A NOTE ON BRANCHED CYCLIC COVERINGS OF SPHERES

by

RALPH H. FOX

(Publicado en la «Revista Matemática Hispano - Americana» 4.ª Serie - Tomo XXXII - Núm. 4-5)

M A D R I D

TALLERES GRÁFICOS VDA. DE C. BERMBJO

J. GARCÍA MORATO, 122.—TELÉF. 233 06 19

1 9 7 2

A NOTE ON BRANCHED CYCLIC COVERINGS OF SPHERES

by

RALPH H. FOX

By a represented link (nudo coloreado) is meant a link L of, say, μ components in the 3-dimensional sphere S³, together with a representation ω : π (S³ — L) \longrightarrow S_d of the link group into the symmetric group of permutations of the d symbols 0, 1, ..., d-1. To each represented link (L, ω) there is uniquely associated an orientable closed 3-dimensional manifold M = M (L, ω), the covering of S³ branched over L that is determined by the representation $|\omega$. The manifold M (L, ω) is connected if and only if ω is transitive.

Study of the function $\Phi\colon (L,\omega)\longrightarrow M(L,\omega)$ seems to be an interesting problem, and, in view of a theorem of Alexander [1] that states that any orientable closed 3-dimensional manifold is $M(L,\omega)$ for some link L and representation ω_i it might lead to new insights on the problem of classifying these manifolds.

It was indicated by Alexander [1] and proved in detail by Montesinos [6, 7] (cf. also [3]) that $\phi^{-1}(M)$ always contains at least one (L, ω) for which ω represents each meridian of L by an appropriate transposition; let us call such representations *simple*.

It was shown in [5] that an alteration of a certain type D (cf. [4], p. 199) replaces a transitive simply represented link (L, ω) by another transitive simply represented link (L', ω) which is such that d=d' and M (L, ω) = M (L', ω'). It may happen that a link that is not split is thereby replaced by a link L' that splits; when this happens L' = L₁ U L₂, where L₁ is contained in a 3-cell whose complementary 3-cell contains L₂, the transitive simple representation

$$\omega'$$
: π (S³ — L') $\longrightarrow \mathcal{S}_d$

induces transitive simple representations

$$\omega_1$$
: $\pi (S^3 - L_1) \longrightarrow \mathcal{S}_{d_1}$,

and

$$\omega_2$$
: $\pi (S^3 - L_2) \longrightarrow \mathcal{S}_{d_2}$,

where

$$2 \leqslant d_1 \leqslant d$$
, $2 \leqslant d_2 \leqslant d$, $d_1 + d_2 \geqslant d + 1$,

and M (L', ω') decomposes into the connected sum of M (L₁, ω_1) and M (L₂, ω_2) and $d_1 + d_2 - d - 1$ copies of S² × S¹. Hence if M (L, ω) is irreducible then $d_1 + d_2 = d + 1$, M (L₂, ω_2), say, is a 3-sphere, and

$$M(L_1, \omega_1) = M(L, \omega).$$

Of course $d_1 < d$. Since such a splitting is not possible unless d > 2, it is natural to make the following conjecture:

Conjecture A ([5, V.6.1, p. 113]).—Every transitive simply represented link (L, ω) can be transformed by operations D into a represented link (L^*, ω^*) that splits into represented links $(L_1, \omega_1), \ldots, (L_u, \omega_m)$ such that $d_1 \leq 2$, $i = 1, \ldots, m$. Such a represented link (L, ω) was called separable by Montesinos ([5, p. 113]).

Since M (L, ω) is S³ when d=1, and M (L, ω) is a cyclic branched covering of S³ when d=2, conjecture A is complimented by the following conjecture:

Conjecture B ([5, I.1.1, p. 9]).—A cyclic branched covering of degree 2 of S^3 is never simply connected, except in the trivial case L=0.

As observed in [5], conjectures A and B together imply the Poincaré conjecture (cf. also [4, p. 199]). It was shown in [5, p. 9] that Poincaré's conjecture implies conjecture B; however Poincaré's conjecture does not imply conjecture A.

The principal object of this note is to prove a theorem about cyclic branched covering spaces of homology (*) spheres, that shows in particular that conjecture A is not true as stated. I shall then discuss

^(*) All homology considered is with integral coefficients.

the possibility of modifying conjecture A, and finally I shall indicate a reformulation of conjecture B.

