can be made in a finite dimensional space. More precisely, if we define

N>

(2.61) E(N,, Np) = { Z hne'™ : (hn,,...,hN,) eCNz—M“}
n=N;

then we have clearly

(2.62) (f, m) € [E(Ny, Ny))* implies T,,f € E(Ny, Ny) .

This is due to the contraction w — w/2 which appears in the definition
(2.60) of Ty,. If ¢, is the n-th Fourier coefficient of m(w), then the
matrix of Ty, in the basis of the complex exponentials is given by

(2.63) Tpn = (2¢0-n) -

The size of this matrix P in E(N;, N3)is L x L with L = Ny — Ny + 1.
This operator has been studied by J. P. Conze and A. Raugi and several
ideas presented below are due to their work [CR], [Con]. We shall use it
to derive Littlewood-Paley type of estimations for the Holder continuity
of the scaling function. For this, we need the following result.

Lemma 2.5. For alln > 0,

(2.64) ”(Tm)"f(w)dw = / ) F27mw) [ m(2*w)dw -
- k=1

—2" 7

PROOF. We prove it by induction. It is clear for n = 1 since

[ o= [ m(5)1(5) + m(5+m)7(5+7)] o

w/2
2 [ i) f) + m(o + m)f + ) do

—7/2

2 [ = [T m(5)5(5) 4

—m

Assuming (2.64) for n, we obtain at the next step,

/ (T @) do = [ (L) T f) do

—-m
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n
[m(2" ) (27 w)
k=

2"
B »/;2"11'
+m2 " w4+ )R w+ )] dw

. ™/2 n -
_ gn+l / [ m(2kw)} m(w) f(w)
k=1

—-m/2

m(27*w)
1

+m(w + 7)f(w+ )] dw
2n iy [ntl
_ / [H m(2—kw)} F" ) dw .
—2ntim ko

This concludes the proof.

We now suppose that m(w) is a positive trigonometric polynomial
in Epy = E(—M, M) and that m(0) = 1 and m(7) = 0. Then m
can be factorized as

(2.65) m(w) = cos* (%) p(w)

where p(w) is a trigonometric polynomial that does not vanish for w =
m. Note that necessarily N < M. From this cancellation property, we
can derive,

Lemma 2.6. {1,1/2,...,272V*1} qre eigenvalues of Tr,. The row
vectors p; = (nj)n=_M,m’M, for 0 < 5 < 2N — 1 generate a subspace
which 1s left invariant by T,, and contains one eigenvector for each of
these 2N eigenvalues.

Consequently, the orthogonal subspace defined by

M
Fy = { Z hpe™im .
n=—M

M .
> nfhn:o,j=o,...,2N—1}
n=—M

(2.66)

18 Tight tnvariant by Ty, .

PRrOOF. The factorization in (2.65) is equivalent to the cancellation
rules
M
(2.67) > (=) nie, =0 forj=0,...,2N 1.
n=—M
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In particular, for j = 0, we have

(2.68) Zczn = ZCQn+1 = % (because m(0) =1) .

n n

This means that the sum of each column in the matrix of T (2.63)
is equal to 1 and that po = (1,...,1) is a left eigenvector for the
eigenvalue 1. For 0 < j < 2N —1 we define ¢; = p; P = (q]-_M, . ,q}”);
we have,

(2.69) qf = anCQn_e.

Thus, if £ is even

(2.70) ¢ =3 (n N .;i)fcz,,

and if ¢ is odd

VAN
(2.70%) ¢ = Z <n+§+§) Cont1 -

n

Using the binomial formula and the cancellation rules (2.67), we see
that g; is a linear combination of pi for k =0,...,7. The coefficient of
p; is given by the last term of the binomial and is thus equal to 277.
Consequently {p;};=o,...2n—-1 is a triangular basis for the left action of
T, and the eigenvalues are {2‘j}j=07m,21v_1.

We now come back to the scaling function ¢, given by the infinite
product

(2.71) pw) = [[me*w).

Theorem 2.7. Let Fy be the invariant subspace of Ty, defined by
(2.66). If X is the eigenvalue of Ty, restricted to Fy with largest mod-
ulus, and if |A| < 1, then, we have, with a = —log|A|/log2 (> 0),

o o131 C ¢ foralle >0,
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o o 13 in C* if the restriction of T, to the invariant subspace F) of
etgenvalue A i3 purely diagonal (i.e. = AI).

These two estimates are optimal if p(w) does not vanish on [—m, 7).
PRrOOF. Consider the trigonometric polynomial
(2.72) Cn(w) = (1 —cosw)™N .

It clearly belongs to Fin.
Consequently, for all n > 0,

i (Th)"Cn(w)dw

-

™ 1/2
(2.73) < (2m)'/? (/ |(Tm)"cN(w)|2m>
< C(A+€e)" or C|A|™if Tru|F, = AI.
We now use Lemma 2.5 combined with the inequality

(2.74) Cn(w) > 1 when —g— C|w| <7

This leads us to

/ Hw)dw < C [[ 2 *w) dw
2n-lrl|w|<2ne 2n-lr<|w|<2 T L1y
2™ n
< c/ Cn(27"w) [[m(27*w) dw
- k=1

=C | (T)" Cn(w)dw .

-7

Consequently the Littlewood-Paley blocks satisfy the inequality

(275)  [lAj(p)llpr < €277 £50, a = —log(|A])/log2

(2.75") 1A (@)l < C27% ) if Ton|p, is purely diagonal.

Since ||Aj()||L= < HAJ-(LP)HU we obtain the announced regularity.



N ON-SEPARABLE BIDIMENSIONAL WAVELET BASES 77

To prove that these estimates are optimal, we need to reverse all
the inequalities which have been used. First, note that since m(w) and
p(w) are positive, we have ||Aj(¢)llLe = ||Aj(e)|lL1-

Let f be an eigenfunction in F). If /f,\(w)dw > 0, then

2T n T
[ pemo Imeted = [ (T
(2.76)  TTHT k=1 -
=" [ fa(w)dw > CA™.

™ us

If falw)dw < 0, then we replace fy by —fyx. If fr(w) dw =0,

- -7
then the argument has to be modified slightly; see below (after (2.78)).
Since we have supposed that ¢(w) does not vanish on [—=, 7], we have

(2.77) p(w) > C [[m(2*w) foralln>0and w| < 2"r .
k=1

Note that this hypothesis corresponds to the condition of Theorem 2.1
with K = [—m, 7v]. In a more general setting, we could replace the
integrals on [—2"7, 2™ 7| by integrals on 2" K and the same results would
hold. Combining (2.76) and (2.77) gives

2

(2.78) [ o)l 1h@ el > O

™

(I fa(w) dw = 0, then a slightly more sophisticated argument

-7
will do the trick. Lemma 2.5 still holds if the measure dw is replaced by
any other measure of the type g(w) dw where g is a 2w-periodic, strictly
positive, continuous function. We can always choose g such that

falw) g(w)dw >0

(2.76) then holds if dw is replaced everywhere by g(w)dw. Since g is
strictly positive, this modified version of (2.76) combined with (2.77),
still implies (2.78)).
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Since fy has a zero of order 2N at the origin, the function y(z),
defined by 4(w) = |fa(w)| X[, x)(w) is convenient for the Littlewood-
Paley analysis of Holder regularity less than 2N. This is the case for ¢
since 2N + 1 vanishing moments would be necessary for a higher Holder
exponent than 2N (see [FS], [DL] or [DyL]). Consequently (2.78) tells
us that ¢ cannot be more regular than C*. To prove the optimality of
C®~¢ when T,,|F, is not purely diagonal, it suffices to replace f) by a
function gy such that T\,gx = Agx + pfa with p # 0. This leads to

2"
(2.78) | e@lln@ o) do 2 Cna”
—-2"T

which proves the optimality of C*7¢.
The theorem is thus completely proved.

REMARKS.
¢ The estimates (2.75) and (2.75') can be found by an equivalent
technique, using the transition operator T}, corresponding to the

factor p(w) in (2.65). We simply consider the eigenvalue A, with
largest ||, and iterate T}, on f = 1. This leads to

J
/ B(w)do < C wl=2N | T p(2*w) | dw
W -1r<w<2w 2i-1r<|w|<L2i k=1
<C27N [ (T,)1 dw

< C (Pl +e) 272
(or CIA P 272N S T, /Fy, = M)
and thus ¢ € C®~¢ with & = 2N —log|),|/log2. This estimate is

in fact the same as (2.75). Indeed, if u is an eigenvalue of T, in
Fy, then its associated eigenfunction can be written as

(2.79) fu = (sin2 (%’))N gu(w) -

Replacing m(w) by its factorized form in

e i = 5 (3)m(3) 4 G ) (5 )
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we obtain, after dividing by [sin® (w/2) cos? (w/2)] N,

250 W) = 00 (2)p(2) on (G ) (3 7)

We see here that the eigenvalues of T}, are exactly given by p, =
22N ;. This proves the equivalence between the two techniques.

e In general m(w) is not a positive function. One can then define
M(w) = |m(w)|? and use the operator Ty, associated to M(w).
The result is an estimate of the L? norms of Aj(p). Using the
Cauchy-Schwarz inequality, we derive the following corollary,

Corollary 2.8. Suppose that M(w) = |m(w)|? has a zero of order
2N at w = 7. Define A, the largest eigenvalue of Thy on Fn and
a = —log)/(2log2). Then, ¢ € H*=¢ C C*~1/27¢ where H® is
the Sobolev space of indez s. The value a i3 attained if Ty|pr, =
Al

Note that the Hoélder exponent has no chance of being optimal
because we have used the Cauchy-Schwarz inequality and ¢(w) is
not a positive function. The Sobolev exponent however is optimal.
The regularity of compactly supported wavelets was estimated with
this method in [Daul].

The transition operator plays also a crucial role in the biorthogonal
wavelet theory: we show in Appendix A how it can be used to prove
that the families {1} ez and {1,;{ }j kez are unconditional bases, with
weaker assumptions than the boundedness of (1 + |w|)'/?+¢(|p(w)| +
|¢(w)|) imposed in Theorem 2.2.

The optimal estimate for the global and local Holder regularity of
any wavelet can be estimated by another method developed by I. Dau-
bechies and J. Lagarias in [DL]. We now recall its main points.

I1.4.b. The time domain approach.

Let m(w) = ZQI:() cne'™ be a trigonometric polynomial such
that m(0) = 1 and m(7) = 0. We do not require that m(w) be positive.
Let p(z) be the scaling function defined by the infinite product (2.71).
It is at least a compactly supported distribution in [0, N].
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In the time domain approach, we represent () by its “vector”
form w(z):[0,1] - RY

(2.82) [w(z)]ln = e(z+n-1), n=1,...,N.
From the two scale difference equation (1.5) we get

w(z) = { To w(2z) ifz <1/2,

(2.83) )
Ty w2z —-1) ifz>1/2,

where Ty and T; are N x N matrices defined by

(2.84) (To)i,; = cai—j—1 1<43<N,

(2.84) (Th)ij =c2i-j 1<¢,j<N.
Using the notations

dn(z) = n'" binary digit of z € [0, 1]

( _{Zz ifr<1/2
"=V 2 -1 ife>1/2 (binary shift) ,

we can rewrite (2.83) as a “fixed point” equation
(285) w(z) = le(z) w(’l’(l‘)) .

This leads to an evaluation of w(z) and its derivative by an iterative
process. The regularity of the result depends of course on the spectral
properties of Ty and Ty. Note that when m(w) has a zero of order L
(as for the transition operator studied in the previous section), then the
space F, orthogonal to the vector p; = (n")nzly,__‘N forj=0,...,L—1
is invariant by Ty and 7;. This method gives sharp estimates on the
local regularity in z by considering the products Ty, (5 - - - Ty, (z) for all
n > 0. The main result on global regularity proved in [DL; Theorem
3.1] is the following

Theorem 2.9. Suppose that there ezist p < 1 such that, for all binary
sequence (d;)jez and all m > 0, we have

(2.86) 1Ta,Tay - Tau|Fe || < Cp™ .



NON-SEPARABLE BIDIMENSIONAL WAVELET BASES 81

Define a = —logp/log2. Then,

e if a 18 not an integer, p belongs to C?,
e if a is an integer, "' is almost Lipschitz: for almost all x,t,

oz +1) — " (2)| < Clt] |log It] ] -

REMARK.

e The “generalized spectral norm”

(2.87) p(To, Ty) = limsup max ||Ty,Tu, - Ta, |r, ||/™
m— 00 j=0 or 1
J=1,...,m

gives a sharp estimate of the global regularity. Note that it is
in general superior to the spectral radius of T, and 7. When
N 1is not too large it is possible to compute the exact value of
p(Th, Ty). For example, in the case of orthonormal wavelets, the
optimal Holder exponent was found in [DL] for N =4, 6 and 8.
The same evaluation becomes more difficult for larger filters.

e The generalization of this approach in higher dimensions is not
trivial. In particular, it involves nonstandard binary expansions
depending on the dilation matrix which is used. We describe these
techniques in Appendix B.