A branched covering of an n-dimensional (combinatorial) manifold N is an n-dimensional manifold M together with a (non-degenerate) simplicial mapping e of M onto N that maps the star of any (n-1)-dimensional simplex of M topologically onto its image (cf. [2]). The branch set L is a pure (n-2)-dimensional subcomplex of N. (It should be noted that given an (n-2)-dimensional subcomplex L of N and a representation in \mathcal{S}_d of π (N — L) the branched covering M that is determined might not be a manifold; in order to ensure that M be a manifold it is however sufficient to assume that L is a locally flat submanifold. I shall deal with this and related questions in another place.)

Theorem 1.—If an n-dimensional connected orientable closed manifold M is a d-fold cyclic branched covering of a homology sphere N, then there is an autohomeomorphism t of M such that, for k=1, 2, ..., n-1, the matrix T, of the induced automorphism

$$t_*: H_k(M) \longrightarrow H_k(M)$$

satisfies the equation

$$\mathbf{B} + \mathbf{T} + \mathbf{T}^2 + \ldots + \mathbf{T}^{d-1} = 0.$$

PROOF.—Let σ and τ range over the simplexes of N of dimension k+1 and k respectively. For each σ choose a (k+1)-dimensional simplex $\bar{\sigma}$ of M that projects onto σ , and for each τ choose a k-dimensional simplex $\bar{\tau}$ of M that projects onto τ . Thus

$$e^{-1}\left(\sigma\right) = \bigcup_{i=0}^{d-1} t^{i} \tilde{\sigma}$$

and

$$e^{-1}(\tau) = \bigcup_{i=0}^{d-1} t^i \tilde{\tau}.$$

Notice that if σ or τ lies in the branch set these simplexes of M are not all distinct. This, however, does not affect the following argument.

Consider an arbitrary k-dimensional cycle

$$\bar{\beta} = \Sigma_{\vec{\tau}} \; \Sigma_{i=0}^{d-1} \; g \; (t^i \; \tilde{\tau}) \; t^i \; \tilde{\tau}$$

of M. Then

$$\Sigma_{j=0}^{d-1} t^{j} \tilde{\beta} = \Sigma_{\tau} \Sigma_{i,j=0}^{d-1} g(t^{i} \tilde{\tau}) t^{i+j} \tilde{\tau} = \Sigma_{\tau} \Sigma_{k=0}^{d-1} g(\tau) t^{k} \tilde{\tau},$$

where

$$g(\tau) = \sum_{i=0}^{d-1} g(t^i, \tilde{\tau}),$$

and

$$\beta = e_* (\tilde{\beta}) = \Sigma_{\tau} g(\tau) \pi.$$

Since N is a homology sphere there is a (k+1)-dimensional chain

$$\alpha = \Sigma_{\sigma} f(\sigma) \sigma$$

of N such that $\partial \alpha = \beta$. Let ϵ (σ , τ) denote the incidence number of σ and τ . Thus $\partial \sigma = \Sigma_{\tau} \epsilon$ (σ , τ) τ . Hence

$$\beta = \Sigma_{\sigma} f(\sigma) \delta \sigma = \Sigma_{\sigma, \tau} f(\sigma) \epsilon (\sigma, \tau) \tau$$

and consequently

$$g(\tau) = \Sigma_{\sigma} f(\sigma) \varepsilon(\sigma, \tau).$$

Now let us consider the transfer of a, the chain.

$$\tilde{\alpha} = \Sigma_{\sigma} f(\sigma) \Sigma_{i=0}^{d-1} t^{i} \tilde{\sigma}.$$

Its boundary is

$$\partial \tilde{z} = \Sigma_{\sigma} f(\sigma) \partial \left(\Sigma_{i=0}^{d-1} t^{i} \tilde{\sigma} \right) = \Sigma_{\sigma, \tau} f(\sigma) z(\sigma, \tau) \Sigma_{h=0}^{d-1} t^{h} \tilde{\tau} =$$

$$= \Sigma_{\tau} g(\tau) \Sigma_{h=0}^{d-1} t^{h} \tilde{\tau} = \Sigma_{j=0}^{d-1} t^{j} \tilde{\beta}.$$

This shows that $\ddot{\beta} + t \ddot{\beta} + ... + t^{d-1} \ddot{\beta} \sim 0$ in M, and hence that

$$\mathbf{E} + \mathbf{T} + \ldots + \mathbf{T}^{d-1} = 0.$$

Corollary. — If $n \ge 3$ the n-dimensional torus $S^1 \times S^1 \times ... \times S^1$ cannot be a 2-fold cyclic branched covering of S^n .