As a conclusion of this review of regularity estimators, we could
say that these three approach are complementary: the time domain
method gives sharp results but it is only practicable for small filters,
the Littlewood-Paley estimates can be derived for longer filters but
they will be optimal only if m(w) is a positive function and finally,
the Fourier approach is less precise but appropriate to asymptotical
results on very large filters. Let us also mention that another method
recently developed by O. Rioul [Ri] and based on £!(Z) norms estimates
of the iterated filters leads to interesting results; in particular, it is still
manageable for larger filters than the time domain method of [DL].

We are now ready to deal with the bidimensional wavelets. We
start by examining the different subband coding schemes that can be
used to build these non-separable multiscale bases.
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II1. Two channel bidimensional subband coding schemes.

As mentioned previously, we shall concentrate on the dilation ma-
trices of determinant equal to 2 or —2. In such conditions, the subband
coding scheme that we consider split the signal in two channels (instead
of four in the separable case) and only one wavelet is then necessary
to characterize the detail coeflicients at each scale. We first present
a short summary of the equations satisfied by these filter. They are
immediate generalizations of the results presented in II.1.

I11.1. General conditions for exact reconstruction.

As in the one dimensional case, the scheme that we are considering
here is based on four fundamental operations:

e The action of two analyzing filters, one low pass
Mo(UJ) = MQ(LJ],WZ)

and one high pass Ml(w) = M (wy, wa2),

e Decimation on each channel by keeping only the samples on the
sublattice I' = DZ?,

e Insertion of zero values at the intermediate points of Z2/T",

¢ Interpolation by two synthesis filters, one low pass

My(w) = My(wi,w2)

and one high pass M;(w) = M;(w;, wy), followed by reconstruc-
tion of the original signal by summation.

We see here that the conditions for perfect reconstruction will not
depend on the dilation matrix D but only on the sublattice I' = DZ?
that is generated (different matrices may lead to the same I'). More pre-
cisely, there exist only two types of grid corresponding to a decimation
of a factor 2 in Z*:

e The quincunx sublattice, shown on figure 5, is generated by the
integer combinations of (1,1) and (1,-1).

e The column sublattice, shown on figure 6, is generated by the in-
teger combinations of (0,1) and (2,0). It is of course equivalent to
the row sublattice, by exchange of the coordinates.
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The same arguments that were used in II.1.b show that perfect
reconstruction is achieved by FIR filters, if and only if they satisfy

(up to a shift) the following equations, which are similar to (2.13) and
(2.14).

e In the quincunx case,

(3.1) My(w) Mo(w) + My(w + (7)) Mo(w + (7, 7)) = 1

and

My (w) = e *@1+w) Moo 4 (x, 7)),

3.2 . .
(32) M (w) = e+ Ario+ (n, ).

1 1
414y .

= > » *—
T ® *— - L4 *—

: : ! 4+
-t t——t .

Figure 5 Figure 6
Quincunx decimation. Column decimation.
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e In the column case,

(3.3) Moy(w) My(w) + My(w + (7, 0))Mo(w + (7, 0)) = 1
and

(3.4) J\~41(w) = e‘f“l Mo(w + (7, 0)),

Mi(w) = e My(w + (=, 0)) .

If the analysis and synthesis filters are equal, we find two generalizations

of the CQF condition (2.5). The formulas (3.1) and (3.2) become

[Mo(w)]* + [Mo(w + (, m))|* =
Mi(w) = e "1+ Mi(w + (n, ©

)

3.5
(83) E

1
)
whereas (3.3) and (3.4) become

|Mo(w)* + |Mo(w + (m, 0))]* = 1,

(3.6) B A
M(w) = e My(w + (7, 0)) .

As in the one dimensional situation, we want to build from these sche-
mes the associated scaling function which can be viewed as the limit of
the cascade-reconstruction algorithm.

IT1.2. Non-separable scaling function and wavelets.

If ¢;npn are the Fourier coefficients of My(w), i.e.

(37) Mo(UJ) = Mo(wl,LUQ) = Z Cmn e—i(mwl-{-nw?),

m,n

then the associated scaling function ¢(z) = ¢(z;, z,) satisfies a two
scale difference equation,

(3.8) $(z) = 2)  cmn ¢(Dz — (m,n))
and its Fourier transform can be expressed as an infinite product

+oo
(3.9) $(w) = J] Mo(D™*w)
k=1
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which is convergent if and only if My(0) = 1.

This scaling function has compact support if and only if Mj(w)
is an FIR filter. We see from (3.9) that ¢ will be highly dependent
on the choice of D. For the same sublattice and the same filter, the
results can be completely different for different D. The column sublat-

tice for example is generated by both matrices D; = (g ?) and
D, = (1) g , but the first one cannot lead to an L? scaling function.

Indeed, we would have

+oo
$1(0, 2nm) = [ Mo(D7X(0, 2nm)) = 1,
k=1

for all n > 0. But since ¢; is compactly supported and belongs to
L?(R), it is also in L'(R) and its Fourier transform should tend to zero
at infinity. We can also remark that only the eigenvalues of Dy have
their modulus strictly superior to 1.

The choice of the dilation matrix is thus very important. In fact,
although the equations (3.1)-(3.2) are different from (3.3)-(3.4), the
choice of the sublattice is less important: Indeed, for any dilation matrix
D; such that D;Z? is the column sublattice, we can define

(3.10) D, = PD,P~! withP = ((1) 1)

Clearly, the image of Z? by D, is now the quincunx sublattice. Then,
for any filter Mj(w) satisfying the column-CQF condition (3.6), the
corresponding scaling function ¢; can be written in the following way,

+oco +oo
$1(w) = [[ Mi(D*w) =[] Mg(P™' D;*Pw) = §3(Pw)
k=1 k=1

where ¢, is also a scaling function defined by

+o0
n _ 2Dk,
(3.11) $2(w) = kl=|1 My(D;y w),

M (w) = Mj (P w) .
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1 0

. 1
Since P = (1 1

), we have
|Mg(w)I* + [Mg (w + (7, m))|* = [Mg (w1, w1 +w2)[?
+ | Mg (w1 + 7T, w1 +wa 4+ 27> =1.