Proof.—If $\gamma_1, ..., \gamma_n$ is a basis for H_1 ($S^1 \times S^1 \times ... \times S^1$) then according to the theorem, there is an autohomeomorphism t of M for which the induced automorphism t_* of H_1 must be the automorphism $\gamma_1 \longrightarrow -\gamma_i$, i=1, ..., n. Since $S^1 \times S^1 \times ... \times S^1$ is an aspherical space it follows from a standard Hurewicz theorem that t is homotopic to the mapping

$$(z_1, z_2, ..., z_n) \longrightarrow (\bar{z}_1, \bar{z}_2, ..., \bar{z}_n),$$

where S¹ denote the subset $\{z \mid |z| = 1\}$ of the complex plane. But this implies that, for $1 \le k \le n-1$, the matrix of the automorphism $t_* \colon H_k \longrightarrow H_k$ is $(-1)^k E$, and, for $n \ge 3$, this contradicts the theorem.

Now for the represented link (L, w) of figure 1, the manifold

Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4.

Fig. 5.

M (L, ω) has the same fundamental group as the torus $S^1 \times S^1 \times S^1$. That it is, in fact, $S^1 \times S^1 \times S^1$ has been demonstrated to be by J. M. Montesinos. A sketch of the proof is as follows: Since over 3-cell branched as shown in figure 2 is a 3-cell, and the same is true over a 3-cell branched as shown in figure 3, the manifold M (L, ω) is not altered by any modification of (L, ω) that replaces figure 2 by figure 3 in an appropriate 3-cell. After modifying figure 1 in this manner at eight places, figure 4 is obtained and this can be replaced by figure 5. From figure 5 one can exhibit M (L, ω) us $S^1 \times S^1 \times S^1$ conveniently subdivided into eight cubes. (I think that a direct proof that this represented link is not separable would be very difficult, if not impossible.)

Of course to prove the Poincaré conjecture it would not be necessury for conjecture A to apply to every represented link (L, ω) . It would be good enough if it applied at least to those represented links (L, ω) for which M (L, ω) is simply connected. Thus we may replace conjecture A by the following weaker conjecture:

Conjecture A'.—Every transitive simply represented link (L, ω) for which $\pi(M(L, \omega)) = 1$ can be transformed by operations D into a represented link (L^*, ω^*) that splits into represented links

$$(L_1, \omega_1), ..., (L_m, \omega_m)$$

such that $d_i \leqslant 2$, i = 1, ..., m.

Of course there is no obvious way in which Poincaré's conjecture implies conjecture A either. This is because of the *possibility* of the existence of a transitive simply represented link (L, ω) that is not reparable even though $M(L, \omega) = S^3$.

In the case of a 2-fold cyclic covering $e: M \longrightarrow S^3$ of S^3 branched over L, the group $\pi(M-K)$, where $K=e^{-1}(L)$, is mapped by e_* onto a subgroup of $\pi(N-L)$ of index 2, and a group isomorphic to $\pi(M)$ can be obtained by adjoining to this group $e_*\pi(M-K)$ the relations $x^2=1$ that set equal to 1 the squares of the meridians. Now this is the same thing as adjoining these relations directly to the group $\pi(N-L)$ and then, afterwards, taking the subgroup of index 2 of the resulting homomorph of $\pi(N-L)$. Hence $\pi(M)=1$ if and only

if the group π $(N-L)/\langle x^2=1\rangle$ is cyclic of order 2. Since abelianization maps the group π $(N-L)/\langle x^2=1\rangle$ onto the direct product of μ cyclic groups of order 2, π $(N-L)/\langle x^2=1\rangle$ cannot possibly be cyclic of order 2 unless $\mu=1$, i. e. unless L is a single connected knot. Thus we may reformulate conjecture B as follows:

Conjecture B'.—If the group G of a knot is non-abelian then the quotient group $G/\langle x^2=1\rangle$ obtained by setting = 1 the square of a meridian is also non-abelian.

REFERENCES

- ALEXANDER, J. W.: Note on Riemann spaces. "Bull. Amer. Math. Soc.", 26 (1920), 370-372.
- [2] Fox, R. H.: Covering spaces with singularities. Algebraic Geometry and Topology, a symposium in honour of S. Lefschetz, Princeton 1957.
- [3] Construction of simply connected 3-manifolds. Topology of 3-manifolds and related topics, University of Georgia 1961 Institute, Prentice Hall, 1962, 213-216.
- [4] Metacyclic invariants of knots and links. «Canadian J. Math.», 22 (1970), 193-201.
- [5] Montesinos, J. M.: Sobre la conjetura de Poincaré y los recubridores ramificados sobre un nudo. Tesis doctoral, Universidad de Madrid.
- [6] Reducción de la conjetura de Poincaré a otras conjeturas geométricas. «Revista Matemática Hispano-Americana»,
- [7] Una nota a un teorema de Alexander. «Revista Matemática Hispano-Americana»,