And thus MZ satisfies the quincunx-CQF condition (3.5). A similar
,result holds of course if we start from two dual filters M and Mg which
satisfy (3.3). This shows that the scaling functions associated to D; and
D, are linked by the simple relation ¢2(z) = ¢1(Pz). Consequently we
can restrain our study to the quincunx case. More generally, if D; and
D, satisfy

(3.12) D, = PD, P!

where P is a matrix having integer entries and determinant equal to
1, then we also have the same type of equivalence between the scaling
functions. For this reason, we shall only consider the two simplest
dilation matrices of determinant 2, which cannot be related as in (3.12)
since they do not have the same eigenvalues:

(3.13) R = (1 _11> (Rotation of% and dilation of \/5)

and

1 1

S = ( ) (Symmetry with respect to (\/§ +1,1)
(3.13") 11

and dilation of \/5) .

In both of these cases the image of Z? is the quincunx sublattice. The
wavelet 1 is then defined by

(3.14) P(Dw) = Mj(w)p(w) with D=Ror S,

where M;(w) is defined by (3.5) in the orthogonal case, and by (3.2) in
the biorthogonal case where we also have a dual wavelet defined by

(3.15) W(Dw) = Mi(w) é(w) with D=RorS.

The goal is now to design filters leading to regular scaling functions and
wavelets. We end this section by presenting two important families of
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filters. The regularity of the associated ¢, 1, é and v will be estimated
in sections IV and V by different techniques which all are natural gen-
eralizations of the one dimensional tools that we introduced previously.

II1.3. Filter design.
I11.3.a. The orthonormal case.

Recall (see [Daul]) that in 1D, the CQF filter can be designed in the
following way, in order to obtain wavelets with an arbitrarily high reg-
ularity:

1) For a given number N of vanishing moments, define mq by

2 _ |, 2(¥ N .2 (W
(3.16) |mo(w)|* = [cos (2)} Py [sm (2)}
where Pn(y) is a polynomial, solution of the Bezout problem
(3.17) y" Pn(1—-y)+(1—y)" Pn(y) = 1.

The minimal degree choice is given by

pN<y)=NZ—jl (N’j”f)yf.

j=0

2) Find the function mg(w) by using the Riesz lemma which guar-
antees that there exist a trigonometric polynomial solving (3.16).

Unfortunately, this last result does not generalize to higher dimen-
sions. We thus have to find other means to build trigonometric poly-
nomials which satisfy (3.5). One possible method is the “polyphase
component” construction used by Vaidyanathan [Va] and M. Vetterli
[Ve], [VK]. It is based on the remark that My(w) satisfies (3.5) if and
only if the polyphase matrix

(3.18)

Ho(w) = —

My(w) + My(w + (7, 7)) Mi(w)+ Mi(w + (m, w)))
V2 \ My(w) = My(w + (1, 7)) Mi(w) — My(w + (, 7))
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is unitary for all w. Since the product of two polyphase matrices is also
a polyphase matrix for a third pair of filter, infinite families can be con-
structed by multiplying elementary building blocks of the type (3.18) as
soon as we know some simple filters which satisfy (3.5). The disadvan-
tage of this method is that it does not furnish the vanishing moments
in a natural way. Recall (see [Mel]) that the N times differentiability
of the function % implies

(3.19) [B(@)] < C (Jwr |V + woN*Y), (jw|— 0)

and thus My(w) has necessarily a zero or order N + 1 at the frequency
w = (m, 7). This can also be viewed as the Fix-Strang condition (see
[SF]) for the regularity of the scaling function ¢.

The simplest way to build such filters with N arbitrarily high is to
remark that if mg(w) is a 1D solution of the CQF equation (2.5), then
the 2D filter defined by

(3.20) My(w) = My(wi, w2) = mg(w;)

satisfies the equation (3.5). It is apparently a good candidate for build-
ing regular wavelets since it has the same order of cancellation in (7, 7)
as mo(w) in 7. This allows us to build an infinite family of filters with
an arbitrarily high number of vanishing moments by posing

(3.21) Mg (w) = mg (w1)

where {m{'(w)}n>o is the family of filters designed in [Daul], defined
by (2.35), (2.37) and (2.38). Note that the filter (3.21) has a unidimen-
sional structure but since the dilation D contains either a rotation or
a symmetry, the final analysis (using iterates of the filter) is performed
in all the directions of the plane. In Section IV, we shall take a closer
look at the associated wavelets and their regularity. If D = R, then one
can also derive another family of “almost” one-dimensional filters M)
from unidimensional m, (they get again fanned out to other directions
by applying R™!). Explicitly,

w] —w W —w
oo (252) o (252 47))
1 w] —w w; —w :
N e

-Mo(wl,w2) =

| =
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This construction corresponds to a filter with taps on two diagonals,
hnin, = 01if ny # —ny and ny # —ny 4+ 1. It is easy to check that
this M, satisfies (3.5) if my satisfies |mo(w)|? + |mo(w + 7)|? = 1. I
mo(0) = 1, mo(m) = 0, then My(m,m) = 0 follows, so that M, as
defined in (3.5), satisfies M7(0,0) = 0, as it should. One easily checks,
however, that 0, Mo(m, ) and 0., Mo(m,7) cannot both be zero for
these examples, so that the corresponding bases cannot possibly be C?.
Only the small examples are therefore of any interest; it seems possible
(numerical experiment) to construct a continuous ¢ corresponding to a
4-tap filter in this way.

IT1.3.b. The biorthogonal case.

The filter design is clearly easier in the biorthogonal situation. One
can start from a given filter My(w) and find the dual My(w) by solving
linear equations.

In particular we can look for filters which have more isotropy than
those of the family (3.21). Here, again, the one dimensional theory can
help us to build families of filters in a simple way. Several examples
of real and symmetrical dual filters have been designed by the authors
and J. C. Feauveau in [CDF].

In these one dimensional construction the symmetry allows us to
use the variable y = sin® (w/2) and to write the transfer functions as

(3:22) mo(w) = p(y) and 7e(w) = p(y)

where p and p are two polynomial satisfying

(3.23) p(y)B(y) +p(L —y)p(l —y) = 1.

In two dimensions, consider the variables y; = sin® (w;/2) and yp =
sin? (wy/2). If the filters are symmetrical with respect to the vertical

and the horizontal axes, the duality condition in (3.3) can be rewritten
as

(3.24) P(y1, ¥2)P(y1, y2) + P(L—y1, 1 —y2)P(L—y1, 1 —y2) = 1,
where

P(y1,y2) = Mo(wy,ws), P(yl, Yy2) = Mo(wl, wa) .
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We see that a possible choice for P and P is given by
(3.25) P(y1,y2) = plays + (1 —a)y2)

~

(328 P(y1, y2) = plays +(1 - a)y2)

where « is in [0,1]. For an optimal isotropy it is natural to choose
a = 1/2; in this case the diagonals are also symmetry axes. This
choice is known in signal processing as the McClellan transform of the
1D filters p and p. Using the variable z = (y; +y2)/2 we can thus write

(3.26) My(w) =p(z) and My(w) = p(z)

where p and p are polynomials satisfying (3.24). These polynomials
must also satisfy

(3.27) p(0) = p(0) =1 and p(1) = p(1) = 0
which are necessary for the construction of wavelet bases. Note that we
have
1/, 5 /w1 . 9 [W2
z=— s | — | +sm” { —
@)
— g (4 — W1 _ w2 __ oTtw1 e—th)

and thus z can be regarded as the transfer function of the filter which
computes the discrete Laplacian with the formula

1
(Adl')m,n = g (4~Tm,n —ZTm—-1,n — Tm41,n

(3.29)

- :I:m,n—l - xm,n+l ) .

Since a Laplacian scheme has frequently been proposed in image
processing to detect the edges with a maximum isotropy (see [AB], [M]),
it 'seems tempting to use z or one of its powers as a high pass analyzing
filter (and thus 1 — z as the corresponding low pass synthesis filter).
This can be achieved in a very simple way, by a method already used

to build biorthogonal bases in L%(R). Recall that

N-1 .
Puz) = 3 (N—j1+]>2j

i=0
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is the lowest degree solution of the Bezout problem
(3.30) ZNPy(1—2)+(1-2)NPn(2)=1.

If we fix the reconstruction low pass as M{¥ (w) = (1 —2)" (so that the
analyzing high pass is, up to a shift, the N-th power of the Laplacian),
then a possible choice for the dual filter is given by

(3.31) Myt w) = (1-2)" Pryu(2)

where L is a positive integer indicating the cancellation order of M, at
w = (m, w). L has to be chosen large enough so that both functions
@(z) and ¢(z) satisfy the necessary conditions to generate a pair
{1,%1} ez rezz of unconditional Riesz bases (see Theorem 2.1 and
Appendix A). We shall examine the properties of these functions and
give an estimate of the minimal value of L in Section V.

We have now at hand two families of filters, orthonormal and
biorthogonal, with an arbitrarily high number of vanishing moments.
We still have to know if these filters allow us to build wavelet bases with
an arbitrarily high regularity as in the one dimensional case ([Daul],
[Co2]). As we shall see in the next two sections, the results of our
investigations are very surprising and show that the multidimensional
situation contains a lot of new difficulties from this point of view.

IV. Orthonormal bases of non-separable wavelets.

Let us consider the family of CQF filters defined by

(4.1) My (w1, wz) = my (w1)
with

N-1 . .
(42) @) = [eos? (2)] > (N —jlﬂ) in? (2)]'

and the associated scaling functions for the dilations S and R,

(4.3) dn,sw) =[] M(S7*w),
k=1
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(4.4) dnr(w) =[] M (R *w).

k=1

IV.1. Orthonormality of the translates.

A first requirement is that the Z2-translates of ¢ N,S Of ¢n R are
orthonormal. This is a necessary and sufficient condition to generate
multiresolution analyses and orthonormal bases of wavelets.

Theorem 4.1. For all N > 0, the functions ¢ p have orthonormal
translates and generate wavelet bases of the type

27/%y(DVz —k), jE€L keZ?,
where D = S or R.

PROOF. By a trivial generalization of Theorem 2.1, this orthonormality
is ensured if and only if |¢(w)| > C > 0 on a compact set K congruent
to [—m, 7]? modulo 27Z? which contains a neighbourhood of the origin.

It is clear that M (w) vanishes only on the vertical lines w; =
(2k + 1), k € Z. Consequently we see that the simple choice K =
[, 7]? is not convenient since for both dilations, we have

(4.5) D™ (x, m) = (7,0)
and thus
(4.6) $(m,7)=0.

Recall that in the one dimensional case, the trivial choice K = [—7, 7]
was convenient for the family m{Y(w). Here we have to use a compact
set K slightly different from [—7, 7]™ so that D™/ K N {w; = (2k + 1)7}
is empty for all 7 > 0 and for all £ in Z. This can be done very easily by
removing small neighbourhoods of (7, 7) and (—n, —7) and translating
them by (-2, 0) and (27, 0) as shown in figure 7.

One checks easily that all the sets D™/K for j > 0 are contained
in the strip |w1| < 7™ — ¢, € > 0 where M{¥(w) does not vanish.

We now have to check the regularity of the scaling functions which
have been obtained. We shall see that the results are completely differ-
ent depending on whether one chooses S or R as the dilation matrix.
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Figure 7
The convenient compact set A congruent to [—m, 7]2:
Neighbourhoods of (7, ) and (—m, —7) have been
shifted so that ¢ does not vanish on K .

IV.2. The symmetry dilation case.

1 1
1 -1
S~ = %5. Since M{¥(w) = m{¥(w1), we have to consider the sequence
{[S7?w]1}j>0 for a given w = (w1, wy). Clearly, it has the following
form:

In this case the dilation matrixis S = ( ) and its inverse is

1 . )
—wi,. .27 (w1 +w2), 27wy, ...

(w1 +w2), swr, $lwr +w2)
— w — —
zwl 2)s wi, 4_(4)] w2 ), 1

2

Since S72% = %I , the odd and the even parts are simple dyadic sequences
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and this leads to

(4.7) On,s5(w) = pn(w1 +w2) Gn(wr)
(4.8) on,s(z) = @n(z2) pN(z1— 22)

where ¢y is the one dimensional scaling function. The associated
wavelet is defined by

(4.9) PN s(w) = Mi(w)dn,s(w) = Pn(wr +w2) Gn(wr)

(4.10) Y s(z) = Yn(z2) on(T1 — T2) .

We see here that the scaling function and wavelet are in this case sepa-
rable in the sense that they can be expressed directly in terms of the one
dimensional functions ¢y and ¥ . This separability can be explained

0 1
2 0
dilation by a factor 2 (in one) direction, followed by an exchange of the
axes. The regularity can of course be made arbitrarily high since it is
directly given by the Holder exponent of oy .

by the fact that S is similar to the matrix ( , which is simply a

REMARK. Theorem 4.1 is not necessary here to prove the orthonormal-
ity of the translates since it is a trivial consequence of the separability
formulas (4.7) and (4.8).

We now consider the case of the matrix R which is by far less
trivial.

IV.3. The rotation dilation case.

, /1 41 L 1/1 1
We now have R = (1 1 )andR = 2(_1 1) . The
sequence {[R™7w]; }j>0 is then,
1 1 1 1
%(wl + wa), 392, Z(w2 —w1), 7% —g(uh +wa),
1 1 1

1 1
— —wg, — (w1 —w2), 1—6(011), E?:(wl + w2), 392

8% 16
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Here the first power of R™! proportional to the identity is R~ = —%I.
Consequently, it is not possible to use the one dimensional scaling func-
tions and wavelets to express the ¢n and ¥ in a separable way. We
first consider the case N = 1 which corresponds to the Haar filter. The
result of the cascade algorithm with this filter shows how different the
situation is when R is used instead of S.

IV.3.a. The twin dragon.

For M{}(w) = (1 + e~*1)/2, the function ¢; g satisfies

(4.11) #1,r(z) = ¢1,rR(Rz) + ¢1,R(Rz — (1,0))
and
(4.12) orr =[] Mj(R™*w) .

k=1

By iteration of the cascade algorithm, one finds that ¢ is the character-
istic function of a well known fractal set called the “twin dragon” (see
[K]) shown in figure 8. This set can be defined directly in the complex
plane as

(4.13) A = {i €n (1—;)” {en}nen € {0,1}N}

n=1

and it is clear that ¢; g = xa solves (3.41) since we have

(4.14) A:<1;i)AU<1;i)(A+1)
~RTITAUR(A+(0,1)).

The self-similarity of A is thus expressed by the two scale difference
equation (4.11), but furthermore, since the family {¢; r(z — k) }rez2 is
orthonormal (by Theorem 4.1) and since |A| = ¢; r(0) = 1, these inte-
ger translates constitute a fractal tiling of the whole plane R? (similarly
to the squares obtained in the tensor product situation with the same
filter). This beautiful property has been observed independently by
W. Madych and K. Grochenig [MG| and W. Lawton and H. Resnikoff
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[LR]. More generally, such tilings can be derived by considering a two
scale difference equation of the type

d
(4.15) $(z) = > $(Dz +e;)

=1

where D is a dilation matrix and {e;}i=1,. 4 are d representatives of
Z™|DZ"™ (d = |det D|). This scaling function and the corresponding
wavelet do not seem however of great interest for image processing: not
only are they discontinuous but the set of discontinuity is a very chaotic
fractal curve. Nevertheless the twin dragon is important in estimating
the regularity (local and global) of the wavelets with dilation matrix R.

0.4 T T T T T T T

0.2

o
N
T

o
ESN
T

o
[,
T

o
(o]
T

1 i 1 1 1 1

4 '
-08 -06 -04 -02 0 02 04 06 08

Figure 8
The “twin dragon” set A.
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Indeed, if we want to generalize the method of [DL] (see Section I1.4.6),
it is necessary to consider the expansion of any point in C in terms of
the power of (1 + i)/2 (~ R™'), which also means that the point is
considered as the limit of a “dragonic sequence” {A;};ez with A; C
Aj_q and |Aj] = 277. These “dragonic expansion” techniques are
described in Appendix B.

Let us now examine the functions obtained with higher order filters
which have more vanishing moments.

IV.3.b. Higher order filters.

We are interested in the family of scaling function ¢n r, N > 1.

Recall that in the one dimensional case, the asymptotic result en-
suring arbitrarily high regularity (Theorem 2.4, Section I1.3.6) is based
on the value of |mg (£27/3)| since {—27/3, 27/3} is a cyclic orbit of
w +— 2w modulo 27. In the present case similar considerations for a
fixed orbit of w — Rw modulo 27Z2, lead to an opposite result: arbi-
trarily high regularity cannot be obtained by increasing the number of
vanishing moments. More precisely, we have

Theorem 4.2. For all N > 0, the function ¢n g is not in C1(R?).

PrOOF. This is of course true for N = 1 since we obtain the twin
dragon. For N > 1, we shall prove a stronger result: the decay at in-
finity of &N,R(w) cannot be majorated by C |w|™! (which is a necessary
condition for ¢y g to be in C! because it is a compactly supported
function). For this we consider the orbit of w — Rw modulo 27Z?
given by the four points (27 /5,47 /5), (27/5, —47/5), (=27 /5, —47/5)
and (—27/5, 47/5). Let us denote vy = (27/5, 47/5) and v; = Rlvo.
One checks easily that

(4.16) |én r(v0)] = Cn #0 forall N >0.
We then have, for all N > 0,
2r
N —
" ( 5 )
From the definition of m{’ we have

i (5)] = b G e 5)

J
(4.17) l¢n.r(v;)] = Cn

(4.18)
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and we know from (2.51) that
(4.19) Pr(y) < (49), i <y<i.

Because cos? (7/5) > cos? (w/4) = 1/2, we can write

e ()] =2 e ) o oo (B)
21 o ()] oo ()]
=1 — sin? (%) [sin2 (%3)}

and thus, since |v;]| > 27/2,

|on.r(v;)| > Cn [1 Csin? (%) [sinz (2?”)] N—]Jj/z

2 Cnlv| ™%

with ay = llog (1 — sin? (7/5) (sin2(27r/5))N_1) I /log2. Clearly ay
is decreasing with N. Since a; ~ 0.6115 < 1, this ends the proof.

In fact, these wavelets do not even seem continuous although we
have no mathematical proof for this. A simple look at the result of the
cascade algorithm for the 4 tap filter (which corresponds to a .55 Holder
continuous one dimensional wavelet) shows how chaotic the functions
¢r,N can be (figure 9). The design of FIR filters leading to regular
wavelet bases with R as the dilation matrix seems to be a difficult
problem. Using a polyphase component approach M. Vetterli and J.
Kovacevic ([KV], p. 32) have constructed a filter for which the result
of the cascade looks continuous but no infinite family with arbitrarily
high regularity has been designed so far.

The main difficulty which makes this design unpracticable is the
absence of the Riesz lemma in more than one dimension and thus the
impossibility to start by designing the square modulus of My(w) in an
appropriate way. Apart from this problem, the CQF filters (in particu-
lar the family (3.21) that we have introduced) cannot be symmetrical.
We must keep in mind that one of the interests of the quincunx grid
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decimation is to have a more isotropic analysis; this is only achieved if
the filter coefficients are themselves symmetrical around the horizontal,
vertical and diagonal directions.

These two reasons encourage us to construct biorthogonal bases of
wavelets from dual filters for which the Riesz lemma is not necessary
and linear phase can be achieved.

02 =
- :.:: SSSooos] BRsassSSoS oSS
z 0.1 Y s
. S A e
0 ST 7/ X VAT
= ’:"‘3’:‘3‘3"0‘/"}“0 li';" s
-01 SSSSSA LN 0\ % RIS
- N IO S
......... .0:-:-‘:.&4:?4\4.;%' SO REESE
-0.2 R N

Figure 9

Approximation of the scaling function ¢2p .
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V. Biorthogonal bases of nonseparable wavelets.

Let us recall the family of dual filters introduced in II1.3.b. It is

based on the variable
() <50 (2)

Zz =

N =

We have chosen

(5.1) M (w)=(1-2)",
and
(5.2) My (w) = (1 - 2)" Pnyp(2),

where L is still to be fixed.

A first remark is that the action of the dilation matrices R and
S on the variable z are equivalent. This is due to the fact that z is
invariant if we exchange w; and wy or if we change the sign of one of
these variables. We shall thus consider a dilation matrix D which can
be equal to R or S. To express its action on z we still need the two
variables

o2 (W1 — a2 (%2
(5.3) Y7 = sin ( 5 ) and yp; = sin ( 5 ) .
We then have

1 D 1
z= 5(1/1 +y2)— 2z = §(y1 +y2 — 2y1Y2)

D 1 1

—_— z = 5(4y1(1 —y1) +4y(l —y2)) = 5(3/1 +yl2)
D 1

Lo = Ly v - 20

We shall start by studying the scaling function ¢; associated to the
filter M{}(w) = 1 — z, because it is the elementary building block for the
family ¢n (= (*)V¢y).
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V.1. The quincunx Laplacian scheme.

The coefficients of M} (w) are centered around the origin and hav
the following form: :

1 1
(5.4) -1 4 1
1
Note that this is the simplest symmetrical filter (with respect to the
horizontal, vertical and diagonal directions) which satisfies the cancel-
lation condition M (r,7) = 0. To estimate the decay of ¢;(w) we could
hope for a bidimensional formula equivalent to

8

+ .
(5.5) cos(27Fw) = e ,
w

~
‘l_ll

used in the one dimensional case. Note that (5.5) is based on the iter-
ation of sinw = 2sin(w/2) cos(w/2). Unfortunately, similar relations
do not exist in the bidimensional case for the dilation matrix D. In
particular the infinite product

+oo
(5.6) $1(w) = [ Mo(D7w)

k=1

has no simple expression and one checks easily that, unlike (5.5), it
does not have uniform decay at infinity. Indeed, let us consider the sets
{(27/5, 4w /5)} and {(27/3, 27 /3), (27/3, 0)}. These are two cyclic
orbits of w +— Dw modulo 27Z? and modulo the exchange of coordi-
nates and sign changes which do not affect the variable z. Consequently,
if we define v; = DJ(2r/5, 4n/5) and p; = DI (27/3, 27/3), we

have, when j goes to +oo,

cos? (7/5) + cos? (21 /5)
2

J
60 hty~c] | ~ e

and

) 2 il2
65 bt~ (L Y eost (F)] 7 ~ st
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with

cos? (m/5) + cos? (27 /5)
(5.9) a, = “Tog2 og [ 5 ] ~ 2.83
and

(5.10) a, = —1022 log K“’SZ (”2/3) + 1) cos? (%)] ~2.68 % ay .

Still we would like to find a global exponent for the decay of qz@l(w)
at infinity. For this we shall introduce an “artificial” function which
will play the same role as cosw in (5.5). We define

sin? <w1 ;wz) + sin? <w] ;wz
(5.11) C(w) =

T (3 ()
sin 5 + sin 5

Contrarily to M} (w), C(w) is not a trigonometric polynomial, but it
is a bounded regular function which vanishes at the point (m, 7) with

the same order of cancellation as M} (w). Moreover, it satisfies by
construction

),0(0)=1.

2 [sin® (w1 /2) + sin® (w2/2)]

2 2
wi + w3

<C(1+w|)™2.

+oo
(5.12) [[C(D7w) =
k=1

The decay of this infinite product is now uniform and, for this rea-
son, C(w) will play an important role in the construction of our dual
bases. For the moment, by comparing C(w) and M{(w), we obtain the
following result:

Proposition 5.1. The decay of gﬁl(w) at infinity 18 controlled by
(5.13) (@) < C(1+ )72

Furthermore, this exponent is globally optimal, i.e. there ezists a se-
quence {w;};>o such that limj_ 4o lwj| = +oo and |¢1(wj)| ~ Clw;|72.

PROOF. Using the variables y; = sin®(w;/2) and y, = sin®(w,/2) we
can rewrite C'(w) as

Y1ty —2my2 _ (I=y1)y2 + (1 —y2)ua

5.14° Cw) =
( ) () Y1+ Y2 Y1+ Y2
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We thus have

Q-—y)yz+Q—y2)ys  —y1)+(1—y2)

Clw)— M}(w) =

Y1+ Y2 2
_ =y —y1) + (1= 2)(y1 — v2)
2(y1 +y2)
_ (y1 — 92)2 >0
2(y1 +y2) —

Thus M (w) < C(w) and by (5.12) |¢1(w)| < C (1 + |w|)~2. To prove
that this exponent is optimal we consider a small vector p # 0 in R2

and define

(5.15) wj = Di(m,m)+p,
so that
~ +w .
(5.16) $1(w;) = [[ My (DF*(x, m)+ D *p) .
k=1

Let us divide this product in three parts
d1(w;) = [b1 ((m, m)+ D7)

j—1 )
(5.17) k]:[lMg (DP~k(x, ) + D_kp)]

- [M5 (=, )+ D p)]
= A(j) B(j) C() -

One checks easily that ¢, (, 7) # 0 and thus, for j large enough or
sufficiently small p, we have 0 < C; < A(y) < 1. It is also clear that for
1<k <j—1,M} (D" *(x, x)) = 1and that for £ > 1, M}(D(m, m)+
o) > 1—C||o|| for o small enough, with C > 0. Consequently, if p has
been chosen small enough, 1 > B(j) > [[, [L = C27¢|jp||] = C2 > 0.
Finally since (7, 7) is a second order zero of My(w), the third factor
satisfies

277Gy ||pl> = C3|ID7p|* < C(j)

(5.18) _ Iy
CelID77pl* = 277Cs |lpl* -

IN
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This shows that ¢;(w;) behaves like 277 ~ |w;|~2 when j goes to +oo
and the proposition is proved.

Note that from the decay of qgl(w) we cannot even conclude that
it belongs to L'(R?) or that ¢;(z) is a continuous function. Yet both
are true; we are going to prove this by the Littlewood-Paley method
explained in Il.4.a. The filter M} (w) and the scaling function ¢;(w)
are particularly well adapted for this approach since they are positive
so that the regularity estimation is optimal (because ||A;(¢1)||re ~

1A;(#1)||L1; see Section IL4.a).

Proposition 5.2. The optimal global Holder ezponent for ¢,(z) s

a 2 1g<1+\/5):.61

“log2 4

PROOF. We consider the transition operator defined by
(5.19) TF(Dw)= M}(w)F(w)+ Mj(w + (7, 7)) F(w + (7, 7).

As in the one dimensional case T can be studied in a finite dimen-
sional space but this subspace cannot be defined as simply as E(N;, N2)
in (2.61). One way of finding an invariant subspace is to apply T to the
constant 1 and then iterate it on the characters e'(k1w1+k2w2) which are
obtained until a stable set is attained. With Mj corresponding to (5.4),
this subspace is trivial, since T} = 1. Lemma 2.5 then guarantees the
integrability of #1, hence the continuity of ¢;. To estimate the Holder
exponent of ¢; we need a larger subspace, which we obtain by iterating
T on 1 and on cosw; + cosws. The size of the matrix representing the
action of T on this subspace can be seriously reduced by exploiting the
symmetries, i.e. the invariance under w; «— —w;, wy «— —wy and
Wy — Wwoy.

Using the subspace E generated by the basis
(5.20) €3 =1, ez = cosw; + coswa, ez = cos(wy +wq) + cos(wy —wy)

we obtain the following matrix

1 1/2 0
(5.21) T =10 1/2 1
0 1/4 0
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which has the eigenvalues {1, (1 +/5)/4, (1 - V’5)/4}. The two last
eigenvalues correspond to the subspace Ey C E defined by

(5.22) E, = {F(w)€ E: F(0)=0} .

Similarly to the one dimensional case, we iterate T on the positive
function e; — %62 which is clearly in Ey and this leads us to

(5.23) [852(¢1)[| e ~ HAJ'/2(<251)“L1 ~ C(1+4\/g)] :

where Aj/5(¢1) is the Littlewood-Paley block corresponding to the re-
gion DI([—=, ]?)/DI~! ([—=, 7]?), situated at a distance 27/2 of the
origin. Consequently, if we define

(5.24) a = — 2 log<1+4\/5> ~ 0.61,

then it follows from (5.23) that
(5.25) (1+ |w|)* $1(w) € L*(R?) and ¢;(z) € C*(R?) .
Consequently ¢; is Holder continuous with regularity 0.61.

This property appears in the graph of ¢; on figure 10 (obtained
by the cascade algorithm) which presents a smooth aspect with several
pointwise cusps. Note that this regularity is not sufficient to derive a
better decay of ¢;(w) than |w|~%6!; Propositions 5.1 and 5.2 are thus

complementary.

REMARKS.
e Note that, since we have
(5.26) M}(w) + Mj(w+(m, ) =1,

we can derive the L! convergence of the truncated products g£1n
= Hj:l My(D7w)x pr([-n,n?)(w) With the same method as in the
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orthonormal case for the L? convergence (Theorem 2.1). This leads
us to a Poisson summation formula

(5.27) > bi(w+2km) =1

kez?

which is equivalent to
(5.28)  ¢i(n1,ny) = 1if ng =ny =0, 0if (ny, ny) € Z2/{0} .

This interpolating property of ¢; has been noticed in approxima-
tion theory by Deslaurier and Dubuc [DD]. It explains the four
cusps surrounding the center at the points (0,1), (1,0), (0,—1)
and (—1,0) which are visible on figure 10. However, a sharper
analysis shows that the isolated points where ¢;(2) =0 are an
infinite family.

Figure 10
The scaling function ¢1(z).
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¢ As mentioned in Section III.3.b, the variable z = (y; + y2)/2 can
be replaced by, more generally, z) = Ay; +(1— )y, with A € [0, 1];
Mg (w) = 1—z, is still positive. Let us now distinguish the dilation
matrices R and S. Then, a similar analysis in the case of D = R
leads to a § x 5 matrix in the basis

(e1,€2,€3,€4,e5) = (1,coswy,coswa,cos(w; + wq), cos(w; — ws))
2 A 1-X2 0 0
1 0 1-2X A 0 2
(5.29) T\ = 3 0 1-2AX A 2 0
0 A 0 0 0
0 0 1-X 0 0

and numerical computations show that the “isotropic value” A =
1/2 gives the highest index of regularity. The lowest index of regu-
larity is attained for A = 0 or 1. Note that A = 1 corresponds to the
convolution product g(z) = xa * xa where A is the twin dragon
introduced in IV.3.a. The Hoélder exponent is then o ~ 0.47.

o To estimate the decay of §(w) (= (Xa(w))?), one can again use
the function C(w) of Proposition 5.1, in a slightly different way.
Remark that, if we define G(w) =1— 23 =1 —y;, then

(1—y1)y2+ (1 —y2)ua

Clw)— G(w) = - (1=
(w) (w) " T Vo (1-w1)
=y1(y1—y2)20
Y1 + Y2
if y1 >y, , and
2[(1—yi)ya + (1 —
2C(w) - G(w) = (1 —y1)y2 + (1 — y2)y1] C-wm)
Y1+ Y2
_ -y —y) +2ud—y)
Y1+ Y2 B

if yo > y; . On the other hand

(5.30) gw)l = [[ GR ™ w);
k=1
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to majorate |§(w)| for 27/2 < |w| < 20+D/2 we only need to majo-
rate the j first factors in (5.30). Since R rotates by m /4, half of the
factors can be majorated by C(w) and the others by 2C(w). This

leads to

(5.31) |§(w)| < € 2lostHlwD/log2 1T C(R™*w)
1<k<2log(1+|w])/log 2

and thus

(5.32) jw)<CO+ ).

It is easy to check (in a similar way as for ¢;(w)) that this esti-
mate is optimal. An immediate consequence is that the Fourier
transform of the twin dragon characteristic function xa satisfies

(5.33) Xa(w) < C(1+|w|)~/?
which was not obvious since we did not have a formula similar to
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